WO2010114180A1 - Permanent magnet eddy current heating device - Google Patents

Permanent magnet eddy current heating device Download PDF

Info

Publication number
WO2010114180A1
WO2010114180A1 PCT/JP2010/056348 JP2010056348W WO2010114180A1 WO 2010114180 A1 WO2010114180 A1 WO 2010114180A1 JP 2010056348 W JP2010056348 W JP 2010056348W WO 2010114180 A1 WO2010114180 A1 WO 2010114180A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
eddy current
fluid
permanent magnet
heating device
Prior art date
Application number
PCT/JP2010/056348
Other languages
French (fr)
Japanese (ja)
Inventor
近藤信一
高井文彦
Original Assignee
株式会社Crew研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Crew研究所 filed Critical 株式会社Crew研究所
Priority to JP2011507326A priority Critical patent/JPWO2010114180A1/en
Publication of WO2010114180A1 publication Critical patent/WO2010114180A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • F24H1/122Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply combined with storage tank
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor

Definitions

  • the present invention relates to an eddy current heating device that heats a fluid by converting kinetic energy from the outside into heat energy, and in particular, artificial drive energy of an electric motor, an internal combustion engine, etc., wind power, hydraulic power, wave power, etc.
  • the present invention relates to a permanent magnet type eddy current heating apparatus for performing hot water supply, heating, etc. by heating a fluid with high efficiency and low cost by using natural fluid kinetic energy.
  • a magnetic pole surface in which permanent magnets are arranged in the circumferential direction by alternately changing the polarity is provided on the outer periphery of a cylindrical rotor rotated by a driving force collecting means such as a windmill or a water turbine,
  • the heating element is provided oppositely at an interval, and the surface facing the magnetic pole surface is formed of a magnetic plate, and the magnetic chamber is rotated to generate water in the water flow chamber inside the heating element while generating eddy currents in the magnetic plate.
  • a permanent magnet type eddy current heating device used for hot water supply or the like has been proposed in Japanese Utility Model No. 3016066.
  • the fluid kinetic energy is converted into electric power.
  • natural energy can be used with higher efficiency than before, while keeping the initial cost low with a simple configuration.
  • the inventors of the present application have previously proposed a permanent magnet type eddy current heating device 2E as shown in FIG. 5 in JP-A-2005-174801.
  • the permanent magnet disposed on the magnetic pole surface on the outer periphery of the rotor 21C is divided into a first permanent magnet 219 having a substantially rectangular cross section in a plane orthogonal to the rotor rotation axis direction and a plane orthogonal to the rotor rotation axis direction.
  • the second permanent magnets 220 having a wedge-shaped cross section are arranged so as to be alternately arranged in the circumferential direction of the rotor 21C, and the magnetization direction is as shown in the figure, and the outer peripheral side of the rotor 21C
  • the fluid passage 211 attached to the heating body 20 ⁇ / b> C provided in the above is characterized in that it is formed in a coil shape (string winding shape) in which the rotor rotation axis and the central axis coincide with each other.
  • the permanent magnet on the magnetic pole surface is configured and arranged as described above, so that the rising of the lines of magnetic force can be increased and the heating efficiency due to eddy current can be improved.
  • the shape of the fluid heating path of the heated body is coiled, the flow of heating water is lengthened and efficient and continuous heating is realized, so that it is more energy efficient and highly useful It has become.
  • the rotor in which the permanent magnets are arranged is formed in a columnar shape and is covered with a cylindrical heating body, the device is easily bulky as a whole. .
  • it is not easy to control the heating capacity because of the use of unstable driving force derived from nature. For example, if the fluid kinetic energy such as wind becomes too strong, the heating element will be excessively hot. Will cause a failure or damage of the device.
  • the permanent magnet has a special shape as described above, the heating efficiency is increased.
  • the cost tends to increase. Since the fluid heating path 211 is complicated in construction, it is not easy to create the heating element 20C, and the maintenance and labor for preventing leakage and clogging of the complicated fluid heating path 211 are excessive. It is easy to become.
  • the present invention is intended to solve the above-described problems, and realizes heating at low cost and high energy utilization efficiency for a permanent magnet eddy current heating device that operates using kinetic energy from the outside.
  • an object is to easily control the heating capacity.
  • the present invention provides a rotational driving force based on kinetic energy from the outside, and rotates a rotating body having a magnetic pole surface on which a plurality of permanent magnets are provided in a predetermined arrangement and forms a magnetic field on the outside.
  • a permanent magnet that generates an eddy current and Joule heat in a heating body having a facing surface facing the surface at a predetermined interval and having a conductive material and a fluid heating path, and heats and sends the fluid flowing in the fluid heating path
  • the magnetic pole surface is a plane perpendicular to the rotation axis on the base end side of the rotating body, and the fluid heating path is spirally formed along the opposing surface at a predetermined depth from the opposing surface.
  • a plane curve is formed.
  • the magnetic pole surface is a plane perpendicular to the rotation axis of the rotating body
  • the fluid heating path is a spiral plane curve along the opposing surface, so that each heating body including the rotating body and the fluid heating path is provided.
  • the flat configuration makes it difficult to bulk the whole, and the distance between the magnetic pole surface and the opposing surface of the heating element can be changed, making it easy to adjust the heating force and arranging it on the magnetic pole surface.
  • the fluid heating path is also flat and the heating body can be created relatively easily, so that the manufacturing cost is kept low.
  • a simple configuration makes it difficult to perform maintenance and cost.
  • the electric motor or / and the internal combustion engine is a motor for driving the vehicle, and is mounted on the vehicle and used as air conditioning means in the vehicle interior.
  • the simple and compact configuration makes it easy to adjust the heating capacity with respect to fluctuations in vehicle speed while minimizing additional installation space and cost.
  • the driving source of the kinetic energy is natural fluid kinetic energy, the natural structure can be obtained at low cost with a simple configuration. Energy can be used with high efficiency.
  • the magnetic pole surface is a circular plane whose center coincides with the rotation axis of the rotating body, and the opposing surface is a plane parallel to the magnetic pole surface.
  • the spiral plane curve by the fluid heating path is perpendicular to the extension line of the rotation axis and coincides with the center, it is possible to perform more efficient heating and make it more compact. it can.
  • the heating body is provided with an interval changing means for changing the interval between the opposing surface and the magnetic pole surface, a naturally occurring rotational driving force is provided.
  • the permanent magnet eddy current heating device is provided with electronic control means for continuously detecting fluctuations in the heating capacity due to the heating body, and the electronic control means drives the interval changing means to control the heating capacity. If it is characterized by automatic control, the heating capacity is automatically adjusted and the fluid can be heated safely and efficiently.
  • the heating body forms a spiral plane curve by carving a groove at a predetermined depth from the fluid heating path forming surface of the heating body main body constituting the heating body.
  • the cover plate made of a conductive material is covered in close contact with the fluid heating path forming surface provided with the groove to close the open surface side of the groove, fluid heating can be easily performed with a relatively simple procedure.
  • the fluid heating path is assumed to introduce the fluid from the outer periphery of the spiral plane curve and deliver the heated fluid from the center side.
  • the heating power on the outer peripheral side is higher than that on the central side, but it is easy to perform efficient heating while avoiding excessive heating on the central side.
  • the plurality of permanent magnets arranged on the magnetic pole face have their exposed end faces alternately having different polarities along the rotation direction of the magnetic pole face.
  • the generator / electric motor electrically connected to the power storage means is mechanically provided in the middle of the power transmission path connecting the driving force collecting means and the rotating body. Is connected in a state that can be connected to, by a predetermined connection switching means, the state where the driving force collecting means and the rotating body are directly connected, the state where the driving force collecting means and the generator / electric motor as a generator are connected, If the rotating body and the generator / electric motor as the electric motor are connected, the power transmission path is switched according to the magnitude of the rotational driving force.
  • the permanent magnet eddy current heating device described above should be used for hot water supply, heating, or cooling / heating because the fluid to be heated is stable and water or air that exists in large quantities in nature. If it is characterized by this, a stable hot-water supply function, heating function, or air-conditioning function can be achieved with low cost and effort.
  • the magnetic pole surface of the rotating body is a plane perpendicular to the rotation axis, and a fluid heating path is formed by forming a spiral plane curve along the opposing surface facing the magnetic pole surface.
  • the heating capacity can be easily controlled.
  • FIG. 1 is a layout view of a hot water supply system in which a permanent magnet type eddy current heating device according to a first embodiment of the present invention is disposed.
  • FIG. 2 is a side view showing details of the permanent magnet eddy current heating apparatus of FIG.
  • FIG. 3 is a layout view of a hot water supply system in which a permanent magnet type eddy current heating device according to a second embodiment of the present invention is disposed.
  • 4A, 4B, and 4C are perspective views showing examples of driving force collecting means connected to the permanent magnet eddy current heating device of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a conventional permanent magnet eddy current heating apparatus.
  • FIG. 6 is a layout view of a hot water supply system in which a permanent magnet eddy current heating device as an application example of the embodiment of FIG. 3 is provided.
  • FIG. 7 is a layout view of a vehicle heating system provided with a permanent magnet eddy current heating device according to a third embodiment of the present invention.
  • 8A and 8B are partial front views showing an example of magnet arrangement of magnetic pole faces different from those of the rotating body shown in FIG.
  • FIG. 1 shows a layout diagram of a hot water supply system 1A provided with a permanent magnet type eddy current heating device 2A according to a first embodiment of the present invention.
  • This eddy current heating device 2A uses wind power, which is one of natural fluid kinetic energy, and includes a magnetic pole surface 21b with its rotational driving force while using a propeller (windmill) 5A as driving force collecting means.
