WO2010118547A1 - Proteína de inmunocastración de mamíferos - Google Patents

Proteína de inmunocastración de mamíferos Download PDF

Info

Publication number
WO2010118547A1
WO2010118547A1 PCT/CL2010/000014 CL2010000014W WO2010118547A1 WO 2010118547 A1 WO2010118547 A1 WO 2010118547A1 CL 2010000014 W CL2010000014 W CL 2010000014W WO 2010118547 A1 WO2010118547 A1 WO 2010118547A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
sequence
fusion protein
protein
gnrh
Prior art date
Application number
PCT/CL2010/000014
Other languages
English (en)
French (fr)
Inventor
Leonardo Enrique Saenz Iturriaga
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to DK10721286.2T priority Critical patent/DK2431052T5/da
Priority to ES10721286.2T priority patent/ES2467702T3/es
Priority to BRPI1005349-2A priority patent/BRPI1005349B1/pt
Priority to US13/262,265 priority patent/US8940693B2/en
Priority to EP10721286.2A priority patent/EP2431052B1/en
Priority to PL10721286T priority patent/PL2431052T3/pl
Publication of WO2010118547A1 publication Critical patent/WO2010118547A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0006Contraceptive vaccins; Vaccines against sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/23Luteinising hormone-releasing hormone [LHRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins

