WO2010109685A1 - Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus - Google Patents

Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus Download PDF

Info

Publication number
WO2010109685A1
WO2010109685A1 PCT/JP2009/062830 JP2009062830W WO2010109685A1 WO 2010109685 A1 WO2010109685 A1 WO 2010109685A1 JP 2009062830 W JP2009062830 W JP 2009062830W WO 2010109685 A1 WO2010109685 A1 WO 2010109685A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming apparatus
precoat layer
film forming
water
Prior art date
Application number
PCT/JP2009/062830
Other languages
French (fr)
Japanese (ja)
Inventor
省記 魚田
純一 安丸
昭人 上口
Original Assignee
関西熱化学株式会社
株式会社ケイエヌラボアナリシス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西熱化学株式会社, 株式会社ケイエヌラボアナリシス filed Critical 関西熱化学株式会社
Publication of WO2010109685A1 publication Critical patent/WO2010109685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a film forming apparatus component.
  • the present invention also relates to a technique for removing an adhesion film formed on a component for a film forming apparatus.
  • film formation refers to forming a thin film on an object
  • an example of film formation includes sputtering.
  • Sputtering is a process in which a chamber is evacuated and then an inert gas such as argon gas is introduced, and a high voltage is applied between a target base material and a target material that is a thin film material to ionize the inert gas.
  • This is a method of forming a thin film by causing an active gas to collide with a target material and depositing a film-forming material blown off on the target material on the base material.
  • the film forming material blown off from the target material adheres not only to the target object but also to the parts that hold the target object and each part of the apparatus in the chamber. As a result, a thin film is formed. Then, by repeatedly forming a film using the film forming apparatus, a thin film is laminated on each part that holds the object and each part of the apparatus in the chamber, and an adhesion film such as a sputtering film is formed. This adhered film peels off from the components of the film forming apparatus due to repeated thermal history, etc., adheres to the base material, and causes film defects. Therefore, the parts for the film forming apparatus are periodically regenerated by removing the adhered film.
  • Patent Document 1 discloses a low mass in which the outer surface of a lump or powder composed of single or plural crystal grains of Al or Al alloy is In, Sn, In and Sn, or an alloy thereof.
  • a technique of using a water-disintegrating Al composite material, characterized by being covered with a melting point metal film, as a film forming apparatus member is disclosed.
  • this water-disintegrating Al composite material is not preferable from the viewpoint of safety because hydrogen gas is generated when the attached film is peeled off.
  • Patent Document 2 discloses a method for thermal spraying, vapor deposition, sputtering, laminating, etc., of a metal film layer that is electrochemically lower than the base metal of the component in a component of a film forming apparatus that forms a thin film on a substrate.
  • the component for film-forming apparatuses characterized by having been formed in the surface of the base metal is disclosed.
  • a positive electric field is applied to the base metal, and the base metal is applied from the adhesion film or the second metal film layer.
  • it is necessary to take measures such as passivation so that it behaves as a noble metal, and the removal process of the adhered film becomes complicated.
  • Patent Document 3 a film called a soft film made of a material having a lower hardness than the constituent material of the part is formed on the surface of the part used in the vicinity of a place where the film is formed in the gas atmosphere film forming apparatus.
  • a film forming apparatus component is disclosed.
  • Patent Document 4 a member coated with a partially stabilized zirconia sprayed film is used in a thin film formation or plasma treatment process, and then placed in an environment at a temperature of 100 ° C. to 300 ° C. and a humidity of 50% or more.
  • a method for peeling a partially stabilized zirconia sprayed film characterized by peeling the sprayed film is disclosed.
  • Patent Document 5 discloses an adhesion preventing plate for a vacuum processing apparatus that prevents adhesion of contaminants to the inner surface of a sealed space forming a processing chamber in a vacuum processing apparatus, and a thin plate mainly made of aluminum is used as an interlayer material. A plurality of laminated layers, and if the surface thin plate in the exposed state is contaminated with contaminants, the surface thin plate is peeled off to expose the next layer. An adhesion prevention plate for a vacuum processing apparatus is disclosed.
  • a film forming apparatus part in which a precoat layer that is easily peeled off from the base material is formed in advance has been developed.
  • the pressure in the chamber is reduced to about 1.0 ⁇ 10 ⁇ 5 Pa, or the temperature in the chamber is increased to about 350 ° C.
  • the precoat layer should not peel from the substrate. Therefore, in the conventional technique, it is difficult to peel the precoat layer from the substrate, and there is a problem that it takes time to remove the adhered film.
  • the film forming apparatus component of the present invention that has solved the above-described problems includes a base material, a precoat layer formed on the base material, and a porous sprayed layer formed on the precoat layer.
  • the precoat layer which is formed from an aqueous inorganic coating agent, linear thermal expansion coefficient of the substrate (alpha 1) and linear thermal expansion coefficient of the precoat layer and the (alpha 2) Difference (
  • the precoat layer can be formed simply by applying a water-based inorganic coating agent to the substrate and drying it, the work is easy and the productivity of the film forming apparatus parts is improved.
  • the precoat layer formed from the aqueous inorganic coating agent can reduce the adhesiveness with respect to a base material by processing with water and / or water vapor
  • the porous sprayed layer is formed on the precoat layer, water and / or water vapor easily penetrates into the precoat layer, and the adhesion of the precoat layer to the base material is more likely to be lowered.
  • the film-forming apparatus component on which the adhesion film is formed can be easily peeled off by pre-coating, for example, by performing a treatment such as boiling, and the adhesion film can be easily removed together with the pre-coating layer. it can.
  • the heat resistance of the precoat layer is improved by reducing the difference in linear thermal expansion coefficient between the precoat layer formed from the aqueous inorganic coating agent and the substrate.
  • the precoat layer is prevented from peeling from the base material.
  • the aqueous inorganic coating agent preferably contains an aggregate and a solvent containing 50% by mass or more of water, and the aggregate includes quartzite, nepheline syenite, silica, alumina, amorphous silica, and nitriding. It is preferable to contain at least one selected from the group consisting of boron. Furthermore, the aqueous inorganic coating agent preferably contains at least one selected from the group consisting of colloidal silica, a water-soluble acrylic resin, an acrylic acid polymer, and water glass as a binder.
  • the adhesive strength of the precoat layer formed by applying and drying the aqueous inorganic coating agent to the substrate is preferably more than 10 N / mm 2 , and the adhesive strength of the precoat layer to the substrate after the boiling treatment is It is preferably 10 N / mm 2 or less.
  • the precoat layer is preferably a layer that does not peel off from the substrate even after being left in an atmosphere of 450 ° C. for 1 hour and then subjected to heat treatment to cool to 25 ° C. 10 times. It is preferable that the precoat layer does not peel from the substrate even under a vacuum of 1.0 Pa or less.
  • the present invention provides a method for removing an adhesion film formed on the film forming apparatus component, wherein the adhesion film is removed after the precoat layer is treated with water and / or water vapor after the adhesion film is formed.
  • the method for removing the adhered film is also included.
  • the present invention it is possible to obtain a film forming apparatus component that can easily remove the formed adhesion film.
  • the attached film formed on the film forming apparatus component can be efficiently removed.
  • a film deposition apparatus component is a film deposition apparatus component having a base material, a precoat layer formed on the base material, and a porous sprayed layer formed on the precoat layer. layer, which is formed from an aqueous inorganic coating agent, wherein the difference in linear thermal expansion coefficient of the base material (alpha 1) and linear thermal expansion coefficient of the precoat layer and the ( ⁇ 2) ( ⁇ 1 - ⁇ 2
  • the substrate constituting the film forming apparatus component of the present invention will be described.
  • the substrate is not particularly limited as long as it is usually used for a film forming apparatus component.
  • Examples of the substrate include metals such as aluminum, iron, copper, stainless steel, and titanium.
  • the linear thermal expansion coefficient of the substrate is not particularly limited, but is usually 8 ⁇ 10 ⁇ 6 / ° C. to 24 ⁇ 10 ⁇ 6 / ° C.
  • the precoat layer constituting the film forming apparatus component of the present invention will be described.
  • the precoat layer is formed from an aqueous inorganic coating agent.
  • the aqueous inorganic coating agent is used to form the precoat layer, the precoat layer can be formed only by applying the aqueous inorganic coating agent to the substrate and drying it. Therefore, the operation for forming the precoat layer is very easy and the productivity is good.
  • the aqueous inorganic coating agent is not particularly limited as long as it contains an aggregate (including a pigment) and a solvent containing water as a main component (50% by mass or more).
  • Examples of the aggregate include minerals such as diatomaceous earth, nepheline syenite, silica and graphite; silica (SiO 2 ), amorphous silica (SiO 2 ), alumina (aluminum oxide: Al 2 O 3 ), cobalt oxide Metal oxides such as (Co 3 O 4 ), magnesium oxide (MgO), and dichromium trioxide (Cr 2 O 3 ); metal nitrides such as boron nitride (BN) and silicon nitride (Si 3 N 4 ); chromium Complex oxide pigments such as titanium yellow ((Ti, Sb, Cr) O 2 ), zinc iron brown ((Zn, Fe) Fe 2 O 4 ), nickel titanium yellow ((Ti, Sb, Ni) O 2 ) And so on.
  • the aqueous inorganic coating agent used in the present invention preferably contains at least one selected from the group consisting of silica, nepheline syenite, silica, alumina, amorphous silica, and boron nitride.
  • the aqueous inorganic coating agent may contain a binder in addition to the aggregate and the solvent mainly composed of water.
  • a binder either an inorganic binder or an organic binder can be used.
  • the inorganic binder include colloidal silica (SiO 2 .xH 2 O), alumina sol, and water glass.
  • the organic binder include water-soluble acrylic resins and acrylic acid polymers. These binders may be used alone or in combination of two or more.
  • the aqueous inorganic coating agent used in the present invention preferably contains at least one selected from the group consisting of colloidal silica, a water-soluble acrylic resin, an acrylic acid polymer, and water glass.
  • the aqueous inorganic coating agent may contain a solvent other than water.
  • a solvent other than water By adding a solvent other than water, the coating property of the aqueous inorganic coating agent can be improved.
  • the solvent other than water include alcohols such as methanol, ethanol, n-propanol, i-propanol and n-butanol; glycols such as ethylene glycol, diethylene glycol and butyl diglycol; ketones such as acetone and methyl ethyl ketone; acetic acid Examples thereof include esters such as ethyl and butyl acetate.
  • the aqueous inorganic coating agent is a curing accelerator, a thickener, a leveling agent, an antifoaming agent, a rust preventive agent, etc., as long as the effects of the present invention are not impaired.
  • the additive may be contained.
  • curing accelerator examples include sulfates such as sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, and aluminum sulfate; carbonates such as sodium carbonate and potassium carbonate; sodium hydroxide, magnesium hydroxide, aluminum hydroxide, water Hydroxides such as potassium oxide and calcium hydroxide; chlorides such as calcium chloride, magnesium chloride and iron chloride; silicates such as lithium silicate, sodium silicate and potassium silicate; phosphates such as aluminum phosphate Etc. These curing accelerators may be used alone or in combination of two or more.
  • the aqueous inorganic coating agent may be prepared by mixing the above-mentioned aggregate, binder, etc., but a commercially available one can also be used.
  • the blending composition thereof is, for example, 20 parts to 80 parts of solvent (more preferably 25 parts to about 100 parts of aggregate) 70 parts), 1 part to 20 parts (more preferably 3 parts to 15 parts) of the binder, and 0 part to 20 parts (more preferably 0 parts to 15 parts) other (curing accelerators, etc.).
  • the method for applying the water-based inorganic coating agent to the base material is not particularly limited, and a coating method similar to a normal paint can be employed.
  • the coating method include air spraying, airless spraying, dipping, brushing, and the like.
  • a precoat layer can be formed by drying and baking the aqueous
  • the drying / firing of the aqueous inorganic coating agent may be appropriately adjusted depending on the type of the binder used and the like so that the desorption of the desorbing component is completed. It may be dried and fired for 1 to 24 hours.
  • the thickness of the precoat layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less, and still more preferably 100 ⁇ m or less. If the thickness of the precoat layer is 1 ⁇ m or more, the substrate can be sufficiently precoated, and the adhesion film can be removed more easily. In addition, if the thickness of the precoat layer is 500 ⁇ m or less, the precoat layer is more difficult to peel even when the temperature of the film forming apparatus component is raised or lowered, and the number of times of applying the aqueous inorganic coating agent can be reduced. Coating costs are reduced.
  • the difference ( ⁇ 1 - ⁇ 2 ⁇ ) of linear thermal expansion coefficient of the base material (alpha 1) and linear thermal expansion coefficient of the precoat layer and the (alpha 2) is 18 ⁇ 10 -6 / °C or less It is. If the difference in linear thermal expansion (
  • ) is preferably 15 ⁇ 10 ⁇ 6 / ° C. or less, and more preferably 13 ⁇ 10 ⁇ 6 / ° C. or less.
  • the adhesive strength of the precoat layer formed by applying and drying the aqueous inorganic coating agent to the substrate is 10 N / mm. preferably 2, more preferably above 12N / mm 2 or more, and still more preferably 15N / mm 2 or more. If the adhesion strength of the precoat layer to the substrate is more than 10 N / mm 2 , the adhesion film formed on the film forming apparatus component when performing film formation using the film forming apparatus equipped with the film forming apparatus component However, detachment
  • the adhesion strength of the precoat layer to the base material after the film forming apparatus component is boiled is preferably 10 N / mm 2 or less, more preferably 8 N / mm 2 or less, and even more preferably 5 N / mm 2 or less. It is. If the adhesive strength of the precoat layer to the base material after boiling the film forming apparatus component is 10 N / mm 2 or less, the adhesion film formed on the film forming apparatus component can be more easily removed.
  • the precoat layer When the precoat layer is subjected to a heat treatment in which the film forming apparatus component is left in an atmosphere at 450 ° C. for 1 hour and then allowed to cool to 25 ° C., the heat treatment is repeated 10 times. It is preferable not to peel off. Thus, if the precoat layer is excellent in heat resistance, the precoat layer is further prevented from peeling off when the film forming apparatus component of the present invention is exposed to a high temperature during the film forming process. Moreover, it is preferable that the adhesive strength with respect to the base material of the precoat layer after performing the said heat processing 10 times is more than 10 N / mm ⁇ 2 >.
  • the precoat layer is a layer that does not separate the film forming apparatus component from the base material even under a vacuum of 1.0 Pa or less.
  • the precoat layer can be further prevented from peeling off when the film forming apparatus component of the present invention is exposed to high vacuum in the film forming process. More preferably, the precoat layer does not peel even under a vacuum of 0.1 Pa or less, and more preferably does not peel even under a vacuum of 0.01 Pa or less.
  • the linear thermal expansion coefficient of the precoat layer, the adhesive strength to the base material, and the like can be adjusted by appropriately changing the blending amount of the aggregate, the binder, and the like.
  • the porous sprayed layer constituting the film forming apparatus component of the present invention will be described.
  • the porous sprayed layer is a layer having a porous structure formed by spraying.
  • the porous sprayed layer having a porous structure is formed on the precoat layer, when the film forming apparatus component is treated with water and / or water vapor, a route for reaching the precoat layer such as water Will increase.
  • FIG. 1 is a schematic cross-sectional view showing a water penetration path into a precoat layer in a film forming apparatus component of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the water penetration path into the precoat layer when the porous sprayed layer is not formed.
  • the arrows indicate water permeation paths.
  • the porous sprayed layer 4 having a porous structure is formed on the precoat layer 3. Therefore, even when the adhesion film 7 is formed so as to cover the entire porous sprayed layer 4, water or the like is pre-coated through the pores of the porous sprayed layer 4 when processing with water and / or water vapor. It can penetrate into the entire layer 3. Thereby, even when the adhesion film 7 is formed so as to cover the entire porous sprayed layer 4, water or the like permeates the entire precoat layer 3 in a short time when treated with water and / or water vapor. Therefore, the working time can be shortened.
  • the thermal spray material for forming the porous thermal spray layer is not particularly limited, and for example, metals such as aluminum, iron, copper, stainless steel, titanium, nickel, chromium, and alloys thereof can be used. Among these, the same material as the base material or a material having a linear thermal expansion coefficient close to that of the base material is preferable.
  • the linear thermal expansion coefficient of the spray material (alpha 3) the difference between the linear thermal expansion coefficient of the precoat layer ( ⁇ 2) ( ⁇ 3 - ⁇ 2 ⁇ ) is preferably from 18 ⁇ 10 -6 / °C less, more It is preferably 15 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 13 ⁇ 10 ⁇ 6 / ° C. or less. If the difference in linear expansion coefficient (
  • the thickness of the porous sprayed layer is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, further preferably 100 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • the thickness of the porous sprayed layer is 10 ⁇ m or more, the surface of the precoat layer can be sufficiently covered, and the attached film can be removed more easily.
  • a clearance for example, a clearance between a part holding the object and the inner wall of the chamber defined for the part for the film forming apparatus can be secured.
  • the porosity of the porous sprayed layer is preferably 3% or more, more preferably 5% or more, further preferably 10% or more, preferably 70% or less, more preferably 60% or less, and still more preferably 50%. % Or less. If the porosity of the porous sprayed layer is 3% or more, when the precoat layer is treated with water and / or water vapor after the adhesion film is formed, water and water vapor quickly penetrate the entire precoat layer, Removal is easier. Moreover, if the porosity of a porous sprayed layer is 70% or less, the intensity
  • the method of forming the porous sprayed layer is not particularly limited, and for example, electric spraying such as arc spraying and plasma spraying; gas type such as welding rod type flame spraying, hot wire type flame spraying, powder type flame spraying, and explosive spraying.
  • electric spraying such as arc spraying and plasma spraying
  • gas type such as welding rod type flame spraying, hot wire type flame spraying, powder type flame spraying, and explosive spraying.
  • thermal spraying As for the thermal spraying conditions, the current, voltage, gas flow rate, pressure, thermal spray distance, nozzle diameter, material supply amount, etc. may be appropriately adjusted according to the thickness or porosity of the porous sprayed layer to be formed.
  • the method for removing an adhesion film of the present invention is a method for removing the adhesion film formed on the film forming apparatus component, wherein after the adhesion film is formed, the precoat layer is treated with water and / or water vapor, and then the adhesion film is removed. It is characterized by removing.
  • the adhesive film is removed together with the precoat layer after the precoat layer is treated with water and / or water vapor to reduce the adhesive strength of the precoat layer to the substrate.
  • the method of treating the precoat layer with water and / or water vapor is not particularly limited as long as it can reduce the adhesive strength of the precoat layer.
  • Examples of the method of treating with water include a method of immersing in water and allowing to stand for 0.1 to 24 hours, and a method of immersing in water and boiling for 1 to 120 minutes.
  • Examples of the method of treating with water vapor include a method of exposing to water vapor for 1 minute to 120 minutes. Among these, a method of treating with water is preferable, and a method of immersing in water and boiling for 1 to 120 minutes is particularly preferable.
  • the method for removing the adhered film after treating the precoat layer by any of the above methods is not particularly limited, but a method capable of suppressing the wear of the base material is preferable.
  • Examples of the method for removing the attached film include a method of irradiating ultrasonic waves for 1 minute to 120 minutes in a state immersed in water or hot water; a method of removing using a water gun having a pressure of 70 MPa to 150 MPa; Examples include a method of removing using a steam gun of 0.3 MPa to 0.6 MPa; a method of peeling by physical impact using a mallet or the like.
  • a method of irradiating ultrasonic waves for 1 minute to 120 minutes in a state immersed in water or hot water is preferable.
  • the substrate from which the adhesion film has been removed by the method for removing an adhesion film of the present invention can be reused by forming a precoat layer again.
  • the film forming apparatus component according to the present invention includes, for example, a vacuum film forming apparatus that forms a thin film by a physical vapor deposition method (PVD method) such as an evaporation method or a sputtering method, or a chemical vapor deposition method (CVD method).
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • it is suitable for a vacuum evaporation apparatus and a sputtering apparatus.
  • film forming apparatus component of the present invention examples include an FPD (Flat Panel Display) holding frame, an automobile component holding frame, and the like.
  • FPD Full Panel Display
  • the porosity of a porous sprayed layer The volume of the porous sprayed layer was calculated
  • the porosity of the porous sprayed layer was determined by the following formula (1).
  • Adhesive strength of precoat layer formed by applying and drying aqueous inorganic coating agent As shown in FIG. 3, from the precoat layer 3 and the porous sprayed layer 4 formed by applying and drying the substrate 2 and the aqueous inorganic coating agent.
  • An SUS thin plate 5 (5 mm ⁇ 70 mm ⁇ 0.2 mm) is used for the film forming apparatus component 1 and an adhesive (“Aron Alpha (registered trademark)” manufactured by Toagosei Co., Ltd.) is used.
  • the test piece was produced by bonding.
  • the obtained test piece was subjected to a tensile shear test using a universal testing machine (manufactured by Tokyo Testing Machine Co., Ltd., a small table testing machine “LSC-1 / 30-2”), and the SUS thin plate was peeled off from the film forming apparatus parts.
  • the stress (breaking stress) at the time of carrying out was measured, and this was made into the adhesive strength with respect to the base material of a precoat layer.
  • the measurement conditions are as shown in FIG.
  • the film forming apparatus component 1 is fixed to the lower chuck of the testing machine, the SUS thin plate 5 is fixed to the upper chuck, and the tensile speed is 30 mm / min. .
  • the adhesive strength with respect to the base material of a precoat layer was over 10 N / mm ⁇ 2 >.
  • Bonding strength after boiling treatment A film-forming device component in which a precoat layer and a porous sprayed layer were formed on a base material was immersed in water and boiled at about 100 ° C for 10 minutes. About the component for film-forming apparatuses after this boiling process, the adhesive strength with respect to the base material of a precoat layer was measured similarly to said "3. Adhesive strength".
  • the film forming apparatus component was placed in a vacuum chamber, the pressure in the vacuum chamber was reduced to 1.0 ⁇ 10 ⁇ 5 Pa, and held for 60 minutes. Thereafter, the reduced pressure in the vacuum chamber was released, and the film forming apparatus parts were visually observed to confirm whether the precoat layer was peeled off from the substrate. Then, the case where the precoat layer was not peeled off was evaluated as “ ⁇ ”, and the case where a part of the precoat layer was peeled off was evaluated as “x”.
  • Production Example 1 A surface blast treatment with WA # 100 was performed on an Al test piece (4 cm square, 2 mm thick) as a substrate.
  • An aqueous inorganic coating agent containing 60 parts by mass of silica as an aggregate, 12 parts by mass of colloidal silica as a binder, and 28 parts by mass of water as a solvent is applied to the surface of the base material subjected to the blasting treatment. , “MP-3”).
  • the applied aqueous inorganic coating agent was dried at 150 ° C. for 1 hour to form a precoat layer (thickness 20 ⁇ m).
  • a porous sprayed layer (thickness 150 ⁇ m; porosity 40%) is formed on the precoat layer using a gas flame type wire spraying device (manufactured by Koken Techno Co., Ltd., “M-7 type”). No. for film forming apparatus 1 was obtained.
  • the spraying conditions were such that pure Al wire ( ⁇ 4.6 mm) was used as the wire, the flame temperature was 2500 ° C. to 3000 ° C., and the distance to the sprayed object was 100 mm to 150 mm.
  • Production Example 2 Aqueous inorganic coating agent as aggregate, 42 parts by weight of nepheline syenite, 5 parts by weight of alumina, 4 parts by weight of chrome titanium yellow, 2 parts by weight of amorphous silica, 4 parts by weight of cobalt oxide, acrylic acid as binder
  • part No. 2 was obtained.
  • Production Example 3 Aqueous inorganic coating agent as aggregate, 12 parts by mass of boron nitride, 1 part by mass of graphite, 5 parts by mass of water-soluble acrylic resin as binder, 64 parts by mass of water as solvent, 3 parts by mass of butyl diglycol, as curing accelerator
  • the film forming apparatus part No. 3 was obtained.
  • the obtained film forming apparatus part No. for No. 3 measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
  • the water-based inorganic coating agent is 46 parts by mass of silica as an aggregate, 8 parts by mass of a composite oxide pigment (Fe 2 O 3 / Cr 2 O 3 / SiO 2 ), 3 parts by mass of amorphous silica, and water 33 as a solvent.
  • a composite oxide pigment Fe 2 O 3 / Cr 2 O 3 / SiO 2
  • 3 parts by mass of amorphous silica and water 33 as a solvent.
  • the water-based inorganic coating agent containing 7 parts by mass of aluminum phosphate and 7 parts by mass of aluminum phosphate as a curing accelerator was used. 4 was obtained.
  • Production Example 5 In the same manner as in Production Example 1 except that the porous sprayed layer was not formed, the part No. 5 was obtained. The obtained film forming apparatus part No. For No. 5, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
  • Production Example 6 In the same manner as in Production Example 2, except that the porous sprayed layer was not formed, the part No. 6 was obtained. The obtained film forming apparatus part No. For No. 6, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
  • Production Example 7 In the same manner as in Production Example 3 except that the porous sprayed layer was not formed, the part No. 7 was obtained.
  • Production Example 8 Except that the aqueous inorganic coating agent was changed to an aqueous inorganic coating agent containing aluminum nitride as an aggregate and water glass as a binder, and the porous sprayed layer was not formed, in the same manner as in Production Example 1, Deposition equipment part no. 8 was obtained. The obtained film forming apparatus part No. For No. 8, measurement of adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
  • the obtained film forming apparatus part No. Al layers were sputtered on 1 to 8 and Al specimens (blasted in the same manner as in Production Example 1) using a UBMS sputtering device (Kobe Steel Works, "UBMS503"). Formed.
  • the Al layer is a film forming apparatus part No. 1 to 8 were formed on the top surface of the precoat layer, and Al test pieces were formed on the blasted surface.
  • Deposition equipment part no. 1-3 have a substrate, a precoat layer formed from an aqueous inorganic coating agent, and a porous sprayed layer formed on the precoat layer, and the linear thermal expansion coefficient ( ⁇ 1 ) of the substrate and the above This is a case where the difference (
  • Deposition equipment part no. No. 4 has a difference in linear thermal expansion coefficient (
  • the adhesive strength after boiling treatment was more than 10 N / mm 2 , and the adhered film could not be removed even when irradiated with ultrasonic waves in water after boiling treatment.
  • Film deposition equipment part no. Nos. 5 to 7 are parts Nos. This is a comparative example in which a porous sprayed layer is not formed for 1-3. These film forming apparatus parts No. In Nos. 5 to 7, film-forming apparatus parts No. 5 using the same aqueous inorganic coating agent were used. Compared with 1-3, the adhesive strength after boiling is higher. That is, the part No. for film forming apparatus having a porous sprayed layer is used. 1 to 3 show that the adhesive strength of the precoat layer can be reduced in a shorter time in the treatment with water and / or water vapor than in the case without the porous sprayed layer.
  • Deposition equipment part no. 8 is the case where the difference in linear thermal expansion coefficient (
  • the component for a film forming apparatus of the present invention is suitably used for a film forming apparatus such as a sputtering apparatus.

