WO2010119771A1 - Method for producing plastic film-inserted laminated glass, and plastic film-inserted laminated glass - Google Patents

Method for producing plastic film-inserted laminated glass, and plastic film-inserted laminated glass Download PDF

Info

Publication number
WO2010119771A1
WO2010119771A1 PCT/JP2010/055833 JP2010055833W WO2010119771A1 WO 2010119771 A1 WO2010119771 A1 WO 2010119771A1 JP 2010055833 W JP2010055833 W JP 2010055833W WO 2010119771 A1 WO2010119771 A1 WO 2010119771A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plastic film
glass
plastic
laminated glass
Prior art date
Application number
PCT/JP2010/055833
Other languages
French (fr)
Japanese (ja)
Inventor
健介 泉谷
敦 高松
浩道 坂本
功 中村
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010119771A1 publication Critical patent/WO2010119771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate

Definitions

  • a laminate of two glass plates using two resin interlayers sandwiching a plastic film, particularly a polyethylene terephthalate film, is known as a laminated glass having a heat ray reflecting function.
  • laminated glass is subjected to high-temperature and high-pressure treatment using an autoclave, and a glass plate and a polyester film are heat-sealed by a resin interlayer.
  • Patent Document 1 a flexible laminate in which a heat ray reflective plastic film having a thin film formed on a polyester film is sandwiched between two resin intermediate films is sandwiched and laminated between two glass plates. Glass is disclosed.
  • Patent Document 2 a polyethylene terephthalate film (PET film) or a polyethylene naphthalate film (PEN film) on which an infrared reflecting film is formed is heated at 199 to 204 ° C. or 227 to 243 ° C. It is disclosed that when a PET film or a PEN film is used, wrinkles are not caused by heat shrinkage.
  • PET film polyethylene terephthalate film
  • PEN film polyethylene naphthalate film
  • Patent Document 3 a plastic film-inserted laminated glass using a biaxially stretched thermoplastic support film having a thickness of 30 to 70 ⁇ m and a thermal shrinkage of 0.3 to 0.6% in the stretch direction A manufacturing method is disclosed.
  • Patent Document 4 has an infrared reflecting film made of a metal such as Ag formed on plastic, and Patent Document 5 has laminated dielectric materials having different refractive indexes.
  • An infrared reflecting film formed on a plastic film is disclosed in Patent Document 6, and a film obtained by laminating resin films having different refractive indexes on a plastic film is disclosed.
  • an object of the present invention is to provide a production method in which the plastic film is not wrinkled.
  • the method for producing a plastic film-inserted laminated glass according to the present invention comprises two glass plates curved by bending, two resin intermediate films, and a plastic film with an infrared reflecting film.
  • a plastic film-inserted laminated glass in which a film, a plastic film with an infrared reflecting film, a resin intermediate film, and a glass plate are laminated in this order, an opaque colored film is formed on the periphery of at least one glass plate,
  • Step 1 The plastic film with an infrared reflecting film is cut into a predetermined shape plastic film (a plastic film having an area smaller than the area of the glass plate and the edge of the film overlapping the opaque colored film of the glass plate on the entire circumference). Process.
  • Step 2 A step of stacking the two resin intermediate films and the predetermined shape plastic film so that the predetermined shape plastic film produced by cutting in Step 1 is sandwiched between the two resin intermediate films.
  • Step 3 A step of heat-sealing the resin intermediate film and the resin intermediate film or the resin intermediate film and the predetermined shape plastic film at a position close to the side of the predetermined shape plastic film to form a laminated intermediate film.
  • the manufacturing method of the plastic film insertion laminated glass which concerns on this invention uses the heating apparatus which has a heating body, or uses a laser beam for the heat fusion of the process 3 in the manufacturing method of the said plastic film insertion laminated glass. It is a manufacturing method of the plastic film insertion laminated glass characterized by the above-mentioned.
  • the plastic film-inserted laminated glass according to the present invention is a plastic produced by the method for producing a plastic film-inserted laminated glass, characterized in that the radius of curvature of the two glass plates is in the range of 0.9 to 3 m. Film-inserted laminated glass.
  • the plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the plastic film used for the plastic film with an infrared reflective film is polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone.
  • the plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the resin interlayer disperses fine particles of metal or metal oxide in polyvinyl acetal, ethylene vinyl acetate, or a fusible resin thereof.
  • the plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the infrared reflective film of the plastic film with an infrared reflective film comprises a high refractive index oxide film and a low refractive index oxide film.
  • a plastic film-inserted laminated glass which is a multilayer film formed by alternately laminating, a multilayer film of polymer thin films having different refractive indexes, or a conductive thin film.
  • the plastic film insertion laminated glass according to the present invention is the plastic film insertion laminated glass, wherein the oxide film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , Al 2 O 3 , ZrO 2 ,
  • the oxide film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , Al 2 O 3 , ZrO 2
  • a plastic film-inserted laminated glass characterized by comprising two or more kinds of oxides selected from MgF 2 , or a multilayer film of polymer thin films having different refractive indices, comprising 50 layers of two types of polymer thin films alternately.
  • plastic glass film characterized by being a multilayer film formed by laminating 200 layers, or the conductive thin film is made of Ag, Au, Cu, Al, Pd, Pt, Sn, In, Zn, Ti, Metal film or alloy film made of metal or alloy such as Cd, Fe, Co, Cr, Ni, or antimony-doped tin oxide, tin-doped
  • a plastic film-inserted laminated glass characterized in that consists characterized by comprising a conductive metal oxide film made of indium or the like.
  • the plastic film insertion laminated glass which concerns on this invention WHEREIN:
  • a plastic film-inserted laminated glass characterized in that (A) The thickness is in the range of 30 to 200 ⁇ m. (B) The thermal shrinkage is in the range of 0.1 to 3% in the temperature range of 100 to 150 ° C. (C) When a tensile force of 10 N is applied per 1 m width of the plastic film with an infrared reflecting film in a temperature range of 100 to 150 ° C., the elongation percentage of the plastic film with the infrared reflecting film is 0.3% or less.
  • the plastic film-inserted laminated glass according to the present invention is a plastic film-inserted laminated glass characterized in that the visible light transmittance defined in JIS R3212: 1998 is 70% or more in the plastic film-inserted laminated glass.
  • the plastic film insertion laminated glass according to the present invention is a plastic film insertion laminated glass characterized in that in the plastic film insertion laminated glass, the solar reflectance defined in JIS R3106: 1998 is 20% or more. .
  • plastic film-inserted laminated glass according to the present invention, the plastic film-inserted laminated ISO13837 in glass: total solar transmittance as defined in 2008 (Total Solar Transmittance) plastic T TS is equal to or less than 50% Film-inserted laminated glass.
  • the present invention relates to a plastic-inserted laminated glass produced by using two glass plates curved in the same shape by a laminated film in which a plastic film with an infrared reflecting film is sandwiched between two resin intermediate films.
  • the manufacturing method of the plastic film insertion laminated glass with a favorable external appearance which does not produce is provided.
  • the plastic film-inserted laminated glass to be manufactured has an infrared reflecting film, and therefore reflects the heat rays of sunlight and has excellent heat insulation properties.
  • FIG. 2 is a cross-sectional view taken along line aa ′ in FIG. 1.
  • the edge part schematic sectional drawing of the plastic film insertion laminated glass of FIG. The top view which shows the place where the plastic film 22 with an infrared reflecting film is cut
  • FIG. The top view of the intermediate film laminated body obtained by pinching
  • FIG. 1 The top view of the lamination
  • cross-sectional view Sectional drawing of the lamination
  • FIG. 3 is a schematic cross-sectional view showing a heat fusion apparatus in which resin intermediate films 23 and 23 ′ sandwiching a predetermined shape plastic film 25 are sandwiched between a heating body 31 and a pressing portion 32 of a heater 30 and partially heat-sealed.
  • FIG. 3 is a schematic cross-sectional view showing a heat fusion apparatus in which resin intermediate films 23 and 23 ′ sandwiching a predetermined-shaped plastic film 25 are sandwiched between two heaters and partially heat-sealed.
  • the schematic sectional drawing which shows the heat sealing
  • FIG. 11 is a schematic cross-sectional view showing a deaeration method using a tube (cross-section gg ′ in FIG. 10).
  • FIG. 13 is a schematic sectional view showing a deaeration method using a vacuum bag (cross section taken along line hh ′ in FIG. 12).
  • the method for producing a laminated plastic film-inserted glass of the present invention is to produce a curved plastic film-inserted laminated glass 1 as shown in FIGS.
  • a laminated film 28 having a configuration in which a plastic film 14 having a predetermined shape formed by cutting a plastic film with an infrared reflecting film is sandwiched between resin interlayers 11 and 12 as shown in FIG. It is a laminated glass formed by bonding two glass plates 10 and 13 that are used and bent.
  • glass plates 10 and 13 As the shape of the two glass plates 10 and 13 that have been bent, there are glass plates having different radii of curvature depending on places, such as a spherical surface, an elliptical spherical surface, or a front glass of an automobile.
  • the radius of curvature of the curved glass plate is 0.9 m to 3 m.
  • the curvature radius is smaller than 0.9 m, wrinkles of the predetermined-shaped plastic film 14 are likely to occur in the laminating process. Therefore, the curvature radius is desirably 0.9 m or more.
  • the reason why the radius of curvature is 3 m or less is that when the radius of curvature increases, the glass plate has a shape close to a flat surface, and there is almost no effect of the present invention that wrinkles of the predetermined shape plastic film 14 do not occur. This is because the effect of the present invention appears when the radius is 3 m or less.
  • the eaves glass plate 10 When the eaves glass plate 10 is disposed on the outdoor side, it is desirable to use the glass plate 10 positioned on the outdoor side with an opaque colored film 15 formed on the periphery as shown in FIG.
  • the use of the outdoor glass plate 10 on which the opaque colored film 15 is formed is that when sunlight hits the edge 4 of the predetermined shape plastic film 14, the light is scattered at the edge 4 and the edge 4 is only noticeable. This is because there is a risk of disturbing driving.
  • soot coloring film 15 on the mating surface of the glass plate 10 located on the outdoor side.
  • the shape of the predetermined shape plastic film 14 is such that the edge 4 of the predetermined shape plastic film overlaps the opaque colored film 15 of the glass plate 10 on the entire circumference and is cut to an area smaller than the area of the glass plate 10 or 13. It is preferable to use those prepared.
  • the edge 4 of the predetermined shape plastic film 14 overlaps the opaque colored film 15 of the glass plate 10 on the entire circumference, and the shape of the predetermined shape plastic film 14 is similar to the see-through portion 5 of the glass plate 10. This is desirable because CAD data for forming the film 15 can be used.
  • FIG. 3 shows a schematic cross section of the end of the plastic-inserted laminated glass.
  • the dimension d1 dimension from the glass edge 2 to the plastic film edge 4
  • the dimension d2 dimension from the glass edge 2 to the colored film edge 3.
  • Is reduced and d3 d2 ⁇ d1 is preferably 5 mm or more in order to prevent scattering of sunlight at the edge of the plastic film.
  • a hot melt type adhesive such as polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA) is preferably used for the resin intermediate films 11 and 12.
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • the resin intermediate film 12 used on the indoor side has fine metal particles such as Ag, Al, Ti, metal nitride, metal oxide fine particles, ITO, ATO, AZO,
  • conductive transparent oxide fine particles such as GZO and IZO
  • metal fine particles such as Ag, Al and Ti, metal nitride and metal oxide fine particles, and conductive materials such as ITO, ATO, AZO, GZO and IZO
  • the transparent transparent oxide fine particles are preferable because they absorb infrared rays and can improve the heat insulating property of the plastic-inserted laminated glass.
  • plastic film with an infrared reflecting film those prepared by a stretching method are suitable, and are made of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, nylon, polyarylate, cycloolefin polymer, or the like.
  • a plastic film selected from plastic films having an infrared reflective film (not shown) formed thereon is used.
  • the crystalline polyethylene terephthalate film (PET film) formed by the biaxial stretching method has excellent heat resistance and can be used in a wide range of temperature environments, and is highly transparent and produced in large quantities. Therefore, the quality is stable and suitable.
  • the conductive thin film is a metal or alloy such as Ag, Au, Cu, Al, Pd, Pt, Sn, In, Zn, Ti, Cd, Fe, Co, Cr, or Ni.
  • a metal film or an alloy film made of, or a conductive metal oxide film made of antimony-doped tin oxide, tin-doped indium oxide, or the like is preferably used.
  • a dielectric multilayer film having a different refractive index or a resin multilayer film having a different refractive index as the infrared reflective film laminated on the plastic film, because it transmits electromagnetic waves used in broadcasting and communication.
  • a dielectric multilayer film having a different refractive index or a resin multilayer film having a different refractive index is formed by alternately laminating a laminated film having a refractive index n1 and a laminated film having a refractive index n2 (n2 ⁇ n1). It is a multilayer film.
  • a multilayer film formed by alternately stacking a high refractive index oxide film and a low refractive index oxide film is used as the infrared reflective film
  • a film made of at least one dielectric selected from Al 2 O 3 , ZrO 2 , and MgF 2 is preferably used.
  • SiO 2 is used for a film having a low refractive index and one or more kinds of dielectrics selected from TiO 2 , Nb 2 O 5 , and Ta 2 O 5 are used for a film having a high refractive index
  • 4 to 11 A multilayer film of layers is preferable because a suitable infrared reflection film that reflects near infrared rays can be formed.
  • the infrared reflective film made of a dielectric film has a dielectric film of 4 layers or more and 11 layers or less so as to satisfy the following conditions (1) and (2). It is desirable to have a maximum value of reflection exceeding 50% in a wavelength range of 900 nm to 1400 nm.
  • the maximum value of the refractive index of the even-numbered layer is n emax
  • the minimum value is n emin
  • the maximum value of the refractive index of the odd-numbered layer is no max
  • the minimum value is when the n omin, n emax ⁇ n omin or n omax ⁇ n emin.
  • polyethylene terephthalate polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, nylon, polyarylate, cycloolefin A polymer or the like is preferably used, and the total number of multilayer films in which two types of polymer layers are alternately stacked is preferably 50 to 200 layers.
  • the conductive thin film and the dielectric film are preferably formed by a PVD method, a sputtering method, or the like, and the polymer thin film is preferably formed by a roll coating method, a flow coating method, a dipping method, or the like.
  • the plastic film with an infrared reflective film satisfies any of the following conditions (A), (B), and (C): Is preferred.
  • the thickness is in the range of 30 to 200 ⁇ m.
  • the thermal shrinkage is in the range of 0.1 to 3% in the temperature range of 100 to 150 ° C.
  • C When a tensile force of 10 N is applied per 1 m width of the plastic film with an infrared reflecting film in a temperature range of 100 to 150 ° C., the elongation percentage of the plastic film with the infrared reflecting film is 0.3% or less.
  • the thickness of the plastic film with an infrared reflecting film should be in the range of 30 to 200 ⁇ m. If the thickness is smaller than 30 ⁇ m, This is because wrinkles are likely to occur, and if it exceeds 200 ⁇ m, the shape of the plastic film with an infrared reflecting film does not follow the curved surface of the glass plate, and wrinkles are generated.
  • the plastic film with the infrared reflecting film is at a temperature of 100 to 150 ° C., and it is preferable that the thermal shrinkage rate is in the range of 0.1 to 3% within this temperature range.
  • the thermal shrinkage rate of the plastic film with an infrared reflecting film at 90 to 150 ° C. is less than 0.1%, the film with the infrared reflecting film is bumped around the curved glass plate, resulting in wrinkled appearance defects. appear.
  • the thermal shrinkage rate is greater than 3%, the infrared reflective film cannot withstand the shrinkage of the film, resulting in appearance defects that crack and crack.
  • the thermal shrinkage rate of the plastic film with an infrared reflecting film is specified in JIS relating to a transparent plastic film, it is preferably performed according to the corresponding JIS, for example, according to JIS C2318: 2007. .
  • the measurement temperature of the heat shrinkage rate is, for example, 150 ° C. in JIS C2318, but it is desirable to determine the measurement temperature according to the temperature setting conditions of the alignment process, and in the temperature range from 90 ° C. to 150 ° C. It is preferable to measure the heat shrinkage rate.
  • the elongation rate is increased. Is preferably 0.3% or less.
  • the tensile force of 10N applied per 1m width of the plastic film with the infrared reflecting film is such that the plastic film with the infrared reflecting film sandwiched between the intermediate films is made high temperature and high pressure by an autoclave, and the plastic film with the infrared reflecting film is formed by the intermediate film.
  • this corresponds to a tensile force that is generated in the plastic film with an infrared reflecting film and is intended to stretch the plastic film with the infrared reflecting film.
