WO2010110062A1 - Flexible substrate and process for production thereof - Google Patents

Flexible substrate and process for production thereof Download PDF

Info

Publication number
WO2010110062A1
WO2010110062A1 PCT/JP2010/053954 JP2010053954W WO2010110062A1 WO 2010110062 A1 WO2010110062 A1 WO 2010110062A1 JP 2010053954 W JP2010053954 W JP 2010053954W WO 2010110062 A1 WO2010110062 A1 WO 2010110062A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
layer
film
flexible substrate
metal seed
Prior art date
Application number
PCT/JP2010/053954
Other languages
French (fr)
Japanese (ja)
Inventor
修仁 牧野
倫也 古曳
肇 稲住
拓 吉田
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to JP2011505963A priority Critical patent/JPWO2010110062A1/en
Publication of WO2010110062A1 publication Critical patent/WO2010110062A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Definitions

  • the present invention relates to a flexible substrate used as a mounting material for electronic components such as TAB and COF, and a method for manufacturing the same.
  • FCCL Flexible Copper Clad ⁇ ⁇ Laminate
  • a metal conductor layer mainly made of copper or a copper alloy is laminated on a resin film (usually a polyimide film) is widely used as a circuit board material in the electronics industry.
  • a resin film usually a polyimide film
  • non-adhesive flexible laminate substrates especially two-layer metalizing flexible substrates
  • the circuit wiring width becomes finer.
  • a tie coat layer composed of a material that adheres well to the resin film by a dry process such as sputtering, CVD, or vapor deposition on the resin film
  • a metallizing method is mainly used in which a metal seed layer that acts as a cathode and current conductor in the electroplating of the next process is formed in advance, and then a metal layer that becomes a conductor layer of a circuit board is formed by electroplating.
  • FCCL Flexible Cupper Clad Laminate
  • Patent Document 6 there is Patent Document 6, but in this Patent Document 6, since polyimide absorbs a maximum of 3 to 4 wt% of water, a high peel strength is expressed by reducing this to about 1 to 2 wt%. Yes.
  • the maximum moisture absorption of PI (polyimide) films currently on the market and industrially used for COF etc. is 2 wt% or less as follows, and has already reached the moisture reduction ability of Patent Document 6. It's not useful information.
  • Toray DuPont Kapton-150EN-C 1.4wt%
  • Toray DuPont Kapton-150EN-A 1.7wt%
  • Ube Industries Upilex-35SGA 1.9wt%
  • Kaneka Apical-35FP 1.9wt%
  • Patent Document 7 shown below proposes to obtain a high peel strength by dehydrating in a vacuum. Specifically, by heating the PI film in vacuum and exhausting the gasified moisture so that the partial pressure becomes 1 ⁇ 10 ⁇ 4 Pa or less, the gasified moisture diffuses and the inside of the vacuum chamber or the guide It is said that it can be prevented from reattaching to the roll.
  • the total pressure in the vacuum chamber at this time is described as 10 ⁇ 3 Pa or less.
  • the gas behavior is not a viscous flow but a so-called molecular flow region. Therefore, the gasified water molecules do not flow toward the exhaust pump, and the disordered Brownian motion is widely used.
  • the gasified water molecules do not flow toward the exhaust pump, and the disordered Brownian motion is widely used.
  • Patent Document 8 shown below.
  • a resin film contains 0.01 to 2 wt% of water, and this is heated and dehydrated in a vacuum, and 0.01 wt%. It is a proposal that it is desirable to make it below%. A clear causal relationship between water content and peel strength is not specifically described.
  • the same patent document proposes a complicated storage method while heating and drying Toray DuPont: Kapton-150EN at 300 ° C. or 250 ° C. . Although the above 300 ° C.
  • the vitrification transition temperature of the PI film itself is not uniquely determined in the first place, but at a high temperature such as 300 ° C. or 250 ° C. Deterioration of the PI film is inevitable. There is also a problem with this.
  • Patent Document 9 proposes a drying method in which the moisture content of the PI film is 0.01 wt%.
  • the moisture content, peel strength, and other product characteristics are proposed. No causal relationship is described.
  • the film itself may change in quality due to excessive heating of the film, and the characteristics may be impaired.
  • the causal relationship between the residual moisture content of the film and the peel strength has not been clarified, and the current situation is that sufficient investigation has not been made.
  • Japanese Patent No. 3258296 Japanese Patent No. 3173511 Special table 2003-519901 gazette JP-A-6-120630 Japanese Patent Laid-Open No. 7-197239 JP-A-5-106021 JP 2005-54259 A JP 2007-120777 A JP 2007-131377 A
  • an object of the present invention is to provide a flexible substrate (flexible laminate) capable of effectively suppressing a decrease in peel strength.
  • the present invention provides the following inventions. 1) Plasma treatment is performed on a resin film having a moisture content of 0.1 wt% or more and 0.5 wt% or less, and a tie coat layer and a metal seed layer are provided thereon by sputtering, and a metal conductor layer is formed on the metal seed layer.
  • the tie coat layer is made of any one of nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, and cobalt-base alloy, the metal seed layer is copper or copper alloy, and
  • Flexible substrate described in 4) TOF-SIMS at least at the interface between the entire resin film or the tie coat layer and the resin film The maximum strength with a molecular weight of 300 to 800 is 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100 in the proportion of the polymer component in the resin film.
  • the present invention further provides the following inventions.
  • the resin film is vacuum-dried so that the moisture content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt% or less, and then the tie coat layer and A method of manufacturing a flexible substrate, comprising forming a metal seed layer and further forming a metal conductor layer on the metal seed layer.
  • Nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy as a tie coat layer The flexible metal according to 5) above, wherein a metal comprising any one of cobalt-based alloys, copper or a copper alloy as a metal seed layer, and copper or a copper alloy as a metal conductor layer formed on the metal seed layer.
  • Substrate manufacturing method 7 TOF at the entire resin film or at least the interface between the tie coat layer and the resin film The above 5), wherein the resin film has a maximum strength with a molecular weight of 300 to 800 of 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100 in the SIMS analysis.
  • the resin film is dried in advance (especially, preferably vacuum-dried), whereby the moisture content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt%.
  • a tie coat layer and a metal seed layer are formed on the resin film by sputtering, and a metal conductor layer is further formed on the metal seed layer.
  • a flexible laminate substrate can be produced.
  • the reason why the surface of the flexible substrate is subjected to plasma treatment is to remove surface contaminants and to modify the surface.
  • a tie coat layer and a metal seed layer thereon are formed by sputtering on the surface of the resin film thus modified.
  • a metal layer to be a conductor layer of the circuit board is formed by electroless plating or electroplating.
  • the material used for the tie coat layer is any one of nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, and cobalt-base alloy, and it is needless to say that the presence of copper is preferably small as an impurity. Yes.
  • nickel, chromium or cobalt is the main component, and these are components having the largest abundance ratio in the tie coat layer.
  • the flexible electronic circuit board formed using said non-adhesive flexible laminate can be provided.
  • the water content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt% or less.
  • the water content exceeds 0.5 wt%, the peel strength is not improved.
  • strong dehydration such as heating and dehydrating the resin film is necessary. This may adversely change the film itself of the flexible substrate and impair the characteristics. This is because it increases.
  • H 2 O evaporates from the film exposed to the heat of the plasma in the plasma treatment prior to the sputtering in the manufacturing process of the flexible substrate, and the H 2 O is also ionized to become a plasma state. It is done. Although any particles (ions, radicals) or is not necessarily clear becomes in H 2 O is ionized, particles in the plasma caused by these H 2 O is ionization, damage the polyimide surface layer, this damage The portion is deteriorated after heat aging (Aging).
  • a typical polyimide as a resin film for example, in the case of modification by plasma, H 2 O and polyimide contained in this polyimide will be described. It combines to produce fragile molecules on the polyimide surface, which degrade after heat aging.
  • H 2 O evaporates from the film exposed to the heat of the sputtering plasma, and the H 2 O is also ionized into a plasma state. It is expected to be. In this case, any particles (ions, radicals) H 2 O is ionized but Is not clear becomes, these H 2 O is the particles in the plasma resulting ionized, the polyimide surface layer and / or polyimide The damage is caused to the metal bonding interface, and the damaged portion deteriorates after heat aging.
  • the ratio of the polymer component of the resin film to the maximum strength having a molecular weight of 1 to 100 in the TOF-SIMS analysis By maintaining the properties as a resin film having a maximum strength of 0.5 to at least 300 with a molecular weight of 300 to 800, the heat aging resistance of the flexible substrate can be improved.
  • the present invention includes these.
  • the wiring width is narrower, and when the line width is narrow, it is more susceptible to etching, and moreover, there is an increasing number of thermal loads in circuit design. Even under such conditions, it can be said that it is desirable to improve not only the peel strength, that is, the normal peel strength but also the heat-resistant peel strength.
  • the film moisture absorption measuring method will be described. Moreover, it demonstrates using the typical polyimide (PI) film used as a resin film. Needless to say, the same applies to other resin films.
  • PI polyimide
  • a plurality of PI films were cut into a size of about 50 mm square. A plurality of the aforementioned about 50 mm square cut films were stacked so that the total mass was about 20 g, and this was taken as one sample lot. The mass of the lot was accurately measured and used as the initial mass. Thereafter, the same lot was heated in air at 150 ° C. for 72 hours and completely dried, and then the mass was measured again. The difference between the two was taken as the moisture content of the PI film. The moisture content of the PI film was calculated as the ratio of the moisture content of the PI film to the initial mass.
  • the cutting can be completed in a few minutes by cutting together from the previously stacked films.
  • about 140 sheets overlap at the time of measurement so it is inevitable to absorb moisture to the top of the stacked films to some extent, but it is considered that moisture absorption of other films will be considerably delayed, so moisture absorption during cutting and measurement The impact is considered negligible.
  • Drying was performed by the following method.
  • the resin film will be described taking Kapton-150EN-C as an example.
  • a roll-to-roll type vacuum processing apparatus in which both an unwinding roll and a winding roll are in a vacuum chamber was used. Vacuum drying is performed using this apparatus. After setting the resin film to be dried, the inside of the vacuum chamber was evacuated to 5 ⁇ 10 ⁇ 3 Pa with a dry pump and a turbo molecular pump. Thereafter, the resin film was transported from the unwinding roll to the winding roll while evacuation was continued.
  • Table 1 shows the measurement results of the moisture absorption amount of the outer periphery and the core of the resin film. As shown in Table 1, it was 0.96% at the outer periphery of the resin film before vacuum drying, and 0.90% at the core of the resin film.
  • the outer periphery of the resin film after vacuum drying is 0.43%
  • the core of the resin film is 0.33%
  • the outer periphery of the resin film is less than half
  • the core of the resin film is about 1/3. Decreased to.
  • the moisture content after drying is such that the moisture content on the surface of the resin film of the present invention meets the conditions of 0.1 wt% or more and 0.5 wt% or less.
  • the polyimide film was set in a vacuum apparatus, evacuated, and then subjected to polyimide plasma treatment. Subsequently, a tie coat layer and a metal seed layer were formed by sputtering.
  • the tie coat layer was Ni-20 wt% Cr: equivalent to 25 nm in theoretical density, and the metal seed layer was Cu: 300 nm.
  • Sputtering was performed by DC magnetron method in an Ar gas atmosphere at 0.5 Pa.
  • a metal conductor layer (thickness 8 ⁇ m) made of copper was formed on the above metal seed layer by electroplating to produce a two-layer metalizing laminate.
  • the peel strength was measured according to JISC6471 (Test method for copper-clad laminate for flexible printed wiring board) under the following conditions. Sample line width during peel measurement: 3 mm, 100 ⁇ m Heat aging conditions: 150 ° C. ⁇ 168 hours in air The results are shown in Table 2. As shown in Table 2, in both peel sample line widths of 3 mm and 100 ⁇ m, the heat-resistant peel strength was clearly improved by film drying.
  • a resin film having a moisture content of 0.1 wt% or more and 0.5 wt% or less is plasma-treated, and a tie coat layer and a metal seed layer are provided thereon by sputtering, and a metal conductor layer is further formed on the metal seed layer. It was confirmed that the flexible substrate formed with is effective in improving the heat-resistant peel strength.
  • the ratio of the polymer component of the resin film is not particularly shown by TOF-SIMS analysis. However, the resin is analyzed by TOF-SIMS analysis at least at the interface between the entire resin film or the tie coat layer and the resin film.
  • the ratio of the polymer component of the film was within the range of the condition that the maximum strength with a molecular weight of 300 to 800 was 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100.
  • the film itself of the flexible substrate is not altered and the characteristics are not impaired by reducing the residual moisture content of the film by a certain amount.
  • it since it has an excellent effect of providing a flexible substrate (flexible laminate) capable of effectively suppressing a decrease in peel strength, it is extremely useful as a material for circuit boards in the electronic industry.