  • a generator 26A is arranged in the middle of the shaft 25 that connects the propeller 5A, which is a driving force collecting means, and the rotating body 21, and generates electric power when the shaft 25 is driven to rotate, and will be described later.
  • Electric power is supplied to the slider 24, which is an interval changing means attached to the heating body 20 in order to change the interval between the unit 10 ⁇ / b> A and the rotating body 21, and the pump 4 that pumps hot water to the tank 3.
  • the rotating body 21 of the eddy current heating device 2A has a disk shape that is perpendicular to the rotation axis X that coincides with the center axis of the shaft 25 extending from the center of the propeller 5A, and that has a base end that is planar.
  • the magnetic pole surface 21b is formed.
  • the heating body 20 is also formed in a disk shape that is perpendicular to the extension line of the rotation axis X and coincides with the center axis line, and has a feature that the tip side is a plane parallel to the magnetic pole surface 21b of the rotation body 21. .
  • the disk-shaped rotation body 21 and the heating body 20 are arranged with the surfaces facing each other at right angles while matching the center axis
  • the rotating body is a cylindrical rotor having a magnetic pole surface on the outer peripheral side
  • the heating body provided with a fluid heating path is a cylindrical shape surrounding the rotor
  • the apparatus is bulky as a whole
  • FIG. 2 is a side view for explaining the details of the eddy current heating device 2A of FIG.
  • FIG. 1 1, and constitutes a front view of the magnetic pole surface 21b on the base end side of the rotating body 21 and a facing surface 20b opposite thereto.
  • Front views of the fluid heating path forming surface 200a provided with the fluid heating path 210 with the cover plate 22 made of the conductive material removed are respectively indicated by pulling arrows.
  • the magnetic pole surface 21b formed into a circular plane rotates a plurality of permanent magnets 212 which are cylindrical and are magnetized in the height direction and have an S pole on the exposed surface side and a plurality of permanent magnets 213 on the exposed surface side which are N poles.
  • a plurality of concentric circles are embedded in a planar shape while being arranged so as to have different polarities alternately along the rotation direction of the body 21.
  • the fluid heating path 210 has a rotation axis X that is parallel to the magnetic pole face 21b on a planar fluid heating path forming surface 200a that closely contacts the lid plate 22 of the heating body main body 20a that is a disk-shaped member.
  • a groove is carved so as to form a spiral (mosquito-repellent incense-like) plane curve that is perpendicular to the extension line and coincides with the center.
  • the eddy current heating device 2A of the present embodiment which has a relatively simple configuration and is not as bulky as the conventional example, rotates the shaft 25 with the propeller 5A that receives natural fluid kinetic energy, and rotates in a disk shape.
  • the body 21 is rotated with its central axis as the rotation axis, and the base end side magnetic pole surface 21b rotates like a record board, so that the opposing surface of the heating body 20 disposed opposite to this by a predetermined distance.
  • An electric current is generated in the cover plate 22 made of a conductive material that constitutes 20b and Joule heat is generated, and water flowing in the fluid heating path 210 formed in a plane spiral attached thereto is efficiently discharged. It is for heating.
  • the distance (interval) between the opposing surface 20b of the disc-shaped heating body 20 and the magnetic pole surface 21b is a slider 24 that is an interval changing means attached to the heating body 20. It can be changed by operating.
  • the slider 24 includes a step motor 24a that is driven and operated by an electronic control unit 10A attached to the eddy current heating device electronics 2A, a bolt-shaped rotating shaft 24b that extends from the step motor 24a, and a rotating motor 24a.
  • a support arm 24c that moves up and down via a nut-like member by the rotation of the moving shaft 24b, and a guide bar 24d that passes through the support arm 24c and guides its operation in the vertical direction.
  • the electronic control unit 10A that detects the water temperature in the tank 3 and the water temperature immediately after the heating with the temperature sensors 11 and 12 and detects the power generation amount of the generator 26A provided in the middle of the shaft 25 is detected data.
  • the distance between the magnetic pole surface 21b and the opposing surface 20b is automatically adjusted while driving the slider 24 according to the heating capacity based on the strength of the wind force and the current water temperature state, and the optimum heating capacity Automatic control is performed so that efficient heating by eddy current can be realized.
  • the fluid heating path 210 is formed by engraving a groove at a predetermined depth from the surface of the smooth fluid heating path forming surface 200a on the distal end side of the heating body main body 20a made of a disk-shaped member as described above, so that the outer diameter is a magnetic pole.
  • a cover plate 22 made of a conductive material is closely attached and fixed thereon, and the open surface side of the groove is set on the inner and outer sides. It is formed by liquid-tightly closing. Therefore, as compared with the case where the fluid heating path 211 is provided in a string form on the outer peripheral side of the rotor 21C as in the conventional example shown in FIG. 5, the heating body 20 can be manufactured very easily, and the manufacturing cost is kept low. .
  • the fluid heating path 210 has a simple planar configuration as described above, leakage of water due to corrosion or the like can be minimized, and the lid plate 22 can be attached and detached with bolts or the like.
  • the fluid heating path 210 can be easily cleaned by removing the cover plate 22, for example, it is suitable for maintaining the hot water temperature in a 24-hour bath, for example, where accumulation of scale is likely to be a problem. Further, in this fluid heating path 210, the rotation speed of the opposing magnetic pole surface 21b is high on the outer peripheral side and slows on the central side, and the heating capacity is high on the outer peripheral side and lower on the central side. Is introduced into the tank 3 from the center side, and efficient heating is facilitated while avoiding an excessive rise in water temperature on the center side.
  • FIG. 3 shows a layout view of a hot water supply system 1B provided with an eddy current heating device 2B according to the second embodiment of the present invention.
  • the basic configuration of the present embodiment is substantially the same as that of the hot water supply system 1A described above, but the eddy current heating device 2B includes a generator / electric motor 26B on a shaft 25 that transmits a rotational driving force to the rotating body 21.
  • the eddy current heating device 2B includes a generator / electric motor 26B on a shaft 25 that transmits a rotational driving force to the rotating body 21.
  • a gear box 28 as a connection switching means
  • a battery 29 as a power storage means
  • the gear box 28 and the generator / electric motor 26B are controlled by the electronic control unit 10B attached to the eddy current heating device 2B, and the propeller 5A side and the rotating body 21 are connected, the propeller 5A side and the generator.
  • the propeller 5A side and the rotating body 21 are connected, the propeller 5A side and the generator.
  • the rotational driving force by the propeller 5A is not transmitted to the rotating body 21, and the generator as a generator is generated.
  • the electric electric motor 26B As an electric motor is obtained. Can be connected to the rotator 21 and the electric motor 26B can be driven by the electric power stored in the battery 29 to perform the necessary heating. On the other hand, in a situation where moderate wind power is obtained and the battery 29 has a sufficient amount of electricity stored, heating is necessary, and the propeller 5A and the rotating body 21 can be directly connected to perform heating. In this way, safe and stable heating is possible even when wind power fluctuates rapidly by appropriately switching the power transmission path according to the situation of the rotational driving force that tends to be unstable depending on the natural force.
  • FIG. (A) shows a vertical axis wind turbine 5B, which is characterized in that the propeller 5A described above is difficult to cope with changes in the direction of the wind, but can cope with winds blowing from all directions.
  • FIG. (B) shows a water wheel 5C that rotates with a water flow in a direction perpendicular to the rotation drive shaft
  • FIG. (C) shows a screw 5D that rotates with a water flow along the rotation drive shaft.
  • FIG. 6 shows an application example of a hot water supply system 1B provided with the eddy current heating device 2B of FIG.
  • the eddy current heating device of the present invention that heats the fluid by generating an eddy current on the heating body side by rotating the rotating body on which the permanent magnet is arranged is a case where the fluid is heated by heating the fluid.
  • it is extremely energy efficient, and it has an excessively high temperature part and high voltage part that are likely to cause a combustion accident. It is safe in that there is no point. Therefore, in addition to using natural fluid kinetic energy as in the above-described embodiment, it is also useful in heating fluid using a rotational driving force derived from electric power or fuel, such as an electric motor or an internal combustion engine. It is highly probable. Therefore, in the eddy current heating device 2C of FIG.
  • FIG. 7 shows a layout view of an air conditioning system 1D provided with an eddy current heating device 2D, which is a third embodiment of the present invention.
  • the air conditioner is used for an electric vehicle using only an electric motor as a prime mover or a hybrid vehicle using an electric motor and an internal combustion engine as a prime mover. That is, in these vehicles, since the power consumption required for air conditioning, particularly heating, greatly affects the travelable distance and fuel consumption, by using the eddy current heating device 2D according to the present invention as air conditioning means, It is intended to realize high energy efficiency at a low cost and to achieve easy adjustment of the fluid heating force.
  • the rotating body 21 is rotated by using the rotation driving portion of the vehicle.
  • the rotating shaft extending from the rear wheel 102 of the front wheel driving vehicle as shown in the figure
  • the rotational driving force can be easily obtained.
  • the distance between the rotating body 21 and the heating body 20 can be adjusted by the slider 24, the vehicle speed The heating power can be easily adjusted while responding to the fluctuations.
  • the air in the vehicle compartment 100 is introduced into the heating body 20 and directly heated, but water may be used as a medium to heat the air via a predetermined heat exchange means.
  • FIGS. 8A and 8B show examples of magnet arrangement with magnetic pole faces different from those of the rotating body shown in FIG. In FIG.
  • Hot water supply system 1D Air conditioning system 2A, 2B, 2C, 2D Eddy current heating device 3 Tank 4 Pump 5A Propeller 5B Vertical axis windmill 5C Water wheel 5D Screw 7a Introduction pipe 7b Delivery pipe 7c Hot water supply pipes 10A, 10B, 10C, 10D electronic control unit 11, 12, 13, 14 Temperature sensor 20 Heating body 20a Heating body main body 20b Opposing surfaces 21, 21B, 21C Rotating body 21a Rotating body main body 21b Magnetic pole surface, 22 Lid Plate 24 Slider 25 Shaft 26A Generator 26B Generator / Electric Motor 26C Electric Motor 28 Gear Box 29, 30 Battery 200a Fluid Heating Path Forming Surface 210 Fluid Heating Path 212, 213, 214, 215, 216, 217, 218 Permanent magnet

