WO2010109174A1 - Electromagnetic field absorbing composition - Google Patents

Electromagnetic field absorbing composition Download PDF

Info

Publication number
WO2010109174A1
WO2010109174A1 PCT/GB2010/000532 GB2010000532W WO2010109174A1 WO 2010109174 A1 WO2010109174 A1 WO 2010109174A1 GB 2010000532 W GB2010000532 W GB 2010000532W WO 2010109174 A1 WO2010109174 A1 WO 2010109174A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
composition according
range
thickness
absorbing
Prior art date
Application number
PCT/GB2010/000532
Other languages
French (fr)
Inventor
Richard Bryant
Greg Peter Wade Fixter
Shahid Hussain
Adrian Simon Thomas Vaughan
Original Assignee
Qinetiq Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinetiq Limited filed Critical Qinetiq Limited
Priority to US13/260,612 priority Critical patent/US9806426B2/en
Priority to EP10713696.2A priority patent/EP2411462B1/en
Priority to ES10713696.2T priority patent/ES2582793T3/en
Priority to CN2010800233622A priority patent/CN102449050B/en
Priority to CA2756647A priority patent/CA2756647C/en
Priority to KR1020117025217A priority patent/KR101771891B1/en
Publication of WO2010109174A1 publication Critical patent/WO2010109174A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/99Radar absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • This invention relates to the field of an electromagnetic (EM) field absorbing composition, in particular, those capable of providing absorbance in the frequency of commercial radar.
  • the composition finds particular use as a radar absorbing coating for wind turbines, in particular for use in onshore and offshore environments.
  • coated surfaces comprising the composition, methods of absorbing EM radiation, and methods of use of such a composition, such that a surface coated in the composition is capable of absorbing EM radiation.
  • an electromagnetic radiation absorbing composition comprising a carbon filler comprising elongate carbon elements with an average longest dimension in the range of 20 to lOOOmicrons, with a thickness in the range of 1 to 15 microns, characterised wherein the total carbon filler content is present in the range of from 1 to 20 volume% dried, in a non conductive binder.
  • the absorbers of the invention are narrowband absorbers, typically less than 1 GHz in bandwidth, and so are particularly unsuitable for use in military applications, which require broadband radar absorption.
  • dielectric fillers such as elongate carbon elements when provided in a composition according to the invention are not suited to broadband radar absorption applications.
  • volume percentages hereinbefore and hereinafter are defined as a volume percentage of the final dried composition (i.e. without solvent).
  • a solvent may be present in order to facilitate the composition being deposited or applied in the form of a coating i.e. one or more layers. It may be desirable to add sufficient solvent such that the composition may be applied to achieve the required final dried coating thickness in order to absorb at the frequency of the incident radiation.
  • the composition may comprise a liquid formulation prior to application, and will preferably be in the form of a dried coating after its application.
  • the elongate carbon elements are present in the range of from 1 to 15 volume% dried, more preferably of from 2 to 10 volume% dried.
  • total carbon filler content is meant the total volume% of carbon filler in the composition
  • total carbon filler content is meant the total volume% of carbon filler in the composition
  • the elongate carbon elements have an average longest dimension in the range of from 50 to 750microns, preferably in the range of from 50 to 500 microns, more preferably in the range of from 100 to 300 microns, yet more preferably in the range of from 100 to 150 microns (assuming a normal distribution). Where processing methods give rise to other element size distributions, not more than 25% by weight of the elongate carbon elements should exceed 500 microns. It has been successfully shown that elongate carbon elements which are in the range of 50 to 300 microns and present in the range of 0.5 to 20% will absorb radiation rather than reflect incoming radiation.
  • the elongated carbon elements preferably have an average thickness in the range of 1 to 15 microns; more preferably the average thickness is in the range of from 1 to 10 microns, or even 5 to 10 microns. In a preferred arrangement the elongate carbon elements have an average thickness to average longest dimension ratio of 1 :10 to 1 :25.
  • Spherical particles and chopped carbon fibres such as those prepared by chopping continuous fibres, which typically produce fibres in the region of 4mm to 6mm (4000 to 6000microns), typically provide reflective compositions and so both spherical and chopped carbon types are undesirable, as outlined in more detail, below.
  • the elongate carbon elements may be of any cross section shape, preferably the elongate carbon elements are carbon fibres.
  • Carbon fibres are typically prepared from continuous substantially cylindrical fibres that are machined to the desired length.
  • Preferably the elongate carbon elements are carbon fibres that have been machined to the desired length.
  • the machining method that is typically used to produce elongate carbon elements in the desired range according to the invention is milling.
  • a coating of dried composition according to the invention is particularly suitable for providing a narrowband radar absorbing coating for wind turbines, especially wind turbines that are located in marine environments.
  • the composition when applied to a surface, such as, for example a wind turbine, at a selected thickness may reduce radar reflections. The reduction of these reflections reduces the structure's impact on the operation of nearby air traffic control (ATC), air defence (ADR), meteorological (MR) and Marine navigational radars (MNR).
  • ATC air traffic control
  • ADR air defence
  • MR meteorological
  • MNR Marine navigational radars
  • the composition according to the invention finds particular use for absorbing known radar frequencies from known local sources, such that renewable energies systems, such as wind farms, may be more readily located near existing radar installations.
  • Conventional radar absorbing materials comprise formulations containing ferromagnetic materials, and so are very susceptible to rusting during their lifetime. Therefore an advantage of the current invention is that the absorbing composition will not rust, as the elongate carbon elements are not be capable of reacting with air and moisture. It is well known that the formation of rust is accelerated in the presence of salt water; hence the composition according to the invention is particularly useful in coastal environments.
  • Electromagnetic absorbing compositions rely on electromagnetically active materials within a composition to interact with the impinging electromagnetic field.
  • the processing of electromagnetically active materials is complex and requires control over the electric and magnetic components within said materials, such that they can then interact with the time varying electric and magnetic field components associated with the incoming electromagnetic fields.
