WO2010112702A1 - Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active - Google Patents

Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active Download PDF

Info

Publication number
WO2010112702A1
WO2010112702A1 PCT/FR2010/000266 FR2010000266W WO2010112702A1 WO 2010112702 A1 WO2010112702 A1 WO 2010112702A1 FR 2010000266 W FR2010000266 W FR 2010000266W WO 2010112702 A1 WO2010112702 A1 WO 2010112702A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
active substance
pressure
solid
particles
Prior art date
Application number
PCT/FR2010/000266
Other languages
English (en)
Inventor
Frantz Deschamps
Jennifer Jung
Fabrice Leboeuf
Original Assignee
Separex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Separex filed Critical Separex
Priority to US13/262,538 priority Critical patent/US8765184B2/en
Priority to EP10714898.3A priority patent/EP2419088B1/fr
Priority to ES10714898.3T priority patent/ES2552384T3/es
Publication of WO2010112702A1 publication Critical patent/WO2010112702A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Definitions

  • the present invention relates to a process for preparing pharmaceutical compositions comprising one or more active ingredients in the form of fine particles. More particularly, the subject of the present invention is a process for the production of solid pharmaceutical compositions comprising micron or submicron particles of active principle, preferably crystalline particles, dispersed on the surface and / or in powders of pharmaceutical excipients.
  • formulation techniques consisting in producing micellar solutions, solid dispersions in which the active substance is dispersed within a water-soluble matrix, association complexes between the active substance and cyclodextrins, lipid formulations. as self-emulsifying systems, nanoparticles of solid lipids, lipid nanocapsules and liposomes.
  • these formulation techniques are often complex, involve multiple manufacturing steps, most often use organic solvents or excipients that may pose toxicity problems and may require the use of severe operating conditions (temperature, shear) that may have a deleterious effect on the chemical or physical stability of the active ingredient.
  • nanoparticles of active substances also referred to as submicron particles
  • the production of nanoparticles of active substances is an area that is experiencing a strong and recent development, in particular because it has been shown that the reduction of the size of particles of active principle to a few hundred nanometers can increase the dissolution rate with gains much higher than those obtained with micronized particles of a few micrometers because of the effect of the large increase in specific surface area as described by the Nernst-Brunner / Noyes-Whitney equation, but also because of a theoretical increase in saturation solubility for sizes of a few tens or hundreds of nanometers as described by the Freundlich and Ostwald equation.
  • the processes for obtaining nanoparticles of active substances used to produce commercial pharmaceutical forms are high pressure homogenization wet processes or nanomilling processes using a stirred ball mill.
  • Triglide TM and TriCor® both of which are orally administered pharmaceutical forms containing fenofibrate nanoparticles.
  • These mechanical processes lead to the production of a dispersion of solid nanoparticles of active substances in a liquid.
  • This liquid is commonly constituted by an aqueous medium containing one or more stabilizing agents so as to avoid the formation of aggregates and phase separation.
  • the selection of excipients to prevent agglomeration of the nanoparticles or to control the growth of particles by Ostwald ripening is a heavy and complex empirical task.
  • these excipients must necessarily be selected from pharmaceutical excipients of suitable regulatory status. For a route of administration like - AT -
  • aqueous dispersions of nanoparticles of active substances must be converted into dry forms so as to obtain a commercial pharmaceutical form of easy use and acceptable stability. This conversion can be carried out using conventional drying methods, such as spray drying or fluidized air bed techniques.
  • a supercritical fluid is characterized either by a pressure and a temperature respectively greater than the critical pressure and temperature in the case of a pure body, or by a representative point (pressure, temperature) located beyond the envelope of points critics represented on a diagram (pressure, temperature) in the case of a mixture; it then has, for very many substances, a solvent power uncommon with that observed in the same fluid in the compressed gas state.
  • so-called "subcritical" liquids that is to say liquids which are in a state characterized either by a pressure greater than the critical pressure and by a temperature below the critical temperature in the case of a pure body, either by a pressure higher than the critical pressures and a temperature below the critical temperatures of the components in the case of a mixture.
  • the large and variable variations in the solvent power of supercritical fluids and the easy separation of the solvent / solute mixture by simple decompression are also used in many extraction processes (solid / fluid), fractionation (liquid / fluid) and particle generation.
  • thermosensitive active substances especially as it has no toxicity and is available at very low prices in very large quantities.
  • Other fluids can also be used such as nitrous oxide, light hydrocarbons having two to four carbon atoms, ethers and some halogenated hydrocarbons such as tetrafluoroethane (R134a).
  • RESS Rapid Expansion of Supercritical Solutions
  • US Patent 4,582,731 a solution of the active substance in a supercritical fluid is expanded in a zone of low pressure.
  • the current implementation of the RESS process consists of two successive operations. The supercritical fluid is brought into contact with the product to be atomized in an extractor and the supercritical solution thus generated is heated and then expanded via an expansion device in a container maintained at a pressure substantially lower than that prevailing in the 'extractor. This method makes it possible to obtain dispersed fine particles within a gaseous stream at low pressure.
  • RESS process Another possible limitation of the RESS process concerns the implementation of the process for the active substances having a decrease in solubility in the supercritical fluid with the increase of the temperature at the pressure at which the solution is obtained.
  • solubility of an active substance in a supercritical fluid can be represented by the so-called Chrastil relationship. This relation brings into play the product of two terms with antagonistic effects when the temperature increases. Therefore, for some active substances, there may be a pressure and temperature range within which the solubility of the active substance in the supercritical fluid decreases as the temperature increases.
  • the implementation of the RESS process is problematic when the extraction temperature is lower than the temperature immediately upstream of the expansion device insofar as the active substance can precipitate upstream or in the expansion device and cause clogging said device.
  • composition solid comprising fine, micron and / or preferably submicron particles of at least one active substance dispersed on the surface and / or within a divided solid by implementing a process which is remarkable in that it comprises a step consisting of to relax a solution of said active substance in a supercritical pressure fluid in an enclosure at pressure and temperature conditions for which a portion of the fluid is in liquid form upon expansion and characterized in that said enclosure contains a divided solid.
  • the process which is the subject of the invention is particularly advantageous in that it makes it possible to produce fine, micronic and preferably submicron particles of heat-sensitive active substances in an advantageous manner because it does not require the use of high temperatures before the stage. of relaxation of the supercritical solution.
  • the process which is the subject of the invention is also advantageous in that it makes it possible to produce fine particles of active substances under conditions for which the heating of the supercritical solution before expansion as required in the implementation of the RESS process is not possible due to the decrease of the solubility of the active substance in the supercritical pressure fluid with the temperature at the chosen pressure.
  • the process which is the subject of the invention is particularly advantageous in that it makes it possible to obtain a dry solid product containing microparticles or nanoparticles of active substance and therefore does not require conversion operations in dry form downstream to produce a dry product. stable pharmaceutical form.
  • the method which is the subject of the invention is therefore particularly advantageous in that it makes it possible to substitute complex processes of manufacture of nanoparticulate pharmaceutical forms, composed for example for the most common processes of multiple steps of wet size reduction leading to a dispersion of nanoparticles in a liquid and then conversion to dry form.
  • the solid compositions obtained according to the process which is the subject of the invention can be easily handled and converted into solid final forms intended for oral administration, for example, without limitation, capsules, tablets, orodispersible forms, sublingual or bioadhesive forms, powders to be reconstituted in the form of oral suspension, said conversion being able to be performed by routine unitary pharmacotechnical operations well controlled by the pharmaceutical industry, for example without limiting the operations mixing, compression, granulation or filming.
  • the oral forms thus produced can be, without limitation, immediate release forms, controlled release forms or enteric release forms.
  • compositions obtained by the process which is the subject of the invention may, in addition, be used to produce final forms intended for administration routes other than the oral route, and in a nonlimiting manner the injectable, pulmonary, nasal route. rectal, vaginal or transdermal.
  • the solid compositions obtained by the process which is the subject of the invention may more particularly be used in an easy manner to produce injectable forms intended, in a non-limiting manner, for intravenous, intramuscular, subcutaneous, intraocular or even intravenous administration. articular administration, which can take place by rapid and brief injection or by slow infusion.
  • the solid compositions obtained by the process which is the subject of the invention can indeed be stored in dry form of high stability, possibly after mixing with pharmaceutical excipients, and then dispersed extemporaneously in a liquid vehicle, preferably in an aqueous medium which may contain agents. dispersion and stabilization, so as to produce an injectable dispersion of fine particles, preferably of submicron particles.
  • a liquid vehicle preferably in an aqueous medium which may contain agents. dispersion and stabilization, so as to produce an injectable dispersion of fine particles, preferably of submicron particles.
  • the implementation of the method which is the subject of the invention makes it possible to greatly limit the number of excipients used to produce a stable commercial pharmaceutical form.
  • the process which is the subject of the invention makes it possible to produce fine particles, and preferentially submicron particles, with a solid state (crystallinity and polymorphism) making it possible to obtain a stable pharmaceutical form, and preferably crystalline submicron particles, more preferably crystalline particles containing essentially the most stable crystalline form.
  • Figure 1 Diagram of the device used for the implementation of the method of the invention
  • Figure 2 Volume Particle Size Distribution Profile of the Active Substance Particles Produced in Test 1-1 (Example 1)
  • Figure 3 Volume Particle Size Distribution Profile of the Active Substance Particles Produced in Test 1-2 (Example 1)
  • Figure 5 Comparison for 3 samples of the volume distribution particle size distribution profiles of the nifedipine particles produced during the test 2-1 (Example 2)
  • Figure 6 Comparison for 3 samples of the volume distribution particle size distribution profiles of the nifedipine particles produced in test 2-2 (Example 2)
  • Figure 7 Volume particle size distribution profile of the sirolimus particles produced in test 3-1 (Example 3).
  • Figure 8 Volume particle size distribution profile of the sirolimus particles produced in test 3-2 (Example 3).
  • Figure 9 Figure 4: In Vitro Dissolution Curves (Example 3)
  • This invention is based on the fact that it is surprising to note that the expansion of a solution comprising at least one active substance solubilized in a supercritical pressure fluid according to operating conditions leading during the expansion to the presence of the fluid partly under liquid form makes it possible to obtain fine particles of active substances, and advantageously submicron particles, when the fluid is expanded in an expansion chamber comprising a divided solid.
  • the present invention relates in particular to a method for preparing a solid composition comprising fine, micronic and preferably submicron particles of at least one active substance dispersed on the surface and / or in a divided solid which is remarkable in that it comprises a step of relaxing a solution of said active substance in a supercritical pressure fluid in an enclosure at pressure and temperature conditions for which a portion of the fluid is in liquid form during expansion and in that said enclosure contains a divided solid.
  • the method according to the invention comprises the steps of: a) forming a solution of the active substance in a supercritical pressure fluid; b) Relaxing said solution in an enclosure under conditions of pressure and temperature for which a portion of the fluid is in liquid form during expansion; c) bringing the thus relaxed fluid into contact with a solid divided in said enclosure; d) recovering a dry product containing said active substance in the form of fine particles and said divided solid.
  • the process according to the invention consists in: a) forming a solution of the active substance in a supercritical pressure fluid; b) Relaxing said solution in an enclosure under conditions of pressure and temperature for which a portion of the fluid is in liquid form during expansion; c) bringing the thus relaxed fluid into contact with a solid divided in said enclosure; d) recovering a dry product containing said active substance in the form of fine particles and said divided solid.
  • part of the fluid is in liquid form means that at least 1%, and in order of increasing preference at least 5%, at least 10%, at least 20%, at least minus 30%, and at least 50% of the fluid is in liquid form upon relaxation. According to a preferred embodiment, between 10 and 90% and quite preferably between 20 and 80% of the fluid is in liquid form during relaxation.
  • the percentage of fluid in liquid form is the theoretical percentage of fluid in liquid form at the temperature and pressure conditions of the expansion. This can be determined on the basis of assumptions relating to the expansion mechanism, for example by using a thermodynamic pressure-enthalpy diagram called "Mollier diagram" which makes it possible to determine for each temperature and pressure conditions of the fluid immediately in upstream of the expansion and pressure in the expansion chamber, the percentage of fluid in gaseous form and the percentage of fluid in the liquid form.
