WO2010117156A2 - Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same - Google Patents

Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same Download PDF

Info

Publication number
WO2010117156A2
WO2010117156A2 PCT/KR2010/001864 KR2010001864W WO2010117156A2 WO 2010117156 A2 WO2010117156 A2 WO 2010117156A2 KR 2010001864 W KR2010001864 W KR 2010001864W WO 2010117156 A2 WO2010117156 A2 WO 2010117156A2
Authority
WO
WIPO (PCT)
Prior art keywords
type ferrite
heat treatment
compound
manufacturing
barium
Prior art date
Application number
PCT/KR2010/001864
Other languages
French (fr)
Korean (ko)
Other versions
WO2010117156A3 (en
Inventor
유병훈
성원모
금준식
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2010117156A2 publication Critical patent/WO2010117156A2/en
Publication of WO2010117156A3 publication Critical patent/WO2010117156A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure

Definitions

  • the present invention relates to a method for producing a wire type ferrite and a wire type ferrite produced thereby. More particularly, the present invention relates to a method for producing a wire type ferrite having a low dielectric constant and a high permeability, a low dielectric loss value and a low permeability loss value, and a wire type ferrite manufactured thereby.
  • Ferrite is a solid solution in which alloying elements or impurities are dissolved in iron of a body-centered cubic crystal which is stable at 900 ° C. or lower.
  • ferrite is a metallographic term for steel, which is also called silicon ferrite or silicon iron by the name of solid solution or dissolved element based on ⁇ iron.
  • Such a ferrite is a single phase when viewed under a microscope.
  • the ferrite has a characteristic of mixing a white portion of ferrite with a slightly dissolved carbon and a black portion of perlite, and is used for magnetic heads such as high frequency transformers, pickups, and tape recorders.
  • Y-type ferrite which is a kind of hexagonal ferrite, is a material for high frequency devices that can be used from several hundred MHz to several GHz, and has a dielectric constant of 8 to 10 and a permeability of 2 to 3. .
  • the efficiency of the high-frequency device (for example, the antenna, etc.) using the w-type ferrite can be improved.
  • the wire type ferrite having a high permittivity while having a low permittivity, low dielectric loss and low investment loss was produced.
  • the conventional method for manufacturing a w-type ferrite in which a part of the initial raw material is replaced or an additive is added to the initial raw material is a wire type as the additional troublesome or additive to perform a part of the initial raw material needs to be performed. There is a problem that the manufacturing cost of ferrite increases.
  • an object of the present invention is to manufacture a wire type ferrite having low dielectric constant, high permeability and low loss value by controlling heat treatment temperature without replacing a part of the initial raw material or adding an additive in order to apply the electronic component material at high frequency.
  • the present invention provides a method and a wire type ferrite produced thereby.
  • the Y-type ferrite manufacturing method according to the present invention includes a heat treatment step of heat treatment one or more times.
  • the heat treatment step includes performing a first heat treatment at 300 ° C to 500 ° C and performing a second heat treatment at 1100 ° C to 1250 ° C.
  • Wye type ferrite manufacturing method before the heat treatment step, providing a raw material for producing a wire type ferrite, a mixing step of mixing the initial raw material, a first made by mixing the initial raw material A coprecipitation step of coprecipitating the mixed solution and a drying step of washing filtration and drying of the coprecipitated material.
  • the initial raw material includes a barium (Ba) compound, a cobalt (Co) compound and an iron (Fe) compound, wherein the barium compound is any one of barium chloride, barium nitrate and barium sulfide, and the cobalt compound is cobalt chloride, Cobalt nitrate, and cobalt sulfide, and the iron compound is any one of iron chloride, iron nitrate, and iron sulfide.
  • the providing step includes providing the barium compound, the nitric acid compound and the iron compound in a molar ratio of 1.7 to 2.3: 1.7 to 2.3: 10 to 14.
  • the coprecipitation step includes a step of coprecipitation by adding a second mixed solution of sodium hydroxide (NaOH) and hydrogen peroxide (H 2 O 2 ) water to the first mixed solution.
  • NaOH sodium hydroxide
  • H 2 O 2 hydrogen peroxide
  • the wire-type ferrite according to the invention is characterized in that it is produced by the above production method.
  • a wire type ferrite having low dielectric constant, high permeability, low dielectric loss and low permeability loss can be manufactured by controlling only the heat treatment temperature without replacing a part of the initial raw material or adding an additive. have. Therefore, it can be applied as a device for high frequency (3 GHz or less), and the manufacturing process of the wire type ferrite is not only simplified, and the manufacturing cost of the wire type ferrite can be reduced.
  • FIG. 1 is a flow chart showing a manufacturing process of the w-type ferrite in accordance with an embodiment of the present invention
  • FIG. 2 is a diagram showing antenna efficiency for each loss in the case of permittivity 4 and permeability 2.
  • FIG. 1 is a flow chart showing a manufacturing method of the w-type ferrite according to the present invention.
  • the w-type ferrite is a hexagonal soft ferrite generally represented by a chemical formula of Ba 2 Co 2 Fe 12 O 22 , and is excellent in high frequency characteristics such that the permeability hardly decreases to a frequency range of 10 Hz or more.