  • the composition according to the invention does not require any control of the magnetic component in the material.
  • the electromagnetic requirements of Radar Absorbing Materials are well-established.
  • the first requirement is to maximise the electromagnetic radiation entering the structure, by minimising front face reflection. This is achieved if the real and imaginary components of the complex permittivity, ⁇ , and permeability, ⁇ , are separately equal, as derived from the perfect impedance match condition.
  • the second requirement is that the signal is sufficiently attenuated once the radiation has entered the material. This condition is met for high values of imaginary permittivity and permeability, which by definition provide the contribution to dielectric and magnetic loss respectively.
  • This invention relates to the use and control of dielectric losses by the narrow selection of the average longest dimension (i.e. the length) of the elongate carbon element and its percentage inclusion within said composition.
  • the thickness of a coating of dried composition may preferably be selected in the range of from ⁇ /3 to ⁇ /5 of the wavelength of the resonant frequency of the incident radiation, more preferably in the region of one quarter of the wavelength ( ⁇ /4) of the resonant frequency of the incident radiation. Accordingly there is provided a radar frequency absorbing surface, structure or body or portions thereof comprising at least one dried coating according to the invention. In a preferred arrangement the thickness said coating is one quarter of the wavelength [KIA) of the resonant frequency of the incident radiation to be absorbed.
  • corresponds to the wavelength in the coating of dried composition
  • a 0 is the free space wavelength
  • ⁇ and ⁇ are the permittivity and permeability of the coating of dried composition according to the invention. Nominally the permeability is approximately 1 (free space) for the carbon fibres as the fibres do not possess any magnetic properties.
  • ⁇ ( ⁇ ) ⁇ '( ⁇ )- i. ⁇ "( ⁇ ) where ⁇ ' and ⁇ " are the real and imaginary components of permittivity, ⁇ , respectively and
  • ⁇ ' is associated with energy storage and ⁇ " is associated with loss or energy dissipation within a material.
  • the ability to absorb EM radio or microwave radiation is dictated by the optimum real and imaginary components of permittivity being obtained.
  • the dielectric properties of the coating of dried composition according to the invention are dependent upon the microstructure formed within said coating.
  • Spherical carbon particles tend to form isolated clusters within a composite structure, which leads to relatively low conductivity and dielectric loss ( ⁇ "), which is insufficient for absorption of electromagnetic waves.
  • dielectric loss
  • the required thickness of the dried coating of composition according to the invention is selected depending on the frequency/wavelength of the incident radiation, as mentioned above.
  • the coating of composition may be cast in the form of an applique film which has been prepared under controlled conditions to the selected thickness.
  • the composition may be applied directly to an existing structure, such as, for example, a wind turbine by known methods such as, for example spraying, rollering or brushing.
  • the application is performed such that each successive layer is applied substantially orthogonally to the preceding layer.
  • total carbon filler content volume% may be different in each successive application layer, and may also be applied in an orthogonal orientation as hereinbefore defined.
  • composition according to the invention may be applied directly to the metal surface, as the metal structure serves to provide a reflective backplane.
  • an electromagnetic reflective backplane between the surface, structure or body and the at least one dried coating according to the invention. Therefore, where the outer surface of a structure, such as, for example a wind turbine tower is not substantially prepared from a metal and there is interference with nearby radar, it may be desirable to provide an EM reflective backplane, such as, for example, an EM reflective coating, a metal foil or electromagnetic(EM) shielding paint, directly on the surface of said tower, i.e. between the surface of the structure and the composition according to the invention, to provide.
  • an EM shielding paint is Applicant's PCT application GB2009/000226.
  • the non conductive binder may be selected from any commercially available binder; preferably it may be selected from an acrylate binder (such as, for example, methyl methacrylate MMA), an acrylic binder, an epoxy binder, a urethane & epoxy-modified acrylic binder, a polyurethane binder, an alkyd based binder, which may be a modified alkyd, or from fluoropolymer based binders, preferably a two part polyurethane binder.
  • an acrylate binder such as, for example, methyl methacrylate MMA
  • an acrylic binder such as, for example, methyl methacrylate MMA
  • an acrylic binder such as, for example, methyl methacrylate MMA
  • an acrylic binder such as, for example, methyl methacrylate MMA
  • an acrylic binder such as, for example, methyl methacrylate MMA
  • an acrylic binder such as, for example, methyl methacrylate MMA
  • a number of thickeners and solvents such as, for example, those routinely used in paint formulations, may be added to the composition in order to improve the flow during application and improve its adherence to different surfaces.
  • composition according to the invention may be over painted with a suitable decorative paint.
  • a suitable decorative paint Particular advantage is found when the uppermost layer of composition has a lower vol% of carbon than the preceding layer, preferably the uppermost layer has substantially no carbon, such as, for example, a commercial non EM absorbing paint.
  • the non EM paint will have a lower permittivity and therefore provides a better impedance match to free space. This reduces the reflection of the radiation at the front face, allowing more to penetrate into the absorbing layer and to be absorbed.
  • composition according to the invention may further comprise a paint pigment that is present in the range of from 2 to 20 volume% of dried volume, preferably present in the range of from 5 to 10 volume% of dried volume.
  • the pigment will be present in sufficient amount to provide colour to the composition without reducing the absorption properties of said composition.
  • the paint pigment preferably has an average particle size diameter in the range of 150 to 500nm, more preferably an average particle size diameter in the range of 200-250nm.
  • the paint pigment will preferably have a tint reducing power higher than 1700, preferably a tint reducing power higher than 1900.
  • the paint pigment may be any opaque paint pigment, more preferably the paint pigment is TiO 2 .
  • the paint pigment provides a brightening effect and helps to reduce the need for painting over the composition according to the invention with a decorative colour paint.
  • TiO 2 grades that have a tint reducing power of at least 1700, with a surface treatment ⁇ 18%, and a crystal size 230nm, preferably high opacity TiO 2 pigments, which possess alumina-zirconia surface treatment ( ⁇ 7%), and possess a relative tint reducing power of 1900, refractive index of 2.7 and a mean crystal size of 220nm are used.