Abstract

Disclosed is a process for producing a flexible substrate, which is characterized by comprises drying a resin film in vacuo to reduce the moisture content in the entire of the resin film or in at least the surface of the resin film to 0.1 to 0.5 wt% inclusive, forming a tie coat layer and a metal seed layer on the resin film by sputtering, and forming a conductive metal layer on the metal seed layer. Also disclosed is a flexible laminate (particularly a two-layered metalizing laminate) in which the occurrence of the reduction in peel strength can be prevented effectively during the production process of the flexible laminate.

Description

フレキシブル基板及びその製造方法Flexible substrate and manufacturing method thereof
 本発明はTAB、COF等の電子部品の実装素材として用いられるフレキシブル基板及びその製造方法に関する。 The present invention relates to a flexible substrate used as a mounting material for electronic components such as TAB and COF, and a method for manufacturing the same.
 樹脂フィルム(通常ポリイミドフィルムが使用されている)に、主として銅又は銅合金からなる金属導体層を積層したFCCL(Flexible Copper Clad Laminate)は電子産業における回路基板の素材として広く用いられている。中でも、樹脂フィルム(ポリイミドフィルム)と金属層との間に接着剤層を有しない無接着剤フレキシブルラミネート基板(特に、二層メタライジングフレキシブル基板)は、回路配線幅のファインピッチ化に伴い注目されている材料である。 FCCL (Flexible Copper Clad し た Laminate) in which a metal conductor layer mainly made of copper or a copper alloy is laminated on a resin film (usually a polyimide film) is widely used as a circuit board material in the electronics industry. In particular, non-adhesive flexible laminate substrates (especially two-layer metalizing flexible substrates) that do not have an adhesive layer between the resin film (polyimide film) and the metal layer are attracting attention as the circuit wiring width becomes finer. Material.
 フレキシブル基板、特にファインピッチに対応した無接着剤フレキシブルラミネート基板の製造に際して、樹脂フィルム上にスパッタリング、CVD、蒸着などの乾式法により、樹脂フィルムとの接着が良好な材料から構成されるタイコート層および次工程の電気めっきにおけるカソード兼電流の導電体として働く金属シード層を予め形成し、次いで電気めっきにより回路基板の導体層となる金属層を製膜する、いわゆるメタライジング法が主に行われている(特許文献1参照)。 When manufacturing flexible substrates, especially non-adhesive flexible laminate substrates compatible with fine pitch, a tie coat layer composed of a material that adheres well to the resin film by a dry process such as sputtering, CVD, or vapor deposition on the resin film The so-called metallizing method is mainly used in which a metal seed layer that acts as a cathode and current conductor in the electroplating of the next process is formed in advance, and then a metal layer that becomes a conductor layer of a circuit board is formed by electroplating. (See Patent Document 1).
 このメタライジング法においては、金属層と樹脂フィルムとの密着力を高めるために、金属層を形成するに先立ち、樹脂フィルム表面をプラズマ処理により、表面の汚染物質の除去ならびに表面粗さの向上を目的として改質を行うことが行われている(特許文献2及び特許文献3参照)。 In this metallizing method, in order to increase the adhesion between the metal layer and the resin film, the surface of the resin film is removed by plasma treatment prior to the formation of the metal layer to remove surface contaminants and improve the surface roughness. Modification is performed for the purpose (see Patent Document 2 and Patent Document 3).
 このメタライジング法においては、一般に、樹脂フィルム上にスパッタリングなどの乾式めっき法により金属層を予め形成する際に、中間層の材料の選択により、密着性やエッチング性を改良する工夫がなされている(特許文献4参照)。
 また、樹脂フィルム上にニッケル、クロム、モリブデン、タングステン、バナジウム、チタン及びマンガンから選んだ材料をスパッタリングし、次に50nm程度の銅層をスパッタリングし、さらに1μm以上の銅層を電気めっきする技術が提案されている(特許文献5参照)。
In this metallizing method, in general, when a metal layer is previously formed on a resin film by a dry plating method such as sputtering, a device for improving adhesion and etching properties is selected by selecting a material for the intermediate layer. (See Patent Document 4).
Also, there is a technique in which a material selected from nickel, chromium, molybdenum, tungsten, vanadium, titanium and manganese is sputtered on a resin film, then a copper layer of about 50 nm is sputtered, and a copper layer of 1 μm or more is electroplated. It has been proposed (see Patent Document 5).
 ところが、これらの前記金属と樹脂フィルム等のフィルムを接合したFCCL(Flexible Cupper Clad Laminate)において、金属と樹脂フィルムが直接接触した場合、ピール強度が低下するという問題がある。
 このようなことから、その改善の一つとしてメタライジング2層FCCLを製造する際に、ポリイミドフィルムを予め加熱乾燥させる提案がある。以下に、これらを説明するが、実際にフィルムに含まれている水分量とピール強度の関係が明確にされてきたとは言いえず、いずれも問題がある。
However, in the FCCL (Flexible Cupper Clad Laminate) in which the metal and a film such as a resin film are joined, there is a problem that the peel strength is lowered when the metal and the resin film are in direct contact.
For this reason, there is a proposal for heating and drying the polyimide film in advance when manufacturing the metalizing two-layer FCCL as one of the improvements. These will be described below, but it cannot be said that the relationship between the amount of moisture actually contained in the film and the peel strength has been clarified, and both have problems.
  例えば、特許文献6があるが、この特許文献6には、ポリイミドは最大3~4wt%の水を吸収するので、これを約1~2wt%に減少させることによって、高いピール強度が発現するとしている。
  しかしながら、現在市販され工業的にCOF等に用いられているPI(ポリイミド)フィルムの最大吸湿量は、次の通り、いずれも2wt%以下であり、既に特許文献6の水分減少能力に至っているので、有用な情報とは言えない。
    東レデュポン:Kapton-150EN-C 1.4wt%
    東レデュポン:Kapton-150EN-A 1.7wt%
    宇部興産:Upilex-35SGA    1.9wt%
    カネカ:Apical-35FP     1.9wt%
For example, there is Patent Document 6, but in this Patent Document 6, since polyimide absorbs a maximum of 3 to 4 wt% of water, a high peel strength is expressed by reducing this to about 1 to 2 wt%. Yes.
However, the maximum moisture absorption of PI (polyimide) films currently on the market and industrially used for COF etc. is 2 wt% or less as follows, and has already reached the moisture reduction ability of Patent Document 6. It's not useful information.
Toray DuPont: Kapton-150EN-C 1.4wt%
Toray DuPont: Kapton-150EN-A 1.7wt%
Ube Industries: Upilex-35SGA 1.9wt%
Kaneka: Apical-35FP 1.9wt%
  次に、下記に示す特許文献7であるが、この特許文献7では、真空中で脱水処理し高いピール強度を得ることを提案している。具体的には、真空中でPIフィルムを加熱しガス化した水分を分圧が1×10-4Pa以下になるよう排気することにより、ガス化した水分が拡散して真空槽の内部やガイドロールに再付着することを防止できるとしている。そして、この時の真空槽の全圧は10-3Pa以下との記述である。
  10-3Pa以下の真空度では気体の振る舞いは粘性流ではなく所謂分子流領域であり、したがってガス化した水分子は排気ポンプの方に流れるわけではなく、無秩序なブラウン運動をすることは広く知られている。したがって、単にフィルムを加熱し真空排気することによって、水分の再付着を防止できるという主張には根拠が無い。
  また、実施例および比較例は、放電時の添加酸素濃度を因子としたものであり、得られた結果とPIフィルムの残留水分量との因果関係が明らかにされていないという問題がある。
Next, Patent Document 7 shown below proposes to obtain a high peel strength by dehydrating in a vacuum. Specifically, by heating the PI film in vacuum and exhausting the gasified moisture so that the partial pressure becomes 1 × 10 −4 Pa or less, the gasified moisture diffuses and the inside of the vacuum chamber or the guide It is said that it can be prevented from reattaching to the roll. The total pressure in the vacuum chamber at this time is described as 10 −3 Pa or less.