  • An initial raw material for producing such a type ferrite includes a barium (Ba) compound, cobalt (Co) compound and iron (Fe) compound, the barium compound is any one of barium chloride, barium nitrate and barium sulfide,
  • the cobalt compound is any one of cobalt chloride, cobalt nitrate and cobalt sulfide, and the iron compound is any of iron chloride, iron nitrate and iron sulfide.
  • barium may be replaced with strontium (Sr)
  • cobalt may be replaced with any one of nickel (Ni), manganese (Mn), zinc (Zn), magnesium (Mg), and copper (Cu).
  • the barium compound is limited to barium nitrate (Ba (No 3 ) 2 ) and the cobalt compound is cobalt nitrate hexahydrate (Co (No 3 ) 2 .6H 2 O), which is a cobalt nitrate.
  • the iron compound is limited to ferric nitrate hexahydrate (Fe (No 3 ) 3 .9H 2 0), which is an iron nitrate.
  • the present invention is not limited thereto.
  • the method for producing the w-type ferrite of the present invention includes barium nitrate ⁇ barium nitrate (Ba (No 3 ) 2 ) ⁇ , cobalt nitrate ⁇ cobalt nitrate hexahydrate (Co (No 3 ) 2 ⁇ 6H) which is an initial raw material. 2 O) ⁇ and iron nitrate ⁇ ferric nitrate hexahydrate (Fe (No 3 ) 3 ⁇ 9H 2 0) ⁇ , dissolving and mixing the initial raw material, coprecipitation of the mixed solution made by mixing the initial raw material Washing, filtering and drying the co-precipitated material and heat treating the dried material one or more times.
  • the coprecipitation method is a method of precipitating the target ion in the mixed solution by adding a precipitant (solution) containing other ions to the mixed solution to precipitate the target ion and the other ions together. ), And the initial raw material is co-precipitated using a precipitant mixed with hydrogen peroxide (H 2 O 2 ) dissolved in water.
  • a precipitant solution
  • hydrogen peroxide H 2 O 2
  • barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate are provided (S110).
  • barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate i.e., barium compound, nitrate compound and iron compound in a molar ratio of 2: 2: 12.
  • the precipitant is preferably a sodium hydroxide-hydrogen peroxide mixed solution in which a sodium peroxide solution of 1 to 4 times the stoichiometric amount capable of oxidizing 2 to 4 equivalents of sodium hydroxide and iron divalent ions.
  • the material precipitated through the step S130 that is, by adding a precipitant to the mixed solution to wash and filter the coprecipitated metal hydroxide (S140).
  • This dried metal hydroxide is first heat-treated at a temperature of 300 °C to 500 °C (S150).
  • a primary heat processing temperature is 400 degreeC.
  • the first heat-treated metal hydroxide is second heat treatment at a temperature of 1100 °C to 1250 °C (S160).
  • secondary heat processing temperature is 1200 degreeC.
  • barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate are synthesized as a w-type ferrite.
  • the first type of heat treatment may be performed on a metal hydroxide at a temperature of 300 ° C. to 500 ° C., and a second heat treatment at a temperature of 1100 ° C. to 1250 ° C. to manufacture a wire type ferrite. have.
  • Table 1 Secondary heat treatment condition (when primary heat treatment condition is 400 °C) permittivity Dielectric loss Permeability Investment loss 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 800 °C 3.2 3.2 0.012 0.007 1.1 1.1 0.01 0.01 1000 °C 4.6 4.6 0.004 0.001 1.3 1.3 0.02 0.05 1200 °C 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16 1250 °C 4.0 4.0 0.001 0.001 1.9 1.8 0.07 0.17 1300 °C 4.5 4.5 0.021 0.034 1.9 1.4 0.23 0.39
  • Table 1 is a table showing the dielectric constant, dielectric loss, permeability and investment loss according to the secondary heat treatment temperature when the primary heat treatment temperature is fixed to about 400 °C.
  • the high permeability appears when the secondary heat treatment temperature is about 1200 °C, and when the temperature is raised above, the permeability does not increase, but the dielectric constant, dielectric loss value, and permeation loss value increase. Therefore, it can be seen that the material having a high permeability, low permittivity, low dielectric loss value, and low permeability loss value can be developed by setting the secondary heat treatment temperature at about 1200 ° C. under the conditions of Table 1. Specifically, it is possible to develop a material having a high permeability of 2 or more, a low permittivity of 5 or less, a low dielectric loss value of 0.01 or less, and a low permeability loss value of 0.16 or less.
  • Table 4 Primary heat treatment condition (when secondary heat treatment condition is 1200 °C) permittivity Dielectric loss Permeability Investment loss 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 400 °C 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16 800 °C 7.0 7.0 0.008 0.001 2.5 2.3 0.21 0.56 1000 °C 9.8 8.8 0.005 0.001 2.1 2.0 0.14 0.21
  • the secondary heat treatment temperature is fixed to about 1200 °C as shown in Table 4, when the primary heat treatment temperature is about 400 °C high permeability of 2 or more, low dielectric constant of 5 or less, low dielectric loss value of 0.01 or less and 0.16 It can be seen that the w-type ferrite having a low investment loss value as follows can be produced.
  • the first heat treatment temperature is 300 ° C to 500 ° C (preferably 400 ° C) and the second heat treatment temperature is 1100 ° C to 1250 ° C (preferably 1200 ° C), It will be able to manufacture the type of ferrite.
  • FIG. 2 is a table showing the operating gains of the antennas for the dielectric loss and the investment loss when a carrier having a permittivity of 4 and a permeability of 2 is applied to an antenna system having an operating frequency of 2.35 GHz.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Magnetic Ceramics (AREA)