  • These high opacity grades of TiO 2 exhibit improved dispersion characteristics
  • further pigments and/or dyes such as to provide different coloured paints.
  • further pigments may include, for example, inorganic or organic pigments such as metal oxides, phthalocyanines, or azo pigments etc.
  • the extent of the coverage of the dried composition on a surface, body or structure will depend on the extent of the reflective nature of the surface, body or structure. It will be clear to the skilled man that greater absorption will be achieved if the entire surface, body or structure is coated with the composition.
  • a method of providing absorption of electromagnetic radiation at a selected frequency on a surface structure or body or portions thereof comprising the step of determining the selected frequency, applying at least one coat of said composition at a thickness which selectively absorbs at said frequency or an applique film with a thickness which selectively absorbs at said frequency, to a first side of said surface structure or body or portions thereof, and optionally to a second side.
  • the absorbance will only need to occur at the selected frequency of the nearby radar source.
  • Typical radar systems operate at very precise frequencies, rather than a broad band.
  • the frequencies typically lie within the range of from 0.1 to 20 GHz.
  • compositions according to the invention wherein the composition is applied to a surface, structure or body or portions thereof at a selected thickness so as to provide a coating capable of absorbing electromagnetic radiation at a selected frequency.
  • Figure 1a and Figure 1b show graphs of the real component of permittivity and the imaginary component of permittivity (dielectric loss), respectively for three different aspect ratio carbon elements.
  • Figures 2a to 2e show graphs of the permittivity of milled carbon fibres dispersed in polyurethane (PU) at various percentage fills by volume.
  • Figure 3 shows a graph of reflection and transmission through a sample composed of milled carbon fibres dispersed in PU at 0.5% by volume.
  • Figure 4 shows a graph of reflection and transmission through a sample composed of milled carbon fibres dispersed in PU at 20% by volume.
  • Figure 5 shows a graph of reflectivity of a 3GHz absorber.
  • Figure 6 shows a graph of reflectivity of a 9.4GHz absorber.
  • Figure 1a shows a graph of the real component of permittivity for (i) spherical particles 20vol% in wax, line 1a, (ii) carbon fibres according to the invention, 6vol% in PU, line 2a and (iii) chopped fibres 1 vol% in PU, line 3a.
  • the use of wax, rather than PU 1 as the inert binder for the spherical particles does not alter the permeability/permittivity, and so does not change the formulations effectiveness as an absorber.
  • Figure 1 b shows a graph of the imaginary component of permittivity (dielectric loss) for (i) spherical particles 20vol% in wax, line 1 b, (ii) carbon fibres according to the invention, 6vol% in PU, line 2b and (iii) chopped fibres 1vol% in PU, line 3b. The results are discussed in Experiment 1 , below.
  • Figures 2a to 2e show graphs of the permittivity of milled carbon fibres dispersed in PU over a range of frequencies, with different rates of inclusion at 0.5vol%, 2vol%, 3vol%, 5vol% and 6vol%, respectively.
  • the graphs 2a to 2e show that as the vol% of carbon fibre increases, both the real ⁇ ' (upper lines) and imaginary ⁇ " (lower lines) components of permittivity increase.
  • Figure 3 shows a graph of reflection, line 5, and transmission, line 4, through a sample composed of milled carbon fibres dispersed in PU at 0.5% by volume (sample XC4343), Figure 3, shows that when the sample is loaded with very low levels of carbon fibre (even in the highly preferred length range) the composition possess low reflectance, line 5, and is highly transparent to the incident radiation, i.e. due to the lack of absorption.
  • Figure 4 shows a graph of reflection Iine15, and transmission, line 14, through a sample composed of milled carbon fibres dispersed in PU at 20% volume (sample XC4344).
  • a 20volume% loading produces a near metal-like performance, leading to a reflective material (high reflectance value, as indicated by line 15), with only a low level of absorption.
  • the percentage volume increases beyond 20vol%, the composition will move towards a perfect reflector, and so will provide little or no absorbance.
  • Figure 5 shows a graph of reflectivity of a composition which has been formulated and deposited at a selected thickness to specifically absorb at 3GHz.
  • the composition (sample XC4332) comprises milled carbon fibres dispersed in PU at 5.5volume%.
  • the composition was deposited onto the test surface at a thickness of 4mm ( ⁇ /4).
  • the graph shows good absorption at greater than 99% (see Table 5), with the maximum absorption occurring in the 3GHz region.
  • Figure 6 shows a graph of reflectivity of a composition which has been formulated to specifically absorb at 9.4GHz.
  • the composition (sample XC4288) comprises milled carbon fibres dispersed in PU at 5.0volume%.
  • the composition was deposited onto the test surface at a thickness of 1.5mm( ⁇ /4).
  • the graph shows good absorption at greater than 99.9% (see Table 5), with the maximum absorption occurring in the 9.4GHz region.
  • the composition was prepared with milled carbon fibres, whose average length was 100- 150 microns, diameter 7 microns.
  • the fibres were incorporated 5.5% by volume within a base polyurethane binder material.
  • the material is manufactured using a "quasi-prepolymer" route.
  • the Part B consists of two parts lsonate M 143 to one part PTMEG by mass.
  • the remaining (Polytetramethylene Glycol 1000) PTMEG is added to the Part A to aid with mixing.
  • Part A is mixed with the Part B in the ratio 100:56 by weight.
  • the blending is performed using a low shear blender (e.g. Molteni planetary mixer).
  • the TMP may be pre-dissolved in a small amount of the PTMEG to assist with the blending of Part A.
  • the mixture is placed under a vacuum of at least 5 mbar until fully degassed.
  • the mixing time depends on the type of equipment and the amount of material, but should be sufficient to achieve an evenly dispersed product, free from solid agglomerates. Care must be taken to ensure that the mixing process does not significantly affect the final density of the material.