Definitions

  • the present invention relates to the field of Genetic Engineering and Biotechnology, and in particular to the use of a polypeptide that incorporates the amino acid sequence of the gonadotrophin-releasing hormone (GnRH-I) for the immunocastration of mammals.
  • GnRH-I gonadotrophin-releasing hormone
  • the polypeptide of the present invention is a chimeric polypeptide or glycopeptide, formed by the fusion of the amino acid sequence of the gonadotrophin-releasing hormone (GnRH-I) or its variants, and a theoretical non-pathogen-derived sequence that improves the immunogenicity of GnRH.
  • the present fusion protein, its glycosylated version, as well as its tandem repeats, can be used, together with different types of adjuvants for the immunoneutralization of the gonadotrophin-releasing hormone (GnRH-I), generating a blockage of steroidogenesis, ovgenesis. and spermatogenesis in different animal species.
  • GnRH Gonadotrophin-releasing hormone
  • the hormone GnRH-I is a decapeptide that has an evolutionary amino acid sequence very conserved and common for most mammals. GnRH-I is released from the mesiobasal portion of the hypothalamus and enters the bloodstream, where the pituitary gland induces the release of LH and FSH from gonadotroph cells. For several years it has been attempted to generate immunoneutralization of the hormone GnRH as a control of steroidogenesis, oogenesis and spermatogenesis. The blockade of GnRH and the concomitant decrease in gonadotrophin levels has varied applications, so in human medicine the decrease in androgen production of patients with prostate carcinoma has been the target of treatment for several years.
  • Recombinant DNA technology has been used to create repeated GnRH molecules in tandem, linked to different protein sequences such as immunogens for T helper lymphocytes (Hannesdottir, Han et al. 2004; Jinshu, Jingjing et al. 2004; Khan, Ferro et al. 2007; Zhang, Xu et al. 2007; Khan, Ogita et al. 2008).
  • Recombinant proteins with multiple GnRH inserts have shown that immunogenicity is increased with the number of GnRH sequences inserted [15], and you can use this advantage by incorporating a greater number of repetitions of the fusion peptide into the formulation.
  • B or T cell epitopes such as lipopeptides (Pam3Cys) or different peptide sequences of pathogens such as Plasmodium falsiparum, Mycobacterium, sinsicial respiratory virus or influenza virus, flanking GnRH sequences have been used in various "vaccinate" models and have demonstrated effectiveness (Khan , Ferro et al. 2007).
  • the present antigen does not incorporate sequences of pathogens that may interfere in the triggering of an immune response against the GnRH sequence, since the intergenic sequence used between GnRH repeats has been designed to improve the sequence antigenicity. of GnRH.
  • US 2005/0239701 Al is directed to the use as a vaccine of GnRH multimers linked to "carrier" proteins or fragments thereof as bacterial toxins, and to the use of recombinant vectors that incorporate genetic sequences encoding multimeros of GnRH, alone or in combination with genetic sequences encoding "carrier” proteins such as the tetanus toxin C fragment.
  • Such recombinant vectors are directed to modify sexual behavior, fertility or both, in vertebrates by means of the induction of an immune response that alters normal physiological sexual function.
  • the present invention does not incorporate gene or peptide sequences of carrier proteins, nor does it correspond to GnRH multimers alone, since it incorporates an intergenic sequence not associated with pathogens or carrier proteins that works by improving the immunogenicity of GnRH as an antigen, in addition
  • This sequence has the potential to be glycosylated when the recombinant protein is expressed in eukaryotic systems capable of making post-translational modifications to proteins.
  • WO 01/85763 discloses chimeric peptides with immunogenic efficacy comprising the sequence of the GnRH hormone and epitope mixtures for helper T cells obtained from different pathogens or peptides with immunogenicity known as tetanus toxin, Plasmodium falciparum, or Measles virus F protein, for the production of anti-GnRH antibody titres.
  • anti-GnRH vaccines has been proposed as a viable alternative for keeping unproduced males in production, which are vaccinated at the end of the productive stage, allowing the metabolism of sex hormones and their associated odor.
  • Several patents are awarded, which address this issue (US Pat. No. 4,975,420 1990; US Pat. No. 6,045,799 2000; US Pat. No. 6,761,890 Bl 2004; among others) however, in them
  • the molecules used as antigens are chemical conjugations of the amino acid sequence of the GnRH hormone to a "carrier" molecule.
  • US patent application 2005/0239701 Al protects the use of a two-dose vaccination schedule 4 to 8 weeks before slaughter of the animal to ensure the effectiveness of the vaccine, for a short period of time, this limits the application of vaccines against GnRH in which its effectiveness is low and that need revaccination to achieve neutralizing antibody titers to block the hormonal effect.
  • the authors have compared several promising constructs or delivery systems by immunization of male pigs using a tandem GnRH peptide as a branched polylysine construct, a lipo-thioester, a lipo-amide or a KLH conjugate in CFA, and the lipoamide peptide in a complex immunosimulator (ISCOM).
  • the authors found that the lipo-thioester and branched polylysine constructs were the most effective carrier molecules for the induction of antibodies against GnRH and immunocastration in pigs.
  • the study method in this investigation is related to two GnRH conjugates, GonaCon (GnRH-KLH) and GonaCon-B (GnRH-Blue® protein), which were prepared in emulsion as immunocontraceptive vaccine formulations of one injection and two injections.
  • GonaCon GnRH-KLH
  • GonaCon-B GnRH-Blue® protein
  • the GnRH-KLH protein conjugate was lyophilized and suspended in AdjuVac adjuvant to produce a fifth vaccine formulation.
  • Each formulation was administered to a group of five captive adult female white-tailed deer.
  • the reproductive performance of the treated females was monitored for 5 years to determine the comparative efficacy of the different treatments.
  • the use of immunopotentiating adjuvants has allowed long-term "vaccinia” effects to be achieved using a single dose of vaccine, therefore, using the antigen of the present invention in different formulations allows modifying the vaccination schedule. .
  • Figure 1 Shows the immune response against the recombinant protein called GnRXG / Q, of the present invention, measured by the ELISA technique, as an immunoglobulin boost IgG, in vaccinated versus control animals, observed as specific optical density against the recombinant GnRXG / Q peptide in immunized animals, using an aqueous adjuvant in the formulation.
  • the serum dilution used was 1: 250 and the sample size of 10 individuals per group. The animals were immunized on day 0 and 15.
  • Figure 1 -M- corresponds to PBS Control and -A- corresponds to GNRXG / Q + Adjuvant.
  • Figure 2 Shows the decrease in serum testosterone concentration, measured by the ELISA technique, in animals immunized with the recombinant protein called GnRXG / Q, of the present invention, versus control on days 0 and 15 in a number of 10 individuals per group.
  • -M- corresponds to PBS Control
  • -A- corresponds to GNRXG / Q + Adjuvant.
  • Figure 3 Shows the immune response against the recombinant protein called GnRXG / Q, of the present invention, as a specific immunoglobulin boost, measured by the ELISA technique, using different adjuvants in the formulation, in a 15-week trial.
  • -M- corresponds to PBS control
  • -A- corresponds to GNRXG / Q + Chi-H MW
  • - ⁇ - corresponds to GNRXG / Q + Chi-L MW
  • - • - corresponds to GNRXG / Q + CFA.
  • Figure 4 Shows the testicular atrophy caused by immunization with the recombinant protein called GnRXG / Q, of the present invention and an adjuvant in its formulation.
  • GnRXG / Q the recombinant protein
  • FIG. 4 Shows the testicular atrophy caused by immunization with the recombinant protein called GnRXG / Q, of the present invention and an adjuvant in its formulation.
  • a testicles of a control mouse (1) and of a mouse immunized with the GnRX G / Q peptide (2) are observed in the lower part of the photograph a scale in centimeters is observed; in B, histological sections of the testicles are observed under two amplification levels.
  • Figure 5 Shows the decrease in serum testosterone concentration, measured by the ELISA technique, in canines immunized with the recombinant peptide called GnRXG / Q, of the present invention, in association with an adjuvant.
  • the animals (n 7) were immunized on day 0 and 30 and the effect of the vaccine was evaluated for 3 months.
  • the present invention comprises the design, expression and purification of the following recombinant protein (Sequence SEQ ID No.1 and Sequence SEQ ID No.2, see sequence listing) with a primary structure that incorporates the amino acid sequence of the releasing hormone of gonadotrophins (GnRH-I) fused to a theoretical glycostable sequence and with activity immunogenic, which does not include sequences of pathogens or "carrier" proteins in its structure.
  • sequence SEQ ID No.1 and Sequence SEQ ID No.2 see sequence listing
  • Another aspect of the invention comprises the vaccine comprising the peptide called GnRX G / Q, to be used alone or in a tandem repeat, the method for producing the vaccine, its use and method for the immunocastration of mammals.
  • the "theoretical" sequence may be flanking the GnRH-I sequence in any order (amino or carboxyl end of the peptide, Sequence SEQ ID No. I and SEQ ID No.2).
  • Another aspect of the invention comprises the construct, see sequence SEQ ID No.3 and SEQ ID No.4 of the sequence listing, formed by the chimeric peptide GnRX G / Q repeated in tandem 10 times and which is observed as a recombinant protein migrating electrophoretically on a 10% SDSPAGE gel in Figure 6.
  • nucleotide sequences and the corresponding vectors.
  • the nucleotide sequences were designed by inverse genetics to be used as temperate in the recombinant expression of the GnRX G / Q peptide, which were inserted into vectors of expression prokaryotes and eukaryotes (sequences SEQ ID No.5 and SEQ ID No.6, see sequence listing), resulting in the protein of the sequence SEQ ID No.7 (see sequence listing) indicated in the sequence listing.
  • the present protein has been conceived as a recombinant or chimeric fusion protein, in which the amino acid sequence of GnRH can be found as a percentage of the total molecule (40%), the remaining percentage (60%) corresponds to a designed sequence from the bioinformatic analysis of different peptides, designing a unique sequence that allows to improve the immunogenicity of the segment corresponding to the GnRH sequence, avoiding the incorporation of immunodominant segments such as immunogens derived from pathogens, toxins or "carriers" proteins, which differentiates it of other molecules patented in the prior art.
  • the designed sequence has a remarkable hydrophobicity and incorporates a consensus sequence that can be O-glycosylated in eukaryotic protein expression systems such as yeast or insect cells. This modification is aimed at improving the antigenicity of the peptide to increase the ability to be recognized by the immune system.
  • the incorporation of this glycosizable segment differentiates the present protein from other fusion proteins, which incorporate GnRH, as the present glycopeptide is treated as a proteoglycan. Consequently, the immune system will fully recognize the molecule as a hapten and not just an immunogenic segment thereof.
  • Another aspect of the invention comprises the process for preparing the fusion protein, where the nucleotide sequence encoding the recombinant protein (sequence SEQ ID Nos. 5 and 6) has been inserted into an expression vector with inducible promoter for bacteria E. coli B121 (pQE 801, Qiagen) or a vector with inducible promoter for S. serveciae yeasts (pYES, invitrogen).
  • the protein has been purified by affinity chromatography on Ni sepharose columns, which allows eliminating possible contaminants from the expression system, mainly pyrogens, such as (Lipopolysaccharide (LPS).
  • This "theoretical" sequence has been designed using the following 10 bioinformatic algorithms that evaluate the hydrophobicity, hydrophilicity and antigenicity properties of a peptide sequence: 1) Fauchere-Pliska Hydrophobicity Algorithm, which generates a property profile using a hydrophobicity scale based on experimental octanol / water partitions of N-acetyl amino acid amides of each residue at neutral pH; 2) Goldman / Engelman / Steitz hydrophilicity algorithm, which generates a property profile by calculating non-polar residues in ⁇ -helices; 3) Janin's hydrophobicity algorithm, which generates a profile of hydrophobicity properties based on the molar fraction of occurrences of hidden or exposed residues in known proteins; 4) Kyte Doolittle hydrophobicity algorithm, which generates a profile of hydrophobicity and hydrophilicity properties based on kyte doolittle values for individual residues in internal or external regions of a
  • the SGGG consensus signal sequence was incorporated, which corresponds to an Oglycosylation site, which is susceptible to receiving this post-translational modification when the protein is expressed in yeasts or other eukaryotic cells.
  • This tetrapeptide having the general sequence Ser-Gly-Xaa-Gly corresponds to a recognition site for the incorporation of a glycosaminoglycan (Burdon M., et al., 1987).
  • Xaa can be any amino acid
  • a search and alignment analysis of this sequence was performed with databases present in GenBank using the BLAST tool (Basic Local Alignment Search ToIl. In none of them was the sequence la and Ib of the present invention found.
  • the double stranded nucleotide sequence was ligated to achieve tandem repeats, and subsequently, inserted into prokaryotic and eukaryotic expression vectors inducible by IPTG or glucose.
  • the recombinant protein obtained has a tag of 6 histidine repeats, which allows its purification from other endogenous proteins of the host by means of chromatography of affinity with nickel or cobalt.
  • Another aspect of the invention comprises the nucleotide sequences in which the codon to be used in translation is varied, which can generate the same chimeric peptide, as observed in the sequences SEQ ID Nos. 8-13 of the sequence listing.
  • the molecule as a vaccine was tested in a sample size of 18 laboratory animals, obtaining significant differences (p ⁇ 0.01) in terms of expected physiological effect and adaptive immune response with the control group, using different adjuvants. (See Figure 1 to 4).
  • Figure 2 shows the drop in serum testosterone levels, measured by the ELISA technique, of animals immunized with the aforementioned GnRX G / Q recombinant protein compared to a control group. At the end of the test the animals were sacrificed and both testicles were compared macroscopically and microscopically with a group of control animals (Fig 4.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Reproductive Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Proteína de fusión que incorpora la hormona liberadora de gonadotrofinas (GnRH) para la immunocastración de mamíferos, secuencias de ADN que codifican dicha proteína de fusión, vacuna que comprende dicha proteína de fusión, y procedimiento para preparar la proteína de fusión. La proteína de fusión incorpora la secuencia aminoacídica de la GnRH fusionada a una secuencia de acuerdo a la SEQ ID No. 14, no derivada de patógeno, con capacidad inmunogénica y que contiene sitios de O-glicosilación.