Abstract

Disclosed is a component for a film-forming apparatus, from which an adhering film formed thereon can be easily removed.  Also disclosed is a method for removing an adhering film, which can efficiently remove an adhering film formed on a component for a film-forming apparatus.  The component for a film-forming apparatus comprises a base, a precoat layer formed on the base and a porous thermal sprayed layer formed on the precoat layer, and is characterized in that the precoat layer is composed of an aqueous inorganic coating agent and the difference between the linear thermal expansion coefficient (α1) of the base and the linear thermal expansion coefficient (α2) of the precoat layer (|α1 - α2|) is not more than 18 × 10-6/˚C.  The method for removing an adhering film is characterized in that, after an adhering film is formed, the precoat layer is treated with water and/or water vapor and then the adhering film is removed.

Description

成膜装置用部品および該成膜装置用部品に付着した付着膜の除去方法Part for film forming apparatus and method for removing attached film adhered to part for film forming apparatus
 本発明は、成膜装置用部品に関するものである。また、本発明は、成膜装置用部品に形成された付着膜を除去する技術に関するものである。 The present invention relates to a film forming apparatus component. The present invention also relates to a technique for removing an adhesion film formed on a component for a film forming apparatus.
 従来、半導体部品などには成膜処理が施されている。ここで、成膜とは、対象物に薄膜を形成させることであり、成膜の一例としてスパッタリングが挙げられる。スパッタリングとは、チャンバー内を真空にした後、アルゴンガスなどの不活性ガスを導入しながら、対象物である母材と薄膜の材料となるターゲット材の間に高電圧を印加し、イオン化した不活性ガスをターゲット材に衝突させ、それにより弾き飛ばされた成膜物質を母材上に付着させ薄膜を形成する方法である。 Conventionally, a film forming process is applied to a semiconductor component or the like. Here, the term “film formation” refers to forming a thin film on an object, and an example of film formation includes sputtering. Sputtering is a process in which a chamber is evacuated and then an inert gas such as argon gas is introduced, and a high voltage is applied between a target base material and a target material that is a thin film material to ionize the inert gas. This is a method of forming a thin film by causing an active gas to collide with a target material and depositing a film-forming material blown off on the target material on the base material.
 上記スパッタリングのような成膜を行う成膜装置では、成膜過程において、ターゲット材から弾き飛ばされた成膜物質は対象物のみならず、対象物を保持する部品やチャンバー内の装置各部に付着し、薄膜を形成することとなる。そして、成膜装置を用いて繰返し成膜を行うことにより、対象物を保持する部品やチャンバー内の装置各部には、薄膜が積層されスパッタリング膜などの付着膜が形成される。この付着膜は、繰返しの熱履歴などにより成膜装置の部品から剥落し、母材に付着して膜欠陥の原因となる。そのため、成膜装置用部品は、定期的に付着膜を除去し再生が行われる。 In a film forming apparatus that performs film formation such as sputtering, in the film forming process, the film forming material blown off from the target material adheres not only to the target object but also to the parts that hold the target object and each part of the apparatus in the chamber. As a result, a thin film is formed. Then, by repeatedly forming a film using the film forming apparatus, a thin film is laminated on each part that holds the object and each part of the apparatus in the chamber, and an adhesion film such as a sputtering film is formed. This adhered film peels off from the components of the film forming apparatus due to repeated thermal history, etc., adheres to the base material, and causes film defects. Therefore, the parts for the film forming apparatus are periodically regenerated by removing the adhered film.
 成膜装置用部品に形成された付着膜を除去する方法としては、化学的除去方法や物理的除去方法などが用いられているが、再生作業に係る時間や成膜装置用部品の損耗が問題となっている。そこで、より容易に付着膜を除去できるように改良された成膜装置用部品や、より効率よく成膜装置用部品から付着膜を除去する方法が提案されている。 Chemical removal methods and physical removal methods are used as methods for removing deposited films formed on film deposition equipment components. However, there is a problem with the time required for regeneration and wear of film deposition equipment components. It has become. Accordingly, there have been proposed a film forming apparatus component improved so that the attached film can be removed more easily and a method of removing the attached film from the film forming apparatus component more efficiently.
 例えば、特許文献1には、Al若しくはAl合金の単一又は複数個の結晶粒から構成される小塊や粉体の外表面が、In、Sn、In及びSn、又はそれらの合金である低融点金属の皮膜で覆われていることを特徴とする水崩壊性Al複合材料を成膜装置用部材として用いる技術が開示されている。しかし、この水崩壊性Al複合材料は、付着膜を剥離する際に水素ガスが発生するため、安全性の観点から好ましくない。 For example, Patent Document 1 discloses a low mass in which the outer surface of a lump or powder composed of single or plural crystal grains of Al or Al alloy is In, Sn, In and Sn, or an alloy thereof. A technique of using a water-disintegrating Al composite material, characterized by being covered with a melting point metal film, as a film forming apparatus member is disclosed. However, this water-disintegrating Al composite material is not preferable from the viewpoint of safety because hydrogen gas is generated when the attached film is peeled off.
 特許文献2には、基板上に薄膜を形成する成膜装置の構成部品において、上記構成部品の母材金属よりも電気化学的に卑な金属膜層を溶射、蒸着、スパッタリング、ラミネート等の方法により、母材金属の表面に形成したことを特徴とする成膜装置用構成部品が開示されている。しかし、この成膜装置用構成部品では、付着膜が母材金属よりも電位が高い場合には、母材金属に正の電界を印加し、母材金属が付着膜もしくは第2金属膜層よりも貴な金属として振舞うように不動態化させるなどの措置を施す必要があり、付着膜の除去処理が煩雑となる。 Patent Document 2 discloses a method for thermal spraying, vapor deposition, sputtering, laminating, etc., of a metal film layer that is electrochemically lower than the base metal of the component in a component of a film forming apparatus that forms a thin film on a substrate. The component for film-forming apparatuses characterized by having been formed in the surface of the base metal is disclosed. However, in this component for film forming apparatus, when the adhesion film has a higher potential than the base metal, a positive electric field is applied to the base metal, and the base metal is applied from the adhesion film or the second metal film layer. However, it is necessary to take measures such as passivation so that it behaves as a noble metal, and the removal process of the adhered film becomes complicated.
 特許文献3には、気体雰囲気成膜装置においてその成膜を行う場所の付近に用いられる部品の表面に、この部品の構成材料より硬度の低い材料からなる軟質膜と称せられる膜を形成した、成膜装置用部品が開示されている。 In Patent Document 3, a film called a soft film made of a material having a lower hardness than the constituent material of the part is formed on the surface of the part used in the vicinity of a place where the film is formed in the gas atmosphere film forming apparatus. A film forming apparatus component is disclosed.
 特許文献4には、部分安定化ジルコニア溶射膜で被覆された部材を薄膜形成またはプラズマ処理プロセスで使用後、温度100℃~300℃、湿度50%以上の環境下に置くことにより該部材から該溶射膜を剥離することを特徴とする部分安定化ジルコニア溶射膜の剥離方法が開示されている。 In Patent Document 4, a member coated with a partially stabilized zirconia sprayed film is used in a thin film formation or plasma treatment process, and then placed in an environment at a temperature of 100 ° C. to 300 ° C. and a humidity of 50% or more. A method for peeling a partially stabilized zirconia sprayed film characterized by peeling the sprayed film is disclosed.
 特許文献5には、真空処理装置において処理室を形成する密閉空間内面への汚染物の付着を防止する真空処理装置用の防着板であって、アルミニウムを主材質とする薄板を、層間材を介して複数枚積層した積層構造を有し、露呈状態となっている表層の前記薄板が汚染物によって汚染されたならばこの表層の薄板を剥離して次層を露呈させることを特徴とする真空処理装置用の防着板が開示されている。 Patent Document 5 discloses an adhesion preventing plate for a vacuum processing apparatus that prevents adhesion of contaminants to the inner surface of a sealed space forming a processing chamber in a vacuum processing apparatus, and a thin plate mainly made of aluminum is used as an interlayer material. A plurality of laminated layers, and if the surface thin plate in the exposed state is contaminated with contaminants, the surface thin plate is peeled off to expose the next layer. An adhesion prevention plate for a vacuum processing apparatus is disclosed.
特開2005-256063号公報JP 2005-260663 A 特表2004-074545号公報Special table 2004-0745545 gazette 特開平6-49626号公報JP-A-6-49626 特開2004-346374号公報JP 2004-346374 A 特開2005-101435号公報JP 2005-101435 A
 成膜装置用部品に形成された付着膜の除去を容易にするため、予め基材から剥離しやすいプレコート層を形成した成膜装置用部品が開発されている。ここで、成膜装置では、成膜処理を行う過程において、チャンバー内の圧力が1.0×10-5Pa程度にまで減圧されたり、チャンバー内の温度が350℃程度まで昇温されたりする場合があるが、そのような場合でも、プレコート層が基材から剥離してはならない。そのため、従来の技術では、プレコート層を基材から剥離することが困難であり、付着膜の除去に手間がかかるという問題があった。 In order to facilitate the removal of the adhesion film formed on the film forming apparatus part, a film forming apparatus part in which a precoat layer that is easily peeled off from the base material is formed in advance has been developed. Here, in the film forming apparatus, during the film forming process, the pressure in the chamber is reduced to about 1.0 × 10 −5 Pa, or the temperature in the chamber is increased to about 350 ° C. In some cases, the precoat layer should not peel from the substrate. Therefore, in the conventional technique, it is difficult to peel the precoat layer from the substrate, and there is a problem that it takes time to remove the adhered film.
 本発明は、上記課題に鑑みてなされたものであって、形成された付着膜を容易に除去することができる成膜装置用部品を提供することを目的とする。また、本発明は、成膜装置用部品に形成された付着膜を効率よく除去することができる付着膜の除去方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a film forming apparatus component that can easily remove a formed adhesion film. Another object of the present invention is to provide a method for removing an adhesion film that can efficiently remove the adhesion film formed on a component for a film forming apparatus.
 上記課題を解決することができた本発明の成膜装置用部品は、基材と、前記基材に形成されたプレコート層と、前記プレコート層上に形成された多孔質溶射層を有する成膜装置用部品であって、前記プレコート層が、水性無機コーティング剤から形成されたものであり、前記基材の線熱膨張率(α1)と前記プレコート層の線熱膨張率(α2)との差(│α1-α2│)が18×10-6/℃以下であることを特徴とする。 The film forming apparatus component of the present invention that has solved the above-described problems includes a base material, a precoat layer formed on the base material, and a porous sprayed layer formed on the precoat layer. an apparatus parts, the precoat layer, which is formed from an aqueous inorganic coating agent, linear thermal expansion coefficient of the substrate (alpha 1) and linear thermal expansion coefficient of the precoat layer and the (alpha 2) Difference (| α 1 −α 2 |) is 18 × 10 −6 / ° C. or less.
 すなわち、本発明では、基材に水性無機コーティング剤を塗装し、乾燥させるだけでプレコート層を形成できるため、作業が容易であり、成膜装置用部品の生産性が向上する。また、水性無機コーティング剤から形成されたプレコート層は、水および/または水蒸気などで処理することにより、基材に対する接着性を低下させることができる。また、プレコート層上に多孔質溶射層が形成されているため、水および/または水蒸気がプレコート層へと浸透しやすくなり、プレコート層の基材に対する接着性をより低下させやすくなっている。そのため、付着膜が形成された成膜装置用部品は、例えば、煮沸などの処理を施すことにより、プレコート層を容易に剥離することができ、該プレコート層とともに付着膜を簡単に除去することができる。 That is, in the present invention, since the precoat layer can be formed simply by applying a water-based inorganic coating agent to the substrate and drying it, the work is easy and the productivity of the film forming apparatus parts is improved. Moreover, the precoat layer formed from the aqueous inorganic coating agent can reduce the adhesiveness with respect to a base material by processing with water and / or water vapor | steam. Moreover, since the porous sprayed layer is formed on the precoat layer, water and / or water vapor easily penetrates into the precoat layer, and the adhesion of the precoat layer to the base material is more likely to be lowered. Therefore, the film-forming apparatus component on which the adhesion film is formed can be easily peeled off by pre-coating, for example, by performing a treatment such as boiling, and the adhesion film can be easily removed together with the pre-coating layer. it can.
 さらに、本発明の成膜装置用部品では、水性無機コーティング剤から形成されるプレコート層と基材との線熱膨張率差を小さくすることにより、プレコート層の耐熱性が向上する。その結果、スパッタリング装置などに利用した場合に、成膜装置用部品が、例えば、350℃程度の高温に曝されても、プレコート層が基材から剥離することが抑制される。 Furthermore, in the film forming apparatus component of the present invention, the heat resistance of the precoat layer is improved by reducing the difference in linear thermal expansion coefficient between the precoat layer formed from the aqueous inorganic coating agent and the substrate. As a result, when used in a sputtering apparatus or the like, even if the film forming apparatus component is exposed to a high temperature of, for example, about 350 ° C., the precoat layer is prevented from peeling from the base material.
