WO2010117066A1 - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
WO2010117066A1
WO2010117066A1 PCT/JP2010/056472 JP2010056472W WO2010117066A1 WO 2010117066 A1 WO2010117066 A1 WO 2010117066A1 JP 2010056472 W JP2010056472 W JP 2010056472W WO 2010117066 A1 WO2010117066 A1 WO 2010117066A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin composition
weight
laminate film
fatty acid
Prior art date
Application number
PCT/JP2010/056472
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 幸田
省治 西尾
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2010117066A1 publication Critical patent/WO2010117066A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • the present invention relates to a laminate film. More specifically, it has excellent adhesiveness immediately after lamination molding without impairing the pot life of polyurethane adhesives and isocyanate adhesives, and can shorten the high-temperature aging treatment time performed after lamination molding.
  • the present invention relates to an excellent laminate film.
  • Laminate film is widely adopted as a method that enables multifunctional packaging materials such as food packaging, medical products and medicine packaging, shampoo and cosmetic packaging.
  • Such laminate films generally use an extrusion laminating method, a solvent-type dry laminating method, a solventless dry laminating method, etc., and a polyurethane adhesive or an isocyanate adhesive is applied to a substrate such as polyester, polyamide, or aluminum foil. It is manufactured by pasting together a polyolefin film.
  • Polyurethane-based adhesives and isocyanate-based adhesives are applied to the surface of a substrate and cured after being bonded to a polyolefin film.
  • these adhesives exhibit a high adhesive strength, but these adhesives have a slow curing reaction and are called aging. Heat treatment at about 40 ° C. is required for several days.
  • adhesion failure such as tunneling may occur.
  • a method in which a general-purpose slip agent such as erucic acid amide and a slip agent that is difficult to be adsorbed to a laminating adhesive such as a high melting point fatty acid amide are used in combination for example, Patent Documents 1, 4, and 5.
  • a method (for example, Patent Documents 2 and 3) in which an amide and an inorganic filler having a large particle size are used in combination has been proposed.
  • the film surface is bleed and the surface appearance of the film is impaired, the guide roll of the laminating apparatus is contaminated, and the adhesion with the base material is deteriorated. There were problems such as.
  • this aging treatment has a drawback that the antistatic agent blended in the film is absorbed by the adhesive and deteriorates the sustainability of the antistatic performance (see, for example, Patent Documents 6 to 9). Therefore, a method for maintaining the antistatic performance has been proposed.
  • a method of using a general-purpose nonionic surfactant such as glycerin fatty acid ester and a surfactant such as organic sulfonate and polyglycerin fatty acid ester that are difficult to move in the film for example, Patent Documents 6 and 7, And 8.
  • a method of preventing the movement of the antistatic agent by multilayering the film and providing a high-density, highly crystalline polymer layer in a part of the layers for example, Patent Document 9
  • Such surfactants that are difficult to move through the film have poor anti-bleeding performance due to poor bleedability to the film surface.
  • multilayering with a high-density, highly crystalline polymer layer increases costs. There was a problem such as inviting.
  • the present invention has been made in view of the situation as described above, and has excellent adhesiveness immediately after laminate molding, can shorten the aging treatment time for increasing the curing rate of the polyurethane adhesive, and is excellent in slip properties.
  • the object is to provide a film.
  • Another object of the present invention is to provide a laminate film that is excellent in adhesiveness immediately after laminate molding, can shorten the aging treatment time for increasing the curing rate of the polyurethane adhesive, and is excellent in antistatic properties. .
  • the present inventors have used a resin composition composed of a specific fatty acid metal salt and / or an amine compound for the olefin polymer as a laminate film, thereby bonding immediately after lamination. As a result, the present inventors have found that it has excellent slip properties and / or antistatic properties and has completed the present invention.
  • the present invention comprises at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, wherein (A) layer comprises 98 to 99.999% by weight of olefin polymer and fatty acid.
  • the resin composition Aa composed of 0.001 to 2% by weight of amide is selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin.
  • a resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt containing at least one metal and / or an amine compound, (C) the layer is a polyurethane-based adhesive and / or an isocyanate-based adhesive, (D )
  • the laminate film is characterized in that the layer comprises at least one base material.
  • the present invention is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and the (A) layer comprises 98 to 99.999% by weight of olefin polymer and electrification.
  • Resin composition Ab composed of 0.001 to 2% by weight of inhibitor, (B) layer selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin
  • a resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt containing at least one metal and / or an amine compound
  • the layer is a polyurethane-based adhesive and / or an isocyanate-based adhesive
  • D) The present invention relates to a laminate film characterized in that the layer comprises at least one base material.
  • the present invention relates to a laminate film, wherein the layer (A) is a resin composition Ac composed of 98 to 99.999% by weight of an olefin polymer, 0.001 to 2% by weight of a fatty acid amide and an antistatic agent. Is.
  • the gist of the present invention resides in the following (1) to (13).
  • Resin composition Aa composed of 001 to 2% by weight
  • (B) layer is at least one selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron, and tin
  • a resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt and / or an amine compound containing the above metal
  • (C) the layer is a polyurethane-based adhesive and / or isocyanate-based adhesive
  • (D) the layer is A laminate film comprising at least one base material.
  • (A) layer comprises 98 to 99.999% by weight of olefin polymer and antistatic agent 0.
  • Resin composition Ab composed of 0.001 to 2% by weight
  • (B) layer is at least one selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin
  • Resin composition B composed of 0.001 to 2% by weight of fatty acid metal salt and / or amine compound containing seed metals
  • (C) layer is polyurethane adhesive and / or isocyanate adhesive
  • (A) layer comprises 96 to 99.998% by weight of olefin polymer, 0.
  • Resin composition Ac composed of 001 to 2% by weight and antistatic agent 0.001 to 2% by weight
  • (B) layer is 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron, And a fatty acid metal salt containing at least one metal selected from the group consisting of tin and / or a resin composition B composed of 0.001 to 2% by weight of an amine compound
  • (C) the layer is a polyurethane adhesive and / or Alternatively, an isocyanate-based adhesive
  • the fatty acid metal salt constituting the resin composition B of the (B) layer is a fatty acid metal salt containing at least one metal selected from the group consisting of zinc, lithium, and cobalt.
  • the amine compound constituting the resin composition B of the (B) layer is a polyoxyethylene alkylamine represented by the following general formula (I): (1) to (3 The laminate film according to any one of the above.
  • R 1 represents a linear or branched alkyl or alkenyl group having 8 to 30 carbon atoms
  • R 2 and R 3 each independently represents —OCR ′ (R ′ represents a carbon atom having 8 to 30 carbon atoms) Represents a hydrogen group) or -H
  • m and n are each independently an integer of 1 to 10.
  • the amine compound constituting the resin composition B of the (B) layer is an alkylamine represented by the following general formula (II), and any one of (1) to (3) The laminated film of crab.
  • R 4 is a linear or branched fatty acid residue having 8 to 30 carbon atoms
  • R 5 and R 6 are each independently hydrogen, or a linear or branched chain having 1 to 8 carbon atoms.
  • the contact angle of water on the surface of the (A) layer side of the laminate film is 50 ° or more and 110 ° or less, according to any one of (1) and (4) to (8), Laminating film.
  • the antistatic agent constituting the resin composition Ab or the resin composition Ac of the layer (A) contains a glycerin fatty acid ester, and the laminate film according to (2) or (3) .
  • the antistatic agent constituting the resin composition Ab or the resin composition Ac of the (A) layer contains an alkyl sulfonate, and the laminate according to (2) or (3) the film.
  • the adhesive strength when left in an atmosphere at 23 ° C. for 5 minutes is 0.7 N / 25 mm or more, according to any one of (1) to (12) Laminate film.
  • the laminate film of the present invention is excellent as a packaging film for foods and the like with excellent productivity because it has excellent adhesiveness without being subjected to an aging treatment and can maintain good slip and antistatic properties for a long time. Useful for.
  • the olefin polymer constituting the layers (A) and (B) of the present invention is a homopolymer of an ⁇ -olefin having 2 to 12 carbon atoms such as ethylene, propylene, 1-butene or a copolymer with a vinyl compound. Indicates.
  • low density polyethylene LDPE
  • high density polyethylene ethylene / 1-butene copolymer
  • ethylene / 1-hexene copolymer ethylene / 1-octene copolymer
  • ethylene-4-methyl-1-pentene Ethylene / ⁇ -olefin copolymers such as copolymers, ethylene / vinyl ester copolymers such as ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers, ethylene / methacrylic acid copolymers, ethylene / acrylic Copolymer of ethylene and acrylic monomer such as acid ester copolymer, ethylene / methacrylic acid ester copolymer, and propylene such as polypropylene (PP), propylene / ethylene copolymer, propylene / 1-butene copolymer Polymers, poly 1-butene, poly 1-hexene, poly 4-methyl-1-pentene, etc.
  • PP polypropy
  • Such as olefin polymers Such as olefin polymers. These olefin polymers may be used singly or in combination of two or more. Among these olefin polymers, low-density polyethylene, high-density polyethylene, ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene A 1-octene copolymer is preferable, and an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and a propylene-based polymer are particularly preferable from the viewpoint of film strength.
  • the fatty acid amide constituting the layer (A) of the present invention is added to improve the slip property of the laminate film, and is obtained by the reaction of the fatty acid with ammonia or an amine compound.
  • Such fatty acid amides include caproic acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, myristoleic acid amide, palmitoleic acid amide, oleic acid amide, erucic acid amide and other fatty acid monoamides, ethylene Examples thereof include fatty acid bisamides such as bisstearic acid amide, ethylene bisoleic acid amide, ethylene bisbehenic acid amide, and ethylene biserucic acid amide. Such fatty acid amides may be used singly or in combination of two or more. Such fatty acid amides are commercially available from NOF Corporation under the trade name Alfro and Nippon Seika Co., Ltd. under the trade name Neutron.
  • examples of the antistatic agent constituting the layer (A) of the present invention include nonionic surfactants, zwitterionic surfactants, and anionic surfactants that are used as antistatic agents for polyolefins.
  • nonionic surfactant examples include glycerin fatty acid esters such as caproic acid glycerin ester, myristic acid glycerin ester, palmitic acid glycerin ester, stearic acid glycerin ester, oleic acid glycerin ester, and lauric acid glycerin ester; Polyglycerin fatty acid esters such as diglycerin ester, oleic acid diglycerin ester, stearic acid tetraglycerin ester; sorbitols; N, N-dihydroxyethylene stearylamine, polyoxyethylene stearylamine, polyoxyethylene laurylamine, polyoxypropylene Alkylamines such as stearylamine; polyoxyethylene stearyl amide, polyoxypropylene stearyl amide, etc.
  • glycerin fatty acid esters such as caproic acid glycerin ester, myristic acid gly
  • Alkyl amide such; capryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, alcohols such as lauryl alcohol, and the like.
  • zwitterionic surfactants include betaines such as alkylbetaines and alkylimidazolium betaines.
  • alkyl sulfonates such as sodium lauryl sulfonate, potassium lauryl sulfonate, sodium oleyl sulfonate, potassium oleyl sulfonate, sodium stearyl sulfonate, potassium stearyl sulfonate; potassium lauryl benzene sulfonate, Examples thereof include alkyl benzene sulfonates such as sodium oleyl benzene sulfonate, potassium oleyl benzene sulfonate, sodium stearyl benzene sulfonate, potassium stearyl benzene sulfonate, and alkyl phosphates.
  • Such surfactants can be used alone as an antistatic agent, or a plurality of such surfactants can be used in combination as an antistatic agent.
  • glycerin fatty acid esters are preferable because they are excellent in antistatic properties and do not deteriorate adhesiveness, and are a combination of glycerin fatty acid ester and polyglycerin fatty acid ester.
  • the combined use of glycerin fatty acid ester and alkylamide is particularly preferred.
  • a commercially available antistatic agent can be used.
  • RIKEN Vitamin “Riquemar” as glycerin fatty acid esters and polyglycerin fatty acid esters “Monogli”, “Uniguri” from Nippon Oil & Fats, “Electro Stripper” from Kao, etc.
  • “Atomer” from ICI as alkyl sulfonates Examples include Lion's “Reostat” and Miyoshi oil and fat “Dasper”.
  • the olefin polymer is 98 to 99.999% by weight
  • the fatty acid amide is 0.001 to 2% by weight, preferably the olefin polymer 99 to 99.99. 995 wt%, fatty acid amide 0.005-1 wt%, more preferably olefin polymer 99.5-99.995 wt%, fatty acid amide 0.005-0.5 wt%, most preferably olefin polymer 99.7 to 99.99% by weight, and fatty acid amide 0.01 to 0.3% by weight.
  • the film surface is inferior in slipping property, and when the fatty acid amide exceeds 2% by weight, exudation from the laminate film becomes excessive, and the content is obtained when used as a packaging material. This is not preferable because the quality of the product may be impaired.
  • the olefin polymer is 98 to 99.999% by weight
  • the antistatic agent is 0.001 to 2% by weight, and preferably the olefin polymer 99 to 99. 0.95 wt%, antistatic agent 0.005 to 1 wt%, more preferably 99.5 to 99.995 wt% olefin polymer, and 0.005 to 0.5 wt% antistatic agent.
  • the antistatic agent is less than 0.001% by weight, the antistatic property of the film surface is inferior, which is not preferable.
  • the antistatic agent exceeds 2% by weight, exudation from the laminate film becomes excessive, and a packaging material is obtained. In some cases, the quality of the contents may be impaired.
  • the resin composition constituting the layer (A) of the present invention a fatty acid amide and an antistatic agent may be used in combination.
  • the resin composition Ac contains the olefin polymer 96 to 99.998% by weight, the fatty acid amide 0.001 to 2% by weight, and the antistatic agent 0.001 to 2% by weight.
  • olefin polymer is preferably 98 to 99.99% by weight, fatty acid amide 0.005 to 1% by weight, and antistatic agent 0.005 to 1% by weight. preferable.
  • additives used in ordinary olefin polymers such as an antioxidant, a neutralizing agent, an antiblocking agent, and a surfactant are added to the resin composition A constituting the present invention as necessary. It doesn't matter.
  • the resin composition A constituting the layer (A) of the present invention can be produced by a commonly used resin mixing apparatus. Examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a pressure kneader, a melt kneader such as a rotating roll, a Henschel mixer, a V blender, a ribbon blender, and a tumbler.
  • a melt kneader is used, the melting temperature is preferably about the melting point of the olefin polymer to about 350 ° C.
  • the thickness of the layer (A) constituting the present invention is not particularly limited as long as the object of the present invention is achieved, and is 1 ⁇ m to 5 mm in thickness because of excellent flexibility and small problems such as breakage. In view of economy, the range of 1 ⁇ m to 100 ⁇ m is most preferable.
  • the layer (A) of the present invention can be produced by a known film forming apparatus such as an inflation molding machine or a T-die casting machine. It is also possible to produce a molten film with an extrusion laminating machine.
  • the layer (A) of the present invention may be formed into a plurality of layers by a known co-extrusion film forming apparatus such as a co-extrusion inflation molding machine or a T-die cast molding machine.
  • a known co-extrusion film forming apparatus such as a co-extrusion inflation molding machine or a T-die cast molding machine.
  • all the layers constituting the layer (A) may be constituted by the resin composition Aa, the resin composition Ab, or the resin composition Ac, but constitute the surface opposite to the surface in contact with the layer (B). Only the surface layer to be formed may be constituted by the resin composition Aa, the resin composition Ab, or the resin composition Ac.
  • the fatty acid metal salt constituting the layer (B) of the present invention contains at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin, and is bonded when the metal is zinc.
  • the effect of improving the curing rate of the agent is preferable.
  • One molecule or two or more fatty acids having different lengths and / or structures may be contained in one molecule.
  • Fatty acids constituting such fatty acid metal salts are saturated and / or unsaturated fatty acids having 4 to 30 carbon atoms, preferably 8 to 22 carbon atoms, more preferably 8 to 18 carbon atoms, and most preferably 8 to 14 carbon atoms. It is. Control of the fatty acid chain length is important because it determines the rate of transfer of the fatty acid metal salt to the adhesive. When the number of carbon atoms is 4 or more, the transfer amount to the polyurethane-based adhesive and / or the isocyanate-based adhesive increases, and the effect of improving the curing rate of the adhesive is high, which is preferable.
  • Such fatty acid metal salts include zinc octoate, zinc octenoate, zinc laurate, zinc stearate, zinc behenate, zinc 2-ethylhexanoate, lithium octoate, lithium laurate, lithium stearate, naphthenic acid.
  • Examples include cobalt, cobalt stearate, dibutyltin oxide, dibutyltin malate, dibutyltin laurate, dioctyltin malate, dioctyltin laurate, iron laurate, iron stearate, and the like, zinc octoate, zinc octenoate, Zinc laurate, zinc stearate, zinc behenate, zinc 2-ethylhexanoate, lithium octoate, lithium laurate, lithium stearate, cobalt naphthenate, and cobalt stearate are particularly suitable. These fatty acid metal salts can be used alone or in combination.
  • fatty acid zinc salts are preferred because they have a high effect of shortening the aging time, and most preferred are carbons of fatty acids such as zinc octoate, zinc octenoate, zinc laurate, and zinc 2-ethylhexanoate. It is fatty acid zinc whose number is 8.
  • the amine compound constituting the layer (B) of the present invention is not particularly limited as long as it is a compound having an amino group in the molecule, but is a polyoxyethylene alkylamine represented by the following general formula (I) , Hindered amine light stabilizers, and alkylamines represented by the following general formula (II) are preferable because of excellent adhesiveness, and polyoxyethylene alkylamines represented by the following general formula (I) are most preferable. These amine compounds can be used alone or in combination of two or more.
  • R 1 represents a linear or branched alkyl or alkenyl group having 8 to 30 carbon atoms
  • R 2 and R 3 each independently represents —OCR ′ (R ′ represents a carbon atom having 8 to 30 carbon atoms) Represents a hydrogen group) or -H
  • m and n are each independently an integer of 1 to 10.
  • R 4 is a linear or branched fatty acid residue having 8 to 30 carbon atoms
  • R 5 and R 6 are each independently hydrogen, or a linear or branched chain having 1 to 8 carbon atoms.
  • the carbon number of R 1 , R 2 , or R 3 constituting such a polyoxyethylene alkylamine is important for determining the transfer rate of the polyoxyethylene alkylamine to the adhesive, and the carbon number is 8 -30, preferably 8-22.
  • R 1 , R 2 , or R 3 has 8 or more carbon atoms
  • the transfer amount to the polyurethane-based adhesive and / or isocyanate-based adhesive increases, and the effect of improving the curing rate of the adhesive is high, which is preferable.
  • the number of carbon atoms is 30 or less, the amount of amino groups is increased, and the effect of improving the curing rate of the adhesive is high, which is preferable.
  • polyoxyethylene alkylamine examples include dodecyldioxyethylamine, tetradecyldioxyethylamine, octadecyldioxyethylamine, 16-oxyheptadecyldioxyethylamine, octadecyloxyethoxyethylamine, 17-octadecenyldioxyethylamine, Examples thereof include 1-methylheptadecyldioxyethylamine.
  • Such polyoxyethylene alkylamines may be used singly or in combination of two or more.
  • Such polyoxyethylene alkylamines can be obtained from commercial products, such as Naimine L-201, Naimine L-202, Naimine L-207, Naimeen S-202, Naimeen S-204, Naimeen from NOF Corporation. They are sold under the names S-210, Naimine O-205, Naimine T2-202, and the like.
  • the hindered amine light stabilizer constituting the present invention is a compound having a piperidine ring in the molecule and a structure in which hydrogen on carbons at the 2nd and 6th positions of the piperidine ring is substituted with a methyl group.
  • a hindered amine light stabilizer is not particularly limited, and examples thereof include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and dimethyl-1- (2-hydroxyethyl) succinate.
  • Such a hindered amine light stabilizer can be obtained from a commercial product, for example, sold under the trade names of Ciba Japan Co., Ltd., Tinuvin, Clariant Japan Co., Ltd., Hostabin, and Adeka Co., Ltd., Adeka Stub.
  • the hindered amine light stabilizer may be used not only alone but also in combination of two or more different structures.
  • the carbon number of the R 4 group constituting the alkylamine represented by the following general formula (II) is important for determining the transfer rate of the alkylamine to the adhesive, and preferably has 8 to 30 carbon atoms. Yes, more preferably 8-22.
  • the number of carbon atoms in the R 4 group is within this range, the mobility to the polyurethane adhesive and / or the isocyanate adhesive is excellent, and the effect of improving the curing rate of the adhesive is high, which is preferable. Further, when the number of carbon atoms in the R 5 or R 6 group is within this range, the effect of improving the curing rate of the adhesive is high, which is preferable.
  • Such alkylamines may be used singly or in combination of two or more.
  • alkylamines examples include laurylamine, myristylamine, stearylamine, oleylamine, behenylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, and the like from NOF Corporation.
  • Nissan amine BB Nissan amine AB, Nissan amine OB, tertiary Nissan amine BB, tertiary Nissan amine AB and the like.
  • these amine compounds and fatty acid metal salts containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin can be used in combination.
  • the blend in the resin composition B constituting the layer (B) of the present invention is at least one selected from the group consisting of 98 to 99.999% by weight of an olefin polymer, zinc, lithium, cobalt, iron, and tin.