Description

PROTEINA DE INMUNOCASTRACION DE MAMÍFEROS
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con el campo de la Ingeniería Genética y la Biotecnología, y en particular con el uso de un polipéptido que incorpora la secuencia aminoacidica de la hormona liberadora de gonadotrofinas (GnRH-I) para la inmunocastración de mamiferos .
BREVE RESUMEN DE LA INVENCIÓN
El polipéptido del presente invento es un polipéptido quimérico o glicopéptido, formado por la fusión de la secuencia aminoacidica de la hormona liberadora de gonadotrofinas (GnRH-I) o sus variantes, y una secuencia teórica no derivada de patógeno que mejora la inmunogenicidad de GnRH. La presente proteina de fusión, su versión glicosilada, asi como sus repeticiones en tándem, pueden ser utilizadas, en conjunto con distintos tipos de adyuvantes para la inmunoneutralización de la hormona liberadora de gonadotrofinas (GnRH-I) generando un bloqueo de la esteroidogénesis, ovogénesis y espermatogénesis en distintas especies animales.
COMENTARIOS DEL ARTE PREVIO
Las capacidades reproductivas de ambos sexos en la mayoría de las especies animales, sufren fluctuaciones cíclicas temporales gracias a los efectos que generan las hormonas sexuales sobre gónadas y sistema reproductor en general. La hormona liberadora de gonadotrofinas o GnRH juega un rol central en este proceso.
La hormona GnRH-I es un decapéptido que posee una secuencia de aminoácidos evolutivamente muy conservada y común para la mayoría de los mamíferos. GnRH-I es liberada desde la porción mesiobasal del hipotálamo e ingresa al torrente sanguíneo, donde en la hipófisis induce la liberación de LH y FSH desde células gonadotrofas . Por varios años se ha tratado de generar inmunoneutralización de la hormona GnRH como control de la esteroidogénesis, ovogénesis y espermatogénesis. El bloqueo de GnRH y la concomitante disminución en los niveles de gonadotrofinas tiene variadas aplicaciones, es asi que en medicina humana la disminución en la producción de andrógenos de pacientes con carcinoma prostático ha sido blanco de tratamiento por varios años. Por otro lado, en medicina veterinaria el bloqueo de la capacidad reproductiva con mínimos efectos secundarios de animales de compañía o especies silvestres que puedan significar plagas, ha sido un amplio tema de investigación y desarrollo. En el ámbito de la producción animal, la castración quirúrgica de machos es un procedimiento rutinario para evitar un comportamiento sexual agresivo o evitar que la carne adquiera características organolépticas indeseables por el efecto de feromonas. En todos estos escenarios, la utilización de una vacuna capaz de bloquear la función de la hormona GnRH-I constituye una importante herramienta.
El efecto de diferentes vacunas contra la hormona GnRH ha sido evaluado en un gran número de especies animales, utilizando un variado tipo de moléculas asociadas a GnRH en conjunto con distintos tipos de adyuvantes. La mayoria de éstos enfoques se basan en la síntesis química de haptenos uniendo GnRH a una molécula altamente inmunogénica como albúmina bovina (BSA) , ovalbumina (OVA) , toxoide tetánico (TT) o hemocianina (KLH) (Sad, Chauhan et al. 1993; Beekman, Schaaper et al. 1999; Dunshea, Colantoni et al. 2001; Miller, Gionfriddo et al. 2008) . Sin embargo, un fenómeno de dominancia antigénica ha sido descrito, en la cual estas proteínas "carrier" suprimen la respuesta hacia epitopes de la molécula de interés luego de sucesivas inmunizaciones, en un mecanismo de tolerancia al antigeno GnRH(Sad, Gupta et al. 1991; Sad, Gupta et al. 1991; Sad, Talwar et al. 1991) . La supresión de epitopes puede ser resultado de un defecto en la presentación del hapteno por linfocitos B específicos desarrollando una respuesta inmune de tipo "helper" 2 (Th2) (Renjifo, WoIf et al. 1998) . La exclusión de epitopes con alta antigenicidad, como ha sido planteado en el presente invento, reduce el riesgo de supresión antigénica y favorece una respuesta inmune a favor del antigeno GnRH, lo que permite su utilización en repetidas inmunizaciones eficientemente. Otros impedimentos al utilizar el modelo de proteínas "carrier", es el alto costo en síntesis y conjugación de los antigenos.
La tecnología de ADN recombinante ha sido usada para crear moléculas de GnRH repetidas en tándem, unidas a diferentes secuencias proteicas como inmunógenos para linfocitos T helper (Hannesdottir, Han et al. 2004; Jinshu, Jingjing et al. 2004; Khan, Ferro et al. 2007; Zhang, Xu et al. 2007; Khan, Ogita et al. 2008) . Proteínas recombinantes con múltiples insertos de GnRH han demostrado que la inmunogenicidad se ve incrementada con el numero de secuencias GnRH insertadas [15], y puede utilizar esta ventaja al incorporar un mayor número de repeticiones del péptido de fusión en la formulación. Múltiples epitopes de células B o T como lipopéptidos (Pam3Cys) o diferentes secuencias peptidicas de patógenos como Plasmodium falsiparum, Mycobacterium, virus respiratorio sinsicial o virus influenza, flanqueando secuencias de GnRH han sido utilizados en variados modelos "vaccinales" y han demostrado efectividad (Khan, Ferro et al. 2007) . En relación a esto, el presente antigeno no incorpora secuencias de patógenos que puedan interferir en el desencadenamiento de una respuesta inmune contra la secuencia de GnRH, ya que la secuencia intergénica utilizada entre las repeticiones de GnRH se ha diseñado para mejorar la antigenicidad de la secuencia de GnRH.
En este sentido, el documento US 2005/0239701 Al está dirigido al uso como vacuna de multimeros de GnRH unidos a proteínas "carrier" o fragmentos de ellas como toxinas bacterianas, y al uso de vectores recombinantes que incorporan secuencias genéticas que codifican para multimeros de GnRH, solos o en combinación con secuencias genéticas que codifican proteínas "carrier" tales como el fragmento de toxina tetánica C. Dichos vectores recombinantes están dirigidos a modificar la conducta sexual, la fertilidad o ambos, en vertebrados por medio de la inducción de una respuesta inmune que altera la función sexual fisiológica normal. El presente invento no incorpora secuencias génicas o peptidicas de proteínas "carrier", ni tampoco corresponde a multimeros de GnRH solos, ya que incorpora una secuencia intergénica no asociada a patógenos o proteínas "carrier" que funciona mejorando la inmunogenicidad de GnRH como antigeno, además esta secuencia posee la potencialidad de ser glicosilada cuando la proteina recombinante se expresa en sistemas eucariontes capaces de realizar modificaciones post- traduccionales a las proteínas.
La publicación internacional WO 01/85763 divulga péptidos quiméricos con eficacia inmunogénica que comprenden la secuencia de la hormona GnRH y mezclas de epitopes para células T "helper" obtenidos desde diferentes patógenos o péptidos con inmunogenicidad conocida como la toxina tetánica, Plasmodium falciparum, o la proteina F del virus del Sarampión, para la producción de títulos de anticuerpos anti-GnRH.
En general, la mayoría de las publicaciones en que se divulga la utilización de proteínas de fusión, el método se enfoca a la utilización de secuencias de patógenos que funcionan como epitopes de linfocito T-Helper, unidos a distinto número de repeticiones de GnRH o como en el caso de una síntesis química las repeticiones de GnRH unidas a una molécula inmunogénica per se. Ejemplo de esto es el documento "Use of recombinant gonadotropina-releasing hormone antigens for immunosterilizacion of beef heifers", Journal of Animal Science, 2006; 84(2): 343- 50, Geary TW, Grings EE, MacNeil MD, de Avila DM, Reeves JJ.