 前記水性無機コーティング剤は、骨材と、水を50質量%以上含む溶媒とを含むものであるのが好ましく、また、骨材として、珪石、霞石閃長岩、シリカ、アルミナ、非晶質シリカおよび窒化硼素よりなる群から選択される少なくとも1種を含有するものであることが好ましい。さらに、前記水性無機コーティング剤は、結合剤として、コロイダルシリカ、水溶性アクリル樹脂、アクリル酸系ポリマーおよび水ガラスよりなる群から選択される少なくとも1種を含有するものであることが好ましい。 The aqueous inorganic coating agent preferably contains an aggregate and a solvent containing 50% by mass or more of water, and the aggregate includes quartzite, nepheline syenite, silica, alumina, amorphous silica, and nitriding. It is preferable to contain at least one selected from the group consisting of boron. Furthermore, the aqueous inorganic coating agent preferably contains at least one selected from the group consisting of colloidal silica, a water-soluble acrylic resin, an acrylic acid polymer, and water glass as a binder.
 水性無機コーティング剤を塗布乾燥して形成されたプレコート層の基材に対する接着強度は10N/mm2超であることが好ましく、且つ、煮沸処理を施した後のプレコート層の基材に対する接着強度は10N/mm2以下であることが好ましい。前記プレコート層は、450℃の雰囲気に1時間放置した後、25℃まで放冷する熱処理を10回施しても、基材から剥離しないものであることが好ましい。前記プレコート層は、圧力1.0Pa以下の真空下においても基材から剥離しないものであることが好ましい。 The adhesive strength of the precoat layer formed by applying and drying the aqueous inorganic coating agent to the substrate is preferably more than 10 N / mm 2 , and the adhesive strength of the precoat layer to the substrate after the boiling treatment is It is preferably 10 N / mm 2 or less. The precoat layer is preferably a layer that does not peel off from the substrate even after being left in an atmosphere of 450 ° C. for 1 hour and then subjected to heat treatment to cool to 25 ° C. 10 times. It is preferable that the precoat layer does not peel from the substrate even under a vacuum of 1.0 Pa or less.
 本発明には、前記成膜装置用部品に形成された付着膜の除去方法であって、付着膜形成後に、水および/または水蒸気によりプレコート層を処理した後、付着膜を除去することを特徴とする付着膜の除去方法も含まれる。 The present invention provides a method for removing an adhesion film formed on the film forming apparatus component, wherein the adhesion film is removed after the precoat layer is treated with water and / or water vapor after the adhesion film is formed. The method for removing the adhered film is also included.
 本発明によれば、形成された付着膜を容易に除去することができる成膜装置用部品が得られる。また、本発明の付着膜の除去方法によれば、成膜装置用部品に形成された付着膜を効率よく除去することができる。 According to the present invention, it is possible to obtain a film forming apparatus component that can easily remove the formed adhesion film. In addition, according to the method for removing an attached film of the present invention, the attached film formed on the film forming apparatus component can be efficiently removed.
本発明の成膜装置用部品における、プレコート層への水の浸透経路を示す断面模式図である。It is a cross-sectional schematic diagram which shows the osmosis | permeation path | route of the water to the precoat layer in the components for film-forming apparatuses of this invention. 多孔質溶射層が形成されていない場合における、プレコート層への水の浸透経路を示す断面模式図である。It is a cross-sectional schematic diagram which shows the permeation | transmission path | route of the water to a precoat layer in the case where the porous sprayed layer is not formed. 接着強度試験の試験片を示す模式図である。It is a schematic diagram which shows the test piece of an adhesive strength test.
 本発明の成膜装置用部品は、基材と、前記基材に形成されたプレコート層と、前記プレコート層上に形成された多孔質溶射層を有する成膜装置用部品であって、前記プレコート層が、水性無機コーティング剤から形成されたものであり、前記基材の線熱膨張率(α1)と前記プレコート層の線熱膨張率(α2)との差(│α1-α2│)が18×10-6/℃以下であることを特徴とする。 A film deposition apparatus component according to the present invention is a film deposition apparatus component having a base material, a precoat layer formed on the base material, and a porous sprayed layer formed on the precoat layer. layer, which is formed from an aqueous inorganic coating agent, wherein the difference in linear thermal expansion coefficient of the base material (alpha 1) and linear thermal expansion coefficient of the precoat layer and the (α 2) (│α 1 -α 2 |) Is 18 × 10 −6 / ° C. or less.
 本発明の成膜装置用部品を構成する基材について説明する。 The substrate constituting the film forming apparatus component of the present invention will be described.
 前記基材としては、通常、成膜装置用部品に用いられるものであれば、特に限定されない。前記基材としては、アルミニウム、鉄、銅、ステンレス、チタンなどの金属が挙げられる。 The substrate is not particularly limited as long as it is usually used for a film forming apparatus component. Examples of the substrate include metals such as aluminum, iron, copper, stainless steel, and titanium.
 なお、近年では、成膜装置の大型化に伴い、成膜装置用部品の基材としてアルミニウムが多用されている。また、成膜物質(例えば、スパッタリングさせる成分)としてもアルミニウムが多用されている。そのため、成膜装置用部品において、アルミニウム基材上にアルミニウムからなる付着膜が形成されるという組合せが多くなっている。ここで、アルミニウムは物理的強度が弱く、酸にも溶けやすいため、従来の技術では、基材を傷めることなく付着膜を除去することが困難であった。本発明の成膜装置用部品では、このようなアルミニウム基材上に、アルミニウムからなる付着膜が形成された場合などにおいて、特に効果を発揮するものである。 In recent years, with the increase in the size of film forming apparatuses, aluminum is frequently used as a base material for parts for film forming apparatuses. Aluminum is also frequently used as a film forming material (for example, a component to be sputtered). For this reason, there are an increasing number of combinations in which an adhesion film made of aluminum is formed on an aluminum substrate in a film forming apparatus component. Here, since aluminum has a low physical strength and is easily dissolved in an acid, it has been difficult to remove the adhesion film without damaging the base material by the conventional technique. The film forming apparatus component of the present invention is particularly effective when an adhesive film made of aluminum is formed on such an aluminum substrate.
 前記基材の線熱膨張率は、特に限定されるものではないが、通常8×10-6/℃~24×10-6/℃である。 The linear thermal expansion coefficient of the substrate is not particularly limited, but is usually 8 × 10 −6 / ° C. to 24 × 10 −6 / ° C.
 本発明の成膜装置用部品を構成するプレコート層について説明する。 The precoat layer constituting the film forming apparatus component of the present invention will be described.
 前記プレコート層は、水性無機コーティング剤から形成されるものである。本発明では、プレコート層を形成するのに水性無機コーティング剤を用いるため、基材に水性無機コーティング剤を塗装し乾燥させるだけで、プレコート層を形成できる。そのため、プレコート層を形成する作業が非常に容易であり、生産性がよい。 The precoat layer is formed from an aqueous inorganic coating agent. In the present invention, since the aqueous inorganic coating agent is used to form the precoat layer, the precoat layer can be formed only by applying the aqueous inorganic coating agent to the substrate and drying it. Therefore, the operation for forming the precoat layer is very easy and the productivity is good.
 前記水性無機コーティング剤としては、骨材(顔料を含む)と、水を主成分(50質量%以上)とする溶媒とを含有するものであれば、特に限定されない。 The aqueous inorganic coating agent is not particularly limited as long as it contains an aggregate (including a pigment) and a solvent containing water as a main component (50% by mass or more).
 前記骨材としては、例えば、珪藻土、霞石閃長岩、珪石、黒鉛などの鉱物;シリカ(SiO2)、非晶質シリカ(SiO2)、アルミナ(酸化アルミニウム:Al23)、酸化コバルト(Co34)、酸化マグネシウム(MgO)、三酸化二クロム(Cr23)などの金属酸化物;窒化硼素(BN)、窒化珪素(Si34)などの金属窒化物;クロムチタンイエロー((Ti,Sb,Cr)O2)、亜鉛鉄ブラウン((Zn,Fe)Fe24)、ニッケルチタンイエロー((Ti,Sb,Ni)O2)などの複合酸化物系顔料;などが挙げられる。これらの骨材は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、本発明に用いる水性無機コーティング剤は珪石、霞石閃長岩、シリカ、アルミナ、非晶質シリカおよび窒化硼素よりなる群から選択される少なくとも1種を含有することが好ましい。 Examples of the aggregate include minerals such as diatomaceous earth, nepheline syenite, silica and graphite; silica (SiO 2 ), amorphous silica (SiO 2 ), alumina (aluminum oxide: Al 2 O 3 ), cobalt oxide Metal oxides such as (Co 3 O 4 ), magnesium oxide (MgO), and dichromium trioxide (Cr 2 O 3 ); metal nitrides such as boron nitride (BN) and silicon nitride (Si 3 N 4 ); chromium Complex oxide pigments such as titanium yellow ((Ti, Sb, Cr) O 2 ), zinc iron brown ((Zn, Fe) Fe 2 O 4 ), nickel titanium yellow ((Ti, Sb, Ni) O 2 ) And so on. These aggregates may be used alone or in combination of two or more. Among these, the aqueous inorganic coating agent used in the present invention preferably contains at least one selected from the group consisting of silica, nepheline syenite, silica, alumina, amorphous silica, and boron nitride.
 前記水性無機コーティング剤は、骨材と、水を主成分とする溶媒に加えて、結合剤を含んでいても良い。前記結合剤としては、無機結合剤、有機結合剤のいずれも可能である。前記無機結合剤としては、コロイダルシリカ(SiO2・xH2O)、アルミナゾル、水ガラスなどが挙げられる。前記有機結合剤としては、水溶性アクリル樹脂、アクリル酸系ポリマーなどが挙げられる。これらの結合剤は、単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、本発明に用いる水性無機コーティング剤は、コロイダルシリカ、水溶性アクリル樹脂、アクリル酸系ポリマーおよび水ガラスよりなる群から選択される少なくとも1種を含有することが好ましい。 The aqueous inorganic coating agent may contain a binder in addition to the aggregate and the solvent mainly composed of water. As the binder, either an inorganic binder or an organic binder can be used. Examples of the inorganic binder include colloidal silica (SiO 2 .xH 2 O), alumina sol, and water glass. Examples of the organic binder include water-soluble acrylic resins and acrylic acid polymers. These binders may be used alone or in combination of two or more. Among these, the aqueous inorganic coating agent used in the present invention preferably contains at least one selected from the group consisting of colloidal silica, a water-soluble acrylic resin, an acrylic acid polymer, and water glass.
 前記水性無機コーティング剤は、水以外の溶媒を含有していてもよい。水以外の溶媒を添加することにより、水性無機コーティング剤の塗工性を向上させることができる。前記水以外の溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコール、ブチルジグリコールなどのグリコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類が挙げられる。 The aqueous inorganic coating agent may contain a solvent other than water. By adding a solvent other than water, the coating property of the aqueous inorganic coating agent can be improved. Examples of the solvent other than water include alcohols such as methanol, ethanol, n-propanol, i-propanol and n-butanol; glycols such as ethylene glycol, diethylene glycol and butyl diglycol; ketones such as acetone and methyl ethyl ketone; acetic acid Examples thereof include esters such as ethyl and butyl acetate.
 また、前記水性無機コーティング剤は、前記骨材、結合剤および溶媒のほかに、本発明の効果を損なわない程度で、硬化促進剤、増粘剤、レベリング剤、消泡剤、防錆剤などの添加剤を含有してもよい。 In addition to the aggregate, the binder and the solvent, the aqueous inorganic coating agent is a curing accelerator, a thickener, a leveling agent, an antifoaming agent, a rust preventive agent, etc., as long as the effects of the present invention are not impaired. The additive may be contained.
 前記硬化促進剤としては、例えば、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸カルシウム、硫酸アルミニウムなどの硫酸塩;炭酸ナトリウム、炭酸カリウムなど炭酸塩;水酸化ナトリウム、水酸化マグネシウム、水酸化アルミニウム、水酸化カリウム、水酸化カルシウムなどの水酸化物;塩化カルシウム、塩化マグネシウム、塩化鉄などの塩化物;ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩;りん酸アルミニウムなどのりん酸塩などが挙げられる。これらの硬化促進剤は単独で使用してもよいし、2種以上を併用してもよい。 Examples of the curing accelerator include sulfates such as sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, and aluminum sulfate; carbonates such as sodium carbonate and potassium carbonate; sodium hydroxide, magnesium hydroxide, aluminum hydroxide, water Hydroxides such as potassium oxide and calcium hydroxide; chlorides such as calcium chloride, magnesium chloride and iron chloride; silicates such as lithium silicate, sodium silicate and potassium silicate; phosphates such as aluminum phosphate Etc. These curing accelerators may be used alone or in combination of two or more.
 前記水性無機コーティング剤は、上記の骨材、結合剤などを混合して調製してもよいが、市販のものを用いることもできる。なお、上記の骨材、結合剤などを混合して水性無機コーティング剤を調製する場合、その配合組成は、例えば骨材100部に対して、溶媒20部~80部(より好ましくは25部~70部)、結合剤1部~20部(より好ましくは3部~15部)、その他(硬化促進剤等)0部~20部(より好ましくは0部~15部)とするのが好ましい。 The aqueous inorganic coating agent may be prepared by mixing the above-mentioned aggregate, binder, etc., but a commercially available one can also be used. When preparing the aqueous inorganic coating agent by mixing the above-mentioned aggregate, binder, etc., the blending composition thereof is, for example, 20 parts to 80 parts of solvent (more preferably 25 parts to about 100 parts of aggregate) 70 parts), 1 part to 20 parts (more preferably 3 parts to 15 parts) of the binder, and 0 part to 20 parts (more preferably 0 parts to 15 parts) other (curing accelerators, etc.).
 前記水性無機コーティング剤を基材に塗工する方法は特に限定されず、通常の塗料と同様の塗装方法を採用することができる。塗装方法としては、例えば、エアースプレー、エアレススプレー、ディッピング、刷毛塗りなどの方法が挙げられる。そして、基材に塗装された水性無機コーティング剤を、乾燥・焼成することによりプレコート層を形成できる。なお、水性無機コーティング剤の乾燥・焼成は、用いられる結合剤の種類などによって、脱離成分の脱離が終了するように、適宜調整すればよいが、通常100℃~500℃で、0.1時間~24時間乾燥・焼成すればよい。 The method for applying the water-based inorganic coating agent to the base material is not particularly limited, and a coating method similar to a normal paint can be employed. Examples of the coating method include air spraying, airless spraying, dipping, brushing, and the like. And a precoat layer can be formed by drying and baking the aqueous | water-based inorganic coating agent painted by the base material. The drying / firing of the aqueous inorganic coating agent may be appropriately adjusted depending on the type of the binder used and the like so that the desorption of the desorbing component is completed. It may be dried and fired for 1 to 24 hours.