  • the elongation percentage of the plastic film with an infrared reflecting film is measured by the following procedures 1 to 5.
  • Procedure 1 A plastic film with an infrared reflecting film is cut into a length of 15 mm and a width of 5 mm to obtain a measurement sample. Attach fixing jigs to both ends of the measurement sample. The measurement sample is exposed between the fixing jigs at both ends, and the exposed length of the measurement sample is set to 10 mm.
  • Procedure 2 A load with a tensile force of 10 N per 1 m width is applied to the measurement sample. In the case of the measurement sample shown in Procedure 1, a load of 0.05 N is applied.
  • Procedure 3 The length L 0 of the measurement sample between the fixing jigs is measured.
  • Procedure 4 Heat to a measurement temperature between 90 and 150 ° C. at 5 ° C./min, and measure the length L between the fixing jigs of the measurement sample at the measurement temperature.
  • Elongation rate (%) is calculated by (L 0 -L) / L ⁇ 100.
  • the plastic film-inserted laminated glass 1 shown in FIGS. 1 and 2 is manufactured by the following steps 1 to 5.
  • steps 1 to 3 a laminated intermediate film 28 having a configuration in which the plastic film 14 having a predetermined shape is sandwiched between the two resin intermediate films 11 and 12 is produced.
  • Step 1 A plastic film with an infrared reflecting film is formed into a plastic film having a predetermined shape (a plastic film having an area smaller than the area of the glass plate and the edge of the plastic film having a predetermined shape overlaps the opaque colored film of the glass plate on the entire circumference) The process of cutting.
  • Step 2 A step of superposing the two resin intermediate films 11 and 12 and the predetermined shape plastic film 14 so that the predetermined shape plastic film 14 is sandwiched between the two resin intermediate films 11 and 12.
  • Step 3 At a position close to the side of the predetermined shape plastic film 14, the resin intermediate film 11 and the resin intermediate film 12 or the resin intermediate films 11 and 12 and the predetermined shape plastic film 14 are heat-sealed to form a laminated intermediate. Step of forming film 28.
  • Step 4 The laminated intermediate film 28 obtained in Step 3 is placed between two curved glass plates 10 and 13 to form a glass plate laminate, and the space between the two glass plates 10 and 13 is deaerated. Process.
  • Process 5 The process of pressurizing and heating the glass plate laminated body after deaeration and bonding.
  • Steps 1 to 5 are performed as follows.
  • step 1 as shown in FIG. 4, the plastic film 22 with the infrared reflection film is cut into a plastic film 25 having a predetermined shape, and the unnecessary portion 26 is removed.
  • a linear or circular cutter knife or a laser cutter that scans and cuts the laser beam for cutting the plastic film 22 with an infrared reflective film.
  • a cutting device that moves the cutter knife by numerical control.
  • the plastic film 25 having a predetermined shape is similar to the see-through portion 5 of the plastic film-inserted laminated glass 1 shown in FIG.
  • the plastic film 22 with the infrared reflection film is overlapped on the glass plate 10 that is bent and cut to obtain the plastic film 25 having a predetermined shape.
  • the glass plate 10 when the glass plate 10 is used for a front window of an automobile, the glass plate 10 often has a complicated surface shape with different curvatures depending on the location, and the plastic film 22 with an infrared reflecting film is cut on the curved surface of the glass plate 10. Therefore, it is easy to cut the plastic film 22 with the infrared reflecting film in accordance with the shape of the see-through portion in the flat plate shape before the glass plate 10 is bent. 25 is obtained.
  • step 2 as shown in FIG. 5A, resin intermediate films 23 and 23 ′ are stacked on both sides of a predetermined shape plastic film 25, and an intermediate film stack 20 is produced.
  • step 3 as shown in FIGS. 6A and 6B, a linear heat-sealed portion 29 is formed between the resin intermediate films 23 and 23 'in the vicinity of the center of the side of the predetermined-shaped plastic film 25 of the intermediate film laminate.
  • the laminated intermediate film 28 is produced by heat fusion.
  • the resin intermediate films 23 and 23 ′ are overlapped on both sides of the predetermined shape plastic film 25 to form a heat-welded portion 29 ′ near the center of the side of the predetermined shape plastic film 25.
  • the laminated intermediate film 28 ′ may be manufactured by heat-sealing the resin intermediate film 23 to the plastic film 25 having a predetermined shape.
  • heat fusion parts 29 and 29 ′ are preferably formed in a linear shape, but may be in a dotted line shape or a dotted shape.
  • the resin intermediate film 23 is heat-sealed to the predetermined shape plastic film 25.
  • the resin intermediate film 23 ' is bonded to the predetermined shape plastic film 25 or both of the resin intermediate films 23 and 23'. May be heat-sealed to the plastic film 25 having a predetermined shape.
  • the ridge-like heat-sealed portions 29 and 29 ′ are formed near the center of the side of the predetermined-shaped plastic film 25 where wrinkles are likely to occur.
  • the length of the linear heat-sealed portions 29 and 29 ′ is 5 mm or more. Further, in order to prevent a degassing failure between the resin intermediate films 23 and 23 ', it is preferable that the length of the linear heat-sealing portions 29 and 29' is 300 mm or less.
  • the heat fusion parts 29 and 29 ' are preferably formed near the center of all sides of the plastic film 25 having a predetermined shape.
  • the curvature of the bent glass plate is larger than 3 m, and the plastic film is wrinkled. In the case of a side where there is no risk of occurrence, it may not be formed.
  • the heat fusion part 29 can be formed by using an electric heater 30 and pressing a heating body 31 of the electric heater against the resin intermediate film 23.
  • the heating body 31 may be pressed from both sides of the resin intermediate film using two electric heaters 30 and heated.
  • the heat fusion part 29 may be formed by condensing the laser beam 33 on the surface where the resin intermediate films 23 and 23 ′ are in contact with each other by the convex lens 34 or the like.
  • the surface of the resin intermediate film is pressed with a transparent plate 35 such as a glass plate so that the light is not scattered on the embossed surface of the resin intermediate film 23, and the laser beam is in the middle of the resin. It is desirable not to scatter on the surface of the film.
  • the heat fusion part 29 ′ in which the resin intermediate film 23 ′ and the predetermined shape plastic film 25 are heat-sealed can also be formed in the same manner as the heat fusion part 29.
  • step 4 the laminated intermediate film 28 or 28 ′ produced in steps 1 to 3 is used to overlap the glass plate 10, the laminated intermediate film 28, and the glass plate 13 to form a glass plate laminated body 40. Deaeration with the plate 13 is performed.
  • Deaeration is not particularly limited, but a method of pressing and degassing from both sides of the glass plate laminate 40 with a pressing roll 41 as shown in FIG. 9, as shown in FIGS. 10 and 11, A method of attaching a tube 42 made of rubber-based resin around the glass plate laminate 40 and exhausting air from the exhaust nozzle 43 to deaerate the inside of the vacuum bag 44 as shown in FIGS.
  • the glass plate laminated body 40 can be put in and the air can be exhausted from the exhaust nozzle 45.
  • a vacuum pump (not shown) can be preferably used for exhausting air.
  • the glass plate laminate 40 in the degassed state of the process 4 is heated and pressurized by an autoclave device.
  • the temperature range of the heat and pressure treatment is 90 to 150 ° C., and the pressure is 1 MPa or less, and it is preferably performed for about 30 minutes.
  • a laminated intermediate film in which the resin intermediate film is continuous may be produced by using a continuous roll of resin intermediate film.
  • the laminated intermediate film 20 and the glass plate may be overlapped from the state in which the resin intermediate film is continuous before the step 3 or 4 and cut into a shape as shown in FIGS. 5A and 4B.
  • the plastic film-inserted laminated glass according to the present invention produced by steps 1 to 5 is required for driving an automobile by setting the visible light transmittance defined in JIS R3212: 1998 to 70% or more. This is preferable because it can be used for windows.
  • the plastic film-inserted laminated glass according to the present invention has a solar reflectance specified by JIS R3106: 1998 of 20% or more, or a total solar transmittance T specified by ISO 13837: 2008.
  • TS solar reflectance specified by JIS R3106: 1998 of 20% or more
  • T total solar transmittance
  • Example 1 1 and 2 a plastic film insertion laminated glass 1 in which a glass plate 10, a resin intermediate film 11, a plastic film 14 having a predetermined shape on which an infrared reflecting film is formed, a resin intermediate film 12, and a glass plate 13 are laminated. Produced.
  • the glass plates 10 and 13 are made by bending float glass having a size of 1100 mm ⁇ 1800 mm and a thickness of 2 mm.
  • the glass plate 10 used for the outdoor side is screen-printed with a ceramic paste on the concave side, fired, and colored. A film was formed.
  • a green heat ray absorbing glass having a thickness of 2 mm was used.
  • the width of the soot-colored film (d2 in FIG. 3) was 30 mm at the minimum and 200 mm at the maximum.
  • the curvature radius of the curved glass plate was between 0.9 m and 1 m, the peripheral portion was 0.9 m, and the central portion was 1 m.
  • PVB films having a thickness of 0.38 mm were used.
  • a PET film with a thickness of 100 ⁇ m was used as the plastic film with an infrared reflective film.
  • a hard coat film mainly composed of an acrylic resin in which tin-doped indium oxide (ITO) fine particles are dispersed is used as an infrared absorption layer (not shown) to a thickness of 5 ⁇ m after curing.
  • ITO tin-doped indium oxide
  • a dielectric multilayer film is used, and a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), A TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), and a TiO 2 film (thickness 105 nm) are formed on the hard coat film. Films were formed sequentially by sputtering.
  • silane coupling agent was applied to the surface of the PET plastic film where the infrared reflective film was not formed.
  • Steps 1 to 5 were carried out as follows to produce the plastic-inserted laminated glass shown in FIGS.
  • a plastic film 22 with an infrared reflecting film in which a hard coat film, an infrared reflecting film and a coating film of a silane coupling agent are formed on a PET film using a thin blade cutter knife made of stainless steel has a predetermined shape as shown in FIG. Cut into a plastic film 25.
  • the shape of the plastic film 25 having a predetermined shape is similar to that of the see-through portion 5 of FIG. 1, and the size of the overlapping width (d3 shown in FIG. 3) of the plastic film 25 of the predetermined shape and the colored film 15 is 10 mm.
  • the intermediate film laminate 20 shown in FIG. 5A was formed by overlapping the resin intermediate films 23 and 23 ′ and the predetermined shape plastic film 25 so as to sandwich the predetermined shape plastic film 25.
  • Heat fusion was performed using the apparatus shown in FIG. 8A.
  • the area pressed against the resin intermediate film 23 of the heating body 31 is 10 mm ⁇ 200 mm, the temperature of the heating body is heated to 45 ° C., and pressed against the resin intermediate film 23 with a force of 1 N per square centimeter for 20 seconds.
  • the heat fusion part 29 shown in FIG. 6A and FIG. 6B was formed.
  • Step 4 The laminated intermediate film 28 produced in Step 3 is stacked on the curved outdoor glass 10, and the curved indoor glass 13 is stacked thereon, and the resin intermediate film protruding from the edge of the curved glass plate is cut with a cutter.
  • the glass plate laminate 40 was formed by cutting with a knife.
  • the laminated intermediate film 28 was laminated on the curved outdoor glass 10 so that d3 shown in FIG.
  • the infrared reflective film formed on the plastic film with the infrared reflective film is disposed so as to be in contact with the resin intermediate film 11 on the outdoor side of FIG. 2, and the hard coat layer that absorbs infrared rays is formed on the resin intermediate film 12 on the indoor side. I made contact.
  • the glass plate laminate 40 was degassed by using the tube 42 shown in FIGS. 10 and 11 and connecting the exhaust nozzle 43 to a vacuum pump (not shown).
  • the tube 42 was made of rubber resin.
  • Step 5> The glass plate laminate 40 is placed in an autoclave while being deaerated using the tube 42 shown in FIGS. 10 and 11, and subjected to pressurization (0.2 MPa) and heating (95 ° C.) for 15 minutes, and then glass. The plate laminate 40 was taken out from the autoclave.
  • the tube 42 is removed from the glass plate laminate 40, and the glass plate laminate 40, from which the tube 42 has been removed, is again placed in the autoclave, subjected to pressure (1 MPa) and heating (140 ° C.) for 30 minutes, and the plastic insertion shown in FIG. Laminated glass 1 was produced.
  • the produced plastic film-inserted laminated glass 1 has a predetermined-shaped plastic film 14 with no wrinkles and no defective appearance, has a visible light transmittance of 73% as defined in JIS R3211-1998, and is a windshield of an automobile. Can be suitably used.
  • JIS plastic film-inserted laminated glass of this embodiment R3106: solar reflectance as defined in the 1998 21%, also, ISO 13 837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS is 48%.
  • Example 2 Using a transparent PVB film having a thickness of 0.76 mm in which tin oxide (ATO) particles doped with antimony are dispersed in the resin intermediate film 13, and using a transparent PET film having a thickness of 80 ⁇ m as a plastic film with an infrared reflection film, As an infrared reflecting film, Nb 2 O 5 film (thickness 115 nm), SiO 2 film (thickness 175 nm), Nb 2 O 5 film (thickness 115 nm), SiO 2 film (thickness 175 nm), Nb 2 O 5 film (Thickness: 115 nm) was formed by sequential sputtering.
  • ATO tin oxide
  • a hard coat film mainly composed of an acrylic resin in which ATO fine particles are dispersed is applied by a roll coating method so as to have a thickness of 5 ⁇ m after curing, and an infrared reflection film is formed on the hard coat film. did.
  • the heat shrinkage rate of the plastic film with an infrared reflective film was 130 ° C., 0.7% in the MD direction, and 0.4% in the TD direction.
  • the produced plastic film-inserted laminated glass 1 has a predetermined-shaped plastic film 14 with no wrinkles and no defective appearance, has a visible light transmittance of 73% as defined in JIS R3211-1998, and is a windshield of an automobile. Can be suitably used.
  • JIS plastic film-inserted laminated glass of this embodiment R3106: solar reflectance as defined in the 1998 21%, also, ISO 13 837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS is 48%.
  • Example 3 Except for using an infrared reflecting film formed by laminating a thin film of zinc oxide and silver on a PET film by a sputtering method on an infrared reflecting film of a plastic film with an infrared reflecting film, all the same as in Example 1 A plastic film-inserted laminated glass 1 was produced.
  • the plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined shape plastic film and had no appearance defect.
  • Example 4 The infrared absorbing layer formed on the plastic film with the infrared reflecting film was used as an infrared reflecting film formed by sequentially laminating indium oxide, silver, indium oxide, silver, and indium oxide by a sputtering method.
  • a plastic film-inserted laminated glass 1 was produced in the same manner as Example 1 except for the other items.
  • the plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined-shaped plastic film 14 and had no appearance defect.
  • the solar radiation reflectance defined in JIS R3106: 1998 of the heat insulating laminated glass 1 of this example was 24%, and the visible light transmittance defined in JIS R3212: 1998 was 71%.
  • ISO 13837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS was 46%.
  • the thermal contraction rate of the plastic film 22 with an infrared reflecting film of this example is 0.7% in both the MD direction and the TD direction at 130 ° C., and the elongation rate is 0% in both the MD direction and the TD direction at 130 ° C. Met.
  • Example 5 Plastic film-inserted laminated glass in the same manner as in Example 1 except that a multilayer film formed by alternately laminating two types of polymer thin films having different refractive indexes was used for the infrared reflective film of the plastic film with the infrared reflective film. was made.
  • Polymethylmethacrylate was used for the low refractive index polymer thin film, and polyethylene terephthalate was used for the high refractive index polymer thin film.
  • a low refractive index layer formed using PMMA is called a PMMA layer, and a high refractive index layer formed using polyethylene terephthalate is called a PET layer.
  • the PMMA layer was formed by applying a solution obtained by dissolving PMMA in 2-methoxyethyl acetate by a roll coating method.
  • the refractive index was 1.49.
  • the PET layer was coated while melting the PET pellets with an extruder.
  • the refractive index of the PET layer was 1.65.
  • the infrared reflective layer 7 is formed by alternately stacking 20 layers of 0.144 ⁇ m PMMA layers and 0.159 ⁇ m PET layers, and alternately alternating 0.165 ⁇ m PMMA layers and 0.183 ⁇ m PET layers. Repeatedly layered 10 layers each, and further laminated 15 layers of 0.187 ⁇ m PMMA layer and 0.207 ⁇ m PET layer alternately, and further layered 158 ⁇ m PMMA layer and 0.175 ⁇ m PET layer. 15 layers were alternately stacked repeatedly, and further, a 0.172 ⁇ m PMMA layer and a 0.191 ⁇ m PET layer were alternately stacked repeatedly 15 layers each.
  • the polymer thin film has a total of 150 layers.
  • the thermal contraction rate of the film 22 with an infrared reflective film of this example was 130 ° C., and 1.1% in both the MD direction and the TD direction.
  • the plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined-shaped plastic film 14 and had no appearance defect.
  • regulated to JIS R3106: 1998 of the plastic film insertion laminated glass produced in the present Example was 20%, and the visible light transmittance prescribed
  • ISO 13837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS was 49%.
  • Comparative Example 1 A plastic film-inserted laminated glass was produced in the same manner as in Example 1 except that in Step 3 of Example 1, the laminated interlayer film 28 was formed without forming the heat-sealing portion 29.
  • the wrinkled plastic film-inserted laminated glass was not suitable for practical use because wrinkles were observed at the periphery of the plastic film having a predetermined shape and the appearance was poor.