At a vacuum level of 10 −3 Pa or less, the gas behavior is not a viscous flow but a so-called molecular flow region. Therefore, the gasified water molecules do not flow toward the exhaust pump, and the disordered Brownian motion is widely used. Are known. Therefore, there is no basis for the claim that moisture re-adhesion can be prevented simply by heating and evacuating the film.
Further, the examples and comparative examples have a problem that the causal relationship between the obtained results and the residual moisture content of the PI film is not clarified because the added oxygen concentration during discharge is a factor.
  次に、下記に示す特許文献8であるが、この特許文献8では、一般に樹脂フィルムには0.01~2wt%の水分が含まれており、これを真空中で加熱脱水し、0.01wt%以下にすることが望ましいとの提案である。水分量とピール強度との明確な因果関係は、特に記載されていない。
  また、PIフィルムの水分量を0.01wt%以下にするために、同特許文献では東レデュポン:Kapton-150ENを300°C又は250°Cで加熱乾燥するとともに煩雑な保管方法を提案している。上記300°Cはガラス化転移温度よりはわずかに低い温度ではあるが、そもそもPIフィルムのガラス化転移温度自体、一義的に定まる温度ではなく、300°C又は250°Cのような高温化ではPIフィルムの変質は避けられない。これにも問題がある。
Next, Patent Document 8 shown below. In this Patent Document 8, generally, a resin film contains 0.01 to 2 wt% of water, and this is heated and dehydrated in a vacuum, and 0.01 wt%. It is a proposal that it is desirable to make it below%. A clear causal relationship between water content and peel strength is not specifically described.
In order to make the moisture content of the PI film 0.01 wt% or less, the same patent document proposes a complicated storage method while heating and drying Toray DuPont: Kapton-150EN at 300 ° C. or 250 ° C. . Although the above 300 ° C. is slightly lower than the vitrification transition temperature, the vitrification transition temperature of the PI film itself is not uniquely determined in the first place, but at a high temperature such as 300 ° C. or 250 ° C. Deterioration of the PI film is inevitable. There is also a problem with this.
 次に、下記に示す特許文献9であるが、この特許文献9では、PIフィルムの水分量を0.01wt%にする乾燥方法を提案しているが、水分量とピール強度およびその他製品特性との因果関係は一切記載されていない。また、提案しているコアのコストおよびそれに巻き替えるための装置、作業を考慮すると工業的に有益かどうか疑問である。
 以上の公知技術に提案されているポリイミドフィルムの水分量を0.01wt%程度の減少させるために、フィルムの過度の加熱を伴うために、フィルム自体が変質し特性を損なう可能性があり、またフィルムの残留水分量とピール強度との因果関係が明らかにされていないという問題があって、十分な検討がなされていないのが現状である。
Next, it is Patent Document 9 shown below. This Patent Document 9 proposes a drying method in which the moisture content of the PI film is 0.01 wt%. However, the moisture content, peel strength, and other product characteristics are proposed. No causal relationship is described. Moreover, it is doubtful whether it is industrially useful considering the cost of the proposed core, the equipment for rewinding it, and the work.
In order to reduce the moisture content of the polyimide film proposed in the above-mentioned known technology by about 0.01 wt%, the film itself may change in quality due to excessive heating of the film, and the characteristics may be impaired. There is a problem that the causal relationship between the residual moisture content of the film and the peel strength has not been clarified, and the current situation is that sufficient investigation has not been made.
特許第3258296号公報Japanese Patent No. 3258296 特許第3173511号公報Japanese Patent No. 3173511 特表2003-519901号公報Special table 2003-519901 gazette 特開平6-120630号公報JP-A-6-120630 特開平7-197239号公報Japanese Patent Laid-Open No. 7-197239 特開平5-106021号公報JP-A-5-106021 特開2005-54259号公報JP 2005-54259 A 特開2007-120777号公報JP 2007-120777 A 特開2007-131377号公報JP 2007-131377 A
 本願発明は、フレキシブルラミネート(特に、二層メタライジング積層体)を製作する場合に、フレキシブル基板のフィルム自体が変質し特性を損なうことを避け、フィルムの残留水分量とピール強度との関係を明らかにすると共に、ピール強度の低下を効果的に抑制できるフレキシブル基板(フレキシブルラミネート)を提供することを課題とするものである。 In the present invention, when producing a flexible laminate (especially a two-layer metallized laminate), the film itself of the flexible substrate itself is prevented from being deteriorated to deteriorate the characteristics, and the relationship between the residual moisture content of the film and the peel strength is clarified. In addition, an object of the present invention is to provide a flexible substrate (flexible laminate) capable of effectively suppressing a decrease in peel strength.
上記の課題に鑑み、本発明は以下の発明を提供するものである。
 1)水分量0.1wt%以上、0.5wt%以下の樹脂フィルムをプラズマ処理し、その上にスパッタリングによりタイコート層及び金属シード層を設け、さらに前記金属シード層上に金属導体層を形成したことを特徴とするフレキシブル基板
 2)タイコート層が、ニッケル、クロム、コバルト、ニッケル基合金、クロム基合金、コバルト基合金のいずれか1種からなる金属、金属シード層が銅又は銅合金及び金属シード層上に形成した金属導体層が銅又は銅合金であることを特徴とする上記1)記載のフレキシブル基板
 3)樹脂フィルムが真空乾燥した樹脂フィルムであることを特徴とする上記1)又は2)記載のフレキシブル基板
 4)樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上であることを特徴とする請求項1~3のいずれか一項に記載のフレキシブル基板
In view of the above problems, the present invention provides the following inventions.
1) Plasma treatment is performed on a resin film having a moisture content of 0.1 wt% or more and 0.5 wt% or less, and a tie coat layer and a metal seed layer are provided thereon by sputtering, and a metal conductor layer is formed on the metal seed layer. 2) The tie coat layer is made of any one of nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, and cobalt-base alloy, the metal seed layer is copper or copper alloy, and The flexible substrate according to 1) above, wherein the metal conductor layer formed on the metal seed layer is copper or a copper alloy 3) The above 1) or 3) wherein the resin film is a vacuum-dried resin film 2) Flexible substrate described in 4) TOF-SIMS at least at the interface between the entire resin film or the tie coat layer and the resin film The maximum strength with a molecular weight of 300 to 800 is 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100 in the proportion of the polymer component in the resin film. The flexible substrate according to one item
 また、本発明は、さらに以下の発明を提供するものである。
 5)樹脂フィルムを真空乾燥することにより、樹脂フィルム全体又は少なくとも樹脂フィルムの表面の水分量を0.1wt%以上、0.5wt%以下とした後、該樹脂フィルム上にスパッタリングによりタイコート層及び金属シード層を形成し、さらに該金属シード層上に金属導体層を形成することを特徴とするフレキシブル基板の製造方法
 6)タイコート層として、ニッケル、クロム、コバルト、ニッケル基合金、クロム基合金、コバルト基合金のいずれか1種からなる金属、金属シード層として銅又は銅合金及び金属シード層上に形成する金属導体層として銅又は銅合金を用いることを特徴とする上記5)記載のフレキシブル基板の製造方法
 7)樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上である樹脂フィルムを用いることを特徴とする上記5)又は6)記載のフレキシブル基板の製造方法
The present invention further provides the following inventions.
5) The resin film is vacuum-dried so that the moisture content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt% or less, and then the tie coat layer and A method of manufacturing a flexible substrate, comprising forming a metal seed layer and further forming a metal conductor layer on the metal seed layer. 6) Nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy as a tie coat layer The flexible metal according to 5) above, wherein a metal comprising any one of cobalt-based alloys, copper or a copper alloy as a metal seed layer, and copper or a copper alloy as a metal conductor layer formed on the metal seed layer. Substrate manufacturing method 7) TOF at the entire resin film or at least the interface between the tie coat layer and the resin film The above 5), wherein the resin film has a maximum strength with a molecular weight of 300 to 800 of 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100 in the SIMS analysis. Or the manufacturing method of the flexible substrate as described in 6)