 前記プレコート層の厚みは1μm以上が好ましく、より好ましくは5μm以上、さらに好ましくは10μm以上であり、500μm以下が好ましく、より好ましくは250μm以下、さらに好ましくは100μm以下である。プレコート層の厚みが1μm以上であれば、基材を十分にプレコートすることができ、付着膜の除去がより容易となる。また、プレコート層の厚みが500μm以下であれば、成膜装置用部品が昇降温された際にも、プレコート層がより剥離しにくくなり、水性無機コーティング剤の塗工回数を低減することができ、塗工コストが減少する。 The thickness of the precoat layer is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, preferably 500 μm or less, more preferably 250 μm or less, and still more preferably 100 μm or less. If the thickness of the precoat layer is 1 μm or more, the substrate can be sufficiently precoated, and the adhesion film can be removed more easily. In addition, if the thickness of the precoat layer is 500 μm or less, the precoat layer is more difficult to peel even when the temperature of the film forming apparatus component is raised or lowered, and the number of times of applying the aqueous inorganic coating agent can be reduced. Coating costs are reduced.
 本発明において、前記基材の線熱膨張率(α1)と前記プレコート層の線熱膨張率(α2)との差(│α1-α2│)は18×10-6/℃以下である。前記線熱膨張の差(│α1-α2│)が上記範囲内であれば、昇降温に対してプレコート層が安定となり、成膜装置用部品が繰返し加熱、冷却されてもプレコート層が剥離しにくくなる。前記線熱膨張率の差(│α1-α2│)は、15×10-6/℃以下が好ましく、より好ましくは13×10-6/℃以下である。 In the present invention, the difference (│α 12 │) of linear thermal expansion coefficient of the base material (alpha 1) and linear thermal expansion coefficient of the precoat layer and the (alpha 2) is 18 × 10 -6 / ℃ or less It is. If the difference in linear thermal expansion (| α 1 −α 2 |) is within the above range, the precoat layer is stable with respect to temperature rise and fall, and the precoat layer does not fail even when the film forming apparatus components are repeatedly heated and cooled. It becomes difficult to peel. The difference in linear thermal expansion coefficient (| α 1 −α 2 |) is preferably 15 × 10 −6 / ° C. or less, and more preferably 13 × 10 −6 / ° C. or less.
 前記水性無機コーティング剤を塗布乾燥して形成されたプレコート層の基材に対する接着強度、すなわち、プレコート層が形成された後、水および/または水蒸気などによる処理を施す前の接着強度は10N/mm2超であることが好ましく、より好ましくは12N/mm2以上、さらに好ましくは15N/mm2以上である。プレコート層の基材に対する接着強度が10N/mm2超であれば、成膜装置用部品を備えた成膜装置を用いて成膜を行う際に、成膜装置用部品に形成された付着膜が、プレコート層とともに脱離することがより抑制される。 The adhesive strength of the precoat layer formed by applying and drying the aqueous inorganic coating agent to the substrate, that is, the adhesive strength after the precoat layer is formed and before being treated with water and / or water vapor is 10 N / mm. preferably 2, more preferably above 12N / mm 2 or more, and still more preferably 15N / mm 2 or more. If the adhesion strength of the precoat layer to the substrate is more than 10 N / mm 2 , the adhesion film formed on the film forming apparatus component when performing film formation using the film forming apparatus equipped with the film forming apparatus component However, detachment | desorption with a precoat layer is suppressed more.
 成膜装置用部品に煮沸処理を施した後のプレコート層の基材に対する接着強度は10N/mm2以下であることが好ましく、より好ましくは8N/mm2以下、さらに好ましくは5N/mm2以下である。成膜装置用部品に煮沸処理を施した後のプレコート層の基材に対する接着強度が10N/mm2以下であれば、成膜装置用部品に形成された付着膜を、より容易に除去できる。なお、水性無機コーティング剤を塗布乾燥して形成されたプレコート層の基材に対する接着強度、および、成膜装置用部品に煮沸処理を施した後のプレコート層の基材に対する接着強度の測定方法については、後述する。 The adhesion strength of the precoat layer to the base material after the film forming apparatus component is boiled is preferably 10 N / mm 2 or less, more preferably 8 N / mm 2 or less, and even more preferably 5 N / mm 2 or less. It is. If the adhesive strength of the precoat layer to the base material after boiling the film forming apparatus component is 10 N / mm 2 or less, the adhesion film formed on the film forming apparatus component can be more easily removed. In addition, about the measuring method of the adhesive strength with respect to the base material of the precoat layer formed by apply | coating and drying the aqueous inorganic coating agent, and the adhesive strength with respect to the base material of the precoat layer after performing a boiling process to the components for film-forming apparatuses Will be described later.
 前記プレコート層は、成膜装置用部品に対して、450℃の雰囲気に1時間放置した後、25℃まで放冷するという熱処理を施したとき、当該熱処理を10回繰り返しても、基材から剥離しないことが好ましい。このようにプレコート層が耐熱性に優れていれば、本発明の成膜装置用部品が、成膜過程において高温に曝された場合にプレコート層が剥離することがより抑制される。また、上記熱処理を10回施した後のプレコート層の基材に対する接着強度は10N/mm2超であることが好ましい。 When the precoat layer is subjected to a heat treatment in which the film forming apparatus component is left in an atmosphere at 450 ° C. for 1 hour and then allowed to cool to 25 ° C., the heat treatment is repeated 10 times. It is preferable not to peel off. Thus, if the precoat layer is excellent in heat resistance, the precoat layer is further prevented from peeling off when the film forming apparatus component of the present invention is exposed to a high temperature during the film forming process. Moreover, it is preferable that the adhesive strength with respect to the base material of the precoat layer after performing the said heat processing 10 times is more than 10 N / mm < 2 >.
 前記プレコート層は、成膜装置用部品を圧力1.0Pa以下の真空下においても基材から剥離しないものであることが好ましい。このようにプレコート層が耐真空性に優れていれば、本発明の成膜装置用部品が、成膜過程において高真空下に曝された場合にプレコート層が剥離することがより抑制される。前記プレコート層は、圧力0.1Pa以下の真空下においても剥離しないことがより好ましく、圧力0.01Pa以下の真空下においても剥離しないことがさらに好ましい。 It is preferable that the precoat layer is a layer that does not separate the film forming apparatus component from the base material even under a vacuum of 1.0 Pa or less. Thus, if the precoat layer is excellent in vacuum resistance, the precoat layer can be further prevented from peeling off when the film forming apparatus component of the present invention is exposed to high vacuum in the film forming process. More preferably, the precoat layer does not peel even under a vacuum of 0.1 Pa or less, and more preferably does not peel even under a vacuum of 0.01 Pa or less.
 プレコート層の線熱膨張率、基材に対する接着強度などは、前記骨材、結合剤などの配合量を適宜変更することにより調整できる。 The linear thermal expansion coefficient of the precoat layer, the adhesive strength to the base material, and the like can be adjusted by appropriately changing the blending amount of the aggregate, the binder, and the like.
 本発明の成膜装置用部品を構成する多孔質溶射層について説明する。前記多孔質溶射層は、溶射により形成された多孔質構造を有する層である。本発明では、プレコート層上に多孔質構造を有する多孔質溶射層が形成されているため、成膜装置用部品を水および/または水蒸気により処理する際に、プレコート層への水などの到達経路が増加する。 The porous sprayed layer constituting the film forming apparatus component of the present invention will be described. The porous sprayed layer is a layer having a porous structure formed by spraying. In the present invention, since the porous sprayed layer having a porous structure is formed on the precoat layer, when the film forming apparatus component is treated with water and / or water vapor, a route for reaching the precoat layer such as water Will increase.
 この点について、図1および図2を参照して説明する。図1は、本発明の成膜装置用部品における、プレコート層への水の浸透経路を示す断面模式図である。図2は、多孔質溶射層が形成されていない場合における、プレコート層への水の浸透経路を示す断面模式図である。なお、図1および図2において、矢印は水の浸透経路を示している。 This point will be described with reference to FIG. 1 and FIG. FIG. 1 is a schematic cross-sectional view showing a water penetration path into a precoat layer in a film forming apparatus component of the present invention. FIG. 2 is a schematic cross-sectional view showing the water penetration path into the precoat layer when the porous sprayed layer is not formed. In FIG. 1 and FIG. 2, the arrows indicate water permeation paths.
 図2に示すように、基材2にプレコート層3を形成しただけの成膜装置用部品では、プレコート層3の全体を覆うように付着膜7が形成されてしまうと、プレコート層3への水および/または水蒸気の浸透経路は、成膜装置用部品の側面部に露出する部分のみとなる。従って、プレコート層3の全体を覆うように付着膜7が形成されてしまうと、水および/または水蒸気により処理する際に、プレコート層3全体に水などが浸透するのに長時間を要することとなる。 As shown in FIG. 2, in the film forming apparatus component in which the precoat layer 3 is simply formed on the substrate 2, if the adhesion film 7 is formed so as to cover the entire precoat layer 3, The permeation path of water and / or water vapor is only a portion exposed to the side surface portion of the film forming apparatus component. Therefore, if the adhesion film 7 is formed so as to cover the entire precoat layer 3, it takes a long time for water to penetrate into the entire precoat layer 3 when processing with water and / or water vapor. Become.
 これに対して、本発明の成膜装置用部品では、図1に示すように、プレコート層3上に多孔質構造を有する多孔質溶射層4が形成されている。そのため、多孔質溶射層4の全体を覆うように付着膜7が形成されてしまった場合でも、水および/または水蒸気により処理する際に、多孔質溶射層4の空孔を通じて、水などがプレコート層3の全体へと浸透することができる。これにより、多孔質溶射層4の全体を覆うように付着膜7が形成されてしまった場合でも、水および/または水蒸気により処理する際に、短時間でプレコート層3全体に水などが浸透するため、作業時間を短縮することができる。 On the other hand, in the film forming apparatus component of the present invention, as shown in FIG. 1, the porous sprayed layer 4 having a porous structure is formed on the precoat layer 3. Therefore, even when the adhesion film 7 is formed so as to cover the entire porous sprayed layer 4, water or the like is pre-coated through the pores of the porous sprayed layer 4 when processing with water and / or water vapor. It can penetrate into the entire layer 3. Thereby, even when the adhesion film 7 is formed so as to cover the entire porous sprayed layer 4, water or the like permeates the entire precoat layer 3 in a short time when treated with water and / or water vapor. Therefore, the working time can be shortened.
 多孔質溶射層を形成する溶射材料としては、特に限定されるものではなく、例えば、アルミニウム、鉄、銅、ステンレス鋼、チタン、ニッケル、クロムなどの金属およびそれらの合金などを用いることができる。これらの中でも、前記基材と同じ材料あるいは基材の材料と線熱膨張率が近いものが好ましい。 The thermal spray material for forming the porous thermal spray layer is not particularly limited, and for example, metals such as aluminum, iron, copper, stainless steel, titanium, nickel, chromium, and alloys thereof can be used. Among these, the same material as the base material or a material having a linear thermal expansion coefficient close to that of the base material is preferable.
 前記溶射材料の線熱膨張率(α3)と前記プレコート層の線熱膨張率(α2)との差(│α3-α2│)は18×10-6/℃以下が好ましく、より好ましくは15×10-6/℃以下、さらに好ましくは13×10-6/℃以下である。前記線膨張率の差(│α3-α2│)が、18×10-6/℃以下であれば、昇降温に対してプレコート層が安定となり、成膜装置用部品が繰返し加熱、冷却されてもプレコート層と溶射層との間での剥離が生じにくくなる。 The linear thermal expansion coefficient of the spray material (alpha 3) the difference between the linear thermal expansion coefficient of the precoat layer (α 2) (│α 3 -α 2 │) is preferably from 18 × 10 -6 / ℃ less, more It is preferably 15 × 10 −6 / ° C. or less, more preferably 13 × 10 −6 / ° C. or less. If the difference in linear expansion coefficient (| α 3 −α 2 |) is 18 × 10 −6 / ° C. or less, the precoat layer becomes stable with respect to temperature rise and fall, and the film forming apparatus components are repeatedly heated and cooled. Even if it does, peeling between a precoat layer and a thermal spray layer becomes difficult to occur.
 前記多孔質溶射層の厚みは、10μm以上が好ましく、より好ましくは50μm以上、さらに好ましくは100μm以上であり、500μm以下が好ましく、より好ましくは300μm以下、さらに好ましくは150μm以下である。多孔質溶射層の厚みが10μm以上であれば、プレコート層表面を十分に被覆することができ、付着膜の除去がより容易となる。また、多孔質溶射層の厚みが500μm以下であれば、成膜装置用部品に定められているクリアランス(例えば、対象物を保持する部品とチャンバー内壁とのクリアランスなど)を確保することができる。 The thickness of the porous sprayed layer is preferably 10 μm or more, more preferably 50 μm or more, further preferably 100 μm or more, preferably 500 μm or less, more preferably 300 μm or less, and further preferably 150 μm or less. When the thickness of the porous sprayed layer is 10 μm or more, the surface of the precoat layer can be sufficiently covered, and the attached film can be removed more easily. Moreover, if the thickness of the porous sprayed layer is 500 μm or less, a clearance (for example, a clearance between a part holding the object and the inner wall of the chamber) defined for the part for the film forming apparatus can be secured.