  • the dry PTMEG is heated to 60 0 C and degassed for 2 hours at a reduced pressure of 5mbar immediately before use.
  • the PTMEG is then added to the Isonate®, with stirring, and the mixture is heated at 60°C for 4 hours at a reduced pressure of 5mbar.
  • composition was deposited as an applique film with a thickness of 4mm (300x300mm panel).
  • compositions were manufactured by casting, i.e. forming an applique film at the desired thickness, but may alternatively be applied using spray painting technology or trawling, as hereinbefore defined.
  • the applique test sample materials were made to dimensions of 300mm x 300mm, with different thicknesses.
  • the equipment comprised of an Anritsu 37397C vector network analyser connected to corrugated microwave horns.
  • the horns were focused by mirrors to the mid-plane, where the test samples were positioned.
  • the focussed horn set up was used to measure the complex scattering, S 1 parameters associated with transmission and reflection from the test samples, from which the permittivity, ⁇ , was obtained using the Nicholson and Ross method [Pitman K C, Lindley M W, Simkin D and Cooper J F 1991 Radar absorbers: better by design IEE Proc.—F 138 223].
  • a metal backing plane was applied to the test samples and a similar set of measurements carried out, to determine the degree of absorption (i.e. reduced reflectivity) from the test samples.
  • the elongate carbon elements were the same milled carbon fibres as defined in experiment 2 above.
  • the following compositions were prepared in an analogous manner to those in experiment 2, with different vol% inclusion of milled fibres.
  • Table 4 showing different vol% (dry) inclusions of milled carbon fibres in a PU mix.
  • Figures 5 and 6 and the %absorbance values in Table 5 show that the milled carbon fibres, which have an average length and volume% inclusion, provided in the ranges according to the invention, give rise to effective absorbers.
  • compositions when provided at the prerequisite thickness to provide 3GHz and 9.4GHz absorbers are mere examples of selected narrow frequency absorbers, and therefore the composition according to the invention is not limited to these frequencies.
  • the composition may be deposited at other thicknesses in order to produce optimum performance at alternative frequencies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

This invention relates to the field of an electromagnetic (EM) field absorbing composition, in particular, those capable of providing absorbance in the frequency of commercial radar. The composition finds particular use as a radar absorbing coating for wind turbines, in particular for use in onshore and offshore environments. There are further provided coated surfaces comprising the composition, methods of absorbing EM radiation, and methods of use of such a composition, such that a surface coated in the composition is capable of absorbing EM radiation. There is provided an electromagnetic radiation absorbing composition comprising elongate carbon elements with an average longest dimension in the range of 50 to l 000 microns, with a thickness in the range of 1 to 15 microns and present in the range of from 0.5 to 20 volume % dried, in a non conductive binder.

Description

Electromagnetic field absorbing composition
This invention relates to the field of an electromagnetic (EM) field absorbing composition, in particular, those capable of providing absorbance in the frequency of commercial radar. The composition finds particular use as a radar absorbing coating for wind turbines, in particular for use in onshore and offshore environments. There are further provided coated surfaces comprising the composition, methods of absorbing EM radiation, and methods of use of such a composition, such that a surface coated in the composition is capable of absorbing EM radiation.
Wind turbines interfere with radar systems leading to errors in detection of other objects. Radar systems work by sending out pulses of electromagnetic energy, which are reflected back from the objects that controllers wish to detect, such as the location of an aircraft. The controller must distinguish the objects from the clutter i.e. unwanted returns, such as reflections from wind turbines and buildings, as well as other background noise. Therefore, reducing the reflected energy from wind turbine towers may reduce their adverse impact on radar systems and lead to an increase in their use.
According to a first aspect of the invention there is provided an electromagnetic radiation absorbing composition comprising a carbon filler comprising elongate carbon elements with an average longest dimension in the range of 20 to lOOOmicrons, with a thickness in the range of 1 to 15 microns, characterised wherein the total carbon filler content is present in the range of from 1 to 20 volume% dried, in a non conductive binder.
The absorbers of the invention are narrowband absorbers, typically less than 1 GHz in bandwidth, and so are particularly unsuitable for use in military applications, which require broadband radar absorption. Thus dielectric fillers, such as elongate carbon elements when provided in a composition according to the invention are not suited to broadband radar absorption applications.
The volume percentages hereinbefore and hereinafter are defined as a volume percentage of the final dried composition (i.e. without solvent). However, in order to facilitate the composition being deposited or applied in the form of a coating i.e. one or more layers, a solvent may be present. It may be desirable to add sufficient solvent such that the composition may be applied to achieve the required final dried coating thickness in order to absorb at the frequency of the incident radiation. The composition may comprise a liquid formulation prior to application, and will preferably be in the form of a dried coating after its application. Preferably the elongate carbon elements are present in the range of from 1 to 15 volume% dried, more preferably of from 2 to 10 volume% dried. By total carbon filler content is meant the total volume% of carbon filler in the composition The addition of carbon fillers outside of the claimed range may lead to overlapping particulates and reflection rather than
The elongate carbon elements have an average longest dimension in the range of from 50 to 750microns, preferably in the range of from 50 to 500 microns, more preferably in the range of from 100 to 300 microns, yet more preferably in the range of from 100 to 150 microns (assuming a normal distribution). Where processing methods give rise to other element size distributions, not more than 25% by weight of the elongate carbon elements should exceed 500 microns. It has been successfully shown that elongate carbon elements which are in the range of 50 to 300 microns and present in the range of 0.5 to 20% will absorb radiation rather than reflect incoming radiation.
The elongated carbon elements preferably have an average thickness in the range of 1 to 15 microns; more preferably the average thickness is in the range of from 1 to 10 microns, or even 5 to 10 microns. In a preferred arrangement the elongate carbon elements have an average thickness to average longest dimension ratio of 1 :10 to 1 :25. Spherical particles and chopped carbon fibres, such as those prepared by chopping continuous fibres, which typically produce fibres in the region of 4mm to 6mm (4000 to 6000microns), typically provide reflective compositions and so both spherical and chopped carbon types are undesirable, as outlined in more detail, below.