Abstract

The present invention relates to a method for manufacturing Y-type ferrite, and to Y-type ferrite manufactured by same. The method for manufacturing Y-type ferrite according to the present invention comprises a heat treatment step performed at least once, wherein said heat treatment step includes a primary heat treatment step performed at a temperature of 300°C to 500°C , and a secondary heat treatment step performed at a temperature of 1100°C to 1250°C. The method of the present invention is capable of manufacturing Y-type ferrite with a low permittivity, a high magnetic permeability, a low dielectric loss, and a low permeation loss, simply by controlling the heat treatment temperature without substituting a portion of initial materials or without using any additives. Therefore, the Y-type ferrite of the present invention can be used as an element for high frequency (3GHz or lower) devices, and processes for manufacturing the Y-type ferrite can be simplified, and the costs of manufacturing Y-type ferrite can be reduced.

Description

와이 타입 페라이트 제조 방법 및 이에 의해 제조된 와이 타입 페라이트Y-type ferrite manufacturing method and thereby-type ferrite
본 발명은 와이 타입 페라이트 제조 방법 및 이에 의해 제조된 와이 타입 페라이트에 관한 것이다. 더욱 상세하게는 낮은 유전율과 높은 투자율을 가지고, 낮은 유전손실 값과 낮은 투자손실 값을 가지는 와이 타입 페라이트의 제조 방법 및 이에 의해 제조된 와이 타입 페라이트에 관한 것이다.The present invention relates to a method for producing a wire type ferrite and a wire type ferrite produced thereby. More particularly, the present invention relates to a method for producing a wire type ferrite having a low dielectric constant and a high permeability, a low dielectric loss value and a low permeability loss value, and a wire type ferrite manufactured thereby.
페라이트(ferrite)란 900℃ 이하에서 안정한 체심입방결정의 철에 합금원소 또는 불순물이 녹아서 된 고용체이다. 다시 말해 페라이트는 철강의 금속조직학상의 용어로서, α철을 바탕으로 한 고용체 또는 고용된 원소의 이름을 붙여 실리콘 페라이트 또는 규소철 이라고도 한다. Ferrite is a solid solution in which alloying elements or impurities are dissolved in iron of a body-centered cubic crystal which is stable at 900 ° C. or lower. In other words, ferrite is a metallographic term for steel, which is also called silicon ferrite or silicon iron by the name of solid solution or dissolved element based on α iron.
이러한 페라이트는 현미경으로 보면 단상이며, 탄소가 조금 녹아 있는 페라이트의 흰 부분과 펄라이트의 검게 보이는 부분이 섞여 나타나는 특성이 있고, 고주파용 변압기, 픽업, 테이프 리코더 따위의 자기 헤드 등에 사용된다.Such a ferrite is a single phase when viewed under a microscope. The ferrite has a characteristic of mixing a white portion of ferrite with a slightly dissolved carbon and a black portion of perlite, and is used for magnetic heads such as high frequency transformers, pickups, and tape recorders.
한편, 상기와 같은 페라이트 중에서 육방정계 페라이트의 일종인 와이 타입 페라이트(Y-Type ferrite)는 수백 MHz에서 수GHz까지 사용 가능한 고주파 소자용 소재로써, 8 내지 10의 유전율 및 2 내지 3의 투자율을 가진다.Meanwhile, among ferrites as described above, Y-type ferrite, which is a kind of hexagonal ferrite, is a material for high frequency devices that can be used from several hundred MHz to several GHz, and has a dielectric constant of 8 to 10 and a permeability of 2 to 3. .
와이 타입 페라이트의 유전율, 유전 손실 및 투자 손실이 낮고 투자율이 높은 경우, 와이 타입 페라이트를 사용한 고주파용 소자(예를 들어, 안테나 등)의 효율이 향상될 수 있다.When the permittivity, dielectric loss, and investment loss of the w-type ferrite are low and the permeability is high, the efficiency of the high-frequency device (for example, the antenna, etc.) using the w-type ferrite can be improved.
종래에는 와이 타입 페라이트를 제조하기 위한 초기 원료의 일부를 치환하거나 초기 원료에 첨가물을 혼합함으로써, 낮은 유전율, 낮은 유전 손실 및 낮은 투자 손실을 가짐과 동시에 높은 투자율을 가지는 와이 타입 페라이트를 제조하였다.Conventionally, by replacing a part of the initial raw material for the production of the wire type ferrite or by mixing an additive in the initial raw material, the wire type ferrite having a high permittivity while having a low permittivity, low dielectric loss and low investment loss was produced.
하지만 상기와 같이 초기 원료의 일부를 치환하거나 초기 원료에 첨가물을 첨가하는 종래의 와이 타입 페라이트 제조 방법은 초기 원료의 일부를 치환하기 위한 추가 공정을 실시해야 하는 번거로움 또는 첨가물이 추가됨에 따라 와이 타입 페라이트의 제조 비용이 상승하는 문제점이 있다.However, as described above, the conventional method for manufacturing a w-type ferrite in which a part of the initial raw material is replaced or an additive is added to the initial raw material is a wire type as the additional troublesome or additive to perform a part of the initial raw material needs to be performed. There is a problem that the manufacturing cost of ferrite increases.
따라서, 본 발명의 목적은 고주파에서 전자부품 소재로 적용하기 위해서, 초기 원료의 일부를 치환하거나 첨가물을 추가하지 않고, 열처리 온도 조절을 통해 낮은 유전율, 높은 투자율 및 저손실 값이 확보되는 와이 타입 페라이트 제조 방법 및 이에 의해 제조된 와이 타입 페라이트를 제공하는데 있다.Accordingly, an object of the present invention is to manufacture a wire type ferrite having low dielectric constant, high permeability and low loss value by controlling heat treatment temperature without replacing a part of the initial raw material or adding an additive in order to apply the electronic component material at high frequency. The present invention provides a method and a wire type ferrite produced thereby.
본 발명에 따른 와이 타입 페라이트(Y-Type Ferrite) 제조 방법은, 일 회 이상 열처리하는 열처리 단계를 포함한다. 상기 열처리단계는, 300℃ 내지 500℃에서 제 1차 열처리를 수행하는 단계 및 1100℃ 내지 1250℃에서 제 2차 열처리를 수행하는 단계를 포함한다. The Y-type ferrite manufacturing method according to the present invention includes a heat treatment step of heat treatment one or more times. The heat treatment step includes performing a first heat treatment at 300 ° C to 500 ° C and performing a second heat treatment at 1100 ° C to 1250 ° C.