  • Such diagrams can be established for example from thermodynamic data readily available to those skilled in the art, such as, EW Lemmon, MO McLinden and DG Friend, "Thermophysical Properties of Fluid Systems” in the NIST Chemistry WebBook, Standard Reference Database NIST Number 69, Eds. P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, (http://webbook.nist.gov).
  • the other part of the fluid that is not in liquid form during expansion is in gaseous form.
  • the percentage of fluid in liquid form corresponds to mass ratios between the fluid mass in the liquid form and the total fluid mass.
  • nanoparticles or submicron particles particles of median size less than 1000 nm are defined as a set of particles 50% of which have a volume diameter of less than 1000 nm, said median volume diameter being measured for example by laser particle size or photon correlation spectroscopy.
  • the particles comprising an active substance obtained by the process which is the subject of the invention are advantageously micron particles, preferably submicron particles, even more preferably submicron particles having a median diameter (dv (0.5)) less than at 800 nm, even more preferably a median diameter less than 500 nm.
  • 90% of the fine particles preferably have a volume diameter (dv (0.9)) of less than 10 ⁇ m, more preferably less than 5 ⁇ m, even more preferably less than 2 ⁇ m, even more preferably less than 1000 nm.
  • the term "supercritical fluid” means a fluid brought to a pressure greater than its critical pressure, that is to say either a supercritical fluid proper or a so-called subcritical liquid as defined herein.
  • a solution of one or more active substance (s) in a supercritical fluid and a supercritical pressure solution is defined as a solution of one or more active substance (s) in a supercritical pressure fluid.
  • a solution is formed in a supercritical pressure fluid of at least one active substance. This supercritical pressure solution is preferentially produced using equipment similar to that shown in FIG. 1 for which the solid active substance is introduced into a high-pressure extractor (5) in which the supercritical pressure fluid is percolated within the extractor.
  • This embodiment corresponds to that commonly used by those skilled in the art in supercritical fluid extraction processes from solid matrices, the active substance constituting the compound to be extracted and the solid matrix consisting of either the solid active substance alone, ie active substance mixed with an inert solid material.
  • said inert material uniformly mixed by the appropriate means with the active substance solid under ambient conditions, primarily serves to improve the effectiveness of the contact between the supercritical pressure fluid and the substance. active, so as to ensure the dissolution of the active substance in the supercritical pressure fluid in a reproducible manner.
  • the inert material can be used to immobilize the active substance and to ensure effective contact with the supercritical pressure fluid in the particular case where the active substance, which is solid under ambient conditions, is in liquid form or semi-solid under the conditions of extraction.
  • the inert material may consist of fibrous materials, porous materials or balls, preferably glass, ceramic, stainless steel, zirconium oxide or polymer beads. appropriate diameter to ensure a uniform and reproducible mixture with the active substance before implemented in the high pressure extractor.
  • one or more elements guaranteeing the absence of entrainment of non-solubilized active substance particles at the outlet of the extractor will be used.
  • the step of forming the supercritical pressure solution makes it possible to guarantee a constant concentration of active substance in the supercritical pressure fluid during the process.
  • the technique that the skilled person knows under the name of simulated moving bed, consisting of using at least three extractors, with at least two high-pressure extractors in series at any time during the implementation of the method and an extractor in the decompression, unloading, filling or pressurization phase during this time.
  • the first extractor among the extractors placed in series is the one closest to the depletion of active substance.
  • the implementation of such a device ensures a constant concentration of active substance in the supercritical pressure fluid.
  • the concentration of active substance in the supercritical fluid can indeed be close to the so-called saturation concentration, corresponding to the limit of solubility of the substance active in the supercritical pressure fluid under the selected extraction conditions.
  • a particular implementation of the method which is the subject of the invention consists in mixing, before the expansion step, the solution in the supercritical pressure fluid with a known quantity of supercritical pressure fluid containing no active substance, for example by the intermediate of a high-pressure static mixer, in order to adjust the concentration of active substance in the supercritical pressure fluid before expansion and brought into contact with a divided solid, so as to adjust the properties of the pharmaceutical compositions obtained by the process object of the invention.
  • the above devices may be supplemented by an on-line measurement system of the concentration of active substance in the supercritical pressure fluid, for example without being limited by a spectrophotometric method.
  • the supercritical pressure fluid is selected from carbon dioxide, nitrous oxide, alkanes such as ethane or propane, and ethers such as dimethyl ether. , fluorinated hydrocarbons such as tetrafluoroethane (R134a) or trifluoromethane (R23).
  • the supercritical pressure fluid is carbon dioxide.
  • the supercritical pressure fluid consists either of a mixture of at least two of the abovementioned fluids or of a mixture of one of the abovementioned fluids and at least one organic solvent. , advantageously chosen, without limitation, from alcohols, ketones, esters.
  • the supercritical pressure fluid is carbon dioxide at a pressure between 7.4 MPa and 200 MPa, preferably between 10 and 100 MPa and at a temperature below 140 0 C, and in order of increasing preference at a temperature below 80 ° C., 60 ° C. and 40 ° C.
  • the supercritical pressure fluid is carbon dioxide at a pressure of between 25 MPa and 70 MPa, at a temperature of between 40 and 80 ° C.
  • the supercritical pressure solution is composed of an active substance dissolved in the supercritical pressure fluid.
  • the supercritical pressure solution comprises several solutes, and preferably at least two active substances or at least one active substance and a pharmaceutical excipient.
  • the active substance solution in the supercritical pressure fluid is expanded in an enclosure under conditions leading, during expansion, to the formation of a two-phase system comprising the fluid in the liquid state and the fluid in the gaseous state.
  • the temperature of the supercritical pressure solution immediately upstream of the expansion device can be regulated, for example and in a nonlimiting manner, by the passage of the supercritical solution within an exchanger.
  • the temperature adjustment of the supercritical pressure solution can be carried out by mixing the supercritical pressure solution from the high pressure extractor with pressure fluid. supercritical at a temperature different from the temperature of the supercritical pressure solution. Under conditions that those skilled in the art will identify as corresponding to a permanent operating regime of the process of the invention, it is therefore possible to simultaneously adjust the concentration of active substance substantially below the concentration referred to above. saturation in the supercritical pressure fluid and the temperature of the supercritical pressure solution immediately upstream of the expansion device.
  • the temperature of the supercritical pressure fluid during the step of forming the supercritical pressure solution is identical to the temperature immediately upstream of the expansion device.
  • the temperature of the supercritical pressure fluid during the step of forming the supercritical pressure solution is substantially lower than the temperature immediately upstream of the expansion device.
  • the supercritical pressure solution is expanded in an enclosure by means of an expansion device consisting of a spray nozzle, a tube, a pierced orifice. in a thin plate, a sintered solid material element, a controlled opening valve or any other device known to those skilled in the art.
  • an expansion device consisting of a spray nozzle, a tube, a pierced orifice. in a thin plate, a sintered solid material element, a controlled opening valve or any other device known to those skilled in the art.
  • the expansion device consists of a capillary tube characterized by a ratio of length to internal diameter greater than 20 and preferably greater than 100.
  • the detent may be considered as predominantly isenthalpe or isentropic depending on the relaxation device chosen, or during preliminary tests on the apparatus for implementing the method, for example and without limitation by measuring the temperature immediately downstream of the expansion device in the expansion chamber or by measuring a physical quantity immediately downstream of this device which makes it possible to conclude that a portion of fluid in liquid form is present.
  • the pressure in the expansion chamber is maintained at a value leading to the obtaining of a two-phase gas-liquid medium during expansion, as a function of the pressure and temperature conditions of the the supercritical pressure solution immediately upstream of the expansion device.
  • This pressure can be determined by those skilled in the art for example using thermodynamic diagrams such as pressure-enthalpy diagrams.
  • the pressure can be maintained at this value by means of an upstream pressure regulating valve located downstream of the expansion chamber or any device known to those skilled in the art as providing pressure control in these operating conditions.
  • the process which is the subject of the invention is preferably carried out with carbon dioxide with a pressure in the expansion chamber maintained between 0.52 and 7.4 MPa and preferably between 1 and 6.5 MPa.
  • a part of the fluid which is in the liquid state during expansion is vaporized in the expansion chamber by providing enthalpy by any means known to those skilled in the art, preferably by heating the walls of the enclosure or by introducing a fluid at a rate and a temperature to provide the required enthalpy.
  • the fluid introduced for the supply of enthalpy is identical to the fluid used for the formation of the supercritical pressure solution.
  • the fluid in the liquid state is completely vaporized inside the expansion chamber and is therefore completely in the gaseous state when it leaves said chamber .
  • the supercritical pressure fluid in which at least one active substance is solubilized is expanded in an enclosure comprising a divided solid.
  • said divided solid comes into contact wholly or partly with the partially expanded fluid in the liquid state.
  • said divided solid comprises a pharmaceutical excipient.
  • the expanded fluid is brought into contact with the solid divided with any means known to those skilled in the art to uniformize the distribution of the biphasic gas-liquid mixture of the fluid on the divided solid and thus lead to uniform distribution of the active substance in the final solid and dry composition.
  • the positioning of the expansion device and the geometric configuration of the expansion chamber make it possible to obtain the agitation of the solid divided by the only speed of ejection of the relaxed fluid.
  • the expansion chamber is equipped with a mechanical stirring system that makes it possible, if necessary, to stir the divided solid.
  • the expansion chamber is equipped with a device allowing without complete depressurization of said enclosure the supply of divided solid and the withdrawal of the solid composition comprising the divided solid. and the active substance. This feed and this withdrawal are operated advantageously at regular time intervals and preferably continuously.
  • Such a device makes it possible to use an expansion chamber of a substantially reduced volume compared with the discontinuous implementation of the method.
  • the divided solid is a powder or a granular material consisting of at least one pharmaceutical excipient.
  • the divided solid comprises particles of at least one acceptable excipient for oral administration, and preferably selected from human excipients known in the art for have favorable properties for the production of solid oral forms such as tablets or capsules.
  • the excipients for oral administration are advantageously chosen from sugars such as lactose or sucrose, polysaccharides such as microcrystalline cellulose, cellulose derivatives or starch, polyols such as mannitol, solid lipids and waxes, homopolymers and solid copolymers such as polyesters, polyethylene glycols, poloxamers, polyvinylpyrrolidones and derivatives, inorganic compounds such as silica.
  • the divided solid consists of a powder composed of excipient which is soluble in aqueous media and acceptable for administration by injection, as, without being limiting, the intravenous, intramuscular, intra-articular or intraocular.
  • Excipients for administration by injection are advantageously chosen from salts such as sodium chloride, sugars such as trehalose or sucrose, polyols such as mannitol, polysaccharides, bioabsorbable polymers, proteins such as albumin.
  • the divided solid consists of particles of pharmaceutical excipient having a mean size of between 50 and 2,000 microns, and preferably between 200 and 600 microns.
  • the mass ratio between the active substance and the divided solid is between 0.1 and 25%, and preferably between 0.5 and 10%.
  • a device as described in FIG. 1 is used.
  • the active substance optionally mixed with an inert material, is placed in an extraction cell (tube closed at the ends by steel frits stainless steel to prevent the product from being dragged by the fluid).
  • This cell is placed inside an extraction autoclave (5) heated to the chosen extraction temperature.
  • the fluid is pumped (3) from the storage (2) and passes through a hot heat exchanger (4) regulated at the desired extraction temperature before entering the extraction autoclave.
  • the product solution solubilized in the supercritical pressure fluid exiting the autoclave extraction is sent to an expansion chamber (7) in which the solution is depressurized suddenly at a given temperature and pressure through a nozzle
  • a device for heating (6) adjusts the temperature of the fluid immediately upstream of the expansion device. Depending on the operating conditions chosen according to the method of the invention, a portion of the fluid is in liquid form during expansion. Furthermore, the pressure in the expansion chamber is maintained at a predetermined value by means of an upstream pressure regulating valve (12). This control valve makes it possible to adjust the operating conditions in the expansion chamber independently of the temperature immediately upstream of the expansion device set by the heating device (6).
  • the expansion chamber contains a collection basket, closed by a filter, in which a pharmaceutical excipient powder (10) is placed before starting the process.
  • a stirring device (11) makes it possible to homogenize the contents of the expansion chamber during the implementation of the method.
  • the expansion chamber is heated to a temperature chosen so that under the operating conditions used, at least a portion of the fluid in the liquid state can be vaporized before to leave the relaxation area.
  • the fluid After passing through the control valve (12), the fluid is then discharged into the atmosphere or possibly recompressed and recycled according to the known art. Examples