The elongate carbon elements may be of any cross section shape, preferably the elongate carbon elements are carbon fibres. Carbon fibres are typically prepared from continuous substantially cylindrical fibres that are machined to the desired length. Preferably the elongate carbon elements are carbon fibres that have been machined to the desired length. The machining method that is typically used to produce elongate carbon elements in the desired range according to the invention is milling.
A coating of dried composition according to the invention is particularly suitable for providing a narrowband radar absorbing coating for wind turbines, especially wind turbines that are located in marine environments. The composition when applied to a surface, such as, for example a wind turbine, at a selected thickness may reduce radar reflections. The reduction of these reflections reduces the structure's impact on the operation of nearby air traffic control (ATC), air defence (ADR), meteorological (MR) and Marine navigational radars (MNR). The composition according to the invention finds particular use for absorbing known radar frequencies from known local sources, such that renewable energies systems, such as wind farms, may be more readily located near existing radar installations.
Conventional radar absorbing materials comprise formulations containing ferromagnetic materials, and so are very susceptible to rusting during their lifetime. Therefore an advantage of the current invention is that the absorbing composition will not rust, as the elongate carbon elements are not be capable of reacting with air and moisture. It is well known that the formation of rust is accelerated in the presence of salt water; hence the composition according to the invention is particularly useful in coastal environments.
Electromagnetic absorbing compositions rely on electromagnetically active materials within a composition to interact with the impinging electromagnetic field. The processing of electromagnetically active materials is complex and requires control over the electric and magnetic components within said materials, such that they can then interact with the time varying electric and magnetic field components associated with the incoming electromagnetic fields. The composition according to the invention does not require any control of the magnetic component in the material.
The electromagnetic requirements of Radar Absorbing Materials (RAM) are well- established. The first requirement is to maximise the electromagnetic radiation entering the structure, by minimising front face reflection. This is achieved if the real and imaginary components of the complex permittivity, ε, and permeability, μ, are separately equal, as derived from the perfect impedance match condition. The second requirement is that the signal is sufficiently attenuated once the radiation has entered the material. This condition is met for high values of imaginary permittivity and permeability, which by definition provide the contribution to dielectric and magnetic loss respectively. This invention relates to the use and control of dielectric losses by the narrow selection of the average longest dimension (i.e. the length) of the elongate carbon element and its percentage inclusion within said composition.
The thickness of a coating of dried composition may preferably be selected in the range of from λ/3 to λ/5 of the wavelength of the resonant frequency of the incident radiation, more preferably in the region of one quarter of the wavelength (λ/4) of the resonant frequency of the incident radiation. Accordingly there is provided a radar frequency absorbing surface, structure or body or portions thereof comprising at least one dried coating according to the invention. In a preferred arrangement the thickness said coating is one quarter of the wavelength [KIA) of the resonant frequency of the incident radiation to be absorbed.
More precisely the below relationship is observed in Formula (I):
λ = -^= Formula I
\εμ wherein λ corresponds to the wavelength in the coating of dried composition, where A0 is the free space wavelength and ε and μ are the permittivity and permeability of the coating of dried composition according to the invention. Nominally the permeability is approximately 1 (free space) for the carbon fibres as the fibres do not possess any magnetic properties.
The intrinsic dielectric properties of the coating of dried composition according to the invention may be described by the complex dielectric constant or effective permittivity:
ε(ω) = ε'(ω)- i.ε"(ω) where ε' and ε" are the real and imaginary components of permittivity, ε, respectively and
/ = V-T . The term ε' is associated with energy storage and ε" is associated with loss or energy dissipation within a material. The ability to absorb EM radio or microwave radiation is dictated by the optimum real and imaginary components of permittivity being obtained.
The dielectric properties of the coating of dried composition according to the invention are dependent upon the microstructure formed within said coating. Spherical carbon particles tend to form isolated clusters within a composite structure, which leads to relatively low conductivity and dielectric loss (ε"), which is insufficient for absorption of electromagnetic waves. The use of chopped carbon fibres, whose average length is in excess of 4mm, requires relatively low loadings (<1vol%) in order to lead to electrically connected networks and concomitant reflection rather than absorbance. Therefore both spherical particles and carbon fibres whose average length is in excess of 4mm, are unsuitable for providing effective absorbing compositions.
The required thickness of the dried coating of composition according to the invention is selected depending on the frequency/wavelength of the incident radiation, as mentioned above. In order to carefully control the thickness the coating of composition may be cast in the form of an applique film which has been prepared under controlled conditions to the selected thickness. Alternatively, the composition may be applied directly to an existing structure, such as, for example, a wind turbine by known methods such as, for example spraying, rollering or brushing. In a preferred arrangement the application is performed such that each successive layer is applied substantially orthogonally to the preceding layer. This provides an advantage that if during the manufacture or mixing of the formulation the elongate carbon elements undergo any degree of alignment, then subsequent applications applied at orthogonal orientations will maximise absorbance in all polarisation orientations of incoming radiation.
In a further arrangement the total carbon filler content volume% may be different in each successive application layer, and may also be applied in an orthogonal orientation as hereinbefore defined.
Many structures and especially wind turbine towers either contain large amounts of metal or are constructed almost entirely out of metal, which leads to their interference with radar. Where the surface of said structure is metal the composition according to the invention may be applied directly to the metal surface, as the metal structure serves to provide a reflective backplane.
Where the surface, structure or body is not substantially constructed from metal, preferably there is provided an electromagnetic reflective backplane between the surface, structure or body and the at least one dried coating according to the invention. Therefore, where the outer surface of a structure, such as, for example a wind turbine tower is not substantially prepared from a metal and there is interference with nearby radar, it may be desirable to provide an EM reflective backplane, such as, for example, an EM reflective coating, a metal foil or electromagnetic(EM) shielding paint, directly on the surface of said tower, i.e. between the surface of the structure and the composition according to the invention, to provide. One such example of an EM shielding paint is Applicant's PCT application GB2009/000226.