본 발명에 따른 와이 타입 페라이트 제조 방법은, 상기 열처리 단계 이전에, 와이 타입 페라이트를 제조하기 위한 초기 원료를 제공하는 제공 단계, 상기 초기 원료를 혼합하는 혼합 단계, 상기 초기 원료를 혼합하여 만든 제 1 혼합 용액을 공침시키는 공침 단계 및 상기 공침된 물질을 세척 여과 및 건조시키는 건조 단계를 포함한다.Wye type ferrite manufacturing method according to the present invention, before the heat treatment step, providing a raw material for producing a wire type ferrite, a mixing step of mixing the initial raw material, a first made by mixing the initial raw material A coprecipitation step of coprecipitating the mixed solution and a drying step of washing filtration and drying of the coprecipitated material.
상기 초기 원료는, 바륨(Ba) 화합물, 코발트(Co) 화합물 및 철(Fe) 화합물을 포함하되, 상기 바륨 화합물은 바륨 염화물, 바륨 질산화물 및 바륨 황화물 중 어느 하나이고, 상기 코발트 화합물은 코발트 염화물, 코발트 질산화물, 및 코발트 황화물 중 어느 하나이며, 상기 철 화합물은 철 염화물, 철 질산화물 및 철 황화물 중 어느 하나이다.The initial raw material includes a barium (Ba) compound, a cobalt (Co) compound and an iron (Fe) compound, wherein the barium compound is any one of barium chloride, barium nitrate and barium sulfide, and the cobalt compound is cobalt chloride, Cobalt nitrate, and cobalt sulfide, and the iron compound is any one of iron chloride, iron nitrate, and iron sulfide.
상기 제공 단계는, 상기 바륨 화합물, 상기 질산 화합물 및 상기 철 화합물을 1.7 내지 2.3 : 1.7 내지 2.3 : 10 내지 14의 몰(Mol)비로 제공하는 단계를 포함한다.The providing step includes providing the barium compound, the nitric acid compound and the iron compound in a molar ratio of 1.7 to 2.3: 1.7 to 2.3: 10 to 14.
상기 공침 단계는, 수산화 나트륨(NaOH)과 과산화수소(H2O2)수를 혼합한 제 2 혼합 용액을 상기 제 1 혼합 용액에 첨가하여 공침시키는 단계를 포함한다.The coprecipitation step includes a step of coprecipitation by adding a second mixed solution of sodium hydroxide (NaOH) and hydrogen peroxide (H 2 O 2 ) water to the first mixed solution.
또한, 본 발명에 따른 와이 타입 페라이트는 상기 제조 방법에 의해 제조되는 것을 특징으로 한다.In addition, the wire-type ferrite according to the invention is characterized in that it is produced by the above production method.
이상에서 설명한 바와 같이 본 발명에 의하면, 초기 원료의 일부를 치환하거나 첨가물을 추가하지 않고 열처리 온도만을 조절하여 낮은 유전율과 높은 투자율, 낮은 유전 손실과 낮은 투자손실 값을 가지는 와이 타입 페라이트를 제조할 수 있다. 따라서 고주파(3GHz 이하)용 소자로 적용이 가능하고, 와이 타입 페라이트의 제조 공정이 간단해질 뿐만 아니라 와이 타입 페라이트의 제조 비용을 절감할 수 있는 효과가 있다.As described above, according to the present invention, a wire type ferrite having low dielectric constant, high permeability, low dielectric loss and low permeability loss can be manufactured by controlling only the heat treatment temperature without replacing a part of the initial raw material or adding an additive. have. Therefore, it can be applied as a device for high frequency (3 GHz or less), and the manufacturing process of the wire type ferrite is not only simplified, and the manufacturing cost of the wire type ferrite can be reduced.
도 1은 본 발명의 실시예에 따른 와이 타입 페라이트의 제조 과정을 나타내는 순서도,1 is a flow chart showing a manufacturing process of the w-type ferrite in accordance with an embodiment of the present invention,
도 2는 유전율 4 투자율 2일 경우의 각각의 손실에 대한 안테나 효율을 나타낸 도면이다.FIG. 2 is a diagram showing antenna efficiency for each loss in the case of permittivity 4 and permeability 2. FIG.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
[본 발명의 실시예]Embodiment of the Invention
와이(Y) 타입 페라이트 제조 방법Y (Y) type ferrite manufacturing method
도 1은 본 발명에 따른 와이 타입 페라이트 제조 방법을 나타내는 순서도이다.1 is a flow chart showing a manufacturing method of the w-type ferrite according to the present invention.
본 발명에서 와이 타입 페라이트란, 일반적으로 Ba2Co2Fe12O22의 화학식으로 나타나는 육방정계의 소프트 페라이트로써, 10㎓ 이상의 주파수 영역까지 투자율이 거의 저하하지 않는 등 고주파 특성이 뛰어나다.In the present invention, the w-type ferrite is a hexagonal soft ferrite generally represented by a chemical formula of Ba 2 Co 2 Fe 12 O 22 , and is excellent in high frequency characteristics such that the permeability hardly decreases to a frequency range of 10 Hz or more.
이러한 와이 타입 페라이트를 제조하기 위한 초기 원료는 바륨(Ba) 화합물, 코발트(Co) 화합물 및 철(Fe) 화합물을 포함하되, 상기 바륨 화합물은 바륨 염화물, 바륨 질산화물 및 바륨 황화물 중 어느 하나이고, 상기 코발트 화합물은 코발트 염화물, 코발트 질산화물 및 코발트 황화물 중 어느 하나이며, 상기 철 화합물은 철 염화물, 철 질산화물 및 철 황화물 중 어느 하나이다. An initial raw material for producing such a type ferrite includes a barium (Ba) compound, cobalt (Co) compound and iron (Fe) compound, the barium compound is any one of barium chloride, barium nitrate and barium sulfide, The cobalt compound is any one of cobalt chloride, cobalt nitrate and cobalt sulfide, and the iron compound is any of iron chloride, iron nitrate and iron sulfide.
여기서, 바륨은 스트론튬(Sr)으로 대체가 가능하며, 상기 코발트는 니켈(Ni), 망간(Mn), 아연(Zn), 마그네슘(Mg), 구리(Cu) 중에서 어느 하나로 대체가 가능하다. Here, barium may be replaced with strontium (Sr), and the cobalt may be replaced with any one of nickel (Ni), manganese (Mn), zinc (Zn), magnesium (Mg), and copper (Cu).
본 발명의 일 실시예에서는 설명의 편의를 위해 바륨 화합물을 질산 바륨(Ba(No3)2), 코발트 화합물을 코발트 질산화물인 질산코발트6수화물(Co(No3)2ㆍ6H2O)로 한정하고, 철 화합물을 철 질산화물인 질산제이철9수화물(Fe(No3)3ㆍ9H20)로 한정하여 설명하지만, 본 발명을 실제로 적용할 경우에는 이에 한정되지 않는다는 것은 물론이다. In an embodiment of the present invention, for convenience of explanation, the barium compound is limited to barium nitrate (Ba (No 3 ) 2 ) and the cobalt compound is cobalt nitrate hexahydrate (Co (No 3 ) 2 .6H 2 O), which is a cobalt nitrate. The iron compound is limited to ferric nitrate hexahydrate (Fe (No 3 ) 3 .9H 2 0), which is an iron nitrate. However, it is a matter of course that the present invention is not limited thereto.
도 1을 참고하여, 본 발명의 와이 타입 페라이트 제조 방법은, 초기원료인 바륨 질산화물{질산바륨(Ba(No3)2)}, 코발트 질산화물{질산코발트6수화물(Co(No3)2ㆍ6H2O)} 및 철 질산화물{질산제이철9수화물(Fe(No3)3ㆍ9H20)}을 제공하는 단계, 초기 원료를 용해시켜서 혼합하는 단계, 상기 초기 원료를 혼합하여 만든 혼합 용액을 공침시키는 단계, 상기 공침된 물질을 세척 여과 및 건조시키는 단계 및 상기 건조된 물질을 일 회 이상 열처리하는 단계를 포함한다. 여기서, 공침법이란 혼합 용액에서 목적이온을 침전시킬 때 다른 이온을 포함한 침전제(용액)를 혼합 용액에 첨가하여 목적 이온과 다른 이온을 함께 침전시키는 방법으로서, 본 발명의 실시예에서는 수산화 나트륨(NaOH)과, 과산화수소(H2O2)를 물에 녹인 과산화수소수가 혼합된 침전제를 이용하여 상기 초기 원료를 공침시킨다. Referring to FIG. 1, the method for producing the w-type ferrite of the present invention includes barium nitrate {barium nitrate (Ba (No 3 ) 2 )}, cobalt nitrate {cobalt nitrate hexahydrate (Co (No 3 ) 2 ㆍ 6H) which is an initial raw material. 2 O)} and iron nitrate {ferric nitrate hexahydrate (Fe (No 3 ) 3 ㆍ 9H 2 0)}, dissolving and mixing the initial raw material, coprecipitation of the mixed solution made by mixing the initial raw material Washing, filtering and drying the co-precipitated material and heat treating the dried material one or more times. Here, the coprecipitation method is a method of precipitating the target ion in the mixed solution by adding a precipitant (solution) containing other ions to the mixed solution to precipitate the target ion and the other ions together. ), And the initial raw material is co-precipitated using a precipitant mixed with hydrogen peroxide (H 2 O 2 ) dissolved in water.