  • the fatty acid metal salt and / or amine compound containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin is less than 0.001% by weight, the effect of improving the curing rate of the adhesive is low. Therefore, when the amount of the fatty acid metal salt and / or amine compound containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin exceeds 2% by weight, exudation from the laminate film occurs. It is not preferable because it becomes excessive and may deteriorate the quality of the contents when used as a packaging material.
  • the resin composition B constituting the layer (B) of the present invention may be added to an olefin resin usually used for an antioxidant, a lubricant, an inorganic filler, a surfactant, a slip agent, etc. as necessary. You may add the agent in the range which does not impair adhesiveness.
  • the resin composition B constituting the layer (B) of the present invention can be produced by a commonly used resin mixing apparatus. Examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a pressure kneader, a melt kneader such as a rotating roll, a Henschel mixer, a V blender, a ribbon blender, and a tumbler.
  • a melt kneader is used, the melting temperature is preferably about the melting point of the olefin polymer to about 350 ° C.
  • the thickness of the layer (B) constituting the present invention is not particularly limited as long as the object of the present invention is achieved, and is 1 ⁇ m to 5 mm in thickness because of excellent flexibility and small problems such as breakage. In view of economy, the range of 1 ⁇ m to 100 ⁇ m is most preferable.
  • the layer (B) of the present invention can be produced by a known film forming apparatus such as an inflation molding machine or a T die cast molding machine. It is also possible to produce a molten film with an extrusion laminating machine.
  • the surface of the (B) layer of the present invention that is in contact with the (C) layer is It is preferable that the contact surface to be in contact is oxidized.
  • oxidation treatment methods for oxidizing the layer surface include chromic acid treatment, sulfuric acid treatment, air oxidation, ozone treatment, corona discharge treatment, flame treatment, plasma treatment, etc.
  • corona discharge treatment, flame treatment, plasma treatment and / or ozone treatment are particularly preferred.
  • Corona discharge treatment is widely used as a continuous treatment technique for plastic film and sheet surfaces, and is performed by passing the film through a corona atmosphere generated by a corona discharge treatment machine.
  • the corona discharge density is preferably 1 to 100 W ⁇ min / m 2 , since the curing rate of the adhesive can be increased and good adhesive performance can be obtained.
  • the flame treatment is performed by bringing the film surface into contact with a flame generated when natural gas or propane is burned.
  • Plasma treatment is an excited inert gas that is electrically neutral after removing charged particles by electronically exciting a single or mixed gas such as argon, helium, neon, hydrogen, oxygen, and air with a plasma jet. Is sprayed onto the film surface.
  • a single or mixed gas such as argon, helium, neon, hydrogen, oxygen, and air
  • dye can be oxidized by air oxidation or ozone treatment.
  • the temperature of the resin composition for extrusion lamination of the present invention extruded from the die is preferably 290 ° C. or higher.
  • the resin composition was extruded from the die.
  • the temperature of the resin composition for extrusion lamination of the present invention is preferably 200 ° C. or higher.
  • the polyurethane adhesive and the isocyanate adhesive constituting the layer (C) of the present invention are not particularly limited, and known ones can be used.
  • the polyurethane-based adhesive is composed of at least one polyol component having at least two hydroxyl groups in the molecule and at least one polyisocyanate component and / or diisocyanate having at least two isocyanate groups in the molecule. It is preferable that the adhesive is constituted.
  • the polyol component can be appropriately selected from polyester polyols, polyether polyols, acrylic polyols, polyolefin polyols, and the like, and polyester polyols are particularly preferable because they have a high function of suppressing deterioration of adhesiveness with the (C) layer over time.
  • Diisocyanates include 4,4′-, 2,4′- and 2,2′-diisocyanate diphenylmethane, 1,5-diisocyanate naphthalene, 4,4′-diisocyanate dicyclohexylmethane, 1,4-diisocyanate benzene, and / or Aromatic diisocyanates such as 2,4- or 2,6-diisocyanate toluene, 1,6-diisocyanate hexane, 1,10-diisocyanate decane, 1,3-diisocyanate cyclopentane, 1,4-diisocyanate cyclohexane, 1-isocyanate- Illustrative are aliphatic and cycloaliphatic diisocyanates such as 3,3,5-trimethyl-3 or -5-isocyanatomethanecyclohexane.
  • the polyisocyanate component can be produced from these diisocyanate monomers.
  • polyurethane-based adhesives manufactured by Dainichi Seika Kogyo Co., Ltd., trade names Seika Bond E-263, Seika Bond C-26, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., trade names Takelac A3210, Takenate A3072, etc.
  • Commercial products such as Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd. can be used.
  • polyurethane-based adhesives or isocyanate-based adhesives can be blended with reaction catalysts and other additives within a range that does not adversely affect adhesiveness and pot life.
  • isocyanate-based adhesive examples include those having the above polyisocyanate and / or diisocyanate as the main component and an amine compound or the like as a curing agent.
  • the thickness of these adhesives is not particularly limited, but is preferably 0.01 to 10 ⁇ m because the effect of improving the curing rate of the adhesive is high, and more preferably 0.1 to 6 ⁇ m.
  • the adhesive is applied to the substrate and / or the polyolefin film with a coater attached to a known extrusion laminator, solvent-type dry laminator, or solventless dry laminator.
  • the solvent used for diluting the adhesive is not particularly limited, but esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, tetrahydrofuran, dioxane and the like Exemplified ethers, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and ethylene chloride, alcohols such as dimethyl sulfoxide, dimethyl sulfoamide, methanol, ethanol and isopropanol, water, etc. be able to.
  • esters such as ethyl acetate, butyl acetate and cellosolve acetate
  • ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone
  • Examples of the base material constituting the layer (D) of the present invention include a synthetic polymer film or sheet, woven fabric, non-woven fabric, paper, and metal foil.
  • Examples of the synthetic polymer film or sheet include a film or sheet made of a synthetic polymer such as polyester such as polyethylene terephthalate, polyamide, polyvinyl alcohol, saponified ethylene / vinyl acetate copolymer, polycarbonate, polyethylene, or polypropylene.
  • these polymer films or sheets may have a surface deposited with aluminum, alumina, silica or the like, or may have a surface printed with urethane-based ink or the like.
  • Examples of the woven or non-woven fabric include those made of synthetic resin such as polyester, polyethylene, and polypropylene, or those made of natural materials such as sufu.
  • Examples of the paper include craft paper, kulpack paper, high-quality paper, glassine paper, and paperboard. In addition to the use of these substrates alone, those obtained by laminating them can also be used.
  • the laminate film of the present invention is composed of four layers of (A) layer / (B) layer / (C) layer / (D) layer. May be included.
  • the laminate film of the present invention is bonded to the (B) layer and the substrate via the (C) layer using a known extrusion laminate molding machine, solvent-type dry laminate molding machine, solventless dry laminate molding machine, or the like. Can be manufactured. Although the manufacturing method of a laminate film is illustrated below, it is not limited to these methods. -After coating the (C) layer on the (D) layer, the (B) layer and the (A) layer are sequentially laminated by a tandem extrusion laminator. -After the (C) layer is applied to the (D) layer, the (B) layer is melt-laminated between the previously produced (A) layer film and the (C) layer by a sandwich extrusion laminator.
  • the laminate film of the present invention may be subjected to a heat treatment (aging treatment) at 30 ° C. or higher, which is performed after known extrusion laminate molding, solvent-type dry laminate molding, or solvent-free dry laminate molding. Therefore, it is possible to eliminate the heat treatment.
  • a heat treatment aging treatment
  • the adhesive strength when left for 5 minutes in an atmosphere at 23 ° C. after the laminate molding is 0.7 N / 25 mm or more because it is possible to avoid adhesion trouble such as tunneling, and more preferably 1. 0 N / 25 mm or more.
  • a laminate film satisfying this range can be suitably obtained by controlling the compounding ratio of the amine compound having alkyl and the fatty acid metal salt, the thickness of the polyolefin film, and the coating amount of the polyurethane adhesive.
  • the adhesive strength when left for 700 minutes in an atmosphere at 23 ° C. after lamination is 10 N / 25 mm or more because aging treatment can be made unnecessary.
  • the time for which the sealing strength of the laminate film when left in an atmosphere at 23 ° C. after lamination is 80% of the sealing strength for 72 hours in an atmosphere at 40 ° C. is within 12 hours, This is preferable because it is possible to improve the protection of the contents when avoiding the packaging and the packaging bag.
  • the surface specific resistance value on the (A) layer side surface is 10 13 to 10 17 ( ⁇ ). If it is in the range, it is preferable because a decrease in adhesive strength over time can be suppressed, and 10 14 to 10 17 ( ⁇ ) is more preferable.
  • a laminate film satisfying this range can be appropriately obtained by controlling the blending ratio of the fatty acid metal salt and / or amine compound, the thickness of the (B) layer, the amount of polyurethane adhesive and / or isocyanate adhesive applied. Can do.
  • the surface specific resistance value on the (A) layer side surface is 10 8 to 10 14 ( ⁇ ). If it is in the range, it is preferable because it can suppress a decrease in adhesive strength over time, and more preferably 10 8 to 10 13 ( ⁇ ).
  • Laminate films satisfying this range are blended proportions of antistatic agent, blended proportions of the fatty acid metal salt and / or amine compound, (A) layer and / or (B) layer thickness, polyurethane adhesive and / or isocyanate. It can be suitably obtained by controlling the coating amount of the system adhesive.
  • the surface resistivity was measured using TR8601 and TR-42 manufactured by Advantest Co., Ltd., and the resistivity on the surface of the laminate after 1 minute at an applied voltage of 500 kV in an environment of 23 ° C. and 50% RH. It can be obtained by reading.
  • Such laminate film can be used as a wide range of packaging materials such as snack foods, dried foods such as instant noodles, soups, miso, pickles, beverages and other aquatic foods and drinks, medicines such as infusion bags, shampoos and cosmetics. it can.
  • MFR Melt mass flow rate
  • Polyester (PET) film and polyolefin film obtained by cutting the laminate film obtained in Examples into a shape having a width of 25 mm and a length of 100 mm and bonding them with a polyurethane adhesive and / or an isocyanate adhesive
  • the adhesive strength between them was measured with Autograph DCS-100 (manufactured by Shimadzu Corporation). The measurement was performed after 5 minutes and 700 minutes after the lamination. The peeling speed is 300 mm / min.
  • the laminate film storage temperature from laminate molding to peel strength measurement is 23 ° C.
  • the polyolefin film surfaces of the laminate film obtained in the examples were heat-sealed under the conditions of a temperature of 150 ° C., a pressure of 0.1 MPa, and a time of 1 second.
  • the heat-sealed film was cut into a shape having a width of 15 mm and a length of 100 mm, and the peel strength of the heat-sealed portion was measured with Autograph DCS-100 (manufactured by Shimadzu Corporation). The measurement was performed at intervals of 1 hour between 1 and 16 hours after lamination, and thereafter at intervals of 12 hours and 72 hours after 24 hours.
  • the sample used was left in a 23 ° C. atmosphere after lamination.
  • the peeling speed is 300 mm / min.
  • the time when 80% strength of the seal strength of the sample left in an atmosphere of 40 ° C. for 72 hours was developed was defined as the seal strength development time.
  • Slip property (A) layer surface of the laminate film obtained by the Example was measured based on JIS K7125 (1999), and ⁇ K (dynamic friction coefficient) was measured.
  • the laminate film used for the measurement was a laminate film which was left in an atmosphere at 23 ° C. after being molded. However, some of the samples with insufficient adhesion were subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C.
  • Example 1 Low-density polyethylene having an MFR of 8 g / 10 min and a density of 918 kg / m 3 as an olefin polymer (trade name Petrocene 213 manufactured by Tosoh Corporation, hereinafter sometimes referred to as PE-B) 99.95% by weight
  • PE-B olefin polymer
  • Polyoxyethylene dodecylamine trade name: Naimine L-202 manufactured by NOF Corporation, hereinafter sometimes referred to as CAT-1 as a polyoxyethylene alkylamine is blended so as to be 0.05% by weight.
  • the mixture was melt-kneaded with a shaft extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of the resin composition B used for the (B) layer.
  • olefin polymer a mixture of an ethylene / 1-hexene copolymer having an MFR of 10 g / 10 min and a density of 913 kg / m 3 and a low density polyethylene (trade name Nipolon- manufactured by Tosoh Corporation) Z TZ420 (hereinafter sometimes referred to as PE-A) is 99.98% by weight, and erucic acid amide (trade name Alflow P-10 manufactured by NOF Corporation) as the fatty acid amide is sometimes referred to as FA-1.
  • a 90 mm ⁇ / 65 mm ⁇ coextrusion laminator (manufactured by Placo) was used for the production of the laminate film.
  • the obtained resin composition B pellets are supplied to an extruder having a 90 mm ⁇ screw, and the resin composition Aa pellets are supplied to an extruder having a 65 mm ⁇ screw, and are coextruded from a T die at a temperature of 320 ° C.
  • PET biaxially stretched polyester film
  • a laminate film is obtained by coextruding and laminating a resin composition B to a thickness of 20 ⁇ m and a resin composition A to a thickness of 40 ⁇ m on a base material obtained by applying a polyurethane adhesive blended in the following ratio as a layer and drying the solvent. Obtained.
  • Example 2 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.95% by weight of PE-B, zinc distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1, except that the nominal zinc stearate (hereinafter sometimes referred to as CAT-2) was 0.05% by weight. The evaluation results are shown in Table 1.
  • Example 3 As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 As resin composition B, PE-B was 99.95 wt%, CAT-1 was 0.05 wt%, PE-B was 99.80 wt%, and CAT-2 was 0.20 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, zinc dilaurate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the nominal gin laurate (hereinafter sometimes referred to as CAT-3) was 0.1% by weight. The evaluation results are shown in Table 1.
  • Example 6 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and poly ⁇ [6- [ (1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine-2,4-diyl] [[(2,2,6,6-tetramethyl-4-piperidyl) imino] Hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] ⁇ (Ciba Japan Co., Ltd. trade name Kimasorb 944FDL, hereinafter sometimes referred to as CAT-4) 0.10 weight A laminated film was obtained in the same manner as in Example 1 except that the content was%. The evaluation results are shown in Table 1.
  • Example 7 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, amine dimethylstearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the trade name of tertiary amine AB (hereinafter sometimes referred to as CAT-5) was changed to 0.10% by weight. The evaluation results are shown in Table 1.
  • Example 8 As resin composition Aa, PE-A was changed to 99.98 wt%, FA-1 was changed to 0.02 wt%, PE-A was changed to 99.92 wt%, and FA-1 was changed to 0.08 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 9 As resin composition Aa, PE-A 99.98 wt%, FA-1 0.02 wt% instead of PE-A 99.98 wt%, ethylenebisoleic acid amide (NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the product name Alflow AD281-F (hereinafter sometimes referred to as FA-2) was 0.02 wt%. The evaluation results are shown in Table 1.
  • Example 10 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 2-ethyl-zinc hexanoate (Nippon Chemical Industry ( A laminate film was obtained in the same manner as in Example 1 except that the product name Nikka Octix Zinc (18%, hereinafter may be referred to as CAT-6) was 0.1% by weight. The evaluation results are shown in Table 1.
  • Comparative Example 1 Laminate film in the same manner as in Example 1 except that the resin composition B was changed to 99.95% by weight of PE-B and 0.05% by weight of CAT-1 but 100% by weight of PE-B. Got.
  • the evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was used, but the static friction coefficient was high and the slip property was poor.
  • Comparative Example 2 As resin composition B, PE-B was changed to 99.95 wt%, CAT-1 was changed to 0.05 wt%, PE-B was changed to 97.80 wt%, and CAT-1 was changed to 2.2 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength did not increase after aging treatment for 72 hours in an atmosphere at 40 ° C., the slip property was not evaluated.
  • Comparative Example 3 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, calcium distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the nominal calcium stearate G (hereinafter sometimes referred to as CAT-7) was 0.10% by weight.
  • the evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was used, but the static friction coefficient was high and the slip property was poor.
  • Comparative Example 4 A laminate film as in Example 1 except that the resin composition Aa was changed to 99.98% by weight of PE-A and 100% by weight of PE-A instead of 0.02% by weight of FA-1. Got. The evaluation results are shown in Table 2. The static friction coefficient was high and the slip property was inferior.
  • Comparative Example 5 As the resin composition Aa, PE-A was changed to 99.98 wt%, FA-1 was changed to 0.02 wt%, PE-A was changed to 97.8 wt%, and FA-1 was changed to 2.2 wt%. Except for the above, an attempt was made to produce a laminate film in the same manner as in Example 1, but the smoke generation during the laminate molding was so severe that a laminate film could not be obtained.
  • Example 11 As an olefin polymer, a propylene polymer having a MFR of 6.5 g / 10 min and a density of 900 kg / m 3 (manufactured by Nippon Polypro Co., Ltd., trade name: FW4BT, hereinafter may be referred to as PP) 99 90% by weight and CAT-2 in an amount of 0.10% by weight, and melt-kneaded with a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) 1 pellet was obtained.
  • PP propylene polymer having a MFR of 6.5 g / 10 min and a density of 900 kg / m 3
  • PP melt-kneaded with a twin screw extruder
  • a three-type three-layer coextrusion cast film molding machine manufactured by Plastics Engineering Laboratory
  • the above resin composition Aa-1 pellets are placed in the extruder constituting one surface layer (A layer)
  • the resin composition B-1 pellets are placed in the extruder constituting the other two layers (B1 layer, B2 layer).
  • the corona treatment was applied.
  • the thickness of each layer was 20 ⁇ m.
  • a solvent-type dry laminator manufactured by Inoue Metal Industry Co., Ltd.
  • Polyurethane adhesive compounded at the ratio shown below is applied to the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 ⁇ m, hereinafter sometimes referred to as PET)
  • PET biaxially stretched polyester film
  • Example 12 instead of the resin composition B-1, an ethylene / 1-hexene copolymer having a MFR of 2 g / 10 min and a density of 920 kg / m 3 (trade name Nipolon Z-ZF230, manufactured by Tosoh Corp., hereinafter referred to as PE -C) may be changed to Resin Composition B-2 with 99.90% by weight and CAT-2 at 0.10% by weight, and PE-C may be used instead of Resin Composition Aa-1.
  • a laminate film was obtained in the same manner as in Example 10, except that the resin composition Aa-2 was changed to 99.96 wt% and FA-1 0.04 wt%.
  • Example 13 Instead of resin composition Aa-1, PE-C was changed to resin composition Aa-3 with 99.96 wt%, FA-1 0.02 wt%, and FA-2 0.02 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 11.
  • Example 14 Low-density polyethylene having an MFR of 8 g / 10 min and a density of 918 kg / m 3 as an olefin polymer (trade name Petrocene 213 manufactured by Tosoh Corporation, hereinafter sometimes referred to as PE-B) 99.95% by weight , Polyoxyethylene dodecylamine (CAT-1) as polyoxyethylene alkylamine was mixed at 0.05% by weight, and melt kneaded with a twin screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.). (B) The pellet of the resin composition B used for a layer was obtained.
  • PE-B Polyoxyethylene dodecylamine
  • AS-2 stearic acid glycerin ester
  • AS-2 stearic acid polyglycerin ester
  • a product name Riquemar S-71D may be blended to 0.1% by weight, and a twin screw extruder (labor plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) And kneaded to obtain pellets of the resin composition Ab used for the layer (A).
  • a 90 mm ⁇ / 65 mm ⁇ coextrusion laminator (manufactured by Placo) was used for the production of the laminate film.
  • the obtained resin composition B pellets are supplied to an extruder having a 90 mm ⁇ screw, and the resin composition Ab pellets are supplied to an extruder having a 65 mm ⁇ screw, and are coextruded from a T die at a temperature of 320 ° C.
  • PET biaxially stretched polyester film
  • a laminate film is obtained by coextrusion laminating a resin composition B to a thickness of 20 ⁇ m and a resin composition Ab to a thickness of 40 ⁇ m on a base material obtained by applying a polyurethane adhesive blended in the ratio shown below as a layer and drying the solvent. Obtained.
  • Example 15 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.95% by weight of PE-B and 0. 5% of zinc distearate (CAT-2) were added. A laminate film was obtained in the same manner as in Example 14 except that the content was changed to 05% by weight. The evaluation results are shown in Table 4.
  • Example 16 As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 4.
  • Example 17 As resin composition B, PE-B was 99.95 wt%, CAT-1 was 0.05 wt%, PE-B was 99.80 wt%, and CAT-2 was 0.20 wt%. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 4.
  • Example 18 As the resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 0.9% of zinc dilaurate (CAT-3) were added. A laminate film was obtained in the same manner as in Example 14 except that the amount was 10% by weight. The evaluation results are shown in Table 4.
  • Example 19 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and poly ⁇ [6- [ (1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine-2,4-diyl] [[(2,2,6,6-tetramethyl-4-piperidyl) imino] A laminate film was obtained in the same manner as in Example 14 except that hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] ⁇ (CAT-4) was changed to 0.10 wt%. . The evaluation results are shown in Table 4.
  • Example 20 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 0% of dimethyl stearate (CAT-5) A laminate film was obtained in the same manner as in Example 14 except that the content was changed to 10% by weight. The evaluation results are shown in Table 4.