  • Example 1 Production of a formulation of an active substance and lactose
  • the process of the invention is carried out on equipment corresponding to the scheme described in FIG. 1 for the production of a formulation consisting of submicron particles of an active substance and of lactose with a mass loading rate of targeted active substance. of 5%.
  • the expansion chamber (7) with a useful interior volume of 545 ml, is heated to 50 ° C.
  • the temperature of the supercritical solution immediately upstream of the nozzle is set at 50 ° C. via the heating device ( 6).
  • the pressure within the expansion chamber is set at 40 bar by an automatic upstream pressure regulating valve (11). Given the temperature and pressure conditions immediately upstream of the spray nozzle and the pressure set in the expansion chamber, and knowing that the type of nozzle used allows to consider the expansion as quasi isenthalpe, it is possible to determine in a pressure-enthalpy diagram of the dioxide of carbon that a biphasic mixture of liquid carbon dioxide and gaseous carbon dioxide is formed immediately downstream of the nozzle with a mass proportion of liquid carbon dioxide of about 63%. After 3 hours of operation, the CO 2 pump is stopped and the pressure in the chamber is gradually reduced to atmospheric pressure in about 30 minutes before collection of the product.
  • a first test (Test 1-1) is carried out in the absence of lactose in the flash chamber.
  • the second test (Test 1-2) is carried out with 50.02 g of lactose (Tablettose 80) initially placed in the expansion chamber and kept under mechanical stirring at 60 rpm for the duration of the test.
  • Test 1-1 led to the collection of 1.82 g of white powder strongly adherent to the wall of the collection basket in the expansion chamber.
  • Run 1-2 resulted in the collection of 51.67 g of active ingredient-lactose formulation as a readily flowing powder having a similar appearance to that of lactose as received.
  • the weighing of the extraction basket after the test shows that 2.64 g of active substance was extracted, ie an overall collection yield of the formulation of 98% and a theoretical mass loading ratio of the active substance in the formulation of 5%. , 01%.
  • the actual mass load ratio of active substance in the formulation is 4.86%. This experimental mass loading rate corresponds to a collection efficiency of active substance during the operation of 97%.
  • the coefficient of variation of the mass load ratio measured for the 5 samples is 2.5%, which indicates a very uniform distribution of the active substance in the formulation.
  • High performance liquid chromatography analysis indicates good stability of the active substance in the process for both tests with similar purity and profile of substances similar to the starting material for both samples.
  • the characterization of the solid state of the active substance particles of the active substance-lactose formulation by scanning differential scanning and X-ray diffraction enthalpic analysis shows that the active substance particles are crystalline and in a crystalline form similar to that of the product as received. .
  • the analysis of the size of the active substance particles for the two tests is carried out by wet laser particle size distribution after dispersion of the particles in a saturated solution of active substance at room temperature in the presence of Tween 20 and after dissolution of any excipient particles.
  • the dispersion is carried out by passage in the ultrasonic bath for 3 min before placing the dispersion in the measuring apparatus.
  • the volume distribution particle size profiles obtained for the two tests are presented respectively in Figure 2 for test 1-1 and in Figure 3 for test 1-2.
  • test 1-1 show that evidence a bimodal distribution of particle size with the first mode of distribution centered at about 10 microns and the second mode centered at about 200 microns, ie particle sizes far removed from the technical problem of the method of the invention.
  • this same analysis carried out on 3 separate samples shows that, moreover, the sample of active substance obtained alone is not homogeneous in size distribution with a median diameter (diameter corresponding to the 50% line on the cumulative distribution curve volume) of 60.7 ⁇ m for the 3 samples with a coefficient of variation of 19.9%.
  • the formulation obtained in test 1-2 and two physical mixtures of active substance with lactose, one with the active substance such as that received in its commercial form and the other with the active substance obtained in test 1-1, are packaged in capsules (LGA, size 0, translucent, code 000020), in an amount equivalent to 5 mg of active substance.
  • the dissolution medium consisted of a 0.6% SDS solution at a temperature of 37 ° C and the rotation speed of the basket was set at 80 rpm.
  • the samples were analyzed by HPLC / UV after filtration.
  • In vitro dissolution profiles presented in Figure 4 show that the formulation obtained in test 1-2 has a kinetics of dissolution very much improved compared to physical mixtures with about 95% active substance dissolved after 10 min against less than 10% for physical mixtures .
  • This example shows that the process which is the subject of the invention makes it possible to obtain an active substance-lactose formulation in which the active substance is distributed in a uniform manner mainly in the form of nanoparticles, with furthermore a kinetics of dissolution of the substance. active substance in aqueous medium very largely improved.
  • the process of the invention is carried out on equipment corresponding to the scheme described in FIG. 1 for the production of Nifedipine-Mannitol formulations with a targeted nifedipine mass loading rate of 5%.
  • nifedipine mixed with approximately 20 g of glass beads 1 mm in diameter is placed in a 20 ml extraction basket.
  • Said basket is placed inside the extraction autoclave (5) heated to a temperature of 40 ° C.
  • the solution of nifedipine in the supercritical carbon dioxide thus formed is expanded through a spray nozzle (8) consisting of a polyetheretherketone capillary (PEEK) of internal diameter 150 microns and of length adapted to the pressure and the flow of work .
  • the expansion chamber (7) with a useful interior volume of 310 ml, is heated to 40 ° C.
  • the temperature of the supercritical solution immediately upstream of the nozzle is set at 105 ° C. via the heating device ( 6).
  • the pressure within the expansion chamber is set at 30 bar by an automatic upstream pressure regulating valve (11).
  • the CO2 pump is stopped and the pressure in the chamber is gradually reduced to atmospheric pressure in about 30 minutes before collection of the product.
  • a first test (Test 2-1) is carried out in the absence of mannitol in the expansion chamber.
  • the second test (Test 2-2) is operated with 25.00 g of mannitol (Pearlitol 200 SD) initially placed in the expansion chamber and kept under mechanical stirring at 120 revolutions / min throughout the duration of the test.
  • Test 2-1 led to the collection of 0.85 g of white powder mainly deposited on the filter placed at the bottom of the collection basket in the expansion chamber.
  • Test 2-2 led to the collection of 23.72 g of nifedipine-mannitol formulation in powder form flowing easily and having an appearance similar to that of mannitol alone.
  • the weighing of the extraction basket after the test shows that 1.07 g of nifedipine was extracted, ie an overall collection yield of the formulation of 91% and a theoretical mass loading rate of nifedipine in the formulation of 4.10. %.
  • UV spectrophotometry on 5 samples, it is established that the actual mass loading rate of nifedipine in the formulation is 3.89%. This actual mass loading rate corresponds to a collection yield of nifedipine during the process of 95%.
  • the coefficient of variation of the mass loading rate measured for the 5 samples is set at 0.5%, which indicates a very uniform distribution of nifedipine in the formulation.
  • High performance liquid chromatography analysis indicates good stability of nifedipine in the process for both tests with a similar title and profile of substances similar to the starting material for both samples.
  • the analysis of the size of the nifedipine particles for the two tests is carried out by wet laser particle size distribution after dispersion of the particles in a saturated solution of nifedipine water at ambient temperature in the presence of Tween 20 and after dissolution of any particles of nifedipine. excipient.
  • the dispersion of the nifedipine particles was manually carried out by adding a solution of Tween 20 in water in a flask in which the test product was introduced beforehand followed by the manual inversion of the reconstitution flask, that is to say according to a protocol similar to those commonly used for the extemporaneous reconstitution of injectable forms.
  • the particle size distribution profiles obtained for the two tests are shown respectively in Figure 5 for the test. 2-1 and in Figure 6 for test 2-2.
  • results obtained for the 2-1 test show a very large heterogeneity of the size distributions for the 3 samples taken in the nifedipine sample collected at the end of the test, with a distribution that is either monomodal, bimodal or even trimodal. However for the 3 samples, it is possible to distinguish a main peak in the size distribution centered at about 4 ⁇ m.
  • test 2-2 the nifedipine particle sizes in the Nifedipine - Mannitol formulation follow an almost monomodal distribution centered at about 300 nm.
  • the particle size analysis carried out on 3 separate samples indicates that the size distribution of the nifedipine particles in the formulation is very homogeneous with an average median diameter of 0.39 ⁇ m with a coefficient of variation of 7.1%.
  • the method of the invention is implemented on equipment corresponding to the diagram described in FIG. for the production of Sirolimus - Lactose formulations with a sirolimus mass loading rate of 2%.
  • sirolimus mixed with approximately 20 g of glass beads 1 mm in diameter is placed in a 20 ml extraction basket.
  • Said basket is placed inside the extraction autoclave (5) heated to a temperature of 60 ° C.
  • the sirolimus solution in supercritical carbon dioxide so formed is expanded through a spray nozzle (8) consists of a capillary polyetheretherketone (PEEK) of internal diameter 127 .mu.m and pressure suitable length and flow job.
  • PEEK capillary polyetheretherketone
  • the expansion chamber (7) with a useful interior volume of 310 ml, is heated to 60 ° C.
  • the temperature of the supercritical solution immediately upstream of the nozzle is set at 60 ° C. via the heating device ( 6).
  • the pressure within the expansion chamber is set at 30 bar by an automatic upstream pressure regulating valve (11). Given the temperature and pressure conditions immediately upstream of the spray nozzle and the pressure set in the expansion chamber, and knowing that the type of nozzle used makes it possible to consider the expansion as quasi isenthalpe, it is possible to determining in a pressure-enthalpy diagram of the carbon dioxide that a biphasic mixture of liquid carbon dioxide and carbon dioxide gas is formed immediately downstream of the nozzle with a mass proportion of liquid carbon dioxide of about 51%.
  • the CO2 pump is stopped and gradually decreases the pressure in the chamber to atmospheric pressure in about 30 minutes before collection of the product.
  • a first test (Test 3-1) is performed in the absence of lactose in the flash chamber.
  • the second test (Test 3-2) is carried out with 49.17 g of lactose (Pharmatose DCL 21) initially placed in the expansion chamber and kept under mechanical stirring at 120 revolutions / min throughout the duration of the test.
  • Test 3-1 led to the collection of 0.55 g of white powder partly adhering to the wall but also in the form of rather coarse particles deposited on the filter in the collection basket placed in the enclosure of relaxation.
  • Test 3-2 resulted in the collection of 49.77 g of sirolimus-lactose formulation as a readily flowing powder with a similar appearance to lactose alone.
  • high performance liquid chromatography assay of 5 samples it is established that the actual mass load ratio of sirolimus in the formulation is 2.0% with a coefficient of variation of the mass loading rate measured for the 5 samplings of 2 samples. , 3%, indicating a very uniform distribution of sirolimus in the formulation.
  • High performance liquid chromatography analysis indicates good stability of the sirolimus during the process for both tests with a similar title and profile of substances similar to the starting material for both samples.
  • the characterization of the solid state of the particles of sirolimus of the sirolimus - lactose formulation by differential scanning enthalpic analysis shows that the sirolimus particles are crystalline and in a crystalline form similar to that of the product as received, being the most stable crystalline form.
  • the analysis of the size of the sirolimus particles for the two tests is carried out by wet laser particle size distribution after dispersion of the particles in a solution of water saturated with sirolimus at room temperature in the presence of Tween 20 and after dissolution of any particles of excipient.
  • the dispersion is carried out by passage in the ultrasonic bath for 3 min before placing the dispersion in the measuring apparatus.
  • the particle size distribution profiles obtained for the two tests are presented respectively in Figure 7 for test 3-1 and in Figure 8 for test 3-2.
  • results obtained for the 3-1 test reveal a very great heterogeneity of the size distributions for the 3 samples taken in the sirolimus sample collected at the end of the test.
  • the 3 samples it is nevertheless possible to determine a common peak in the size distribution centered between 30 and 40 microns.
  • the measured particle sizes are particularly high with approximately 30% of the particles in volume with a diameter equivalent in volume greater than 100 ⁇ m. This measurement is consistent with the visual observation of the sample which shows the presence of very coarse particles in the sample.
  • sirolimus particle sizes in the Sirolimus - Lactose formulation follow an almost monomodal distribution centered at about 300 nm.
  • the particle size analysis carried out on 3 separate samples indicates that the size distribution of the sirolimus particles in the formulation is very homogeneous with an average median diameter of 0.37 ⁇ m with a coefficient of variation of 1.1%.
  • Granulometric measurements by photon correlation spectroscopy confirm the obtaining of submicronic sirolimus particles for the 3-2 test.
  • Sirolimus 2 mg tablets are made from the formulation obtained in Test 3-2 for comparison in in vitro dissolution tests with Rapamune® 2 mg commercial tablets.
  • the in vitro dissolution tests were carried out on a USP I type apparatus with a dissolution medium consisting of a 0.4% Sodium Lauryl Sulfate solution, at a temperature of 37 ° C. and the rotation speed of the product. basket was set at 40 rpm.
  • the samples were analyzed by HPLC / UV after filtration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne un procédé de préparation de compositions pharmaceutiques solides comprenant des particules fines d'au moins une substance active dispersées sur et (ou) au sein d'un solide divisé. Ce procédé est caractérisé en ce que l'on forme une solution comprenant au moins une substance active dans un fluide à pression supercritique, ladite solution étant ensuite détendue dans une enceinte dans des conditions de température et de pression pour lesquelles une partie dudit fluide se trouve à l'état liquide lors de la détente, le dit fluide ainsi détendu étant mis en contact dans ladite enceinte avec un solide divisé.