Abstract

Disclosed is a method for producing a plastic film-inserted laminated glass in which an outdoor-side glass plate, a resin intermediate film, a plastic film, another resin intermediate film and an indoor-side glass plate are laminated in this order. The method for producing a plastic film-inserted laminated glass is characterized in that an opaque colored film is formed on the peripheral portion of the glass plates, and a laminated intermediate film is formed by sandwiching the plastic film, which is cut so as to have an area that is larger than the transparent area of the glass plates but smaller than the glass plates, between the two resin intermediate films and fusion-bonding one resin intermediate film to the plastic film or the other resin intermediate film at the peripheral portion of the plastic film. Also disclosed is a plastic film-inserted laminated glass.

Description

プラスチックフィルム挿入合わせガラスの製造方法およびプラスチックフィルム挿入合わせガラスPlastic film insertion laminated glass manufacturing method and plastic film insertion laminated glass
 ガラス板、樹脂中間膜、透明なプラスチックフィルム、樹脂中間膜、ガラス板をこの順に積層して作製される合わせガラスに関し、特に自動車の窓に用いられる合わせガラスに関する。 It is related with the laminated glass produced by laminating | stacking a glass plate, a resin intermediate film, a transparent plastic film, a resin intermediate film, and a glass plate in this order, It is related with the laminated glass especially used for the window of a motor vehicle.
 プラスチックフィルム、特にポリエチレンテレフタレートフィルムを挟持した2枚の樹脂中間膜を用いて、2枚のガラス板を積層したものが、熱線反射機能を持たせた合わせガラスとして、知られている。 A laminate of two glass plates using two resin interlayers sandwiching a plastic film, particularly a polyethylene terephthalate film, is known as a laminated glass having a heat ray reflecting function.
 通常、合わせガラスは、オートクレーブを用いて、高温高圧処理され、ガラス板とポリエステルフィルムが、樹脂中間膜により熱融着される。 Normally, laminated glass is subjected to high-temperature and high-pressure treatment using an autoclave, and a glass plate and a polyester film are heat-sealed by a resin interlayer.
 例えば、特許文献1では、薄膜がポリエステルフィルムに形成されてなる熱線反射プラスチックフィルムを、2枚の樹脂中間膜で挟持した可撓性積層体を、2枚のガラス板の間に挟んで積層される合わせガラスが開示されている。 For example, in Patent Document 1, a flexible laminate in which a heat ray reflective plastic film having a thin film formed on a polyester film is sandwiched between two resin intermediate films is sandwiched and laminated between two glass plates. Glass is disclosed.
 また、特許文献2には、赤外線反射膜が形成されているポリエチレンテレフタレートフィルム(PETフィルム)あるいはポリエチレンナフタレートフィルム(PENフィルム)を、199~204℃あるいは227~243℃で加熱し、曲面に前記PETフィルムあるいはPENフィルムを用いるときに、熱収縮によってシワが生じないようにすることが開示されている。 In Patent Document 2, a polyethylene terephthalate film (PET film) or a polyethylene naphthalate film (PEN film) on which an infrared reflecting film is formed is heated at 199 to 204 ° C. or 227 to 243 ° C. It is disclosed that when a PET film or a PEN film is used, wrinkles are not caused by heat shrinkage.
 さらに、特許文献3において、30~70μmの厚さで、延伸方向で0.3~0.6%の熱収縮率を有する二軸延伸された熱可塑性支持体フィルムを用いたプラスチックフィルム挿入合わせガラスの製造方法が開示されている。 Furthermore, in Patent Document 3, a plastic film-inserted laminated glass using a biaxially stretched thermoplastic support film having a thickness of 30 to 70 μm and a thermal shrinkage of 0.3 to 0.6% in the stretch direction A manufacturing method is disclosed.
 赤外線反膜が形成されたプラスチックフィルムに関しては、特許文献4にはAg等の金属でなる赤外線反射膜がプラスチックに形成されたものが、特許文献5には、屈折率の異なる誘電体を積層してなる赤外線反射膜がプラスチックフィルムに形成してなるものが、また特許文献6には、屈折率の異なる樹脂膜をプラスチックフィルムに積層してなるものが開示されている。 Regarding a plastic film on which an infrared anti-reflection film is formed, Patent Document 4 has an infrared reflecting film made of a metal such as Ag formed on plastic, and Patent Document 5 has laminated dielectric materials having different refractive indexes. An infrared reflecting film formed on a plastic film is disclosed in Patent Document 6, and a film obtained by laminating resin films having different refractive indexes on a plastic film is disclosed.
特開昭56-32352号公報Japanese Unexamined Patent Publication No. 56-32352 特表2004-503402号公報JP-T-2004-503402 特許3669709号公報Japanese Patent No. 3669709 特開2007-291529号公報JP 2007-291529 A 特開2007-148330号公報JP 2007-148330 A 特開2006-205729号公報JP 2006-205729 A
 プラスチックフィルムを樹脂中間膜の間に挟持し、これを2枚のガラス板の間に挟持した合わせガラスを作製するとき、曲面形状に曲げられているガラス板の場合、プラスチックフィルムにシワが生じ、外観欠陥となる。 When making a laminated glass with a plastic film sandwiched between resin interlayers and sandwiching it between two glass plates, in the case of a glass plate bent into a curved shape, wrinkles occur in the plastic film and appearance defects It becomes.
 本発明は、曲面形状に曲げられているガラス板を用いてプラスチックフィルム挿入合わせガラスを作製する場合、プラスチックフィルムにシワの生じない製造方法の提供を課題とする。 In the case where a plastic film-inserted laminated glass is produced using a glass plate bent into a curved shape, an object of the present invention is to provide a production method in which the plastic film is not wrinkled.
 本発明に係るプラスチックフィルム挿入合わせガラスの製造方法は、曲げ加工によって湾曲した形状の2枚のガラス板と、2枚の樹脂中間膜と、赤外線反射膜付きプラスチックフィルムとが、ガラス板、樹脂中間膜、赤外線反射膜付きプラスチックフィルム、樹脂中間膜、ガラス板の順に積層されてなるプラスチックフィルム挿入合わせガラスの製造方法において、少なくとも1枚のガラス板の周辺部に不透明な着色膜を形成し、次の工程1~3で積層中間膜を作製し、該積層中間膜を2枚のガラス板の間に挿入して、加熱・加圧処理を行うことを特徴とするプラスチックフィルム挿入合わせガラスの製造方法である。 The method for producing a plastic film-inserted laminated glass according to the present invention comprises two glass plates curved by bending, two resin intermediate films, and a plastic film with an infrared reflecting film. In the method for producing a plastic film-inserted laminated glass in which a film, a plastic film with an infrared reflecting film, a resin intermediate film, and a glass plate are laminated in this order, an opaque colored film is formed on the periphery of at least one glass plate, A method for producing a laminated plastic film glass, characterized in that a laminated interlayer film is produced in steps 1 to 3, and the laminated interlayer film is inserted between two glass plates and subjected to heating and pressure treatment. .
 工程1:赤外線反射膜付きプラスチックフィルムを所定形状プラスチックフィルム(ガラス板の面積よりも小さい面積で、かつフィルムのエッジがガラス板の不透明な着色膜に全周で重なる形状のプラスチックフィルム)に裁断する工程。 Step 1: The plastic film with an infrared reflecting film is cut into a predetermined shape plastic film (a plastic film having an area smaller than the area of the glass plate and the edge of the film overlapping the opaque colored film of the glass plate on the entire circumference). Process.
 工程2:工程1で裁断して作製した所定形状プラスチックフィルムを、2枚の樹脂中間膜の間に挟み込むようにして、2枚の樹脂中間膜と所定形状プラスチックフィルムとを重ねる工程。 Step 2: A step of stacking the two resin intermediate films and the predetermined shape plastic film so that the predetermined shape plastic film produced by cutting in Step 1 is sandwiched between the two resin intermediate films.
工程3:所定形状プラスチックフィルムの辺に近い位置で、樹脂中間膜と樹脂中間膜とを、あるいは樹脂中間膜と所定形状プラスチックフィルムとを、熱融着し、積層中間膜とする工程。 Step 3: A step of heat-sealing the resin intermediate film and the resin intermediate film or the resin intermediate film and the predetermined shape plastic film at a position close to the side of the predetermined shape plastic film to form a laminated intermediate film.
 また、本発明に係るプラスチックフィルム挿入合わせガラスの製造方法は、前記プラスチックフィルム挿入合わせガラスの製造方法において、工程3の熱融着に、加熱体を有する加熱装置を用いるか、あるいはレーザー光を用いることを特徴とするプラスチックフィルム挿入合わせガラスの製造方法である。 Moreover, the manufacturing method of the plastic film insertion laminated glass which concerns on this invention uses the heating apparatus which has a heating body, or uses a laser beam for the heat fusion of the process 3 in the manufacturing method of the said plastic film insertion laminated glass. It is a manufacturing method of the plastic film insertion laminated glass characterized by the above-mentioned.
本発明に係るプラスチックフィルム挿入合わせガラスは、2枚のガラス板
の曲率半径が、0.9~3mの範囲にあることを特徴とする、前記プラスチックフィルム挿入合わせガラスの製造方法で製造されるプラスチックフィルム挿入合わせガラスである。
The plastic film-inserted laminated glass according to the present invention is a plastic produced by the method for producing a plastic film-inserted laminated glass, characterized in that the radius of curvature of the two glass plates is in the range of 0.9 to 3 m. Film-inserted laminated glass.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、赤外線反射膜付きプラスチックフィルムに用いられるプラスチックフィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルフォン、ナイロン、ポリアリレート、シクロオレフィンポリマーから選ばれる1つのプラスチックフィルムであることを特徴とするプラチックフィルム挿入合わせガラスである。 The plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the plastic film used for the plastic film with an infrared reflective film is polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone. A plastic film-inserted laminated glass, which is a plastic film selected from nylon, polyarylate, and cycloolefin polymer.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、樹脂中間膜が、ポリビニルアセタール、エチレンビニルアセテート、あるいはこれらの融着性樹脂に金属もしくは金属酸化物の微粒子を分散させたものであることを特徴とするプラスチックフィルム挿入合わせガラスである。 The plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the resin interlayer disperses fine particles of metal or metal oxide in polyvinyl acetal, ethylene vinyl acetate, or a fusible resin thereof. A plastic film-inserted laminated glass, characterized by being made.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、赤外線反射膜付きプラスチックフィルムの赤外線反射膜が、高屈折率の酸化物膜と低屈折率の酸化物膜とを交互に積層してなる多層膜、もしくは屈折率の異なるポリマー薄膜の多層膜、もしくは導電性薄膜であることを特徴とするプラスチックフィルム挿入合わせガラスである。 The plastic film-inserted laminated glass according to the present invention is the plastic film-inserted laminated glass, wherein the infrared reflective film of the plastic film with an infrared reflective film comprises a high refractive index oxide film and a low refractive index oxide film. A plastic film-inserted laminated glass, which is a multilayer film formed by alternately laminating, a multilayer film of polymer thin films having different refractive indexes, or a conductive thin film.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、酸化物膜が、TiO2、Nb25、Ta25、SiO2、Al23、ZrO2、MgF2から選ばれる2種以上の酸化物でなることを特徴とするプラスチックフィルム挿入合わせガラスであり、あるいは、屈折率の異なるポリマー薄膜の多層膜が、2種類のポリマー薄膜を交互に50層~200層積層されてなる多層膜であることを特徴とするプラスチックフィルム挿入合わせガラスであり、あるいは、導電性薄膜が、Ag、Au、Cu、Al、Pd、Pt、Sn、In、Zn、Ti、Cd、Fe、Co、Cr、Niなどの金属または合金等でなる金属膜または合金膜、あるいはアンチモンドープ酸化錫、錫ドープ酸化インジウム等でなる導電性金属酸化物膜からなることを特徴とするからなることを特徴とするプラスチックフィルム挿入合わせガラスである。 Moreover, the plastic film insertion laminated glass according to the present invention is the plastic film insertion laminated glass, wherein the oxide film is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , Al 2 O 3 , ZrO 2 , A plastic film-inserted laminated glass characterized by comprising two or more kinds of oxides selected from MgF 2 , or a multilayer film of polymer thin films having different refractive indices, comprising 50 layers of two types of polymer thin films alternately. It is a laminated plastic glass film characterized by being a multilayer film formed by laminating 200 layers, or the conductive thin film is made of Ag, Au, Cu, Al, Pd, Pt, Sn, In, Zn, Ti, Metal film or alloy film made of metal or alloy such as Cd, Fe, Co, Cr, Ni, or antimony-doped tin oxide, tin-doped A plastic film-inserted laminated glass, characterized in that consists characterized by comprising a conductive metal oxide film made of indium or the like.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、赤外線反射膜付きプラスチックフィルムが、次の(A)、(B)、(C)のいずれかの条件を満たしていることを特徴とするプラスチックフィルム挿入合わせガラスである。
(A)厚さが30~200μmの範囲にある。
(B)熱収縮率が100~150℃の温度範囲において、0.1~3%の範囲にある。
(C)100~150℃の温度範囲で、赤外線反射膜付きプラスチックフィルムの1m幅あたりに引張力10Nを加えたとき、該赤外線反射膜付きプラスチックフィルムの伸び率が0.3%以下である。
Moreover, the plastic film insertion laminated glass which concerns on this invention WHEREIN: In the said plastic film insertion laminated glass, the plastic film with an infrared reflective film satisfy | fills any one of following conditions (A), (B), (C). A plastic film-inserted laminated glass characterized in that
(A) The thickness is in the range of 30 to 200 μm.
(B) The thermal shrinkage is in the range of 0.1 to 3% in the temperature range of 100 to 150 ° C.
(C) When a tensile force of 10 N is applied per 1 m width of the plastic film with an infrared reflecting film in a temperature range of 100 to 150 ° C., the elongation percentage of the plastic film with the infrared reflecting film is 0.3% or less.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて JISR3212:1998に規定される可視光線透過率が70%以上であることを特徴とするプラスチックフィルム挿入合わせガラスである。 The plastic film-inserted laminated glass according to the present invention is a plastic film-inserted laminated glass characterized in that the visible light transmittance defined in JIS R3212: 1998 is 70% or more in the plastic film-inserted laminated glass.
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて、JIS R3106:1998に規定される日射反射率が20%以上であることを特徴とするプラスチックフィルム挿入合わせガラスである。 Moreover, the plastic film insertion laminated glass according to the present invention is a plastic film insertion laminated glass characterized in that in the plastic film insertion laminated glass, the solar reflectance defined in JIS R3106: 1998 is 20% or more. .
 また、本発明に係るプラスチックフィルム挿入合わせガラスは、前記プラスチックフィルム挿入合わせガラスにおいて ISO13837:2008に規定される全日射透過率(Total Solar Transmittance)TTSが50%以下であることを特徴とするプラスチックフィルム挿入合わせガラスである。 Further, the plastic film-inserted laminated glass according to the present invention, the plastic film-inserted laminated ISO13837 in glass: total solar transmittance as defined in 2008 (Total Solar Transmittance) plastic T TS is equal to or less than 50% Film-inserted laminated glass.
 2枚の樹脂中間膜で赤外線反射膜付きプラスチックフィルムを挟持した積層膜により、同形状に湾曲した2枚のガラス板を用いて作製されるプラスチック挿入合わせガラスに関し、赤外線反射膜付きプラスチックフィルムにシワが生じない、外観が良好なプラスチックフィルム挿入合わせガラスの製造方法を提供する。 The present invention relates to a plastic-inserted laminated glass produced by using two glass plates curved in the same shape by a laminated film in which a plastic film with an infrared reflecting film is sandwiched between two resin intermediate films. The manufacturing method of the plastic film insertion laminated glass with a favorable external appearance which does not produce is provided.
 特に、自動車や車両の窓に用いられているガラスのように、場所によって、また同じ場所でも方向によって、曲率半径が異なるような、湾曲したガラスを用いて合わせガラスを作製する場合に、赤外線反射膜付きプラスチックフィルムにシワを生じないプラスチックフィルム挿入合わせガラスの作製を可能とする。 In particular, when making laminated glass using curved glass with different radii of curvature, such as glass used in automobile and vehicle windows, and depending on the location and direction, infrared reflection is also possible. This makes it possible to produce a plastic film-inserted laminated glass that does not wrinkle the plastic film with a film.
 製造されるプラスチックフィルム挿入合わせガラスは、赤外線反射膜を有しているため、太陽光の熱線を反射し、断熱性に優れている。 The plastic film-inserted laminated glass to be manufactured has an infrared reflecting film, and therefore reflects the heat rays of sunlight and has excellent heat insulation properties.
本発明に係るプラスチックフィルム挿入合わせガラスの概略平面図。The schematic plan view of the plastic film insertion laminated glass which concerns on this invention. 図1の線a-a´に沿った断面図。FIG. 2 is a cross-sectional view taken along line aa ′ in FIG. 1. 図1のプラスチックフィルム挿入合わせガラスの端部概略断面図。The edge part schematic sectional drawing of the plastic film insertion laminated glass of FIG. 赤外線反射膜付きプラスチックフィルム22が所定形状プラスチックフィルム25に裁断されているところを示す平面図。The top view which shows the place where the plastic film 22 with an infrared reflecting film is cut | judged by the predetermined-shaped plastic film 25. FIG. 所定形状に裁断したプラスチックフィルムを樹脂中間膜と樹脂中間膜とで挟み込んで得られる中間膜積層体の平面図。The top view of the intermediate film laminated body obtained by pinching | interposing the plastic film cut | judged in the predetermined shape with the resin intermediate film and the resin intermediate film. 所定形状に裁断したプラスチックフィルムを樹脂中間膜と樹脂中間膜とで挟み込んで得られる中間膜積層体の断面図。Sectional drawing of the intermediate film laminated body obtained by pinching | interposing the plastic film cut | judged in the predetermined shape with the resin intermediate film and the resin intermediate film. 樹脂中間膜23と樹脂中間膜23´とを熱融着して得られる積層中間膜の平面図。および断面図。The top view of the lamination | stacking intermediate film obtained by heat-seal | fusing the resin intermediate film 23 and resin intermediate film 23 '. And cross-sectional view. 樹脂中間膜23と樹脂中間膜23´とを熱融着して得られる積層中間膜の断面図。Sectional drawing of the lamination | stacking intermediate film obtained by heat-sealing the resin intermediate film 23 and resin intermediate film 23 '. 樹脂中間膜23と所定形状プラスチックフィルム25とを熱融着して得られる積層中間膜の平面図。The top view of the lamination | stacking intermediate film obtained by heat-sealing the resin intermediate film 23 and the predetermined-shaped plastic film 25. FIG. 樹脂中間膜23と所定形状プラスチックフィルム25とを熱融着して得られる積層中間膜の断面図。Sectional drawing of the lamination | stacking intermediate film obtained by heat-sealing the resin intermediate film 23 and the predetermined-shaped plastic film 25. FIG. 所定形状プラスチックフィルム25を挟みこんだ樹脂中間膜23、23´を、ヒータ30の加熱体31と押さえ部32とで挟み、部分的に熱融着する、熱融着装置を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing a heat fusion apparatus in which resin intermediate films 23 and 23 ′ sandwiching a predetermined shape plastic film 25 are sandwiched between a heating body 31 and a pressing portion 32 of a heater 30 and partially heat-sealed. 所定形状プラスチックフィルム25を挟みこんだ樹脂中間膜23、23´を、2台のヒータの加熱体で挟み、部分的に熱融着する、熱融着装置を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing a heat fusion apparatus in which resin intermediate films 23 and 23 ′ sandwiching a predetermined-shaped plastic film 25 are sandwiched between two heaters and partially heat-sealed. 所定形状プラスチックフィルム25を挟みこんだ樹脂中間膜23、23´を、レーザー光で熱融着する、熱融着装置を示す概略断面図。The schematic sectional drawing which shows the heat sealing | fusion apparatus which heat-seal | fuses the resin intermediate films 23 and 23 'which pinched | interposed the plastic film 25 of the predetermined shape with a laser beam. ロールを用いる脱気方法を示す概略断面図。The schematic sectional drawing which shows the deaeration method using a roll. チューブを用いる脱気方法を示す概略平面図。The schematic plan view which shows the deaeration method using a tube. チューブを用いる脱気方法を示す概略断面図(図10のg-g´の断面)。FIG. 11 is a schematic cross-sectional view showing a deaeration method using a tube (cross-section gg ′ in FIG. 10). 真空バッグを用いる脱気方法を示す概略平面図。The schematic plan view which shows the deaeration method using a vacuum bag. 真空バッグを用いる脱気方法を示す概略断面図(図12のh-h´の断面)。FIG. 13 is a schematic sectional view showing a deaeration method using a vacuum bag (cross section taken along line hh ′ in FIG. 12).