  • Example 21 As the resin composition Ab, 99.80% by weight of PE-A, 0.1% by weight of AS-1, 0.1% by weight of AS-2, 99.70% by weight of PE-A, AS A laminate film was obtained in the same manner as in Example 14 except that -1 was 0.15 wt% and AS-2 was 0.15 wt%. The evaluation results are shown in Table 4.
  • Example 22 As the resin composition Ab, 99.80% by weight of PE-A, 0.1% by weight of AS-1, 0.1% by weight of AS-2, 99.80% by weight of PE-A, alkyl A laminate film was obtained in the same manner as in Example 14 except that sodium sulfonate (Miyoshi Oil & Fats Co., Ltd., trade name: Dasper 802D, hereinafter sometimes referred to as AS-3) was 0.2% by weight. It was. The evaluation results are shown in Table 4.
  • Example 23 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, 2-ethyl-zinc hexanoate (CAT-6) A laminate film was obtained in the same manner as in Example 14 except that the content was 0.1 wt%. The evaluation results are shown in Table 4.
  • Comparative Example 6 Laminated film in the same manner as in Example 14 except that the resin composition B was changed to 99.95% by weight of PE-B and 0.05% by weight of CAT-1 but 100% by weight of PE-B. Got. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. In addition, in the antistatic property evaluation, a sample subjected to aging treatment for 72 hours in an atmosphere at 40 ° C. was used because of low adhesive strength, but the antistatic property was poor.
  • Comparative Example 7 As resin composition B, PE-B was changed to 99.95 wt%, CAT-1 was changed to 0.05 wt%, PE-B was changed to 97.80 wt%, and CAT-1 was changed to 2.2 wt%. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength did not increase after aging treatment for 72 hours in an atmosphere at 40 ° C., the antistatic property was not evaluated.
  • Comparative Example 8 As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, calcium distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 14 except that the nominal calcium stearate G (hereinafter sometimes referred to as CAT-7) was 0.10% by weight. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample which had been subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was inferior in antistatic property.
  • Comparative Example 9 As resin composition Ab, PE-A was changed to 99.80 wt%, AS-1 was changed to 0.1 wt%, AS-2 was changed to 0.1 wt%, and PE-A was changed to 100 wt%. A laminate film was obtained in the same manner as in Example 14. The evaluation results are shown in Table 5, but were inferior in antistatic properties.
  • Comparative Example 10 As the resin composition Ab, instead of 99.80% by weight of PE-A, 0.1% by weight of AS-1 and 0.1% by weight of AS-2, 97.8% by weight of PE-A, AS Except that -1 was 1.1 wt% and AS-2 was 1.1 wt%, an attempt was made to produce a laminate film in the same manner as in Example 14. However, smoke generation during laminate molding was severe, and the laminate film was Cann't get.
  • Example 24 As the olefin polymer, blended so that the propylene polymer (PP) with MFR of 6.5 g / 10 min, density of 900 kg / m 3 is 99.90% by weight, and CAT-2 is 0.10% by weight. Then, it was melt-kneaded with a twin screw extruder (Laboplast Mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of resin composition B-1 used for the B layer.
  • PP propylene polymer
  • PP 99.60% by weight, AS-1 0.2% by weight, polyoxyethylene lauryl amide (manufactured by NOF Corporation, trade name Stahome DL, hereinafter sometimes referred to as AS-4) is 0.
  • the mixture was blended so as to be 2% by weight, and melt-kneaded by a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of the resin composition Ab-4 used for the A layer.
  • a three-type three-layer coextrusion cast film molding machine manufactured by Plastics Engineering Laboratory
  • the above resin composition Ab-4 pellets are placed in the extruder constituting one surface layer (A layer)
  • the resin composition B-1 pellets are placed in the extruder constituting the other two layers (B1 layer, B2 layer).
  • the corona treatment was applied.
  • the thickness of each layer was 20 ⁇ m.
  • a solvent-type dry laminator manufactured by Inoue Metal Industry Co., Ltd.
  • Polyurethane adhesive compounded at the ratio shown below is applied to the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 ⁇ m, hereinafter sometimes referred to as PET)
  • PET biaxially stretched polyester film
  • Example 25 instead of the resin composition B-1, an ethylene / 1-hexene copolymer having a MFR of 2 g / 10 min and a density of 920 kg / m 3 (trade name Nipolon Z-ZF230, manufactured by Tosoh Corp., hereinafter referred to as PE -C) may be changed to Resin Composition B-2 with 99.90% by weight and CAT-2 at 0.10% by weight, and PE-C may be used instead of Resin Composition Ab-4.
  • a laminate film was obtained in the same manner as in Example 24 except that the resin composition A-5 was changed to 99.90% by weight, AS-1 0.05% by weight, and AS-2 0.05% by weight. It was.
  • Table 6 shows the adhesive strength of the obtained laminate film.
  • Example 26 As resin composition A, PE-A was 99.80 wt%, AS-1 was 0.1 wt%, AS-2 was 0.1 wt%, PE-A was 99.72 wt%, AS A laminate film was obtained in the same manner as in Example 14 except that -1 was changed to 0.10 wt%, AS-2 was changed to 0.10 wt%, and FA-1 was changed to 0.08 wt%. The evaluation results are shown in Table 7.
  • Example 27 As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 26 except that. The evaluation results are shown in Table 7.
  • Example 28 As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-6 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 26 except that. The evaluation results are shown in Table 7.
  • the laminate film of the present invention has excellent adhesiveness without being subjected to an aging treatment and can maintain good slip and antistatic properties for a long period of time. Useful for. Therefore, the industrial value of the present invention is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a laminated film having excellent slip properties, which has excellent adhesion right after lamination molding and is capable of reducing the aging time for increasing the curing rate of a polyurethane adhesive. Specifically disclosed is a laminated film which is configured of four layers, namely a layer (A), a layer (B), a layer (C) and a layer (D). The layer (A) is configured from a resin composition A that is composed of an olefin polymer, and a fatty acid amide and/or an antistatic agent; the layer (B) is configured from a resin composition B that is composed of an olefin polymer, and an amine compound and/or a fatty acid metal salt that contains at least one metal selected from the group consisting of zinc, lithium, cobalt, iron and tin; the layer (C) is configured from a polyurethane adhesive and/or an isocyanate adhesive; and the layer (D) is configured of at least one or more base layers.

Description

ラミネートフィルムLaminate film
 本発明はラミネートフィルムに関するものである。更に詳しくは、ポリウレタン系接着剤やイソシアネート系接着剤のポットライフを損なわずにラミネート成形直後の接着性に優れ、ラミネート成形後に行われる高温エージング処理時間の短縮が可能となり、スリップ性及び帯電防止性に優れたラミネートフィルムに関するものである。 The present invention relates to a laminate film. More specifically, it has excellent adhesiveness immediately after lamination molding without impairing the pot life of polyurethane adhesives and isocyanate adhesives, and can shorten the high-temperature aging treatment time performed after lamination molding. The present invention relates to an excellent laminate film.
 ラミネートフィルムは、食品包装、医療品及び薬品等の包装、シャンプー及び化粧品等の包装など、包装材料の多機能化を可能とする方法として広く採用されている。このようなラミネートフィルムは、一般に、押出ラミネート法、溶剤型ドライラミネート法、無溶剤型ドライラミネート法などを用い、ポリエステルやポリアミド、アルミ箔などの基材にポリウレタン系接着剤やイソシアネート系接着剤を介し、ポリオレフィンフィルムを貼り合わせることで製造される。ポリウレタン系接着剤やイソシアネート系接着剤は、基材表面に塗布され、ポリオレフィンフィルムと貼り合わされた後に硬化することにより高い接着強度を発現させるが、これらの接着剤では硬化反応が遅く、エージングと称される40℃程度の熱処理が数日間必要とされている。また、硬化速度が遅いことによりラミネート直後の接着強度が低いため、トンネリングなどの接着不良を生じることもある。 Laminate film is widely adopted as a method that enables multifunctional packaging materials such as food packaging, medical products and medicine packaging, shampoo and cosmetic packaging. Such laminate films generally use an extrusion laminating method, a solvent-type dry laminating method, a solventless dry laminating method, etc., and a polyurethane adhesive or an isocyanate adhesive is applied to a substrate such as polyester, polyamide, or aluminum foil. It is manufactured by pasting together a polyolefin film. Polyurethane-based adhesives and isocyanate-based adhesives are applied to the surface of a substrate and cured after being bonded to a polyolefin film. However, these adhesives exhibit a high adhesive strength, but these adhesives have a slow curing reaction and are called aging. Heat treatment at about 40 ° C. is required for several days. Moreover, since the adhesive strength immediately after lamination is low due to the slow curing rate, adhesion failure such as tunneling may occur.
 また、このエージング処理では、フィルムに配合した高級脂肪族アミド系のスリップ剤が接着剤に吸収され、開口性を悪化させるという欠点があった(例えば特許文献1~3参照。)。そのため、スリップ性を維持する方法が提案されている。 In addition, this aging treatment has a drawback that the higher aliphatic amide-based slip agent blended in the film is absorbed by the adhesive and deteriorates the openability (see, for example, Patent Documents 1 to 3). Therefore, a method for maintaining the slip property has been proposed.
 例えば、エルカ酸アミドのような汎用スリップ剤と高融点の脂肪酸アミドのようなラミネート接着剤に吸着されにくいスリップ剤を併用する方法(例えば、特許文献1、4、及び5。)、高融点脂肪酸アミドと粒径の大きな無機充填剤を併用する方法(例えば特許文献2及び3。)などが提案されている。しかしながら、このような高融点の脂肪酸アミドを使用すると、フィルム表面にブリードしてフィルムの表面外観を損なったり、ラミネート装置のガイドロールを汚染すること、また基材との接着性を悪化させること、などの問題があった。 For example, a method in which a general-purpose slip agent such as erucic acid amide and a slip agent that is difficult to be adsorbed to a laminating adhesive such as a high melting point fatty acid amide are used in combination (for example, Patent Documents 1, 4, and 5). A method (for example, Patent Documents 2 and 3) in which an amide and an inorganic filler having a large particle size are used in combination has been proposed. However, when such a high melting point fatty acid amide is used, the film surface is bleed and the surface appearance of the film is impaired, the guide roll of the laminating apparatus is contaminated, and the adhesion with the base material is deteriorated. There were problems such as.
 また、このエージング処理では、フィルムに配合した帯電防止剤が接着剤に吸収され、帯電防止性能の持続性を悪化させるという欠点があった(例えば特許文献6~9参照。)。そのため、帯電防止性能を維持する方法が提案されている。 Further, this aging treatment has a drawback that the antistatic agent blended in the film is absorbed by the adhesive and deteriorates the sustainability of the antistatic performance (see, for example, Patent Documents 6 to 9). Therefore, a method for maintaining the antistatic performance has been proposed.
 例えば、グリセリン脂肪酸エステルのような汎用非イオン系界面活性剤とフィルム中を移動しにくい有機スルホン酸塩やポリグリセリン脂肪酸エステルのような界面活性剤を併用する方法(例えば、特許文献6、7、及び8。)、フィルムを多層化し一部の層に高密度、高結晶性ポリマー層を設けることにより帯電防止剤の移動を防止する方法(例えば特許文献9。)などが提案されている。しかしながら、このようなフィルム中を移動しにくい界面活性剤はフィルム表面へのブリード性に劣るため帯電防止性能が不十分であり、一方、高密度、高結晶性ポリマー層を設ける多層化はコスト上昇を招くなどの問題があった。 For example, a method of using a general-purpose nonionic surfactant such as glycerin fatty acid ester and a surfactant such as organic sulfonate and polyglycerin fatty acid ester that are difficult to move in the film (for example, Patent Documents 6 and 7, And 8.), a method of preventing the movement of the antistatic agent by multilayering the film and providing a high-density, highly crystalline polymer layer in a part of the layers (for example, Patent Document 9) has been proposed. However, such surfactants that are difficult to move through the film have poor anti-bleeding performance due to poor bleedability to the film surface. On the other hand, multilayering with a high-density, highly crystalline polymer layer increases costs. There was a problem such as inviting.
 さらに、帯電防止剤はポリウレタン系接着剤やイソシアネート系接着剤の硬化反応を妨げるものが多く、接着剤の硬化前に帯電防止剤が接着剤層へ移動し接着不良を生じることがあった。そのため、ポリグリセリン脂肪酸エステルなどのポリマー中の移動速度が低い帯電防止剤を選択する方法などが提案されているものの(例えば、特許文献10。)、帯電防止性能が不十分であるなどの問題があった。 Furthermore, many antistatic agents interfere with the curing reaction of polyurethane adhesives and isocyanate adhesives, and the antistatic agent may migrate to the adhesive layer before the adhesive is cured, resulting in poor adhesion. Therefore, although a method for selecting an antistatic agent having a low moving speed in a polymer such as polyglycerin fatty acid ester has been proposed (for example, Patent Document 10), there are problems such as insufficient antistatic performance. there were.
 一方、エージング処理時間を短縮するため、貼り合わせるフィルムの少なくとも一方にポリウレタン硬化触媒を添加する方法が提案されている(例えば、特許文献11参照。)。しかし、本文献に記載されている触媒は、アミン化合物、有機錫化合物、イプシロンカプロラクタムなど人体に悪影響を及ぼす可能性が高く、ラミネートフィルムの主用途である食品包装などに用いることができない。 On the other hand, in order to shorten the aging treatment time, a method of adding a polyurethane curing catalyst to at least one of the films to be bonded has been proposed (for example, see Patent Document 11). However, the catalyst described in this document has a high possibility of adversely affecting the human body, such as an amine compound, an organic tin compound, and epsilon caprolactam, and cannot be used for food packaging, which is the main use of laminate films.
日本国特開平3-172328号公報Japanese Unexamined Patent Publication No. 3-172328 日本国特開平6-312491号公報Japanese Unexamined Patent Publication No. 6-312491 日本国特開平10-235815号公報Japanese Unexamined Patent Publication No. 10-235815 日本国特開平6-928号公報Japanese Laid-Open Patent Publication No. 6-928 日本国特開平6-1894号公報Japanese Unexamined Patent Publication No. 6-1894 日本国特開2007-313737号公報Japanese Unexamined Patent Publication No. 2007-313737 日本国特開2007-320219号公報Japanese Unexamined Patent Publication No. 2007-320219 日本国特開2004-160964号公報Japanese Unexamined Patent Publication No. 2004-160964 日本国特開2002-264283号公報Japanese Unexamined Patent Publication No. 2002-264283 日本国特開2001-260284号公報Japanese Unexamined Patent Publication No. 2001-260284 米国特許第6074755号明細書US Pat. No. 6,074,755
 本発明は、上記のような状況を鑑みなされたものであって、ラミネート成形直後の接着性に優れ、ポリウレタン系接着剤の硬化速度を高めるエージング処理時間を短縮できるとともに、スリップ性に優れたラミネートフィルムを提供することを目的とするものである。 The present invention has been made in view of the situation as described above, and has excellent adhesiveness immediately after laminate molding, can shorten the aging treatment time for increasing the curing rate of the polyurethane adhesive, and is excellent in slip properties. The object is to provide a film.
 また本発明は、ラミネート成形直後の接着性に優れ、ポリウレタン系接着剤の硬化速度を高めるエージング処理時間を短縮できるとともに、帯電防止性に優れたラミネートフィルムを提供することを目的とするものである。 Another object of the present invention is to provide a laminate film that is excellent in adhesiveness immediately after laminate molding, can shorten the aging treatment time for increasing the curing rate of the polyurethane adhesive, and is excellent in antistatic properties. .
 本発明者らは、上記課題を解決すべく鋭意検討した結果、オレフィン系重合体に特定の脂肪酸金属塩及び/又はアミン化合物から構成される樹脂組成物をラミネートフィルムに用いることによりラミネート直後の接着性が優れるとともにスリップ性及び/又は帯電防止性に優れることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a resin composition composed of a specific fatty acid metal salt and / or an amine compound for the olefin polymer as a laminate film, thereby bonding immediately after lamination. As a result, the present inventors have found that it has excellent slip properties and / or antistatic properties and has completed the present invention.
 すなわち、本発明は、少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び脂肪酸アミド0.001~2重量%から構成される樹脂組成物Aa、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルムに関するものである。 That is, the present invention comprises at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, wherein (A) layer comprises 98 to 99.999% by weight of olefin polymer and fatty acid. The resin composition Aa composed of 0.001 to 2% by weight of amide is selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin. A resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt containing at least one metal and / or an amine compound, (C) the layer is a polyurethane-based adhesive and / or an isocyanate-based adhesive, (D ) The laminate film is characterized in that the layer comprises at least one base material.
 また、本発明は、少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び帯電防止剤0.001~2重量%から構成される樹脂組成物Ab、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルムに関するものである。 Further, the present invention is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and the (A) layer comprises 98 to 99.999% by weight of olefin polymer and electrification. Resin composition Ab composed of 0.001 to 2% by weight of inhibitor, (B) layer selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin A resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt containing at least one metal and / or an amine compound, (C) the layer is a polyurethane-based adhesive and / or an isocyanate-based adhesive, D) The present invention relates to a laminate film characterized in that the layer comprises at least one base material.
 さらに、上記(A)層がオレフィン重合体98~99.999重量%、脂肪酸アミド及び帯電防止剤0.001~2重量%から構成される樹脂組成物Acであることを特徴とするラミネートフィルムに関するものである。 Furthermore, the present invention relates to a laminate film, wherein the layer (A) is a resin composition Ac composed of 98 to 99.999% by weight of an olefin polymer, 0.001 to 2% by weight of a fatty acid amide and an antistatic agent. Is.
 即ち、本発明の要旨は、下記(1)~(13)に存する。 That is, the gist of the present invention resides in the following (1) to (13).
 (1)少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び脂肪酸アミド0.001~2重量%から構成される樹脂組成物Aa、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 (1) It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and (A) layer comprises 98 to 99.999% by weight of olefin polymer and 0. Resin composition Aa composed of 001 to 2% by weight, and (B) layer is at least one selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron, and tin A resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt and / or an amine compound containing the above metal, (C) the layer is a polyurethane-based adhesive and / or isocyanate-based adhesive, and (D) the layer is A laminate film comprising at least one base material.
 (2)少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び帯電防止剤0.001~2重量%から構成される樹脂組成物Ab、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 (2) It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and (A) layer comprises 98 to 99.999% by weight of olefin polymer and antistatic agent 0. Resin composition Ab composed of 0.001 to 2% by weight, and (B) layer is at least one selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron and tin Resin composition B composed of 0.001 to 2% by weight of fatty acid metal salt and / or amine compound containing seed metals, (C) layer is polyurethane adhesive and / or isocyanate adhesive, (D) layer A laminate film characterized by comprising a base material having at least one layer.
 (3)少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体96~99.998重量%、脂肪酸アミド0.001~2重量%及び帯電防止剤0.001~2重量%から構成される樹脂組成物Ac、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 (3) It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and the (A) layer comprises 96 to 99.998% by weight of olefin polymer, 0. Resin composition Ac composed of 001 to 2% by weight and antistatic agent 0.001 to 2% by weight, (B) layer is 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron, And a fatty acid metal salt containing at least one metal selected from the group consisting of tin and / or a resin composition B composed of 0.001 to 2% by weight of an amine compound, (C) the layer is a polyurethane adhesive and / or Alternatively, an isocyanate-based adhesive, (D) a laminate film comprising at least one base material.
 (4)好ましくは、(B)層の樹脂組成物Bを構成する脂肪酸金属塩が、亜鉛、リチウム、及びコバルトから成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩であることを特徴とする(1)~(3)のいずれかに記載のラミネートフィルム。 (4) Preferably, the fatty acid metal salt constituting the resin composition B of the (B) layer is a fatty acid metal salt containing at least one metal selected from the group consisting of zinc, lithium, and cobalt. The laminate film according to any one of (1) to (3).
 (5)好ましくは、(B)層の樹脂組成物Bを構成するアミン化合物が、下記一般式(I)で表されるポリオキシエチレンアルキルアミンであることを特徴とする(1)~(3)のいずれかに記載のラミネートフィルム。 (5) Preferably, the amine compound constituting the resin composition B of the (B) layer is a polyoxyethylene alkylamine represented by the following general formula (I): (1) to (3 The laminate film according to any one of the above.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素数8~30の直鎖又は分岐鎖のアルキル基又はアルケニル基を示し、R及びRはそれぞれ独立に-OCR′(R′は炭素数8~30の炭化水素基を表す)又は-Hを表し、m及びnはそれぞれ独立に1~10の整数である。)
 (6)好ましくは、(B)層の樹脂組成物Bを構成するアミン化合物が、ヒンダードアミン系光安定剤であることを特徴とする(1)~(3)のいずれかに記載のラミネートフィルム。
(Wherein R 1 represents a linear or branched alkyl or alkenyl group having 8 to 30 carbon atoms, R 2 and R 3 each independently represents —OCR ′ (R ′ represents a carbon atom having 8 to 30 carbon atoms) Represents a hydrogen group) or -H, and m and n are each independently an integer of 1 to 10.)
(6) The laminate film according to any one of (1) to (3), wherein the amine compound constituting the resin composition B of the layer (B) is a hindered amine light stabilizer.