이에 대한 자세한 설명은 아래와 같다.Detailed description thereof is as follows.
본 발명에 따른 와이 타입 페라이트를 제조하기 위해, 질산바륨, 질산코발트6수화물 및 질산제이철9수화물을 제공한다.(S110). 여기서, 질산바륨, 질산코발트6수화물 및 질산제이철9수화물, 즉 바륨 화합물, 질산 화합물 및 철 화합물을 2:2:12의 몰(Mol)비로 제공하는 것이 바람직하다.In order to manufacture the wire-type ferrite according to the present invention, barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate are provided (S110). Here, it is preferable to provide barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate, i.e., barium compound, nitrate compound and iron compound in a molar ratio of 2: 2: 12.
이렇게 제공된 질산바륨, 질산코발트6수화물, 질산제이철9수화물을 대기중에서 물에 완전히 용해시킴으로써, 질산바륨, 질산코발트6수화물, 질산제이철9수화물을 혼합한 혼합 용액을 만들고, 침전제를 혼합 용액에 첨가하여 혼합 용액을 공침시킨다(S120, S130). 여기서, 침전제는 2 내지 4 당량비의 수산화나트륨과 철2가 이온을 산화시킬 수 있는 화학양론적량의 1 내지 4배의 과산화수소수를 혼합한 수산화나트륨-과산화수소수 혼합 용액인 것이 바람직하다.By completely dissolving the barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate in water in the air, a mixed solution of barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate was prepared, and a precipitant was added to the mixed solution. The mixed solution is co-precipitated (S120, S130). Here, the precipitant is preferably a sodium hydroxide-hydrogen peroxide mixed solution in which a sodium peroxide solution of 1 to 4 times the stoichiometric amount capable of oxidizing 2 to 4 equivalents of sodium hydroxide and iron divalent ions.
상기 단계 S130을 통해 공침된 물질, 즉 상기 혼합 용액에 침전제를 첨가하여 공침된 금속 수산화물을 세척 여과 및 건조시킨다(S140).The material precipitated through the step S130, that is, by adding a precipitant to the mixed solution to wash and filter the coprecipitated metal hydroxide (S140).
이렇게 건조된 금속 수산화물을 300℃ 내지 500℃의 온도에서 1차 열처리한다(S150). 여기서, 1차 열처리 온도는 400℃인 것이 바람직하다.This dried metal hydroxide is first heat-treated at a temperature of 300 ℃ to 500 ℃ (S150). Here, it is preferable that a primary heat processing temperature is 400 degreeC.
1차 열처리된 금속 수산화물을 1100℃ 내지 1250℃의 온도에서 2차 열처리한다(S160). 여기서, 2차 열처리 온도는 1200℃인 것이 바람직하다.The first heat-treated metal hydroxide is second heat treatment at a temperature of 1100 ℃ to 1250 ℃ (S160). Here, it is preferable that secondary heat processing temperature is 1200 degreeC.
상기 과정을 통해 질산 바륨, 질산코발트6수화물 및 질산제이철9수화물은 와이 타입 페라이트로 합성된다.Through the above process, barium nitrate, cobalt nitrate hexahydrate and ferric nitrate hexahydrate are synthesized as a w-type ferrite.
열처리 조건Heat treatment condition
한편, 본 발명의 일 실시예에 따르면, 금속 수산화물을 300℃ 내지 500℃의 온도에서 1차 열처리를 수행하고, 1100℃ 내지 1250℃의 온도에서 2차 열처리를 수행하여 와이 타입 페라이트를 제조할 수 있다.Meanwhile, according to one embodiment of the present invention, the first type of heat treatment may be performed on a metal hydroxide at a temperature of 300 ° C. to 500 ° C., and a second heat treatment at a temperature of 1100 ° C. to 1250 ° C. to manufacture a wire type ferrite. have.
표 1
2차열처리조건(1차열처리조건이 400℃일때) 유전율 유전손실 투자율 투자손실
1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz
800℃ 3.2 3.2 0.012 0.007 1.1 1.1 0.01 0.01
1000℃ 4.6 4.6 0.004 0.001 1.3 1.3 0.02 0.05
1200℃ 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16
1250℃ 4.0 4.0 0.001 0.001 1.9 1.8 0.07 0.17
1300℃ 4.5 4.5 0.021 0.034 1.9 1.4 0.23 0.39
Table 1
Secondary heat treatment condition (when primary heat treatment condition is 400 ℃) permittivity Dielectric loss Permeability Investment loss
1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz
800 ℃ 3.2 3.2 0.012 0.007 1.1 1.1 0.01 0.01
1000 ℃ 4.6 4.6 0.004 0.001 1.3 1.3 0.02 0.05
1200 ℃ 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16
1250 ℃ 4.0 4.0 0.001 0.001 1.9 1.8 0.07 0.17
1300 ℃ 4.5 4.5 0.021 0.034 1.9 1.4 0.23 0.39
표 1은 1차 열처리 온도를 약 400℃로 고정했을시 2차 열처리 온도에 따른 유전율, 유전손실, 투자율 및 투자손실을 나타낸 표이다. 표 1을 참조하면 2차 열처리 온도가 약 1200℃ 일때부터 높은 투자율이 나타나며, 온도를 그 이상으로 올렸을 시에는 투자율은 상승하지 않지만 유전율, 유전손실 값 및 투자손실 값은 상승하는 것을 알 수 있다. 따라서, 표 1의 조건하에서 2차 열처리 온도를 약 1200℃로 함으로써, 높은 투자율과 낮은 유전율, 낮은 유전손실 값, 낮은 투자손실 값을 갖는 소재 개발이 가능함을 알 수 있다. 구체적으로, 2 이상의 높은 투자율과 5 이하의 낮은 유전율, 0.01 이하의 낮은 유전손실 값과 0.16 이하의 낮은 투자손실 값을 갖는 소재 개발이 가능하다.Table 1 is a table showing the dielectric constant, dielectric loss, permeability and investment loss according to the secondary heat treatment temperature when the primary heat treatment temperature is fixed to about 400 ℃. Referring to Table 1, the high permeability appears when the secondary heat treatment temperature is about 1200 ℃, and when the temperature is raised above, the permeability does not increase, but the dielectric constant, dielectric loss value, and permeation loss value increase. Therefore, it can be seen that the material having a high permeability, low permittivity, low dielectric loss value, and low permeability loss value can be developed by setting the secondary heat treatment temperature at about 1200 ° C. under the conditions of Table 1. Specifically, it is possible to develop a material having a high permeability of 2 or more, a low permittivity of 5 or less, a low dielectric loss value of 0.01 or less, and a low permeability loss value of 0.16 or less.