 本発明のプラスチックフィルム挿入合わせガラスの製造方法は、図1、図2に示すような、湾曲したプラスチックフィルム挿入合わせガラス1を製造するものである。 製造 The method for producing a laminated plastic film-inserted glass of the present invention is to produce a curved plastic film-inserted laminated glass 1 as shown in FIGS.
 プラスチックフィルム挿入合わせガラス1は、図2に示すような、赤外線反射膜付きプラスチックフィルムを裁断してなる所定形状プラスチックフィルム14を両側から樹脂中間膜11、12で挟み込んだ構成の積層中間膜28を用い、曲げ加工された2枚のガラス板10、13を接着してなる、合わせガラスである。 As shown in FIG. 2, a laminated film 28 having a configuration in which a plastic film 14 having a predetermined shape formed by cutting a plastic film with an infrared reflecting film is sandwiched between resin interlayers 11 and 12 as shown in FIG. It is a laminated glass formed by bonding two glass plates 10 and 13 that are used and bent.
 曲げ加工された2枚のガラス板10、13の形状としては、球面、楕円球面、あるいは、自動車の前面ガラスなどのような曲率半径が場所によって異なるガラス板がある。 As the shape of the two glass plates 10 and 13 that have been bent, there are glass plates having different radii of curvature depending on places, such as a spherical surface, an elliptical spherical surface, or a front glass of an automobile.
 湾曲したガラス板の曲率半径は、0.9m~3mであることが望ましい。 It is desirable that the radius of curvature of the curved glass plate is 0.9 m to 3 m.
 曲率半径が0.9mより小さいと、合わせ加工において、所定形状プラスチックフィルム14のシワが生じやすいので、曲率半径は0.9m以上であることが望ましい。 If the curvature radius is smaller than 0.9 m, wrinkles of the predetermined-shaped plastic film 14 are likely to occur in the laminating process. Therefore, the curvature radius is desirably 0.9 m or more.
 また、曲率半径を3m以下とするのは、曲率半径が大きくなるとガラス板は平面に近い形状となり、所定形状プラスチックフィルム14のシワが生じないという本発明の効果がほとんどなく、湾曲したガラスの曲率半径が3m以下で、本発明の効果が現れるためである。 The reason why the radius of curvature is 3 m or less is that when the radius of curvature increases, the glass plate has a shape close to a flat surface, and there is almost no effect of the present invention that wrinkles of the predetermined shape plastic film 14 do not occur. This is because the effect of the present invention appears when the radius is 3 m or less.
 ガラス板10が室外側に配置される場合、室外側に位置するガラス板10には、図2に示されるように、周辺部に不透明な着色膜15が形成されたものを用いることが望ましい。 When the eaves glass plate 10 is disposed on the outdoor side, it is desirable to use the glass plate 10 positioned on the outdoor side with an opaque colored film 15 formed on the periphery as shown in FIG.
 室外側ガラス板10に不透明な着色膜15が形成されたものを用いるのは、所定形状プラスチックフィルム14のエッジ4に太陽光が当たると、エッジ4で光が散乱し、エッジ4が目立つだけでなく、運転に支障をきたす恐れがあるためである。 The use of the outdoor glass plate 10 on which the opaque colored film 15 is formed is that when sunlight hits the edge 4 of the predetermined shape plastic film 14, the light is scattered at the edge 4 and the edge 4 is only noticeable. This is because there is a risk of disturbing driving.
 着色膜15は、室外側に位置するガラス板10の合わせ面に設けることが望ましい。 It is desirable to provide the soot coloring film 15 on the mating surface of the glass plate 10 located on the outdoor side.
 また、所定形状プラスチックフィルム14の形状は、所定形状プラスチックフィルムのエッジ4がガラス板10の不透明な着色膜15に全周で重なる形状で、かつガラス板10あるいは13の面積よりも小さい面積に裁断されたものを用いることが好ましい。 The shape of the predetermined shape plastic film 14 is such that the edge 4 of the predetermined shape plastic film overlaps the opaque colored film 15 of the glass plate 10 on the entire circumference and is cut to an area smaller than the area of the glass plate 10 or 13. It is preferable to use those prepared.
 所定形状プラスチックフィルム14のエッジ4がガラス板10の不透明な着色膜15に全周で重なる形状として、所定形状プラスチックフィルム14の形をガラス板10の透視部5と相似形とすることが、着色膜15を形成するためのCADデータを利用できるので、望ましい。 It is colored that the edge 4 of the predetermined shape plastic film 14 overlaps the opaque colored film 15 of the glass plate 10 on the entire circumference, and the shape of the predetermined shape plastic film 14 is similar to the see-through portion 5 of the glass plate 10. This is desirable because CAD data for forming the film 15 can be used.
図3はプラスチック挿入合わせガラスの端部の概略断面を示すもので、寸法d2(ガラスエッジ2から着色膜エッジ3までの寸法)よりも、寸法d1(ガラスエッジ2からプラスチックフィルムエッジ4までの寸法)を小さくし、プラスチッキフィルムのエッジで太陽光が散乱するのを防ぐため、d3=d2-d1は5mm以上とすることが好ましい。 FIG. 3 shows a schematic cross section of the end of the plastic-inserted laminated glass. The dimension d1 (dimension from the glass edge 2 to the plastic film edge 4) is larger than the dimension d2 (dimension from the glass edge 2 to the colored film edge 3). ) Is reduced and d3 = d2−d1 is preferably 5 mm or more in order to prevent scattering of sunlight at the edge of the plastic film.
 樹脂中間膜11、12には、ポリビニルブチラール(PVB)やエチレンビニルアセテート(EVA)などのホットメルトタイプの接着剤が、好適に用いられる。 A hot melt type adhesive such as polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA) is preferably used for the resin intermediate films 11 and 12.
 樹脂中間膜12が室内側となる場合、室内側に用いられる樹脂中間膜12に、Ag、Al、Tiなどの金属微粒子、金属窒化物、金属酸化物の微粒子、また、ITO、ATO、AZO、GZO、IZOなどの導電性透明酸化物微粒子を混入させると、Ag、Al、Tiなどの金属微粒子、金属窒化物、金属酸化物の微粒子、また、ITO、ATO、AZO、GZO、IZOなどの導電性透明酸化物微粒子が赤外線を吸収し、プラスチック挿入合わせガラスの断熱性を向上させることができるので、好ましい。 When the resin intermediate film 12 is on the indoor side, the resin intermediate film 12 used on the indoor side has fine metal particles such as Ag, Al, Ti, metal nitride, metal oxide fine particles, ITO, ATO, AZO, When conductive transparent oxide fine particles such as GZO and IZO are mixed, metal fine particles such as Ag, Al and Ti, metal nitride and metal oxide fine particles, and conductive materials such as ITO, ATO, AZO, GZO and IZO The transparent transparent oxide fine particles are preferable because they absorb infrared rays and can improve the heat insulating property of the plastic-inserted laminated glass.
赤外線反射膜付きプラスチックフィルムには、延伸法で作製されているものが好適であり、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルフォン、ナイロン、ポリアリレート、シクロオレフィンポリマーなどでなるプラスチックフィルムの中から選ばれたプラスチックフィルムに、赤外線反射膜(図示せず)が形成されたものが用いられる。 As the plastic film with an infrared reflecting film, those prepared by a stretching method are suitable, and are made of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, nylon, polyarylate, cycloolefin polymer, or the like. A plastic film selected from plastic films having an infrared reflective film (not shown) formed thereon is used.
特に2軸延伸法で製膜される結晶性のポリエチレンテレフタレートフィルム(PETフィルム)は、耐熱性にも優れていて広範囲の温度環境に使用することができ、また、透明性が高く、大量に生産されているために品質も安定しており、好適である。 In particular, the crystalline polyethylene terephthalate film (PET film) formed by the biaxial stretching method has excellent heat resistance and can be used in a wide range of temperature environments, and is highly transparent and produced in large quantities. Therefore, the quality is stable and suitable.
 また、中間膜の間に挿入されるプラスチックフィルムによっては、中間膜と密着性が悪かったり、赤外線反射膜を成膜すると白濁が生じたりすることがあり、ハードコート膜を界面に形成することで、これらの不具合を解決できる。 In addition, depending on the plastic film inserted between the intermediate films, adhesion with the intermediate film may be poor, or when an infrared reflective film is formed, white turbidity may occur, and by forming a hard coat film at the interface, These problems can be solved.
 赤外線反射膜に導電性薄膜を用いる場合、導電性薄膜として、Ag、Au、Cu、Al、Pd、Pt、Sn、In、Zn、Ti、Cd、Fe、Co、Cr、Niなどの金属または合金等でなる金属膜または合金膜、あるいはアンチモンドープ酸化錫、錫ドープ酸化インジウム等でなる導電性金属酸化物膜が好適に用いられる。 When a conductive thin film is used for the infrared reflecting film, the conductive thin film is a metal or alloy such as Ag, Au, Cu, Al, Pd, Pt, Sn, In, Zn, Ti, Cd, Fe, Co, Cr, or Ni. For example, a metal film or an alloy film made of, or a conductive metal oxide film made of antimony-doped tin oxide, tin-doped indium oxide, or the like is preferably used.
 また、プラスチックフィルムに積層する赤外線反射膜として、屈折率の異なる誘電体の多層膜、あるいは屈折率の異なる樹脂の多層膜を用いると、放送や通信で用いられる電磁波を透過するので好ましい。 Also, it is preferable to use a dielectric multilayer film having a different refractive index or a resin multilayer film having a different refractive index as the infrared reflective film laminated on the plastic film, because it transmits electromagnetic waves used in broadcasting and communication.
 屈折率の異なる誘電体の多層膜、あるいは屈折率の異なる樹脂の多層膜とは、屈折率n1の積層膜と屈折率n2(n2≠n1)の積層膜とを交互に繰り返して積層されてなる多層膜である。 A dielectric multilayer film having a different refractive index or a resin multilayer film having a different refractive index is formed by alternately laminating a laminated film having a refractive index n1 and a laminated film having a refractive index n2 (n2 ≠ n1). It is a multilayer film.
赤外線反射膜に、高屈折率の酸化物膜と低屈折率の酸化物膜とを交互に積層してなる多層膜を用いる場合、TiO2、Nb25、Ta25、SiO2、Al23、ZrO2、MgF2から選ばれる1種以上の誘電体でなる膜が好適に用いられる。 When a multilayer film formed by alternately stacking a high refractive index oxide film and a low refractive index oxide film is used as the infrared reflective film, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , A film made of at least one dielectric selected from Al 2 O 3 , ZrO 2 , and MgF 2 is preferably used.
 特に、屈折率の低い膜にSiO2を用い、屈折率の高い膜に、TiO2、Nb25、Ta25から選ばれる1種以上の誘電体を用いる場合は、4層から11層の多層膜で、近赤外線を反射する好適な赤外線反射膜が形成できるので、好ましい。 In particular, when SiO 2 is used for a film having a low refractive index and one or more kinds of dielectrics selected from TiO 2 , Nb 2 O 5 , and Ta 2 O 5 are used for a film having a high refractive index, 4 to 11 A multilayer film of layers is preferable because a suitable infrared reflection film that reflects near infrared rays can be formed.
 さらに、断熱性能を効果的に行うために、誘電体膜でなる赤外線反射膜は、次の(1)および(2)の条件を満たすように、誘電体膜が4層以上、11層以下で積層してなり、波長900nmから1400nmの波長領域で50%を越える反射の極大値を有することが望ましい。 Furthermore, in order to effectively perform the heat insulation performance, the infrared reflective film made of a dielectric film has a dielectric film of 4 layers or more and 11 layers or less so as to satisfy the following conditions (1) and (2). It is desirable to have a maximum value of reflection exceeding 50% in a wavelength range of 900 nm to 1400 nm.
 (1)誘電体膜をプラスチックフィルム側から順に数え、偶数番目層の屈折率の最大値をnemax、最小値をneminとし、奇数番目層の屈折率の最大値をnomax、最小値をnominとしたとき、nemax<nominあるいはnomax<nemin(1) Count the dielectric films in order from the plastic film side, the maximum value of the refractive index of the even-numbered layer is n emax , the minimum value is n emin , the maximum value of the refractive index of the odd-numbered layer is no max , and the minimum value is when the n omin, n emax <n omin or n omax <n emin.
 (2)i番目の層の屈折率をniと厚さをdiとしたとき、波長λが900~1400nmの範囲の赤外線に対して、225nm≦ni・di≦350nm。 (2) When the refractive index of the i-th layer is n i and the thickness is d i , 225 nm ≦ n i · d i ≦ 350 nm for infrared rays having a wavelength λ of 900 to 1400 nm.
屈折率の異なる2種類のポリマー薄膜を交互に積層してなる多層膜を赤外線反射膜に用いる場合、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルフォン、ナイロン、ポリアリレート、シクロオレフィンポリマー等を用いることが好ましく、2種類のポリマー層が交互に積層された多層膜の総数は、50~200層であることが好適である。 When a multilayer film consisting of two different polymer thin films with different refractive indexes is used as an infrared reflective film, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, nylon, polyarylate, cycloolefin A polymer or the like is preferably used, and the total number of multilayer films in which two types of polymer layers are alternately stacked is preferably 50 to 200 layers.
導電性薄膜や誘電体膜は、PVD法、スパッタリング法などにより成膜することが好ましく、また、ポリマー薄膜は、ロールコート法、フローコート法やディッピング法などで成膜することが好ましい。 The conductive thin film and the dielectric film are preferably formed by a PVD method, a sputtering method, or the like, and the polymer thin film is preferably formed by a roll coating method, a flow coating method, a dipping method, or the like.
 さらに、曲面形状のガラス板を用いてプラスチック挿入合わせガラスを作製する場合、赤外線反射膜付きプラスチックフィルムは、次の(A)、(B)、(C)のいずれかの条件を満たしていることが好ましい。
(A)厚さが30~200μmの範囲にある。
(B)熱収縮率が100~150℃の温度範囲において、0.1~3%の範囲にある。
(C)100~150℃の温度範囲で、赤外線反射膜付きプラスチックフィルムの1m幅あたりに引張力10Nを加えたとき、該赤外線反射膜付きプラスチックフィルムの伸び率が0.3%以下である。
Furthermore, when producing a plastic-inserted laminated glass using a curved glass plate, the plastic film with an infrared reflective film satisfies any of the following conditions (A), (B), and (C): Is preferred.
(A) The thickness is in the range of 30 to 200 μm.
(B) The thermal shrinkage is in the range of 0.1 to 3% in the temperature range of 100 to 150 ° C.
(C) When a tensile force of 10 N is applied per 1 m width of the plastic film with an infrared reflecting film in a temperature range of 100 to 150 ° C., the elongation percentage of the plastic film with the infrared reflecting film is 0.3% or less.
 曲面形状のガラス板を用いてプラスチックフィルム挿入合わせガラスを作製する場合、赤外線反射膜付きプラスチックフィルムの厚さを30~200μmの範囲とするのは、厚さが30μmよりも小さいと、取扱い中にシワが発生しやすく、また、200μmを越えると、ガラス板の曲面に赤外線反射膜付きプラスチックフィルムの形状が追従しなくなって、シワが生じてしまうという理由による。 When producing a plastic film-inserted laminated glass using a curved glass plate, the thickness of the plastic film with an infrared reflecting film should be in the range of 30 to 200 μm. If the thickness is smaller than 30 μm, This is because wrinkles are likely to occur, and if it exceeds 200 μm, the shape of the plastic film with an infrared reflecting film does not follow the curved surface of the glass plate, and wrinkles are generated.
 さらに、合わせ加工時には、赤外線反射膜付きプラスチックフィルムは、100~150℃の温度になり、この温度範囲で、熱収縮率が0.1~3%の範囲にあることが好ましい。 Furthermore, at the time of laminating, the plastic film with the infrared reflecting film is at a temperature of 100 to 150 ° C., and it is preferable that the thermal shrinkage rate is in the range of 0.1 to 3% within this temperature range.
 赤外線反射膜付きプラスチックフィルムの、90~150℃での、熱収縮率が、0.1%より小さいと、湾曲したガラス板周囲部で赤外線反射膜つきフィルムがだぶついて、シワとなる外観欠陥が発生する。 If the thermal shrinkage rate of the plastic film with an infrared reflecting film at 90 to 150 ° C. is less than 0.1%, the film with the infrared reflecting film is bumped around the curved glass plate, resulting in wrinkled appearance defects. appear.
 また、熱収縮率が3%より大きいと、赤外線反射膜がフィルムの収縮に耐えられず、ヒビ状に割れてクラックとなる外観欠陥が生ずる。 In addition, if the thermal shrinkage rate is greater than 3%, the infrared reflective film cannot withstand the shrinkage of the film, resulting in appearance defects that crack and crack.
 赤外線反射膜付きプラスチックフィルムの熱収縮率は、透明なプラスチックフィルムに関するJISに規定されている場合は、該当するJISに準じて行うのが望ましく、例えば、JIS C2318:2007に準じて行うことが望ましい。 When the thermal shrinkage rate of the plastic film with an infrared reflecting film is specified in JIS relating to a transparent plastic film, it is preferably performed according to the corresponding JIS, for example, according to JIS C2318: 2007. .
 熱収縮率の測定温度は、例えば、JIS C2318では、150℃とされているが、合わせ加工の温度設定条件にあわせて測定温度を決定することが望ましく、90℃から150℃までの温度範囲で熱収縮率を測定することが好ましい。 The measurement temperature of the heat shrinkage rate is, for example, 150 ° C. in JIS C2318, but it is desirable to determine the measurement temperature according to the temperature setting conditions of the alignment process, and in the temperature range from 90 ° C. to 150 ° C. It is preferable to measure the heat shrinkage rate.
 また、赤外線反射膜付きプラスチックフィルムにシワが生じないようにするためには、90~150℃の高温範囲において、赤外線反射膜付きプラスチックフィルムに、幅1mあたり引張力10Nを加えたとき、伸び率が0.3%以下であることが望ましい。 In order to prevent wrinkles from occurring on the plastic film with an infrared reflecting film, when the tensile force of 10 N per 1 m width is applied to the plastic film with an infrared reflecting film in a high temperature range of 90 to 150 ° C., the elongation rate is increased. Is preferably 0.3% or less.