 (7)好ましくは、(B)層の樹脂組成物Bを構成するアミン化合物が、下記一般式(II)で表されるアルキルアミンであることを特徴とする(1)~(3)のいずれかに記載のラミネートフィルム。 (7) Preferably, the amine compound constituting the resin composition B of the (B) layer is an alkylamine represented by the following general formula (II), and any one of (1) to (3) The laminated film of crab.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数が8~30である直鎖又は分岐鎖の脂肪酸残基、R及びRはそれぞれ独立に水素、又は炭素数が1~8である直鎖若しくは分岐鎖のアルキル基若しくはアルケニル基である。)
 (8)好ましくは、ラミネートフィルムの(A)層側表面の表面固有抵抗値が1013~1017(Ω)であることを特徴とする(1)及び(4)~(7)のいずれかに記載のラミネートフィルム。
(Wherein R 4 is a linear or branched fatty acid residue having 8 to 30 carbon atoms, R 5 and R 6 are each independently hydrogen, or a linear or branched chain having 1 to 8 carbon atoms. An alkyl group or an alkenyl group.)
(8) Preferably, any one of (1) and (4) to (7), wherein the surface resistivity of the surface on the (A) layer side of the laminate film is 10 13 to 10 17 (Ω) The laminate film described in 1.
 (9)好ましくは、ラミネートフィルムの(A)層側表面における水の接触角が50°以上110°以下であることを特徴とする(1)及び(4)~(8)のいずれかに記載のラミネートフィルム。 (9) Preferably, the contact angle of water on the surface of the (A) layer side of the laminate film is 50 ° or more and 110 ° or less, according to any one of (1) and (4) to (8), Laminating film.
 (10)好ましくは、(A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、グリセリン脂肪酸エステルを含むことを特徴とする(2)又は(3)に記載のラミネートフィルム。 (10) Preferably, the antistatic agent constituting the resin composition Ab or the resin composition Ac of the layer (A) contains a glycerin fatty acid ester, and the laminate film according to (2) or (3) .
 (11)好ましくは、(A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、ポリグリセリン脂肪酸エステルを含むことを特徴とする(2)又は(3)に記載のラミネートフィルム。 (11) The laminate according to (2) or (3), wherein the antistatic agent constituting the resin composition Ab or the resin composition Ac of the layer (A) preferably contains a polyglycerin fatty acid ester. the film.
 (12)好ましくは、(A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、アルキルスルフォン酸塩を含むことを特徴とする(2)又は(3)に記載のラミネートフィルム。 (12) Preferably, the antistatic agent constituting the resin composition Ab or the resin composition Ac of the (A) layer contains an alkyl sulfonate, and the laminate according to (2) or (3) the film.
 (13)好ましくは、ラミネート成形後、23℃の雰囲気で5分間放置した際の接着強度が0.7N/25mm以上であることを特徴とする(1)~(12)のいずれかに記載のラミネートフィルム。 (13) Preferably, after laminate forming, the adhesive strength when left in an atmosphere at 23 ° C. for 5 minutes is 0.7 N / 25 mm or more, according to any one of (1) to (12) Laminate film.
 本発明のラミネートフィルムは、エージング処理を施さなくても接着性に優れ、かつ良好なスリップ性及び帯電防止性を長期に維持することができるため、生産性に優れた食品などの包装フィルムとして非常に有用である。 The laminate film of the present invention is excellent as a packaging film for foods and the like with excellent productivity because it has excellent adhesiveness without being subjected to an aging treatment and can maintain good slip and antistatic properties for a long time. Useful for.
 以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の(A)層及び(B)層を構成するオレフィン系重合体は、エチレン、プロピレン、1-ブテンなど炭素数2~12のα-オレフィンの単独重合体もしくはビニル化合物との共重合体を示す。例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン、エチレン・1-ブテン共重合体、エチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体などのエチレン・α-オレフィン共重合体、エチレン・酢酸ビニル共重合体などのエチレン・ビニルエステル共重合体、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・メタクリル酸エステル共重合体等のエチレンとアクリル系モノマーの共重合体、ポリプロピレン(PP)、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体などのプロピレン系重合体、ポリ1-ブテン、ポリ1-ヘキセン、ポリ4-メチル-1-ペンテン等の1-オレフィン重合体などが挙げられ、これらオレフィン系重合体は、1種単独又は2種以上の組み合わせで用いてもよい。このようなオレフィン系重合体の中では、フィルム成形性やコストパフォーマンスに優れるため、低密度ポリエチレン、高密度ポリエチレン、エチレン・1-ブテン共重合体、エチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体が好ましく、フィルム強度の観点からエチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体、プロピレン系重合体が特に好ましい。 The olefin polymer constituting the layers (A) and (B) of the present invention is a homopolymer of an α-olefin having 2 to 12 carbon atoms such as ethylene, propylene, 1-butene or a copolymer with a vinyl compound. Indicates. For example, low density polyethylene (LDPE), high density polyethylene, ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer, ethylene-4-methyl-1-pentene Ethylene / α-olefin copolymers such as copolymers, ethylene / vinyl ester copolymers such as ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers, ethylene / methacrylic acid copolymers, ethylene / acrylic Copolymer of ethylene and acrylic monomer such as acid ester copolymer, ethylene / methacrylic acid ester copolymer, and propylene such as polypropylene (PP), propylene / ethylene copolymer, propylene / 1-butene copolymer Polymers, poly 1-butene, poly 1-hexene, poly 4-methyl-1-pentene, etc. Such as olefin polymers. These olefin polymers may be used singly or in combination of two or more. Among these olefin polymers, low-density polyethylene, high-density polyethylene, ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene A 1-octene copolymer is preferable, and an ethylene / 1-hexene copolymer, an ethylene / 1-octene copolymer, and a propylene-based polymer are particularly preferable from the viewpoint of film strength.
 本発明の(A)層を構成する脂肪酸アミドは、ラミネートフィルムのスリップ性を向上させるために添加されるものであり、脂肪酸とアンモニアやアミン化合物との反応により得られる。このような脂肪酸アミドとしては、カプロン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ミリストレイン酸アミド、パルミトレイン酸アミド、オレイン酸アミド、エルカ酸アミドなどの脂肪酸モノアミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスベヘン酸アミド、エチレンビスエルカ酸アミドなどの脂肪酸ビスアミドなどが例示される。このような脂肪酸アミドは一種を単独で用いても構わないが、二種以上を混合して使用してもよい。このような脂肪酸アミドは、日油株式会社から商品名アルフロー、日本精化株式会社から商品名ニュートロンなどが市販されている。 The fatty acid amide constituting the layer (A) of the present invention is added to improve the slip property of the laminate film, and is obtained by the reaction of the fatty acid with ammonia or an amine compound. Such fatty acid amides include caproic acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, myristoleic acid amide, palmitoleic acid amide, oleic acid amide, erucic acid amide and other fatty acid monoamides, ethylene Examples thereof include fatty acid bisamides such as bisstearic acid amide, ethylene bisoleic acid amide, ethylene bisbehenic acid amide, and ethylene biserucic acid amide. Such fatty acid amides may be used singly or in combination of two or more. Such fatty acid amides are commercially available from NOF Corporation under the trade name Alfro and Nippon Seika Co., Ltd. under the trade name Neutron.
 また、本発明の(A)層を構成する帯電防止剤としては、ポリオレフィン用帯電防止剤として用いられる、非イオン系界面活性剤、両性イオン系界面活性剤、アニオン系界面活性剤が挙げられる。 Also, examples of the antistatic agent constituting the layer (A) of the present invention include nonionic surfactants, zwitterionic surfactants, and anionic surfactants that are used as antistatic agents for polyolefins.
 上記非イオン系界面活性剤としては、例えば、カプロン酸グリセリンエステル、ミリスチン酸グリセリンエステル、パルミチン酸グリセリンエステル、ステアリン酸グリセリンエステル、オレイン酸グリセリンエステル、ラウリン酸グリセリンエステルなどのグリセリン脂肪酸エステル類;ステアリン酸ジグリセリンエステル、オレイン酸ジグリセリンエステル、ステアリン酸テトラグリセリンエステル等のポリグリセリン脂肪酸エステル類;ソルビトール類;N,Nージヒドロキシエチレンステアリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンラウリルアミン、ポリオキシプロピレンステアリルアミン等のアルキルアミン類;ポリオキシエチレンステアリルアマイド、ポリオキシプロピレンステアリルアマイド等のアルキルアマイド類;カプリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール、ラウリルアルコールなどのアルコール類、を挙げることができる。
  また上記両性イオン系界面活性剤としてアルキルベタイン、アルキルイミダゾリウムベタインなどのベタイン類を挙げることができる。
  さらにアニオン系界面活性剤として、ラウリルスルフォン酸ナトリウム、ラウリルスルフォン酸カリウム、オレイルスルフォン酸ナトリウム、オレイルスルフォン酸カリウム、ステアリルスルフォン酸ナトリウム、ステアリルスルフォン酸カリウムなどのアルキルスルフォン酸塩類;ラウリルベンゼンスルフォン酸カリウム、オレイルベンゼンスルフォン酸ナトリウム、オレイルベンゼンスルフォン酸カリウム、ステアリルベンゼンスルフォン酸ナトリウム、ステアリルベンゼンスルフォン酸カリウムなどのアルキルベンゼンスルフォン酸塩類、アルキルフォスフェート類等を例示することができる。
Examples of the nonionic surfactant include glycerin fatty acid esters such as caproic acid glycerin ester, myristic acid glycerin ester, palmitic acid glycerin ester, stearic acid glycerin ester, oleic acid glycerin ester, and lauric acid glycerin ester; Polyglycerin fatty acid esters such as diglycerin ester, oleic acid diglycerin ester, stearic acid tetraglycerin ester; sorbitols; N, N-dihydroxyethylene stearylamine, polyoxyethylene stearylamine, polyoxyethylene laurylamine, polyoxypropylene Alkylamines such as stearylamine; polyoxyethylene stearyl amide, polyoxypropylene stearyl amide, etc. Alkyl amide such; capryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, alcohols such as lauryl alcohol, and the like.
Examples of the zwitterionic surfactants include betaines such as alkylbetaines and alkylimidazolium betaines.
Further, as anionic surfactants, alkyl sulfonates such as sodium lauryl sulfonate, potassium lauryl sulfonate, sodium oleyl sulfonate, potassium oleyl sulfonate, sodium stearyl sulfonate, potassium stearyl sulfonate; potassium lauryl benzene sulfonate, Examples thereof include alkyl benzene sulfonates such as sodium oleyl benzene sulfonate, potassium oleyl benzene sulfonate, sodium stearyl benzene sulfonate, potassium stearyl benzene sulfonate, and alkyl phosphates.
 このような界面活性剤は、単独で帯電防止剤として使用することもできるが、複数を併用して帯電防止剤として使用することも可能である。 Such surfactants can be used alone as an antistatic agent, or a plurality of such surfactants can be used in combination as an antistatic agent.
 このような帯電防止剤のうち、グリセリン脂肪酸エステル類、ポリグリセリン脂肪酸エステル類、アルキルスルフォン酸塩類が、帯電防止性に優れ、接着性を悪化させないため好ましく、グリセリン脂肪酸エステルとポリグリセリン脂肪酸エステルの併用、グリセリン脂肪酸エステルとアルキルアマイドの併用が特に好ましい。 Among such antistatic agents, glycerin fatty acid esters, polyglycerin fatty acid esters, and alkyl sulfonates are preferable because they are excellent in antistatic properties and do not deteriorate adhesiveness, and are a combination of glycerin fatty acid ester and polyglycerin fatty acid ester. The combined use of glycerin fatty acid ester and alkylamide is particularly preferred.
 このような帯電防止剤は、市販のものを使用することができる。例えば、グリセリン脂肪酸エステル類及びポリグリセリン脂肪酸エステル類として理研ビタミン製「リケマール」、日本油脂製「モノグリ」、「ユニグリ」、花王製「エレクトロストリッパー」等、アルキルスルフォン酸塩類としてICI製「アトマー」、ライオン製「レオスタット」、ミヨシ油脂「ダスパー」等が挙げられる。 A commercially available antistatic agent can be used. For example, RIKEN Vitamin “Riquemar” as glycerin fatty acid esters and polyglycerin fatty acid esters, “Monogli”, “Uniguri” from Nippon Oil & Fats, “Electro Stripper” from Kao, etc. “Atomer” from ICI as alkyl sulfonates, Examples include Lion's “Reostat” and Miyoshi oil and fat “Dasper”.
 本発明の(A)層を構成する樹脂組成物Aaにおける配合は、オレフィン系重合体98~99.999重量%、脂肪酸アミド0.001~2重量%、好ましくはオレフィン系重合体99~99.995重量%、脂肪酸アミド0.005~1重量%、さらに好ましくはオレフィン系重合体99.5~99.995重量%、脂肪酸アミド0.005~0.5重量%、もっとも好ましくはオレフィン系重合体99.7~99.99重量%、脂肪酸アミド0.01~0.3重量%である。脂肪酸アミドが0.001重量%未満の場合、フィルム表面のスリップ性が劣るため好ましくなく、脂肪酸アミドが2重量%を超える場合は、ラミネートフィルムからの滲出が過剰となり、包装材料とした場合に内容物の質を損なう恐れがあるため好ましくない。 In the resin composition Aa constituting the layer (A) of the present invention, the olefin polymer is 98 to 99.999% by weight, the fatty acid amide is 0.001 to 2% by weight, preferably the olefin polymer 99 to 99.99. 995 wt%, fatty acid amide 0.005-1 wt%, more preferably olefin polymer 99.5-99.995 wt%, fatty acid amide 0.005-0.5 wt%, most preferably olefin polymer 99.7 to 99.99% by weight, and fatty acid amide 0.01 to 0.3% by weight. When the fatty acid amide is less than 0.001% by weight, the film surface is inferior in slipping property, and when the fatty acid amide exceeds 2% by weight, exudation from the laminate film becomes excessive, and the content is obtained when used as a packaging material. This is not preferable because the quality of the product may be impaired.
 本発明の(A)層を構成する樹脂組成物Abにおける配合は、オレフィン系重合体98~99.999重量%、帯電防止剤0.001~2重量%、好ましくはオレフィン系重合体99~99.995重量%、帯電防止剤0.005~1重量%、さらに好ましくはオレフィン系重合体99.5~99.995重量%、帯電防止剤0.005~0.5重量%である。帯電防止剤が0.001重量%未満の場合、フィルム表面の帯電防止性が劣るため好ましくなく、帯電防止剤が2重量%を超える場合は、ラミネートフィルムからの滲出が過剰となり、包装材料とした場合に内容物の質を損なう恐れがあるため好ましくない。 In the resin composition Ab constituting the layer (A) of the present invention, the olefin polymer is 98 to 99.999% by weight, the antistatic agent is 0.001 to 2% by weight, and preferably the olefin polymer 99 to 99. 0.95 wt%, antistatic agent 0.005 to 1 wt%, more preferably 99.5 to 99.995 wt% olefin polymer, and 0.005 to 0.5 wt% antistatic agent. When the antistatic agent is less than 0.001% by weight, the antistatic property of the film surface is inferior, which is not preferable. When the antistatic agent exceeds 2% by weight, exudation from the laminate film becomes excessive, and a packaging material is obtained. In some cases, the quality of the contents may be impaired.
 また、本発明の(A)層を構成する樹脂組成物は、脂肪酸アミドと帯電防止剤が併用されていてもよい。その場合の樹脂組成物Acにおける配合は、オレフィン系重合体96~99.998重量%、脂肪酸アミド0.001~2重量%、帯電防止剤0.001~2重量%の範囲にあるとスリップ性と帯電防止性の両性能に優れるため好ましく、オレフィン系重合体98~99.99重量%、脂肪酸アミド0.005~1重量%、帯電防止剤0.005~1重量%の範囲にあるとさらに好ましい。 In the resin composition constituting the layer (A) of the present invention, a fatty acid amide and an antistatic agent may be used in combination. In this case, the resin composition Ac contains the olefin polymer 96 to 99.998% by weight, the fatty acid amide 0.001 to 2% by weight, and the antistatic agent 0.001 to 2% by weight. And olefin polymer is preferably 98 to 99.99% by weight, fatty acid amide 0.005 to 1% by weight, and antistatic agent 0.005 to 1% by weight. preferable.
 また、本発明を構成する樹脂組成物Aには、必要に応じて酸化防止剤、中和剤、ブロッキング防止剤、界面活性剤等、通常のオレフィン系重合体に使用される添加剤を添加したものであっても構わない。 Further, additives used in ordinary olefin polymers such as an antioxidant, a neutralizing agent, an antiblocking agent, and a surfactant are added to the resin composition A constituting the present invention as necessary. It doesn't matter.
 本発明の(A)層を構成する樹脂組成物Aは、通常用いられる樹脂の混合装置により製造することができる。例えば、単軸押出機、二軸押出機、バンバリーミキサー、加圧ニーダー、回転ロールなどの溶融混練装置、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーなどが挙げられる。溶融混練装置を用いる場合、溶融温度はオレフィン系重合体の融点~350℃程度が好ましい。 The resin composition A constituting the layer (A) of the present invention can be produced by a commonly used resin mixing apparatus. Examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a pressure kneader, a melt kneader such as a rotating roll, a Henschel mixer, a V blender, a ribbon blender, and a tumbler. When a melt kneader is used, the melting temperature is preferably about the melting point of the olefin polymer to about 350 ° C.
 本発明を構成する(A)層の厚みは、本発明の目的が達成される限りにおいて特に限定はなく、柔軟性に優れ、破損などの問題が小さいことから、1μm~5mmの厚みであることが好ましく、経済性の観点から、1μm~100μmの範囲が最も好適である。 The thickness of the layer (A) constituting the present invention is not particularly limited as long as the object of the present invention is achieved, and is 1 μm to 5 mm in thickness because of excellent flexibility and small problems such as breakage. In view of economy, the range of 1 μm to 100 μm is most preferable.
 本発明の(A)層は、インフレーション成形機やTダイキャスト成形機などの公知のフィルム成形装置により製造することができる。また、押出ラミネート成形機により溶融フィルムを製造することも可能である。 The layer (A) of the present invention can be produced by a known film forming apparatus such as an inflation molding machine or a T-die casting machine. It is also possible to produce a molten film with an extrusion laminating machine.
 また、本発明の(A)層は、共押出インフレーション成形機やTダイキャスト成形機などの公知の共押出フィルム成形装置により複数層としてもよい。この場合、(A)層を構成する全ての層が樹脂組成物Aa、樹脂組成物Ab、又は樹脂組成物Acにより構成されていてもよいが、(B)層と接する面の反対面を構成する表層のみが樹脂組成物Aa、樹脂組成物Ab、又は樹脂組成物Acにより構成されていてもよい。 The layer (A) of the present invention may be formed into a plurality of layers by a known co-extrusion film forming apparatus such as a co-extrusion inflation molding machine or a T-die cast molding machine. In this case, all the layers constituting the layer (A) may be constituted by the resin composition Aa, the resin composition Ab, or the resin composition Ac, but constitute the surface opposite to the surface in contact with the layer (B). Only the surface layer to be formed may be constituted by the resin composition Aa, the resin composition Ab, or the resin composition Ac.
 本発明の(B)層を構成する脂肪酸金属塩は、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含むことを特徴とし、金属が亜鉛であると接着剤の硬化速度向上効果が高く好ましい。また、1分子内に1種又は長さ、及び/又は構造の異なる2種以上の脂肪酸を有していてもよい。 The fatty acid metal salt constituting the layer (B) of the present invention contains at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin, and is bonded when the metal is zinc. The effect of improving the curing rate of the agent is preferable. One molecule or two or more fatty acids having different lengths and / or structures may be contained in one molecule.