 前記多孔質溶射層の空孔率は、3%以上が好ましく、より好ましくは5%以上、さらに好ましくは10%以上であり、70%以下が好ましく、より好ましくは60%以下、さらに好ましくは50%以下である。多孔質溶射層の空孔率が3%以上であれば、付着膜形成後に水および/または水蒸気によりプレコート層を処理する際に、水、水蒸気がプレコート層全体に速やかに浸透し、付着膜の除去がより容易となる。また、多孔質溶射層の空孔率が70%以下であれば、多孔質溶射層の強度が向上し、成膜装置用部品からの多孔質溶射層の剥離をより抑制することができる。なお、多孔質溶射層の空孔率は、多孔質溶射層の厚み、溶射による質量増加量および溶射材の密度より算出することができる。 The porosity of the porous sprayed layer is preferably 3% or more, more preferably 5% or more, further preferably 10% or more, preferably 70% or less, more preferably 60% or less, and still more preferably 50%. % Or less. If the porosity of the porous sprayed layer is 3% or more, when the precoat layer is treated with water and / or water vapor after the adhesion film is formed, water and water vapor quickly penetrate the entire precoat layer, Removal is easier. Moreover, if the porosity of a porous sprayed layer is 70% or less, the intensity | strength of a porous sprayed layer will improve and peeling of the porous sprayed layer from the components for film-forming apparatuses can be suppressed more. The porosity of the porous sprayed layer can be calculated from the thickness of the porous sprayed layer, the amount of mass increase due to spraying, and the density of the sprayed material.
 前記多孔質溶射層を形成する方法は特に限定されず、例えば、アーク溶射、プラズマ溶射などの電気式溶射;溶棒式フレーム溶射、溶線式フレーム溶射、粉末式フレーム溶射、爆発溶射などのガス式溶射などが挙げられる。なお、溶射条件については、形成する多孔質溶射層の厚みや空孔率などに応じて、電流、電圧、ガス流量、圧力、溶射距離、ノズル径、材料供給量などを適宜調整すればよい。 The method of forming the porous sprayed layer is not particularly limited, and for example, electric spraying such as arc spraying and plasma spraying; gas type such as welding rod type flame spraying, hot wire type flame spraying, powder type flame spraying, and explosive spraying. Examples include thermal spraying. As for the thermal spraying conditions, the current, voltage, gas flow rate, pressure, thermal spray distance, nozzle diameter, material supply amount, etc. may be appropriately adjusted according to the thickness or porosity of the porous sprayed layer to be formed.
 次に、本発明の付着膜の除去方法について説明する。 Next, the method for removing the adhered film of the present invention will be described.
 本発明の付着膜の除去方法は、前記成膜装置用部品に形成された付着膜の除去方法であって、付着膜形成後に、水および/または水蒸気によりプレコート層を処理した後、付着膜を除去することを特徴とする。 The method for removing an adhesion film of the present invention is a method for removing the adhesion film formed on the film forming apparatus component, wherein after the adhesion film is formed, the precoat layer is treated with water and / or water vapor, and then the adhesion film is removed. It is characterized by removing.
 すなわち、本発明の付着膜の除去方法は、プレコート層を水および/または水蒸気で処理することによって、プレコート層の基材に対する接着強度を低下させた後に、プレコート層と共に付着膜を除去する。これにより、プレコート層を基材から容易に剥離できるため、基材を磨耗させることなく、付着膜の除去を短時間で容易に行うことができる。 That is, in the method for removing an adhesive film of the present invention, the adhesive film is removed together with the precoat layer after the precoat layer is treated with water and / or water vapor to reduce the adhesive strength of the precoat layer to the substrate. Thereby, since a precoat layer can be easily peeled from a base material, removal of an adhesion film can be easily performed in a short time, without wearing a base material.
 前記水および/または水蒸気によりプレコート層を処理する方法は、プレコート層の接着強度を低下させることができる方法であれば、特に限定されない。水で処理する方法としては、例えば、水に浸漬して0.1時間~24時間放置する方法、水に浸漬して1分間~120分間煮沸する方法などが挙げられる。水蒸気で処理する方法としては、例えば、1分間~120分間水蒸気に曝す方法などが挙げられる。これらの中でも、水で処理する方法が好ましく、特に、水に浸漬して1分間~120分間煮沸する方法が好適である。 The method of treating the precoat layer with water and / or water vapor is not particularly limited as long as it can reduce the adhesive strength of the precoat layer. Examples of the method of treating with water include a method of immersing in water and allowing to stand for 0.1 to 24 hours, and a method of immersing in water and boiling for 1 to 120 minutes. Examples of the method of treating with water vapor include a method of exposing to water vapor for 1 minute to 120 minutes. Among these, a method of treating with water is preferable, and a method of immersing in water and boiling for 1 to 120 minutes is particularly preferable.
 前記のいずれかの方法によりプレコート層を処理した後、付着膜を除去する方法としては、特に限定されないが、基材の磨耗を抑制できる方法が好ましい。前記付着膜を除去する方法としては、例えば、水や熱水などに浸漬させた状態で超音波を1分間~120分間照射する方法;圧力70MPa~150MPaのウォーターガンを用いて除去する方法;圧力0.3MPa~0.6MPaのスチームガンを用いて除去する方法;木槌などを用いて物理的な衝撃により剥離する方法などが挙げられる。これらの中でも、水や熱水などに浸漬させた状態で超音波を1分間~120分間照射する方法が好適である。 The method for removing the adhered film after treating the precoat layer by any of the above methods is not particularly limited, but a method capable of suppressing the wear of the base material is preferable. Examples of the method for removing the attached film include a method of irradiating ultrasonic waves for 1 minute to 120 minutes in a state immersed in water or hot water; a method of removing using a water gun having a pressure of 70 MPa to 150 MPa; Examples include a method of removing using a steam gun of 0.3 MPa to 0.6 MPa; a method of peeling by physical impact using a mallet or the like. Among these, a method of irradiating ultrasonic waves for 1 minute to 120 minutes in a state immersed in water or hot water is preferable.
 本発明の付着膜の除去方法によって付着膜が除去された基材は、再度プレコート層を形成することにより、再利用が可能である。 The substrate from which the adhesion film has been removed by the method for removing an adhesion film of the present invention can be reused by forming a precoat layer again.
 本発明の成膜装置用部品は、例えば、蒸着法、スパッタリング法などの物理的気相成長法(PVD法)や、化学的気相成長法(CVD法)により薄膜を形成する真空成膜装置に用いることができ、特に、真空蒸着装置、スパッタリング装置に好適である。 The film forming apparatus component according to the present invention includes, for example, a vacuum film forming apparatus that forms a thin film by a physical vapor deposition method (PVD method) such as an evaporation method or a sputtering method, or a chemical vapor deposition method (CVD method). In particular, it is suitable for a vacuum evaporation apparatus and a sputtering apparatus.
 また、本発明の成膜装置用部品の具体例としては、例えば、FPD(Flat Panel Display)保持用フレーム、自動車部品保持用フレームなどが挙げられる。 Further, specific examples of the film forming apparatus component of the present invention include an FPD (Flat Panel Display) holding frame, an automobile component holding frame, and the like.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
[評価方法]
1.線熱膨張率
 基材、プレコート層および多孔質溶射層の線熱膨張率は、熱機械分析装置(Bruker AXS社製、「TMA4000SA」)を用いて測定した。
 なお、基材の線熱膨張率の測定には、φ5mm×5mmのサイズに切り出した基材を試験片として用い、プレコート層の線熱膨張率測定には、φ5mm×5mmの型枠に水性無機コーティング剤を注入し、乾燥、焼成後、型枠を取り外して作製した試験片を用いた。また、多孔質溶射層は、溶射に用いる線材(φ4.6mm)を長さ5mmで切り取り試験片とした。
[Evaluation methods]
1. Linear thermal expansion coefficient The linear thermal expansion coefficient of the base material, the precoat layer, and the porous sprayed layer was measured using a thermomechanical analyzer (manufactured by Bruker AXS, “TMA4000SA”).
In addition, for measuring the linear thermal expansion coefficient of the base material, a base material cut into a size of φ5 mm × 5 mm was used as a test piece, and for measuring the linear thermal expansion coefficient of the precoat layer, an aqueous inorganic material was used in a φ5 mm × 5 mm mold. A test piece prepared by injecting the coating agent, drying and firing, and removing the mold was used. Moreover, the porous sprayed layer cut | disconnected the wire (phi4.6mm) used for a spraying by length 5mm, and made it the test piece.
2.多孔質溶射層の空孔率
 試験片の寸法(縦、横)および溶射前後の試験片厚みから多孔質溶射層の体積を求めた。なお、試験片の寸法(縦、横)についてはノギスを用いて測定し、厚みについてはマイクロメータを用いて測定した。また、溶射前後の試験片の質量を測定して、多孔質溶射層の質量を求めた。多孔質溶射層の空孔率を、下記式(1)により求めた。
2. The porosity of a porous sprayed layer The volume of the porous sprayed layer was calculated | required from the dimension (length and width) of the test piece, and the test piece thickness before and behind spraying. In addition, about the dimension (length and width) of the test piece, it measured using calipers, and measured the thickness using the micrometer. Moreover, the mass of the test piece before and after thermal spraying was measured to determine the mass of the porous thermal sprayed layer. The porosity of the porous sprayed layer was determined by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
3.水性無機コーティング剤を塗布乾燥して形成されたプレコート層の接着強度
 図3に示すように、基材2と水性無機コーティング剤を塗布乾燥して形成されたプレコート層3と多孔質溶射層4からなる成膜装置用部品1にSUS薄板5(5mm×70mm×0.2mm)を、接着剤(東亞合成社製、「アロンアルファ(登録商標)」)を用いて、接着面6が5mm×10mmとなるように接着して試験片を作製した。ここで、図3中のX、YおよびZは、それぞれ成膜装置用部品1、SUS薄板5および接着面6の長さを示しており、X=40mm、Y=70mm、Z=10mmである。
 得られた試験片について、万能試験機(東京試験機社製、小型卓上試験機「LSC-1/30-2」)を用いて引張せん断試験を行い、SUS薄板が成膜装置用部品から剥離する際の応力(破断応力)を測定し、これをプレコート層の基材に対する接着強度とした。なお、測定条件は、図3に矢印Aで示す方向を引張方向とし、試験機の下部チャックに成膜装置用部品1、上部チャックにSUS薄板5を固定し、引張速度を30mm/minとした。
 なお、SUS薄板と接着剤との界面で剥離が発生した場合、プレコート層の基材に対する接着強度は10N/mm2超とした。
3. 3. Adhesive strength of precoat layer formed by applying and drying aqueous inorganic coating agent As shown in FIG. 3, from the precoat layer 3 and the porous sprayed layer 4 formed by applying and drying the substrate 2 and the aqueous inorganic coating agent. An SUS thin plate 5 (5 mm × 70 mm × 0.2 mm) is used for the film forming apparatus component 1 and an adhesive (“Aron Alpha (registered trademark)” manufactured by Toagosei Co., Ltd.) is used. The test piece was produced by bonding. Here, X, Y, and Z in FIG. 3 indicate the lengths of the film forming apparatus component 1, the SUS thin plate 5, and the bonding surface 6, respectively, and X = 40 mm, Y = 70 mm, and Z = 10 mm. .
The obtained test piece was subjected to a tensile shear test using a universal testing machine (manufactured by Tokyo Testing Machine Co., Ltd., a small table testing machine “LSC-1 / 30-2”), and the SUS thin plate was peeled off from the film forming apparatus parts. The stress (breaking stress) at the time of carrying out was measured, and this was made into the adhesive strength with respect to the base material of a precoat layer. The measurement conditions are as shown in FIG. 3 where the direction indicated by the arrow A is the tensile direction, the film forming apparatus component 1 is fixed to the lower chuck of the testing machine, the SUS thin plate 5 is fixed to the upper chuck, and the tensile speed is 30 mm / min. .
In addition, when peeling generate | occur | produced in the interface of a SUS thin plate and an adhesive agent, the adhesive strength with respect to the base material of a precoat layer was over 10 N / mm < 2 >.
4.煮沸処理後の接着強度
 基材にプレコート層および多孔質溶射層が形成された成膜装置用部品を水に浸漬し、約100℃で10分間煮沸処理した。
 この煮沸処理後の成膜装置用部品について、上記「3.接着強度」と同様にして、プレコート層の基材に対する接着強度を測定した。
4). Bonding strength after boiling treatment A film-forming device component in which a precoat layer and a porous sprayed layer were formed on a base material was immersed in water and boiled at about 100 ° C for 10 minutes.
About the component for film-forming apparatuses after this boiling process, the adhesive strength with respect to the base material of a precoat layer was measured similarly to said "3. Adhesive strength".
5.耐熱性試験
 水および/または水蒸気による処理が施されていない成膜装置用部品に対して、450℃に保持した電気炉内にて1時間放置した後、電気炉から取り出し室温(25℃)環境で25℃まで放冷するという熱処理を、10回施した。10回の熱処理を終えた後、上記「2.接着強度」と同様にして、プレコート層の基材に対する接着強度を測定した。
 そして、接着強度が10N/mm2超(すなわち、SUS薄板と接着剤との界面で剥離が発生した場合)を「○」;熱処理後に、プレコート層および/または多孔質溶射層が基材から剥離している場合、または、接着強度が10N/mm2以下の場合を「×」と評価した。
5). Heat resistance test For film forming equipment parts that have not been treated with water and / or water vapor, they were left in an electric furnace maintained at 450 ° C. for 1 hour and then removed from the electric furnace at room temperature (25 ° C.). The heat treatment of cooling to 25 ° C. was performed 10 times. After finishing the heat treatment 10 times, the adhesive strength of the precoat layer to the substrate was measured in the same manner as in “2. Adhesive strength”.
And, when the adhesive strength exceeds 10 N / mm 2 (that is, when peeling occurs at the interface between the SUS thin plate and the adhesive), “◯”; after the heat treatment, the precoat layer and / or the porous sprayed layer is peeled off from the base material The case where the adhesive strength was 10 N / mm 2 or less was evaluated as “x”.
6.耐真空性試験
 成膜装置用部品を真空チャンバーに入れて、真空チャンバー内の圧力を1.0×10-5Paまで低下させ、60分間保持した。その後、真空チャンバー内の減圧を解除し、成膜装置用部品を目視にて観察し、プレコート層が基材から剥離しているかを確認した。そして、プレコート層が全く剥離していないものを「○」、一部のプレコート層が剥離しているものを「×」と評価した。