또한, 아래의 표 2와 표 3에서와 같이 1차 열처리 온도를 약 800℃ 및 1000℃로 고정했을 때에도 표 1의 결과와 같이 2차 열처리 온도가 약 1200℃ 일 때 높은 투자율 값을 갖는다는 것을 알 수 있다.In addition, as shown in Table 2 and Table 3 below, even when the primary heat treatment temperature is fixed to about 800 ℃ and 1000 ℃, as shown in the results of Table 1 has a high permeability value when the secondary heat treatment temperature is about 1200 ℃ Able to know.
표 2
2차열처리조건(1차열처리조건이 800℃일때) 유전율 유전손실 투자율 투자손실
1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz
800℃ 4.5 4.5 0.009 0.008 1.2 1.2 0.005 0.009
1000℃ 4.9 4.8 0.007 0.005 1.2 1.2 0.012 0.05
1100℃ 7.9 7.8 0.002 0.001 1.8 1.8 0.04 0.15
1200℃ 7.0 7.0 0.008 0.001 2.5 2.3 0.21 0.56
TABLE 2
Secondary heat treatment condition (when primary heat treatment condition is 800 ℃) permittivity Dielectric loss Permeability Investment loss
1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz
800 ℃ 4.5 4.5 0.009 0.008 1.2 1.2 0.005 0.009
1000 ℃ 4.9 4.8 0.007 0.005 1.2 1.2 0.012 0.05
1100 ℃ 7.9 7.8 0.002 0.001 1.8 1.8 0.04 0.15
1200 ℃ 7.0 7.0 0.008 0.001 2.5 2.3 0.21 0.56
표 3
2차열처리조건(1차열처리조건이 1000℃일때) 유전율 유전손실 투자율 투자손실
1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz
1200℃ 9.8 8.8 0.005 0.001 2.1 2.0 0.14 0.21
TABLE 3
Secondary heat treatment condition (when primary heat treatment condition is 1000 ℃) permittivity Dielectric loss Permeability Investment loss
1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz
1200 ℃ 9.8 8.8 0.005 0.001 2.1 2.0 0.14 0.21
표 4
1차열처리조건(2차열처리조건이 1200℃일때) 유전율 유전손실 투자율 투자손실
1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz 1GHz 2.4GHz
400℃ 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16
800℃ 7.0 7.0 0.008 0.001 2.5 2.3 0.21 0.56
1000℃ 9.8 8.8 0.005 0.001 2.1 2.0 0.14 0.21
Table 4
Primary heat treatment condition (when secondary heat treatment condition is 1200 ℃) permittivity Dielectric loss Permeability Investment loss
1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz 1 GHz 2.4 GHz
400 ℃ 4.2 4.2 0.002 0.001 2.0 1.9 0.05 0.16
800 ℃ 7.0 7.0 0.008 0.001 2.5 2.3 0.21 0.56
1000 ℃ 9.8 8.8 0.005 0.001 2.1 2.0 0.14 0.21
한편, 표 4에서와 같이 2차 열처리 온도를 약 1200℃로 고정했을시, 1차 열처리 온도가 약 400℃일 때 2 이상의 높은 투자율과 5 이하의 낮은 유전율, 0.01 이하의 낮은 유전손실 값과 0.16 이하의 낮은 투자손실 값을 갖는 와이 타입 페라이트를 제조할 수 있다는 것을 알 수 있다.On the other hand, when the secondary heat treatment temperature is fixed to about 1200 ℃ as shown in Table 4, when the primary heat treatment temperature is about 400 ℃ high permeability of 2 or more, low dielectric constant of 5 or less, low dielectric loss value of 0.01 or less and 0.16 It can be seen that the w-type ferrite having a low investment loss value as follows can be produced.
결론적으로 1차 열처리 온도가 300℃ 내지 500℃(바람직하게는 400℃)이고, 2차 열처리 온도가 1100℃ 내지 1250℃(바람직하게는 1200℃)인 경우에 본 발명의 목적에 부합하는 최적의 와이타입 페라이트를 제조할 수 있게 되는 것이다.In conclusion, when the first heat treatment temperature is 300 ° C to 500 ° C (preferably 400 ° C) and the second heat treatment temperature is 1100 ° C to 1250 ° C (preferably 1200 ° C), It will be able to manufacture the type of ferrite.
와이 타입 페라이트 적용예Y type ferrite application example
도 2는 유전율이 4, 투자율이 2인 캐리어를 동작주파수가 2.35GHz 인 안테나시스템에 적용했을시 각각의 유전손실과 투자손실에 대한 안테나의 동작이득을 나타낸 표이다.FIG. 2 is a table showing the operating gains of the antennas for the dielectric loss and the investment loss when a carrier having a permittivity of 4 and a permeability of 2 is applied to an antenna system having an operating frequency of 2.35 GHz.
도 2에서 알 수 있는 바와 같이, 캐리어의 유전손실 및 투자손실이 낮을수록 안테나의 동작이득은 높아진다. 그러므로 본 발명의 목적에 맞게 제조된 와이 타입 페라이트를 캐리어에 적용했을시, 높은 이득을 가지는 안테나 시스템을 제조할 수 있다는 것을 알 수 있다.As can be seen in Figure 2, the lower the dielectric loss and the investment loss of the carrier, the higher the operational gain of the antenna. Therefore, it can be seen that the antenna system having a high gain can be manufactured when the wire type ferrite manufactured for the purpose of the present invention is applied to the carrier.
이상 본 발명의 구체적 실시형태들을 참조하여 본 발명을 설명하였으나, 이는 예시에 불과하며 본 발명의 범위를 제한하는 것이 아니다. 당업자는 본 발명의 범위를 벗어나지 않는 범위 내에서 설명된 실시형태들을 변경 또는 변형할 수 있다. 본 명세서에서 설명된 각 기능 블록들 또는 수단들은 전자 회로, 직접 회로, ASIC(Application Specific Integrated Circuit) 등 공지된 다양한 소자들로 구현될 수 있으며, 각각 별개로 구현되거나 2 이상이 하나로 통합되어 구현될 수 있다. 본 명세서 및 청구범위에서 별개인 것으로 설명된 수단 등의 구성요소는 단순히 기능상 구별된 것으로 물리적으로는 하나의 수단으로 구현될 수 있으며, 단일한 것으로 설명된 수단 등의 구성요소도 수개의 구성요소의 결합으로 이루어질 수 있다. 또한 본 명세서에서 설명된 각 방법 단계들은 본 발명의 범위를 벗어나지 않고 그 순서가 변경될 수 있고, 다른 단계가 부가될 수 있다. 뿐만 아니라, 본 명세서에서 설명된 다양한 실시형태들은 각각 독립하여서뿐만 아니라 적절하게 결합 되어 구현될 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 첨부된 청구범위 및 그 균등물에 의해 정해져야 한다.The present invention has been described above with reference to specific embodiments of the present invention, but this is only illustrative and does not limit the scope of the present invention. Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention. Each of the functional blocks or means described in the present specification may be implemented by various well-known elements such as an electronic circuit, an integrated circuit, an application specific integrated circuit (ASIC), and the like. Can be. Components such as means described as separate in the specification and claims may be simply functionally distinct and may be physically implemented as one means, and components such as means described as a single element may be It can be made in combination. In addition, each method step described herein may be changed in order without departing from the scope of the present invention, and other steps may be added. In addition, the various embodiments described herein may be implemented independently as well as in any combination. Therefore, the scope of the invention should be defined by the appended claims and their equivalents, rather than by the described embodiments.