Description

Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active
La présente invention concerne un procédé de préparation de compositions pharmaceutiques comprenant un ou plusieurs principes actifs sous la forme de particules fines . Plus particulièrement, la présente invention a pour objet un procédé de production de compositions pharmaceutiques solides comprenant des particules microniques ou submicroniques de principe actif, de préférence des particules cristallines, dispersées à la surface et/ou au sein de poudres d'excipients pharmaceutiques .
ETAT DE L'ART ANTERIEUR
De nombreuses substances actives, notamment d'intérêt pharmaceutique humain ou vétérinaire, présentent une très faible solubilité dans l'eau et les liquides biologiques aqueux. Cette caractéristique induit une biodisponibilité très faible et souvent fortement variable. La très faible solubilité de ces principes actifs constitue un obstacle majeur à leur évaluation préclinique puis clinique, et bien entendu à leur utilisation à des fins thérapeutiques. De nombreuses substances actives ne peuvent ainsi pas être administrées efficacement à l'aide des formes pharmaceutiques usuelles par voie orale, voie d'administration la plus courante pour laquelle l'absorption du principe actif exige en premier lieu la dissolution de la dose thérapeutique dans les fluides gastro-intestinaux, ou encore par d'autres voies d'administration comme la voie intraveineuse pour laquelle on utilise de manière courante des solutions du principe actif dans des véhicules aqueux.
Des techniques variées ont été étudiées pour produire des formes pharmaceutiques permettant d'administrer des principes actifs peu solubles. On peut citer par exemple les techniques de formulation consistant à produire des solutions micellaires, des dispersions solides dans lesquelles la substance active est dispersée au sein d'une matrice hydrosoluble, des complexes d'association entre la substance active et des cyclodextrines, des formulations lipidiques comme des systèmes auto-émulsionnants, des nanoparticules de lipides solides, des nanocapsules lipidiques et des liposomes. Bien qu'utilisées pour quelques formes pharmaceutiques commerciales, ces techniques de formulation sont souvent complexes, mettent en œuvre de multiples étapes de fabrication, utilisent le plus souvent des solvants organiques ou des excipients pouvant poser des problèmes de toxicité et peuvent nécessiter le recours à des conditions opératoires sévères (température, cisaillement) pouvant avoir un effet délétère sur la stabilité chimique ou physique du principe actif.
A coté de ces techniques de formulation, une approche souvent efficace consiste à réduire la taille des particules de substance active afin d'augmenter la vitesse de dissolution dans les fluides biologiques. De nombreuses formes pharmaceutiques commerciales contiennent des particules microniques de principe actif, c'est-à-dire des particules de quelques micromètres obtenues par exemple par des procédés de broyage à sec comme le broyage à jet d'air. Comme présenté dans une récente revue de F. Kesisoglou et al. (« Nanosizing - Oral formulation development and biopharmaceutical évaluation », publiée dans Advanced Drug Delivery Reviews, Vol. 59, pp. 631-644, 2007), la production de nanoparticules de substances actives, aussi dénommées particules submicroniques, est un domaine qui connaît un fort et récent développement, notamment parce qu' il a été démontré que la réduction de la taille de particules de principe actif à quelques centaines de nanomètres peut permettre d'augmenter la vitesse de dissolution avec des gains bien plus élevés que ceux obtenus avec des particules micronisées de quelques micromètres en raison de l'effet de la forte augmentation de surface spécifique comme décrit par l'équation de Nernst-Brunner/Noyes-Whitney, mais aussi en raison d'une augmentation théorique de la solubilité à saturation pour des tailles de quelques dizaines ou centaines de nanomètres comme décrit par l'équation de Freundlich et Ostwald.
Les procédés d'obtention de nanoparticules de substances actives utilisés pour produire des formes pharmaceutiques commerciales sont des procédés en voie humide d'homogénéisation haute-pression ou de nanobroyage à l'aide d'un broyeur à billes agitées. On connaît l'utilisation de ces techniques pour la production de deux médicaments, le Triglide™ et le TriCor®, ces deux médicaments administrés par voie orale étant des formes pharmaceutiques contenant des nanoparticules de fénofibrate. Ces procédés mécaniques conduisent à l'obtention d'une dispersion de nanoparticules solides de substances actives dans un liquide. Ce liquide est couramment constitué d'un milieu aqueux contenant un ou plusieurs agents de stabilisation de manière à éviter la formation d'agrégats et une séparation de phase. La sélection des excipients permettant de prévenir l'agglomération des nanoparticules ou de maîtriser la croissance des particules par mûrissement d'Ostwald constitue une tâche empirique lourde et complexe. De plus, ces excipients devant nécessairement être sélectionnés parmi les excipients pharmaceutiques de statut réglementaire adapté. Pour une voie d'administration comme - A -
Ia voie parentérale, la faible quantité d'excipients pharmaceutiques disponibles peut conduire à un développement très difficile de ces formulations.
Bien que le stockage sur de courtes durées de dispersions de particules fines dans un véhicule aqueux puisse être difficile en raison de problèmes de stabilité physique ou microbiologique, les suspensions de nanoparticules produites par les procédés mécaniques susmentionnés sont parfois utilisées en l'état pour des tests précliniques ou même pour les premiers essais cliniques. En revanche, les dispersions aqueuses de nanoparticules de substances actives doivent être converties en formes sèches de manière à obtenir une forme pharmaceutique commerciale d'usage aisé et de stabilité acceptable. Cette conversion peut être effectuée à l'aide de procédés usuels de séchage, comme par exemple le séchage par atomisation ou les techniques de lit d'air fluidisé. Le développement de ces formulations sèches est souvent très complexe car il est nécessaire de mettre au point une forme sèche redispersible, c'est-à-dire permettant après administration orale ou reconstitution dans un milieu aqueux de retrouver une dispersion de nanoparticules de caractéristiques identiques à celles présentes avant séchage, ce qui nécessite souvent le recours à de nombreux excipients de formulation. La production de formes pharmaceutiques commerciales à partir de dispersions de nanoparticules de substance active dans un liquide demande donc un travail de développement lourd et largement empirique et conduit à un procédé global de fabrication du médicament complexe et nécessitant de multiples étapes pouvant avoir un effet délétère sur la stabilité chimique ou physique du principe actif et les performances de la formulation.
En vue de produire des particules fines de substances actives, des procédés de précipitation ou de cristallisation de ces substances préalablement mises en solution sont également connus. En complément de la cristallisation à partir de solutions dans un solvant organique qui peut poser de nombreux problèmes pour des substances actives destinées à l'administration chez l'homme, la précipitation de substances actives à partir d'une solution dans un fluide supercritique est étudiée depuis une vingtaine d'année pour produire des poudres de principes actifs comme présenté dans la revue de J. Jung et al. (« Particle Design using Supercritical Fluids : Littérature and Patent Survey », publiée dans Journal of Supercritical Fluids Vol. 20, pp. 179-219, 2001) ou plus récemment dans la revue de E. Rodier et al. (« La génération de solides divisés par voie supercritique : principes de base, considérations sur l'état d'avancement des recherches », publiée dans Cahiers de Formulation, Vol. 14, pp. 90-108, 2008) . Les fluides comprimés, particulièrement le dioxyde de carbone (CO2) supercritique, connaissent en effet des applications croissantes pour de nombreux procédés.
Pour préciser ce qu'est un fluide supercritique, on rappellera tout d'abord les différents états d'un fluide et ses propriétés dans chacun de ces états. On sait que les corps sont généralement connus sous trois états, à savoir solide, liquide ou gazeux et que l'on passe de l'un à l'autre en faisant varier la température et/ou la pression ; outre l'état solide, il existe l'état liquide et l'état gazeux séparés par la courbe de vaporisation/condensation ; mais, dans le diagramme (Pression, Température) il existe un point au-delà duquel on peut passer de l'état liquide à l'état gaz ou vapeur sans passer par une ébullition ou à l'inverse par une condensation : ce point est appelé le point critique. Un fluide supercritique est caractérisé soit par une pression et une température respectivement supérieures à la pression et à la température critiques dans le cas d'un corps pur, soit par un point représentatif (pression, température) situé au-delà de l'enveloppe des points critiques représentés sur un diagramme (pression, température) dans le cas d'un mélange ; il présente alors, pour de très nombreuses substances, un pouvoir solvant sans commune mesure avec celui observé dans ce même fluide à l'état de gaz comprimé. Il en est de même des liquides dits "subcritiques", c'est-à-dire des liquides qui se trouvent dans un état caractérisé soit par une pression supérieure à la pression critique et par une température inférieure à la température critique dans le cas d'un corps pur, soit par une pression supérieure aux pressions critiques et une température inférieure aux températures critiques des composants dans le cas d'un mélange. Les variations importantes et modulables du pouvoir solvant des fluides supercritiques et la séparation aisée du mélange solvant/soluté par simple décompression sont d'ailleurs utilisées dans de nombreux procédés d'extraction (solide/fluide) , de fractionnement (liquide/fluide) et de génération de particules.
Il est à noter que les propriétés physico-chimiques du dioxyde de carbone ainsi que ses paramètres critiques (pression critique : 7,4 MPa et température critique : 310C) en font le solvant préféré dans de nombreuses applications dans la mesure où il offre la possibilité de travailler à température modérée pour des substances actives thermosensibles, d'autant qu'il ne présente pas de toxicité et est disponible à très bas prix en très grande quantité. D'autres fluides peuvent également être utilisés comme le protoxyde d'azote, les hydrocarbures légers ayant deux à quatre atomes de carbone, les éthers et certains hydrocarbures halogènes comme le tétrafluoroéthane (R134a) .
En vue de la génération de particules de substances actives, on connaît le procédé connu sous la désignation de « RESS » (Rapid Expansion of Supercritical Solutions que l'on peut traduire par expansion rapide de solutions supercritiques) décrit dans le brevet US 4,582,731, suivant lequel on détend dans une zone de faible pression une solution de la substance active dans un fluide supercritique. La mise en œuvre courante du procédé RESS consiste en deux opérations successives. Le fluide supercritique est mis en contact avec le produit à atomiser au sein d'un extracteur et la solution supercritique ainsi générée est réchauffée puis détendue via un dispositif de détente au sein d'un récipient maintenue à une pression nettement inférieure à celle régnant dans l'extracteur. Ce procédé permet l'obtention de fines particules dispersées au sein d'un courant gazeux à faible pression. On connaît également une mise en œuvre particulière du procédé RESS, décrite dans la demande de brevet WO 01/43853, qui consiste à générer des poudres fines de substances actives par détente d'une solution supercritique à travers une buse puis à capter lesdites poudres fines par percolation du courant gazeux chargé des particules ainsi générées à travers un lit récepteur constitué de granules d'un excipient pharmaceutique. Les produits ainsi générés peuvent être utilisés directement pour confectionner des comprimés ou remplir des gélules.
Une des limitations du procédé RESS réside dans le fait que la solution supercritique doit être portée à une température élevée avant sa détente brutale afin de ne passer à aucun moment dans la zone diphasique liquide/vapeur au cours de la détente. Le passage dans la zone diphasique risque en effet de conduire à la redissolution partielle de la substance active dans la phase liquide. Dans le cas le plus fréquent où la détente est opérée rapidement à travers un capillaire et peut alors être considérée comme isenthalpe, des températures en amont du dispositif de détente allant de 1400C à 2000C sont usuellement mises en œuvre avec le CO2, ce qui, malgré le très court temps de résidence de la solution supercritique à cette température, peut conduire à une amorce de dégradation de principes actifs thermosensibles.
Une autre limitation possible du procédé RESS concerne la mise en œuvre du procédé pour les substances actives présentant une diminution de solubilité dans le fluide supercritique avec l'augmentation de la température à la pression à laquelle la solution est obtenue. En effet, l'homme de l'art sait que la solubilité d'une substance active dans un fluide supercritique peut être représentée par la relation dite de Chrastil. Cette relation met en jeu le produit de deux termes aux effets antagonistes lorsque la température augmente. Par conséquent, pour certaines substances actives, il peut exister une gamme de pression et de température au sein de laquelle la solubilité de la substance active dans le fluide supercritique diminue lorsque la température augmente. Dans ce cas, la mise en œuvre du procédé RESS pose problème lorsque la température d'extraction est inférieure à la température immédiatement en amont du dispositif de détente dans la mesure où la substance active peut précipiter en amont ou dans le dispositif de détente et provoquer le bouchage dudit dispositif .
Une revue des applications du procédé RESS pour la génération de particules submicroniques (M. Tϋrk, « Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion process », J. of Supercritical Fluids, Vol. 47, pp. 537-545, 2009) montre que ce procédé appliqué à de nombreuses substances actives devrait théoriquement conduire à l'obtention de nanoparticules . La détente brutale à une pression proche de la pression atmosphérique d'une solution dans un fluide supercritique conduit en effet à une sursaturation extrêmement élevée et rapide et donc à la précipitation du produit sous forme de particules submicroniques dispersées dans un courant gazeux lors de la détente. Toutefois, il est souvent observé la production de particules microniques et non de particules submicroniques par le procédé RESS, probablement en raison d'une croissance et/ou d'une agglomération des particules au sein du récipient où elles sont générées. Pour s'affranchir de ce problème, des variantes du procédé RESS ont été étudiées. On connaît ainsi les procédés désignés RESAS ou RESOLV, dont le principe et les applications sont détaillés dans la publication susmentionnée de M. Tϋrk, suivant lesquels la solution supercritique est détendue dans une solution aqueuse contenant des agents de stabilisation tensioactifs qui permettent de limiter la croissance et l'agglomération des particules de substances actives et ainsi de produire des nanoparticules de substances actives. Ces procédés conduisent donc à l'obtention d'une dispersion des nanoparticules dans un milieu aqueux contenant des agents de stabilisation. Les produits obtenus par ce procédé sont donc comparables à ceux obtenus par les procédés de broyage en voie humide ou d'homogénéisation haute-pression et souffrent des mêmes limitations pour la production d'une forme pharmaceutique commerciale.
On connaît également un exemple de procédé utilisant les fluides supercritiques pour lequel la détente de la solution supercritique est opérée dans des conditions de pression et de température qui conduisent à l'obtention d'un mélange de CO2 gazeux et de CO2 liquide à la sortie de la buse de détente et non d'un courant de CO2 gazeux (J. Robertson et al., « Recrystallisation of organic compounds using near critical carbon dioxide », Proceedings of the 4th International Symposium on Supercritical Fluids, May 11-14, Sendai, Japan, 1997). L'homme du métier comprend que cette mise en œuvre très particulière permet de ne pas chauffer excessivement le fluide supercritique, la température d'extraction et la température immédiatement en amont du dispositif de détente étant identiques, et ainsi de traiter des substances actives thermosensibles. Cette publication enseigne en outre que la taille des particules d'un principe actif augmente avec la pression de détente, probablement en raison d'une sursaturation du fluide diminuant lorsqu'il est détendu à des pressions croissantes et à l'augmentation de la proportion de CO2 liquide avec la pression qui peut, comme attendu par l'homme de l'art en raison du risque de redissolution de la substance active dans le CO2 liquide, engendrer une croissance des particules par cristallisation secondaire. On ne connaît pas d'exemples de production de particules submicroniques discrètes à l'aide de ce procédé.