 このような脂肪酸金属塩を構成する脂肪酸は、炭素数4~30、好ましくは炭素数8~22、さらに好ましくは炭素数8~18、最も好ましくは8~14である飽和及び/又は不飽和脂肪酸である。脂肪酸鎖長の制御は、脂肪酸金属塩の接着剤への移動速度を決定するため重要である。炭素数が4以上である場合、ポリウレタン系接着剤及び/又はイソシアネート系接着剤への移動量が増大し、接着剤の硬化速度向上効果が高く好ましい。また炭素数が30以下である場合は金属原子の量が十分であり、接着剤の硬化速度向上効果が高く好ましい。このような脂肪酸金属塩としては、オクタン酸亜鉛、オクテン酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、2-エチルヘキサン酸亜鉛、オクタン酸リチウム、ラウリン酸リチウム、ステアリン酸リチウム、ナフテン酸コバルト、ステアリン酸コバルト、ジブチル錫オキサイド、ジブチル錫マレート、ジブチル錫ラウレート、ジオクチル錫マレート、ジオクチル錫ラウレート、ラウリン酸鉄、ステアリン酸鉄、などを例示することができ、オクタン酸亜鉛、オクテン酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、2-エチルヘキサン酸亜鉛、オクタン酸リチウム、ラウリン酸リチウム、ステアリン酸リチウム、ナフテン酸コバルト、及びステアリン酸コバルトが特に好適である。これらの脂肪酸金属塩は単独、又は併用して使用することができる。また、これらの脂肪酸金属塩の中では脂肪酸亜鉛塩がエージング時間の短縮効果が高いため好ましく、最も好ましくはオクタン酸亜鉛、オクテン酸亜鉛、ラウリン酸亜鉛、2-エチルヘキサン酸亜鉛などの脂肪酸の炭素数が8である脂肪酸亜鉛である。 Fatty acids constituting such fatty acid metal salts are saturated and / or unsaturated fatty acids having 4 to 30 carbon atoms, preferably 8 to 22 carbon atoms, more preferably 8 to 18 carbon atoms, and most preferably 8 to 14 carbon atoms. It is. Control of the fatty acid chain length is important because it determines the rate of transfer of the fatty acid metal salt to the adhesive. When the number of carbon atoms is 4 or more, the transfer amount to the polyurethane-based adhesive and / or the isocyanate-based adhesive increases, and the effect of improving the curing rate of the adhesive is high, which is preferable. When the number of carbon atoms is 30 or less, the amount of metal atoms is sufficient, and the effect of improving the curing rate of the adhesive is high, which is preferable. Such fatty acid metal salts include zinc octoate, zinc octenoate, zinc laurate, zinc stearate, zinc behenate, zinc 2-ethylhexanoate, lithium octoate, lithium laurate, lithium stearate, naphthenic acid. Examples include cobalt, cobalt stearate, dibutyltin oxide, dibutyltin malate, dibutyltin laurate, dioctyltin malate, dioctyltin laurate, iron laurate, iron stearate, and the like, zinc octoate, zinc octenoate, Zinc laurate, zinc stearate, zinc behenate, zinc 2-ethylhexanoate, lithium octoate, lithium laurate, lithium stearate, cobalt naphthenate, and cobalt stearate are particularly suitable. These fatty acid metal salts can be used alone or in combination. Among these fatty acid metal salts, fatty acid zinc salts are preferred because they have a high effect of shortening the aging time, and most preferred are carbons of fatty acids such as zinc octoate, zinc octenoate, zinc laurate, and zinc 2-ethylhexanoate. It is fatty acid zinc whose number is 8.
 本発明の(B)層を構成するアミン化合物としては、分子内にアミノ基を有する化合物であれば特に限定されるものではないが、下記一般式(I)で表されるポリオキシエチレンアルキルアミン、ヒンダードアミン系光安定剤、及び下記一般式(II)で表されるアルキルアミンが接着性に優れるため好ましく、下記一般式(I)で表されるポリオキシエチレンアルキルアミンが最も好ましい。また、これらのアミン化合物は単独、もしくは2種以上の併用で使用できる。 The amine compound constituting the layer (B) of the present invention is not particularly limited as long as it is a compound having an amino group in the molecule, but is a polyoxyethylene alkylamine represented by the following general formula (I) , Hindered amine light stabilizers, and alkylamines represented by the following general formula (II) are preferable because of excellent adhesiveness, and polyoxyethylene alkylamines represented by the following general formula (I) are most preferable. These amine compounds can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Rは炭素数8~30の直鎖又は分岐鎖のアルキル基又はアルケニル基を示し、R及びRはそれぞれ独立に-OCR′(R′は炭素数8~30の炭化水素基を表す)又は-Hを表し、m及びnはそれぞれ独立に1~10の整数である。) (Wherein R 1 represents a linear or branched alkyl or alkenyl group having 8 to 30 carbon atoms, R 2 and R 3 each independently represents —OCR ′ (R ′ represents a carbon atom having 8 to 30 carbon atoms) Represents a hydrogen group) or -H, and m and n are each independently an integer of 1 to 10.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは炭素数が8~30である直鎖又は分岐鎖の脂肪酸残基、R及びRはそれぞれ独立に水素、又は炭素数が1~8である直鎖若しくは分岐鎖のアルキル基若しくはアルケニル基である。)
 このようなポリオキシエチレンアルキルアミンを構成するR、R、又はRの炭素数は、該ポリオキシエチレンアルキルアミンの接着剤への移動速度を決定するため重要であり、炭素数が8~30であり、好ましくは8~22である。R、R、又はRの炭素数が8以上である場合、ポリウレタン系接着剤及び/又はイソシアネート系接着剤への移動量が増大し、接着剤の硬化速度向上効果が高く好ましい。また炭素数が30以下である場合はアミノ基の量が多くなり、接着剤の硬化速度向上効果が高く好ましい。このようなポリオキシエチレンアルキルアミンとしては、ドデシルジオキシエチルアミン、テトラデシルジオキシエチルアミン、オクタデシルジオキシエチルアミン、16-オキシヘプタデシルジオキシエチルアミン、オクタデシルオキシエトキシエチルアミン、17-オクタデセニルジオキシエチルアミン、1-メチルヘプタデシルジオキシエチルアミンなどを例示することができる。このようなポリオキシエチレンアルキルアミンは一種を単独で用いても構わないが、二種以上を混合して使用してもよい。
(Wherein R 4 is a linear or branched fatty acid residue having 8 to 30 carbon atoms, R 5 and R 6 are each independently hydrogen, or a linear or branched chain having 1 to 8 carbon atoms. An alkyl group or an alkenyl group.)
The carbon number of R 1 , R 2 , or R 3 constituting such a polyoxyethylene alkylamine is important for determining the transfer rate of the polyoxyethylene alkylamine to the adhesive, and the carbon number is 8 -30, preferably 8-22. When R 1 , R 2 , or R 3 has 8 or more carbon atoms, the transfer amount to the polyurethane-based adhesive and / or isocyanate-based adhesive increases, and the effect of improving the curing rate of the adhesive is high, which is preferable. Further, when the number of carbon atoms is 30 or less, the amount of amino groups is increased, and the effect of improving the curing rate of the adhesive is high, which is preferable. Examples of such polyoxyethylene alkylamine include dodecyldioxyethylamine, tetradecyldioxyethylamine, octadecyldioxyethylamine, 16-oxyheptadecyldioxyethylamine, octadecyloxyethoxyethylamine, 17-octadecenyldioxyethylamine, Examples thereof include 1-methylheptadecyldioxyethylamine. Such polyoxyethylene alkylamines may be used singly or in combination of two or more.
 このようなポリオキシエチレンアルキルアミンは市販品から入手することができ、例えば日油株式会社からナイミーンL-201、ナイミーンL-202、ナイミーンL-207、ナイミーンS-202、ナイミーンS-204、ナイミーンS-210、ナイミーンO-205、ナイミーンT2-202などの名称で販売されている。 Such polyoxyethylene alkylamines can be obtained from commercial products, such as Naimine L-201, Naimine L-202, Naimine L-207, Naimeen S-202, Naimeen S-204, Naimeen from NOF Corporation. They are sold under the names S-210, Naimine O-205, Naimine T2-202, and the like.
 本発明を構成するヒンダードアミン光安定剤は、分子中にピペリジン環を有し、該ピペリジン環の2位及び6位の炭素上の水素がメチル基で置換された構造を有する化合物である。このようなヒンダードアミン光安定剤としては、特に限定するもではなく、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、2,2,6,6-テトラメチル-4-ピペリジニルベンゾエート、ビス(1,2,6,6-テトラメチル-4-ピペリジニル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、1,1’-(1,2-エタンジイル)ビス(3,3,5,5-テトラメチルピペラジノン)、(ミックスト2,2,6,6-テトラメチル-4-ピペリジル/トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、(ミックスト1,2,2,6,6-ペンタメチル-4-ピペリジル/トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ミックスト{2,2,6,6-テトラメチル-4-ピペリジル/β,β,β’,β’-テトラメチル-3-9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}-1,2,3,4-ブタンテトラカルボキシレート、ミックスト{1,2,2,6,6-ペンタメチル-4-ピペリジル/β,β,β’,β’-テトラメチル-3-9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}-1,2,3,4-ブタンテトラカルボキシレート、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2-4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミンと1,2-ジブロモエタンとの縮合物、[N-(2,2,6,6-テトラメチル-4-ピペリジル)-2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]プロピオンアミド、ポリ{[6-〔(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]}、ポリ{2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザ-20(2,3-エポキシプロピル)ジスピロ[5.1.11.2]ヘネイコサン-21-オン}、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザ-ジスピロ[5.1.11.2]ヘネイコサン-21-オン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザ-ジスピロ[5.1.11.2]ヘネイコサン-20-プロパノイックアシドデシルエステル/テトラデシルエステル等が挙げられる。このようなヒンダードアミン光安定剤は市販品から入手することができ、例えばチバジャパン株式会社からチヌビン、クラリアントジャパン株式会社からホスタビン、アデカ株式会社からアデカスタブなどの商品名で販売されている。該ヒンダードアミン光安定剤は、1種類を単独で用いるだけでなく、構造の異なる2種類以上を併用して用いてもよい。 The hindered amine light stabilizer constituting the present invention is a compound having a piperidine ring in the molecule and a structure in which hydrogen on carbons at the 2nd and 6th positions of the piperidine ring is substituted with a methyl group. Such a hindered amine light stabilizer is not particularly limited, and examples thereof include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and dimethyl-1- (2-hydroxyethyl) succinate. -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate 2,2,6,6-tetramethyl-4-piperidinylbenzoate, bis (1,2,6,6-tetramethyl-4-piperidinyl) -2- (3,5-di-t-butyl- 4-hydroxybenzyl) -2-n-butylmalonate, bis (N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 1,1 ′-(1,2-ethanediyl Bis (3,3,5,5-tetramethylpiperazinone), (mixed 2,2,6,6-tetramethyl-4-piperidyl / tridecyl) -1,2,3,4-butanetetracarboxylate , (Mixed 1,2,2,6,6-pentamethyl-4-piperidyl / tridecyl) -1,2,3,4-butanetetracarboxylate, mixed {2,2,6,6-tetramethyl- 4-piperidyl / β, β, β ′, β′-tetramethyl-3-9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethyl} -1,2,3,4 -Butanetetracarboxylate, mixed {1,2,2,6,6-pentamethyl-4-piperidyl / β, β, β ′, β′-tetramethyl-3-9- [2,4,8,10 -Tetraoxaspiro (5,5) undecane Diethyl} -1,2,3,4-butanetetracarboxylate, N, N′-bis (3-aminopropyl) ethylenediamine-2--4-bis [N-butyl-N- (1,2,2,6) , 6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) hexamethylene Condensation product of diamine and 1,2-dibromoethane, [N- (2,2,6,6-tetramethyl-4-piperidyl) -2-methyl-2- (2,2,6,6-tetramethyl) -4-piperidyl) imino] propionamide, poly {[6-[(1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine-2,4-diyl] [[(2 , 2,6,6-Tetramethyl-4-piperidyl Imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]}, poly {2,2,4,4-tetramethyl-7-oxa-3,20-diaza-20 ( 2,3-epoxypropyl) dispiro [5.1.1.1.2] heneicosan-21-one}, 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-dispiro [5.1 11.2] heneicosan-21-one, 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-dispiro [5.1.1.12] heneicosane-20-propanoic acid And dodecyl ester / tetradecyl ester. Such a hindered amine light stabilizer can be obtained from a commercial product, for example, sold under the trade names of Ciba Japan Co., Ltd., Tinuvin, Clariant Japan Co., Ltd., Hostabin, and Adeka Co., Ltd., Adeka Stub. The hindered amine light stabilizer may be used not only alone but also in combination of two or more different structures.
 下記一般式(II)で表されるアルキルアミンを構成するR基の炭素数は、該アルキルアミンの接着剤への移動速度を決定するため重要であり、好ましくは炭素数が8~30であり、更に好ましくは8~22である。R基の炭素数がこの範囲にあると、ポリウレタン系接着剤及び/又はイソシアネート系接着剤への移動性に優れ、接着剤の硬化速度向上効果が高く好ましい。また、R又はR基の炭素数がこの範囲にあると接着剤の硬化速度向上効果が高く好ましい。このようなアルキルアミンは一種を単独で用いても構わないが、二種以上を混合して使用してもよい。 The carbon number of the R 4 group constituting the alkylamine represented by the following general formula (II) is important for determining the transfer rate of the alkylamine to the adhesive, and preferably has 8 to 30 carbon atoms. Yes, more preferably 8-22. When the number of carbon atoms in the R 4 group is within this range, the mobility to the polyurethane adhesive and / or the isocyanate adhesive is excellent, and the effect of improving the curing rate of the adhesive is high, which is preferable. Further, when the number of carbon atoms in the R 5 or R 6 group is within this range, the effect of improving the curing rate of the adhesive is high, which is preferable. Such alkylamines may be used singly or in combination of two or more.
 このようなアルキルアミンとしては、ラウリルアミン、ミリスチルアミン、ステアリルアミン、オレイルアミン、ベヘニルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミンなどが例示され、これらは日油株式会社かららニッサンアミンBB、ニッサンアミンAB、ニッサンアミンOB、3級ニッサンアミンBB、3級ニッサンアミンABなどの名称で販売されている。 Examples of such alkylamines include laurylamine, myristylamine, stearylamine, oleylamine, behenylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, and the like from NOF Corporation. Nissan amine BB, Nissan amine AB, Nissan amine OB, tertiary Nissan amine BB, tertiary Nissan amine AB and the like.
 また、これらのアミン化合物と亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩を併用して使用することもできる。 Also, these amine compounds and fatty acid metal salts containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin can be used in combination.
 本発明の(B)層を構成する樹脂組成物Bにおける配合は、オレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%、好ましくはオレフィン系重合体99~99.995重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.005~1重量%、さらに好ましくはオレフィン系重合体99.5~99.995重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.005~0.5重量%、もっとも好ましくはオレフィン系重合体99.7~99.99重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.01~0.3重量%である。亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物が0.001重量%未満の場合、接着剤の硬化速度向上効果が低いため好ましくなく、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物が2重量%を超える場合は、ラミネートフィルムからの滲出が過剰となり、包装材料とした場合に内容物の質を損なう恐れがあるため好ましくない。 The blend in the resin composition B constituting the layer (B) of the present invention is at least one selected from the group consisting of 98 to 99.999% by weight of an olefin polymer, zinc, lithium, cobalt, iron, and tin. A metal-containing fatty acid metal salt and / or an amine compound of 0.001 to 2% by weight, preferably 99 to 99.995% by weight of an olefin polymer, at least selected from the group consisting of zinc, lithium, cobalt, iron, and tin Fatty acid metal salt containing one kind of metal and / or amine compound 0.005 to 1% by weight, more preferably 99.5 to 99.995% by weight, zinc, lithium, cobalt, iron, and tin Fatty acid metal salt and / or amine compound containing at least one metal selected from the group consisting of 0.005 to 0.5% by weight, most preferably olefin Fatty acid metal salt and / or amine compound 0.01 to 0 containing at least one metal selected from the group consisting of 99.7 to 99.99% by weight of a polymer and zinc, lithium, cobalt, iron and tin .3% by weight. When the fatty acid metal salt and / or amine compound containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin is less than 0.001% by weight, the effect of improving the curing rate of the adhesive is low. Therefore, when the amount of the fatty acid metal salt and / or amine compound containing at least one metal selected from the group consisting of zinc, lithium, cobalt, iron, and tin exceeds 2% by weight, exudation from the laminate film occurs. It is not preferable because it becomes excessive and may deteriorate the quality of the contents when used as a packaging material.
 また、本発明の(B)層を構成する樹脂組成物Bには、必要に応じて酸化防止剤、滑剤、無機充填剤、界面活性剤、スリップ剤等、通常オレフィン系樹脂に使用される添加剤を、接着性を損なわない範囲で添加したものであっても構わない。 In addition, the resin composition B constituting the layer (B) of the present invention may be added to an olefin resin usually used for an antioxidant, a lubricant, an inorganic filler, a surfactant, a slip agent, etc. as necessary. You may add the agent in the range which does not impair adhesiveness.
 本発明の(B)層を構成する樹脂組成物Bは、通常用いられる樹脂の混合装置により製造することができる。例えば、単軸押出機、二軸押出機、バンバリーミキサー、加圧ニーダー、回転ロールなどの溶融混練装置、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーなどが挙げられる。溶融混練装置を用いる場合、溶融温度はオレフィン系重合体の融点~350℃程度が好ましい。 The resin composition B constituting the layer (B) of the present invention can be produced by a commonly used resin mixing apparatus. Examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a pressure kneader, a melt kneader such as a rotating roll, a Henschel mixer, a V blender, a ribbon blender, and a tumbler. When a melt kneader is used, the melting temperature is preferably about the melting point of the olefin polymer to about 350 ° C.
 本発明を構成する(B)層の厚みは、本発明の目的が達成される限りにおいて特に限定はなく、柔軟性に優れ、破損などの問題が小さいことから、1μm~5mmの厚みであることが好ましく、経済性の観点から、1μm~100μmの範囲が最も好適である。 The thickness of the layer (B) constituting the present invention is not particularly limited as long as the object of the present invention is achieved, and is 1 μm to 5 mm in thickness because of excellent flexibility and small problems such as breakage. In view of economy, the range of 1 μm to 100 μm is most preferable.
 本発明の(B)層は、インフレーション成形機やTダイキャスト成形機などの公知のフィルム成形装置により製造することができる。また、押出ラミネート成形機により溶融フィルムを製造することも可能である。 The layer (B) of the present invention can be produced by a known film forming apparatus such as an inflation molding machine or a T die cast molding machine. It is also possible to produce a molten film with an extrusion laminating machine.
 本発明の(B)層の(C)層と接触する側の表面は、(C)層に用いる接着剤の硬化速度を高め良好な接着性能を得るために、(C)層の接着剤と接する接着面が酸化されていることが好ましい。 In order to increase the curing rate of the adhesive used for the (C) layer and to obtain good adhesive performance, the surface of the (B) layer of the present invention that is in contact with the (C) layer is It is preferable that the contact surface to be in contact is oxidized.
 (B)層表面を酸化する際の酸化処理方法としては、クロム酸処理、硫酸処理、空気酸化、オゾン処理、コロナ放電処理、フレーム処理、プラズマ処理等が挙げられ、ポリオレフィンフィルム表面に酸化物を効果的に形成させるためコロナ放電処理、フレーム処理、プラズマ処理、及び/又はオゾン処理が特に好ましい。 (B) Examples of oxidation treatment methods for oxidizing the layer surface include chromic acid treatment, sulfuric acid treatment, air oxidation, ozone treatment, corona discharge treatment, flame treatment, plasma treatment, etc. For effective formation, corona discharge treatment, flame treatment, plasma treatment and / or ozone treatment are particularly preferred.
 コロナ放電処理は、プラスチックフィルムやシート表面の連続処理技術として広く使用されているものであり、コロナ放電処理機により発生したコロナ雰囲気にフィルムを通過させることにより行われる。コロナ放電密度として、1~100W・分/mであることが接着剤の硬化速度を高め良好な接着性能が得られるため好ましい。 Corona discharge treatment is widely used as a continuous treatment technique for plastic film and sheet surfaces, and is performed by passing the film through a corona atmosphere generated by a corona discharge treatment machine. The corona discharge density is preferably 1 to 100 W · min / m 2 , since the curing rate of the adhesive can be increased and good adhesive performance can be obtained.
 フレーム処理は、天然ガスやプロパン等を燃焼させたときに生じる火炎にフィルム表面を接することで処理が行われる。 The flame treatment is performed by bringing the film surface into contact with a flame generated when natural gas or propane is burned.
 プラズマ処理は、アルゴン、ヘリウム、ネオン、水素、酸素、空気等の単体又は混合気体をプラズマジェットで電子的に励起せしめた後、帯電粒子を除去し、電気的に中性とした励起不活性ガスをフィルム表面に吹き付けることにより行われる。 Plasma treatment is an excited inert gas that is electrically neutral after removing charged particles by electronically exciting a single or mixed gas such as argon, helium, neon, hydrogen, oxygen, and air with a plasma jet. Is sprayed onto the film surface.
 また、押出ラミネート成形に供する際には、良好な接着性を得るため、ダイより押出された(B)層の基材と接する面を空気酸化、もしくはオゾン処理による酸化が可能である。空気による酸化反応を進行させる場合、ダイより押出された本発明の押出ラミネート用樹脂組成物の温度は290℃以上であることが好ましく、オゾンガスによる酸化反応を進行させる場合は、ダイより押出された本発明の押出ラミネート用樹脂組成物の温度は200℃以上であることが好ましい。またオゾンガスの処理量としては、ダイより押出された本発明の押出ラミネート用樹脂組成物よりなるフィルム1m当たり0.5mg以上であることが好ましい。 Moreover, when it uses for extrusion lamination molding, in order to acquire favorable adhesiveness, the surface which contact | connects the base material of the (B) layer extruded from die | dye can be oxidized by air oxidation or ozone treatment. When the oxidation reaction with air proceeds, the temperature of the resin composition for extrusion lamination of the present invention extruded from the die is preferably 290 ° C. or higher. When the oxidation reaction with ozone gas proceeds, the resin composition was extruded from the die. The temperature of the resin composition for extrusion lamination of the present invention is preferably 200 ° C. or higher. Moreover, it is preferable that it is 0.5 mg or more per 1 m < 2 > of films which consist of the resin composition for extrusion laminations of this invention extruded from die | dye as a processing amount of ozone gas.
 本発明の(C)層を構成するポリウレタン系接着剤及びイソシアネート系接着剤は、特に限定されるものではなく、公知のものを使用することができる。 The polyurethane adhesive and the isocyanate adhesive constituting the layer (C) of the present invention are not particularly limited, and known ones can be used.