Un gran número de estudios se han realizado en cerdos y ganado para investigar el uso de la inmunización contra GnRH como método para mejorar la tasa de crecimiento y el producto cárneo obtenido de los animales. Ver por ejemplo, Adams and Adams, J. Animal Sci. (1992) 70:1691-1698; Caray and Bonneau, CR. Acad. Sc. Paris (1986) 303:673-676; Chaffaux et al, Recueil de Medicine Veterinaire (1985) 161:133-145; Finnerty et al., J. Repro. Fértil. (1994) 101:133-343. La castración elimina la fuente de esteroides anabólicos endógenos y la conversión alimenticia se torna menos eficiente, los animales necesitan comer más para generar canales del mismo peso y producen mayor cobertura grasa. En este sentido, se ha demostrado que el crecimiento de un animal entero es más eficiente que el de un animal castrado. La presencia de esteroides sexuales en el animal actúan como anabólicos naturales, permitiendo que este animal tenga un mejor desempeño en crecimiento y desarrollo muscular, gracias a una mejora sustancial en la eficiencia de conversión alimenticia. La mejor eficacia en la conversión alimenticia, tiene además implicaciones ambientales positivas a nivel mundial ya que se traduce en un menor consumo de alimento con menos presión para las tierras agrícolas y reducción en la producción de desechos, promueve una industria más sustentable usando menos alimento y generando menos desechos por cada kilogramo de carne producido. El objetivo de muchos de estos estudios ha sido el permitir a los animales crecer como machos en forma intacta aproximándose al final de la etapa de engorda, para luego someterlos a una castración inmunológica. El uso de vacunas anti-GnRH ha sido propuesto como una alternativa viable para mantener en producción machos sin castrar, los cuales son vacunados al final de la etapa productiva, permitiendo la metabolización de las hormonas sexuales y su olor asociado. Varias patentes se encuentran adjudicadas, las cuales abordan esta problemática (US Pat. No 4.975.420 1990; US Pat . No. 6.045.799 2000; US Pat. No. 6.761.890 Bl 2004; entre otras) sin embargo, en ellas las moléculas utilizadas como antigenos son conjugaciones químicas de la secuencia aminoacidica de la hormona GnRH a una molécula "carrier". En este sentido, la solicitud de patente US 2005/0239701 Al protege el uso de un esquema de vacunación a dos dosis 4 a 8 semanas antes del sacrificio del animal para asegurar la efectividad de la vacuna, por un corto periodo de tiempo, esto limita la aplicación de vacunas contra GnRH en las cuales su efectividad sea escasa y que necesiten revacunaciones para lograr los títulos de anticuerpos neutralizantes para bloquear el efecto hormonal.
De esta misma forma, los siguientes artículos científicos también se relacionan con la conjugación de la secuencia GnRH y una molécula "carrier" :
Beekman, N. J-, W. M. Schaaper, et al. (1999). "Highly immunogenic and fully synthetic peptide-carrier constructs targeting GnRH." Vaccine 17 (15-16): 2043-50. Indica que para usar péptidos como vacunas sintéticas tienen que ser acopladas a una proteina "carrier" para hacerlas más inmunogénicas . Sin embargo, la eficiencia del acoplamiento entre la proteina "carrier" y una proteina es dificil de controlar con respecto a la densidad de carga del péptido. Esto hace que estas proteinas "carrier" sean poco adecuadas en la práctica. Se han reportado intentos por encontrar moléculas "carrier" o sistemas de entrega que permiten un acoplamiento fácil o la incorporación de péptidos, densidad de carga reproducible y productos bien definidos . Los autores han comparado varias construcciones prometedoras o sistemas de entrega por inmunización de cerdos macho utilizando un péptido GnRH en tándem como construcción polilisina ramificada, un lipo-tioéster, una lipo-amida o un conjugado KLH en CFA, y el péptido lipoamida en un complejo inmunosimulador (ISCOM) . Los autores encontraron que las construcciones de lipo-tioéster y de polilisina ramificada constituian las moléculas "carrier" más efectivas para la inducción de anticuerpos contra GnRH e inmunocastración en cerdos .
Khan, M. A., K. Ogita, et al. (2008). "Immunisation with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and T-helper epitopes in saline suppresses rodent fertility." Vaccine 26 (10): 1365-74. Plantea que la investigación en inmunización activa contra la hormona liberadora de gonadotrofina (GnRH-I) ha ganado aceptación como medio para controlar la reproducción y comportamiento en animales de corral, compañía o salvajes. Muchos estudios describen el uso de múltiples copias del mismo péptido en alineación y conjugación con una proteina "carrier" mayor para aumentar la respuesta inmune del péptido. Sin embargo, los problemas que resultan de la supresión del epitope de la proteina "carrier" han disminuido el interés en el uso de materiales genéticos que inicien una óptima repuesta inmune. En el estudio realizado por los autores, una vacuna de 533 bases de pares de ADN fue construida en pcDNAV5-HisB codificando para 18,871 kDa GnRH-I-T-helper-V5 epitopes de proteínas de fusión. Se encontraron células transfectadas COSÍ con la construcción de vacuna que liberan proteina de fusión en el sobrenadante de cultivo. La construcción de vacuna (100 μg/ratón) en solución salina administrada en el músculo cuádriceps anterior de ratas ICR machos y hembras estimuló la respuesta al anticuerpo IgG antigeno especifico. Los niveles de testosterona en los machos vacunados se redujeron significativamente (p = 0,021) . Se notó una reducción significativa en los implantes uterinos después del apareamiento entre machos inmunizados y hembras control (p = 0,028) como también en hembras inmunizadas y machos control (p = 0,004). El examen histológico de las gónadas tanto de los machos como de las hembras en estudio en la semana 13 mostró atrofia del epitelio seminifero y supresión de foliculogénesis .
Miller, L. A-, J. P. Gionfriddo, et al. (2008) . "The single- shot GnRH immunocontraceptive vaccine (GonaCon) in White-tailed deer: comparison of several GnRH preparations. " Am J Reprod Immunol 60 (3): 214-23. Indica que el problema es la necesidad de una inyección de un agente GnRH contraceptivo que sea única, efectiva, multi-anual para controlar la reproducción en la población sobre abundante de venado de cola blanca. El método de estudio en esta investigación se relaciona con dos conjugados GnRH, GonaCon (GnRH-KLH) v GonaCon-B (proteina GnRH-Blue®) , que fueron preparados en emulsión como formulaciones de vacuna inmunocontraceptivas de una inyección y dos inyecciones. Además, el conjugado de proteina GnRH-KLH fue liofilizado y suspendido en adyuvante AdjuVac para producir una formulación de quinta vacuna. Cada formulación fue administrada a un grupo de cinco venados de cola blanca hembra adulto cautivas. El desempeño reproductivo de las hembras tratadas fue monitoreado por 5 años para determinar la eficacia comparativa de los distintos tratamientos. El resultado obtenido del estudio indica que la longevidad de la respuesta contraceptiva (2 a 5 años) fue influenciada fuertemente por el diseño del antigeno conjugado, el adyuvante utilizado, y la forma de entrega de la vacuna. Los autores concluyeron que las formulaciones de una y dos inyecciones de GonaCon y GonaCon-B produce contracepción multi- anual en venado de cola blanca hembra adulto. GonaCon-B produce un efecto contraceptivo más duradero.