Il existe donc un important besoin de nouvelles méthodes de préparation de nanoparticules de substances actives pouvant être aisément utilisées pour la production de formes pharmaceutiques stables, et de manière avantageuse sans avoir recours à l'usage de nombreux excipients ou à des étapes de production qui conduisent à l'obtention de nanoparticules dispersées dans un liquide et permettant en outre de travailler des substances actives thermosensibles .
BREVE DESCRIPTION DE L'INVENTION
De manière surprenante et inattendue, les inventeurs ont montré qu'il était possible de produire une composition solide comprenant des particules fines, microniques et/ou de préférence submicroniques d' au moins une substance active dispersées à la surface et/ou au sein d'un solide divisé en mettant en œuvre un procédé remarquable en ce qu' il comprend une étape consistant à détendre une solution, de ladite substance active dans un fluide à pression supercritique, dans une enceinte à des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente et remarquable en ce que ladite enceinte contient un solide divisé .
Le procédé objet de l'invention est particulièrement intéressant en ce qu' il permet de produire des particules fines, microniques et de préférence submicroniques, de substances actives thermosensibles de manière avantageuse car il ne nécessite pas le recours à des températures élevées avant l'étape de détente de la solution supercritique .
Le procédé objet de l'invention est également intéressant en ce qu' il permet de produire des particules fines de substances actives dans des conditions pour lesquelles le chauffage de la solution supercritique avant la détente tel que requis dans la mise en œuvre du procédé RESS n' est pas possible du fait de la diminution de la solubilité de la substance active dans le fluide à pression supercritique avec la température à la pression choisie.
Le procédé objet de l'invention est particulièrement intéressant en ce qu' il permet d' obtenir un produit solide sec contenant des microparticules ou des nanoparticules de substance active et ne nécessite donc pas en aval d'opérations de conversion en forme sèche pour produire une forme pharmaceutique stable. Le procédé objet de l'invention est donc particulièrement avantageux en ce qu' il permet de substituer des processus complexes de fabrication de formes pharmaceutiques nanoparticulaires, composés par exemple pour les procédés les plus usuels d' étapes multiples de réduction de taille en voie humide conduisant à une dispersion de nanoparticules dans un liquide puis de conversion en forme sèche.
De manière avantageuse, les compositions solides obtenues selon le procédé objet de l'invention peuvent être facilement manipulées et converties en formes finales solides destinées à une administration par voie orale, par exemple, sans que cela soit limitatif, des gélules, des comprimés, des formes orodispersibles, des formes sublinguales ou bioadhésives, des poudres à reconstituer sous la forme de suspension buvable, ladite conversion pouvant s'effectuer par des opérations pharmacotechniques unitaires de routine bien maîtrisées par l'industrie pharmaceutique comme par exemple sans que cela soit limitatif des opérations de mélange, de compression, de granulation ou encore de pelliculage. Les formes orales ainsi produites peuvent être, sans apporter de limitation, des formes à libération immédiate, des formes à libération contrôlée ou encore à libération entérique.
De manière avantageuse, les compositions obtenues par le procédé objet de l'invention peuvent en outre être utilisées pour produire des formes finales destinées à des voies d'administration autres que la voie orale, et de manière non limitative la voie injectable, pulmonaire, nasale, rectale, vaginale ou transdermique. Les compositions solides obtenues par le procédé objet de l'invention peuvent être plus particulièrement utilisées de manière aisée pour produire des formes injectables destinées, de manière non limitative, à une administration par voie intraveineuse, intramusculaire, sous-cutanée, intraoculaire ou encore intra-articulaire, l'administration pouvant avoir lieu par injection rapide et brève ou par perfusion lente. Les compositions solides obtenues par le procédé objet de l'invention peuvent en effet être stockées sous forme sèche de grande stabilité, éventuellement après mélange avec des excipients pharmaceutiques, puis dispersées extemporanément dans un véhicule liquide, préférentiellement dans un milieu aqueux qui peut contenir des agents de dispersion et de stabilisation, de manière à produire une dispersion injectable de particules fines, préférentiellement de particules submicroniques . De manière avantageuse, la mise en œuvre du procédé objet de l'invention permet de limiter fortement le nombre d'excipients utilisé pour produire une forme pharmaceutique commerciale stable.
De manière avantageuse, le procédé objet de l'invention permet de produire des particules fines, et préférentiellement des particules submicroniques, avec un état solide (cristallinité et polymorphisme) permettant d'obtenir une forme pharmaceutique stable, et de préférence des particules submicroniques cristallines, encore plus préférentiellement des particules cristallines contenant essentiellement la forme cristalline la plus stable.
Par essentiellement, on entend signifier que plus de 80% et préférentiellement plus de 95% des particules cristallines sont sous la forme cristalline la plus stable à la température de stockage préconisée de la forme pharmaceutique commerciale.
DESCRIPTION DES FIGURES
Figure 1 : Schéma du dispositif utilisé pour la mise en œuvre du procédé de l'invention
Figure 2 : Profil de distribution granulométrique en volume des particules de substance active produites lors de l'essai 1-1 (Exemple 1) Figure 3 : Profil de distribution granulométrique en volume des particules de substance active produites lors de l'essai 1-2 (Exemple 1)
Figure 4 : Courbes de dissolution in vitro (Exemple D
Figure 5 : Comparaison pour 3 prélèvements des profils de distribution granulométrique en volume des particules de nifédipine produites lors de l'essai 2-1 (Exemple 2) Figure 6 : Comparaison pour 3 prélèvements des profils de distribution granulométrique en volume des particules de nifédipine produites lors de l'essai 2-2 (Exemple 2)
Figure 7 : Profil de distribution granulométrique en volume des particules de sirolimus produites lors de l'essai 3-1 (Exemple 3).
Figure 8 : Profil de distribution granulométrique en volume des particules de sirolimus produites lors de l'essai 3-2 (Exemple 3). Figure 9 : Figure 4 : Courbes de dissolution in vitro (Exemple 3)
DESCRIPTION DETAILLEE DE L'INVENTION
Cette invention repose sur le fait qu' il est surprenant de constater que la détente d'une solution comprenant au moins une substance active solubilisée dans un fluide à pression supercritique selon des conditions opératoires conduisant lors de la détente à la présence du fluide en partie sous forme liquide permet l'obtention de particules fines de substances actives, et de manière avantageuse de particules submicroniques, lorsque le fluide est détendu dans une enceinte de détente comprenant un solide divisé. Ainsi, la présente invention concerne notamment un procédé de préparation d'une composition solide comprenant des particules fines, microniques et de préférence submicroniques d'au moins une substance active dispersées à la surface et/ou au sein d'un solide divisé remarquable en ce qu' il comprend une étape consistant à détendre une solution, de ladite substance active dans un fluide à pression supercritique, dans une enceinte à des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente et en ce que ladite enceinte contient un solide divisé.
Selon un mode de réalisation préféré, le procédé selon l'invention comprend les étapes consistant à : a) Former une solution de la substance active dans un fluide à pression supercritique ; b) Détendre ladite solution dans une enceinte dans des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente ; c) Mettre en contact le fluide ainsi détendu avec un solide divisé dans ladite enceinte ; d) Récupérer un produit sec contenant ladite substance active sous forme de particules fines et ledit solide divisé. Selon un mode de réalisation encore plus préféré, le procédé selon l'invention consiste à : a) Former une solution de la substance active dans un fluide à pression supercritique ; b) Détendre ladite solution dans une enceinte dans des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente ; c) Mettre en contact le fluide ainsi détendu avec un solide divisé dans ladite enceinte ; d) Récupérer un produit sec contenant ladite substance active sous forme de particules fines et ledit solide divisé.
Dans le cadre de la présente invention, le terme « partie du fluide se trouve sous forme liquide » signifie qu'au moins 1%, et par ordre de préférence croissante au moins 5%, au moins 10%, au moins 20%, au moins 30%, et au moins 50% du fluide se trouve sous forme liquide lors de la détente. Selon un mode de réalisation préféré, entre 10 et 90% et de façon tout à fait préférée entre 20 et 80% du fluide se trouve sous forme liquide lors de la détente.
Dans le cadre de la présente invention, le pourcentage de fluide sous forme liquide est le pourcentage théorique de fluide sous forme liquide aux conditions de température et de pression de la détente. Celui-ci peut être déterminé sur la base d'hypothèses relatives au mécanisme de détente, par exemple en utilisant un diagramme thermodynamique pression-enthalpie dit « diagramme de Mollier » qui permet de déterminer pour chaque conditions de température et de pression du fluide immédiatement en amont de la détente et de pression dans l'enceinte de détente, le pourcentage de fluide sous forme gazeuse et le pourcentage de fluide sous la forme liquide. De tels diagrammes peuvent être établis par exemple à partir de données thermodynamiques facilement accessibles à l'homme de l'art, telles que, E. W. Lemmon, M. O. McLinden and D. G. Friend, "Thermophysical Properties of Fluid Systems" dans le WebBook de Chimie NIST, Base de Données Standard de Référence NIST Numéro 69, Eds . P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, (http://webbook.nist.gov).
Par souci de clarté, il est précisé que l'autre partie du fluide qui n'est pas sous forme liquide lors de la détente est sous forme gazeuse. Dans le cadre de la présente invention, le pourcentage de fluide sous forme liquide correspond à des rapports de masses entre la masse de fluide sous la forme liquide et la masse de fluide total. Dans la suite, on appellera nanoparticules ou particules submicroniques des particules de taille médiane inférieure à 1000 nm. On définit ici des particules de taille médiane inférieure à 1000 nm comme un ensemble de particules dont 50% ont un diamètre volumique inférieur à 1000 nm, ledit diamètre volumique médian étant mesuré par exemple par granulométrie laser ou spectroscopie à corrélation de photons .
Les particules comprenant une substance active obtenues par le procédé objet de l'invention sont de manière avantageuse des particules microniques, de préférence des particules submicroniques, de manière encore plus préférée des particules submicroniques de diamètre volumique médian (dv(0,5)) inférieur à 800 nm, de manière encore plus préférée de diamètre volumique médian inférieur à 500 nm. 90% des particules fines présentent de préférence un diamètre volumique (dv(0,9)) inférieur à 10 μm, de manière encore préférée inférieur à 5 μm, de manière encore plus préférée inférieur à 2 μm, de manière encore plus préférée inférieur à 1000 nm. Dans le cadre de la présente invention, on appellera fluide à pression supercritique un fluide porté à une pression supérieure à sa pression critique, c'est-à-dire soit un fluide supercritique proprement dit, soit un liquide dit sub-critique comme défini ci-dessus ; on appellera solution supercritique une solution d'une ou plusieurs substance (s) active (s) dans un fluide supercritique et solution à pression supercritique une solution d'une ou plusieurs substance (s) active (s) dans un fluide à pression supercritique. Selon un mode de réalisation de l'invention, on forme une solution dans un fluide à pression supercritique d' au moins une substance active. Cette solution à pression supercritique est produite préférentiellement en utilisant un équipement similaire à celui présenté en Figure 1 pour lequel on introduit la substance active solide dans un extracteur à haute pression (5) au sein duquel on fait percoler le fluide à pression supercritique au sein de l'extracteur. Ce mode de mise en œuvre correspond à celui couramment utilisé par l'homme de l'art dans les procédés d'extraction par fluide supercritique à partir de matrices solides, la substance active constituant le composé à extraire et la matrice solide étant constituée soit de la substance active solide seule, soit de la substance active mélangée à un matériau solide inerte. L'homme de l'art comprendra que ledit matériau inerte, mélangé de manière uniforme selon les moyens appropriés avec la substance active solide dans les conditions ambiantes, permet principalement d'améliorer l'efficacité du contact entre le fluide à pression supercritique et la substance active, de manière à garantir la mise en solution de la substance active dans le fluide à pression supercritique de manière reproductible . En outre, le matériau inerte peut permettre d' immobiliser la substance active et d' assurer un contact efficace avec le fluide à pression supercritique dans le cas particulier où la substance active, qui est solide dans les conditions ambiantes, se trouve sous forme liquide ou semi-solide dans les conditions d'extraction. A titre d'exemple et de manière non limitative, le matériau inerte peut être constitué de matériaux fibreux, de matériaux poreux ou de billes, de préférence des billes en verre, en céramique, en acier inoxydable, en oxyde de zirconium ou en polymères de diamètre approprié pour assurer un mélange uniforme et reproductible avec la substance active avant mise en œuvre dans l'extracteur haute pression. Préfèrentiellement, un ou plusieurs éléments garantissant l'absence d' entraînement de particules de substance active non solubilisées à la sortie de l'extracteur seront utilisés.
Dans un mode de mise en œuvre préféré du procédé objet de l'invention, l'étape de formation de la solution à pression supercritique permet de garantir une concentration constante en substance active dans le fluide à pression supercritique au cours du procédé. Dans cette perspective et en s' inspirant de ce qui est couramment mis en œuvre dans les procédés d'extraction à partir de matrices solides, il est possible de mettre en œuvre la technique que l'homme de l'art connaît sous le nom de lit mobile simulé, consistant à utiliser au minimum trois extracteurs, avec au moins deux extracteurs haute pression en série à tout moment de la mise en œuvre du procédé et un extracteur en phase de décompression, déchargement, remplissage ou mise sous pression pendant ce temps. Avantageusement, le premier extracteur parmi les extracteurs placés en série est celui le plus proche de l'épuisement en substance active. La mise en œuvre d'un tel dispositif permet de garantir une concentration constante en substance active dans le fluide à pression supercritique. En outre, sous réserve du dimensionnement de l'installation selon les règles de l'art, la concentration en substance active dans le fluide supercritique peut en effet être alors voisine de la concentration dite à saturation, correspondant à la limite de solubilité de la substance active dans le fluide à pression supercritique dans les conditions d'extraction choisies .
Les mises en œuvre décrites ci-dessus ont le point commun de conduire généralement à une solution proche de la saturation en substance active dans le fluide à pression supercritique en sortie d'extracteur.
Une mise en œuvre particulière du procédé objet de l'invention consiste à mélanger avant l'étape de détente la solution dans le fluide à pression supercritique avec une quantité connue de fluide à pression supercritique ne contenant pas de substance active, par exemple par l'intermédiaire d'un mélangeur statique haute pression, afin d'ajuster la concentration en substance active dans le fluide à pression supercritique avant détente et mise en contact avec un solide divisé, de manière à ajuster les propriétés des compositions pharmaceutiques obtenues par le procédé objet de l'invention.
Selon un mode de mise en œuvre particulier, les dispositifs ci-dessus peuvent être complétés par un système de mesure en ligne de la concentration en substance active dans le fluide à pression supercritique, par exemple sans que cela soit limitatif par une méthode spectrophotométrique .