 ポリウレタン系接着剤は、分子内に少なくとも2個以上の水酸基を有する少なくとも1種以上のポリオール成分と分子内に少なくとも2個以上のイソシアネート基を有する少なくとも1種以上のポリイソシアネート成分及び/又はジイソシアネートから構成される接着剤であることが好ましい。ポリオール成分は、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオールなどから適宜選択することができ、ポリエステルポリオールが(C)層との接着性の経時低下を抑制機能が高いため特に好ましい。ジイソシアネートとしては、4,4’-、2,4’-及び2,2’-ジイソシアネートジフェニルメタン、1,5-ジイソシアネートナフタリン、4,4’-ジイソシアネートジシクロヘキシルメタン、1,4-ジイソシアネートベンゼン、及び/又は2,4-もしくは2,6-ジイソシアネートトルエンなどの芳香族ジイソシアネート、1,6-ジイソシアネートヘキサン、1,10-ジイソシアネートデカン、1,3-ジイソシアネートシクロペンタン、1,4-ジイソシアネートシクロヘキサン、1-イソシアネート-3,3,5-トリメチル-3もしくは-5-イソシアネートメタンシクロヘキサンなどの脂肪族及び脂環式ジイソシアネートを例示することができる。ポリイソシアネート成分は、これらのジイソシアネート単量体から製造することができる。 The polyurethane-based adhesive is composed of at least one polyol component having at least two hydroxyl groups in the molecule and at least one polyisocyanate component and / or diisocyanate having at least two isocyanate groups in the molecule. It is preferable that the adhesive is constituted. The polyol component can be appropriately selected from polyester polyols, polyether polyols, acrylic polyols, polyolefin polyols, and the like, and polyester polyols are particularly preferable because they have a high function of suppressing deterioration of adhesiveness with the (C) layer over time. Diisocyanates include 4,4′-, 2,4′- and 2,2′-diisocyanate diphenylmethane, 1,5-diisocyanate naphthalene, 4,4′-diisocyanate dicyclohexylmethane, 1,4-diisocyanate benzene, and / or Aromatic diisocyanates such as 2,4- or 2,6-diisocyanate toluene, 1,6-diisocyanate hexane, 1,10-diisocyanate decane, 1,3-diisocyanate cyclopentane, 1,4-diisocyanate cyclohexane, 1-isocyanate- Illustrative are aliphatic and cycloaliphatic diisocyanates such as 3,3,5-trimethyl-3 or -5-isocyanatomethanecyclohexane. The polyisocyanate component can be produced from these diisocyanate monomers.
 ポリウレタン系接着剤として、大日精化工業(株)製、商品名セイカボンドE-263、セイカボンドC-26、三井化学ポリウレタン(株)製、商品名タケラックA3210、タケネートA3072等、イソシアネート系接着剤として、日本ポリウレタン工業(株)製、コロネートL等の市販品を用いることができる。 As polyurethane-based adhesives, manufactured by Dainichi Seika Kogyo Co., Ltd., trade names Seika Bond E-263, Seika Bond C-26, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., trade names Takelac A3210, Takenate A3072, etc. Commercial products such as Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd. can be used.
 これらのポリウレタン系接着剤又はイソシアネート系接着剤には、接着性やポットライフに悪影響を与えない範囲で反応触媒やその他の添加剤を配合することができる。 These polyurethane-based adhesives or isocyanate-based adhesives can be blended with reaction catalysts and other additives within a range that does not adversely affect adhesiveness and pot life.
 イソシアネート系接着剤としては、上記ポリイソシアネート及び/又はジイソシアネートを主成分とし、アミン化合物などを硬化剤として用いるものを例示することができる。 Examples of the isocyanate-based adhesive include those having the above polyisocyanate and / or diisocyanate as the main component and an amine compound or the like as a curing agent.
 これらの接着剤の厚みは、特に限定されるものではないが、0.01~10μmであると接着剤の硬化速度向上効果が高いため好ましく、更に好ましくは0.1~6μmである。 The thickness of these adhesives is not particularly limited, but is preferably 0.01 to 10 μm because the effect of improving the curing rate of the adhesive is high, and more preferably 0.1 to 6 μm.
 接着剤は、公知の押出ラミネーター、溶剤型ドライラミネーター、又は無溶剤型ドライラミネーターに付帯されているコーターにて基材及び/又はポリオレフィンフィルムに塗布される。 The adhesive is applied to the substrate and / or the polyolefin film with a coater attached to a known extrusion laminator, solvent-type dry laminator, or solventless dry laminator.
 接着剤の希釈に用いられる溶剤については、特に限定されるものではないが、酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド、メタノール、エタノール、イソプロパノール等のアルコール類、水等を例示することができる。 The solvent used for diluting the adhesive is not particularly limited, but esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, tetrahydrofuran, dioxane and the like Exemplified ethers, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and ethylene chloride, alcohols such as dimethyl sulfoxide, dimethyl sulfoamide, methanol, ethanol and isopropanol, water, etc. be able to.
 本発明の(D)層を構成する基材としては、合成高分子フィルム又はシート、織布、不織布、紙、金属箔等が挙げられる。合成高分子フィルム又はシートとして、例えばポリエチレンテレフタレート等のポリエステル、ポリアミド、ポリビニルアルコール、エチレン・酢酸ビニル共重合体鹸化物、ポリカーボネート、ポリエチレン、ポリプロピレン等の合成高分子からなるフィルム又はシート等が挙げられる。更に、これら高分子フィルム又はシートは、その表面がアルミニウムやアルミナ、シリカなどにより蒸着されたものでもよく、また、表面がウレタン系インキ等を用い印刷されたものであってもよい。織布又は不織布としては、ポリエステルやポリエチレン、ポリプロピレンなどの合成樹脂製のもの、あるいはスフなどの天然材料を原料したものが挙げられる。紙としては、クラフト紙、クルパック紙、上質紙、グラシン紙、板紙等が挙げられる。これらの基材は単独での使用の他にこれらを積層したものを使用することも可能である。 Examples of the base material constituting the layer (D) of the present invention include a synthetic polymer film or sheet, woven fabric, non-woven fabric, paper, and metal foil. Examples of the synthetic polymer film or sheet include a film or sheet made of a synthetic polymer such as polyester such as polyethylene terephthalate, polyamide, polyvinyl alcohol, saponified ethylene / vinyl acetate copolymer, polycarbonate, polyethylene, or polypropylene. Furthermore, these polymer films or sheets may have a surface deposited with aluminum, alumina, silica or the like, or may have a surface printed with urethane-based ink or the like. Examples of the woven or non-woven fabric include those made of synthetic resin such as polyester, polyethylene, and polypropylene, or those made of natural materials such as sufu. Examples of the paper include craft paper, kulpack paper, high-quality paper, glassine paper, and paperboard. In addition to the use of these substrates alone, those obtained by laminating them can also be used.
 本発明のラミネートフィルムは(A)層/(B)層/(C)層/(D)層の4層から構成されるものであるが、(A)層表面あるいは(D)層表面に他の層を含んでいてもよい。 The laminate film of the present invention is composed of four layers of (A) layer / (B) layer / (C) layer / (D) layer. May be included.
 本発明のラミネートフィルムは、公知の押出ラミネート成形機、溶剤型ドライラミネート成形機、無溶剤型ドライラミネート成形機などを用いて、(B)層と基材を(C)層を介して貼り合わせることにより製造することができる。以下に、ラミネートフィルムの製造方法を例示するが、これらの方法に限定されない。
・(D)層に(C)層を塗工した後、タンデム押出ラミネーターにより(B)層と(A)層を順次積層する。
・(D)層に(C)層を塗工した後、予め製造された(A)層フィルムと(C)層の間にサンドイッチ押出ラミネーターにより(B)層を溶融積層する。
・(D)層に(C)層を塗工した後、共押出ラミネーターにより(B)層と(A)層を同時に積層する。
・(D)層に(C)層を塗工した後、予め共押出フィルム成形機により製造された(B)層と(A)層が積層されたフィルムをドライラミネートする。
The laminate film of the present invention is bonded to the (B) layer and the substrate via the (C) layer using a known extrusion laminate molding machine, solvent-type dry laminate molding machine, solventless dry laminate molding machine, or the like. Can be manufactured. Although the manufacturing method of a laminate film is illustrated below, it is not limited to these methods.
-After coating the (C) layer on the (D) layer, the (B) layer and the (A) layer are sequentially laminated by a tandem extrusion laminator.
-After the (C) layer is applied to the (D) layer, the (B) layer is melt-laminated between the previously produced (A) layer film and the (C) layer by a sandwich extrusion laminator.
-After coating (C) layer on (D) layer, (B) layer and (A) layer are laminated | stacked simultaneously by a coextrusion laminator.
-After the (C) layer is applied to the (D) layer, a film in which the (B) layer and the (A) layer previously produced by a coextrusion film forming machine are laminated is dry-laminated.
 本発明のラミネートフィルムは、公知の押出ラミネート成形や溶剤型ドライラミネート成形、無溶剤型ドライラミネート成形後に施される30℃以上での熱処理(エージング処理)を施してもよいが、生産性の観点から該熱処理を不要とすることも可能である。 The laminate film of the present invention may be subjected to a heat treatment (aging treatment) at 30 ° C. or higher, which is performed after known extrusion laminate molding, solvent-type dry laminate molding, or solvent-free dry laminate molding. Therefore, it is possible to eliminate the heat treatment.
 その際、ラミネート成形後、23℃の雰囲気で5分間放置した際の接着強度が0.7N/25mm以上であると、トンネリングなどの接着トラブルを回避することが可能となり好ましく、さらに好ましくは1.0N/25mm以上である。この範囲を満たすラミネートフィルムは、該アルキルを有するアミン化合物及び該脂肪酸金属塩の配合割合、ポリオレフィンフィルムの厚み、ポリウレタン系接着剤の塗布量を制御することにより適宜得ることができる。 At that time, it is preferable that the adhesive strength when left for 5 minutes in an atmosphere at 23 ° C. after the laminate molding is 0.7 N / 25 mm or more because it is possible to avoid adhesion trouble such as tunneling, and more preferably 1. 0 N / 25 mm or more. A laminate film satisfying this range can be suitably obtained by controlling the compounding ratio of the amine compound having alkyl and the fatty acid metal salt, the thickness of the polyolefin film, and the coating amount of the polyurethane adhesive.
 また、ラミネート成形後、23℃の雰囲気で700分間放置した際の接着強度が10N/25mm以上であると、エージング処理を不要とすることが可能となるため好ましい。 Also, it is preferable that the adhesive strength when left for 700 minutes in an atmosphere at 23 ° C. after lamination is 10 N / 25 mm or more because aging treatment can be made unnecessary.
 さらに、ラミネート成形後、23℃の雰囲気で放置した際のラミネートフィルムのシール強度が40℃の雰囲気で72時間放置した試料のシール強度の80%となる時間が12時間以内であると、接着トラブルの回避や包装袋とした際の内容物保護性を向上させることが可能となり好ましい。 Furthermore, if the time for which the sealing strength of the laminate film when left in an atmosphere at 23 ° C. after lamination is 80% of the sealing strength for 72 hours in an atmosphere at 40 ° C. is within 12 hours, This is preferable because it is possible to improve the protection of the contents when avoiding the packaging and the packaging bag.
 また、本発明のラミネートフィルムは、(A)層に樹脂組成物Aa又は樹脂組成物Acを用いた場合には、(A)層側表面の表面固有抵抗値が1013~1017(Ω)の範囲にあると経時での接着強度低下を抑制することができるため好ましく、1014~1017(Ω)が更に好ましい。この範囲を満たすラミネートフィルムは、該脂肪酸金属塩及び/又はアミン化合物の配合割合、(B)層の厚み、ポリウレタン系接着剤及び/又はイソシアネート系接着剤の塗布量を制御することにより適宜得ることができる。 In the laminate film of the present invention, when the resin composition Aa or the resin composition Ac is used for the (A) layer, the surface specific resistance value on the (A) layer side surface is 10 13 to 10 17 (Ω). If it is in the range, it is preferable because a decrease in adhesive strength over time can be suppressed, and 10 14 to 10 17 (Ω) is more preferable. A laminate film satisfying this range can be appropriately obtained by controlling the blending ratio of the fatty acid metal salt and / or amine compound, the thickness of the (B) layer, the amount of polyurethane adhesive and / or isocyanate adhesive applied. Can do.
 また、本発明のラミネートフィルムは、(A)層に樹脂組成物Ab又は樹脂組成物Acを用いた場合には、(A)層側表面の表面固有抵抗値が10~1014(Ω)の範囲にあると経時での接着強度低下を抑制することができるため好ましく、10~1013(Ω)が更に好ましい。この範囲を満たすラミネートフィルムは、帯電防止剤の配合割合、該脂肪酸金属塩及び/又はアミン化合物の配合割合、(A)層及び/又は(B)層の厚み、ポリウレタン系接着剤及び/又はイソシアネート系接着剤の塗布量を制御することにより適宜得ることができる。なお、表面固有抵抗値の測定は、(株)アドバンテスト製TR8601とTR-42を用い、23℃及び50%RHの環境下で、加電圧500kVにおける1分後の積層体表面の固有抵抗値を読み取ることにより求めることができる。 In the laminate film of the present invention, when the resin composition Ab or the resin composition Ac is used for the (A) layer, the surface specific resistance value on the (A) layer side surface is 10 8 to 10 14 (Ω). If it is in the range, it is preferable because it can suppress a decrease in adhesive strength over time, and more preferably 10 8 to 10 13 (Ω). Laminate films satisfying this range are blended proportions of antistatic agent, blended proportions of the fatty acid metal salt and / or amine compound, (A) layer and / or (B) layer thickness, polyurethane adhesive and / or isocyanate. It can be suitably obtained by controlling the coating amount of the system adhesive. The surface resistivity was measured using TR8601 and TR-42 manufactured by Advantest Co., Ltd., and the resistivity on the surface of the laminate after 1 minute at an applied voltage of 500 kV in an environment of 23 ° C. and 50% RH. It can be obtained by reading.
 このようなラミネートフィルムは、スナック菓子、インスタントラーメン等の乾燥食品、スープ、味噌、漬物、飲料等の水物飲食品、薬、輸液バッグ等の医薬品、シャンプー、化粧品など広範囲にわたる包装材料として用いることができる。 Such laminate film can be used as a wide range of packaging materials such as snack foods, dried foods such as instant noodles, soups, miso, pickles, beverages and other aquatic foods and drinks, medicines such as infusion bags, shampoos and cosmetics. it can.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (1)メルトマスフローレート(MFR)
 エチレン系重合体の場合は、JIS K6922-1(1997年)に準拠し、プロピレン系重合体の場合はJIS K7210に準拠して測定した。
(1) Melt mass flow rate (MFR)
In the case of an ethylene polymer, the measurement was conducted according to JIS K6922-1 (1997), and in the case of a propylene polymer, the measurement was conducted in accordance with JIS K7210.
 (2)密度
 JIS K6922-1(1997年)に準拠して測定した。
(2) Density The density was measured in accordance with JIS K6922-1 (1997).
 (3)接着性
 実施例により得られたラミネートフィルムを幅25mm、長さ100mmの形状に切り取り、ポリウレタン系接着剤及び/又はイソシアネート系接着剤を介して接着させたポリエステル(PET)フィルムとポリオレフィンフィルム間の接着強度をオートグラフDCS-100((株)島津製作所製)にて測定した。測定はラミネート成形5分後と700分後に行った。剥離速度は300mm/分である。なお、ラミネート成形から剥離強度測定までのラミネートフィルム保管温度は23℃である。
(3) Adhesive properties Polyester (PET) film and polyolefin film obtained by cutting the laminate film obtained in Examples into a shape having a width of 25 mm and a length of 100 mm and bonding them with a polyurethane adhesive and / or an isocyanate adhesive The adhesive strength between them was measured with Autograph DCS-100 (manufactured by Shimadzu Corporation). The measurement was performed after 5 minutes and 700 minutes after the lamination. The peeling speed is 300 mm / min. In addition, the laminate film storage temperature from laminate molding to peel strength measurement is 23 ° C.
 (4)シール強度発現時間
 実施例により得られたラミネートフィルムのポリオレフィンフィルム表面同士を温度150℃、圧力0.1MPa、時間1秒の条件でヒートシールした。ヒートシールしたフィルムを幅15mm、長さ100mmの形状に切り取り、ヒートシール部の剥離強度をオートグラフDCS-100((株)島津製作所製)にて測定した。測定は、ラミネート成形後1~16時間の間は1時間間隔で、その後、24時間後からは12時間間隔で72時間後まで行った。試料は、ラミネート成形後23℃雰囲気に放置したものを用いた。剥離速度は300mm/分である。40℃の雰囲気で72時間放置した試料のシール強度の80%の強度が発現する時間をシール強度発現時間とした。
(4) Seal strength development time The polyolefin film surfaces of the laminate film obtained in the examples were heat-sealed under the conditions of a temperature of 150 ° C., a pressure of 0.1 MPa, and a time of 1 second. The heat-sealed film was cut into a shape having a width of 15 mm and a length of 100 mm, and the peel strength of the heat-sealed portion was measured with Autograph DCS-100 (manufactured by Shimadzu Corporation). The measurement was performed at intervals of 1 hour between 1 and 16 hours after lamination, and thereafter at intervals of 12 hours and 72 hours after 24 hours. The sample used was left in a 23 ° C. atmosphere after lamination. The peeling speed is 300 mm / min. The time when 80% strength of the seal strength of the sample left in an atmosphere of 40 ° C. for 72 hours was developed was defined as the seal strength development time.
 (5)表面固有抵抗値
 (株)アドバンテスト製TR8601とTR-42を用い、23℃,50%RHの環境下で、加電圧500kVにおける1分後の実施例により得られたラミネートフィルムの(A)層側表面の固有抵抗値を測定した。
(5) Surface resistivity value The laminate film obtained by the example after 1 minute at an applied voltage of 500 kV under an environment of 23 ° C. and 50% RH using TR8601 and TR-42 manufactured by Advantest Co., Ltd. (A ) The specific resistance value of the layer side surface was measured.
 (6)水の接触角
 協和界面科学(株)製自動接触角・界面張力計PD-Zを使用し、23℃、50%RHの環境下において、実施例により得られたラミネートフィルムの(A)層側表面に純水を滴下した直後の接触角を求めた。
(6) Contact angle of water Using the automatic contact angle / interfacial tension meter PD-Z manufactured by Kyowa Interface Science Co., Ltd., under the environment of 23 ° C. and 50% RH, (A ) The contact angle immediately after dropping pure water on the layer side surface was determined.
 (7)スリップ性
 実施例により得られたラミネートフィルムの(A)層表面どうしを、JIS K7125(1999年)に準拠して、μK(動摩擦係数)を測定した。測定に供したラミネートフィルムは、ラミネート成形後23℃雰囲気に放置したものを用いたが、一部の接着性が不十分な試料には40℃の雰囲気で72時間のエージング処理を施した。
(7) Slip property (A) layer surface of the laminate film obtained by the Example was measured based on JIS K7125 (1999), and μK (dynamic friction coefficient) was measured. The laminate film used for the measurement was a laminate film which was left in an atmosphere at 23 ° C. after being molded. However, some of the samples with insufficient adhesion were subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C.
 実施例1
 オレフィン系重合体として、MFRが8g/10分、密度が918kg/mである低密度ポリエチレン(東ソー(株)製 商品名ペトロセン213、以下PE-Bと記す場合がある)99.95重量%、ポリオキシエチレンアルキルアミンとしてポリオキシエチレンドデシルアミン(日油(株)製 商品名ナイミーンL-202、以下、CAT-1と記す場合がある)を0.05重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練し(B)層に用いる樹脂組成物Bのペレットを得た。
Example 1
Low-density polyethylene having an MFR of 8 g / 10 min and a density of 918 kg / m 3 as an olefin polymer (trade name Petrocene 213 manufactured by Tosoh Corporation, hereinafter sometimes referred to as PE-B) 99.95% by weight Polyoxyethylene dodecylamine (trade name: Naimine L-202 manufactured by NOF Corporation, hereinafter sometimes referred to as CAT-1) as a polyoxyethylene alkylamine is blended so as to be 0.05% by weight. The mixture was melt-kneaded with a shaft extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of the resin composition B used for the (B) layer.
 同様の方法で、オレフィン系重合体として、MFRが10g/10分、密度が913kg/mであるエチレン・1-ヘキセン共重合体と低密度ポリエチレンの混合物(東ソー(株)製 商品名ニポロン-Z TZ420、以下PE-Aと記す場合がある)を99.98重量%、脂肪酸アミドとしてエルカ酸アミド(日油(株)製 商品名アルフローP-10、以下、FA-1と記す場合がある)を0.02重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練し(A)層に用いる樹脂組成物Aaのペレットを得た。 In the same manner, as an olefin polymer, a mixture of an ethylene / 1-hexene copolymer having an MFR of 10 g / 10 min and a density of 913 kg / m 3 and a low density polyethylene (trade name Nipolon- manufactured by Tosoh Corporation) Z TZ420 (hereinafter sometimes referred to as PE-A) is 99.98% by weight, and erucic acid amide (trade name Alflow P-10 manufactured by NOF Corporation) as the fatty acid amide is sometimes referred to as FA-1. ) Was blended to 0.02% by weight, and melt-kneaded with a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of the resin composition Aa used for the layer (A).