6). Vacuum Resistance Test The film forming apparatus component was placed in a vacuum chamber, the pressure in the vacuum chamber was reduced to 1.0 × 10 −5 Pa, and held for 60 minutes. Thereafter, the reduced pressure in the vacuum chamber was released, and the film forming apparatus parts were visually observed to confirm whether the precoat layer was peeled off from the substrate. Then, the case where the precoat layer was not peeled off was evaluated as “◯”, and the case where a part of the precoat layer was peeled off was evaluated as “x”.
[成膜装置用部品の作製]
製造例1
 基材としてのAl試験片(4cm四方、厚さ2mm)に、WA#100による表面ブラスト処理を施した。前記基材のブラスト処理を施した面に、骨材として珪石60質量部、結合剤としてコロイダルシリカ12質量部、溶媒として水28質量部を含有する水性無機コーティング剤を、ピースガン(明治機械製作所製、「MP-3」)を用いてスプレー塗布した。塗装した水性無機コーティング剤を、150℃で1時間乾燥させプレコート層(厚み20μm)を形成した。
[Production of parts for film forming equipment]
Production Example 1
A surface blast treatment with WA # 100 was performed on an Al test piece (4 cm square, 2 mm thick) as a substrate. An aqueous inorganic coating agent containing 60 parts by mass of silica as an aggregate, 12 parts by mass of colloidal silica as a binder, and 28 parts by mass of water as a solvent is applied to the surface of the base material subjected to the blasting treatment. , “MP-3”). The applied aqueous inorganic coating agent was dried at 150 ° C. for 1 hour to form a precoat layer (thickness 20 μm).
 次に、前記プレコート層上に、ガスフレーム式ワイヤー溶射装置(コーケン・テクノ社製、「M-7型」)を用いて、多孔質溶射層(厚み150μm;空孔率40%)を形成し、成膜装置用部品No.1を得た。 Next, a porous sprayed layer (thickness 150 μm; porosity 40%) is formed on the precoat layer using a gas flame type wire spraying device (manufactured by Koken Techno Co., Ltd., “M-7 type”). No. for film forming apparatus 1 was obtained.
 なお、溶射条件は、線材として純Alワイヤー(φ4.6mm)を使用し、火炎温度を2500℃~3000℃とし、被溶射物までの距離を100mm~150mmとした。得られた成膜装置用部品No.1について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。 The spraying conditions were such that pure Al wire (φ4.6 mm) was used as the wire, the flame temperature was 2500 ° C. to 3000 ° C., and the distance to the sprayed object was 100 mm to 150 mm. The obtained film forming apparatus part No. For No. 1, the adhesive strength of the precoat layer was measured, a heat resistance test and a vacuum resistance test were performed. The results are shown in Table 1.
製造例2
 水性無機コーティング剤を、骨材として、霞石閃長岩42質量部、アルミナ5質量部、クロムチタンイエロー4質量部、非晶質シリカ2質量部、酸化コバルト4質量部、結合剤としてアクリル酸系ポリマー3質量部、溶媒として水35質量部、硬化促進剤として水酸化カリウム5質量部を含有する水性無機コーティング剤に変更したこと以外は製造例1と同様にして、成膜装置用部品No.2を得た。得られた成膜装置用部品No.2について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 2
Aqueous inorganic coating agent as aggregate, 42 parts by weight of nepheline syenite, 5 parts by weight of alumina, 4 parts by weight of chrome titanium yellow, 2 parts by weight of amorphous silica, 4 parts by weight of cobalt oxide, acrylic acid as binder In the same manner as in Production Example 1, except for changing to a water-based inorganic coating agent containing 3 parts by mass of polymer, 35 parts by mass of water as a solvent, and 5 parts by mass of potassium hydroxide as a curing accelerator, part No. 2 was obtained. The obtained film forming apparatus part No. For No. 2, a measurement of the adhesive strength of the precoat layer, a heat resistance test and a vacuum resistance test were performed. The results are shown in Table 1.
製造例3
 水性無機コーティング剤を、骨材として、窒化硼素12質量部、黒鉛1質量部、結合剤として水溶性アクリル樹脂5質量部、溶媒として水64質量部、ブチルジグリコール3質量部、硬化促進剤として珪酸カリウム15質量部を含有する水性無機コーティング剤に変更したこと以外は製造例1と同様にして、成膜装置用部品No.3を得た。得られた成膜装置用部品No.3について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 3
Aqueous inorganic coating agent as aggregate, 12 parts by mass of boron nitride, 1 part by mass of graphite, 5 parts by mass of water-soluble acrylic resin as binder, 64 parts by mass of water as solvent, 3 parts by mass of butyl diglycol, as curing accelerator In the same manner as in Production Example 1 except that the water-based inorganic coating agent containing 15 parts by mass of potassium silicate was used, the film forming apparatus part No. 3 was obtained. The obtained film forming apparatus part No. For No. 3, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
製造例4
 水性無機コーティング剤を、骨材として、シリカ46質量部、複合酸化物系顔料(Fe23/Cr23/SiO2)8質量部、非晶質シリカ3質量部、溶媒として水33質量部、エチルアルコール3質量部、硬化促進剤としてりん酸アルミニウム7質量部を含有する水性無機コーティング剤に変更したこと以外は製造例1と同様にして、成膜装置用部品No.4を得た。得られた成膜装置用部品No.4について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 4
The water-based inorganic coating agent is 46 parts by mass of silica as an aggregate, 8 parts by mass of a composite oxide pigment (Fe 2 O 3 / Cr 2 O 3 / SiO 2 ), 3 parts by mass of amorphous silica, and water 33 as a solvent. In the same manner as in Production Example 1, except that the water-based inorganic coating agent containing 7 parts by mass of aluminum phosphate and 7 parts by mass of aluminum phosphate as a curing accelerator was used. 4 was obtained. The obtained film forming apparatus part No. For No. 4, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
製造例5
 多孔質溶射層を形成しなかったこと以外は製造例1と同様にして、成膜装置用部品No.5を得た。得られた成膜装置用部品No.5について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 5
In the same manner as in Production Example 1 except that the porous sprayed layer was not formed, the part No. 5 was obtained. The obtained film forming apparatus part No. For No. 5, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
製造例6
 多孔質溶射層を形成しなかったこと以外は製造例2と同様にして、成膜装置用部品No.6を得た。得られた成膜装置用部品No.6について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 6
In the same manner as in Production Example 2, except that the porous sprayed layer was not formed, the part No. 6 was obtained. The obtained film forming apparatus part No. For No. 6, measurement of the adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
製造例7
 多孔質溶射層を形成しなかったこと以外は製造例3と同様にして、成膜装置用部品No.7を得た。得られた成膜装置用部品No.7について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 7
In the same manner as in Production Example 3 except that the porous sprayed layer was not formed, the part No. 7 was obtained. The obtained film forming apparatus part No. For No. 7, a measurement of the adhesive strength of the precoat layer, a heat resistance test and a vacuum resistance test were performed. The results are shown in Table 1.
製造例8
 水性無機コーティング剤を、骨材として窒化アルミニウム、結合剤として水ガラスを含有する水性無機コーティング剤に変更したこと、および多孔質溶射層を形成しなかったこと以外は製造例1と同様にして、成膜装置用部品No.8を得た。得られた成膜装置用部品No.8について、プレコート層の接着強度の測定、耐熱性試験および耐真空性試験を行った。結果を表1に示した。
Production Example 8
Except that the aqueous inorganic coating agent was changed to an aqueous inorganic coating agent containing aluminum nitride as an aggregate and water glass as a binder, and the porous sprayed layer was not formed, in the same manner as in Production Example 1, Deposition equipment part no. 8 was obtained. The obtained film forming apparatus part No. For No. 8, measurement of adhesive strength of the precoat layer, heat resistance test and vacuum resistance test were conducted. The results are shown in Table 1.
[薄膜の形成]
 得られた成膜装置用部品No.1~8およびAl試験片(製造例1と同様にブラスト処理を施したもの)に対して、UBMSスパッタ装置(神戸製鋼所製、「UBMS503」)を用いてスパッタリングによりAl層(付着膜)を形成した。Al層は、成膜装置用部品No.1~8については、プレコート層の上面に形成し、Al試験片については、ブラスト処理を施した面に形成した。
[Formation of thin film]
The obtained film forming apparatus part No. Al layers (adhesion films) were sputtered on 1 to 8 and Al specimens (blasted in the same manner as in Production Example 1) using a UBMS sputtering device (Kobe Steel Works, "UBMS503"). Formed. The Al layer is a film forming apparatus part No. 1 to 8 were formed on the top surface of the precoat layer, and Al test pieces were formed on the blasted surface.
[付着膜の除去]
 Al層(付着膜)を形成した成膜装置用部品No.1~8およびAl試験片を、水を入れたビーカー内にて10分間煮沸した。次に、煮沸処理後の成膜装置用部品No.1~8およびAl試験片を55℃の温水中に浸漬させた状態で、超音波洗浄器(アズワン社製、「US-3A」)を用いて超音波を10分間照射(周波数40kHz)した。
 超音波を照射した後、成膜装置用部品No.1~8およびAl試験片を目視にて観察し、付着膜が除去されているかどうかを確認し、以下の基準で評価した。
 ○:完全に剥離、若しくは、剥離しかかっており容易に除去できる。
 ×:処理前と同じ状態で、容易に除去できない。
[Removal of adhered film]
Part No. for film forming apparatus in which an Al layer (adhesion film) is formed. 1-8 and Al specimens were boiled for 10 minutes in a beaker containing water. Next, the film forming apparatus part No. Ultrasonic was irradiated for 10 minutes (frequency: 40 kHz) using an ultrasonic cleaner (As One, “US-3A”) in a state where 1 to 8 and the Al test piece were immersed in warm water of 55 ° C.
After irradiating with ultrasonic waves, the film forming apparatus part No. 1 to 8 and the Al test piece were visually observed to confirm whether or not the adhered film was removed, and evaluated according to the following criteria.
○: Completely peeled off or peeled off and easily removed.
X: Cannot be easily removed in the same state as before treatment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 成膜装置用部品No.1~3は、基材と、水性無機コーティング剤から形成されたプレコート層と前記プレコート層上に形成された多孔質溶射層を有し、前記基材の線熱膨張率(α1)と前記プレコート層の線熱膨張率(α2)との差(│α1-α2│)が18×10-6/℃以下である場合である。これらの成膜装置用部品No.1~3では、プレコート層は耐熱性および耐真空性に優れており、且つ、煮沸処理後に、水中で超音波を照射するだけで付着膜を容易に除去することができた。 Deposition equipment part no. 1-3 have a substrate, a precoat layer formed from an aqueous inorganic coating agent, and a porous sprayed layer formed on the precoat layer, and the linear thermal expansion coefficient (α 1 ) of the substrate and the above This is a case where the difference (| α 1 −α 2 |) from the linear thermal expansion coefficient (α 2 ) of the precoat layer is 18 × 10 −6 / ° C. or less. These film forming apparatus parts No. In Nos. 1 to 3, the precoat layer was excellent in heat resistance and vacuum resistance, and after the boiling treatment, the adhered film could be easily removed simply by irradiating with ultrasonic waves in water.
 成膜装置用部品No.4は、線熱膨張率の差(│α1-α2│)が18×10-6/℃以下であり、プレコート層は耐熱性および耐真空性に優れている。しかし、煮沸処理後の接着強度が10N/mm2超であり、煮沸処理後に水中で超音波を照射しても付着膜を除去することができなかった。 Deposition equipment part no. No. 4 has a difference in linear thermal expansion coefficient (| α 1 −α 2 |) of 18 × 10 −6 / ° C. or less, and the precoat layer is excellent in heat resistance and vacuum resistance. However, the adhesive strength after boiling treatment was more than 10 N / mm 2 , and the adhered film could not be removed even when irradiated with ultrasonic waves in water after boiling treatment.
 成膜装置用部品No.5~7は、上記成膜装置用部品No.1~3に対する、多孔質溶射層を形成していない場合の比較例である。これらの成膜装置用部品No.5~7では、同様の水性無機コーティング剤を用いた成膜装置用部品No.1~3に比べて、煮沸処理後の接着強度が高くなっている。すなわち、多孔質溶射層を有する成膜装置用部品No.1~3は、多孔質溶射層を有さない場合よりも、水および/または水蒸気による処理において、より短時間でプレコート層の接着強度を低下させられることがわかる。 Film deposition equipment part no. Nos. 5 to 7 are parts Nos. This is a comparative example in which a porous sprayed layer is not formed for 1-3. These film forming apparatus parts No. In Nos. 5 to 7, film-forming apparatus parts No. 5 using the same aqueous inorganic coating agent were used. Compared with 1-3, the adhesive strength after boiling is higher. That is, the part No. for film forming apparatus having a porous sprayed layer is used. 1 to 3 show that the adhesive strength of the precoat layer can be reduced in a shorter time in the treatment with water and / or water vapor than in the case without the porous sprayed layer.
 成膜装置用部品No.8は、線熱膨張率の差(│α1-α2│)が18×10-6/℃超の場合であるが、線熱膨張率差が大きすぎるため、熱処理を10回施した際に、プレコート層が基材から剥離してしまった。
 Al試験片では、煮沸処理後に、水中で超音波を照射しても付着膜を除去することはできなかった。
Deposition equipment part no. 8 is the case where the difference in linear thermal expansion coefficient (| α 1 −α 2 |) exceeds 18 × 10 −6 / ° C., but the difference in linear thermal expansion coefficient is too large. Further, the precoat layer was peeled off from the substrate.
With the Al test piece, it was not possible to remove the adhered film even when irradiated with ultrasonic waves in water after the boiling treatment.
 本発明の成膜装置用部品は、スパッタリング装置などの成膜装置に好適に用いられる。 The component for a film forming apparatus of the present invention is suitably used for a film forming apparatus such as a sputtering apparatus.
 1:成膜装置用部品、2:基材、3:プレコート層、4:多孔質溶射層、5:SUS薄板、6:接着面、7:付着膜、A:引張方向、X:成膜装置用部品の長さ、Y:SUS薄板の長さ、Z:接着面の長さ 1: parts for film forming apparatus, 2: base material, 3: precoat layer, 4: porous sprayed layer, 5: SUS thin plate, 6: adhesive surface, 7: adhesion film, A: tensile direction, X: film forming apparatus Parts length, Y: SUS thin plate length, Z: adhesive surface length