Selon un mode de réalisation préféré de l'invention, le fluide à pression supercritique est sélectionné parmi le dioxyde de carbone, le protoxyde d'azote, les alcanes comme par exemple l'éthane ou le propane, les éthers comme par exemple le diméthyl éther, les hydrocarbures fluorés comme par exemple le tétrafluoroéthane (R134a) ou le trifluorométhane (R23) .
Selon un mode de réalisation tout à fait préféré, le fluide à pression supercritique est le dioxyde de carbone.
Selon un autre mode de réalisation de l'invention, le fluide à pression supercritique est constitué soit d'un mélange d'au moins deux des fluides susmentionnés soit d'un mélange d'un des fluides susmentionnés et d'au moins un solvant organique, choisi avantageusement, sans limitation, parmi les alcools, les cétones, les esters.
Selon un mode de réalisation du procédé selon l'invention, le fluide à pression supercritique est du dioxyde de carbone à une pression comprise entre 7,4 MPa et 200 MPa, préférentiellement entre 10 et 100 MPa et à une température inférieure à 1400C, et par ordre de préférence croissante à une température inférieure à 8O0C, 600C et 40°C.
Selon un mode réalisation préféré selon l'invention, le fluide à pression supercritique est du dioxyde de carbone à une pression comprise entre 25 MPa et 70 MPa, à une température comprise entre 40 et 800C.
Selon une mise en œuvre préférée du procédé objet de l'invention, la solution à pression supercritique est composée d'une substance active dissoute dans le fluide à pression supercritique. Selon une mise en œuvre particulière du procédé objet de l'invention, la solution à pression supercritique comprend plusieurs solutés, et préférentiellement au moins deux substances actives ou au moins une substance active et un excipient pharmaceutique. Selon le procédé objet de l'invention, la solution de substance active dans le fluide à pression supercritique est détendue dans une enceinte dans des conditions conduisant lors de la détente à la formation d'un système diphasique comprenant le fluide à l'état liquide et le fluide à l'état gazeux.
La température de la solution à pression supercritique immédiatement en amont du dispositif de détente peut être régulée par exemple et de manière non limitative par le passage de la solution supercritique au sein d'un échangeur. Dans une mise en œuvre particulière du procédé de l'invention, l'ajustement de la température de la solution à pression supercritique peut être opéré par mélange de la solution à pression supercritique issue de l'extracteur haute pression avec du fluide à pression supercritique à une température différente de la température de la solution à pression supercritique. Dans des conditions que l'homme de l'art identifiera comme correspondant à un régime permanent de fonctionnement du procédé de l'invention, il est donc possible d'ajuster de manière simultanée la concentration en substance active sensiblement en dessous de la concentration dite à saturation dans le fluide à pression supercritique et la température de la solution à pression supercritique immédiatement en amont du dispositif de détente.
Selon une mise en œuvre particulière de l'invention, la température du fluide à pression supercritique lors de l'étape de formation de la solution à pression supercritique est identique à la température immédiatement en amont du dispositif de détente.
Selon une autre mise en œuvre de l'invention, la température du fluide à pression supercritique lors de l'étape de formation de la solution à pression supercritique est sensiblement inférieure à la température immédiatement en amont du dispositif de détente.
Selon un mode de réalisation du procédé selon l'invention, la solution à pression supercritique est détendue dans une enceinte à l'aide d'un dispositif de détente constitué d'une buse de pulvérisation, d'un tube, d'un orifice percé dans une plaque de faible épaisseur, d'un élément en matériau solide fritte, d'une vanne à ouverture contrôlée ou par tout autre dispositif connu de l'homme de l'art.
Selon un mode de mise en œuvre préféré, le dispositif de détente est constitué d'un tube capillaire caractérisé par un rapport de longueur sur diamètre interne supérieur à 20 et de préférence supérieur à 100.
Quel que soit le dispositif de détente utilisé, l'homme de l'art peut aisément déterminer les conditions opératoires du procédé conduisant à la formation d'une partie de fluide à l'état liquide lors de la détente, par exemple par l'examen de diagrammes thermodynamiques tels que ceux dénommés « diagrammes de Mollier » sur la base d'hypothèses relatives au mécanisme de détente, ladite détente pouvant être considérée comme majoritairement isenthalpe ou isentrope selon le dispositif de détente choisi, ou encore au cours de tests préliminaires sur l'appareil permettant la mise en œuvre du procédé, par exemple et de manière non limitative en mesurant la température immédiatement en aval du dispositif de détente dans l'enceinte de détente ou en mesurant une grandeur physique immédiatement en aval de ce dispositif qui permet de conclure à la présence d'une partie de fluide sous forme liquide.
Selon le procédé objet de l'invention, la pression dans l'enceinte de détente est maintenue à une valeur conduisant à l'obtention d'un milieu diphasique gaz-liquide lors de la détente, en fonction des conditions de pression et de température de la solution à pression supercritique immédiatement en amont du dispositif de détente. Cette pression peut être déterminée par l'homme de l'art par exemple à l'aide de diagrammes thermodynamiques comme les diagrammes pression-enthalpie . La pression peut être maintenue à cette valeur à l'aide d'une vanne régulatrice de pression amont située en aval de l'enceinte de détente ou de tout dispositif connu de l'homme de l'art comme offrant un contrôle de la pression dans ces conditions opératoires . Le procédé objet de l'invention est préférentiellement conduit avec du dioxyde de carbone avec une pression dans l'enceinte de détente maintenue entre 0,52 et 7,4 MPa et préférentiellement entre 1 et 6,5 MPa.
Selon une mise en œuvre préférée de l'invention, une partie du fluide qui se trouve à l'état liquide lors de la détente est vaporisée dans l'enceinte de détente en apportant de l'enthalpie par tout moyen connu de l'homme de l'art, de préférence par chauffage des parois de l'enceinte ou par introduction d'un fluide à un débit et une température permettant d'apporter l'enthalpie requise.
Selon un mode de mise en œuvre préféré, le fluide introduit pour l'apport d' enthalpie est identique au fluide utilisé pour la formation de la solution à pression supercritique.
Selon un mode de mise en œuvre préféré de l'invention, le fluide à l'état liquide est entièrement vaporisé à l'intérieur de l'enceinte de détente et se trouve par conséquent intégralement à l'état gazeux lorsqu'il quitte ladite enceinte.
Selon le procédé objet de l'invention, le fluide à pression supercritique dans lequel est solubilisée au moins une substance active est détendu dans une enceinte comprenant un solide divisé. Ainsi, ledit solide divisé entre en contact en tout ou partie avec le fluide détendu en partie à l'état liquide. Selon un mode de réalisation préféré de l'invention, ledit solide divisé comprend un excipient pharmaceutique.
Selon un mode de réalisation préféré de l'invention, le fluide détendu est mis en contact avec le solide divisé avec tout moyen connu de l'homme de l'art permettant d'uniformiser la répartition du mélange biphasique gaz- liquide du fluide sur le solide divisé et ainsi de conduire à une répartition uniforme de la substance active dans la composition solide et sèche finale.
Selon un mode de mise en œuvre encore plus préféré, le positionnement du dispositif de détente et la configuration géométrique de l'enceinte de détente permettent d'obtenir l'agitation du solide divisé par la seule vitesse d'éjection du fluide détendu.
De manière avantageuse, l'enceinte de détente est équipée d'un système d'agitation mécanique permettant si nécessaire d'agiter le solide divisé. Selon un autre mode de mise en œuvre du procédé de l'invention, l'enceinte de détente est équipée d'un dispositif permettant sans dépressurisation complète de ladite enceinte l'alimentation en solide divisé et le soutirage de la composition solide comprenant le solide divisé et la substance active. Cette alimentation et ce soutirage sont opérés avantageusement à intervalles de temps réguliers et de préférence en continu. Un tel dispositif permet d'utiliser une enceinte de détente d'un volume sensiblement réduit par rapport à la mise en œuvre discontinue du procédé.
Selon une mise en œuvre particulière de l'invention, le solide divisé est une poudre ou un matériau granulaire constitué d'au moins un excipient pharmaceutique.
Selon une mise yen œuvre particulièrement avantageuse de l'invention, le solide divisé est constitué de particules d'au moins un excipient acceptable pour une administration par voie orale, et préférentiellement choisi parmi les excipients connus de l'homme de l'art pour présenter des propriétés favorables pour la production de formes orales solides comme les comprimés ou les gélules. Les excipients pour administration orale sont avantageusement choisis parmi les sucres comme le lactose ou le sucrose, les polysaccharides comme la cellulose microcristalline, les dérivés de cellulose ou l'amidon, les polyols comme le mannitol, les lipides solides et les cires, les homopolymères et les copolymères solides comme les polyesters, les polyéthylène glycols, les poloxamères, les polyvinylpyrrolidones et dérivés, les composés inorganiques comme la silice. Selon une autre mise en œuvre avantageuse du procédé objet de l'invention, le solide divisé est constitué d'une poudre composée d'excipient soluble dans les milieux aqueux et acceptable pour une administration par voie injectable comme, sans que cela soit limitatif, les voies intraveineuse, intramusculaire, intra-articulaire ou intraoculaire. Les excipients pour administration par voie injectable sont avantageusement choisis parmi les sels comme le chlorure de sodium, les sucres comme par exemple le tréhalose ou le sucrose, les polyols comme par exemple le mannitol, les polysaccharides, les polymères biorésorbables, les protéines comme l'albumine.
Selon une mise en œuvre avantageuse du procédé de l'invention, le solide divisé est constitué de particules d'excipient pharmaceutique d'une taille moyenne comprise entre 50 et 2 000 micromètres, et préférentiellement entre 200 et 600 micromètres.
Selon une mise en œuvre avantageuse du procédé objet de l'invention, le rapport massique entre la substance active et le solide divisé est compris entre 0,1 et 25 %, et préférentiellement entre 0,5 et 10%.
Selon une mise en œuvre préférée du procédé, on utilise un dispositif tel que décrit sur la Figure 1. La substance active, éventuellement mélangée à un matériau inerte, est placée dans une cellule d'extraction (tube fermé aux extrémités par des frittes en acier inoxydable pour éviter l'entraînement du produit par le fluide). Cette cellule est placée à l'intérieur d'un autoclave d'extraction (5) chauffé à la température d'extraction choisie. Le fluide est pompé (3) depuis le stockage (2) et traverse un échangeur chaud (4) régulé à la température d'extraction désirée avant d'entrer dans l'autoclave d'extraction. La solution de produit solubilisé dans le fluide à pression supercritique sortant de l'autoclave d'extraction est envoyée vers une enceinte de détente (7) dans laquelle la solution est dépressurisée brutalement à une température et une pression donnée à travers une buse
(8), ladite buse étant constitué d'un tube long ou d'un orifice percé au laser dans une plaque de faible épaisseur, et de préférence un tube capillaire constitué par un tube de rapport longueur sur diamètre supérieur à 100. Un dispositif de chauffage (6) permet de régler la température du fluide immédiatement en amont du dispositif de détente. Selon les conditions opératoires choisies selon le procédé de l'invention, une partie du fluide se trouve sous forme liquide lors de la détente. Par ailleurs, la pression dans l'enceinte de détente est maintenue à une valeur déterminée grâce à une vanne de régulation de pression amont (12) . Cette vanne de régulation permet de régler les conditions opératoires dans l'enceinte de détente indépendamment de la température immédiatement en amont du dispositif de détente réglée par le dispositif de chauffage (6).
L'enceinte de détente contient un panier de collecte, fermé par un filtre, au sein duquel est placée une poudre d'excipient pharmaceutique (10) avant le démarrage du procédé. Selon une mise en œuvre particulière du procédé, un dispositif d'agitation (11) permet d'homogénéiser le contenu de l'enceinte de détente lors de la mise en œuvre du procédé.
Par ailleurs, selon la mise en œuvre préférée du procédé, l'enceinte de détente est chauffée à une température choisie de telle sorte que dans les conditions opératoires mises en oeuvre, au moins une partie du fluide à l'état liquide puisse être vaporisée avant de quitter l'enceinte de détente. Après le passage dans la vanne de régulation (12), le fluide est ensuite évacué dans l'atmosphère ou éventuellement recomprimé et recyclé selon l'art connu. Exemples
Les exemples de mise en œuvre suivant sont présentés afin d'illustrer de façon non limitative le procédé selon 1' invention.
Exemple 1 : Production d' une formulation d' une substance active et de lactose
Le procédé de l'invention est mis en œuvre sur un équipement correspondant au schéma décrit sur la Figure 1 pour la production d'une formulation constituée de particules submicroniques d'une substance active et de lactose avec un taux de charge massique en substance active visé de 5%.
10 g de substance active mélangé à environ 800 g de billes de verre de 1 mm de diamètre est disposé dans un panier d'extraction de 1,5 L. Ledit panier est placé à l'intérieur de l'autoclave d'extraction (5) chauffé à une température de 500C. Après une étape de mise en régime, du dioxyde de carbone à l'état supercritique, porté à une pression de 28 MPa via la pompe (3) à un débit de 5 kg/h et à une température de 500C via l'échangeur (4), percole à travers le panier d' extraction pour extraire la substance active. La solution de substance active dans le dioxyde de carbone supercritique ainsi formée est détendue à travers une buse de pulvérisation (8) constituée d'un capillaire en polyétheréthercétone (PEEK) de diamètre interne 170 μm et de longueur adaptée à la pression et au débit de travail. L'enceinte de détente (7), d'un volume intérieur utile de 545 mL, est chauffée à 500C. La température de la solution supercritique immédiatement en amont de la buse est réglée à 5O0C via le dispositif de chauffage (6) . La pression au sein de l'enceinte de détente est réglée à 40 bar par une vanne automatique de régulation de la pression amont (11). Compte tenu des conditions de température et de pression immédiatement en amont de la buse de pulvérisation et de la pression réglée dans l'enceinte de détente, et sachant que le type de buse utilisé permet de considérer la détente comme quasi isenthalpe, il est possible de déterminer dans un diagramme pression-enthalpie du dioxyde de carbone qu'un mélange biphasique de dioxyde de carbone liquide et de dioxyde de carbone gazeux est formé immédiatement en aval de la buse avec une proportion massique de dioxyde de carbone liquide d'environ 63%. Après 3 heures de mise en œuvre, la pompe de CO2 est arrêtée et on diminue graduellement la pression dans l'enceinte jusqu'à pression atmosphérique en environ 30 minutes avant collecte du produit .
Un premier essai (Essai 1-1) est opéré en l'absence de lactose dans l'enceinte de détente.
Le second essai (Essai 1-2) est opéré avec 50,02 g de lactose (Tablettose 80) initialement placé dans l'enceinte de détente et maintenu sous agitation mécanique à 60 tours/min pendant toute la durée de l'essai.
Résultats
L'essai 1-1 a conduit à la collecte de 1,82 g de poudre blanche fortement adhérente à la paroi du panier de collecte dans l'enceinte de détente.
L'essai 1-2 a conduit à la collecte de 51,67 g de formulation substance active - lactose sous forme d'une poudre s' écoulant facilement et présentant un aspect similaire à celui du lactose tel que reçu. La pesée du panier d'extraction après l'essai montre que 2,64 g de substance active a été extrait soit un rendement de collecte global de la formulation de 98% et un taux de charge massique théorique en substance active dans la formulation de 5,01%. Par dosage par chromatographie liquide à haute performance de 5 prélèvements de formulations, il est établi que le taux de charge massique réel en substance active dans la formulation est de 4,86%. Ce taux de charge massique expérimental correspond à un rendement de collecte en substance active au cours de l'opération de 97%. Par ailleurs, le coefficient de variation du taux de charge massique mesuré pour les 5 prélèvements est de 2,5%, ce qui indique une distribution très uniforme de la substance active dans la formulation. L'analyse par chromatographie en phase liquide à haute performance indique une bonne stabilité de la substance active au cours du procédé pour les deux essais avec un une pureté et un profil de substances apparentées similaires à ceux du produit de départ pour les deux échantillons.