Sad, S., V. S. Chauhan, et al. (1993). "Synthetic gonadotrophin-releasing hormone (GnRH) vaccines incorporating GnRH and synthetic T-helper epitopes." Vaccine 11 (11): 1145-50. Se refiere al desarrollo de una vacuna contra la hormona que libera la gonadotrofina (GnRH) como método inmunológico para el tratamiento de hipertrofia prostética, basándose en la observación de que la inmunización activa contra GnRH lleva a la producción de anticuerpos anti-GnRH que resultan en la disminución de la glándula prostética . Los autores han investigado la regulación de las respuestas anticuerpo anti-GnRH por las moléculas "carrier". En estudios previos, los autores han demostrado que el uso de moléculas de grandes proteínas como "carriers" limita el uso de tales vacunas debido a los problemas potenciales de la supresión anti-haptenica inducida por el carrier. En este estudio, los autores demuestran que los epitopes T-helper sintéticos pueden ser utilizados como "carriers" para la generación de respuesta de anticuerpos anti- GnRH.
Sin embargo, de acuerdo al presente invento, el uso de adyuvantes inmunopotenciadores ha permitido lograr efectos "vaccinales" de largo plazo utilizando una sola dosis de vacuna, por lo tanto, utilizando el antigeno del presente invento en distintas formulaciones permite modificar el esquema de vacunación.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Muestra la respuesta inmune contra la proteina recombinante denominada GnRXG/Q, del presente invento, medida mediante la técnica de ELISA, como un alza de inmunoglobulinas IgG, en los animales vacunados versus el control, observadas como densidad óptica especificas contra el péptido recombinante GnRXG/Q en animales inmunizados, utilizando un adyuvante acuoso en la formulación. La dilución de suero utilizada fue de 1:250 y el tamaño de la muestra de 10 individuos por grupo. Los animales fueron inmunizados al dia 0 y 15. En la Figura 1 -M- corresponde a Control PBS y -A- corresponde a GNRXG/Q + Adyuvante .
Figura 2. Muestra la disminución en la concentración sérica de testosterona, medida mediante la técnica de ELISA, en animales inmunizados con la proteina recombinante denominada GnRXG/Q, del presente invento, versus control a los dias 0 y 15 en un número de 10 individuos por grupo. En la Figura 2 -M- corresponde a Control PBS y -A- corresponde a GNRXG/Q + Adyuvante .
Figura 3. Muestra la respuesta inmune contra la proteina recombinante denominada GnRXG/Q, del presente invento, como un alza de inmunoglobulinas especificas, medida mediante la técnica de ELISA, utilizando diferentes adyuvantes en la formulación, en un ensayo de 15 semanas. Los animales (n=5) fueron inmunizados al dia 0 y 30 y el alza en inmunoglobulinas se evaluó hasta el dia 110. En la Figura 3 -M- corresponde a control PBS, -A- corresponde a GNRXG/Q + Chi-H MW, -Δ- corresponde a GNRXG/Q + Chi-L MW, y -•- corresponde a GNRXG/Q + CFA.
Figura 4. Muestra la atrofia testicular provocada por la inmunización con la proteina recombinante denominada GnRXG/Q, del presente invento y un adyuvante en su formulación. En A se observan testiculos de un ratón control (1) y de un ratón inmunizado con el péptido GnRX G/Q (2) en la parte inferior de la fotografia se observa una escala en centímetros; en B se observan cortes histológicos de los testiculos bajo dos nivel de amplificación .
Figura 5. Muestra la disminución en la concentración de testosterona sérica, medida mediante la técnica de ELISA, en caninos inmunizados con el péptido recombinante denominada GnRXG/Q, del presente invento, en asociación con un adyuvante. Los animales (n=7) fueron inmunizados al dia 0 y 30 y se evaluó el efecto de la vacuna durante 3 meses .
Figura 6. GeI de poliacrilamida SDS al 10% donde se muestra la proteina recombinante denominada GnRX G/Q, del presente invento, repetida en tándem, purificada desde un extracto total de proteínas bacterianas, con un peso aproximado de 29 kiloDalton
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El presente invento comprende el diseño, la expresión y la purificación de la siguiente proteina recombinante (Secuencia SEQ ID No.1 y Secuencia SEQ ID No.2, ver listado de secuencias) con una estructura primaria que incorpora la secuencia aminoacidica de la hormona liberadora de gonadotrofinas (GnRH-I) fusionada a una secuencia teórica glicosilable y con actividad inmunogénica, que no incluye secuencias de patógenos o de proteinas "carrier" en su estructura.
En las secuencias SEQ ID No.1 y SEQ ID No.2, se observa en negrita la secuencia peptidica de la hormona GnRH-I de 10 aminoácidos, fusionada a la secuencia teórica glicosilable de 14 aminoácidos, este péptido quimérico de 24 aminoácidos ha sido denominado GnRX G/Q.
Otro aspecto de la invención comprende la vacuna que comprende el péptido denominado GnRX G/Q, para ser utilizado solo o en una repetición en tándem, el procedimiento para producir la vacuna, su uso y método para la inmunocastración de mamiferos .
La secuencia "teórica" puede estar flanqueando la secuencia de GnRH-I en cualquier orden (extremo amino o carboxilo del péptido, Secuencia SEQ ID No. I y SEQ ID No.2) .
Otro aspecto de la invención comprende el constructo, ver secuencia SEQ ID No.3 y SEQ ID No.4 del listado de secuencias, formado por el péptido quimérico GnRX G/Q repetido en tándem 10 veces y que se observa como proteina recombinante migrando electroforáticamente en un gel de SDSPAGE al 10 % en la figura 6.
Otro aspecto de la invención comprende secuencias nucleotidicas y los correspondientes vectores. Las secuencias nucleotidicas fueron diseñadas por genética inversa para ser utilizadas como templados en la expresión recombinante del péptido GnRX G/Q, las que fueron insertadas en vectores de expresión procariontes y eucariontes (secuencias SEQ ID No.5 y SEQ ID No.6, ver listado de secuencias), resultando la proteina de la secuencia SEQ ID No.7 (ver listado de secuencias) que se indica en el listado se secuencias .
La presente proteina ha sido concebida como una proteina de fusión recombinante o quimérica, en la cual se puede encontrar la secuencia aminoacidica de GnRH como un porcentaje de la molécula total (40%), el porcentaje restante (60%) corresponde a una secuencia diseñada a partir del análisis bioinformático de distintos péptidos, diseñándose una secuencia única que permite mejorar la inmunogenicidad del segmento correspondiente a la secuencia de GnRH, evitando la incorporación de segmentos inmunodominantes como inmunogenos derivados de patógenos, toxinas o proteinas "carriers", lo que la diferencia de otras moléculas patentadas en el arte previo.
La secuencia diseñada posee una notable hidrofobicidad e incorpora una secuencia consenso que puede ser O-glicosilada en sistemas de expresión proteica eucarionte como levaduras o células de insecto. Esta modificación está orientada a mejorar la antigenicidad del péptido para aumentar la capacidad de ser reconocida por el sistema inmune. Además, la incorporación de este segmento glicosilable diferencia la presente proteina de otras proteinas de fusión, que incorporan GnRH, al tratarse el presente glicopeptido de un proteoglicano. En consecuencia, el sistema inmune reconocerá integramente la molécula como un hapteno y no solamente a un segmento inmunogénico de ésta. Otro aspecto de la invención comprende el procedimiento para preparar la proteina de fusión, donde la secuencia nucleotidica que codifica para la proteina recombinante (secuencia SEQ ID Nos. 5 y 6) ha sido insertada en un vector de expresión con promotor inducible para bacterias E. coli B121 (pQE 801, Qiagen) o un vector con promotor inducible para levaduras S. serveciae (pYES, invitrogen) . La proteina ha sido purificada mediante cromatografia de afinidad en columnas de Ni sefarosa, lo que permite eliminar posibles contaminantes del sistema de expresión, principalmente pirógenos, tales como (Lipopolisacarido (LPS) .