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Induction Heating (AREA)

Abstract

Disclosed is a permanent magnet eddy current heating device that operates using kinetic energy from the outside, the device capable of heating with high energy use efficiency at low cost and easily controlling heating capability. Specifically disclosed is a permanent magnet eddy current heating device which, by rotational driving force generated by kinetic energy from the outside, rotates a rotator provided with a magnetic pole surface that is provided with a plurality of permanent magnets at predetermined locations and forms a magnetic field on the outside thereof to thereby cause a heater having a facing surface facing the magnetic pole surface with a predetermined distance therebetween and provided with a conductive material and a fluid heating path to generate an eddy current and Joule heat, heats the fluid flowing through the fluid heating path, and sends out the heated fluid, wherein the magnetic pole surface is a plane surface perpendicular to the rotation axis line of the rotator on the base end side thereof, and the fluid heating path forms a spiral plane curve along the facing surface at a predetermined depth from the facing surface.

Description

永久磁石式渦電流加熱装置Permanent magnet type eddy current heating device
 本発明は、外部からの運動エネルギーを熱エネルギーに変換して流体を加熱する渦電流加熱装置に関し、殊に、電動モータ、内燃機関等の人工的な駆動エネルギー、または風力、水力、波力等の自然の流体運動エネルギーを使用して高効率かつ低コストで流体を加熱して給湯・暖房等を行うための永久磁石式渦電流加熱装置に関する。 The present invention relates to an eddy current heating device that heats a fluid by converting kinetic energy from the outside into heat energy, and in particular, artificial drive energy of an electric motor, an internal combustion engine, etc., wind power, hydraulic power, wave power, etc. The present invention relates to a permanent magnet type eddy current heating apparatus for performing hot water supply, heating, etc. by heating a fluid with high efficiency and low cost by using natural fluid kinetic energy.
 化石燃料の燃焼に伴う地球温暖化ガスの増加が問題となっている近年では、太陽光、風力、水力、波力等の自然エネルギーを利用する技術の開発が活発化しており、従来から行われている太陽光を利用した給湯システムや発電システムに加え、風力や水力等、自然の流体運動エネルギーを利用して発電を行う技術が多数開発されている。
 しかし、給湯や暖房等の加熱を目的とする場合には、風等の流体運動エネルギーをいったん電力に変換してから電気的加熱手段で加熱することになり、また、自然由来の駆動力が不安定であることから装置の強度確保や蓄電手段も必要となるため、全体として設備コストが嵩む結果となる。また、発電~蓄電~加熱の各過程でロスが生じるためにエネルギー利用効率も低くなり、さらに装置が複雑で故障・破損等の頻度が高いため、メンテナンスの手間とコストが嵩みやすくなるという問題もある。
 この問題に対し、風車または水車等の駆動力採取手段により回転する円柱状のロータ外周に、極性を交互に変えて周方向に永久磁石を配置してなる磁極面を設け、その周りに所定の間隔で加熱体を対向して設けて磁極面に対向する面側を磁性板で構成し、磁極面を回転させることで磁性板に渦電流を発生させながら加熱体内側の通水室の水をジュール熱で加熱するものとして、給湯等に使用する永久磁石式の渦電流加熱装置が実登第3016066号公報に提案されている。
 このように、風力や水力等、自然由来の流体運動エネルギーで渦電流を発生させながら加熱体に直接熱を発生させて水を加熱するようにしたことで、流体運動エネルギーを電力に変換してから加熱する場合と比べて、簡易な構成でイニシャルコストを低廉に抑えながら自然エネルギーを従来よりも高い効率で利用することが可能となる。
 一方、本願発明者らは、先に特開2005−174801号公報において、図5に示すような永久磁石式の渦電流加熱装置2Eを提案している。これは、ロータ21C外周の磁極面に配置する永久磁石を、ロータ回転軸方向と直交する平面での断面形状が略長方形の第1の永久磁石219と、ロータ回転軸方向と直交する平面での断面形状がくさび形状である第2の永久磁石220とが、ロータ21Cの円周方向に1つおきに交互に並ぶように配置されながら図のような磁化方向とされ、かつ、ロータ21C外周側に設けた加熱体20Cに付設した流体通路211を、ロータ回転軸と中心軸線が一致するコイル状(弦巻状)に形成した点を特徴としている。
 渦電流加熱装置において磁極面の永久磁石を前記のような構成・配置としたことで、磁力線の立ち上がりを大きくして渦電流による加熱効率を向上させることができ、また、ロータ外周面側に設けた加熱体の流体加熱路の形状をコイル状としたことにより、水を加熱する流程が長くなって効率的かつ連続的な加熱が実現されることから、さらにエネルギー効率が高く有用性の高いものとなっている。
 しかしながら、これらの渦電流加熱装置では、永久磁石を配置したロータが円柱状とされてその周りを円筒状の加熱体で覆う構成であるために、装置が全体として嵩張りやすいものとなっている。これに加え、自然由来の不安定な駆動力を利用している関係で加熱能力の制御が容易ではなく、例えば風等の流体運動エネルギーが強くなりすぎた場合には、加熱体が過剰に高温化して装置の故障・破損の畏れが生じてしまう。
 また、後者の渦電流加熱装置2Eでは、永久磁石を前述のような特殊な形状としたことにより加熱効率は高くなるものの、汎用品の磁石が使用できないためにコスト高となりやすく、また、コイル状の流体加熱路211は構成が複雑であることから加熱体20Cの作成が容易ではなく、さらに、複雑な流体加熱通路211の漏水や目詰まりを回避するためのメンテナンスの手間・コストが過大なものとなりやすい。
In recent years, where the increase in global warming gas due to the burning of fossil fuels has become a problem, the development of technologies using natural energy such as sunlight, wind power, hydropower, wave power, etc. has become active, and has been carried out in the past. In addition to hot water supply systems and power generation systems that use sunlight, many technologies have been developed that generate power using natural fluid kinetic energy such as wind and hydropower.
However, in the case of heating such as hot water supply or heating, fluid kinetic energy such as wind is once converted into electric power and then heated by an electric heating means. Since it is stable, it is necessary to secure the strength of the apparatus and to store electricity, so that the overall equipment cost increases. In addition, there is a problem that energy use efficiency is low because losses occur in each process of power generation, electricity storage, and heating, and the frequency of maintenance and costs are increased due to the complexity of the equipment and the high frequency of failures and damages. is there.
In order to solve this problem, a magnetic pole surface in which permanent magnets are arranged in the circumferential direction by alternately changing the polarity is provided on the outer periphery of a cylindrical rotor rotated by a driving force collecting means such as a windmill or a water turbine, The heating element is provided oppositely at an interval, and the surface facing the magnetic pole surface is formed of a magnetic plate, and the magnetic chamber is rotated to generate water in the water flow chamber inside the heating element while generating eddy currents in the magnetic plate. As a device for heating with Joule heat, a permanent magnet type eddy current heating device used for hot water supply or the like has been proposed in Japanese Utility Model No. 3016066.
In this way, by generating heat directly from the heating element while generating eddy currents with naturally derived fluid kinetic energy such as wind power and hydraulic power, the fluid kinetic energy is converted into electric power. Compared with the case of heating from above, natural energy can be used with higher efficiency than before, while keeping the initial cost low with a simple configuration.
On the other hand, the inventors of the present application have previously proposed a permanent magnet type eddy current heating device 2E as shown in FIG. 5 in JP-A-2005-174801. This is because the permanent magnet disposed on the magnetic pole surface on the outer periphery of the rotor 21C is divided into a first permanent magnet 219 having a substantially rectangular cross section in a plane orthogonal to the rotor rotation axis direction and a plane orthogonal to the rotor rotation axis direction. The second permanent magnets 220 having a wedge-shaped cross section are arranged so as to be alternately arranged in the circumferential direction of the rotor 21C, and the magnetization direction is as shown in the figure, and the outer peripheral side of the rotor 21C The fluid passage 211 attached to the heating body 20 </ b> C provided in the above is characterized in that it is formed in a coil shape (string winding shape) in which the rotor rotation axis and the central axis coincide with each other.
In the eddy current heating device, the permanent magnet on the magnetic pole surface is configured and arranged as described above, so that the rising of the lines of magnetic force can be increased and the heating efficiency due to eddy current can be improved. Since the shape of the fluid heating path of the heated body is coiled, the flow of heating water is lengthened and efficient and continuous heating is realized, so that it is more energy efficient and highly useful It has become.
However, in these eddy current heating devices, since the rotor in which the permanent magnets are arranged is formed in a columnar shape and is covered with a cylindrical heating body, the device is easily bulky as a whole. . In addition to this, it is not easy to control the heating capacity because of the use of unstable driving force derived from nature. For example, if the fluid kinetic energy such as wind becomes too strong, the heating element will be excessively hot. Will cause a failure or damage of the device.
In the latter eddy current heating device 2E, although the permanent magnet has a special shape as described above, the heating efficiency is increased. However, since a general-purpose magnet cannot be used, the cost tends to increase. Since the fluid heating path 211 is complicated in construction, it is not easy to create the heating element 20C, and the maintenance and labor for preventing leakage and clogging of the complicated fluid heating path 211 are excessive. It is easy to become.
実登第3016066号公報Noto 3016066 gazette 特開2005−174801号公報JP 2005-174801 A
 本発明は、上記のような問題を解決しようとするものであり、外部からの運動エネルギーを使用して作動する永久磁石式渦電流加熱装置について、低コストでエネルギー利用効率の高い加熱を実現するとともに、加熱能力を容易に制御できるようにすることを課題とする。 The present invention is intended to solve the above-described problems, and realizes heating at low cost and high energy utilization efficiency for a permanent magnet eddy current heating device that operates using kinetic energy from the outside. In addition, an object is to easily control the heating capacity.
 そこで、本発明は、外部からの運動エネルギーによる回転駆動力で、複数の永久磁石が所定の配置で設けられて外側に磁場を形成する磁極面を備えた回転体を回転させることにより、その磁極面に対し所定間隔で対向する対向面を有して導電材料及び流体加熱路を備えた加熱体に渦電流及びジュール熱を発生させ、流体加熱路中を流れる流体を加熱して送出する永久磁石式渦電流加熱装置において、その磁極面が回転体の基端側でその回転軸線に対し直角な平面とされ、流体加熱路が対向面から所定深さ位置でこの対向面に沿って渦巻き状の平面曲線を形成していることを特徴とするものとした。
 このように、磁極面を回転体の回転軸線に対し直角な平面とし、流体加熱路を対向面に沿った渦巻き状の平面曲線としたことで、回転体及び流体加熱路を含む加熱体を各々平面的な構成にして全体的に嵩張りにくくするとともに、磁極面と加熱体の対向面との距離が変更可能なものとなって加熱力の調整を行いやすいものとなり、かつ、磁極面に配置する永久磁石を特別な形状にする必要がなくなって回転体を低コストで作成できることに加え、流体加熱路も平面的で加熱体が比較的容易に作成できるため、製造コストが低廉に抑えられた簡易な構成によりメンテナンスの手間・コストがかかりにくいものとなる。
 また、この永久磁石式渦電流加熱装置において、その運動エネルギーは電動モータまたは/および内燃機関から得たものであることを特徴としたものとすれば、人工的な運動エネルギーを高効率で流体の熱に変換できるようになり、この場合、その電動モータまたは/および内燃機関は車両の走行用原動機であり、車両に搭載されて車両室内の空調手段として用いられることを特徴としたものとすれば、簡易且つコンパクトな構成により追加の登載スペース・コストを最小限に抑えながら、車両速度の変動に対し加熱能力を調整しやすいものとなる。
 さらに、請求の範囲1に記載した永久磁石式渦電流加熱装置において、その運動エネルギーの駆動源が自然の流体運動エネルギーであることを特徴としたものとすれば、簡易な構成により低コストで自然エネルギーを高効率で利用できるものとなる。
 さらにまた、上述した永久磁石式渦電流加熱装置において、その磁極面は回転体の回転軸線に対し中心が一致した円形の平面とされ、対向面がこの磁極面に対し平行な平面とされており、かつ、流体加熱路による渦巻き状の平面曲線が、回転軸線の延長線に対し直角かつ中心が一致しているものとすれば、より効率的な加熱が行えるとともに一層コンパクトなものとすることができる。
 加えて、上述した永久磁石式渦電流加熱装置において、その加熱体には対向面と磁極面の間隔を変更させるための間隔変更手段が付設されているものとすれば、自然由来の回転駆動力の変動状況に応じて間隔を適宜変更することで渦電流の発生量を変更して加熱能力を容易に調整できるものとなって、効率的かつ安全な流体の加熱が行えるものとなり、この場合、その永久磁石式渦電流加熱装置には加熱体による加熱能力の変動を連続的に検知する電子的制御手段が設けられており、この電子的制御手段が間隔変更手段を駆動操作して加熱能力を自動制御することを特徴としたものとすれば、自動的に加熱能力が調整されて安全かつ効率的に流体の加熱を行えるものとなる。
 また加えて、上述した永久磁石式渦電流加熱装置において、その加熱体は、これを構成する加熱体本体部の流体加熱路形成面から所定深さで溝を彫って渦巻き状の平面曲線を形成するとともに、その溝を設けた流体加熱路形成面に導電材料からなる蓋板を密着状態で被せて溝の開放面側を塞いでなるものとすれば、比較的簡易な手順で容易に流体加熱路が形成されるとともに、そのメンテナンスが容易なものとなり、この場合、その流体加熱路は、渦巻き状の平面曲線外周側から流体を導入し、加熱された流体を中心側から送出するものとすれば、渦巻き状の流体加熱路では外周側が中心側よりも加熱力が高くなるのに対し、中心側で過剰に加熱されることを回避しながら効率的な加熱を行いやすいものとなる。
 さらに加えて、上述した永久磁石式渦電流加熱装置において、その磁極面に配置された複数の永久磁石は、その露出端面側が磁極面の回転方向に沿って交互に異なる極性とされていることを特徴としたものとすれば、渦電流がより発生しやすくなって一層効率的な加熱を行えるものとなる。
 そして、上述した永久磁石式渦電流加熱装置において、その駆動力採取手段と回転体を接続している動力伝達経路の途中に、蓄電手段に電気的に接続された発電機兼電動モータが機械的に接続可能な状態で配設されており、所定の接続切替手段により、駆動力採取手段と回転体が直結した状態、駆動力採取手段と発電機としての発電機兼電動モータが接続した状態、回転体と電動モータとしての発電機兼電動モータが接続した状態、の間で切替え可能とされていることを特徴としたものとすれば、回転駆動力の大きさに応じて動力伝達経路を切替えることで、自然の流体運動エネルギーが不安定であっても安定的な流体の加熱を行いやすいものとなる。
 そしてまた、上述した永久磁石式渦電流加熱装置は、その加熱対象である流体が安定で、自然界に多量に存在する水または空気であって、給湯用または暖房用または冷暖房用として使用されることを特徴としたものとすれば、少ないコストと手間で安定的な給湯機能または暖房機能または冷暖房機能を発揮するものとなる。