 フレキシブルラミネート(特に、二層メタライジング積層体)を製作する場合に、フィルムの残留水分量を一定量低減することにより、フレキシブル基板のフィルム自体を変質させ、特性を損なうことがなく、かつピール強度の低下を効果的に抑制できるフレキシブル基板(フレキシブルラミネート)を提供することができるという優れた効果を有する。 When manufacturing flexible laminates (especially two-layer metallized laminates), reducing the residual moisture content of the film by a certain amount prevents the flexible substrate film itself from deteriorating and does not impair the properties, and the peel strength. It has the outstanding effect that the flexible substrate (flexible laminate) which can suppress the fall of this effectively can be provided.
 次に、本願発明の具体例について説明する。
 本発明のフレキシブル基板は、予め樹脂フィルムを乾燥(特に、真空乾燥することが望ましい。)することにより、樹脂フィルム全体又は少なくとも樹脂フィルムの表面の水分量を0.1wt%以上、0.5wt%以下とした後、該樹脂フィルム上にスパッタリングによりタイコート層及び金属シード層を形成し、さらに該金属シード層上に金属導体層を形成する。これにより、フレキシブルラミネート基板を作製することができる。
 上記フレキシブル基板の表面をプラズマ処理するのは、表面の汚染物質の除去と表面の改質を行うためである。
 次に、このように改質した樹脂フィルムの表面に、タイコート層と、その上に金属シード層をスパッタリングにより形成する。次いで無電解めっき又は電気めっきにより回路基板の導体層となる金属層を製膜する。
Next, specific examples of the present invention will be described.
In the flexible substrate of the present invention, the resin film is dried in advance (especially, preferably vacuum-dried), whereby the moisture content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt%. After the following, a tie coat layer and a metal seed layer are formed on the resin film by sputtering, and a metal conductor layer is further formed on the metal seed layer. Thereby, a flexible laminate substrate can be produced.
The reason why the surface of the flexible substrate is subjected to plasma treatment is to remove surface contaminants and to modify the surface.
Next, a tie coat layer and a metal seed layer thereon are formed by sputtering on the surface of the resin film thus modified. Next, a metal layer to be a conductor layer of the circuit board is formed by electroless plating or electroplating.
 前記タイコート層に使用する材料としては、ニッケル、クロム、コバルト、ニッケル基合金、クロム基合金、コバルト基合金のいずれか1種であり、銅の存在は不純物としても少ない方が望ましいことは言うまでもない。
 いずれの場合も、ニッケル、クロム又はコバルトが主成分となるものであり、これらが前記タイコート層において主成分が最も存在比の大きい成分である。
 この中で、特に通常使用されるニッケルとクロムとの合金からなり、主成分がNiであることが望ましい。
 さらに、本発明においては、上記の無接着剤フレキシブルラミネートを用いて形成したフレキシブル電子回路基板を提供することができる。
The material used for the tie coat layer is any one of nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, and cobalt-base alloy, and it is needless to say that the presence of copper is preferably small as an impurity. Yes.
In any case, nickel, chromium or cobalt is the main component, and these are components having the largest abundance ratio in the tie coat layer.
Among these, it is particularly preferable that it is made of a commonly used alloy of nickel and chromium, and the main component is Ni.
Furthermore, in this invention, the flexible electronic circuit board formed using said non-adhesive flexible laminate can be provided.
 本発明においては、特に樹脂フィルム全体又は少なくとも樹脂フィルムの表面の水分量を0.1wt%以上、0.5wt%以下とすることが重要である。
 上記水分量が0.5wt%を超える場合には、ピール強度の改善が認められない。また水分量を0.1wt%未満とする場合には、樹脂フィルムを加熱して脱水するなどの強度な脱水が必要となり、これは逆にフレキシブル基板のフィルム自体を変質させ、特性を損なうことが多くなるためである。
In the present invention, it is particularly important that the water content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt% or less.
When the water content exceeds 0.5 wt%, the peel strength is not improved. When the water content is less than 0.1 wt%, strong dehydration such as heating and dehydrating the resin film is necessary. This may adversely change the film itself of the flexible substrate and impair the characteristics. This is because it increases.
 ここで、フィルム中の水分によるピール劣化のメカニズムについて説明する。なお、このメカニズムは必ずしも明らかにされた訳ではないが、以下のように考えられる。
 その1は、前記フレキシブル基板の製造工程のスパッタリングに先立つプラズマ処理において、プラズマの熱にさらされたフィルムからHOが蒸発し、そのHOも亦、電離しプラズマ状態になることが考えられる。
 HOが電離してどのような粒子(イオン、ラジカル)になるかは必ずしも明確ではないが、これらHOが電離して生じるプラズマ中の粒子が、ポリイミド表層にダメージを与え、このダメージ部分が耐熱エージング(Aging)後に劣化することである。
Here, the mechanism of peel deterioration due to moisture in the film will be described. This mechanism is not necessarily clarified, but is considered as follows.
The first is that H 2 O evaporates from the film exposed to the heat of the plasma in the plasma treatment prior to the sputtering in the manufacturing process of the flexible substrate, and the H 2 O is also ionized to become a plasma state. It is done.
Although any particles (ions, radicals) or is not necessarily clear becomes in H 2 O is ionized, particles in the plasma caused by these H 2 O is ionization, damage the polyimide surface layer, this damage The portion is deteriorated after heat aging (Aging).
 その2として、前記フレキシブル基板の製造工程のスパッタリングに先立つプラズマ処理において、プラズマによる改質の際に、例えば樹脂フィルムとして代表的なポリイミドについて説明すると、このポリイミドに含まれるHOとポリイミドとが化合してポリイミド表層に脆弱な分子を生成し、これが耐熱エージング後に劣化することである。 As a second example, in the plasma treatment prior to the sputtering in the manufacturing process of the flexible substrate, a typical polyimide as a resin film, for example, in the case of modification by plasma, H 2 O and polyimide contained in this polyimide will be described. It combines to produce fragile molecules on the polyimide surface, which degrade after heat aging.
 さらに、その3として、スパッタリングにおいてタイコート層及び金属シード層を形成する際に、スパッタのプラズマの熱にさらされたフィルムからHOが蒸発し、そのHOもまた電離しプラズマ状態になることが予想される。
 この場合、HOが電離してどのような粒子(イオン、ラジカル)になるかは明確ではないが、これらHOが電離して生じるプラズマ中の粒子が、ポリイミド表層及び/又はポリイミドと金属の結合界面にダメージを与え、このダメージ部分が耐熱エージング後に劣化することである。
Further, as No. 3, when forming a tie coat layer and a metal seed layer in sputtering, H 2 O evaporates from the film exposed to the heat of the sputtering plasma, and the H 2 O is also ionized into a plasma state. It is expected to be.
In this case, any particles (ions, radicals) H 2 O is ionized but Is not clear becomes, these H 2 O is the particles in the plasma resulting ionized, the polyimide surface layer and / or polyimide The damage is caused to the metal bonding interface, and the damaged portion deteriorates after heat aging.
 これらの現象については、推測ではあるが、これらが単独で又は複合して樹脂フィルムの表面を変質させ、フレキシブル基板の耐熱エージング性を劣化させている可能性がある。したがって、樹脂フィルムの劣化においては、高分子成分の割合が変化する可能性が大きくなる。すなわち、樹脂フィルム中の水分が結果として樹脂フィルムの高分子成分の割合に影響を与えていることになる。 These phenomena are speculated, but they may be used alone or in combination to alter the surface of the resin film and deteriorate the heat aging resistance of the flexible substrate. Therefore, in the deterioration of the resin film, the possibility that the ratio of the polymer component changes is increased. That is, the water | moisture content in a resin film has influenced the ratio of the high molecular component of a resin film as a result.