 赤外線反射膜付きプラスチックフィルムの幅1mあたりに加える、10Nの引張力は、中間膜に挟持された赤外線反射膜付きプラスチックフィルムを、オートクレーブにより高温高圧にして、中間膜によって赤外線反射膜付きプラスチックフィルムとガラス板とが熱融着するとき、赤外線反射膜付きプラスチックフィルムに生じる、赤外線反射膜付きプラスチックフィルムを伸ばそうとする引張力に相当するものである。 The tensile force of 10N applied per 1m width of the plastic film with the infrared reflecting film is such that the plastic film with the infrared reflecting film sandwiched between the intermediate films is made high temperature and high pressure by an autoclave, and the plastic film with the infrared reflecting film is formed by the intermediate film. When the glass plate is heat-sealed, this corresponds to a tensile force that is generated in the plastic film with an infrared reflecting film and is intended to stretch the plastic film with the infrared reflecting film.
 赤外線反射膜付きプラスチックフィルムの伸び率は、次の手順1~5で測定される。 伸 び The elongation percentage of the plastic film with an infrared reflecting film is measured by the following procedures 1 to 5.
 手順1:赤外線反射膜付きプラスチックフィルムを、長さ15mm×幅5mmに切り出し、測定用試料とする。測定用試料の両端に固定用の治具を取りつける。両端の固定用治具の間に測定用試料が露出し、この測定用試料の露出する長さを10mmにする。 Procedure 1: A plastic film with an infrared reflecting film is cut into a length of 15 mm and a width of 5 mm to obtain a measurement sample. Attach fixing jigs to both ends of the measurement sample. The measurement sample is exposed between the fixing jigs at both ends, and the exposed length of the measurement sample is set to 10 mm.
 手順2:測定用試料に、1m幅あたり引張力10Nとなる荷重を加える。手順1に示す測定用試料の場合、0.05Nの荷重を加える。 Procedure 2: A load with a tensile force of 10 N per 1 m width is applied to the measurement sample. In the case of the measurement sample shown in Procedure 1, a load of 0.05 N is applied.
 手順3:固定用治具間の測定用試料の長さL0を測定する。 Procedure 3: The length L 0 of the measurement sample between the fixing jigs is measured.
手順4: 5℃/minで90~150℃の間の測定温度まで加熱し、該測定温度での測定用試料の固定用治具間の長さLを測定する。 Procedure 4: Heat to a measurement temperature between 90 and 150 ° C. at 5 ° C./min, and measure the length L between the fixing jigs of the measurement sample at the measurement temperature.
 手順5: 伸び率(%)を(L0-L)/L×100によって算定する。 Procedure 5: Elongation rate (%) is calculated by (L 0 -L) / L × 100.
 図1、図2に示されるプラスチックフィルム挿入合わせガラス1は、次の工程1~工程5によって製造される。 The plastic film-inserted laminated glass 1 shown in FIGS. 1 and 2 is manufactured by the following steps 1 to 5.
また、工程1~工程3によって、所定形状プラスチックフィルム14が2枚の樹脂中間膜11、12の間に挟み込まれた構成の積層中間膜28が作製される。 In addition, in steps 1 to 3, a laminated intermediate film 28 having a configuration in which the plastic film 14 having a predetermined shape is sandwiched between the two resin intermediate films 11 and 12 is produced.
 工程1:赤外線反射膜付きプラスチックフィルムを所定形状プラスチックフィルム(ガラス板の面積よりも小さい面積で、かつ所定形状プラスチックフィルムのエッジがガラス板の不透明な着色膜に全周で重なる形状のプラスチックフィルム)に裁断する工程。 Step 1: A plastic film with an infrared reflecting film is formed into a plastic film having a predetermined shape (a plastic film having an area smaller than the area of the glass plate and the edge of the plastic film having a predetermined shape overlaps the opaque colored film of the glass plate on the entire circumference) The process of cutting.
 工程2:所定形状プラスチックフィルム14を2枚の樹脂中間膜11、12の間に挟み込むように、2枚の樹脂中間膜11、12と所定形状プラスチックフィルム14を重ねる工程。 Step 2: A step of superposing the two resin intermediate films 11 and 12 and the predetermined shape plastic film 14 so that the predetermined shape plastic film 14 is sandwiched between the two resin intermediate films 11 and 12.
 工程3:所定形状プラスチックフィルム14の辺に近い位置で、樹脂中間膜11と樹脂中間膜12とを、あるいは樹脂中間膜11、12と所定形状プラスチックフィルム14とを、熱融着し、積層中間膜28とする工程。 Step 3: At a position close to the side of the predetermined shape plastic film 14, the resin intermediate film 11 and the resin intermediate film 12 or the resin intermediate films 11 and 12 and the predetermined shape plastic film 14 are heat-sealed to form a laminated intermediate. Step of forming film 28.
 工程4:工程3で得られる積層中間膜28を2枚の湾曲したガラス板10、13の間に入れてガラス板積層体となし、該2枚のガラス板10、13の間を脱気する工程。 Step 4: The laminated intermediate film 28 obtained in Step 3 is placed between two curved glass plates 10 and 13 to form a glass plate laminate, and the space between the two glass plates 10 and 13 is deaerated. Process.
工程5:脱気した後のガラス板積層体を加圧加温して接着する工程。 Process 5: The process of pressurizing and heating the glass plate laminated body after deaeration and bonding.
 工程1から工程5までは次のようにして実施される。 Steps 1 to 5 are performed as follows.
 工程1では、図4のように、赤外線反射膜付きプラスチックフィルム22を、所定形状プラスチックフィルム25に裁断し、不要部26を除去する。 In step 1, as shown in FIG. 4, the plastic film 22 with the infrared reflection film is cut into a plastic film 25 having a predetermined shape, and the unnecessary portion 26 is removed.
 赤外線反射膜付きプラスチックフィルム22の裁断には、直線形または円形のカッターナイフ、またはレーザー光を走査して裁断するレーザーカッターを用いることが好ましい。特に、カッターナイフの移動を数値制御で行う裁断装置を用いることが好ましい。 It is preferable to use a linear or circular cutter knife or a laser cutter that scans and cuts the laser beam for cutting the plastic film 22 with an infrared reflective film. In particular, it is preferable to use a cutting device that moves the cutter knife by numerical control.
 所定形状プラスチックフィルム25は、図1に示されるプラスチックフィルム挿入合わせガラス1の透視部5と相似形であることが望ましい。 It is desirable that the plastic film 25 having a predetermined shape is similar to the see-through portion 5 of the plastic film-inserted laminated glass 1 shown in FIG.
 所定形状プラスチックフィルム25を透視部5と相似形に裁断するため、曲げ加工されているガラス板10に赤外線反射膜付きプラスチックフィルム22を重ねて裁断を行って、所定形状プラスチックフィルム25が得られる。 た め In order to cut the plastic film 25 having a predetermined shape into a shape similar to that of the see-through portion 5, the plastic film 22 with the infrared reflection film is overlapped on the glass plate 10 that is bent and cut to obtain the plastic film 25 having a predetermined shape.
 しかし、ガラス板10は、自動車のフロント窓に用いられる場合、曲率が場所によって異なる、複雑な面形状をしていることが多く、ガラス板10の曲面上で赤外線反射膜付きプラスチックフィルム22を裁断することは困難となるので、ガラス板10が曲げ加工される前の、平板形状での透視部の形に合わせて、赤外線反射膜付きプラスチックフィルム22を裁断することにより、容易に所定形状プラスチックフィルム25が得られる。 However, when the glass plate 10 is used for a front window of an automobile, the glass plate 10 often has a complicated surface shape with different curvatures depending on the location, and the plastic film 22 with an infrared reflecting film is cut on the curved surface of the glass plate 10. Therefore, it is easy to cut the plastic film 22 with the infrared reflecting film in accordance with the shape of the see-through portion in the flat plate shape before the glass plate 10 is bent. 25 is obtained.
 従って、赤外線反射膜付きプラスチックフィルム22の裁断は、ガラス板10の曲げ加工前の平板形状の透視部に合わせて行うことが望ましい。 Therefore, it is desirable to cut the plastic film 22 with the infrared reflecting film in accordance with a flat plate-shaped see-through portion before the glass plate 10 is bent.
 工程2で、図5Aに示すように、所定形状プラスチックフィルム25の両側に樹脂中間膜23、23´が重ねられ、中間膜積層体20が作製される。 In step 2, as shown in FIG. 5A, resin intermediate films 23 and 23 ′ are stacked on both sides of a predetermined shape plastic film 25, and an intermediate film stack 20 is produced.
 工程3では、図6A,図6Bに示すように、中間膜積層体の所定形状プラスチックフィルム25の辺中央付近で、樹脂中間膜23と23´とを、線状の熱融着部29が形成されるように加熱融着して、積層中間膜28が作製される。 In step 3, as shown in FIGS. 6A and 6B, a linear heat-sealed portion 29 is formed between the resin intermediate films 23 and 23 'in the vicinity of the center of the side of the predetermined-shaped plastic film 25 of the intermediate film laminate. Thus, the laminated intermediate film 28 is produced by heat fusion.
 あるいは、図7A,図7Bに示すように、所定形状プラスチックフィルム25の両側に樹脂中間膜23、23´を重ねて、所定形状プラスチックフィルム25の辺中央付近で、熱融着部29´が形成されるように、樹脂中間膜23を所定形状プラスチックフィルム25に加熱融着して、積層中間膜28´を作製してもよい。 Alternatively, as shown in FIGS. 7A and 7B, the resin intermediate films 23 and 23 ′ are overlapped on both sides of the predetermined shape plastic film 25 to form a heat-welded portion 29 ′ near the center of the side of the predetermined shape plastic film 25. As described above, the laminated intermediate film 28 ′ may be manufactured by heat-sealing the resin intermediate film 23 to the plastic film 25 having a predetermined shape.
 なお、熱融着部29、29´は、線状に形成されることが好ましいが点線状あるいは点状であってもよい。 It should be noted that the heat fusion parts 29 and 29 ′ are preferably formed in a linear shape, but may be in a dotted line shape or a dotted shape.
 図7A,図7Bでは、樹脂中間膜23を所定形状プラスチックフィルム25に加熱融着しているが、樹脂中間膜23´を所定形状プラスチックフィルム25に、あるいは、樹脂中間膜23、23´の両方を所定形状プラスチックフィルム25に加熱融着してもよい。 7A and 7B, the resin intermediate film 23 is heat-sealed to the predetermined shape plastic film 25. However, the resin intermediate film 23 'is bonded to the predetermined shape plastic film 25 or both of the resin intermediate films 23 and 23'. May be heat-sealed to the plastic film 25 having a predetermined shape.
 線状の熱融着部29、29´は、シワの発生しやすい、所定形状プラスチックフィルム25の辺中央付近に形成されることが好ましい。 It is preferable that the ridge-like heat-sealed portions 29 and 29 ′ are formed near the center of the side of the predetermined-shaped plastic film 25 where wrinkles are likely to occur.
 積層中間膜28、28´の作製は、工程4で、所定形状プラスチックフィルム25が曲げ加工されたガラス板10、13に重ねられるとき、プラスチックフィルムの辺近傍に生じるシワの発生が防止できる。 The production of the laminated intermediate films 28 and 28 'can prevent the occurrence of wrinkles generated in the vicinity of the sides of the plastic film when the plastic film 25 having a predetermined shape is superimposed on the bent glass plates 10 and 13 in Step 4.
このシワの発生防止を十分効果的にするためには、線状の熱融着部29、29´の長さを5mm以上とすることが好ましい。また、樹脂中間膜23、23´の間の脱気不良が起こらないようにするため、線状の熱融着部29、29´の長さを300mm以下とすることが好ましい。 In order to prevent the generation of wrinkles sufficiently effectively, it is preferable that the length of the linear heat-sealed portions 29 and 29 ′ is 5 mm or more. Further, in order to prevent a degassing failure between the resin intermediate films 23 and 23 ', it is preferable that the length of the linear heat-sealing portions 29 and 29' is 300 mm or less.
なお、熱融着部29、29´は、所定形状プラスチックフィルム25の、全ての辺の中央付近に形成することが好ましいが、曲げ加工されたガラス板の曲率が3mより大きく、プラスチックフィルムにシワの発生する危険性がない辺の場合は、形成しなくてもよい。 The heat fusion parts 29 and 29 'are preferably formed near the center of all sides of the plastic film 25 having a predetermined shape. However, the curvature of the bent glass plate is larger than 3 m, and the plastic film is wrinkled. In the case of a side where there is no risk of occurrence, it may not be formed.
熱融着部29は、図8Aに示すように、電気ヒータ30を用い、電気ヒータの加熱体31を樹脂中間膜23に押し当て、形成することができる。 As shown in FIG. 8A, the heat fusion part 29 can be formed by using an electric heater 30 and pressing a heating body 31 of the electric heater against the resin intermediate film 23.
図8Bに示すように、電気ヒータ30を2台用いて、樹脂中間膜の両側から加熱体31を押し当てて、加熱してもよい。 As shown in FIG. 8B, the heating body 31 may be pressed from both sides of the resin intermediate film using two electric heaters 30 and heated.
また、図8Cに示すように、レーザー光33を樹脂中間膜23と23´とが接触する面に凸レンズ34等で集光させて、熱融着部29を形成してもよい。レーザー光で加熱する場合は、樹脂中間膜23のエンボス加工されている表面で光が散乱しないように、ガラス板のような透明板35で樹脂中間膜の表面を圧迫し、レーザー光が樹脂中間膜の表面で散乱しないようにすることが望ましい。 Further, as shown in FIG. 8C, the heat fusion part 29 may be formed by condensing the laser beam 33 on the surface where the resin intermediate films 23 and 23 ′ are in contact with each other by the convex lens 34 or the like. When heating with a laser beam, the surface of the resin intermediate film is pressed with a transparent plate 35 such as a glass plate so that the light is not scattered on the embossed surface of the resin intermediate film 23, and the laser beam is in the middle of the resin. It is desirable not to scatter on the surface of the film.
樹脂中間膜23´と所定形状プラスチックフィルム25とが加熱融着されている熱融着部29´も、熱融着部29と同様にして形成することができる。 The heat fusion part 29 ′ in which the resin intermediate film 23 ′ and the predetermined shape plastic film 25 are heat-sealed can also be formed in the same manner as the heat fusion part 29.
工程4では、工程1~工程3で作製された積層中間膜28あるいは28´を用い、ガラス板10、積層中間膜28、ガラス板13と重ねてガラス板積層体40とし、ガラス板10とガラス板13との間の脱気を行う。 In step 4, the laminated intermediate film 28 or 28 ′ produced in steps 1 to 3 is used to overlap the glass plate 10, the laminated intermediate film 28, and the glass plate 13 to form a glass plate laminated body 40. Deaeration with the plate 13 is performed.
脱気は、特に限定するものではないが、図9に示すような押し圧ロール41によって、ガラス板積層体40の両面から押し圧して脱気する方法、図10、図11に示すような、ゴム系の樹脂でできたチューブ42をガラス板積層体40の周辺に装着し、排気ノズル43から空気を排気して脱気する方法、図12、図13に示すような、真空バッグ44の中にガラス板積層体40を入れて、排気ノズル45から空気を排気して行うことができる。空気の排気には、真空ポンプ(図示せず)が使用できるのが好ましい。 Deaeration is not particularly limited, but a method of pressing and degassing from both sides of the glass plate laminate 40 with a pressing roll 41 as shown in FIG. 9, as shown in FIGS. 10 and 11, A method of attaching a tube 42 made of rubber-based resin around the glass plate laminate 40 and exhausting air from the exhaust nozzle 43 to deaerate the inside of the vacuum bag 44 as shown in FIGS. The glass plate laminated body 40 can be put in and the air can be exhausted from the exhaust nozzle 45. A vacuum pump (not shown) can be preferably used for exhausting air.
 工程5は、工程4の脱気している状態のガラス板積層体40を、オートクレーブ装置によって加熱加圧処理する。加熱加圧処理の温度範囲は90~150℃の加熱、加圧は1MPa以下とし、30分程度行うことが好ましい。 In the cocoon process 5, the glass plate laminate 40 in the degassed state of the process 4 is heated and pressurized by an autoclave device. The temperature range of the heat and pressure treatment is 90 to 150 ° C., and the pressure is 1 MPa or less, and it is preferably performed for about 30 minutes.
 なお、工程1から工程3において、樹脂中間膜にロール状の連続したものを用い、樹脂中間膜が連続している状態の積層中間膜を作製してもよい。この場合は、工程3あるいは工程4の前で、樹脂中間膜が連続した状態から、図5A,図4B示すような形に切り離して、積層中間膜20とガラス板とを重ねればよい。 In Steps 1 to 3, a laminated intermediate film in which the resin intermediate film is continuous may be produced by using a continuous roll of resin intermediate film. In this case, the laminated intermediate film 20 and the glass plate may be overlapped from the state in which the resin intermediate film is continuous before the step 3 or 4 and cut into a shape as shown in FIGS. 5A and 4B.
工程1から工程5までによって作製される本発明に係るプラスチックフィルム挿入合わせガラスで、JIS R3212:1998に規定されている可視光線透過率を70%以上とすることにより、自動車の運転に必要とされる窓に使用することができるので、好ましい。 The plastic film-inserted laminated glass according to the present invention produced by steps 1 to 5 is required for driving an automobile by setting the visible light transmittance defined in JIS R3212: 1998 to 70% or more. This is preferable because it can be used for windows.
 さらに、本発明に係るプラスチックフィルム挿入合わせガラスで、JIS R3106:1998に規定される日射反射率が20%以上であるものやISO 13837:2008に規定される全日射透過率(Total Solar Transmittance)TTSが50%以下であるものは、室内の温熱環境を好適にし、空調に費やされるエネルギーを少なくし、省エネルギーに好ましい窓部材を提供する。 Furthermore, the plastic film-inserted laminated glass according to the present invention has a solar reflectance specified by JIS R3106: 1998 of 20% or more, or a total solar transmittance T specified by ISO 13837: 2008. When the TS is 50% or less, the indoor thermal environment is suitable, energy consumed for air conditioning is reduced, and a window member preferable for energy saving is provided.
 以下、図面を参照しながら本発明を、実施例および比較例を挙げて、詳細に説明する。なお、本発明は、以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples and comparative examples with reference to the drawings. In addition, this invention is not limited to the Example shown below.
 実施例1
 図1、図2に示す、ガラス板10、樹脂中間膜11、赤外線反射膜が形成された所定形状プラスチックフィルム14、樹脂中間膜12、ガラス板13が積層されてなるプラスチックフィルム挿入合わせガラス1を作製した。
Example 1
1 and 2, a plastic film insertion laminated glass 1 in which a glass plate 10, a resin intermediate film 11, a plastic film 14 having a predetermined shape on which an infrared reflecting film is formed, a resin intermediate film 12, and a glass plate 13 are laminated. Produced.
 湾曲したガラス板10、13には、自動車の前面窓に合わせガラスとして用いられる、室外側ガラス板と室内側ガラス板を用いた。 As the curved glass plates 10 and 13, an outdoor glass plate and an indoor glass plate used as glass for a front window of an automobile were used.
 ガラス板10、13のサイズは1100mm×1800mm、厚さが2mmのフロートガラスを曲げ加工したもので、室外側に用いるガラス板10には、凹面側にセラミックペーストをスクリーン印刷して焼成し、着色膜を形成した。室内側に用いるガラス板13には、厚さが2mmのグリーン系の熱線吸収ガラスを用いた。 The glass plates 10 and 13 are made by bending float glass having a size of 1100 mm × 1800 mm and a thickness of 2 mm. The glass plate 10 used for the outdoor side is screen-printed with a ceramic paste on the concave side, fired, and colored. A film was formed. For the glass plate 13 used on the indoor side, a green heat ray absorbing glass having a thickness of 2 mm was used.
 着色膜の幅(図3のd2)は、最小となる所では30mm、最大となる所では200mmとした。 The width of the soot-colored film (d2 in FIG. 3) was 30 mm at the minimum and 200 mm at the maximum.
 湾曲したガラス板の曲率半径は、0.9m~1mの間にあり、周辺部が0.9mの値であり、中央部が1mの値であった。 The curvature radius of the curved glass plate was between 0.9 m and 1 m, the peripheral portion was 0.9 m, and the central portion was 1 m.
樹脂中間膜11、12には、厚さが0.38mmのPVB膜を用いた。 As the resin intermediate films 11 and 12, PVB films having a thickness of 0.38 mm were used.