In view of this, the present invention provides a rotational driving force based on kinetic energy from the outside, and rotates a rotating body having a magnetic pole surface on which a plurality of permanent magnets are provided in a predetermined arrangement and forms a magnetic field on the outside. A permanent magnet that generates an eddy current and Joule heat in a heating body having a facing surface facing the surface at a predetermined interval and having a conductive material and a fluid heating path, and heats and sends the fluid flowing in the fluid heating path In the eddy current heating apparatus, the magnetic pole surface is a plane perpendicular to the rotation axis on the base end side of the rotating body, and the fluid heating path is spirally formed along the opposing surface at a predetermined depth from the opposing surface. A plane curve is formed.
In this way, the magnetic pole surface is a plane perpendicular to the rotation axis of the rotating body, and the fluid heating path is a spiral plane curve along the opposing surface, so that each heating body including the rotating body and the fluid heating path is provided. The flat configuration makes it difficult to bulk the whole, and the distance between the magnetic pole surface and the opposing surface of the heating element can be changed, making it easy to adjust the heating force and arranging it on the magnetic pole surface. In addition to making it possible to produce a rotating body at a low cost without the need for a special shape for the permanent magnet to be manufactured, the fluid heating path is also flat and the heating body can be created relatively easily, so that the manufacturing cost is kept low. A simple configuration makes it difficult to perform maintenance and cost.
Further, in this permanent magnet type eddy current heating device, if the kinetic energy is obtained from an electric motor or / and an internal combustion engine, artificial kinetic energy can be efficiently converted into fluid. In this case, the electric motor or / and the internal combustion engine is a motor for driving the vehicle, and is mounted on the vehicle and used as air conditioning means in the vehicle interior. The simple and compact configuration makes it easy to adjust the heating capacity with respect to fluctuations in vehicle speed while minimizing additional installation space and cost.
Further, in the permanent magnet type eddy current heating device described in claim 1, if the driving source of the kinetic energy is natural fluid kinetic energy, the natural structure can be obtained at low cost with a simple configuration. Energy can be used with high efficiency.
Furthermore, in the above-described permanent magnet type eddy current heating device, the magnetic pole surface is a circular plane whose center coincides with the rotation axis of the rotating body, and the opposing surface is a plane parallel to the magnetic pole surface. In addition, if the spiral plane curve by the fluid heating path is perpendicular to the extension line of the rotation axis and coincides with the center, it is possible to perform more efficient heating and make it more compact. it can.
In addition, in the permanent magnet type eddy current heating device described above, if the heating body is provided with an interval changing means for changing the interval between the opposing surface and the magnetic pole surface, a naturally occurring rotational driving force is provided. By changing the interval appropriately according to the fluctuation status of the eddy current, the amount of eddy current generated can be changed and the heating capacity can be easily adjusted, so that efficient and safe heating of the fluid can be performed. The permanent magnet eddy current heating device is provided with electronic control means for continuously detecting fluctuations in the heating capacity due to the heating body, and the electronic control means drives the interval changing means to control the heating capacity. If it is characterized by automatic control, the heating capacity is automatically adjusted and the fluid can be heated safely and efficiently.
In addition, in the above-described permanent magnet type eddy current heating device, the heating body forms a spiral plane curve by carving a groove at a predetermined depth from the fluid heating path forming surface of the heating body main body constituting the heating body. In addition, if the cover plate made of a conductive material is covered in close contact with the fluid heating path forming surface provided with the groove to close the open surface side of the groove, fluid heating can be easily performed with a relatively simple procedure. In this case, the fluid heating path is assumed to introduce the fluid from the outer periphery of the spiral plane curve and deliver the heated fluid from the center side. For example, in the spiral fluid heating path, the heating power on the outer peripheral side is higher than that on the central side, but it is easy to perform efficient heating while avoiding excessive heating on the central side.
In addition, in the above-described permanent magnet type eddy current heating device, the plurality of permanent magnets arranged on the magnetic pole face have their exposed end faces alternately having different polarities along the rotation direction of the magnetic pole face. If it is characterized, eddy currents are more likely to be generated, and more efficient heating can be performed.
In the above-described permanent magnet eddy current heating device, the generator / electric motor electrically connected to the power storage means is mechanically provided in the middle of the power transmission path connecting the driving force collecting means and the rotating body. Is connected in a state that can be connected to, by a predetermined connection switching means, the state where the driving force collecting means and the rotating body are directly connected, the state where the driving force collecting means and the generator / electric motor as a generator are connected, If the rotating body and the generator / electric motor as the electric motor are connected, the power transmission path is switched according to the magnitude of the rotational driving force. Thus, even if natural fluid kinetic energy is unstable, it becomes easy to heat a stable fluid.
In addition, the permanent magnet eddy current heating device described above should be used for hot water supply, heating, or cooling / heating because the fluid to be heated is stable and water or air that exists in large quantities in nature. If it is characterized by this, a stable hot-water supply function, heating function, or air-conditioning function can be achieved with low cost and effort.
 回転体の磁極面を回転軸線に直角な平面とし、磁極面に対向する対向面に沿って渦巻き状の平面曲線を形成してなる流体加熱路を設けた本発明によると、低コストでエネルギー利用効率の高い加熱を実現することに加え、加熱能力を容易に制御できるものである。 According to the present invention, the magnetic pole surface of the rotating body is a plane perpendicular to the rotation axis, and a fluid heating path is formed by forming a spiral plane curve along the opposing surface facing the magnetic pole surface. In addition to realizing highly efficient heating, the heating capacity can be easily controlled.
 図1は本発明における第1の実施の形態の永久磁石式渦電流加熱装置を配設した給湯システムの配置図。
 図2は図1の永久磁石式渦電流加熱装置の詳細を示す側面図。
 図3は本発明における第2の実施の形態の永久磁石式渦電流加熱装置を配設した給湯システムの配置図。
 図4(A),(B),(C)は、本発明の永久磁石式渦電流加熱装置に接続される駆動力採取手段の例を示す斜視図。
 図5は従来例の永久磁石式渦電流加熱装置を示す縦断面図。
 図6は図3の実施の形態の応用例としての永久磁石式渦電流加熱装置を配設した給湯システムの配置図。
 図7は本発明における第3の実施の形態の永久磁石式渦電流加熱装置を配設した車両用暖房システムの配置図。
 図8は(A)及び(B)は、図2に記載した回転体とは異なる磁極面の磁石配置例を示す部分正面図。
FIG. 1 is a layout view of a hot water supply system in which a permanent magnet type eddy current heating device according to a first embodiment of the present invention is disposed.
FIG. 2 is a side view showing details of the permanent magnet eddy current heating apparatus of FIG.
FIG. 3 is a layout view of a hot water supply system in which a permanent magnet type eddy current heating device according to a second embodiment of the present invention is disposed.
4A, 4B, and 4C are perspective views showing examples of driving force collecting means connected to the permanent magnet eddy current heating device of the present invention.
FIG. 5 is a longitudinal sectional view showing a conventional permanent magnet eddy current heating apparatus.
FIG. 6 is a layout view of a hot water supply system in which a permanent magnet eddy current heating device as an application example of the embodiment of FIG. 3 is provided.
FIG. 7 is a layout view of a vehicle heating system provided with a permanent magnet eddy current heating device according to a third embodiment of the present invention.
8A and 8B are partial front views showing an example of magnet arrangement of magnetic pole faces different from those of the rotating body shown in FIG.
 以下に、図面を参照しながら本発明を実施するための形態を説明する。尚、本発明においては、永久磁石式渦電流加熱装置のシャフトの回転軸線の方向を基準として駆動力採取手段側を先端側とし、その反対側(加熱体側)を基端側とする。
 図1は、本発明における第1の実施の形態である永久磁石式の渦電流加熱装置2Aを配設した給湯システム1Aの配置図を示している。この渦電流加熱装置2Aは、自然の流体運動エネルギーの一つである風力を利用するものであり、駆動力採取手段としてプロペラ(風車)5Aを用いながら、その回転駆動力で磁極面21bを備えた回転体21を回転させることにより、磁極面21bに近接配置した加熱体20の対向面20b側に渦電流及びジュール熱を発生させて流体加熱路210内を流れる水を加熱して送出するものである。
 また、この給湯システム1Aでは、渦電流加熱装置2Aで加熱した水(温水)を送出管7bで送ってタンク3にいったん貯留してから給湯管7cで送出して給湯に使用するようになっており、タンク3の底部側で温度が低下した水は導入管7aにより渦電流加熱装置2Aに導入され、給湯に使用されて水位が下がった分だけタンク3に給水されるようになっている。
 駆動力採取手段であるプロペラ5Aと回転体21を連結しているシャフト25の途中には、発電機26Aが配設されており、シャフト25が回転駆動することにより発電して、後述する電子制御ユニット10A、回転体21との間隔を変更するために加熱体20に付設した間隔変更手段であるスライダ24、温水をタンク3に圧送するポンプ4に電力を供給するようになっている。
 渦電流加熱装置2Aの回転体21は、プロペラ5A中心から延設したシャフト25の中心軸線に一致する回転軸線Xに対し、直角かつ中心軸線の一致した円盤状とされ、その基端側が平面状の磁極面21bを形成している。一方、加熱体20も回転軸線Xの延長線に対し直角かつ中心軸線の一致した円盤状とされ、その先端側が回転体21の磁極面21bに対し平行な平面となっている点を特徴としている。
 このように、回転軸線X(その延長線を含む)に対し、円盤状の回転体21と加熱体20とが、中心軸線を一致させながら互いに対向する面を直角にして配置されたことにより、従来例において回転体が外周側を磁極面とした円柱状のロータとされるとともに流体加熱路を備えた加熱体がロータを囲む筒状とされて、装置が全体として嵩張っていたのに対し、本実施の形態では図示したように比較的簡易な構成で全体として嵩張らない状態で実施できるようになっている。
 図2は、図1の渦電流加熱装置2Aの詳細を説明するための側面図を示しており、回転体21基端側の磁極面21bの正面図、及びこれに対向する対向面20bを構成する導電材料からなる蓋板22を外した状態とした流体加熱路210を設けてなる流体加熱路形成面200aの正面図を、各々引き出し矢印で指し示している。
 円形状の平面とされた磁極面21bは、円柱状でその高さ方向に磁化され露出面側がS極となる複数の永久磁石212と露出面側がN極となる複数の永久磁石213を、回転体21の回転方向に沿って交互に異なる極性となるように並べながら複数の同心円を構成するように埋設して平面状としたものである。
 一方、流体加熱路210は、円盤状部材である加熱体本体部20aの蓋板22を密着させる平面状の流体加熱路形成面200aに、磁極面21bに対し平行になるように回転軸線Xの延長線に対し直角かつ中心の一致した渦巻き状(蚊取り線香状)の平面曲線を形成するように溝を彫ってなるものである。
 このように、比較的簡易な構成で従来例ほど嵩張らない本実施の形態の渦電流加熱装置2Aは、自然の流体運動エネルギーを受けたプロペラ5Aでシャフト25を回転駆動させて、円盤状の回転体21をその中心軸線を回転軸線にして回転させ、その基端側の磁極面21bがレコード盤のように回転することにより、これと所定距離を置いて対向配置された加熱体20の対向面20bを構成する導電材料製の蓋板22に渦電流を発生させるとともにジュール熱を生じさせ、これに付設している平面的な渦巻き状とされた流体加熱路210中を流れる水を効率的に加熱するものである。
 また、本実施の形態の渦電流加熱装置2Aにおいては、円盤状の加熱体20の対向面20bと磁極面21bとの距離(間隔)は、加熱体20に付設した間隔変更手段であるスライダ24を操作することにより変更可能となっている。このスライダ24は、渦電流加熱装置電子2Aに付設されている電子制御ユニット10Aで駆動操作されるステップモータ24aと、このステップモータ24aから延出されたボルト状の回動軸24bと、この回動軸24bの回動によりナット状の部材を介して上下動する支持アーム24cと、この支持アーム24cを挿通してその動作を上下方向にガイドするガイドバー24dとからなる。
 そして、温度センサ11,12でタンク3内の水温と加熱直後の水温を検知するとともにシャフト25の途中に設けた発電機26Aの発電量を検知している電子制御ユニット10Aが、これらの検知データを基に、風力の強さに基づく加熱能力及び現在の水温状態に応じて、スライダ24を駆動操作しながら磁極面21bと対向面20bとの距離を自動的に調整し、最適な加熱能力となるように自動制御を行っており、渦電流による効率的な加熱を実現可能としている。
 また、流体加熱路210は、上述したように円盤状の部材からなる加熱体本体部20a先端側の平滑な流体加熱路形成面200aに、表面から所定深さで溝を彫り込んで外径が磁極面21bの外径とほぼ一致した渦巻き状の平面曲線を形成する流路となるように設けた後、その上から導電材料からなる蓋板22を密着・固定して溝の開放面側を内外液密的に塞ぐことにより形成されている。