 この意味から、本願発明においては、樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上である樹脂フィルムとしての特性を維持することにより、フレキシブル基板の耐熱エージング性を向上させることができる。本願発明は、これらを包含するものである。 In this sense, in the present invention, at least at the interface between the entire resin film or the tie coat layer and the resin film, the ratio of the polymer component of the resin film to the maximum strength having a molecular weight of 1 to 100 in the TOF-SIMS analysis, By maintaining the properties as a resin film having a maximum strength of 0.5 to at least 300 with a molecular weight of 300 to 800, the heat aging resistance of the flexible substrate can be improved. The present invention includes these.
 最近のプリント基板(特にCOF用途)では配線幅がより狭くなっており、線幅が細い場合にエッチングの影響を受けやすいこと、さらには回路設計において熱の負荷がある場合が多くなっているので、このような条件においてもピール強度、すなわち常態ピール強度のみならず耐熱ピール強度の向上が望ましいと言える。 In recent printed circuit boards (especially for COF applications), the wiring width is narrower, and when the line width is narrow, it is more susceptible to etching, and moreover, there is an increasing number of thermal loads in circuit design. Even under such conditions, it can be said that it is desirable to improve not only the peel strength, that is, the normal peel strength but also the heat-resistant peel strength.
 次に、これらの結果に基づいて本願発明の実施例を説明する。なお、これらの説明は、あくまで理解を容易にするものであり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。 Next, examples of the present invention will be described based on these results. Note that these descriptions are merely for easy understanding, and are not limited to this example. That is, other aspects or modifications included in the present invention are included.
(フィルム吸湿量測定方法)
 まず、フィルム吸湿量測定方法について説明する。また、樹脂フィルムとして使用される代表的なポリイミド(PI)フィルムを用いて説明する。他の樹脂フィルムにおいても、同様に適用できることは言うまでもない。
 まず、PIフィルムを約50mm角の寸法に複数枚裁断した。総質量が約20g程度になるように前述の約50mm角裁断フィルムを複数枚積み重ね、これを1試料ロットとした。ロットの質量を正確に測定し、これを初期質量とした。その後、同ロットを大気中で150°C、72時間加熱し、完全乾燥した後、再度質量を測定し、両者の差をPIフィルムの含水質量とした。PIフィルム含水率はPIフィルムの含水質量と初期質量の比として算出した。
(Film moisture absorption measurement method)
First, the film moisture absorption measuring method will be described. Moreover, it demonstrates using the typical polyimide (PI) film used as a resin film. Needless to say, the same applies to other resin films.
First, a plurality of PI films were cut into a size of about 50 mm square. A plurality of the aforementioned about 50 mm square cut films were stacked so that the total mass was about 20 g, and this was taken as one sample lot. The mass of the lot was accurately measured and used as the initial mass. Thereafter, the same lot was heated in air at 150 ° C. for 72 hours and completely dried, and then the mass was measured again. The difference between the two was taken as the moisture content of the PI film. The moisture content of the PI film was calculated as the ratio of the moisture content of the PI film to the initial mass.
 なお、この場合ポリイミドの空気中での吸湿速度が速いために試料裁断及び測定時の吸湿量が誤差となる可能性があるので、この点について説明する。
 Kapton-ENでは空気中約30分で飽和吸湿量に達するといわれている。Apical-FPはそれよりもさらに速く、20分程度で飽和と言われている。
 一方、試料の作成に際しては、次のことを考慮した。
  PIの比重:1.5g/cm
  PIの体積:5cm×5cm×37.5μm=0.094cm
  1試片重量:1.5g/cm×0.094cm=0.14g
 したがって、20g程度の総質量のロット作製には:5cm×5cmで約140枚必要となる。
In this case, since the moisture absorption rate of polyimide in the air is high, there is a possibility that the amount of moisture absorption during sample cutting and measurement may cause an error. This point will be described.
Kapton-EN is said to reach saturation moisture absorption in about 30 minutes in the air. Apical-FP is said to be even faster than that and saturated in about 20 minutes.
On the other hand, the following was taken into account when preparing the sample.
Specific gravity of PI: 1.5 g / cm 3
PI volume: 5 cm × 5 cm × 37.5 μm = 0.094 cm 3
1 specimen weight: 1.5 g / cm 3 × 0.094 cm 3 = 0.14 g
Therefore, to make a lot with a total mass of about 20 g: about 140 pieces of 5 cm × 5 cm are required.
 寸法の正確さは、特に必要ないので、あらかじめ重ねておいたフィルムからまとめて裁断することにより、裁断は数分で完了することができる。
 また、測定時には約140枚重なっているので、重ねたフィルムの一番上のフィルムの吸湿はある程度避けられないが、それ以外のフィルムの吸湿は相当遅くなると考えられるので、裁断および測定中の吸湿影響は無視できるレベルと考えられる。
Since the accuracy of the dimensions is not particularly required, the cutting can be completed in a few minutes by cutting together from the previously stacked films.
In addition, about 140 sheets overlap at the time of measurement, so it is inevitable to absorb moisture to the top of the stacked films to some extent, but it is considered that moisture absorption of other films will be considerably delayed, so moisture absorption during cutting and measurement The impact is considered negligible.
(フィルム乾燥方法)
 次に、樹脂フィルムの乾燥について説明する。以下の方法で乾燥を実施した。
 樹脂フィルムはKapton-150EN-Cを例に説明する。巻出ロール及び巻取ロールが共に真空チャンバーの中にあるロール・トゥ・ロール方式の真空処理装置を使用した。この装置を用いて真空乾燥を実施する。
 乾燥しようとする樹脂フィルムをセットした後、ドライポンプ及びターボ分子ポンプで真空チャンバー内を5×10-3Paまで真空排気した。その後、真空排気を継続したまま、巻出ロールから巻取ロールへと樹脂フィルムの搬送を行った。
(Film drying method)
Next, drying of the resin film will be described. Drying was performed by the following method.
The resin film will be described taking Kapton-150EN-C as an example. A roll-to-roll type vacuum processing apparatus in which both an unwinding roll and a winding roll are in a vacuum chamber was used. Vacuum drying is performed using this apparatus.
After setting the resin film to be dried, the inside of the vacuum chamber was evacuated to 5 × 10 −3 Pa with a dry pump and a turbo molecular pump. Thereafter, the resin film was transported from the unwinding roll to the winding roll while evacuation was continued.
 まず、500mのフィルムを1m/分で搬送した。この速度では、500分で全部巻取終了するので、巻取終了後すぐに搬送方向を反転し、1m/分で搬送するということを繰り返した。これを48時間継続した。ロールに巻かれた状態では真空中での乾燥効果はほとんどなく、巻きだされてロール間に存在している樹脂フィルムの部分だけが真空乾燥される。この真空乾燥方法は、本方法に限定される必要はないことは容易に理解されるであろう。乾燥が十分に行われるものであれば、他の真空乾燥方法を使用することも可能である。 First, a 500 m film was conveyed at 1 m / min. At this speed, the entire winding was completed in 500 minutes, so that the conveyance direction was reversed immediately after the completion of winding and the conveyance was repeated at 1 m / min. This was continued for 48 hours. In a state of being wound on a roll, there is almost no drying effect in a vacuum, and only the portion of the resin film that has been wound and exists between the rolls is vacuum-dried. It will be readily appreciated that this vacuum drying method need not be limited to this method. Other vacuum drying methods can be used as long as the drying is sufficiently performed.
 この後、上記の方法で、樹脂フィルムの外周と巻芯の吸湿量を測定した。この樹脂フィルムの外周と巻芯の吸湿量の測定結果を表1に示す。