 ラミネートフィルムの作製には、90mmφ/65mmφ共押出ラミネーター((株)プラコー製)を用いた。得られた樹脂組成物Bペレットを90mmφのスクリューを有する押出機へ、樹脂組成物Aaペレットを65mmφのスクリューを有する押出機へ供給し、320℃の温度でTダイより共押出し、(D)層として第一給紙部から繰り出したニ軸延伸ポリエステルフィルム(東洋紡績(株)製 商品名エステルフィルムE-5100、厚み25μm、以下、PETと記す場合がある)のコロナ処理面に、(C)層として以下に示す比率で配合したポリウレタン系接着剤を塗布し溶剤を乾燥した基材上に樹脂組成物Bが20μm、樹脂組成物Aが40μmの厚さになるよう共押出ラミネートしラミネートフィルムを得た。 A 90 mmφ / 65 mmφ coextrusion laminator (manufactured by Placo) was used for the production of the laminate film. The obtained resin composition B pellets are supplied to an extruder having a 90 mmφ screw, and the resin composition Aa pellets are supplied to an extruder having a 65 mmφ screw, and are coextruded from a T die at a temperature of 320 ° C. (D) layer (C) on the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 μm, hereinafter referred to as PET) A laminate film is obtained by coextruding and laminating a resin composition B to a thickness of 20 μm and a resin composition A to a thickness of 40 μm on a base material obtained by applying a polyurethane adhesive blended in the following ratio as a layer and drying the solvent. Obtained.
 ポリウレタン系接着剤の配合:タケラックA3210(15部)+タケネートA3072(5部)+酢酸エチル(140部)
 タケラックA3210、タケネートA3072はいずれも三井化学ポリウレタン(株)製
 接着剤厚み:0.2μm
 得られたラミネートフィルムの物性を表1に示した。
Formulation of polyurethane adhesive: Takelac A3210 (15 parts) + Takenate A3072 (5 parts) + ethyl acetate (140 parts)
Both Takelac A3210 and Takenate A3072 are manufactured by Mitsui Chemicals Polyurethanes Co., Ltd. Adhesive thickness: 0.2 μm
The physical properties of the obtained laminate film are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例2
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.95重量%、ジステアリン酸亜鉛(日油(株)製 商品名ジンクステアレート、以下、CAT-2と記す場合がある)を0.05重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 2
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.95% by weight of PE-B, zinc distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1, except that the nominal zinc stearate (hereinafter sometimes referred to as CAT-2) was 0.05% by weight. The evaluation results are shown in Table 1.
 実施例3
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、CAT-2を0.10重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 3
As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
 実施例4
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.80重量%、CAT-2を0.20重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 4
As resin composition B, PE-B was 99.95 wt%, CAT-1 was 0.05 wt%, PE-B was 99.80 wt%, and CAT-2 was 0.20 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
 実施例5
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジラウリル酸亜鉛(日油(株)製 商品名ジンクラウレート、以下、CAT-3と記す場合がある)を0.1重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 5
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, zinc dilaurate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the nominal gin laurate (hereinafter sometimes referred to as CAT-3) was 0.1% by weight. The evaluation results are shown in Table 1.
 実施例6
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ヒンダードアミン光安定剤としてポリ{[6-〔(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]}(チバジャパン(株)製 商品名キマソーブ944FDL、以下、CAT-4と記す場合がある)を0.10重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 6
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and poly {[6- [ (1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine-2,4-diyl] [[(2,2,6,6-tetramethyl-4-piperidyl) imino] Hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]} (Ciba Japan Co., Ltd. trade name Kimasorb 944FDL, hereinafter sometimes referred to as CAT-4) 0.10 weight A laminated film was obtained in the same manner as in Example 1 except that the content was%. The evaluation results are shown in Table 1.
 実施例7
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジメチルステアリン酸アミン(日油(株)製 商品名3級ニッサンアミンAB、以下、CAT-5と記す場合がある)を0.10重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 7
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, amine dimethylstearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the trade name of tertiary amine AB (hereinafter sometimes referred to as CAT-5) was changed to 0.10% by weight. The evaluation results are shown in Table 1.
 実施例8
 樹脂組成物Aaとして、PE-Aを99.98重量%、FA-1を0.02重量%の代わりに、PE-Aを99.92重量%、FA-1を0.08重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 8
As resin composition Aa, PE-A was changed to 99.98 wt%, FA-1 was changed to 0.02 wt%, PE-A was changed to 99.92 wt%, and FA-1 was changed to 0.08 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.
 実施例9
 樹脂組成物Aaとして、PE-Aを99.98重量%、FA-1を0.02重量%の代わりに、PE-Aを99.98重量%、エチレンビスオレイン酸アミド(日油(株)製 商品名アルフローAD281-F、以下、FA-2と記す場合がある)を0.02重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 9
As resin composition Aa, PE-A 99.98 wt%, FA-1 0.02 wt% instead of PE-A 99.98 wt%, ethylenebisoleic acid amide (NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the product name Alflow AD281-F (hereinafter sometimes referred to as FA-2) was 0.02 wt%. The evaluation results are shown in Table 1.
 実施例10
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、2エチル-ヘキサン酸亜鉛(日本化学産業(株)製 商品名ニッカオクチックス亜鉛18%、以下、CAT-6と記す場合がある)を0.1重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表1に示した。
Example 10
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 2-ethyl-zinc hexanoate (Nippon Chemical Industry ( A laminate film was obtained in the same manner as in Example 1 except that the product name Nikka Octix Zinc (18%, hereinafter may be referred to as CAT-6) was 0.1% by weight. The evaluation results are shown in Table 1.
 比較例1
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを100重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表2に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、スリップ性評価には、接着強度が低かったため40℃の雰囲気で72時間のエージング処理を施した試料を用いたが、静摩擦係数が高く、スリップ性に劣っていた。
Comparative Example 1
Laminate film in the same manner as in Example 1 except that the resin composition B was changed to 99.95% by weight of PE-B and 0.05% by weight of CAT-1 but 100% by weight of PE-B. Got. The evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was used, but the static friction coefficient was high and the slip property was poor.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 比較例2
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを97.80重量%、CAT-1を2.2重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表2に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、40℃の雰囲気で72時間のエージング処理を施したものの接着強度が上昇しなかったため、スリップ性の評価は行わなかった。
Comparative Example 2
As resin composition B, PE-B was changed to 99.95 wt%, CAT-1 was changed to 0.05 wt%, PE-B was changed to 97.80 wt%, and CAT-1 was changed to 2.2 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength did not increase after aging treatment for 72 hours in an atmosphere at 40 ° C., the slip property was not evaluated.
 比較例3
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジステアリン酸カルシウム(日油(株)製 商品名カルシウムステアレートG、以下、CAT-7と記す場合がある。)を0.10重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表2に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、スリップ性評価には、接着強度が低かったため40℃の雰囲気で72時間のエージング処理を施した試料を用いたが、静摩擦係数が高く、スリップ性に劣っていた。
Comparative Example 3
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, calcium distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 1 except that the nominal calcium stearate G (hereinafter sometimes referred to as CAT-7) was 0.10% by weight. The evaluation results are shown in Table 2. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was used, but the static friction coefficient was high and the slip property was poor.
 比較例4
 樹脂組成物Aaとして、PE-Aを99.98重量%、FA-1を0.02重量%の代わりに、PE-Aを100重量%とした以外は、実施例1と同様にしてラミネートフィルムを得た。評価結果を表2に示したが、静摩擦係数が高く、スリップ性に劣っていた。
Comparative Example 4
A laminate film as in Example 1 except that the resin composition Aa was changed to 99.98% by weight of PE-A and 100% by weight of PE-A instead of 0.02% by weight of FA-1. Got. The evaluation results are shown in Table 2. The static friction coefficient was high and the slip property was inferior.
 比較例5
 樹脂組成物Aaとして、PE-Aを99.98重量%、FA-1を0.02重量%の代わりに、PE-Aを97.8重量%、FA-1を2.2重量%とした以外は、実施例1と同様にしてラミネートフィルムの作製を試みたが、ラミネート成形中の発煙がひどく、ラミネートフィルムを得ることはできなかった。
Comparative Example 5
As the resin composition Aa, PE-A was changed to 99.98 wt%, FA-1 was changed to 0.02 wt%, PE-A was changed to 97.8 wt%, and FA-1 was changed to 2.2 wt%. Except for the above, an attempt was made to produce a laminate film in the same manner as in Example 1, but the smoke generation during the laminate molding was so severe that a laminate film could not be obtained.
 実施例11
 オレフィン系重合体として、MFRが6.5g/10分、密度が900kg/mであるプロピレン系重合体(日本ポリプロ(株)製、商品名FW4BT、以下、PPと記す場合がある。)99.90重量%、CAT-2を0.10重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練しB層に用いる樹脂組成物B-1のペレットを得た。
Example 11
As an olefin polymer, a propylene polymer having a MFR of 6.5 g / 10 min and a density of 900 kg / m 3 (manufactured by Nippon Polypro Co., Ltd., trade name: FW4BT, hereinafter may be referred to as PP) 99 90% by weight and CAT-2 in an amount of 0.10% by weight, and melt-kneaded with a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) 1 pellet was obtained.
 同様に、PP99.96重量%、FA-1を0.04重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練しA層に用いる樹脂組成物Aa-1のペレットを得た。 Similarly, 99.96% by weight of PP and 0.04% by weight of FA-1 are blended, and melt-kneaded with a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.). A pellet of composition Aa-1 was obtained.
 フィルム成形は、3種3層共押出キャストフィルム成形機(プラスチック工学研究所製)を用いた。一方の表面層(A層)を構成する押出機に上記樹脂組成物Aa-1ペレットを、他の2層(B1層、B2層)を構成する押出機には樹脂組成物B-1ペレットを供給し、220℃の温度でTダイより押出し、(A)層/(B1)層/(B2)層からなる多層フィルムを得た後、(B2)層表面に30W・分/mの条件でコロナ処理を施した。各層の厚みは20μmであった。 For film molding, a three-type three-layer coextrusion cast film molding machine (manufactured by Plastics Engineering Laboratory) was used. The above resin composition Aa-1 pellets are placed in the extruder constituting one surface layer (A layer), and the resin composition B-1 pellets are placed in the extruder constituting the other two layers (B1 layer, B2 layer). After feeding and extruding from a T-die at a temperature of 220 ° C. to obtain a multilayer film composed of (A) layer / (B1) layer / (B2) layer, the condition of 30 W · min / m 2 on the surface of (B2) layer The corona treatment was applied. The thickness of each layer was 20 μm.
 ラミネート成形は、溶剤型ドライラミネーター(井上金属工業(株)製)を用いた。ニ軸延伸ポリエステルフィルム(東洋紡績(株)製 商品名エステルフィルムE-5100、厚み25μm、以下、PETと記す場合がある)のコロナ処理面に以下に示す比率で配合したポリウレタン系接着剤を塗布し溶剤を乾燥した基材と上記フィルムのコロナ処理面とを貼り合わせラミネートフィルムを得た。 For the lamination molding, a solvent-type dry laminator (manufactured by Inoue Metal Industry Co., Ltd.) was used. Polyurethane adhesive compounded at the ratio shown below is applied to the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 μm, hereinafter sometimes referred to as PET) Then, the substrate dried with the solvent and the corona-treated surface of the film were bonded together to obtain a laminate film.
 ポリウレタン系接着剤の配合:セイカボンドE-263(25部)+セイカボンドC-26(5部)+酢酸エチル(150部)
 セイカボンドは大日精化工業(株)製
 接着剤厚み:3μm
 得られたラミネートフィルムの接着強度を表3に示した。
Formulation of polyurethane adhesive: Seika Bond E-263 (25 parts) + Seika Bond C-26 (5 parts) + ethyl acetate (150 parts)
Seika Bond is manufactured by Dainichi Seika Kogyo Co., Ltd. Adhesive thickness: 3μm
The adhesive strength of the obtained laminate film is shown in Table 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例12
 樹脂組成物B-1の代わりに、MFRが2g/10分、密度が920kg/mであるエチレン・1-ヘキセン共重合体(東ソー(株)製、商品名ニポロンZ-ZF230、以下、PE-Cと記す場合がある)を99.90重量%、CAT-2を0.10重量%とした樹脂組成物B-2へ変更し、樹脂組成物Aa-1の代わりに、PE-Cを99.96重量%、FA-1を0.04重量%とした樹脂組成物Aa-2に変更した以外は、実施例10と同様にしてラミネートフィルムを得た。
Example 12
Instead of the resin composition B-1, an ethylene / 1-hexene copolymer having a MFR of 2 g / 10 min and a density of 920 kg / m 3 (trade name Nipolon Z-ZF230, manufactured by Tosoh Corp., hereinafter referred to as PE -C) may be changed to Resin Composition B-2 with 99.90% by weight and CAT-2 at 0.10% by weight, and PE-C may be used instead of Resin Composition Aa-1. A laminate film was obtained in the same manner as in Example 10, except that the resin composition Aa-2 was changed to 99.96 wt% and FA-1 0.04 wt%.
 得られたラミネートフィルムの接着強度を表3に示した。 The adhesive strength of the obtained laminate film is shown in Table 3.
 実施例13
 樹脂組成物Aa-1の代わりに、PE-Cを99.96重量%、FA-1を0.02重量%、FA-2を0.02重量%とした樹脂組成物Aa-3に変更した以外は、実施例11と同様にしてラミネートフィルムを得た。
Example 13
Instead of resin composition Aa-1, PE-C was changed to resin composition Aa-3 with 99.96 wt%, FA-1 0.02 wt%, and FA-2 0.02 wt%. Except for the above, a laminate film was obtained in the same manner as in Example 11.
 得られたラミネートフィルムの接着強度を表3に示した。 The adhesive strength of the obtained laminate film is shown in Table 3.
 実施例14
 オレフィン系重合体として、MFRが8g/10分、密度が918kg/mである低密度ポリエチレン(東ソー(株)製 商品名ペトロセン213、以下PE-Bと記す場合がある)99.95重量%、ポリオキシエチレンアルキルアミンとしてポリオキシエチレンドデシルアミン(CAT-1)を0.05重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練し(B)層に用いる樹脂組成物Bのペレットを得た。
Example 14
Low-density polyethylene having an MFR of 8 g / 10 min and a density of 918 kg / m 3 as an olefin polymer (trade name Petrocene 213 manufactured by Tosoh Corporation, hereinafter sometimes referred to as PE-B) 99.95% by weight , Polyoxyethylene dodecylamine (CAT-1) as polyoxyethylene alkylamine was mixed at 0.05% by weight, and melt kneaded with a twin screw extruder (laboroplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.). (B) The pellet of the resin composition B used for a layer was obtained.
 同様の方法で、オレフィン系重合体として、MFRが10g/10分、密度が913kg/mであるエチレン・1-ヘキセン共重合体と低密度ポリエチレンの混合物(PE-A)を99.80重量%、帯電防止剤としてステアリン酸グリセリンエステル(理研ビタミン(株)製 商品名リケマールS-100、以下、AS-1と記す場合がある)を0.1重量%、ステアリン酸ポリグリセリンエステル(理研ビタミン(株)製 商品名リケマールS-71D、以下、AS-2と記す場合がある)を0.1重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練し(A)層に用いる樹脂組成物Abのペレットを得た。 In the same manner, 99.80 wt. Of a mixture (PE-A) of an ethylene / 1-hexene copolymer having a MFR of 10 g / 10 min and a density of 913 kg / m 3 and a low density polyethylene was used as the olefin polymer. 0.1% by weight of stearic acid glycerin ester (trade name Riquemar S-100 manufactured by Riken Vitamin Co., Ltd., hereinafter sometimes referred to as AS-1) as an antistatic agent, stearic acid polyglycerin ester (RIKEN vitamin) A product name Riquemar S-71D (hereinafter referred to as “AS-2”) may be blended to 0.1% by weight, and a twin screw extruder (labor plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) And kneaded to obtain pellets of the resin composition Ab used for the layer (A).
 ラミネートフィルムの作製には、90mmφ/65mmφ共押出ラミネーター((株)プラコー製)を用いた。得られた樹脂組成物Bペレットを90mmφのスクリューを有する押出機へ、樹脂組成物Abペレットを65mmφのスクリューを有する押出機へ供給し、320℃の温度でTダイより共押出し、(D)層として第一給紙部から繰り出したニ軸延伸ポリエステルフィルム(東洋紡績(株)製 商品名エステルフィルムE-5100、厚み25μm、以下、PETと記す場合がある)のコロナ処理面に、(C)層として以下に示す比率で配合したポリウレタン系接着剤を塗布し溶剤を乾燥した基材上に樹脂組成物Bが20μm、樹脂組成物Abが40μmの厚さになるよう共押出ラミネートしラミネートフィルムを得た。 A 90 mmφ / 65 mmφ coextrusion laminator (manufactured by Placo) was used for the production of the laminate film. The obtained resin composition B pellets are supplied to an extruder having a 90 mmφ screw, and the resin composition Ab pellets are supplied to an extruder having a 65 mmφ screw, and are coextruded from a T die at a temperature of 320 ° C. (D) layer (C) on the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 μm, hereinafter referred to as PET) A laminate film is obtained by coextrusion laminating a resin composition B to a thickness of 20 μm and a resin composition Ab to a thickness of 40 μm on a base material obtained by applying a polyurethane adhesive blended in the ratio shown below as a layer and drying the solvent. Obtained.
 ポリウレタン系接着剤の配合:タケラックA3210(15部)+タケネートA3072(5部)+酢酸エチル(140部)
 タケラックA3210、タケネートA3072はいずれも三井化学ポリウレタン(株)製
 接着剤厚み:0.2μm
 得られたラミネートフィルムの物性を表4に示した。
Formulation of polyurethane adhesive: Takelac A3210 (15 parts) + Takenate A3072 (5 parts) + ethyl acetate (140 parts)
Both Takelac A3210 and Takenate A3072 are manufactured by Mitsui Chemicals Polyurethanes Co., Ltd. Adhesive thickness: 0.2 μm
Table 4 shows the physical properties of the obtained laminate film.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例15
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.95重量%、ジステアリン酸亜鉛(CAT-2)を0.05重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 15
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.95% by weight of PE-B and 0. 5% of zinc distearate (CAT-2) were added. A laminate film was obtained in the same manner as in Example 14 except that the content was changed to 05% by weight. The evaluation results are shown in Table 4.
 実施例16
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、CAT-2を0.10重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 16
As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 4.
 実施例17
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.80重量%、CAT-2を0.20重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 17
As resin composition B, PE-B was 99.95 wt%, CAT-1 was 0.05 wt%, PE-B was 99.80 wt%, and CAT-2 was 0.20 wt%. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 4.
 実施例18
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジラウリル酸亜鉛(CAT-3)を0.10重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 18
As the resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 0.9% of zinc dilaurate (CAT-3) were added. A laminate film was obtained in the same manner as in Example 14 except that the amount was 10% by weight. The evaluation results are shown in Table 4.
 実施例19
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ヒンダードアミン光安定剤としてポリ{[6-〔(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]}(CAT-4)を0.10重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 19
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and poly {[6- [ (1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine-2,4-diyl] [[(2,2,6,6-tetramethyl-4-piperidyl) imino] A laminate film was obtained in the same manner as in Example 14 except that hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]} (CAT-4) was changed to 0.10 wt%. . The evaluation results are shown in Table 4.
 実施例20
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジメチルステアリン酸アミン(CAT-5)を0.10重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 20
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B and 0% of dimethyl stearate (CAT-5) A laminate film was obtained in the same manner as in Example 14 except that the content was changed to 10% by weight. The evaluation results are shown in Table 4.
 実施例21
 樹脂組成物Abとして、PE-Aを99.80重量%、AS-1を0.1重量%、AS-2を0.1重量%の代わりに、PE-Aを99.70重量%、AS-1を0.15重量%、AS-2を0.15重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 21
As the resin composition Ab, 99.80% by weight of PE-A, 0.1% by weight of AS-1, 0.1% by weight of AS-2, 99.70% by weight of PE-A, AS A laminate film was obtained in the same manner as in Example 14 except that -1 was 0.15 wt% and AS-2 was 0.15 wt%. The evaluation results are shown in Table 4.
 実施例22
 樹脂組成物Abとして、PE-Aを99.80重量%、AS-1を0.1重量%、AS-2を0.1重量%の代わりに、PE-Aを99.80重量%、アルキルスルフォン酸ナトリウム塩(ミヨシ油脂(株)製、商品名ダスパー802D、以下、AS-3と記す場合がある)を0.2重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 22
As the resin composition Ab, 99.80% by weight of PE-A, 0.1% by weight of AS-1, 0.1% by weight of AS-2, 99.80% by weight of PE-A, alkyl A laminate film was obtained in the same manner as in Example 14 except that sodium sulfonate (Miyoshi Oil & Fats Co., Ltd., trade name: Dasper 802D, hereinafter sometimes referred to as AS-3) was 0.2% by weight. It was. The evaluation results are shown in Table 4.