 従って、図5に示した従来例のようにロータ21Cの外周側に弦巻状に流体加熱路211を設ける場合と比べて、加熱体20を極めて容易に製作可能として製作コストを低廉に抑えている。また、流体加熱路210を前述のように簡易な平面的な構成としたことにより、腐食等による漏水の畏れも最小限に抑えられ、蓋板22をボルト等で着脱可能な状態とすることにより、蓋板22を外せば流体加熱路210を容易に清掃できるため、例えば湯垢の堆積が問題となりやすい24時間風呂の湯温維持等にも適したものとなる。さらに、この流体加熱路210では、対向する磁極面21bの回転速度が外周側は速く中心側は遅くなる関係で、その加熱能力が外周側は高く中心側は低くなるため、その外周側から水を導入して中心側からタンク3に送るようにしてあり、中心側で過剰に水温が上昇するのを回避しながら効率的な加熱を行いやすいものとしている。
 尚、温水を貯留するタンク3を内外断熱性に優れた素材で作成して、最適な湯温が長時間に亘って維持されるようにすれば、風が強く大きな回転駆動力・加熱能力が得られる時間帯でタンク3内貯留水量の量・温度を充分に上げておくことにより、風が弱く充分な回転駆動力が得られない時間帯においても、良好な給湯機能を発揮するものとなる。
 図3は、本発明における第2の実施の形態である、渦電流加熱装置2Bを配設した給湯システム1Bの配置図を示している。本実施の形態も前述の給湯システム1Aと基本構成がほぼ共通しているが、その渦電流加熱装置2Bは、発電機兼電動モータ26Bが、回転体21に回転駆動力を伝達するシャフト25に対し接続切替手段としてのギヤボックス28を介して動力の接続状態と非接続状態との間で切替可能に設けられており、かつ、蓄電手段としてのバッテリ29が設けられて、これに発電機兼電動モータ26Bが電気的に接続されている点を特徴としている。
 即ち、ギヤボックス28及び発電機兼電動モータ26Bは、渦電流加熱装置2Bに付設された電子制御ユニット10Bにより制御されて、プロペラ5A側と回転体21が接続した状態、プロペラ5A側と発電機としての発電機兼電動モータ26Bが接続した状態、回転体21側と電動モータとしての発電機兼電動モータ26Bが接続した状態、との間で自動的に切替えられるようになっている。
 これにより、例えばタンク3に充分な温度・量の温水が溜まっている状況で豊富な風力が得られる場合には、プロペラ5Aによる回転駆動力は回転体21に伝えずに発電機としての発電機兼電動モータ26Bに接続してバッテリ29を充電し、タンク3に充分な温度・量の温水が溜まっていない状況で充分な風力が得られない場合には、電動モータとしての電機兼電動モータ26Bを回転体21に接続して、バッテリ29に蓄えた電力で電機兼電動モータ26Bを駆動させて必要な加熱を行うことができる。
 一方、適度な風力が得られる状況でバッテリ29の蓄電量が充分な場合において加熱が必要なケースでは、プロペラ5Aと回転体21を直結させて加熱を行うこともできる。このように、自然力に依存して不安定となりやすい回転駆動力の状況に応じて、動力伝達経路を適宜切替えることにより、風力がめまぐるしく変動するような場合であっても、安全且つ安定的な加熱を行いながら良好な給湯機能が維持されやすいものとなる。
 尚、タンク3に充分な温度・量の温水が溜まっている状況で豊富な風力が得られる場合において、バッテリ29も充分に充電されている場合は、発電機としての発電機兼電動モータ26Bを駆動させて発電した電力を電力会社に売電するか、或いは、回転体21は回転させるが加熱体20との距離を離して加熱させないように、適宜電子制御ユニット10Bが制御を行うようにすればよい。
 図4(A),(B),(C)は、上述した第1の実施の形態と第2の実施の形態の渦電流加熱装置2A,2Bに共通して、そのシャフト25に装着する駆動力採取手段の変更例を示すものである。図(A)は、垂直軸風車5Bであり、前述したプロペラ5Aが風向きの変化に対応しにくかったのに対し、そのままでも総ての方角から吹く風に対応できる点を特徴としている。
 また、図(B)は、回転駆動軸に対し直角方向の水流で回転する水車5Cであり、図(C)は回転駆動軸に沿った水流で回転するスクリュー5Dを示しているが、これらは渦電流加熱装置が川や用水路等の水流に近い位置にある場合にその水力を利用するものであって、風力と比べて比較的安定した回転駆動力が得られる点を特徴としており、複数本のシャフトをユニバーサルジョイント250のような接続手段で角度を変えながら接続して使用することで、水流の位置・方向に合わせながら駆動力を採取することができる。
 尚、上述した実施の形態においては、水を加熱して給湯に使用する場合を中心として説明したが、本発明はこの目的に限定されるものではなく、例えば水を加熱することで暖房に使用することもでき、温水を使用して冷房を行うこともできる。また、同様の構成で水の代わりに空気を加熱して、屋内や温室の暖房にも使用することも可能である。
 図6は、図3の渦電流加熱装置2Bを配設した給湯システム1Bの応用例を示している。上述したように、永久磁石を配置した回転体を回転させることで加熱体側に渦電流を生じさせて流体を加熱する本発明の渦電流加熱装置は、ヒータを発熱させて流体を加熱する場合と比べて、永久磁石を発熱させずに回転させだけで流体を加熱することからエネルギー効率が極めて優れたものとなっており、且つ、燃焼事故を生じやすい過剰な高温部や高電圧部を有さない点で安全性の高いものである。従って、上述した実施の形態のように自然の流体運動エネルギーを利用することのほか、電動モータや内燃機関のように電力や燃料由来の回転駆動力を使用して流体を加熱することにおいても有用性の高いものである。
 そこで、図6の渦電流加熱装置2Cでは、図3の渦電流加熱装置2Bにおけるプロペラ5Aからなる駆動力採取手段をなくして、電動モータ26Cの回転駆動力のみで回転体21を回転させる構成としたものである。この場合、電動モータ26Cの回転速度を制御することにより加熱能力を容易に制御できることから、スライダ24が不要になり構成がよりシンプルとなっている。尚、本実施の形態においては、電力入力部31を介した電力供給を要するものとしているが、バッテリ式または商用電力・バッテリ併用式でもよく、或いは、電動モータ26Cの代わりに内燃機関を用いてもよい。
 図7は、本発明における第3の実施の形態である、渦電流加熱装置2Dを配設した空調システム1Dの配置図を示している。本実施の形態では、電動モータのみを原動機とする電動車両又は電動モータ及び内燃機関を原動機とするハイブリッド車両の空調手段として用いることを想定している。即ち、これらの車両においては、空調、殊に暖房に要する電力消費がその走行可能距離や燃費に大きく影響を与えてしまうことから、本発明による渦電流加熱装置2Dを空調手段として用いることにより、低コストで高いエネルギー効率を実現しようとするものであり、且つ、流体加熱力の調整容易性を実現しようとするものである。
 本実施の形態の渦電流加熱装置2Dでは、車両の回転駆動部分を利用して回転体21を回転させる構成としており、例えば図のように前輪駆動車の後輪102から延設した回転軸の端部側に回転体21を設けること等により、回転駆動力を簡易に得ることができるが、回転体21と加熱体20との間隔をスライダ24で調整可能な構成とすることで、車両速度の変動に対応しながら加熱力を容易に調整できるものとなる。尚、本実施の形態では車両室内100の空気を加熱体20に導入して直接加熱する構成としているが、媒体として水を用い所定の熱交換手段を介して空気を加熱する構成としても良い。
 図8(A),(B)は、図2に記載した回転体とは異なる磁極面の磁石配置例を示すものである。図(A)は扇状に形成され露出端側が異なる極性とされた永久磁石214,215を配置したもので、図(B)は露出端側が長方形の永久磁石216,217,218を放射状に配置したものであり、いずれの場合も配置した永久磁石の露出端側が、円形の磁極面の回転方向に沿って交互に異なる極性となっており、このような構成としても上述のものと同様の作用を発揮することができる。
 以上、述べたように、所定の運動エネルギーを使用する永久磁石式渦電流加熱装置について、本発明により、低コストでエネルギー利用効率の高い加熱を実現できるとともに、加熱能力を容易に制御できるようになった。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present invention, the driving force collecting means side is the distal end side and the opposite side (heating body side) is the proximal end side with reference to the direction of the rotation axis of the shaft of the permanent magnet eddy current heating device.
FIG. 1 shows a layout diagram of a hot water supply system 1A provided with a permanent magnet type eddy current heating device 2A according to a first embodiment of the present invention. This eddy current heating device 2A uses wind power, which is one of natural fluid kinetic energy, and includes a magnetic pole surface 21b with its rotational driving force while using a propeller (windmill) 5A as driving force collecting means. Rotating the rotating body 21 to generate eddy currents and Joule heat on the opposite surface 20b side of the heating body 20 disposed close to the magnetic pole surface 21b to heat and send water flowing in the fluid heating path 210 It is.
Further, in this hot water supply system 1A, water (hot water) heated by the eddy current heating device 2A is sent through the delivery pipe 7b, temporarily stored in the tank 3, and then sent out through the hot water supply pipe 7c to be used for hot water supply. The water whose temperature has dropped on the bottom side of the tank 3 is introduced into the eddy current heating device 2A through the introduction pipe 7a and is used for hot water supply so that the water is supplied to the tank 3 as much as the water level is lowered.
A generator 26A is arranged in the middle of the shaft 25 that connects the propeller 5A, which is a driving force collecting means, and the rotating body 21, and generates electric power when the shaft 25 is driven to rotate, and will be described later. Electric power is supplied to the slider 24, which is an interval changing means attached to the heating body 20 in order to change the interval between the unit 10 </ b> A and the rotating body 21, and the pump 4 that pumps hot water to the tank 3.
The rotating body 21 of the eddy current heating device 2A has a disk shape that is perpendicular to the rotation axis X that coincides with the center axis of the shaft 25 extending from the center of the propeller 5A, and that has a base end that is planar. The magnetic pole surface 21b is formed. On the other hand, the heating body 20 is also formed in a disk shape that is perpendicular to the extension line of the rotation axis X and coincides with the center axis line, and has a feature that the tip side is a plane parallel to the magnetic pole surface 21b of the rotation body 21. .
Thus, with respect to the rotation axis X (including its extension line), the disk-shaped rotation body 21 and the heating body 20 are arranged with the surfaces facing each other at right angles while matching the center axis, In the conventional example, the rotating body is a cylindrical rotor having a magnetic pole surface on the outer peripheral side, and the heating body provided with a fluid heating path is a cylindrical shape surrounding the rotor, whereas the apparatus is bulky as a whole In the present embodiment, as shown in the drawing, it can be implemented with a relatively simple configuration and without being bulky as a whole.
FIG. 2 is a side view for explaining the details of the eddy current heating device 2A of FIG. 1, and constitutes a front view of the magnetic pole surface 21b on the base end side of the rotating body 21 and a facing surface 20b opposite thereto. Front views of the fluid heating path forming surface 200a provided with the fluid heating path 210 with the cover plate 22 made of the conductive material removed are respectively indicated by pulling arrows.
The magnetic pole surface 21b formed into a circular plane rotates a plurality of permanent magnets 212 which are cylindrical and are magnetized in the height direction and have an S pole on the exposed surface side and a plurality of permanent magnets 213 on the exposed surface side which are N poles. A plurality of concentric circles are embedded in a planar shape while being arranged so as to have different polarities alternately along the rotation direction of the body 21.
On the other hand, the fluid heating path 210 has a rotation axis X that is parallel to the magnetic pole face 21b on a planar fluid heating path forming surface 200a that closely contacts the lid plate 22 of the heating body main body 20a that is a disk-shaped member. A groove is carved so as to form a spiral (mosquito-repellent incense-like) plane curve that is perpendicular to the extension line and coincides with the center.
As described above, the eddy current heating device 2A of the present embodiment, which has a relatively simple configuration and is not as bulky as the conventional example, rotates the shaft 25 with the propeller 5A that receives natural fluid kinetic energy, and rotates in a disk shape. The body 21 is rotated with its central axis as the rotation axis, and the base end side magnetic pole surface 21b rotates like a record board, so that the opposing surface of the heating body 20 disposed opposite to this by a predetermined distance. An electric current is generated in the cover plate 22 made of a conductive material that constitutes 20b and Joule heat is generated, and water flowing in the fluid heating path 210 formed in a plane spiral attached thereto is efficiently discharged. It is for heating.
Further, in the eddy current heating apparatus 2A of the present embodiment, the distance (interval) between the opposing surface 20b of the disc-shaped heating body 20 and the magnetic pole surface 21b is a slider 24 that is an interval changing means attached to the heating body 20. It can be changed by operating. The slider 24 includes a step motor 24a that is driven and operated by an electronic control unit 10A attached to the eddy current heating device electronics 2A, a bolt-shaped rotating shaft 24b that extends from the step motor 24a, and a rotating motor 24a. A support arm 24c that moves up and down via a nut-like member by the rotation of the moving shaft 24b, and a guide bar 24d that passes through the support arm 24c and guides its operation in the vertical direction.
Then, the electronic control unit 10A that detects the water temperature in the tank 3 and the water temperature immediately after the heating with the temperature sensors 11 and 12 and detects the power generation amount of the generator 26A provided in the middle of the shaft 25 is detected data. Based on the above, the distance between the magnetic pole surface 21b and the opposing surface 20b is automatically adjusted while driving the slider 24 according to the heating capacity based on the strength of the wind force and the current water temperature state, and the optimum heating capacity Automatic control is performed so that efficient heating by eddy current can be realized.
Further, the fluid heating path 210 is formed by engraving a groove at a predetermined depth from the surface of the smooth fluid heating path forming surface 200a on the distal end side of the heating body main body 20a made of a disk-shaped member as described above, so that the outer diameter is a magnetic pole. After providing a flow path that forms a spiral plane curve that substantially coincides with the outer diameter of the surface 21b, a cover plate 22 made of a conductive material is closely attached and fixed thereon, and the open surface side of the groove is set on the inner and outer sides. It is formed by liquid-tightly closing.