 この表1に示すように、真空乾燥前の樹脂フィルムの外周では0.96%であり、樹脂フィルムの巻芯では0.90%であった。これに対し、真空乾燥後の樹脂フィルムの外周では0.43%となり、樹脂フィルムの巻芯では0.33%となり、樹脂フィルムの外周では半分以下に、樹脂フィルムの巻芯では1/3程度にまで減少した。この乾燥後の水分量は、本願発明の樹脂フィルムの表面の水分量を0.1wt%以上、0.5wt%以下の条件に適合するものである。
Then, the moisture absorption amount of the outer periphery of the resin film and the core was measured by the above method. Table 1 shows the measurement results of the moisture absorption amount of the outer periphery and the core of the resin film.
As shown in Table 1, it was 0.96% at the outer periphery of the resin film before vacuum drying, and 0.90% at the core of the resin film. On the other hand, the outer periphery of the resin film after vacuum drying is 0.43%, the core of the resin film is 0.33%, the outer periphery of the resin film is less than half, and the core of the resin film is about 1/3. Decreased to. The moisture content after drying is such that the moisture content on the surface of the resin film of the present invention meets the conditions of 0.1 wt% or more and 0.5 wt% or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(FCCL(Flexible Copper Clad Laminate)の作製)
(1)フィルム:東レデュポン製Kapton-150EN-C
 上記の方法で乾燥した東レデュポン製Kapton-150EN-C及び特に乾燥を行っていない同フィルムの2種を用意し、両フィルムについて以下の方法で二層メタライジング積層体を作製した。
 なお、乾燥したフィルムにおいては、乾燥後、処理用真空装置内にセットするまでの時間は約30分であった。
 乾燥後のフィルムはロール状に巻き取られた形状であり、30分程度の空気中暴露時間であれば、ロールの最外周を除くフィルムの乾燥は保たれていた。
(Production of FCCL (Flexible Copper Clad Laminate))
(1) Film: Kapton-150EN-C manufactured by Toray DuPont
Two types of Kapton-150EN-C made by Toray DuPont dried by the above method and the same film not particularly dried were prepared, and a two-layer metallized laminate was prepared by the following method for both films.
In the dried film, the time from drying to setting in the processing vacuum apparatus was about 30 minutes.
The dried film had a shape wound up in a roll shape, and when the exposure time in air was about 30 minutes, the film except the outermost periphery of the roll was kept dry.
 ポリイミドフィルムを真空装置内にセットし真空排気後、ポリイミドのプラズマ処理を実施した。続いてタイコート層及び金属シード層をスパッタリングにより形成した。
 タイコート層は、Ni-20wt%Cr:理論密度で25nm相当、金属シード層はCu:300nmとした。スパッタリングはDCマグネトロン方式によりArガス雰囲気、0.5Paにて行った。
The polyimide film was set in a vacuum apparatus, evacuated, and then subjected to polyimide plasma treatment. Subsequently, a tie coat layer and a metal seed layer were formed by sputtering.
The tie coat layer was Ni-20 wt% Cr: equivalent to 25 nm in theoretical density, and the metal seed layer was Cu: 300 nm. Sputtering was performed by DC magnetron method in an Ar gas atmosphere at 0.5 Pa.
 次に、上記の金属シード層の上に電気メッキにより銅からなる金属導体層(厚さ8μm)を形成することにより、二層メタライジング積層体を作製した。
 ピール強度の測定は、JISC6471(フレキシブルプリント配線板用銅張積層板試験方法)により、下記の条件で実施した。
  ピール測定時のサンプル線幅:3mm、100μm
  耐熱エージング条件:空気中150°C×168時間
 この結果を、表2に示す。この表2に示すように、ピールサンプル線幅3mm、100μmともに、フィルム乾燥によって、明らかに耐熱ピール強度が向上していた。
Next, a metal conductor layer (thickness 8 μm) made of copper was formed on the above metal seed layer by electroplating to produce a two-layer metalizing laminate.
The peel strength was measured according to JISC6471 (Test method for copper-clad laminate for flexible printed wiring board) under the following conditions.
Sample line width during peel measurement: 3 mm, 100 μm
Heat aging conditions: 150 ° C. × 168 hours in air The results are shown in Table 2. As shown in Table 2, in both peel sample line widths of 3 mm and 100 μm, the heat-resistant peel strength was clearly improved by film drying.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)フィルム:東レデュポン製Kapton-150EN-A
 フィルム種の差異以外は、全て上述(1)と同じ条件で実施した。この結果を表3に示す。この表3に示すように、ピールサンプル線幅3mm、100μmともに、フィルム乾燥によって、明らかに耐熱ピール強度が向上していた。
(2) Film: Kapton-150EN-A manufactured by Toray DuPont
Except for the difference in film type, all the conditions were the same as in (1) above. The results are shown in Table 3. As shown in Table 3, both the peel sample line widths of 3 mm and 100 μm clearly improved the heat-resistant peel strength by film drying.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(3)フィルム:カネカ製APICAL-35FP
  フィルム種の差異以外は、全て上述(1)と同じ条件で実施した。
 この結果を表4に示す。この表4に示すように、ピールサンプル線幅3mm、100μmともに、フィルム乾燥によって、明らかに耐熱ピール強度が向上していた。
(3) Film: Kaneka APICAL-35FP
Except for the difference in film type, all the conditions were the same as in (1) above.
The results are shown in Table 4. As shown in Table 4, in both peel sample line widths of 3 mm and 100 μm, the heat-resistant peel strength was clearly improved by film drying.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記の通り、水分量0.1wt%以上、0.5wt%以下の樹脂フィルムをプラズマ処理し、その上にスパッタリングによりタイコート層及び金属シード層を設け、さらに前記金属シード層上に金属導体層を形成したフレキシブル基板は、耐熱ピール強度向上に有効であることが確認できた。
 また、上記実施例においては、特にTOF-SIMS分析で樹脂フィルムの高分子成分の割合を示していないが、樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上であるという条件の範囲に入るものであった。
 このようにピール強度は線幅が狭いほど種々の条件に敏感であるため、この傾向は、線幅が縮小するほど効果があることが分かる。
As described above, a resin film having a moisture content of 0.1 wt% or more and 0.5 wt% or less is plasma-treated, and a tie coat layer and a metal seed layer are provided thereon by sputtering, and a metal conductor layer is further formed on the metal seed layer. It was confirmed that the flexible substrate formed with is effective in improving the heat-resistant peel strength.
In the above examples, the ratio of the polymer component of the resin film is not particularly shown by TOF-SIMS analysis. However, the resin is analyzed by TOF-SIMS analysis at least at the interface between the entire resin film or the tie coat layer and the resin film. The ratio of the polymer component of the film was within the range of the condition that the maximum strength with a molecular weight of 300 to 800 was 0.5% or more with respect to the maximum strength with a molecular weight of 1 to 100.
Thus, since the peel strength is more sensitive to various conditions as the line width is narrower, it can be seen that this tendency is more effective as the line width is reduced.
 本願発明は、フレキシブルラミネート(特に、二層メタライジング積層体)を製作する場合に、フィルムの残留水分量を一定量低減することにより、フレキシブル基板のフィルム自体を変質させ、特性を損なうことがなく、かつピール強度の低下を効果的に抑制できるフレキシブル基板(フレキシブルラミネート)を提供することができるという優れた効果を有するので、電子産業における回路基板の素材としてとして極めて有用である。 In the present invention, when producing a flexible laminate (particularly, a two-layer metallized laminate), the film itself of the flexible substrate is not altered and the characteristics are not impaired by reducing the residual moisture content of the film by a certain amount. In addition, since it has an excellent effect of providing a flexible substrate (flexible laminate) capable of effectively suppressing a decrease in peel strength, it is extremely useful as a material for circuit boards in the electronic industry.