La caractérisation de l'état solide des particules de substance active de la formulation substance active - lactose par analyse enthalpique différentielle à balayage et diffraction RX montre que les particules de substance active sont cristallines et sous une forme cristalline similaires à celle du produit tel que reçu.
L' analyse de la taille des particules de substance active pour les deux essais est opérée par granulométrie laser en voie humide après dispersion des particules dans une solution d'eau saturée en substance active à température ambiante en présence de Tween 20 et après dissolution des éventuelles particules d'excipient. La dispersion est opérée par passage au bain à ultrasons pendant 3 min avant mise en place de la dispersion dans l'appareil de mesure. Les profils de distribution granulométrique en volume obtenus pour les deux essais sont présentés respectivement sur la Figure 2 pour l'essai 1-1 et sur la Figure 3 pour l'essai 1-2.
Les résultats obtenus pour l'essai 1-1 mettent en évidence une distribution bimodale de la taille des particules avec le premier mode de la distribution centré à environ 10 μm et le second mode centré à environ 200 μm, soit des tailles de particules très éloignées du problème technique objet du procédé de l'invention. Par ailleurs, cette même analyse opérée sur 3 prélèvements distincts montre qu'en outre l'échantillon de substance active obtenu seul est peu homogène en distribution de tailles avec un diamètre médian (diamètre correspondant à la ligne des 50% sur la courbe de distribution cumulée en volume) moyen de 60,7 μm pour les 3 prélèvements avec un coefficient de variation de 19,9%.
Pour l'essai 1-2, il apparaît que les tailles de particules de substance active dans la formulation substance active - lactose suivent une distribution monomodale centrée entre 250 et 350 nm environ. L'analyse granulométrique menée sur 3 prélèvements distincts indique que la distribution de tailles des particules de substance active dans la formulation est très homogène avec un diamètre médian moyen de 282 nm avec un coefficient de variation de 1,5%.
En vue de la réalisation de tests de dissolution in vitro opérés sur un appareil de type USP I, la formulation obtenue lors de l'essai 1-2 et deux mélanges physiques de substance active avec du lactose, l'un avec la substance active telle que reçue sous sa forme commerciale et l'autre avec la substance active obtenue lors de l'essai 1-1, sont conditionnés en gélules (LGA, taille 0, translucide, code 000020) , en quantité équivalente à 5 mg de substance active. Le milieu de dissolution était constitué d'une solution de SDS à 0,6% à une température de 37°C et la vitesse de rotation du panier était fixée à 80 tours/min. Les prélèvements ont été analysés par CLHP/UV après filtration. Les profils de dissolution in vitro présentés sur la Figure 4 montrent que la formulation obtenue lors de l'essai 1-2 a une cinétique de dissolution très largement améliorée par rapport aux mélanges physiques avec environ 95% de substance active dissous après 10 min contre moins de 10% pour les mélanges physiques.
Cet exemple montre que le procédé objet de l'invention permet l'obtention d'une formulation substance active - lactose au sein de laquelle la substance active est distribué de manière uniforme principalement sous forme de nanoparticules, avec en outre une cinétique de dissolution de la substance active en milieu aqueux très largement améliorée.
Exemple 2 : Production d'une formulation Nifédipine - Mannitol
Le procédé de l'invention est mis en œuvre sur un équipement correspondant au schéma décrit sur la Figure 1 pour la production de formulations Nifédipine - Mannitol avec un taux de charge massique en nifédipine visé de 5%.
1,5g de nifédipine mélangé à environ 20 g de billes de verre de 1 mm de diamètre est disposé dans un panier d'extraction de 20 mL. Ledit panier est placé à l'intérieur de l'autoclave d'extraction (5) chauffé à une température de 400C. Après une étape de mise en régime, du dioxyde de carbone à l'état supercritique, porté à une pression de 25 MPa via la pompe (3) à un débit de 2 kg/h et à une température de 400C via l'échangeur (4), percole à travers le panier d'extraction pour extraire la nifédipine. La solution de nifédipine dans le dioxyde de carbone supercritique ainsi formée est détendue à travers une buse de pulvérisation (8) constituée d'un capillaire en polyétheréthercétone (PEEK) de diamètre interne 150 μm et de longueur adaptée à la pression et au débit de travail. L'enceinte de détente (7), d'un volume intérieur utile de 310 mL, est chauffée à 400C. La température de la solution supercritique immédiatement en amont de la buse est réglée à 1050C via le dispositif de chauffage (6). La pression au sein de l'enceinte de détente est réglée à 30 bar par une vanne automatique de régulation de la pression amont (11) . Compte tenu des conditions de température et de pression immédiatement en amont de la buse de pulvérisation et de la pression réglée dans l'enceinte de détente, et sachant que le type de buse utilisé permet de considérer la détente comme quasi isenthalpe, il est possible de déterminer dans un diagramme pression-enthalpie du dioxyde de carbone qu'un mélange biphasique de dioxyde de carbone liquide et de dioxyde de carbone gazeux est formé immédiatement en aval de la buse avec une proportion massique de dioxyde de carbone liquide d'environ 6%.
Après 4 heures de mise en œuvre, la pompe de CO2 est arrêtée et on diminue graduellement la pression dans l'enceinte jusqu'à pression atmosphérique en environ 30 minutes avant collecte du produit.
Un premier essai (Essai 2-1) est opéré en l'absence de mannitol dans l'enceinte de détente.
Le second essai (Essai 2-2) est opéré avec 25,00 g de mannitol (Pearlitol 200 SD) initialement placé dans l'enceinte de détente et maintenu sous agitation mécanique à 120 tours/min pendant toute la durée de l'essai.
Résultats
L'essai 2-1 a conduit à la collecte de 0,85g de poudre blanche principalement déposée sur le filtre placé au fond du panier de collecte dans l'enceinte de détente.
L'essai 2-2 a conduit à la collecte de 23,72 g de formulation nifédipine - mannitol sous forme d'une poudre s' écoulant facilement et présentant un aspect similaire à celui du mannitol seul. La pesée du panier d'extraction après l'essai montre que 1,07 g de nifédipine a été extrait soit un rendement de collecte global de la formulation de 91 % et un taux de charge massique théorique en nifédipine dans la formulation de 4,10 %. Par spectrophotométrie UV sur 5 prélèvements, il est établi que le taux de charge massique réel en nifédipine dans la formulation est de 3,89%. Ce taux de charge massique réel correspond à un rendement de collecte en nifédipine au cours du procédé de 95%. Par ailleurs, le coefficient de variation du taux de charge massique mesuré pour les 5 prélèvements est établi à 0,5%, ce qui indique une distribution très uniforme de la nifédipine dans la formulation. L'analyse par chromatographie en phase liquide à haute performance indique une bonne stabilité de la nifédipine au cours du procédé pour les deux essais avec un titre et un profil de substances apparentées similaires à ceux du produit de départ pour les deux échantillons. L'analyse de la taille des particules de nifédipine pour les deux essais est opérée par granulométrie laser en voie humide après dispersion des particules dans une solution d'eau saturée en nifédipine à température ambiante en présence de Tween 20 et après dissolution des éventuelles particules d'excipient. La dispersion des particules de nifédipine a été opérée manuellement par ajout d'une solution de Tween 20 dans l'eau dans un flacon dans lequel on a préalablement introduit le produit des essais suivi du retournement manuel du flacon de reconstitution, c'est-à-dire selon un protocole proche de ceux couramment utilisés pour la reconstitution extemporanée de formes injectables. Les profils de distribution granulométrique obtenus pour les deux essais sont présentés respectivement sur la Figure 5 pour l'essai 2-1 et sur la Figure 6 pour l'essai 2-2.
Les résultats obtenus pour l'essai 2-1 mettent en évidence une très grande hétérogénéité des distributions de tailles pour les 3 prélèvements opérés dans l'échantillon de nifédipine collecté en fin d'essai, avec une distribution soit monomodale, soit bimodale voire trimodale. Cependant pour les 3 prélèvements, il est possible de distinguer un pic principal dans la distribution des tailles centré à environ 4 μm. Pour l'essai 2-2, les tailles de particules de nifédipine dans la formulation Nifédipine - Mannitol suit une distribution quasi-monomodale centrée à 300 nm environ. L'analyse granulométrique menée sur 3 prélèvements distincts indique que la distribution de tailles des particules de nifédipine dans la formulation est très homogène avec un diamètre médian moyen de 0,39 μm avec un coefficient de variation de 7,1 %. Il faut noter que l'homogénéité des distributions de tailles de particules de nifédipine dans la formulation et la valeur du coefficient de variation sont tout à fait acceptables compte tenu de la faible reproductibilité du mode de dispersion manuel mis en œuvre. Des mesures granulométriques par spectroscopie à corrélation de photons confirment l'obtention de particules submicroniques de nifédipine pour l'essai 2-2. Cet exemple montre donc que le procédé objet de l'invention permet l'obtention d'une formulation Nifédipine - Mannitol au sein de laquelle la nifédipine est distribuée de manière homogène et sous forme de particules de nifédipine principalement submicroniques.
Exemple 3 : Production d' une formulation Sirolimus - Lactose
Le procédé de l'invention est mis en œuvre sur un équipement correspondant au schéma décrit sur la Figure 1 pour la production de formulations Sirolimus - Lactose avec un taux de charge massique en sirolimus visé de 2%.
1,25 g de sirolimus mélangé à environ 20 g de billes de verre de 1 mm de diamètre est disposé dans un panier d'extraction de 20 mL. Ledit panier est placé à l'intérieur de l'autoclave d'extraction (5) chauffé à une température de 600C. Après une étape de mise en régime, du dioxyde de carbone à l'état supercritique, porté à une pression de 33 MPa via la pompe (3) à un débit de 2 kg/h et à une température de 600C via l'échangeur (4), percole à travers le panier d'extraction pour extraire le sirolimus. La solution de sirolimus dans le dioxyde de carbone supercritique ainsi formée est détendue à travers ,une buse de pulvérisation (8) constituée d'un capillaire en polyétheréthercétone (PEEK) de diamètre interne 127 μm et de longueur adaptée à la pression et au débit de travail. L'enceinte de détente (7), d'un volume intérieur utile de 310 mL, est chauffée à 600C. La température de la solution supercritique immédiatement en amont de la buse est réglée à 600C via le dispositif de chauffage (6). La pression au sein de l'enceinte de détente est réglée à 30 bar par une vanne automatique de régulation de la pression amont (11). Compte tenu des conditions de température et de pression immédiatement en amont de la buse de pulvérisation et de la pression réglée dans l'enceinte de détente, et sachant que le type de buse utilisé permet de considérer la détente comme quasi isenthalpe, il est possible de déterminer dans un diagramme pression-enthalpie du dioxyde de carbone qu'un mélange biphasique de dioxyde de carbone liquide et de dioxyde de carbone gazeux est formé immédiatement en aval de la buse avec une proportion massique de dioxyde de carbone liquide d'environ 51%.
Après 5 heures de mise en œuvre, la pompe de C02 est arrêtée et on diminue graduellement la pression dans l'enceinte jusqu'à pression atmosphérique en environ 30 minutes avant collecte du produit.
Un premier essai (Essai 3-1) est opéré en l'absence de lactose dans l'enceinte de détente.
Le second essai (Essai 3-2) est opéré avec 49,17 g de lactose (Pharmatose DCL 21) initialement placé dans l'enceinte de détente et maintenu sous agitation mécanique à 120 tours/min pendant toute la durée de l'essai.
Résultats
L'essai 3-1 a conduit à la collecte de 0,55 g de poudre blanche en partie fortement adhérente à la paroi mais également sous la forme de particules assez grossières déposées sur le filtre dans le panier de collecte placé dans l'enceinte de détente.
L'essai 3-2 a conduit à la collecte de 49,77 g de formulation sirolimus - lactose sous forme d'une poudre s' écoulant facilement et présentant un aspect similaire à celui du lactose seul. Par dosage par chromatographie liquide à haute performance de 5 prélèvements, il est établi que le taux de charge massique réel en sirolimus dans la formulation est de 2,0% avec un coefficient de variation du taux de charge massique mesuré pour les 5 prélèvements de 2,3%, ce qui indique une distribution très uniforme du sirolimus dans la formulation.
L'analyse par chromatographie en phase liquide à haute performance indique une bonne stabilité du sirolimus au cours du procédé pour les deux essais avec un titre et un profil de substances apparentées similaires à ceux du produit de départ pour les deux échantillons.
La caractérisation de l'état solide des particules de sirolimus de la formulation sirolimus - lactose par analyse enthalpique différentielle à balayage montre que les particules de sirolimus sont cristallines et sous une forme cristalline similaire à celle du produit tel que reçu, soit la forme cristalline la plus stable.
L'analyse de la taille des particules de sirolimus pour les deux essais est opérée par granulométrie laser en voie humide après dispersion des particules dans une solution d'eau saturée en sirolimus à température ambiante en présence de Tween 20 et après dissolution des éventuelles particules d'excipient. La dispersion est opérée par passage au bain à ultrasons pendant 3 min avant mise en place de la dispersion dans l'appareil de mesure. Les profils de distribution granulométrique obtenus pour les deux essais sont présentés respectivement sur la Figure 7 pour l'essai 3-1 et sur la Figure 8 pour l'essai 3-2.
Les résultats obtenus pour l'essai 3-1 mettent en évidence une très grande hétérogénéité des distributions de tailles pour les 3 prélèvements opérés dans l'échantillon de sirolimus collecté en fin d'essai. Pour les 3 prélèvements, il est néanmoins possible de déterminer un pic commun dans la distribution des tailles centré entre 30 et 40 μm. Il faut noter que pour l'un des prélèvements les tailles de particules mesurées sont particulièrement élevée avec environ 30 % des particules en volume d'un diamètre équivalent en volume supérieur à 100 μm. Cette mesure est cohérente avec l'observation visuelle de l'échantillon qui montre la présence de particules très grossières dans 1' échantillon. Pour l'essai 3-2, les tailles de particules de sirolimus dans la formulation Sirolimus - Lactose suit une distribution quasi-monomodale centrée à 300 nm environ. L' analyse granulométrique menée sur 3 prélèvements distincts indique que la distribution de tailles des particules de sirolimus dans la formulation est très homogène avec un diamètre médian moyen de 0,37 μm avec un coefficient de variation de 1,1 %. Des mesures granulométriques par spectroscopie à corrélation de photons confirment l'obtention de particules submicroniques de sirolimus pour l'essai 3-2.
Des comprimés dosés à 2 mg en sirolimus sont fabriqués à partir de la formulation obtenue lors de l'essai 3-2, en vue de leur comparaison lors de tests de dissolution in vitro avec des comprimés commerciaux de Rapamune® 2 mg. Les tests de dissolution in vitro ont été opérés sur un appareil de type USP I avec un milieu de dissolution constitué d'une solution de Lauryl Sulfate de Sodium à 0,4%, à une température de 370C et la vitesse de rotation du panier était fixée à 40 tours/min. Les prélèvements ont été analysés par CLHP/UV après filtration. Les profils de dissolution in vitro présentés sur la Figure 9 (valeurs moyennes pour 6 comprimés pour chaque courbe) montrent que les comprimés produits à partir de la formulation obtenue lors de l'essai 3-2 ont une cinétique de dissolution très largement améliorée par rapport aux comprimés commerciaux avec en moyenne environ 75% de sirolimus dissous après 10 min contre environ 25% pour les comprimés commerciaux. Cet exemple montre donc que le procédé objet de l'invention permet l'obtention d'une formulation Sirolimus - Lactose au sein de laquelle le sirolimus est distribué de manière homogène et sous forme de particules de sirolimus principalement submicroniques. De plus, cette formulation Sirolimus - Lactose a permis de produire des comprimés présentant une cinétique de dissolution largement améliorée par rapport à des comprimés commerciaux.