Therefore, as compared with the case where the fluid heating path 211 is provided in a string form on the outer peripheral side of the rotor 21C as in the conventional example shown in FIG. 5, the heating body 20 can be manufactured very easily, and the manufacturing cost is kept low. . In addition, since the fluid heating path 210 has a simple planar configuration as described above, leakage of water due to corrosion or the like can be minimized, and the lid plate 22 can be attached and detached with bolts or the like. Since the fluid heating path 210 can be easily cleaned by removing the cover plate 22, for example, it is suitable for maintaining the hot water temperature in a 24-hour bath, for example, where accumulation of scale is likely to be a problem. Further, in this fluid heating path 210, the rotation speed of the opposing magnetic pole surface 21b is high on the outer peripheral side and slows on the central side, and the heating capacity is high on the outer peripheral side and lower on the central side. Is introduced into the tank 3 from the center side, and efficient heating is facilitated while avoiding an excessive rise in water temperature on the center side.
In addition, if the tank 3 for storing hot water is made of a material excellent in internal and external heat insulation so that the optimum hot water temperature is maintained for a long time, the wind is strong and the rotational driving force and heating capacity are large. By sufficiently raising the amount and temperature of the amount of water stored in the tank 3 in the obtained time zone, a good hot water supply function is exhibited even in a time zone where the wind is weak and sufficient rotational driving force cannot be obtained. .
FIG. 3 shows a layout view of a hot water supply system 1B provided with an eddy current heating device 2B according to the second embodiment of the present invention. The basic configuration of the present embodiment is substantially the same as that of the hot water supply system 1A described above, but the eddy current heating device 2B includes a generator / electric motor 26B on a shaft 25 that transmits a rotational driving force to the rotating body 21. On the other hand, it is provided so that it can be switched between a connected state and a disconnected state of power via a gear box 28 as a connection switching means, and a battery 29 as a power storage means is provided. It is characterized in that the electric motor 26B is electrically connected.
That is, the gear box 28 and the generator / electric motor 26B are controlled by the electronic control unit 10B attached to the eddy current heating device 2B, and the propeller 5A side and the rotating body 21 are connected, the propeller 5A side and the generator. Are automatically switched between the state where the generator / electric motor 26B is connected and the state where the rotating body 21 side is connected to the generator / electric motor 26B as the electric motor.
Thus, for example, when abundant wind power can be obtained in a situation where sufficient temperature and amount of hot water is accumulated in the tank 3, the rotational driving force by the propeller 5A is not transmitted to the rotating body 21, and the generator as a generator is generated. When the battery 29 is charged by connecting to the electric motor 26B and sufficient wind power cannot be obtained in a situation where sufficient temperature / amount of hot water is not accumulated in the tank 3, the electric electric motor 26B as an electric motor is obtained. Can be connected to the rotator 21 and the electric motor 26B can be driven by the electric power stored in the battery 29 to perform the necessary heating.
On the other hand, in a situation where moderate wind power is obtained and the battery 29 has a sufficient amount of electricity stored, heating is necessary, and the propeller 5A and the rotating body 21 can be directly connected to perform heating. In this way, safe and stable heating is possible even when wind power fluctuates rapidly by appropriately switching the power transmission path according to the situation of the rotational driving force that tends to be unstable depending on the natural force. A good hot water supply function is easily maintained while performing.
In the case where abundant wind power can be obtained in a situation where sufficient temperature and quantity of hot water is accumulated in the tank 3, if the battery 29 is also sufficiently charged, the generator / electric motor 26B as a generator is installed. The electric power generated by driving is sold to an electric power company, or the electronic control unit 10B appropriately controls so that the rotating body 21 is rotated but is not heated away from the heating body 20. That's fine.
4 (A), (B), and (C) are common to the eddy current heating devices 2A and 2B of the first embodiment and the second embodiment described above, and are mounted on the shaft 25. The example of a change of a force collection means is shown. FIG. (A) shows a vertical axis wind turbine 5B, which is characterized in that the propeller 5A described above is difficult to cope with changes in the direction of the wind, but can cope with winds blowing from all directions.
Further, FIG. (B) shows a water wheel 5C that rotates with a water flow in a direction perpendicular to the rotation drive shaft, and FIG. (C) shows a screw 5D that rotates with a water flow along the rotation drive shaft. When the eddy current heating device is located close to the water flow such as a river or irrigation canal, its hydropower is used, and it features a relatively stable rotational driving force compared to wind power. By connecting and using the shaft with a connecting means such as the universal joint 250 while changing the angle, the driving force can be collected while matching the position and direction of the water flow.
In the above-described embodiment, the case where water is heated and used for hot water supply has been mainly described. However, the present invention is not limited to this purpose. For example, the water is used for heating by heating water. It is also possible to cool using warm water. Moreover, it is also possible to heat the air instead of water with the same configuration and use it for heating indoors or greenhouses.
FIG. 6 shows an application example of a hot water supply system 1B provided with the eddy current heating device 2B of FIG. As described above, the eddy current heating device of the present invention that heats the fluid by generating an eddy current on the heating body side by rotating the rotating body on which the permanent magnet is arranged is a case where the fluid is heated by heating the fluid. Compared to heating the fluid just by rotating the permanent magnet without generating heat, it is extremely energy efficient, and it has an excessively high temperature part and high voltage part that are likely to cause a combustion accident. It is safe in that there is no point. Therefore, in addition to using natural fluid kinetic energy as in the above-described embodiment, it is also useful in heating fluid using a rotational driving force derived from electric power or fuel, such as an electric motor or an internal combustion engine. It is highly probable.
Therefore, in the eddy current heating device 2C of FIG. 6, the driving force collecting means including the propeller 5A in the eddy current heating device 2B of FIG. 3 is eliminated, and the rotating body 21 is rotated only by the rotational driving force of the electric motor 26C. It is a thing. In this case, since the heating capacity can be easily controlled by controlling the rotation speed of the electric motor 26C, the slider 24 is unnecessary and the configuration is simpler. In the present embodiment, power supply via the power input unit 31 is required. However, a battery type or a commercial power / battery combination type may be used, or an internal combustion engine may be used instead of the electric motor 26C. Also good.
FIG. 7 shows a layout view of an air conditioning system 1D provided with an eddy current heating device 2D, which is a third embodiment of the present invention. In the present embodiment, it is assumed that the air conditioner is used for an electric vehicle using only an electric motor as a prime mover or a hybrid vehicle using an electric motor and an internal combustion engine as a prime mover. That is, in these vehicles, since the power consumption required for air conditioning, particularly heating, greatly affects the travelable distance and fuel consumption, by using the eddy current heating device 2D according to the present invention as air conditioning means, It is intended to realize high energy efficiency at a low cost and to achieve easy adjustment of the fluid heating force.
In the eddy current heating device 2D according to the present embodiment, the rotating body 21 is rotated by using the rotation driving portion of the vehicle. For example, the rotating shaft extending from the rear wheel 102 of the front wheel driving vehicle as shown in the figure By providing the rotating body 21 on the end side, the rotational driving force can be easily obtained. However, by adopting a configuration in which the distance between the rotating body 21 and the heating body 20 can be adjusted by the slider 24, the vehicle speed The heating power can be easily adjusted while responding to the fluctuations. In the present embodiment, the air in the vehicle compartment 100 is introduced into the heating body 20 and directly heated, but water may be used as a medium to heat the air via a predetermined heat exchange means.
FIGS. 8A and 8B show examples of magnet arrangement with magnetic pole faces different from those of the rotating body shown in FIG. In FIG. (A), permanent magnets 214 and 215 formed in a fan shape and having different polarities on the exposed end side are arranged, and in FIG. (B), permanent magnets 216, 217, and 218 whose exposed end side is rectangular are arranged radially. In each case, the exposed end side of the arranged permanent magnet has alternately different polarities along the rotation direction of the circular magnetic pole surface. It can be demonstrated.
As described above, for the permanent magnet eddy current heating apparatus using a predetermined kinetic energy, the present invention can realize heating with high energy utilization efficiency at low cost and easily control the heating capacity. became.
1A,1B,1C 給湯システム
1D 空調システム
2A,2B,2C,2D 渦電流加熱装置
3 タンク
4 ポンプ
5A プロペラ
5B 垂直軸風車
5C 水車
5D スクリュー
7a 導入管
7b 送出管
7c 給湯管
10A,10B,10C,10D 電子制御ユニット
11,12,13,14 温度センサ
20 加熱体
20a 加熱体本体部
20b 対向面
21,21B,21C 回転体
21a 回転体本体部
21b 磁極面、
22 蓋板
24 スライダ
25 シャフト
26A 発電機
26B 発電機兼電動モータ
26C 電動モータ
28 ギヤボックス
29,30 バッテリ
200a 流体加熱路形成面
210 流体加熱路
212,213,214,215,216,217,218 永久磁石
1A, 1B, 1C Hot water supply system 1D Air conditioning system 2A, 2B, 2C, 2D Eddy current heating device 3 Tank 4 Pump 5A Propeller 5B Vertical axis windmill 5C Water wheel 5D Screw 7a Introduction pipe 7b Delivery pipe 7c Hot water supply pipes 10A, 10B, 10C, 10D electronic control unit 11, 12, 13, 14 Temperature sensor 20 Heating body 20a Heating body main body 20b Opposing surfaces 21, 21B, 21C Rotating body 21a Rotating body main body 21b Magnetic pole surface,
22 Lid Plate 24 Slider 25 Shaft 26A Generator 26B Generator / Electric Motor 26C Electric Motor 28 Gear Box 29, 30 Battery 200a Fluid Heating Path Forming Surface 210 Fluid Heating Path 212, 213, 214, 215, 216, 217, 218 Permanent magnet