Esta secuencia "teórica" ha sido diseñada utilizando los siguientes 10 algoritmos bioinformaticos que evalúan las propiedades de hidrofobicidad, hidrofilicidad y antigenicidad de una secuencia peptidica: 1) Algoritmo de Hidrofobicidad Fauchere-Pliska, el cual genera un perfil de propiedades utilizando una escala de hidrofobicidad basada en particiones experimentales octanol/agua de amidas de N-acetil aminoácidos de cada residuo a pH neutro; 2) Algoritmo de hidrofilicidad de Goldman/Engelman/Steitz, el cual genera un perfil de propiedades calculando los residuos no polares en α-helices; 3) algoritmo de hidrofobicidad de Janin, el que genera un perfil de propiedades de hidrofobicidad basado en la fracción molar de ocurrencias de residuos ocultos o expuestos en proteinas conocidas; 4) algoritmo de hidrofobicidad de Kyte Doolittle, el que genera un perfil de propiedades de hidrofobicidad e hidrofilicidad basado en valores de kyte doolittle para residuos individuales en regiones internas o externas de una proteina globular; 5) Algoritmo de hidrofobicidad de Manavalan, el que genera un perfil de propiedades basado en la hidrofobicidad de un residuo individual modificado por la presencia de otros residuos en un radio de 8 angstom; 6) Algoritmo de hidrofilicidad de von Heijne, el que genera un perfil de propiedades usando una escala que refleja la energía libre de transferencia estimada cuando una α-helice se mueve de una fase acuosa a una no polar; 7) algoritmo de antigenicidad de Hopp and Woods, la escala de Hopp- Woods fue diseñada para predecir la localización de determinantes antigénicos en una proteina, asumiendo que estos están expuestos en la superficie de una proteina y se localizan donde existen regiones hidrofilicas; 8) algoritmo de antigenicidad de Parker, esta herramienta predice la presencia de determinantes antigénicos por la presencia de áreas de gran hidrofobicidad local usando una escala basada en los tiempos de retención en HPLC de péptidos modelos; 9) Algoritmo de antigenicidad de Protrusion Index, esta herramienta genera un perfil de propiedades utilizando un Índice de protrusión que es una escala de antigenicidad basada en el estudio de proteínas con estructura 3D conocida; y 10) algoritmo de antigenicidad de Welling, esta herramienta calcula un valor de antigenicidad como el log del cociente entre el porcentaje de una muestra con conocidas regiones antigénicas y el porcentaje de proteínas promedio .
Diferentes secuencias aminoacidicas fueron evaluadas en su potencial capacidad de mejorar la antigenicidad e hidrofilicidad de la secuencia para GnRH-I cuando se encuentran fusionadas en el extremo amino o carboxilo terminal de GnRH, asi como en repeticiones en tándem, comparándola con una secuencia de GnRH-I repetida en tándem sin la presencia de secuencias intergénicas . Utilizando los parámetros antes mencionados, se diseño la secuencia aminoacidica NH2-GPPFSGGGGPPFSA-COOH, la cual presenta un score de hidrofobicidad en la mayoría de los algoritmos, superior a 0 y mayor que el de la secuencia GnRH-I. Del mismo modo por su condición hidrofóbica, presenta una escasa antigenicidad permitiendo, al analizar la molécula global, que la antigenicidad de la secuencia GnRH-I mejore considerablemente comparada con una secuencia de GnRH-I repetida en tándem sin secuencias intergénicas. En su diseño se incorporó la secuencia señal consenso SGGG, que corresponde a un sitio de O- glicosilación, el cual es susceptible de recibir esta modificación postraduccional cuando la proteina es expresada en levaduras u otras células eucariontes . Este tetrapeptido que posee la secuencia general Ser-Gly-Xaa-Gly (donde Xaa puede ser cualquier aminoácido) corresponde a un sitio de reconocimiento para la incorporación de un glicosaminoglicano (Burdon M. , et al., 1987) . Por último en el diseño de esta secuencia se consideró la exclusión de similitudes con secuencias de patógenos o proteínas "carrier" . Para esto, se realizó un análisis de búsqueda y alineamiento de esta secuencia con bases de datos presentes en GenBank utilizando la herramienta BLAST (Basic Local Alignment Search ToIl. En ninguna de ellas se encontró la secuencia la y Ib de la presente invención.
Para la fabricación y expresión de la proteina recombinante, la secuencia nucleotidica de doble hebra fue ligada para lograr repeticiones en tándem, y posteriormente, insertada en vectores de expresión procarionte y eucarionte inducibles por IPTG o glucosa. La proteina recombinante obtenida posee un tag de 6 repeticiones de histidina, lo que permite su purificación desde otras proteínas endógenas del hospedero por medio de cromatografía de afinidad con niquel o cobalto .
Otro aspecto de la invención comprende las secuencias nucleotidicas en las cuales se varia el codón a utilizar en la traducción, los cuales pueden generar el mismo péptido quimérico, como se observan en las secuencias SEQ ID Nos.8-13 del listado de secuencias.
Antecedentes Técnicos de la Invención
Para probar la efectividad de la proteina del presente invento, específicamente aquella de la Secuencia SEQ ID No.7 en su capacidad de bloquear la esteroidogénesis, ovogénesis y espermatogénesis en animales de laboratorio, a través de la inmunoneutralización de GnRH, la proteina generada y purificada antes mencionada ha sido inoculada en animales de laboratorio en cantidades de 50 a 500 μg en un adyuvante oleoso, particularmente el Adyuvante completo o incompleto de Freund o un adyuvante experimental, específicamente quitosano, analizándose distintos parámetros como son la capacidad de los animales de formar anticuerpos contra la proteina, su actividad reproductiva, espermatogénesis, ovogénesis y niveles de andrógenos . Experimento 1
La molécula como vacuna fue probada en un tamaño muestral de 18 animales de laboratorio obteniéndose con diferencias significativas (p<0,01) en cuanto a efecto fisiológico esperado y respuesta inmune adaptativa con el grupo control, utilizando distintos adyuvantes. (Ver Figura 1 a 4) .
Diez ratones macho de 8 semanas de edad fueron inmunizados con 100 μg de la proteina recombinante GnRX G/Q (secuencia SEQ ID No.7) en 100 μl de un adyuvante comercial, particularmente Adyuvante completo de Freund, a los dias 0 y 15 por via subcutánea. Se extrajo sangre de los animales cada 15 dias para evaluar la efectividad de la vacuna y su capacidad para elevar títulos de inmunoglobulinas contra la hormona GnRH-I. En la Figura 1 se observa el alza en los niveles de inmunoglobulinas específicos contra la hormona GnRH-I, medida mediante la técnica de ELISA, de los animales inmunizados, en relación al control. En la Figura 2 se observa la caida en los niveles de testosterona sérica, medida mediante la técnica de ELISA, de los animales inmunizados con la proteína recombinante GnRX G/Q antes mencionada comparados con un grupo control. Al finalizar el ensayo los animales fueron sacrificados y ambos testículos fueron comparados macroscópica y microscópicamente con un grupo de animales control (Fig 4.) .
Experimento 2
Quince ratas macho de 8 semanas de edad, fueron inmunizadas con 100 μg de la proteína recombinante GnRX G/Q en 200 ul de un adyuvante comercial, específicamente Adyuvante completo de Freund, y 2 adyuvantes experimentales, particularmente Quitosano de alto y bajo peso molecular, al 0,5% v/v, a los dias 0 y 30 de experimentación. Se extrajo sangre de los animales cada 15 dias, evaluando el efecto de la vacuna en el alza de inmunoglobulinas especificas contra la hormona GnRH-I en el tiempo medida mediante la técnica de ELISA (Fig 3) .
Experimento 3
Siete caninos machos adultos mestizos, fueron inmunizados con 200 μg de la proteina recombinante GnRX G/Q (secuencia SEQ ID No.7) en 1 mi de un adyuvante comercial, particularmente Adyuvante incompleto de Freund, a los dias 0 y 30. Se extrajo sangre de los animales cada 30 dias para evaluar el efecto de la vacuna en los niveles plasmáticos de testosterona. En la figura 5 se observa la caida en los niveles de testosterona en el tiempo a valores cercanos a la castración quirúrgica (0,1 ng/ml) , medida mediante la técnica de ELISA.