Claims

REVENDICATIONS
1.- Procédé de préparation d'une composition solide comprenant des particules fines, microniques et de préférence submicroniques d'au moins une substance active dispersées à la surface et/ou au sein d'un solide divisé caractérisé en ce qu' il comprend une étape consistant à détendre une solution, de ladite substance active dans un fluide à pression supercritique, dans une enceinte à des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente et en ce que ladite enceinte contient un solide divisé .
2.- Le procédé selon la revendication 1 caractérisé en ce qu' il comprend les étapes consistant à : a) former une solution d'une substance active dans un fluide à pression supercritique ; b) détendre ladite solution dans une enceinte dans des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente ; c) mettre en contact le fluide ainsi détendu avec un solide divisé dans ladite enceinte ; d) récupérer un produit sec contenant ladite substance active sous forme de particules fines et ledit solide divisé.
3.- Le procédé selon la revendication 2 caractérisé en ce qu' il consiste à : a) former une solution d'une substance active dans un fluide à pression supercritique ; b) détendre ladite solution dans une enceinte dans des conditions de pression et de température pour lesquelles une partie du fluide se trouve sous forme liquide lors de la détente ; c) mettre en contact le fluide ainsi détendu avec un solide divisé dans ladite enceinte ; d) récupérer un produit sec contenant ladite substance active sous forme de particules fines et ledit solide divisé.
4.- Le procédé selon l'une des revendications 1 à 3 caractérisé en ce que le fluide à pression supercritique est choisi parmi le dioxyde de carbone, le protoxyde d'azote, les alcanes, les éthers, les hydrocarbures fluorés .
5.- Le procédé selon l'une des revendications 1 à 4 caractérisé en ce que ledit fluide à pression supercritique est du dioxyde de carbone à une pression comprise entre 7,4 MPa et 200 MPa, et à une température inférieure à 1400C.
6.- Le procédé selon l'une des revendications 1 à 5 caractérisé en ce que ledit fluide à pression supercritique est du dioxyde de carbone et en ce que la pression dans l'enceinte de détente est maintenue entre 0,52 et 7,4 MPa.
7.- Le procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que la température du fluide à pression supercritique lors de l'étape de formation de la solution à pression supercritique est identique à la température immédiatement en amont du dispositif de détente.
8.- Le procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce qu'une partie du fluide qui se trouve à l'état liquide lors de la détente est vaporisée dans l'enceinte de détente.
9.- Le procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que la totalité du fluide qui se trouve à l'état liquide lors de la détente est vaporisée dans l'enceinte de détente.
10.- Le procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le solide divisé est une poudre ou un matériau granulaire constitué d' au moins un excipient pharmaceutiquement acceptable.
11.- Le procédé selon la revendication 10 caractérisé en ce que ledit excipient est choisi parmi les excipients hydrophiles.
12.- Le procédé selon la revendication 10 caractérisé en ce que l'excipient est constitué d'une poudre composée d'excipient soluble dans les milieux aqueux.
13.- Le procédé selon la revendication 10 caractérisé en ce que l'excipient est choisi les sucres comme le lactose ou le sucrose, les polysaccharides comme la cellulose microcristalline, les dérivés de cellulose ou l'amidon, les polyols comme le mannitol, les lipides solides et les cires, les homopolymères et les copolymères solides comme les polyesters, les polyéthylène glycols, les poloxamères, les polyvinylpyrrolidones et dérivés, les composés inorganiques comme la silice.
14.- Le procédé selon l'une quelconque des revendications 10 à 13 caractérisé en ce que les particules d'excipient pharmaceutique ont une taille moyenne comprise entre 50 et 2 000 μm, de préférence entre 200 et 600 μm.
15.- Procédé selon l'une quelconque des revendications 1 à 14 caractérisé en ce que la proportion massique de substances actives par rapport à l'excipient est comprise entre 0,1 et 25%, de préférence entre 0,5 et
10%.
16.- Le procédé selon l'une quelconque des revendications 1 à 15 caractérisé en ce que l'on récupère une composition pharmaceutique solide contenant des particules de taille médiane inférieure à 1000 nm.
17.- Le procédé selon l'une quelconque des revendications 1 à 16 caractérisé en ce que l'on récupère une composition pharmaceutique solide contenant des particules essentiellement cristallines de substance active .
18.- Le procédé selon la revendication 17 caractérisé en ce que les particules cristallines de substance active sont essentiellement composées de la forme cristalline la plus stable.
PCT/FR2010/000266 2009-03-31 2010-03-30 Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active WO2010112702A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/262,538 US8765184B2 (en) 2009-03-31 2010-03-30 Method for preparing pharmaceutical compositions comprising fine particles of active substance
EP10714898.3A EP2419088B1 (fr) 2009-03-31 2010-03-30 Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active
ES10714898.3T ES2552384T3 (es) 2009-03-31 2010-03-30 Procedimiento de preparación de composiciones farmacéuticas que comprenden partículas finas de sustancia activa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901578A FR2943543B1 (fr) 2009-03-31 2009-03-31 Procede de preparation de compositions pharmaceutiques comprenant des particules fines de substance active.
FR09/01578 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010112702A1 true WO2010112702A1 (fr) 2010-10-07

Family

ID=41404635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/000266 WO2010112702A1 (fr) 2009-03-31 2010-03-30 Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active

Country Status (5)

Country Link
US (1) US8765184B2 (fr)
EP (1) EP2419088B1 (fr)
ES (1) ES2552384T3 (fr)
FR (1) FR2943543B1 (fr)
WO (1) WO2010112702A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128087A1 (fr) 2012-02-28 2013-09-06 Debregeas Et Associes Pharma Procédé d'obtention d'une composition pharmaceutique à base de modafinil, composition pharmaceutique ainsi obtenue et son application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI129026B (en) 2020-01-29 2021-05-31 Nanoform Finland Oy System and method for producing particles of organic substances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043853A1 (fr) * 1999-12-15 2001-06-21 SEPAREX (Société Anonyme) Procede et dispositif de captage de fines particules par percolation dans un lit de granules
WO2009034409A2 (fr) * 2007-09-14 2009-03-19 Wockhardt Research Centre Compositions pharmaceutiques de rheine ou de diacereine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582731A (en) 1983-09-01 1986-04-15 Battelle Memorial Institute Supercritical fluid molecular spray film deposition and powder formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043853A1 (fr) * 1999-12-15 2001-06-21 SEPAREX (Société Anonyme) Procede et dispositif de captage de fines particules par percolation dans un lit de granules
WO2009034409A2 (fr) * 2007-09-14 2009-03-19 Wockhardt Research Centre Compositions pharmaceutiques de rheine ou de diacereine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
E. RODIER ET AL.: "La génération de solides divisés par voie supercritique : principes de base, considérations sur l'état d'avancement des recherches", CAHIERS DE FORMULATION, vol. 14, 2008, pages 90 - 108
F. KESISOGLOU ET AL.: "Nanosizing - Oral formulation development and biopharmaceutical evaluation", ADVANCED DRUG DELIVERY REVIEWS, vol. 59, 2007, pages 631 - 644
J. JUNG ET AL.: "Particle Design using Supercritical Fluids : Littérature and Patent Survey", JOURNAL OF SUPERCRITICAL FLUIDS, vol. 20, 2001, pages 179 - 219
M. TÜRK: "Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion process", J. OF SUPERCRITICAL FLUIDS, vol. 47, 2009, pages 537 - 545
ROBERTSON ET AL.: "Recrystallisation of organic compounds using near critical carbon dioxide", PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON SUPERCRITICAL FLUIDS, 11 May 1997 (1997-05-11)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128087A1 (fr) 2012-02-28 2013-09-06 Debregeas Et Associes Pharma Procédé d'obtention d'une composition pharmaceutique à base de modafinil, composition pharmaceutique ainsi obtenue et son application

Also Published As

Publication number Publication date
EP2419088B1 (fr) 2015-08-05
FR2943543A1 (fr) 2010-10-01
ES2552384T3 (es) 2015-11-27
US8765184B2 (en) 2014-07-01
EP2419088A1 (fr) 2012-02-22
FR2943543B1 (fr) 2013-02-08
US20120021021A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
Loh et al. Overview of milling techniques for improving the solubility of poorly water-soluble drugs
JP3839042B2 (ja) 大きさが調整された粒子を有するサルメテロールキシナフォエート
EP0533739B1 (fr) Composition pharmaceutique injectable
Lee et al. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability
EP0487674B1 (fr) Forme galenique injectable retardee
JP2004515525A (ja) 水溶液中への蒸発沈降を用いた薬剤粒子の調製
US20160235677A1 (en) Method of converting a crystalline compound to an amorphous compound, method of increasing the solubility of a crystalline compound in a biorelevant fluid, and nanoparticles that achieve supersaturation
WO1997004749A1 (fr) Procede de preparation de formes pharmaceutiques seches et les compositions pharmaceutiques ainsi realisees
FR2559064A1 (fr) Composition pharmaceutique a biodisponibilite elevee et procede pour la preparer
US20040067251A1 (en) Preparation of drug particles using evaporation precipitation into aqueous solutions
Li et al. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation
Guan et al. The technology for improving stability of nanosuspensions in drug delivery
Shazly et al. Dissolution improvement of solid self-emulsifying drug delivery systems of fenofibrate using an inorganic high surface adsorption material
EP2419088B1 (fr) Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active
EP2381927B1 (fr) Formulation pharmaceutique de fenofibrate nanonise
Vadlamudi et al. Disparate practical way of doing solubility enhancement study to improve the bioavailability of poorly soluble drugs
EP1824456A2 (fr) Azodicarbonamide micronise, sa preparation et son utilisation
EP1582222B1 (fr) Tensioactifs sous forme de poudre utilisables dans des comprimés ou des gélules ; procédé de préparation et compositions les contenant
Aung et al. Impact of polymers as precipitation inhibitors on physicochemical properties of spray-dried astaxanthin-loaded self-microemulsifying delivery systems
US20200197311A1 (en) Amorphous nanostructured pharmaceutical materials
FR2857591A1 (fr) Particules comprenant un principe actif sous forme de co-precipite
EP2413908B1 (fr) Composition pharmaceutique comprenant un macrolide immunosuppresseur de la famille des "limus"
Arerusuoghene et al. Solubility and Dissolution enhancement of paracetamol using in situ micronization by solvent change method
Sahakijpijarn et al. Pharmaceutical Cryogenic Technologies
Viktor LM4156 BIOLÓGIAI HOZZÁFÉRHETŐSÉGÉNEK NÖVELÉSE SZUPERKRITIKUS ÉS KRIOGÉN TECHNOLÓGIÁK FELHASZNÁLÁSÁVAL

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010714898

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13262538

Country of ref document: US