Claims (12)

  1. 外部からの運動エネルギーによる回転駆動力で、複数の永久磁石が所定の配置で設けられて外側に磁場を形成する磁極面を備えた回転体を回転させることにより、前記磁極面に対し所定間隔で対向する対向面を有して導電材料及び流体加熱路を備えた加熱体に渦電流及びジュール熱を発生させ、前記流体加熱路中を流れる流体を加熱して送出する永久磁石式渦電流加熱装置において、前記磁極面が前記回転体の基端側で該回転体の回転軸線に対し直角な平面とされ、前記流体加熱路が前記対向面から所定深さ位置で該対向面に沿った渦巻き状の平面曲線を形成している、ことを特徴とする永久磁石式渦電流加熱装置。 By rotating a rotating body provided with a plurality of permanent magnets in a predetermined arrangement and having a magnetic pole surface forming a magnetic field on the outside by a rotational driving force by external kinetic energy, the magnetic pole surface is rotated at a predetermined interval. A permanent magnet type eddy current heating device that generates eddy current and Joule heat in a heating body having an opposing surface and having a conductive material and a fluid heating path, and heats and sends the fluid flowing in the fluid heating path. The magnetic pole surface is a plane perpendicular to the rotation axis of the rotating body on the base end side of the rotating body, and the fluid heating path is spirally formed along the facing surface at a predetermined depth from the facing surface. The permanent magnet type eddy current heating device is characterized in that a plane curve is formed.
  2. 前記運動エネルギーは電動モータまたは/及び内燃機関から得たものであることを特徴とする請求の範囲1に記載した永久磁石式渦電流加熱装置。 The permanent magnet eddy current heating device according to claim 1, wherein the kinetic energy is obtained from an electric motor and / or an internal combustion engine.
  3. 前記電動モータまたは/及び内燃機関は車両の走行用原動機であり、前記車両に搭載されて車両室内の空調手段として用いられる、ことを特徴とする請求の範囲2に記載した永久磁石式渦電流加熱装置。 The permanent magnet eddy current heating according to claim 2, wherein the electric motor and / or the internal combustion engine is a prime mover for a vehicle, and is used as an air conditioning unit mounted in the vehicle. apparatus.
  4. 前記運動エネルギーの駆動源が、自然の流体運動エネルギーであることを特徴とする請求の範囲1に記載した永久磁石式渦電流加熱装置。 The permanent magnet eddy current heating device according to claim 1, wherein the driving source of the kinetic energy is natural fluid kinetic energy.
  5. 前記磁極面は、前記回転体の回転軸線に対し中心が一致した円形の平面とされ、前記対向面が前記磁極面に対し平行な平面とされており、かつ、前記流体加熱路による渦巻き状の平面曲線が、前記回転軸線の延長線に対し直角かつ中心が一致している、ことを特徴とする請求の範囲1,2,3または4に記載した永久磁石式渦電流加熱装置。 The magnetic pole surface is a circular plane whose center coincides with the rotational axis of the rotating body, the opposing surface is a plane parallel to the magnetic pole surface, and a spiral shape formed by the fluid heating path. The permanent magnet type eddy current heating device according to claim 1, 2, 3, or 4, wherein the plane curve is perpendicular to the extension line of the rotation axis and coincides with the center.
  6. 前記加熱体に前記対向面と前記磁極面の間隔を変更させるための間隔変更手段が付設されている、ことを特徴とした請求の範囲1,2,3,4または5に記載した永久磁石式渦電流加熱装置。 The permanent magnet type according to any one of claims 1, 2, 3, 4 or 5, wherein an interval changing means for changing an interval between the opposing surface and the magnetic pole surface is attached to the heating body. Eddy current heating device.
  7. 前記加熱体による加熱能力の変動を連続的に検知する電子的制御手段を有し該電子制御手段が前記間隔変更手段を駆動操作して加熱能力を自動制御する、ことを特徴とする請求の範囲6に記載した永久磁石式渦電流加熱装置。 The electronic control means for continuously detecting fluctuations in heating capacity due to the heating body, wherein the electronic control means automatically controls the heating capacity by driving the interval changing means. The permanent magnet type eddy current heating device described in 6.
  8. 前記加熱体は、該加熱体を構成する加熱体本体部の流体加熱路形成面から所定深さで溝を彫って渦巻き状の平面曲線を形成するとともに、前記溝を設けた前記流体加熱路形成面に前記導電材料からなる蓋板を密着状態で被せて前記溝の開放面側を塞いでなる、ことを特徴とする請求の範囲1,2,3,4,5,6または7に記載した永久磁石式渦電流加熱装置。 The heating body forms a spiral plane curve by carving a groove at a predetermined depth from the fluid heating path forming surface of the heating body main body constituting the heating body, and forming the fluid heating path provided with the groove 8. The cover according to claim 1, 2, 3, 4, 5, 6 or 7, wherein a cover plate made of the conductive material is covered in a close contact state to close the open surface side of the groove. Permanent magnet type eddy current heating device.
  9. 前記流体加熱路は、前記渦巻き状の平面曲線外周側から流体を導入し、加熱された前記流体を中心側から送出することを特徴とする、請求の範囲8に記載した永久磁石式渦電流加熱装置。 9. The permanent magnet eddy current heating according to claim 8, wherein the fluid heating path introduces a fluid from an outer peripheral side of the spiral planar curve and delivers the heated fluid from a center side. apparatus.
  10. 前記磁極面に配置された複数の永久磁石は、その露出端側が前記磁極面の回転方向に沿って交互に異なる極性とされている、ことを特徴とする請求の範囲1,2,3,4,5,6,7,8または9に記載した永久磁石式渦電流加熱装置。 The plurality of permanent magnets arranged on the magnetic pole face have different polarities alternately on the exposed end side along the rotation direction of the magnetic pole face. , 5, 6, 7, 8 or 9 Permanent magnet type eddy current heating device.
  11. 前記駆動力採取手段と前記回転体を接続している動力伝達経路の途中に、蓄電手段に電気的に接続された発電機兼電動モータが機械的に接続可能な状態で配設されており、所定の接続切替手段により、前記駆動力採取手段と前記回転体が直結した状態、前記駆動力採取手段と発電機としての前記発電機兼電動モータが接続した状態、前記回転体と電動モータとしての前記発電機兼電動モータが接続した状態、の間で切替え可能とされていることを特徴とする、請求の範囲1,2,3,4,5,6,7,8,9または10に記載した永久磁石式渦電流加熱装置。 In the middle of the power transmission path connecting the driving force collecting means and the rotating body, a generator / electric motor electrically connected to the power storage means is disposed in a mechanically connectable state, With the predetermined connection switching means, the driving force collecting means and the rotating body are directly connected, the driving force collecting means and the generator / electric motor as a generator are connected, the rotating body and the electric motor as The switch according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the generator / electric motor can be switched between connected states. Permanent magnet type eddy current heating device.
  12. 加熱対象である前記流体が水または空気であって、給湯用または暖房用または冷暖房用として使用されることを特徴とする、請求の範囲1,2,3,4,5,6,7,8,9,10または11に記載した永久磁石式渦電流加熱装置。 The fluid according to claim 1, wherein the fluid to be heated is water or air and is used for hot water supply, heating or cooling / heating. , 9, 10 or 11. Permanent magnet type eddy current heating device.
PCT/JP2010/056348 2009-04-04 2010-04-01 Permanent magnet eddy current heating device WO2010114180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011507326A JPWO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet type eddy current heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009091622A JP2012104223A (en) 2009-04-04 2009-04-04 Permanent magnet type eddy current heater
JP2009-091622 2009-04-04