Claims

REIVINDICACIONES
1.- Proteina de fusión para inmunocastración, en donde la secuencia aminoacidica primaria de la hormona liberadora de gonadotrofinas fusionada a una secuencia teórica no derivada de patógeno, con capacidad inmunogénica que contiene sitios de O- glicosilación de acuerdo a las secuencias SEQ ID Nos.l y 2.
2.- Una proteina de fusión acuerdo a la reivindicación 1, que está formada por una o más repeticiones de la proteina de fusión de la reivindicación 1 y comprende la siguiente secuencia SEQ NO.7.
3.- Una proteina de fusión de acuerdo a la reivindicación 2, que es una glicoproteina.
4. - Una proteina de fusión de acuerdo a la reivindicación 1, que comprende la secuencia teórica SEQ ID No.14.
5. - Una proteina de fusión de acuerdo a cualquiera de las reivindicaciones 1-4, que comprende la secuencia señal SGGG, correspondiente a un sitio de O-glicosilación, capaz de recibir la modificación postraduccional cuando la proteina es expresada en levadura u otras células eucariontes .
6. - Una proteina de fusión de acuerdo a cualquiera de las
HOJA DE REEMPLAZO (Regia 26)
6. - Una proteina de fusión de acuerdo a cualquiera de las reivindicaciones 1-5, que es una proteina de fusión recombinante o quimérica, en la cual la secuencia aminoacidica de GnRH corresponde al 40% de la molécula total y la secuencia teórica corresponde al 60% de la molécula total.
7. - Una proteina de fusión de acuerdo a cualquiera de las reivindicaciones anteriores, que no comprende segmentos inmunodominantes como inmunógenos derivados de patógenos, toxinas o proteinas "carriers" .
8. - Secuencias de ADN que codifican la proteína de acuerdo a la reivindicación 1, así como sus variantes genéticas que contengan codones optimizados que den origen a dichas secuencias SEQ ID Nos.8-13.
9. - Vacuna que comprende la proteína de fusión acuerdo con cualquiera de las reivindicaciones 1 a 7 y uno o más adyuvantes veterinariamente o farmacéuticamente aceptables.
10.- Vacuna que comprende las secuencias nucleotídicas que codifican las proteínas de fusión de acuerdo a cualquiera de las proteínas de las reivindicaciones 1 a 7 y uno o más adyuvantes veterinariamente o farmacéuticamente aceptables.
11.- La vacuna de acuerdo a las reivindicaciones 9 y 10, que comprende entre 50-500 μg de la proteína recombinante GnRX G/Q.
12.- La vacuna de acuerdo a la reivindicación 11, que comprende entre 100-200 μg de la proteina recombinante GnRX G/Q.
13.- La vacuna de acuerdo a la reivindicación 12, que comprende 100 μg de la proteina recombinante GnRX G/Q.
14.- La vacuna de acuerdo a la reivindicación 12, que comprende 200 μg de la proteina recombinante GnRX G/Q.
15.- La vacuna de la reivindicación 13, que además comprende 100 μl de un adyuvante comercial.
16.- La vacuna de la reivindicación 13, que además comprende 200 μl de un adyuvante comercial.
17.- La vacuna de la reivindicación 14, que además comprende 1 mi de un adyuvante comercial.
18.- La vacuna de acuerdo a cualquiera de las reivindicaciones 9, 10, 13 y 15, que comprende 100 μg de la proteina recombinante GnRX G/Q en 100 μl de un adyuvante comercial.
19.- La vacuna de acuerdo a cualquiera de las reivindicaciones 9, 10, 13 y 16, que comprende 100 μg de la proteina recombinante GnRX G/Q en 200 μl de un adyuvante comercial.
20.- La vacuna de acuerdo a cualquiera de las reivindicaciones 9, 10, 14 y 17, que comprende 200 μg de la proteina recombinante GnRX G/Q en 1 mi de un adyuvante comercial.
21.- La vacuna de acuerdo a cualquiera de las reivindicaciones 9, 10 ó 15-20, en donde dicho adyuvante es el adyuvante completo o incompleto de Freund.
22.- Uso de la vacuna de acuerdo a cualquiera de las reivindicaciones 9-21, que sirve para la inmunocastración de mamíferos.
23.- Uso de la vacuna de acuerdo a cualquiera de las reivindicaciones 9-21, que sirve para preparar composiciones para la inmunocastración de mamíferos .
24.- Procedimiento para producir una vacuna de acuerdo a cualquiera de las reivindicaciones 9-21, que comprende mezclar la proteina de la reivindicación 1 con uno o más adyuvantes veterinariamente o farmacéuticamente aceptables .
25.- Procedimiento para preparar una proteina de fusión de acuerdo a cualquiera de las reivindicaciones 1 a 7, que comprende fusionar la secuencia aminoacidica de la hormona liberadora de gonadotrofinas (GnRH-I) con una secuencia teórica glicosilable y con actividad inmunogénica, que no incluye secuencias de patógenos o de proteínas "carrier" en su estructura.
26.- Procedimiento de acuerdo a la reivindicación 25, que comprende diseñar la secuencia teórica a partir de análisis bioinformático usando los siguientes 10 algoritmos que evalúan las propiedades de hidrofobicidad, hidrofilicidad y antigenicidad de una secuencia peptídica: 1) algoritmo de Hidrofobicidad Fauchere-Pliska; 2) algoritmo de hidrofilicidad de Goldman/Engelman/Steitz, el cual genera un perfil de propiedades calculando los residuos no polares en α-helices; 3) algoritmo de hidrofobicidad de Janin; 4) algoritmo de hidrofobicidad de Kyte Doolittle; 5) algoritmo de hidrofobicidad de Manavalan; 6) algoritmo de hidrofilicidad de von Heijne; 7) algoritmo de antigenicidad de Hopp and Woods; 8) algoritmo de antigenicidad de Parker; 9) algoritmo de antigenicidad de Protrusion Index; y 10) algoritmo de antigenicidad de Welling.
27.- Método para inmunocastración de mamíferos, que comprende administrar a un mamífero, una proteína de acuerdo a cualquiera de las reivindicaciones 1 a 7.
28.- Proteína de fusión de una secuencia de la hormona liberadora de gonadotrofinas y una secuencia teórica no derivada de patógenos con capacidad inmunogénica que contiene sitios de O-glicosilación, que sirve para inmunocastración de mamíferos.
PCT/CL2010/000014 2009-04-15 2010-04-14 Proteína de inmunocastración de mamíferos WO2010118547A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK10721286.2T DK2431052T5 (da) 2009-04-15 2010-04-14 Protein til immunkastration af pattedyr
ES10721286.2T ES2467702T3 (es) 2009-04-15 2010-04-14 Proteína para inmunocastración de mamíferos
BRPI1005349-2A BRPI1005349B1 (pt) 2009-04-15 2010-04-14 Proteína de fusão para imunocastração, sequências de dna, vacina veterinária e uso da mesma, processo para produção de uma vacina veterinária e processo para preparar uma proteína de fusão
US13/262,265 US8940693B2 (en) 2009-04-15 2010-04-14 Protein for the immunocastration for mammals
EP10721286.2A EP2431052B1 (en) 2009-04-15 2010-04-14 Protein for the immunocastration for mammals
PL10721286T PL2431052T3 (pl) 2009-04-15 2010-04-14 Białko do kastracji immunologicznej dla ssaków

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL900-2009 2009-04-15
CL2009000900A CL2009000900A1 (es) 2009-04-15 2009-04-15 Proteina de fusion que comprende la hormona liberadora de gonadotrofinas fusionada a una secuencia con capacidad inmunogenica con sitios de o-glicosilacion; secuencia de adn que la codifica; procedimiento de produccion; vacuna que las comprende; y su uso para inmunocastracion de mamiferos.

Publications (1)

Publication Number Publication Date
WO2010118547A1 true WO2010118547A1 (es) 2010-10-21

Family

ID=42635208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2010/000014 WO2010118547A1 (es) 2009-04-15 2010-04-14 Proteína de inmunocastración de mamíferos

Country Status (9)

Country Link
US (1) US8940693B2 (es)
EP (1) EP2431052B1 (es)
AR (1) AR075953A1 (es)
BR (1) BRPI1005349B1 (es)
CL (1) CL2009000900A1 (es)
DK (1) DK2431052T5 (es)
ES (1) ES2467702T3 (es)
PL (1) PL2431052T3 (es)
WO (1) WO2010118547A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477054B1 (ko) * 2020-03-24 2022-12-14 주식회사 바이오앱 웅취 제거용 재조합 단백질 및 이를 포함하는 백신 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975420A (en) 1987-09-30 1990-12-04 University Of Saskatchewan Agents and procedures for provoking an immune response to GnRH and immuno sterilizing mammals
US6045799A (en) 1997-07-21 2000-04-04 Washington State University Chimeric contraceptive vaccines
WO2001085763A2 (en) 2000-05-05 2001-11-15 Aphton Corporation Chimeric peptide immunogens their preparation and use
US6761890B1 (en) 1995-06-07 2004-07-13 Pepscan Systems B.V. Peptide, immunogenic composition and vaccine or medical preparation, a method to immunize animals against the hormone LHRH, and analogs of the LHRH tandem repeat peptide and their use as vaccine
US20040202673A1 (en) * 2003-04-08 2004-10-14 Jen-Pin Huang Constructs of branched synthetic peptide immunogens with artificial T helper cell epitopes coupled to B cell epitopes
US20050239701A1 (en) 2002-04-16 2005-10-27 Henry Baker Transient and/or permanent modification of sexual behavior and/or fertility using recombinant chimeric GnRH
US20060121051A1 (en) * 1998-02-19 2006-06-08 Kenten John H Heat shock fusion-based vaccine system
WO2007137586A2 (en) * 2006-05-31 2007-12-06 Pharmexa A/S Random insertion of peptides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975420A (en) 1987-09-30 1990-12-04 University Of Saskatchewan Agents and procedures for provoking an immune response to GnRH and immuno sterilizing mammals
US6761890B1 (en) 1995-06-07 2004-07-13 Pepscan Systems B.V. Peptide, immunogenic composition and vaccine or medical preparation, a method to immunize animals against the hormone LHRH, and analogs of the LHRH tandem repeat peptide and their use as vaccine
US6045799A (en) 1997-07-21 2000-04-04 Washington State University Chimeric contraceptive vaccines
US20060121051A1 (en) * 1998-02-19 2006-06-08 Kenten John H Heat shock fusion-based vaccine system
WO2001085763A2 (en) 2000-05-05 2001-11-15 Aphton Corporation Chimeric peptide immunogens their preparation and use
US20050239701A1 (en) 2002-04-16 2005-10-27 Henry Baker Transient and/or permanent modification of sexual behavior and/or fertility using recombinant chimeric GnRH
US20040202673A1 (en) * 2003-04-08 2004-10-14 Jen-Pin Huang Constructs of branched synthetic peptide immunogens with artificial T helper cell epitopes coupled to B cell epitopes
WO2007137586A2 (en) * 2006-05-31 2007-12-06 Pharmexa A/S Random insertion of peptides