Claims (7)

  1.  水分量0.1wt%以上、0.5wt%以下の樹脂フィルムをプラズマ処理し、その上にスパッタリングによりタイコート層及び金属シード層を設け、さらに前記金属シード層上に金属導体層を形成したことを特徴とするフレキシブル基板。 A resin film having a moisture content of 0.1 wt% or more and 0.5 wt% or less is plasma-treated, and a tie coat layer and a metal seed layer are provided thereon by sputtering, and a metal conductor layer is formed on the metal seed layer. A flexible substrate characterized by
  2.  タイコート層が、ニッケル、クロム、コバルト、ニッケル基合金、クロム基合金、コバルト基合金のいずれか1種からなる金属、金属シード層が銅又は銅合金及び金属シード層上に形成した金属導体層が銅又は銅合金であることを特徴とする請求項1記載のフレキシブル基板。 Metal conductor layer in which the tie coat layer is made of any one of nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, and cobalt-base alloy, and the metal seed layer is formed on copper or the copper alloy and the metal seed layer The flexible substrate according to claim 1, wherein is a copper or copper alloy.
  3.  樹脂フィルムが真空乾燥した樹脂フィルムであることを特徴とする請求項1又は2記載のフレキシブル基板。 3. The flexible substrate according to claim 1, wherein the resin film is a vacuum-dried resin film.
  4.  樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上であることを特徴とする請求項1~3のいずれか一項に記載のフレキシブル基板。 In at least the interface between the entire resin film or the tie coat layer and the resin film, the maximum strength with a molecular weight of 300 to 800 is 0 compared to the maximum strength with a molecular weight of 1 to 100 in the TOF-SIMS analysis. The flexible substrate according to any one of claims 1 to 3, wherein the content is 5% or more.
  5.  樹脂フィルムを真空乾燥することにより、樹脂フィルム全体又は少なくとも樹脂フィルムの表面の水分量を0.1wt%以上、0.5wt%以下とした後、該樹脂フィルム上にスパッタリングによりタイコート層及び金属シード層を形成し、さらに該金属シード層上に金属導体層を形成することを特徴とするフレキシブル基板の製造方法。 The resin film is vacuum-dried so that the moisture content of the entire resin film or at least the surface of the resin film is 0.1 wt% or more and 0.5 wt% or less, and then the tie coat layer and metal seed are sputtered on the resin film. A method for producing a flexible substrate, comprising forming a layer and further forming a metal conductor layer on the metal seed layer.
  6.  タイコート層として、ニッケル、クロム、コバルト、ニッケル基合金、クロム基合金、コバルト基合金のいずれか1種からなる金属、金属シード層として銅又は銅合金及び金属シード層上に形成する金属導体層として銅又は銅合金を用いることを特徴とする請求項5記載のフレキシブル基板の製造方法。 As the tie coat layer, nickel, chromium, cobalt, nickel-base alloy, chromium-base alloy, metal based on any one of cobalt-base alloys, copper or copper alloy as the metal seed layer, and metal conductor layer formed on the metal seed layer 6. The method of manufacturing a flexible substrate according to claim 5, wherein copper or a copper alloy is used as the substrate.
  7.  樹脂フィルム全体又はタイコート層と樹脂フィルムとの少なくとも界面において、TOF-SIMS分析で樹脂フィルムの高分子成分の割合が分子量1~100の最大強度に対して、分子量300~800の最大強度が0.5%以上である樹脂フィルムを用いることを特徴とする請求項5又は6記載のフレキシブル基板の製造方法。
     