Claims (6)

  1. 일 회 이상 열처리하는 열처리 단계를 포함하는 와이 타입 페라이트(Y-Type Ferrite) 제조 방법에 있어서,In the Y-type Ferrite manufacturing method comprising a heat treatment step of heat treatment one or more times,
    상기 열처리단계는,The heat treatment step,
    300℃ 내지 500℃에서 제 1차 열처리를 수행하는 단계; 및Performing a first heat treatment at 300 ° C. to 500 ° C .; And
    1100℃ 내지 1250℃에서 제 2차 열처리를 수행하는 단계;Performing a second heat treatment at 1100 ° C. to 1250 ° C .;
    를 포함하는 것을 특징으로 하는 와이 타입 페라이트 제조 방법. Y type ferrite manufacturing method comprising a.
  2. 제 1 항에 있어서, 상기 열처리 단계 이전에,According to claim 1, Before the heat treatment step,
    와이 타입 페라이트를 제조하기 위한 초기 원료를 제공하는 제공 단계;Providing an initial raw material for producing the Y type ferrite;
    상기 초기 원료를 혼합하는 혼합 단계;A mixing step of mixing the initial raw materials;
    상기 초기 원료를 혼합하여 만든 제 1 혼합 용액을 공침시키는 공침 단계; 및A co-precipitation step of coprecipitating the first mixed solution made by mixing the initial raw materials; And
    상기 공침된 물질을 세척 여과 및 건조시키는 건조 단계; A drying step of washing, filtering, and drying the coprecipitated material;
    를 포함하는 것을 특징으로 하는 와이 타입 페라이트 제조 방법.Y type ferrite manufacturing method comprising a.
  3. 제 2 항에 있어서, 상기 초기 원료는,The method of claim 2, wherein the initial raw material,
    바륨(Ba) 화합물, 코발트(Co) 화합물 및 철(Fe) 화합물을 포함하되, 상기 바륨 화합물은 바륨 염화물, 바륨 질산화물 및 바륨 황화물 중 어느 하나이고, 상기 코발트 화합물은 코발트 염화물, 코발트 질산화물, 및 코발트 황화물 중 어느 하나이며, 상기 철 화합물은 철 염화물, 철 질산화물 및 철 황화물 중 어느 하나인 것을 특징으로 하는 와이 타입 페라이트 제조 방법.A barium (Ba) compound, a cobalt (Co) compound, and an iron (Fe) compound, wherein the barium compound is any one of barium chloride, barium nitrate, and barium sulfide, and the cobalt compound is cobalt chloride, cobalt nitrate, and cobalt Any one of the sulfides, the iron compound is a ferrite manufacturing method, characterized in that any one of iron chloride, iron nitrate and iron sulfide.
  4. 제 3 항에 있어서, 상기 제공 단계는,The method of claim 3, wherein the providing step,
    상기 바륨 화합물, 상기 질산 화합물 및 상기 철 화합물을 1.7 내지 2.3 : 1.7 내지 2.3 : 10 내지 14의 몰(Mol)비로 제공하는 단계를 포함하는 것을 특징으로 하는 와이 타입 페라이트 제조 방법.And providing the barium compound, the nitrate compound and the iron compound in a molar ratio of 1.7 to 2.3: 1.7 to 2.3: 10 to 14.
  5. 제 2 항에 있어서, 상기 공침 단계는, The method of claim 2, wherein the co-precipitation step,
    수산화 나트륨(NaOH)과 과산화수소(H2O2)수를 혼합한 제 2 혼합 용액을 상기 제 1 혼합 용액에 첨가하여 공침시키는 단계를 포함하는 것을 특징으로 하는 와이 타입 페라이트 제조 방법.A method of manufacturing a w-type ferrite, comprising: co-precipitation by adding a second mixed solution of sodium hydroxide (NaOH) and hydrogen peroxide (H 2 O 2 ) water to the first mixed solution.
  6. 제 1 항 내지 제 5 항 중 어느 한 항의 방법으로 제조된 와이 타입 페라이트.W-type ferrite prepared by the method of any one of claims 1 to 5.
PCT/KR2010/001864 2009-04-06 2010-03-26 Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same WO2010117156A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090029204A KR101161625B1 (en) 2009-04-06 2009-04-06 Method For Making Y-Type Ferrite And Y-Type Ferrite Made By The Method
KR10-2009-0029204 2009-04-06

Publications (2)

Publication Number Publication Date
WO2010117156A2 true WO2010117156A2 (en) 2010-10-14
WO2010117156A3 WO2010117156A3 (en) 2010-12-16

Family

ID=42936680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001864 WO2010117156A2 (en) 2009-04-06 2010-03-26 Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same

Country Status (2)