The non conductive binder may be selected from any commercially available binder; preferably it may be selected from an acrylate binder (such as, for example, methyl methacrylate MMA), an acrylic binder, an epoxy binder, a urethane & epoxy-modified acrylic binder, a polyurethane binder, an alkyd based binder, which may be a modified alkyd, or from fluoropolymer based binders, preferably a two part polyurethane binder. Clearly the binders, thickeners and dispersion agents as routinely used in typical paint formulations are not volatile and so will typically not be lost during the curing i.e. drying process. In contrast to the binders, the solvent that is added to aid deposition or application may evaporate during the drying process.
A number of thickeners and solvents, such as, for example, those routinely used in paint formulations, may be added to the composition in order to improve the flow during application and improve its adherence to different surfaces.
Many structures are painted to provide a pleasant visual appearance. The composition according to the invention may be over painted with a suitable decorative paint. Particular advantage is found when the uppermost layer of composition has a lower vol% of carbon than the preceding layer, preferably the uppermost layer has substantially no carbon, such as, for example, a commercial non EM absorbing paint. The non EM paint will have a lower permittivity and therefore provides a better impedance match to free space. This reduces the reflection of the radiation at the front face, allowing more to penetrate into the absorbing layer and to be absorbed.
In an alternative arrangement the composition according to the invention may further comprise a paint pigment that is present in the range of from 2 to 20 volume% of dried volume, preferably present in the range of from 5 to 10 volume% of dried volume. The pigment will be present in sufficient amount to provide colour to the composition without reducing the absorption properties of said composition.
The paint pigment preferably has an average particle size diameter in the range of 150 to 500nm, more preferably an average particle size diameter in the range of 200-250nm. The paint pigment will preferably have a tint reducing power higher than 1700, preferably a tint reducing power higher than 1900. The paint pigment may be any opaque paint pigment, more preferably the paint pigment is TiO2. The paint pigment provides a brightening effect and helps to reduce the need for painting over the composition according to the invention with a decorative colour paint. It is desirable to use TiO2 grades that have a tint reducing power of at least 1700, with a surface treatment <18%, and a crystal size 230nm, preferably high opacity TiO2 pigments, which possess alumina-zirconia surface treatment (<7%), and possess a relative tint reducing power of 1900, refractive index of 2.7 and a mean crystal size of 220nm are used. These high opacity grades of TiO2 exhibit improved dispersion characteristics It may be desirable to add further pigments and/or dyes to the composition, such as to provide different coloured paints. There may be one or more non-white or coloured further pigments added to the composition, such further pigments may include, for example, inorganic or organic pigments such as metal oxides, phthalocyanines, or azo pigments etc.
The extent of the coverage of the dried composition on a surface, body or structure will depend on the extent of the reflective nature of the surface, body or structure. It will be clear to the skilled man that greater absorption will be achieved if the entire surface, body or structure is coated with the composition.
Accordingly there is further provided a method of providing absorption of electromagnetic radiation at a selected frequency on a surface structure or body or portions thereof, comprising the step of determining the selected frequency, applying at least one coat of said composition at a thickness which selectively absorbs at said frequency or an applique film with a thickness which selectively absorbs at said frequency, to a first side of said surface structure or body or portions thereof, and optionally to a second side.
The absorbance will only need to occur at the selected frequency of the nearby radar source. Typical radar systems operate at very precise frequencies, rather than a broad band. The frequencies typically lie within the range of from 0.1 to 20 GHz.
Accordingly there is provided the use of a composition according to the invention, wherein the composition is applied to a surface, structure or body or portions thereof at a selected thickness so as to provide a coating capable of absorbing electromagnetic radiation at a selected frequency.
Embodiments of the invention are described below by way of example only and with reference to the accompanying drawings in which:
Figure 1a and Figure 1b show graphs of the real component of permittivity and the imaginary component of permittivity (dielectric loss), respectively for three different aspect ratio carbon elements.
Figures 2a to 2e show graphs of the permittivity of milled carbon fibres dispersed in polyurethane (PU) at various percentage fills by volume. Figure 3 shows a graph of reflection and transmission through a sample composed of milled carbon fibres dispersed in PU at 0.5% by volume.
Figure 4 shows a graph of reflection and transmission through a sample composed of milled carbon fibres dispersed in PU at 20% by volume.
Figure 5 shows a graph of reflectivity of a 3GHz absorber.
Figure 6 shows a graph of reflectivity of a 9.4GHz absorber.
Turning to Figures 1a and 1b, Figure 1a shows a graph of the real component of permittivity for (i) spherical particles 20vol% in wax, line 1a, (ii) carbon fibres according to the invention, 6vol% in PU, line 2a and (iii) chopped fibres 1 vol% in PU, line 3a. The use of wax, rather than PU1 as the inert binder for the spherical particles does not alter the permeability/permittivity, and so does not change the formulations effectiveness as an absorber.
Figure 1 b shows a graph of the imaginary component of permittivity (dielectric loss) for (i) spherical particles 20vol% in wax, line 1 b, (ii) carbon fibres according to the invention, 6vol% in PU, line 2b and (iii) chopped fibres 1vol% in PU, line 3b. The results are discussed in Experiment 1 , below.
Figures 2a to 2e show graphs of the permittivity of milled carbon fibres dispersed in PU over a range of frequencies, with different rates of inclusion at 0.5vol%, 2vol%, 3vol%, 5vol% and 6vol%, respectively. The graphs 2a to 2e show that as the vol% of carbon fibre increases, both the real ε' (upper lines) and imaginary ε" (lower lines) components of permittivity increase.
However, at lower levels of inclusion, such as Figure 2a, shows that when the loading is reduced to 0.5vol%, poor levels of loss (imaginary permittivity) are exhibited. This means there is no effective mechanism for energy dissipation within the layer and therefore low vol% may be considered to be ineffective for the production of radar absorbing materials.