 赤外線反射膜付きプラスチックフィルムには、厚さが100μmのPETフィルムを用いた。 A PET film with a thickness of 100 μm was used as the plastic film with an infrared reflective film.
 該PETプラスチックフィルムの片面に、赤外線吸収層(図示せず)として、錫をドープしたインジウム酸化物(ITO)微粒子を分散したアクリル樹脂を主成分とするハードコート被膜を、硬化後厚さ5μmになるように、ロールコート法で塗布し、さらに、その上に赤外線反射膜を形成した。 On one side of the PET plastic film, a hard coat film mainly composed of an acrylic resin in which tin-doped indium oxide (ITO) fine particles are dispersed is used as an infrared absorption layer (not shown) to a thickness of 5 μm after curing. In this way, it was applied by a roll coating method, and an infrared reflection film was further formed thereon.
 赤外線反射膜には誘電体多層膜によるものを用い、TiO2膜(厚さ105nm)、SiO2膜(厚さ175nm)、TiO2膜(厚さ105nm)、SiO2膜(厚さ175nm)、TiO2膜(厚さ105nm)、SiO2膜(厚さ175nm)、TiO2膜(厚さ105nm)、SiO2膜(厚さ175nm)、TiO2膜(厚さ105nm)をハードコート膜上に順次スパッタリングで成膜した。 As the infrared reflection film, a dielectric multilayer film is used, and a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), A TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), a TiO 2 film (thickness 105 nm), a SiO 2 film (thickness 175 nm), and a TiO 2 film (thickness 105 nm) are formed on the hard coat film. Films were formed sequentially by sputtering.
 PETプラスチックフィルムの赤外線反射膜を形成しない面に、シランカップリング剤を塗布した。 シ ラ ン A silane coupling agent was applied to the surface of the PET plastic film where the infrared reflective film was not formed.
 赤外線反射膜付きプラスチックフィルムの熱収縮率を、JIS C2318:2007に準じて測定したところ、MD方向(フィルムの長手方向)で0.6%、TD方向(MD方向に直交する幅方向)0.3%であった。 When the thermal shrinkage rate of the plastic film with an infrared reflecting film was measured according to JIS C2318: 2007, 0.6% in the MD direction (longitudinal direction of the film), TD direction (width direction orthogonal to the MD direction) 0. 3%.
 工程1~工程5を次のようにして実施し、図1、図2に示すプラスチック挿入合わせガラスを作製した。 Steps 1 to 5 were carried out as follows to produce the plastic-inserted laminated glass shown in FIGS.
 〈工程1〉
 ステンレス鋼製の薄刃のカッターナイフを用いて、PETフィルムにハードコート膜、赤外線反射膜およびシランカップリング剤の塗膜が形成された赤外線反射膜付きプラスチックフィルム22を図4に示すような所定形状プラスチックフィルム25に裁断した。
<Process 1>
A plastic film 22 with an infrared reflecting film in which a hard coat film, an infrared reflecting film and a coating film of a silane coupling agent are formed on a PET film using a thin blade cutter knife made of stainless steel has a predetermined shape as shown in FIG. Cut into a plastic film 25.
 所定形状プラスチックフィルム25の形状は、図1の透視部5に相似形とし、所定形状プラスチックフィルム25と着色膜15との重なり幅(図3に示すd3)が10mmとなるようなサイズにした。 The shape of the plastic film 25 having a predetermined shape is similar to that of the see-through portion 5 of FIG. 1, and the size of the overlapping width (d3 shown in FIG. 3) of the plastic film 25 of the predetermined shape and the colored film 15 is 10 mm.
 〈工程2〉
 所定形状プラスチックフィルム25を挟み込むようにして、樹脂中間膜23、23´と所定形状プラスチックフィルム25とを重ねて、図5Aに示す中間膜積層体20を形成した。
<Process 2>
The intermediate film laminate 20 shown in FIG. 5A was formed by overlapping the resin intermediate films 23 and 23 ′ and the predetermined shape plastic film 25 so as to sandwich the predetermined shape plastic film 25.
 〈工程3〉
 工程2で形成した中間膜積層体20の所定形状プラスチックフィルム25のエッジ付近で、2枚の樹脂中間膜23、23´を加熱融着し、図8A,図8B, および図8Cの示すように、所定形状プラスチックフィルム25の辺の中央部付近に、熱融着部29を形成して、積層中間膜28とした。
<Process 3>
In the vicinity of the edge of the predetermined-shaped plastic film 25 of the intermediate film laminate 20 formed in step 2, the two resin intermediate films 23 and 23 'are heat-sealed, as shown in FIGS. 8A, 8B, and 8C. A heat-sealed portion 29 was formed in the vicinity of the central portion of the side of the predetermined-shaped plastic film 25 to form a laminated intermediate film 28.
 加熱融着は、図8Aに示す装置を用いて行った。加熱体31の樹脂中間膜23に押し当てる面積を10mm×200mmとし、加熱体の温度を45℃に加熱し、1平方cm当たり1Nの力で20秒間、樹脂中間膜23に押し当てて行い、図6A,図6Bに示す熱融着部29を形成した。 Heat fusion was performed using the apparatus shown in FIG. 8A. The area pressed against the resin intermediate film 23 of the heating body 31 is 10 mm × 200 mm, the temperature of the heating body is heated to 45 ° C., and pressed against the resin intermediate film 23 with a force of 1 N per square centimeter for 20 seconds. The heat fusion part 29 shown in FIG. 6A and FIG. 6B was formed.
 〈工程4〉 工程3で作製した積層中間膜28を湾曲した室外側ガラス10に重ね、さらに湾曲した室内側ガラス13をその上に重ね、湾曲したガラス板の縁からはみ出た樹脂中間膜をカッターナイフで切り取り、ガラス板積層体40を形成した。 <Step 4> The laminated intermediate film 28 produced in Step 3 is stacked on the curved outdoor glass 10, and the curved indoor glass 13 is stacked thereon, and the resin intermediate film protruding from the edge of the curved glass plate is cut with a cutter. The glass plate laminate 40 was formed by cutting with a knife.
 ガラス板積層体40の形成において、図3に示すd3が10mmとなるように、積層中間膜28を湾曲した室外側ガラス10に重ねた。 In the formation of the glass plate laminated body 40, the laminated intermediate film 28 was laminated on the curved outdoor glass 10 so that d3 shown in FIG.
 赤外線反射膜付きプラスチックフィルムに形成されている赤外線反射膜は、図2の室外側の樹脂中間膜11に接するように配置し、赤外線を吸収するハードコート層は、室内側の樹脂中間膜12に接するようにした。 The infrared reflective film formed on the plastic film with the infrared reflective film is disposed so as to be in contact with the resin intermediate film 11 on the outdoor side of FIG. 2, and the hard coat layer that absorbs infrared rays is formed on the resin intermediate film 12 on the indoor side. I made contact.
 ガラス板積層体40の脱気を、図10、11に示すチューブ42を用い、排気ノズル43に、図示しない真空ポンプをつないで行った。チューブ42には、ゴム系樹脂で作製されたものを用いた。 The glass plate laminate 40 was degassed by using the tube 42 shown in FIGS. 10 and 11 and connecting the exhaust nozzle 43 to a vacuum pump (not shown). The tube 42 was made of rubber resin.
 〈工程5〉
 図10、11のチューブ42を用いて脱気している状態のまま、ガラス板積層体40をオートクレーブに入れ、15分間、加圧(0.2MPa)・加熱(95℃)処理した後、ガラス板積層体40をオートクレーブから取出した。
<Step 5>
The glass plate laminate 40 is placed in an autoclave while being deaerated using the tube 42 shown in FIGS. 10 and 11, and subjected to pressurization (0.2 MPa) and heating (95 ° C.) for 15 minutes, and then glass. The plate laminate 40 was taken out from the autoclave.
 ガラス板積層体40からチューブ42を取外し、チューブ42を取り外したガラス板積層体40を再度オートクレーブに入れ、30分間、加圧(1MPa)・加熱(140℃)処理し、図1に示すプラスチック挿入合わせガラス1を作製した。 The tube 42 is removed from the glass plate laminate 40, and the glass plate laminate 40, from which the tube 42 has been removed, is again placed in the autoclave, subjected to pressure (1 MPa) and heating (140 ° C.) for 30 minutes, and the plastic insertion shown in FIG. Laminated glass 1 was produced.
 作製したプラスチックフィルム挿入合わせガラス1は、所定形状プラスチックフィルム14にシワがなく、外観不良の無いものであり、JISR3211-1998に規定されている可視光線透過率は73%有し、自動車のフロントガラスとして好適に使用できるものであった。 The produced plastic film-inserted laminated glass 1 has a predetermined-shaped plastic film 14 with no wrinkles and no defective appearance, has a visible light transmittance of 73% as defined in JIS R3211-1998, and is a windshield of an automobile. Can be suitably used.
 さらに、本実施例のプラスチックフィルム挿入合わせガラスのJIS R3106:1998に規定される日射反射率は21%、また、ISO 13837:2008に規定されている全日射透過率(Total Solar Transmittance)TTSは48%であった。 Further, JIS plastic film-inserted laminated glass of this embodiment R3106: solar reflectance as defined in the 1998 21%, also, ISO 13 837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS is 48%.
 実施例2
 樹脂中間膜13に、アンチモンをドープした酸化錫(ATO)微粒子を分散した厚さ0.76mmの透明なPVB膜を用い、赤外線反射膜付きプラスチックフィルムに厚さ80μmの透明なPETフィルムを用い、赤外線反射膜として、Nb25膜(厚さ115nm)、SiO2膜(厚さ175nm)、Nb25膜(厚さ115nm)、SiO2膜(厚さ175nm)、Nb25膜(厚さ115nm)を順次スパッタリング法で成膜して形成した。
Example 2
Using a transparent PVB film having a thickness of 0.76 mm in which tin oxide (ATO) particles doped with antimony are dispersed in the resin intermediate film 13, and using a transparent PET film having a thickness of 80 μm as a plastic film with an infrared reflection film, As an infrared reflecting film, Nb 2 O 5 film (thickness 115 nm), SiO 2 film (thickness 175 nm), Nb 2 O 5 film (thickness 115 nm), SiO 2 film (thickness 175 nm), Nb 2 O 5 film (Thickness: 115 nm) was formed by sequential sputtering.
ATO微粒子を分散したアクリル樹脂を主成分とするハードコート被膜を、硬化後厚さ5μmとなるように、ロールコート法で塗布して形成し、赤外線反射膜は、該ハードコート被膜の上に形成した。 A hard coat film mainly composed of an acrylic resin in which ATO fine particles are dispersed is applied by a roll coating method so as to have a thickness of 5 μm after curing, and an infrared reflection film is formed on the hard coat film. did.
 その他は、実施例1と同様にして、プラスチックフィルム挿入合わせガラスを作製した。 Other than that, a plastic film-inserted laminated glass was produced in the same manner as in Example 1.
 なお、赤外線反射膜付きプラスチックフィルムの熱収縮率は、130℃で、MD方向0.7%、TD方向0.4%であった。 Note that the heat shrinkage rate of the plastic film with an infrared reflective film was 130 ° C., 0.7% in the MD direction, and 0.4% in the TD direction.
 作製したプラスチックフィルム挿入合わせガラス1は、所定形状プラスチックフィルム14にシワがなく、外観不良の無いものであり、JISR3211-1998に規定されている可視光線透過率は73%有し、自動車のフロントガラスとして好適に使用できるものであった。 The produced plastic film-inserted laminated glass 1 has a predetermined-shaped plastic film 14 with no wrinkles and no defective appearance, has a visible light transmittance of 73% as defined in JIS R3211-1998, and is a windshield of an automobile. Can be suitably used.
 さらに、本実施例のプラスチックフィルム挿入合わせガラスのJIS R3106:1998に規定される日射反射率は21%、また、ISO 13837:2008に規定されている全日射透過率(Total Solar Transmittance)TTSは48%であった。 Further, JIS plastic film-inserted laminated glass of this embodiment R3106: solar reflectance as defined in the 1998 21%, also, ISO 13 837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS is 48%.
 実施例3
 赤外線反射膜付きプラスチックフィルムの赤外線反射膜に、PETフィルムに酸化亜鉛と銀の薄膜をスパッタリング法で積層してなる赤外線反射膜を形成したものを用いた他は、全て実施例1と同様にして、プラスチックフィルム挿入合わせガラス1を作製した。
Example 3
Except for using an infrared reflecting film formed by laminating a thin film of zinc oxide and silver on a PET film by a sputtering method on an infrared reflecting film of a plastic film with an infrared reflecting film, all the same as in Example 1 A plastic film-inserted laminated glass 1 was produced.
 本実施例で作製したプラスチックフィルム挿入合わせガラス1は、所定形状プラスチックフィルムにシワがなく、外観不良の無いものであった。 プ ラ ス チ ッ ク The plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined shape plastic film and had no appearance defect.
さらに、JISR3211-1998に規定されている可視光線透過率も70%有し、自動車のフロントガラスとして好適に使用できるものであった。 Further, it has a visible light transmittance of 70% as defined in JIS R3211-1998, and can be suitably used as an automobile windshield.
実施例4
赤外線反射膜付きプラスチックフィルムに形成した赤外線吸収層を、スパッ
タリング法で酸化インジウム、銀、酸化インジウム、銀、酸化インジウムを順次積層してなる赤外線反射膜としたものを用いた。
Example 4
The infrared absorbing layer formed on the plastic film with the infrared reflecting film was used as an infrared reflecting film formed by sequentially laminating indium oxide, silver, indium oxide, silver, and indium oxide by a sputtering method.
 その他は全て実施例1と同様にしてプラスチックフィルム挿入合わせガラス1を作製した。 A plastic film-inserted laminated glass 1 was produced in the same manner as Example 1 except for the other items.
 本実施例で作製したプラスチックフィルム挿入合わせガラス1は、所定形状プラスチックフィルム14にシワがなく、外観不良の無いものであった。 プ ラ ス チ ッ ク The plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined-shaped plastic film 14 and had no appearance defect.
本実施例の断熱性合わせガラス1のJIS R3106:1998に規定される日射反射率は24%、JIS R3212:1998に規定されている可視光線透過率は71%であった。また、ISO 13837:2008に規定されている全日射透過率(Total Solar Transmittance)TTSは46%であった。 The solar radiation reflectance defined in JIS R3106: 1998 of the heat insulating laminated glass 1 of this example was 24%, and the visible light transmittance defined in JIS R3212: 1998 was 71%. Moreover, ISO 13837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS was 46%.
 なお、本実施例の赤外線反射膜付きプラスチックフィルム22の熱収縮率は、130℃でMD方向、TD方向ともに0.7%であり、伸び率は、130℃でMD方向、TD方向ともに0%であった。 The thermal contraction rate of the plastic film 22 with an infrared reflecting film of this example is 0.7% in both the MD direction and the TD direction at 130 ° C., and the elongation rate is 0% in both the MD direction and the TD direction at 130 ° C. Met.
 実施例5
 赤外線反射膜付きプラスチックフィルムの赤外線反射膜に、屈折率の異なる2種類のポリマー薄膜を交互に多数積層してなる多層膜を用いた他は、全て実施例1と同様にしてプラスチックフィルム挿入合わせガラスを作製した。
Example 5
Plastic film-inserted laminated glass in the same manner as in Example 1 except that a multilayer film formed by alternately laminating two types of polymer thin films having different refractive indexes was used for the infrared reflective film of the plastic film with the infrared reflective film. Was made.
 低屈折率のポリマー薄膜にポリメチルメタクリレートを用い、高屈折率のポリマー薄膜にポリエチレンテレフタレートを用いた。PMMAを用いて形成した低屈折率の層をPMMA層と呼び、ポリエチレンテレフタレートを用いて形成した高屈折率の層をPET層と呼ぶ。 ポ リ Polymethylmethacrylate was used for the low refractive index polymer thin film, and polyethylene terephthalate was used for the high refractive index polymer thin film. A low refractive index layer formed using PMMA is called a PMMA layer, and a high refractive index layer formed using polyethylene terephthalate is called a PET layer.
 PMMA層は、PMMAを酢酸2-メトキシエチルに溶解させた液をロールコート法で塗布して成膜した。屈折率は1.49であった。 The PMMA layer was formed by applying a solution obtained by dissolving PMMA in 2-methoxyethyl acetate by a roll coating method. The refractive index was 1.49.
PET層は、PETのペレットを押し出し機で溶融させながら塗膜した。PET層の屈折率は1.65であった。 The PET layer was coated while melting the PET pellets with an extruder. The refractive index of the PET layer was 1.65.
赤外線反射層7は、0.144μmのPMMA層と0.159μmのPET層とを交互に20層ずつ繰り返して積層し、さらに、0.165μmのPMMA層と0.183μmのPET層とを交互に10層ずつ繰り返して積層し、さらに、0.187μmのPMMA層と0.207μmのPET層とを交互に15層ずつ繰り返して積層し、さらに、158μmのPMMA層と0.175μmのPET層とを交互に15層ずつ繰り返して積層し、さらに、0.172μmのPMMA層と0.191μmのPET層とを交互に15層ずつ繰り返して積層して、形成した。ポリマー薄膜は全部で150層である。 The infrared reflective layer 7 is formed by alternately stacking 20 layers of 0.144 μm PMMA layers and 0.159 μm PET layers, and alternately alternating 0.165 μm PMMA layers and 0.183 μm PET layers. Repeatedly layered 10 layers each, and further laminated 15 layers of 0.187 μm PMMA layer and 0.207 μm PET layer alternately, and further layered 158 μm PMMA layer and 0.175 μm PET layer. 15 layers were alternately stacked repeatedly, and further, a 0.172 μm PMMA layer and a 0.191 μm PET layer were alternately stacked repeatedly 15 layers each. The polymer thin film has a total of 150 layers.
 本実施例の赤外線反射膜付きフィルム22の熱収縮率は、130℃で、MD方向、TD方向ともに1.1%であった。 熱 The thermal contraction rate of the film 22 with an infrared reflective film of this example was 130 ° C., and 1.1% in both the MD direction and the TD direction.
 本実施例で作製したプラスチックフィルム挿入合わせガラス1は、所定形状プラスチックフィルム14にシワがなく、外観不良の無いものであった。 プ ラ ス チ ッ ク The plastic film-inserted laminated glass 1 produced in this example had no wrinkles in the predetermined-shaped plastic film 14 and had no appearance defect.
 また、本実施例で作製したプラスチックフィルム挿入合わせガラスのJIS R3106:1998に規定される日射反射率は20%、JIS R3212:1998に規定されている可視光線透過率は73%であった。また、ISO 13837:2008に規定されている全日射透過率(Total Solar Transmittance)TTSは49%であった。 Moreover, the solar light reflectance prescribed | regulated to JIS R3106: 1998 of the plastic film insertion laminated glass produced in the present Example was 20%, and the visible light transmittance prescribed | regulated to JIS R3212: 1998 was 73%. Moreover, ISO 13837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS was 49%.
 比較例1
 実施例1の工程3において、熱融着部29を形成しないで積層中間膜28とした他は、全て実施例1と同様にして、プラスチックフィルム挿入合わせガラスを作製した。
Comparative Example 1
A plastic film-inserted laminated glass was produced in the same manner as in Example 1 except that in Step 3 of Example 1, the laminated interlayer film 28 was formed without forming the heat-sealing portion 29.
 作製したプラスチックフィルム挿入合わせガラスには、所定形状プラスチックフィルムの周辺部でシワが観察され、外観不良のため実用には適さないものであった。 The wrinkled plastic film-inserted laminated glass was not suitable for practical use because wrinkles were observed at the periphery of the plastic film having a predetermined shape and the appearance was poor.
1 プラスチックフィルム挿入合わせガラス
2 プラスチックフィルム挿入合わせガラスのエッジ
3 着色膜のエッジ
4 プラスチックフィルムのエッジ
5 プラスチックフィルム挿入合わせガラス透視部
10 ガラス板
11、12 樹脂中間膜
13 ガラス板
14 所定形状プラスチックフィルム
15 着色膜
20 中間膜積層体
22 赤外線反射膜付きプラスチックフィルム
23、23´ 樹脂中間膜
25 所定形状プラスチックフィルム
26 不要部
28、28´ 積層中間膜
29、29´ 熱融着部
30 ヒータ
31 加熱体
32 押さえ部
33 レーザー光
34 凸レンズ
35 透明板
40 ガラス板積層体
41 押し圧ロール
42 チューブ
43、45 排気ノズル
44 真空バッグ
DESCRIPTION OF SYMBOLS 1 Plastic film insertion laminated glass 2 Plastic film insertion laminated glass edge 3 Colored film edge 4 Plastic film edge 5 Plastic film insertion laminated glass perspective part 10 Glass plates 11 and 12 Resin intermediate film 13 Glass plate 14 Predetermined shape plastic film 15 Colored film 20 Intermediate film laminate 22 Plastic film 23 with infrared reflection film, 23 'Resin intermediate film 25 Predetermined shape plastic film 26 Unnecessary part 28, 28' Laminated intermediate film 29, 29 'Thermal fusion part 30 Heater 31 Heating body 32 Holding unit 33 Laser beam 34 Convex lens 35 Transparent plate 40 Glass plate laminate 41 Pressing roll 42 Tube 43, 45 Exhaust nozzle 44 Vacuum bag