Claims (8)

  1.  基材と、前記基材に形成されたプレコート層と、前記プレコート層上に形成された多孔質溶射層を有する成膜装置用部品であって、
     前記プレコート層が、水性無機コーティング剤から形成されたものであり、前記基材の線熱膨張率(α1)と前記プレコート層の線熱膨張率(α2)との差(│α1-α2│)が18×10-6/℃以下であることを特徴とする成膜装置用部品。
    A component for a film forming apparatus having a base material, a precoat layer formed on the base material, and a porous sprayed layer formed on the precoat layer,
    The precoat layer, which is formed from an aqueous inorganic coating agent, the difference between the linear thermal expansion coefficient of the substrate (alpha 1) and linear thermal expansion coefficient of the precoat layer (α 2) (│α 1 - α 2 |) is 18 × 10 −6 / ° C. or less, and the film forming apparatus component.
  2.  前記水性無機コーティング剤が、骨材と、水を50質量%以上含む溶媒とを含むものである請求項1に記載の成膜装置用部品。 The film forming apparatus component according to claim 1, wherein the aqueous inorganic coating agent includes an aggregate and a solvent containing 50% by mass or more of water.
  3.  前記水性無機コーティング剤が、骨材(顔料を含む)として、珪石、霞石閃長岩、シリカ、アルミナ、非晶質シリカおよび窒化硼素よりなる群から選択される少なくとも1種を含有するものである請求項2に記載の成膜装置用部品。 The aqueous inorganic coating agent contains at least one selected from the group consisting of silica, nepheline syenite, silica, alumina, amorphous silica, and boron nitride as an aggregate (including a pigment). The film forming apparatus component according to claim 2.
  4.  前記水性無機コーティング剤が、さらに、結合剤として、コロイダルシリカ、水溶性アクリル樹脂、アクリル酸系ポリマーおよび水ガラスよりなる群から選択される少なくとも1種を含有するものである請求項2または3に記載の成膜装置用部品。 The water-based inorganic coating agent further contains at least one selected from the group consisting of colloidal silica, a water-soluble acrylic resin, an acrylic acid polymer, and water glass as a binder. The part for film-forming apparatuses of description.
  5.  前記水性無機コーティング剤を塗布乾燥して形成されたプレコート層の基材に対する接着強度が10N/mm2超であり、且つ、煮沸処理を施した後のプレコート層の基材に対する接着強度が10N/mm2以下である請求項1~4のいずれか一項に記載の成膜装置用部品。 The adhesive strength of the precoat layer formed by applying and drying the aqueous inorganic coating agent to the substrate is more than 10 N / mm 2 , and the adhesive strength of the precoat layer to the substrate after boiling is 10 N / mm The film forming apparatus component according to any one of claims 1 to 4, wherein the film forming apparatus part has a thickness of 2 mm or less.
  6.  前記プレコート層が、450℃の雰囲気に1時間放置した後、25℃まで放冷する熱処理を10回施しても、基材から剥離しないものである請求項1~5のいずれか一項に記載の成膜装置用部品。 6. The precoat layer according to any one of claims 1 to 5, wherein the precoat layer does not peel from the substrate even after being subjected to a heat treatment that is allowed to cool to 25 ° C. after being left in an atmosphere at 450 ° C. for 1 hour. Parts for film forming equipment.
  7.  前記プレコート層が、圧力1.0Pa以下の真空下においても基材から剥離しないものである請求項1~6のいずれか一項に記載の成膜装置用部品。 The film-forming apparatus component according to any one of claims 1 to 6, wherein the precoat layer does not peel from the substrate even under a vacuum of 1.0 Pa or less.
  8.  請求項1~7のいずれか一項に記載の成膜装置用部品に形成された付着膜の除去方法であって、
     付着膜形成後に、水および/または水蒸気によりプレコート層を処理した後、付着膜を除去することを特徴とする付着膜の除去方法。
    A method for removing an adhesion film formed on a component for a film forming apparatus according to any one of claims 1 to 7,
    A method for removing an adhesion film, comprising: treating the precoat layer with water and / or water vapor after forming the adhesion film, and then removing the adhesion film.
PCT/JP2009/062830 2009-03-25 2009-07-15 Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus WO2010109685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-075174 2009-03-25
JP2009075174A JP2010229434A (en) 2009-03-25 2009-03-25 Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus

Publications (1)

Publication Number Publication Date
WO2010109685A1 true WO2010109685A1 (en) 2010-09-30

Family

ID=42780393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062830 WO2010109685A1 (en) 2009-03-25 2009-07-15 Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus

Country Status (4)

Country Link
JP (1) JP2010229434A (en)
KR (1) KR20120008031A (en)
TW (1) TW201035355A (en)
WO (1) WO2010109685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216719A (en) * 2022-07-19 2022-10-21 吉安富奇精密制造有限公司 Wear-resistant numerical control cutter containing composite coating and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983428B2 (en) * 2013-01-23 2016-08-31 住友金属鉱山株式会社 Protective member, film forming apparatus equipped with the same, and method for maintaining protective member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243176A (en) * 1985-04-18 1986-10-29 Mitsui Eng & Shipbuild Co Ltd Method for cvd treatment
JP2000246198A (en) * 1999-02-26 2000-09-12 Nec Kansai Ltd Method of stripping off and washing stuck matter on jig surface
JP2001247957A (en) * 1999-12-28 2001-09-14 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using same, and target device
JP2002115063A (en) * 2000-10-06 2002-04-19 Ebara Corp Deposit removing method and deposit fixing method of treatment apparatus, and deposit treatment apparatus
JP2003192472A (en) * 2001-12-26 2003-07-09 Nichias Corp Heat-resistant structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243176A (en) * 1985-04-18 1986-10-29 Mitsui Eng & Shipbuild Co Ltd Method for cvd treatment
JP2000246198A (en) * 1999-02-26 2000-09-12 Nec Kansai Ltd Method of stripping off and washing stuck matter on jig surface
JP2001247957A (en) * 1999-12-28 2001-09-14 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using same, and target device
JP2002115063A (en) * 2000-10-06 2002-04-19 Ebara Corp Deposit removing method and deposit fixing method of treatment apparatus, and deposit treatment apparatus
JP2003192472A (en) * 2001-12-26 2003-07-09 Nichias Corp Heat-resistant structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216719A (en) * 2022-07-19 2022-10-21 吉安富奇精密制造有限公司 Wear-resistant numerical control cutter containing composite coating and preparation method thereof
CN115216719B (en) * 2022-07-19 2023-07-21 吉安富奇精密制造有限公司 Wear-resistant numerical control cutter containing composite coating and preparation method thereof

Also Published As

Publication number Publication date
TW201035355A (en) 2010-10-01
JP2010229434A (en) 2010-10-14
KR20120008031A (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP2011964B1 (en) Method of Repairing a Turbine Component
US7455881B2 (en) Methods for coating a magnesium component
US20100155251A1 (en) Hard anodize of cold spray aluminum layer
US20110303535A1 (en) Sputtering targets and methods of forming the same
WO2007023971A1 (en) Structural member coated with spray coating film excellent in thermal emission properties and the like, and method for production thereof
CN110306148B (en) Method for preparing aluminum-based amorphous layer by combining thermal spraying and electron beam remelting technologies
JP2020531697A (en) Covered metal substrate
WO2013140668A1 (en) Method for forming fluoride spray coating, and member coated with fluoride spray coating
CN106269648A (en) A kind of ceramic layer minimizing technology of thermal barrier coating
US20130142950A1 (en) Method for producing a layer by means of cold spraying and use of such a layer
WO2010109685A1 (en) Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus
WO1993010275A1 (en) Method of forming layer of evaporation coating
JP2012026013A (en) Component for film-forming apparatus and method for removing film adhered to the same
JP2011063856A (en) Method for removing depositing film on component for film-forming apparatus
JP5574683B2 (en) Repair method and heat-resistant member of gas turbine repaired by the repair method
JP4602998B2 (en) Thermal spray coating formation method
WO2010109686A1 (en) Component for film-forming apparatus and method for removing film adhered to the component for film-forming apparatus
CN102115868A (en) Method for preparing aluminum oxide protective film of infrared window
JP2014237864A (en) Manufacturing method of coated member and coated member
JP2014159641A (en) Repairing method, and heat-resistant member of gas turbine repaired thereby
JP2012052161A (en) Pretreatment method of component of deposition device
JP3927103B2 (en) Rare earth magnet film forming method
JP2007100218A (en) Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate
JP5254277B2 (en) Manufacturing method of parts for vacuum film forming apparatus
WO2016035599A1 (en) WATER-REACTIVE Al COMPOSITE MATERIAL, WATER-REACTIVE Al ALLOY SPRAY FILM, METHOD FOR MANUFACTURING Al ALLOY SPRAY FILM AND CONSTITUENT MEMBER FOR FILM DEPOSITION CHAMBER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024245

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09842296

Country of ref document: EP

Kind code of ref document: A1