Figure 3 shows a graph of reflection, line 5, and transmission, line 4, through a sample composed of milled carbon fibres dispersed in PU at 0.5% by volume (sample XC4343), Figure 3, shows that when the sample is loaded with very low levels of carbon fibre (even in the highly preferred length range) the composition possess low reflectance, line 5, and is highly transparent to the incident radiation, i.e. due to the lack of absorption.
Figure 4 shows a graph of reflection Iine15, and transmission, line 14, through a sample composed of milled carbon fibres dispersed in PU at 20% volume (sample XC4344). As can be seen a 20volume% loading produces a near metal-like performance, leading to a reflective material (high reflectance value, as indicated by line 15), with only a low level of absorption. As the percentage volume increases beyond 20vol%, the composition will move towards a perfect reflector, and so will provide little or no absorbance.
Figure 5 shows a graph of reflectivity of a composition which has been formulated and deposited at a selected thickness to specifically absorb at 3GHz. The composition (sample XC4332) comprises milled carbon fibres dispersed in PU at 5.5volume%. The composition was deposited onto the test surface at a thickness of 4mm (λ/4). The graph shows good absorption at greater than 99% (see Table 5), with the maximum absorption occurring in the 3GHz region.
Figure 6 shows a graph of reflectivity of a composition which has been formulated to specifically absorb at 9.4GHz. The composition (sample XC4288) comprises milled carbon fibres dispersed in PU at 5.0volume%. The composition was deposited onto the test surface at a thickness of 1.5mm(λ/4). The graph shows good absorption at greater than 99.9% (see Table 5), with the maximum absorption occurring in the 9.4GHz region.
Experiment 1 Three compositions each containing a different shaped carbon particles were prepared, according to Table 1 , below.
Figure imgf000010_0001
Table 1 Different shaped carbon elements in a non conductive binder The results of the above formulations are shown in the graphs in Figures 1a and b. The graphs show that as the aspect ratio increases, i.e. from spherical to milled to chopped fibre lengths, the dielectric loss tangent (ratio of imaginary to real component, ε"/ε') increases and the loading required to achieve absorbance decreases due to improved connectivity.
To produce an effective absorber requires the correct values of real and imaginary components of permittivity, for example, materials with low values imaginary permittivity produce low conduction loss and therefore do not possess a mechanism for absorbing effectively. This is shown by the results for spherical carbon particles, lines 1a and 1 b, in Figures 1a and 1 b, respectively.
Conversely, materials with high values of the real component of permittivity produce high impedance relative to air. The impedance mismatch at the material surface causes the electromagnetic radiation to be reflected. Likewise, materials possessing high loss tangents (ε"/ε'>1 ), similar to the results for chopped carbon fibres, lines 3a and 3b in Figure 1a and 1b, respectively, are not ideally suited to microwave absorption.
Whereas elongate carbon elements that are provided in the dimensions (length) and inclusion ranges according to the invention, provide the optimum trade-off between real and imaginary components of permittivity, as shown in, lines 2a and 2b, in Figure 1a and 1 b respectively.
The absorption of a composition according to the invention comprising elongate elements when provided in the preferred range is demonstrated by the microwave absorption results given in Figures 5 and 6. The properties of said elongate elements in the composition according to the invention can be attributed to the selection of the narrow range of the length of the fibres in combination with their vol% inclusion to optimise their resulting coupling to the applied electromagnetic field. The coupling increases as fibre size increases with a resulting change in the permittivity. However, at lengths approaching 4mm to 6mm the primary mode of interaction will be one of reflection, as shown in the chopped fibres line 3a and 3b, in Figures 1a and 1 b, respectively. Experiment 2
Preparation of sample XC4332
The composition was prepared with milled carbon fibres, whose average length was 100- 150 microns, diameter 7 microns. The fibres were incorporated 5.5% by volume within a base polyurethane binder material.
Figure imgf000012_0001
Table 2 showing formulation of the base polymer
Figure imgf000012_0002
Table 3 showing additional components of the material system * typical values
The material is manufactured using a "quasi-prepolymer" route. The Part B consists of two parts lsonate M 143 to one part PTMEG by mass. The remaining (Polytetramethylene Glycol 1000) PTMEG is added to the Part A to aid with mixing.
Formulation XC4332
Weight in grams
PART A PTMEG 1000 192.53
Trimethylol propane 5.34 Silcolapse 430 / BYK 085 0.30 Milled Carbon Fibres 40.10 PART B
PTMEG 1000 54.55
Diphenylmethane diisocyanate (Isonate M143)® 109.09
Part A is mixed with the Part B in the ratio 100:56 by weight.
BLENDING PART A
The blending is performed using a low shear blender (e.g. Molteni planetary mixer). The TMP may be pre-dissolved in a small amount of the PTMEG to assist with the blending of Part A.
The mixture is placed under a vacuum of at least 5 mbar until fully degassed. The mixing time depends on the type of equipment and the amount of material, but should be sufficient to achieve an evenly dispersed product, free from solid agglomerates. Care must be taken to ensure that the mixing process does not significantly affect the final density of the material.
BLENDING PART B
The dry PTMEG is heated to 600C and degassed for 2 hours at a reduced pressure of 5mbar immediately before use. The PTMEG is then added to the Isonate®, with stirring, and the mixture is heated at 60°C for 4 hours at a reduced pressure of 5mbar.
The composition was deposited as an applique film with a thickness of 4mm (300x300mm panel).
Experiment 3
The measurements, as shown in Table 4 and 5 below, were undertaken using a focussed horn system arrangement. The compositions were manufactured by casting, i.e. forming an applique film at the desired thickness, but may alternatively be applied using spray painting technology or trawling, as hereinbefore defined. The applique test sample materials were made to dimensions of 300mm x 300mm, with different thicknesses.