Claims (13)

  1.  曲げ加工によって湾曲した形状の2枚のガラス板と、2枚の樹脂中間膜と、赤外線反射膜付きプラスチックフィルムとが、ガラス板、樹脂中間膜、赤外線反射膜付きプラスチックフィルム、樹脂中間膜、ガラス板の順に積層されてなるプラスチックフィルム挿入合わせガラスの製造方法において、少なくとも1枚のガラス板の周辺部に不透明な着色膜を形成し、次の工程1~3で積層中間膜を作製し、該積層中間膜を2枚のガラス板の間に挿入して、加熱・加圧処理を行うことを特徴とするプラスチックフィルム挿入合わせガラスの製造方法。
     工程1:赤外線反射膜付きプラスチックフィルムを所定形状プラスチックフィルム(ガラス板の面積よりも小さい面積で、かつフィルムのエッジがガラス板の不透明な着色膜に全周で重なる形状のプラスチックフィルム)に裁断する工程。
     工程2:工程1で裁断して作製した所定形状プラスチックフィルムを、2枚の樹脂中間膜の間に挟み込むようにして、2枚の樹脂中間膜と所定形状プラスチックフィルムとを重ねる工程。
     工程3:所定形状プラスチックフィルムの辺に近い位置で、樹脂中間膜と樹脂中間膜とを、あるいは樹脂中間膜と所定形状プラスチックフィルムとを、熱融着し、積層中間膜とする工程。
    Two glass plates curved by bending, two resin intermediate films, and a plastic film with an infrared reflective film are a glass plate, a resin intermediate film, a plastic film with an infrared reflective film, a resin intermediate film, glass In the method for producing a plastic film-inserted laminated glass laminated in the order of the plates, an opaque colored film is formed on the periphery of at least one glass plate, and a laminated intermediate film is produced in the following steps 1 to 3, A method for producing a plastic film-inserted laminated glass, wherein a laminated interlayer film is inserted between two glass plates and subjected to heating and pressing.
    Step 1: The plastic film with an infrared reflecting film is cut into a predetermined shape plastic film (a plastic film having an area smaller than the area of the glass plate and the edge of the film overlapping the opaque colored film of the glass plate on the entire circumference). Process.
    Step 2: A step of stacking the two resin intermediate films and the predetermined shape plastic film so that the predetermined shape plastic film produced by cutting in Step 1 is sandwiched between the two resin intermediate films.
    Step 3: A step of heat-sealing the resin intermediate film and the resin intermediate film or the resin intermediate film and the predetermined shape plastic film at a position close to the side of the predetermined shape plastic film to form a laminated intermediate film.
  2.  工程3の熱融着に、加熱体を有する加熱装置を用いるか、あるいはレーザー光を用いることを特徴とする請求項1に記載のプラスチックフィルム挿入合わせガラスの製造方法。 The method for producing a laminated plastic film-inserted glass according to claim 1, wherein a heating device having a heating body is used for the thermal fusion in the step 3 or a laser beam is used.
  3.  2枚のガラス板の曲率半径が、0.9~3mの範囲にあることを特徴とする請求項1または請求項2に記載の製造方法で製造されるプラスチックフィルム挿入合わせガラス。 3. The plastic film-inserted laminated glass produced by the production method according to claim 1 or 2, wherein the radius of curvature of the two glass plates is in the range of 0.9 to 3 m.
  4.  赤外線反射膜付きプラスチックフィルムに用いられるプラスチックフィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルフォン、ナイロン、ポリアリレート、シクロオレフィンポリマーから選ばれる1つのプラスチックフィルムであることを特徴とする請求項3に記載のプラスチックフィルム挿入合わせガラス。 The plastic film used for the plastic film with an infrared reflecting film is one plastic film selected from polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, nylon, polyarylate, and cycloolefin polymer. The plastic film-inserted laminated glass according to claim 3.
  5.  樹脂中間膜が、ポリビニルアセタール、エチレンビニルアセテート、あるいはこれらの融着性樹脂に金属もしくは金属酸化物の微粒子を分散させたものであることを特徴とする請求項3または請求項4に記載のプラスチックフィルム挿入合わせガラス。 5. The plastic according to claim 3 or 4, wherein the resin interlayer is polyvinyl acetal, ethylene vinyl acetate, or a fusion resin in which fine particles of metal or metal oxide are dispersed. Film-inserted laminated glass.
  6.  赤外線反射膜付きプラスチックフィルムの赤外線反射膜が、高屈折率の酸化物膜と低屈折率の酸化物膜とを交互に積層してなる多層膜、もしくは屈折率の異なるポリマー薄膜の多層膜、もしくは導電性薄膜であることを特徴とする請求項3乃至請求項5のいずれか1項に記載のプラスチックフィルム挿入合わせガラス。 The infrared reflection film of the plastic film with the infrared reflection film is a multilayer film in which an oxide film having a high refractive index and an oxide film having a low refractive index are alternately laminated, or a multilayer film of polymer thin films having different refractive indexes, or The plastic film-inserted laminated glass according to any one of claims 3 to 5, which is a conductive thin film.
  7.  酸化物膜が、TiO2、Nb25、Ta25、SiO2、Al23、ZrO2、MgF2から選ばれる2種以上の酸化物でなることを特徴とする請求項6に記載のプラスチックフィルム挿入合わせガラス。 7. The oxide film is made of two or more oxides selected from TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , Al 2 O 3 , ZrO 2 , and MgF 2. The laminated plastic film glass described in 1.
  8.  屈折率の異なるポリマー薄膜の多層膜が、2種類のポリマー薄膜を交互に50層~200層積層されてなる多層膜であることを特徴とする請求項6に記載のプラスチックフィルム挿入合わせガラス。 7. The plastic film-inserted laminated glass according to claim 6, wherein the multilayer film of polymer thin films having different refractive indices is a multilayer film in which 50 to 200 layers of two types of polymer thin films are alternately laminated.
  9.  導電性薄膜が、Ag、Au、Cu、Al、Pd、Pt、Sn、In、Zn、Ti、Cd、Fe、Co、Cr、Niなどの金属または合金等でなる金属膜または合金膜、あるいはアンチモンドープ酸化錫、錫ドープ酸化インジウム等でなる導電性金属酸化物膜からなることを特徴とする請求項6に記載のプラスチックフィルム挿入合わせガラス。 The conductive thin film is a metal film or alloy film made of a metal or alloy such as Ag, Au, Cu, Al, Pd, Pt, Sn, In, Zn, Ti, Cd, Fe, Co, Cr, Ni, or antimony The plastic film-inserted laminated glass according to claim 6, comprising a conductive metal oxide film made of doped tin oxide, tin-doped indium oxide, or the like.
  10.  赤外線反射膜付きプラスチックフィルムが、次の(A)、(B)、(C)のいずれかの条件を満たしていることを特徴とする請求項3乃至請求項9のいずれかに記載のプラスチックフィルム挿入合わせガラス。
    (A)厚さが30~200μmの範囲にある。
    (B)熱収縮率が100~150℃の温度範囲において、0.1~3%の範囲にある。
    (C)100~150℃の温度範囲で、赤外線反射膜付きプラスチックフィルムの1m幅あたりに引張力10Nを加えたとき、該赤外線反射膜付きプラスチックフィルムの伸び率が0.3%以下である。
    The plastic film according to any one of claims 3 to 9, wherein the plastic film with an infrared reflecting film satisfies any of the following conditions (A), (B), and (C): Inserted laminated glass.
    (A) The thickness is in the range of 30 to 200 μm.
    (B) The thermal shrinkage is in the range of 0.1 to 3% in the temperature range of 100 to 150 ° C.
    (C) When a tensile force of 10 N is applied per 1 m width of the plastic film with an infrared reflecting film in a temperature range of 100 to 150 ° C., the elongation percentage of the plastic film with the infrared reflecting film is 0.3% or less.
  11.  JISR3212:1998に規定される可視光線透過率が70%以上であり、車両用窓に使用されることを特徴とする請求項3乃至請求項10のいずれか1項に記載のプラスチックフィルム挿入合わせガラス。 11. The plastic film-inserted laminated glass according to claim 3, wherein the visible light transmittance specified in JIS R3212: 1998 is 70% or more, and is used for a vehicle window. .
  12.  JIS R3106:1998に規定される日射反射率が20%以上であることを特徴とする請求項3乃至請求項11のいずれか1項に記載のプラスチックフィルム挿入合わせガラス。 The plastic film-inserted laminated glass according to any one of claims 3 to 11, wherein the solar reflectance defined in JIS106R3106: 1998 is 20% or more.
  13.  ISO13837:2008に規定される全日射透過率(Total Solar Transmittance)TTSが50%以下であることを特徴とする請求項3乃至請求項12のいずれか1項に記載のプラスチックフィルム挿入合わせガラス。 ISO13837: total solar transmittance as defined in 2008 (Total Solar Transmittance) T TS plastic film-inserted laminated glass according to any one of claims 3 to 12, characterized in that 50% or less.
PCT/JP2010/055833 2009-04-16 2010-03-31 Method for producing plastic film-inserted laminated glass, and plastic film-inserted laminated glass WO2010119771A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009100305 2009-04-16
JP2009-100305 2009-04-16
JP2009214111A JP5440059B2 (en) 2009-04-16 2009-09-16 Plastic film insertion laminated glass manufacturing method and plastic film insertion laminated glass
JP2009-214111 2009-09-16