Country Link
KR (1) KR101161625B1 (en)
WO (1) WO2010117156A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081399A2 (en) * 2009-12-29 2011-07-07 주식회사 이엠따블유 Method for producing y-type ferrite, and y-type ferrite produced thereby
EP3046121A1 (en) * 2014-10-24 2016-07-20 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped y-phase hexagonal ferrites
US11069983B2 (en) 2014-09-30 2021-07-20 Skyworks Solutions, Inc. Modified Z-type hexagonal ferrite materials with enhanced resonant frequency
CN113213907A (en) * 2021-06-24 2021-08-06 横店集团东磁股份有限公司 Composite ferrite material and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383129B1 (en) * 2012-10-25 2014-04-09 고등기술연구원연구조합 High frequency magnetic substance using a waste lcd glass and method thereof
WO2018139776A1 (en) * 2017-01-26 2018-08-02 (주) 엘지화학 Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
KR102079734B1 (en) 2017-01-26 2020-02-20 주식회사 엘지화학 Ferrite catalyst for oxidative dehydrogenation, method for preparing the same and method of preparing butadiene using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750045A (en) * 1994-07-08 1998-05-12 Tdk Corporation Preparation of ferrite materials
US6669861B2 (en) * 2000-09-01 2003-12-30 Murata Manufacturing Co. Ltd Y-type hexagonal oxide magnetic material and inductor element
KR20060106686A (en) * 2005-03-31 2006-10-12 히타치 긴조쿠 가부시키가이샤 Ferrite sintered body and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750045A (en) * 1994-07-08 1998-05-12 Tdk Corporation Preparation of ferrite materials
US6669861B2 (en) * 2000-09-01 2003-12-30 Murata Manufacturing Co. Ltd Y-type hexagonal oxide magnetic material and inductor element
KR20060106686A (en) * 2005-03-31 2006-10-12 히타치 긴조쿠 가부시키가이샤 Ferrite sintered body and method of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DARJA LISJAK ET AL. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY vol. 26, 2006, pages 3681 - 3686 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081399A2 (en) * 2009-12-29 2011-07-07 주식회사 이엠따블유 Method for producing y-type ferrite, and y-type ferrite produced thereby
WO2011081399A3 (en) * 2009-12-29 2011-11-10 주식회사 이엠따블유 Method for producing y-type ferrite, and y-type ferrite produced thereby
US11069983B2 (en) 2014-09-30 2021-07-20 Skyworks Solutions, Inc. Modified Z-type hexagonal ferrite materials with enhanced resonant frequency
US10984928B2 (en) 2014-10-24 2021-04-20 Skyworks Solutions, Inc. Magnetodielectric y-phase strontium hexagonal ferrite materials formed by sodium substitution
EP3046121A1 (en) * 2014-10-24 2016-07-20 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped y-phase hexagonal ferrites
US10049796B2 (en) 2014-10-24 2018-08-14 Skyworks Solutions, Inc. Magnetodielectric Y-phase strontium hexagonal ferrite materials formed by sodium substitution
US10276287B2 (en) 2014-10-24 2019-04-30 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US10971288B2 (en) 2014-10-24 2021-04-06 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US10026530B2 (en) 2014-10-24 2018-07-17 Skyworks Solutions, Inc. Increased resonant frequency potassium-doped hexagonal ferrite
US11004581B2 (en) 2014-10-24 2021-05-11 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped Y-phase hexagonal ferrites
US10032547B2 (en) 2014-10-24 2018-07-24 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped Y-phase hexagonal ferrites
US11869689B2 (en) 2014-10-24 2024-01-09 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US11164689B2 (en) 2014-10-24 2021-11-02 Skyworks Solutions, Inc. Increased resonant frequency potassium-doped hexagonal ferrite
US11551837B2 (en) 2014-10-24 2023-01-10 Skyworks Solutions, Inc. Magnetodielectric Y-phase strontium hexagonal ferrite materials formed by sodium substitution
US11742118B2 (en) 2014-10-24 2023-08-29 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped Y-phase hexagonal ferrites
US11776718B2 (en) 2014-10-24 2023-10-03 Skyworks Solutions, Inc. Increased resonant frequency potassium-doped hexagonal ferrite
CN113213907A (en) * 2021-06-24 2021-08-06 横店集团东磁股份有限公司 Composite ferrite material and preparation method and application thereof

Also Published As

Publication number Publication date
KR20100110929A (en) 2010-10-14
WO2010117156A3 (en) 2010-12-16
KR101161625B1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2010117156A2 (en) Method for manufacturing y-type ferrite, and y-type ferrite manufactured by same
JP4859791B2 (en) Magnetic crystals and radio wave absorbers for radio wave absorbing materials
JP4787978B2 (en) Radio wave absorbing magnetic crystal and radio wave absorber
KR20180024928A (en) Composite magnetic particle and method for manufacturing the same
WO2010018964A2 (en) Method for producing ferrite
WO2011081399A2 (en) Method for producing y-type ferrite, and y-type ferrite produced thereby
WO2011081397A2 (en) Method for producing y-type ferrite, and y-type ferrite produced thereby
CN113412238A (en) Iron oxide magnetic powder and method for producing same
WO2015107459A1 (en) Development of nickel-zinc ferrites and methods for preparing same using iron-oxide byproducts of steel industry
JP2002145620A (en) Iron oxide and its production method
JP6607751B2 (en) Fe-Co alloy powder, manufacturing method thereof, antenna, inductor, and EMI filter
JP2003119023A (en) Method for producing ito powder, and ito powder
JP3919546B2 (en) Iron oxide powder
EP2799500A1 (en) Composite oxide black pigment and method for producing same
WO2012074238A9 (en) Y-type ferrite, and ferrite molded product prepared therefrom
US20160322141A1 (en) Nickel-zinc ferrites and methods for preparing same using fine iron oxide and bag house dust
KR20110075802A (en) Method for making y-type ferrite and y-type ferrite made by the method
JP2723176B2 (en) Method for producing LiFeO2 powder and heat-resistant yellow pigment comprising the powder
WO2015107456A1 (en) Development of nanocrystalline magnesium ferrites and methods for preparing same from steel rolling mill by-product millscale
KR101989385B1 (en) Method For Manufacturing Rod Shaped Ferrite Particles
JP3931960B2 (en) Fe (2) O (3) and production method thereof
JPS59195575A (en) Manufacture of ceramic raw material powder
CN117362022A (en) Ferrite wave-absorbing material and preparation method and application thereof
SU1733195A1 (en) Method of producing strontium ferrite powder for magnetoplasts
KR950008967B1 (en) Method of preparing y type hexagonal structure ferrite powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761817

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761817

Country of ref document: EP

Kind code of ref document: A2