 実施例23
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、2エチル-ヘキサン酸亜鉛(CAT-6)を0.1重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表4に示した。
Example 23
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, 2-ethyl-zinc hexanoate (CAT-6) A laminate film was obtained in the same manner as in Example 14 except that the content was 0.1 wt%. The evaluation results are shown in Table 4.
 比較例6
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを100重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表5に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、帯電防止性評価には、接着強度が低かったため40℃の雰囲気で72時間のエージング処理を施した試料を用いたが、帯電防止性に劣っていた。
Comparative Example 6
Laminated film in the same manner as in Example 14 except that the resin composition B was changed to 99.95% by weight of PE-B and 0.05% by weight of CAT-1 but 100% by weight of PE-B. Got. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. In addition, in the antistatic property evaluation, a sample subjected to aging treatment for 72 hours in an atmosphere at 40 ° C. was used because of low adhesive strength, but the antistatic property was poor.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 比較例7
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを97.80重量%、CAT-1を2.2重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表5に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、40℃の雰囲気で72時間のエージング処理を施したものの接着強度が上昇しなかったため、帯電防止性の評価は行わなかった。
Comparative Example 7
As resin composition B, PE-B was changed to 99.95 wt%, CAT-1 was changed to 0.05 wt%, PE-B was changed to 97.80 wt%, and CAT-1 was changed to 2.2 wt%. A laminated film was obtained in the same manner as in Example 14 except that. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength did not increase after aging treatment for 72 hours in an atmosphere at 40 ° C., the antistatic property was not evaluated.
 比較例8
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、ジステアリン酸カルシウム(日油(株)製 商品名カルシウムステアレートG、以下、CAT-7と記す場合がある。)を0.10重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表5に示した。初期接着強度(5分後)、700分後の接着強度とも低く劣っていた。また、スリップ性評価には、接着強度が低かったため40℃の雰囲気で72時間のエージング処理を施した試料を用いたが、帯電防止性に劣っていた。
Comparative Example 8
As resin composition B, instead of 99.95% by weight of PE-B and 0.05% by weight of CAT-1, 99.90% by weight of PE-B, calcium distearate (manufactured by NOF Corporation) A laminate film was obtained in the same manner as in Example 14 except that the nominal calcium stearate G (hereinafter sometimes referred to as CAT-7) was 0.10% by weight. The evaluation results are shown in Table 5. Both the initial adhesive strength (after 5 minutes) and the adhesive strength after 700 minutes were low and inferior. Moreover, since the adhesive strength was low in the slip property evaluation, a sample which had been subjected to an aging treatment for 72 hours in an atmosphere at 40 ° C. was inferior in antistatic property.
 比較例9
 樹脂組成物Abとして、PE-Aを99.80重量%、AS-1を0.1重量%、AS-2を0.1重量%の代わりに、PE-Aを100重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表5に示したが、帯電防止性に劣っていた。
Comparative Example 9
As resin composition Ab, PE-A was changed to 99.80 wt%, AS-1 was changed to 0.1 wt%, AS-2 was changed to 0.1 wt%, and PE-A was changed to 100 wt%. A laminate film was obtained in the same manner as in Example 14. The evaluation results are shown in Table 5, but were inferior in antistatic properties.
 比較例10
 樹脂組成物Abとして、PE-Aを99.80重量%、AS-1を0.1重量%、AS-2を0.1重量%の代わりに、PE-Aを97.8重量%、AS-1を1.1重量%、AS-2を1.1重量%とした以外は、実施例14と同様にしてラミネートフィルムの作製を試みたが、ラミネート成形中の発煙がひどく、ラミネートフィルムを得ることはできなかった。
Comparative Example 10
As the resin composition Ab, instead of 99.80% by weight of PE-A, 0.1% by weight of AS-1 and 0.1% by weight of AS-2, 97.8% by weight of PE-A, AS Except that -1 was 1.1 wt% and AS-2 was 1.1 wt%, an attempt was made to produce a laminate film in the same manner as in Example 14. However, smoke generation during laminate molding was severe, and the laminate film was Couldn't get.
 実施例24
 オレフィン系重合体として、MFRが6.5g/10分、密度が900kg/mであるプロピレン系重合体(PP)99.90重量%、CAT-2を0.10重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練しB層に用いる樹脂組成物B-1のペレットを得た。
Example 24
As the olefin polymer, blended so that the propylene polymer (PP) with MFR of 6.5 g / 10 min, density of 900 kg / m 3 is 99.90% by weight, and CAT-2 is 0.10% by weight. Then, it was melt-kneaded with a twin screw extruder (Laboplast Mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of resin composition B-1 used for the B layer.
 同様に、PP99.60重量%、AS-1を0.2重量%、ポリオキシエチレンラウリルアマイド(日油(株)製、商品名スタホームDL、以下AS-4と記す場合がある)を0.2重量%になるよう配合し、ニ軸押出機((株)東洋精機製作所製 ラボプラストミル)にて溶融混練しA層に用いる樹脂組成物Ab-4のペレットを得た。 Similarly, PP 99.60% by weight, AS-1 0.2% by weight, polyoxyethylene lauryl amide (manufactured by NOF Corporation, trade name Stahome DL, hereinafter sometimes referred to as AS-4) is 0. The mixture was blended so as to be 2% by weight, and melt-kneaded by a twin screw extruder (Laboplast Mill, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain pellets of the resin composition Ab-4 used for the A layer.
 フィルム成形は、3種3層共押出キャストフィルム成形機(プラスチック工学研究所製)を用いた。一方の表面層(A層)を構成する押出機に上記樹脂組成物Ab-4ペレットを、他の2層(B1層、B2層)を構成する押出機には樹脂組成物B-1ペレットを供給し、220℃の温度でTダイより押出し、(A)層/(B1)層/(B2)層からなる多層フィルムを得た後、(B2)層表面に30W・分/mの条件でコロナ処理を施した。各層の厚みは20μmであった。 For film molding, a three-type three-layer coextrusion cast film molding machine (manufactured by Plastics Engineering Laboratory) was used. The above resin composition Ab-4 pellets are placed in the extruder constituting one surface layer (A layer), and the resin composition B-1 pellets are placed in the extruder constituting the other two layers (B1 layer, B2 layer). After feeding and extruding from a T-die at a temperature of 220 ° C. to obtain a multilayer film composed of (A) layer / (B1) layer / (B2) layer, the condition of 30 W · min / m 2 on the surface of (B2) layer The corona treatment was applied. The thickness of each layer was 20 μm.
 ラミネート成形は、溶剤型ドライラミネーター(井上金属工業(株)製)を用いた。ニ軸延伸ポリエステルフィルム(東洋紡績(株)製 商品名エステルフィルムE-5100、厚み25μm、以下、PETと記す場合がある)のコロナ処理面に以下に示す比率で配合したポリウレタン系接着剤を塗布し溶剤を乾燥した基材と上記フィルムのコロナ処理面とを貼り合わせラミネートフィルムを得た。 For the lamination molding, a solvent-type dry laminator (manufactured by Inoue Metal Industry Co., Ltd.) was used. Polyurethane adhesive compounded at the ratio shown below is applied to the corona-treated surface of a biaxially stretched polyester film (trade name ester film E-5100, manufactured by Toyobo Co., Ltd., thickness 25 μm, hereinafter sometimes referred to as PET) Then, the substrate dried with the solvent and the corona-treated surface of the film were bonded together to obtain a laminate film.
 ポリウレタン系接着剤の配合:セイカボンドE-263(25部)+セイカボンドC-26(5部)+酢酸エチル(150部)
 セイカボンドは大日精化工業(株)製
 接着剤厚み:3μm
 得られたラミネートフィルムの接着強度を表6に示した。
Formulation of polyurethane adhesive: Seika Bond E-263 (25 parts) + Seika Bond C-26 (5 parts) + ethyl acetate (150 parts)
Seika Bond is manufactured by Dainichi Seika Kogyo Co., Ltd. Adhesive thickness: 3μm
Table 6 shows the adhesive strength of the obtained laminate film.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例25
 樹脂組成物B-1の代わりに、MFRが2g/10分、密度が920kg/mであるエチレン・1-ヘキセン共重合体(東ソー(株)製、商品名ニポロンZ-ZF230、以下、PE-Cと記す場合がある)を99.90重量%、CAT-2を0.10重量%とした樹脂組成物B-2へ変更し、樹脂組成物Ab-4の代わりに、PE-Cを99.90重量%、AS-1を0.05重量%、AS-2を0.05重量%とした樹脂組成物A-5に変更した以外は、実施例24と同様にしてラミネートフィルムを得た。
Example 25
Instead of the resin composition B-1, an ethylene / 1-hexene copolymer having a MFR of 2 g / 10 min and a density of 920 kg / m 3 (trade name Nipolon Z-ZF230, manufactured by Tosoh Corp., hereinafter referred to as PE -C) may be changed to Resin Composition B-2 with 99.90% by weight and CAT-2 at 0.10% by weight, and PE-C may be used instead of Resin Composition Ab-4. A laminate film was obtained in the same manner as in Example 24 except that the resin composition A-5 was changed to 99.90% by weight, AS-1 0.05% by weight, and AS-2 0.05% by weight. It was.
 得られたラミネートフィルムの接着強度を表6に示した。 Table 6 shows the adhesive strength of the obtained laminate film.
 実施例26
 樹脂組成物Aとして、PE-Aを99.80重量%、AS-1を0.1重量%、AS-2を0.1重量%の代わりに、PE-Aを99.72重量%、AS-1を0.10重量%、AS-2を0.10重量%、FA-1を0.08重量%とした以外は、実施例14と同様にしてラミネートフィルムを得た。評価結果を表7に示した。
Example 26
As resin composition A, PE-A was 99.80 wt%, AS-1 was 0.1 wt%, AS-2 was 0.1 wt%, PE-A was 99.72 wt%, AS A laminate film was obtained in the same manner as in Example 14 except that -1 was changed to 0.10 wt%, AS-2 was changed to 0.10 wt%, and FA-1 was changed to 0.08 wt%. The evaluation results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例27
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、CAT-2を0.10重量%とした以外は、実施例26と同様にしてラミネートフィルムを得た。評価結果を表7に示した。
Example 27
As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-2 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 26 except that. The evaluation results are shown in Table 7.
 実施例28
 樹脂組成物Bとして、PE-Bを99.95重量%、CAT-1を0.05重量%の代わりに、PE-Bを99.90重量%、CAT-6を0.10重量%とした以外は、実施例26と同様にしてラミネートフィルムを得た。評価結果を表7に示した。
Example 28
As resin composition B, PE-B was 99.95% by weight, CAT-1 was 0.05% by weight, PE-B was 99.90% by weight, and CAT-6 was 0.10% by weight. A laminated film was obtained in the same manner as in Example 26 except that. The evaluation results are shown in Table 7.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2009年04月09日出願の日本国特許出願(特願2009-094715)及び2009年04月17日出願の日本国特許出願(特願2009-100889)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on April 09, 2009 (Japanese Patent Application No. 2009-094715) and a Japanese patent application filed on April 17, 2009 (Japanese Patent Application No. 2009-1000088). The contents are incorporated herein by reference.
 本発明のラミネートフィルムは、エージング処理を施さなくても接着性に優れ、かつ良好なスリップ性、帯電防止性を長期に維持することができるため、生産性に優れた食品などの包装フィルムとして非常に有用である。よって、本発明の工業的価値は顕著である。 The laminate film of the present invention has excellent adhesiveness without being subjected to an aging treatment and can maintain good slip and antistatic properties for a long period of time. Useful for. Therefore, the industrial value of the present invention is remarkable.

Claims (13)

  1.  少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び脂肪酸アミド0.001~2重量%から構成される樹脂組成物Aa、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and (A) layer comprises 98 to 99.999% by weight of olefin polymer and 0.001 to 2 fatty acid amide. Resin composition Aa composed of% by weight, (B) layer comprising at least one metal selected from the group consisting of 98 to 99.999% by weight of olefin polymer, zinc, lithium, cobalt, iron, and tin Resin composition B composed of 0.001 to 2% by weight of fatty acid metal salt and / or amine compound, (C) layer is polyurethane-based adhesive and / or isocyanate-based adhesive, and (D) layer is at least one layer A laminate film comprising the above base material.
  2.  少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体98~99.999重量%及び帯電防止剤0.001~2重量%から構成される樹脂組成物Ab、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and (A) layer comprises 98 to 99.999% by weight of olefin polymer and 0.001 to 0.001 to antistatic agent. Resin composition Ab comprising 2% by weight, at least one metal selected from the group consisting of 98 to 99.999% by weight of olefin polymer, layer (B), zinc, lithium, cobalt, iron and tin A resin composition B comprising 0.001 to 2% by weight of a fatty acid metal salt and / or an amine compound, wherein the layer (C) is a polyurethane-based adhesive and / or an isocyanate-based adhesive, and the layer (D) is at least 1 A laminate film comprising a substrate of at least layers.
  3.  少なくとも(A)層/(B)層/(C)層/(D)層の4層から構成され、(A)層がオレフィン重合体96~99.998重量%、脂肪酸アミド0.001~2重量%及び帯電防止剤0.001~2重量%から構成される樹脂組成物Ac、(B)層がオレフィン系重合体98~99.999重量%、亜鉛、リチウム、コバルト、鉄、及び錫から成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩及び/又はアミン化合物0.001~2重量%から構成される樹脂組成物B、(C)層がポリウレタン系接着剤及び/又はイソシアネート系接着剤、(D)層が少なくとも1層以上の基材からなることを特徴とするラミネートフィルム。 It is composed of at least four layers of (A) layer / (B) layer / (C) layer / (D) layer, and the (A) layer is 96 to 99.998% by weight of olefin polymer and 0.001 to 2 fatty acid amide. Resin composition Ac composed of wt% and antistatic agent 0.001 to 2 wt%, (B) layer is composed of 98 to 99.999 wt% olefin polymer, zinc, lithium, cobalt, iron, and tin A resin composition B composed of 0.001 to 2% by weight of a fatty acid metal salt and / or an amine compound containing at least one metal selected from the group consisting of a polyurethane-based adhesive and / or an isocyanate-based layer An adhesive and a laminate film, wherein the (D) layer comprises at least one base material.
  4.  (B)層の樹脂組成物Bを構成する脂肪酸金属塩が、亜鉛、リチウム、及びコバルトから成る群から選ばれる少なくとも1種の金属を含む脂肪酸金属塩であることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。 The fatty acid metal salt constituting the resin composition B of the layer (B) is a fatty acid metal salt containing at least one metal selected from the group consisting of zinc, lithium, and cobalt. 4. The laminate film according to any one of 3.
  5.  (B)層の樹脂組成物Bを構成するアミン化合物が、下記一般式(I)で表されるポリオキシエチレンアルキルアミンであることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは炭素数8~30の直鎖又は分岐鎖のアルキル基又はアルケニル基を示し、R及びRはそれぞれ独立に-OCR′(R′は炭素数8~30の炭化水素基を表す)又は-Hを表し、m及びnはそれぞれ独立に1~10の整数である。)
    The laminate according to any one of claims 1 to 3, wherein the amine compound constituting the resin composition B of the layer (B) is a polyoxyethylene alkylamine represented by the following general formula (I): the film.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a linear or branched alkyl or alkenyl group having 8 to 30 carbon atoms, R 2 and R 3 each independently represents —OCR ′ (R ′ represents a carbon atom having 8 to 30 carbon atoms) Represents a hydrogen group) or -H, and m and n are each independently an integer of 1 to 10.)
  6.  (B)層の樹脂組成物Bを構成するアミン化合物が、ヒンダードアミン系光安定剤であることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。 4. The laminate film according to claim 1, wherein the amine compound constituting the resin composition B of the (B) layer is a hindered amine light stabilizer.
  7.  (B)層の樹脂組成物Bを構成するアミン化合物が、下記一般式(II)で表されるアルキルアミンであることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素数が8~30である直鎖又は分岐鎖の脂肪酸残基、R及びRはそれぞれ独立に水素、又は炭素数が1~8である直鎖若しくは分岐鎖のアルキル基若しくはアルケニル基である。)
    The laminate film according to any one of claims 1 to 3, wherein the amine compound constituting the resin composition B of the (B) layer is an alkylamine represented by the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 is a linear or branched fatty acid residue having 8 to 30 carbon atoms, R 5 and R 6 are each independently hydrogen, or a linear or branched chain having 1 to 8 carbon atoms. An alkyl group or an alkenyl group.)
  8.  ラミネートフィルムの(A)層側表面の表面固有抵抗値が1013~1017(Ω)であることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。 The laminate film according to any one of claims 1 to 3, wherein the surface resistivity of the surface on the (A) layer side of the laminate film is 10 13 to 10 17 (Ω).
  9.  ラミネートフィルムの(A)層側表面における水の接触角が50°以上110°以下であることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。 The laminate film according to any one of claims 1 to 3, wherein the contact angle of water on the (A) layer side surface of the laminate film is from 50 ° to 110 °.
  10.  (A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、グリセリン脂肪酸エステルを含むことを特徴とする請求項2又は3に記載のラミネートフィルム。 The laminate film according to claim 2 or 3, wherein the antistatic agent constituting the resin composition Ab of the (A) layer or the resin composition Ac contains a glycerin fatty acid ester.
  11.  (A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、ポリグリセリン脂肪酸エステルを含むことを特徴とする請求項2又は3に記載のラミネートフィルム。 The laminate film according to claim 2 or 3, wherein the antistatic agent constituting the resin composition Ab of the (A) layer or the resin composition Ac contains a polyglycerol fatty acid ester.
  12.  (A)層の樹脂組成物Ab又は樹脂組成物Acを構成する帯電防止剤が、アルキルスルフォン酸塩を含むことを特徴とする請求項2又は3に記載のラミネートフィルム。 The laminate film according to claim 2 or 3, wherein the antistatic agent constituting the resin composition Ab of the (A) layer or the resin composition Ac contains an alkyl sulfonate.
  13.  ラミネート成形後、23℃の雰囲気で5分間放置した際の接着強度が0.7N/25mm以上であることを特徴とする請求項1~3のいずれかに記載のラミネートフィルム。 The laminate film according to any one of claims 1 to 3, which has an adhesive strength of 0.7 N / 25 mm or more when left in an atmosphere at 23 ° C for 5 minutes after lamination.
PCT/JP2010/056472 2009-04-09 2010-04-09 Laminated film WO2010117066A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009094715 2009-04-09
JP2009-094715 2009-04-09
JP2009-100889 2009-04-17
JP2009100889 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010117066A1 true WO2010117066A1 (en) 2010-10-14

Family

ID=42936348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056472 WO2010117066A1 (en) 2009-04-09 2010-04-09 Laminated film

Country Status (1)

Country Link
WO (1) WO2010117066A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334004A (en) * 1998-03-26 1999-12-07 Idemitsu Petrochem Co Ltd Polypropylene multilayered film and composite film
JP2000309644A (en) * 1999-04-26 2000-11-07 Grand Polymer:Kk Polypropylene-based non-oriented film and laminate
JP2005305801A (en) * 2004-04-21 2005-11-04 Mitsubishi Plastics Ind Ltd Antistatic gas-barrier laminate
JP2007313737A (en) * 2006-05-25 2007-12-06 Toray Advanced Film Co Ltd Sealant film for laminate and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334004A (en) * 1998-03-26 1999-12-07 Idemitsu Petrochem Co Ltd Polypropylene multilayered film and composite film
JP2000309644A (en) * 1999-04-26 2000-11-07 Grand Polymer:Kk Polypropylene-based non-oriented film and laminate
JP2005305801A (en) * 2004-04-21 2005-11-04 Mitsubishi Plastics Ind Ltd Antistatic gas-barrier laminate
JP2007313737A (en) * 2006-05-25 2007-12-06 Toray Advanced Film Co Ltd Sealant film for laminate and manufacturing method

Similar Documents

Publication Publication Date Title
JP6467825B2 (en) Sealant film
KR20010096532A (en) Film for packing
US7267862B1 (en) Controlled COF films
JP5278193B2 (en) Laminate resin composition and laminate film
US7678468B2 (en) Composition and method for the addition of saturated slip agents to multilayer polyethylene films
JP5439987B2 (en) Laminate film
JP4642499B2 (en) Polyolefin resin composition and packaging film
KR20170074876A (en) Laminate and packaging body comprising same
JP2007196558A (en) White multi-layer polyethylenic film and packaging bag
JP5734571B2 (en) Extruded laminate
JP5440338B2 (en) Laminate film
JP5365087B2 (en) Laminate film
JP2002212350A (en) Resin composition for extrusion lamination and laminate produced by using the composition
JP5277951B2 (en) Laminate resin composition and laminate film
JP2007313737A (en) Sealant film for laminate and manufacturing method
WO2010117066A1 (en) Laminated film
JP5353478B2 (en) Laminate resin composition and laminate film
JP5251417B2 (en) Laminate film
JP2010036448A (en) Surface protective film
JP6451208B2 (en) Easy-open packaging material
JPH06312491A (en) Polyethylene multilayer film
JP2895917B2 (en) Extrusion lamination method of thermoplastic resin
JP2005238469A (en) Laminate
JP2009263440A (en) Resin composition for lamination and laminate film
KR101800135B1 (en) The process of manufacture. and a random speeches of film through the corona treatment on both sides that have heterogeneous bangdamseong

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761765

Country of ref document: EP

Kind code of ref document: A1