Publications (1)

Publication Number Publication Date
WO2010119771A1 true WO2010119771A1 (en) 2010-10-21

Family

ID=42982433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055833 WO2010119771A1 (en) 2009-04-16 2010-03-31 Method for producing plastic film-inserted laminated glass, and plastic film-inserted laminated glass

Country Status (2)

Country Link
JP (1) JP5440059B2 (en)
WO (1) WO2010119771A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157385A1 (en) * 2011-05-18 2012-11-22 日産自動車株式会社 Laminated glass
WO2014200108A1 (en) * 2013-06-14 2014-12-18 積水化学工業株式会社 Intermediate film for laminated glass, multi-layer intermediate film for laminated glass, and laminated glass
CN106029597A (en) * 2014-02-25 2016-10-12 积水化学工业株式会社 Plastic sheet, method for manufacturing plastic sheet, interlayer film for laminated glass, and laminated glass
US20210078388A1 (en) * 2017-11-30 2021-03-18 Agp America S.A. Invisible edge solid substrate compensation layer for automotive glazing
US11833783B2 (en) 2019-09-18 2023-12-05 Acr Ii Glass America Inc. Laminated glazing and methods of laminating a glazing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699738B2 (en) * 2011-03-29 2015-04-15 コニカミノルタ株式会社 Hard coat film, heat ray blocking film using the same, and organic element device
WO2013031716A1 (en) * 2011-08-29 2013-03-07 富士フイルム株式会社 Laminated interlayer film and method for manufacturing same, and laminated glass and method for manufacturing same
JP5994849B2 (en) * 2012-05-08 2016-09-21 コニカミノルタ株式会社 Laminated glass
CN104428267B (en) * 2012-07-31 2019-02-15 积水化学工业株式会社 The installation method of intermediate film for laminated glasses, laminated glass and laminated glass
JP6127805B2 (en) * 2013-07-24 2017-05-17 旭硝子株式会社 Laminated glass for vehicles and method for manufacturing the same
EP3100988B1 (en) 2014-01-31 2021-10-20 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, laminated glass and method for fitting laminated glass
WO2015147218A1 (en) * 2014-03-28 2015-10-01 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
US10981358B2 (en) 2018-04-03 2021-04-20 AGC Inc. Laminated glass
JP7160091B2 (en) * 2018-04-19 2022-10-25 Agc株式会社 vehicle windshield
JP2020109051A (en) * 2018-12-28 2020-07-16 日本板硝子株式会社 Glass laminate for automobile
JP7363547B2 (en) * 2020-02-06 2023-10-18 Agc株式会社 laminated glass
CN116761722A (en) * 2021-02-24 2023-09-15 东丽株式会社 Film for molding and molded article using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321589A (en) * 1993-05-11 1994-11-22 Mitsui Toatsu Chem Inc Production of laminated glass
JPH11512351A (en) * 1995-09-16 1999-10-26 フラッハグラース・アウトモティーフェ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for the production of safety glass without light impairment due to reflected and transmitted light, using a special support film for producing the safety glass and a support film particularly suitable for the method and the application
JP2003519615A (en) * 2000-01-13 2003-06-24 ソチエタ イタリアーナ ヴェトロ−エッセイヴ−ソチエタ ペル アチオニ Glass panel
JP2004026547A (en) * 2002-06-24 2004-01-29 Nippon Sheet Glass Co Ltd Heat-insulating laminated glass
JP2009035440A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Laminated glass having plastic film inserted therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321589A (en) * 1993-05-11 1994-11-22 Mitsui Toatsu Chem Inc Production of laminated glass
JPH11512351A (en) * 1995-09-16 1999-10-26 フラッハグラース・アウトモティーフェ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for the production of safety glass without light impairment due to reflected and transmitted light, using a special support film for producing the safety glass and a support film particularly suitable for the method and the application
JP2003519615A (en) * 2000-01-13 2003-06-24 ソチエタ イタリアーナ ヴェトロ−エッセイヴ−ソチエタ ペル アチオニ Glass panel
JP2004026547A (en) * 2002-06-24 2004-01-29 Nippon Sheet Glass Co Ltd Heat-insulating laminated glass
JP2009035440A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Laminated glass having plastic film inserted therein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157385A1 (en) * 2011-05-18 2012-11-22 日産自動車株式会社 Laminated glass
WO2014200108A1 (en) * 2013-06-14 2014-12-18 積水化学工業株式会社 Intermediate film for laminated glass, multi-layer intermediate film for laminated glass, and laminated glass
US10363721B2 (en) 2013-06-14 2019-07-30 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
US10442163B2 (en) 2013-06-14 2019-10-15 Sekisui Chemical Co., Ltd. Multilayer interlayer film having infrared ray reflection layer and thermoplastic resin, and laminated glass having such film
CN106029597A (en) * 2014-02-25 2016-10-12 积水化学工业株式会社 Plastic sheet, method for manufacturing plastic sheet, interlayer film for laminated glass, and laminated glass
EP3112326A4 (en) * 2014-02-25 2017-09-20 Sekisui Chemical Co., Ltd. Plastic sheet, method for manufacturing plastic sheet, interlayer film for laminated glass, and laminated glass
US10434753B2 (en) 2014-02-25 2019-10-08 Sekisui Chemical Co., Ltd. Plastic sheet, method for manufacturing plastic sheet, interlayer film for laminated glass, and laminated glass
US20210078388A1 (en) * 2017-11-30 2021-03-18 Agp America S.A. Invisible edge solid substrate compensation layer for automotive glazing
US11813821B2 (en) * 2017-11-30 2023-11-14 Agp America S.A. Invisible edge solid substrate compensation layer for automotive glazing
US11833783B2 (en) 2019-09-18 2023-12-05 Acr Ii Glass America Inc. Laminated glazing and methods of laminating a glazing

Also Published As

Publication number Publication date
JP5440059B2 (en) 2014-03-12
JP2010265160A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5440059B2 (en) Plastic film insertion laminated glass manufacturing method and plastic film insertion laminated glass
JP5423271B2 (en) Manufacturing method of laminated glass for automotive windshield
KR101202861B1 (en) Process for producing laminated glass with inserted plastic film and laminated glass with inserted plastic film
WO2009154060A1 (en) Process for production of laminated glass interleaved with plastic film and laminated glass interleaved with plastic film
EP2392551B1 (en) Use of a plastic film in a curved laminated glass
WO2010098287A1 (en) Heat insulating laminated glass
JP5707669B2 (en) Plastic film insertion laminated glass
US6242088B1 (en) Method for producing a laminated glass pane free of optical obstruction caused by warping, use of a particular carrier film for the production of the laminated glass pane and carrier films particularly suitable for the method or the use
JP2010013311A (en) Manufacturing method of plastic film-interleaved glass laminate, and plastic film-interleaved glass laminate
JP5321102B2 (en) Heat insulation laminated glass
WO2009087869A1 (en) Laminated glass with inserted plastic film
JP2009035438A (en) Infrared ray reflective laminated glass
JP2009298661A (en) Method for producing plastic film-inserted laminated glass and plastic film-inserted laminated glass
JP4888658B2 (en) Sheet glass laminated structure and multi-plate glass laminated structure
JP5245316B2 (en) Manufacturing method of plastic film-inserted laminated glass
JP5205847B2 (en) Plastic film insert laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764356

Country of ref document: EP

Kind code of ref document: A1