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Use of recombinant gonadotrophin-releasing hormone antigens for immunosterilization of beef heifers", JOURNAL OF ANIMAL SCIENCE, vol. 84, no. 2, 2006, pages 343 - 50
ADAMS; ADAMS, J. ANIMAL SCI., vol. 70, 1992, pages 1691 - 1698
BEEKMAN, N.J.; W.M. SCHAAPER ET AL.: "Highly immunogenic and fully synthetic peptide-carrier constructs targeting GnRH", VACCINE, vol. 17, no. 15-16, 1999, pages 2043 - 50
CARAY; BONNEAU, C.R. ACAD. SC. PARIS, vol. 303, 1986, pages 673 - 676
CHAFFAUX ET AL., RECUEIL DE MEDICINE VETERINAIRE, vol. 161, 1985, pages 133 - 145
FINNERTY ET AL., J. REPRO. FERTIL., vol. 101, 1994, pages 133 - 343
GOMASE V S ET AL: "Antigenic epitopes of viral polyprotein: an approach for fragment based peptide vaccines from Papaya Ringspot virus", GENE THER MOL BIOL, vol. 12, June 2008 (2008-06-01), pages 31 - 38, XP002598738 *
JENSEN PIA H ET AL: "Mucin-type O-glycosylation--putting the pieces together.", THE FEBS JOURNAL JAN 2010 LNKD- PUBMED:19919547, vol. 277, no. 1, January 2010 (2010-01-01), pages 81 - 94, XP002598691, ISSN: 1742-4658 *
JINSHU X ET AL: "The immunogenicity of recombinant and dimeric gonadotrophin-releasing hormone vaccines incorporating a T-helper epitope and GnRH or repeated GnRH units", JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V.,AMSTERDAM, NL LNKD- DOI:10.1016/J.JIM.2004.04.004, vol. 289, no. 1-2, 1 June 2004 (2004-06-01), pages 111 - 122, XP004520884, ISSN: 0022-1759 *
KHAN, M.A.; K. OGITA ET AL.: "Immunization with a plasmid DNA vaccine encoding gonadotrophin-releasing hormone (GnRH-1) and T-helper epitopes in saline suppresses rodent fertility", VACCINE, vol. 26, no. 10, 2008, pages 1365 - 74, XP022492631
MILLER, L.A.; J.P. GIONFRIDDO ET AL.: "The single- shot GnRH immunocontraceptive vaccine (GonaCon) in white-tailed deer: comparison of several GnRH preparations", AM J REPROD IMMUNOL, vol. 60, no. 3, 2008, pages 214 - 23
SAD, S.; V.S. CHAUHAN ET AL.: "Synthetic gonadotrophin-releasing hormone (GnRH) vaccines incorporating GnRH and synthetic T-helper epitopes", VACCINE, vol. 11, no. 11, 1993, pages 1145 - 50, XP023710606, DOI: doi:10.1016/0264-410X(93)90077-B
WANG PENG ET AL: "A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach", PLOS COMPUTATIONAL BIOLOGY, vol. 4, no. 4, April 2008 (2008-04-01), XP002598739, ISSN: 1553-734X *

Also Published As

Publication number Publication date
PL2431052T3 (pl) 2014-09-30
ES2467702T3 (es) 2014-06-12
BRPI1005349A2 (pt) 2019-07-02
DK2431052T3 (da) 2014-06-30
AR075953A1 (es) 2011-05-11
DK2431052T5 (da) 2014-07-07
EP2431052A1 (en) 2012-03-21
CL2009000900A1 (es) 2009-08-14
EP2431052B1 (en) 2014-04-02
US20120093846A1 (en) 2012-04-19
BRPI1005349B1 (pt) 2021-05-25
US8940693B2 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
ES2317708T3 (es) Composiciones adyuvantes de saponia mejorada y metodos relacionados con las mismas.
ES2742739T3 (es) Proteínas de fusión para uso como mejoradores inmunogénicos para inducir respuestas de células T específicas de antígenos
US9914766B2 (en) Method for immunizing an avian species
ES2247637T3 (es) Quimeras de gnrh-leucotoxina.
US20150098936A1 (en) Reimmunization and antibody design
EP1087787A1 (en) Artificial t helper cell epitopes as immune stimulators for synthetic peptide immunogens including immunogenic lhrh peptides
EP0832107B1 (en) An improved peptide, immunogenic composition and vaccine or medical preparation, a method to immunise animals against the hormone lhrh, and analogs of the lhrh tandem repeat peptide and their use as vaccine
CN107073086B (zh) 免疫性lhrh组合物及其在猪只中的应用
US20050239701A1 (en) Transient and/or permanent modification of sexual behavior and/or fertility using recombinant chimeric GnRH
US6783761B2 (en) Chimeric peptide immunogens
ES2467702T3 (es) Proteína para inmunocastración de mamíferos
KR20210119230A (ko) 웅취 제거용 재조합 단백질 및 이를 포함하는 백신 조성물
He et al. Immunogenic comparison for two different recombinant chimeric peptides (CP12 and CP22) containing one or two copies of three linear B cell epitopes from β-hCG subunit
US7361349B2 (en) Peptide, immunogenic composition and vaccine or medical preparation, a method to immunize animals against the hormone LHRH, and analogs of the LHRH tandem repeat peptide and their use as vaccine
CA2233882A1 (en) Pseudomonas exotoxin as immunogenic carrier in synthetic conjugate vaccines
CA2421580C (en) Discrimination between gnrh-i and gnrh-ii
JP5960064B2 (ja) ヒトプロガストリンペプチドに対する免疫原性組成物
JP7430011B2 (ja) 動物の中性化用組換えタンパク質およびこれを含むワクチン組成物
AU2001294395A1 (en) Discrimination between GnRH-I and GnRH-II
US20040202673A1 (en) Constructs of branched synthetic peptide immunogens with artificial T helper cell epitopes coupled to B cell epitopes
WO2020051656A1 (pt) Polipeptídeo quimérico antigênico, construção gênica e composição antigênica para imunocastração de mamíferos não humanos
JPH11514380A (ja) GnRH/シュードモナス還元型菌体外毒素結合体
MXPA99005693A (es) Preparado vacunal para la inmuno-castracion reversible de mamiferos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10721286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010721286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13262265

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1005349

Country of ref document: BR

Free format text: EXPLIQUE A DIVERGENCIA NO NOME DE UM DOS INVENTORES (LEONARDO ENRIQUE SAENZ ITURRIAGA) QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2010/118547 E O CONSTANTE DA PETICAO INICIAL NO 020110032611

ENP Entry into the national phase

Ref document number: PI1005349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110321