Publications (1)

Publication Number Publication Date
WO2010114180A1 true WO2010114180A1 (en) 2010-10-07

Family

ID=42828457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056348 WO2010114180A1 (en) 2009-04-04 2010-04-01 Permanent magnet eddy current heating device

Country Status (2)

Country Link
JP (2) JP2012104223A (en)
WO (1) WO2010114180A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883488A (en) * 2012-09-18 2013-01-16 苏州仲暄通讯技术有限公司 Magnetic heating equipment
JPWO2016072095A1 (en) * 2014-11-06 2017-08-31 新日鐵住金株式会社 Eddy current heating device
WO2018139004A1 (en) * 2017-01-24 2018-08-02 住友電気工業株式会社 Energy storage system and system for stably using fluctuating power
US10125589B2 (en) 2016-05-27 2018-11-13 Board Of Regents Of The University Of Texas System Downhole induction heater and coupling system for oil and gas wells
US10196885B2 (en) 2015-02-12 2019-02-05 Board Of Regents Of The University Of Texas System Downhole induction heater for oil and gas wells
CN110741730A (en) * 2018-05-18 2020-01-31 Tsk株式会社 Electromagnetic induction heating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533534B1 (en) * 2014-08-06 2015-07-02 김원용 A round shape plate type eddy current induction heating equipment
JP6465457B2 (en) * 2015-06-18 2019-02-06 住友電気工業株式会社 Induction heating apparatus and power generation system
JP6515396B1 (en) * 2018-06-14 2019-05-22 Tsk株式会社 Object to be heated for electromagnetic induction heating device, method for heating object to be heated, and method for manufacturing aluminum wheel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237138A (en) * 1998-02-20 1999-08-31 Solar System Kk Generating method of energy employing wind power type stirling heat pump and device therefor
JP2000123962A (en) * 1998-10-19 2000-04-28 Usui Internatl Ind Co Ltd Magnet type heater
JP2003203751A (en) * 2001-10-29 2003-07-18 Fuji Electric Co Ltd Electromagnetic induction heating type instantaneous steam generator
JP2005174801A (en) * 2003-12-12 2005-06-30 Tok Engineering Kk Permanent magnet type eddy current heating device
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237138A (en) * 1998-02-20 1999-08-31 Solar System Kk Generating method of energy employing wind power type stirling heat pump and device therefor
JP2000123962A (en) * 1998-10-19 2000-04-28 Usui Internatl Ind Co Ltd Magnet type heater
JP2003203751A (en) * 2001-10-29 2003-07-18 Fuji Electric Co Ltd Electromagnetic induction heating type instantaneous steam generator
JP2005174801A (en) * 2003-12-12 2005-06-30 Tok Engineering Kk Permanent magnet type eddy current heating device
JP2008545243A (en) * 2005-06-30 2008-12-11 マグテック エナジー,エルエルシー Magnetic heat generation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883488A (en) * 2012-09-18 2013-01-16 苏州仲暄通讯技术有限公司 Magnetic heating equipment
JPWO2016072095A1 (en) * 2014-11-06 2017-08-31 新日鐵住金株式会社 Eddy current heating device
US10667334B2 (en) 2014-11-06 2020-05-26 Nippon Steel Corporation Eddy current heat generating apparatus
US10196885B2 (en) 2015-02-12 2019-02-05 Board Of Regents Of The University Of Texas System Downhole induction heater for oil and gas wells
US10125589B2 (en) 2016-05-27 2018-11-13 Board Of Regents Of The University Of Texas System Downhole induction heater and coupling system for oil and gas wells
WO2018139004A1 (en) * 2017-01-24 2018-08-02 住友電気工業株式会社 Energy storage system and system for stably using fluctuating power
JPWO2018139004A1 (en) * 2017-01-24 2019-11-14 住友電気工業株式会社 Energy storage system and variable power stable utilization system
US11336150B2 (en) 2017-01-24 2022-05-17 Sumitomo Electric Industries, Ltd. Energy storage system and system enabling stable utilization of variable electric power
JP2022097523A (en) * 2017-01-24 2022-06-30 住友電気工業株式会社 Energy storage system and stable utilization system for variable power
JP7228126B2 (en) 2017-01-24 2023-02-24 住友電気工業株式会社 Energy storage system and variable power stable utilization system
JP7304010B2 (en) 2017-01-24 2023-07-06 住友電気工業株式会社 Energy storage system and variable power stable utilization system
CN110741730A (en) * 2018-05-18 2020-01-31 Tsk株式会社 Electromagnetic induction heating device

Also Published As

Publication number Publication date
JP2012104223A (en) 2012-05-31
JPWO2010114180A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2010114180A1 (en) Permanent magnet eddy current heating device
JP3955888B2 (en) Permanent magnet type eddy current heating device
US8338975B2 (en) Supplemental power source
US9291153B2 (en) Fluid driven electric power generation system
US8593007B2 (en) Rotational kinetic energy conversion system
US8803353B2 (en) Turbine-generator driven by compressed air and magnet motor
CN202835745U (en) Water heater equipment
US20180112648A1 (en) Hybrid wind turbine for power output in low and zero wind conditions
KR101516389B1 (en) Motor generator driving and electric charging at the same time
JP2018538783A (en) Method and apparatus for generating energy from renewable energy sources
EP2427961A1 (en) Generator with falling stator
JP2010525217A (en) Fluid power energy generator
CN106677975B (en) A kind of tidal generating set
JP2011210656A (en) Permanent magnet type heating and hybrid device for power generation
US20090108587A1 (en) Hybrid vertical axis wind turbine
KR20130000279A (en) Electric motor and operation control method thereof, electric vehicle having the same
EP2564061B1 (en) Windmill driven energy converting device
WO2012173757A2 (en) Turbine-generator driven by compressed air and magnet motor
US10072668B2 (en) Systems and methods for generating clean energy through hydrodynamic closed cycle
CN103414385B (en) Magnetic-heating device
WO2015092912A1 (en) Electric power generation system
JP6318331B1 (en) Power generator
KR20090127024A (en) Unlimited power generator by energy amplifier and thereof operating method
CN104180513A (en) Flywheel permanent magnet water heater for heating water in domestic water box
CN204141833U (en) The fly-wheel type permanent magnet water heater of heating water supply tank water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758939

Country of ref document: EP

Kind code of ref document: A1