    In at least the interface between the entire resin film or the tie coat layer and the resin film, the maximum strength with a molecular weight of 300 to 800 is 0 with respect to the maximum strength with a molecular weight of 1 to 100 in the TOF-SIMS analysis. 7. The method for producing a flexible substrate according to claim 5, wherein a resin film of 5% or more is used.
PCT/JP2010/053954 2009-03-27 2010-03-10 Flexible substrate and process for production thereof WO2010110062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505963A JPWO2010110062A1 (en) 2009-03-27 2010-03-10 Flexible substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009078074 2009-03-27
JP2009-078074 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010110062A1 true WO2010110062A1 (en) 2010-09-30

Family

ID=42780755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053954 WO2010110062A1 (en) 2009-03-27 2010-03-10 Flexible substrate and process for production thereof

Country Status (2)

Country Link
JP (1) JPWO2010110062A1 (en)
WO (1) WO2010110062A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031603A (en) * 2009-07-08 2011-02-17 Sumitomo Metal Mining Co Ltd Metalized polyimide film, flexible wiring board, and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107092A (en) * 1996-10-02 1998-04-24 Toray Ind Inc Tape with bonding agent for tab, tab tape and semiconductor device
JP2004311751A (en) * 2003-04-08 2004-11-04 Seiko Instruments Inc Manufacturing method of electronic apparatus, film substrate, semiconductor device and display device
JP2006269689A (en) * 2005-03-23 2006-10-05 Sumitomo Metal Mining Co Ltd Method of manufacturing flexible board
JP2006324362A (en) * 2005-05-17 2006-11-30 Sumitomo Metal Mining Co Ltd Flexible board and its etching method
JP2008162245A (en) * 2007-01-05 2008-07-17 Toray Advanced Film Co Ltd Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
JP2010042564A (en) * 2008-08-11 2010-02-25 Mitsubishi Materials Corp Method for producing flexible substrate and flexible substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502296B2 (en) * 2008-08-11 2014-05-28 株式会社ソノコム Suspended metal mask manufacturing method and suspend metal mask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107092A (en) * 1996-10-02 1998-04-24 Toray Ind Inc Tape with bonding agent for tab, tab tape and semiconductor device
JP2004311751A (en) * 2003-04-08 2004-11-04 Seiko Instruments Inc Manufacturing method of electronic apparatus, film substrate, semiconductor device and display device
JP2006269689A (en) * 2005-03-23 2006-10-05 Sumitomo Metal Mining Co Ltd Method of manufacturing flexible board
JP2006324362A (en) * 2005-05-17 2006-11-30 Sumitomo Metal Mining Co Ltd Flexible board and its etching method
JP2008162245A (en) * 2007-01-05 2008-07-17 Toray Advanced Film Co Ltd Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
JP2010042564A (en) * 2008-08-11 2010-02-25 Mitsubishi Materials Corp Method for producing flexible substrate and flexible substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031603A (en) * 2009-07-08 2011-02-17 Sumitomo Metal Mining Co Ltd Metalized polyimide film, flexible wiring board, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2010110062A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US7422792B2 (en) Metallized polymide film
TWI729572B (en) Copper-clad laminated board and manufacturing method of copper-clad laminated board
US20120135160A1 (en) Method for Production of Non-Adhesive-Type Flexible Laminate
US20110003169A1 (en) Non-Adhesive Flexible Laminate
JP2010023380A (en) Metallized polyimide film and method for manufacturing the same
WO2012108264A1 (en) Two-layered copper-clad laminate material, and method for producing same
EP2640172A1 (en) Method for forming circuit on flexible laminate substrate
US20080283278A1 (en) Flexible Circuit Substrate
KR101363771B1 (en) Two-layer flexible substrate and process for producing same
JP2021151788A (en) Double side plated laminate
TWI783190B (en) laminated body
WO2010074056A1 (en) Flexible laminate and flexible electronic circuit substrate formed using the same
WO2010110062A1 (en) Flexible substrate and process for production thereof
JP2008311328A (en) Flexible circuit substrate and manufacturing method thereof
JP2019038136A (en) Double side metal laminate and production method thereof
EP2542038A1 (en) Method of forming circuits upon flexible laminate substrate
JP2006310359A (en) Substrate for flexible printed circuit
JP3037519B2 (en) Conductive laminated film and method for producing the same
CN112437724A (en) Laminated body
KR102514230B1 (en) Double-sided metal laminate, manufacturing method thereof and image transfer method of patterns
US20230076995A1 (en) Metal-coated liquid-crystal polymer film
JP4385298B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP2008279610A (en) Flexible laminated sheet and method for manufacturing flexible laminated sheet
JP2010045119A (en) Flexible base material and method of manufacturing the same
JP2023037942A (en) flexible substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755862

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011505963

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755862

Country of ref document: EP

Kind code of ref document: A1