The equipment comprised of an Anritsu 37397C vector network analyser connected to corrugated microwave horns. The horns were focused by mirrors to the mid-plane, where the test samples were positioned. The focussed horn set up was used to measure the complex scattering, S1 parameters associated with transmission and reflection from the test samples, from which the permittivity, ε, was obtained using the Nicholson and Ross method [Pitman K C, Lindley M W, Simkin D and Cooper J F 1991 Radar absorbers: better by design IEE Proc.—F 138 223].
For reflectivity measurements, such as those in Figures 5 and 6 respectively, a metal backing plane was applied to the test samples and a similar set of measurements carried out, to determine the degree of absorption (i.e. reduced reflectivity) from the test samples.
The elongate carbon elements were the same milled carbon fibres as defined in experiment 2 above. The following compositions were prepared in an analogous manner to those in experiment 2, with different vol% inclusion of milled fibres.
Figure imgf000014_0001
Table 4 showing different vol% (dry) inclusions of milled carbon fibres in a PU mix.
Figure imgf000015_0001
Table 5 showing reflection and transmission for different sample types.
The results in Table 4 and Table 5 above, show that the optimal results for an absorber are achieved by selecting a narrow range of inclusion of said elongate carbon elements, namely greater than 0.5vol% inclusion and 20vol% or less. A reflectivity of 2OdB corresponds to 99% of the incident signal being absorbed.
Figures 5 and 6 and the %absorbance values in Table 5 show that the milled carbon fibres, which have an average length and volume% inclusion, provided in the ranges according to the invention, give rise to effective absorbers.
The compositions when provided at the prerequisite thickness to provide 3GHz and 9.4GHz absorbers, are mere examples of selected narrow frequency absorbers, and therefore the composition according to the invention is not limited to these frequencies. The composition may be deposited at other thicknesses in order to produce optimum performance at alternative frequencies.

Claims

1. An electromagnetic radiation absorbing composition comprising a carbon filler comprising elongate carbon elements with an average longest dimension in the range of 20 to lOOOmicrons, with a thickness in the range of 1 to 15 microns, characterised wherein the total carbon filler content is present in the range of from 1 to 20 volume% dried, in a non conductive binder.
2. A composition according to claim 1 , wherein the elongate carbon elements are present in the range of from 2 to 10 volume% dried.
3. A composition according to claim 1 or claim 2, wherein the average longest dimension is in the range of from 100 to 300 microns.
4. A composition according to claim 3 wherein the average longest dimension is in the range of from 100 to 150 microns
5. A composition according to any one of the preceding claims, wherein the elongate carbon elements are cylindrical and have a diameter in the range of from 5 to 10 microns.
6. A composition according to any one of the preceding claims wherein the elongate carbon elements have an average thickness to average longest dimension ratio of from 1 :10 to 1 :25.
7. A composition according to any one of the preceding claims wherein the composition further comprises one or more selected from high shear thickeners, low shear thickeners, and dispersion additives.
8. A composition according to any one of the preceding claims wherein the binder is selected from an acrylate, an epoxy binder, an acrylic, a urethane & epoxy- modified acrylic, a polyurethane, an alkyd, a modified alkyd, or a fluoropolymer.
9. A composition according to any one of the preceding claims wherein the binder is selected from a water based dispersion comprising a binder selected from an acrylic, or polyurethane based latex.
10. A composition according to any one of the preceding claims wherein the composition is a liquid formulation and optionally comprises a solvent.
11. A composition according to any one of claims 1 to 9, wherein the composition is in the form of a dried coating.
12. A composition according to claim 11 , wherein said dried coating comprises at least one or more sub-layers, each of which have been separately applied in an orthogonal direction to the preceding layer
13. A radar absorbing surface, structure or body or portions thereof comprising at least one dried coating according to claim 11 or claim 12.
14. A surface, structure or body according to claim 13, wherein the thickness of said coating is one quarter of the wavelength (λ/4) of the resonant frequency of the incident radiation to be absorbed.
15. A surface, structure or body according to claim 13 or claim 14, wherein there is provided an electromagnetic reflective backplane between the surface, structure or body and the at least one dried coating according to claim 11 or claim 12.
16. An applique film comprising a composition according to any one of claims 1 to 12.
17. The use of a composition according to any one of claims 1 to 12, wherein the composition is applied to a surface, structure or body or portions thereof at a selected thickness so as to provide a coating capable of absorbing electromagnetic radiation at a selected frequency.
18. A method of providing absorption of electromagnetic radiation at a selected frequency on a surface structure or body or portions thereof, comprising the step of determining the selected frequency, applying at least one coat of composition according to any one of claims 1 to 12 at a thickness which selectively absorbs at said frequency or an applique film with a thickness which selectively absorbs at said frequency according to claim 16, to a first side of said surface structure or body or portions thereof, and optionally to a second side.
PCT/GB2010/000532 2009-03-27 2010-03-24 Electromagnetic field absorbing composition WO2010109174A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/260,612 US9806426B2 (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition
EP10713696.2A EP2411462B1 (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition
ES10713696.2T ES2582793T3 (en) 2009-03-27 2010-03-24 Magnetic Field Absorbent Composition
CN2010800233622A CN102449050B (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition
CA2756647A CA2756647C (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition
KR1020117025217A KR101771891B1 (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0905312.5A GB0905312D0 (en) 2009-03-27 2009-03-27 Electromagnetic field absorbing composition
GB0905312.5 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109174A1 true WO2010109174A1 (en) 2010-09-30

Family

ID=40671839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2010/000532 WO2010109174A1 (en) 2009-03-27 2010-03-24 Electromagnetic field absorbing composition

Country Status (8)

Country Link
US (1) US9806426B2 (en)
EP (1) EP2411462B1 (en)
KR (1) KR101771891B1 (en)
CN (1) CN102449050B (en)
CA (1) CA2756647C (en)
ES (1) ES2582793T3 (en)
GB (1) GB0905312D0 (en)
WO (1) WO2010109174A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089399A1 (en) * 2010-01-25 2011-07-28 Qinetiq Limited Measurement apparatus and method
GB2484941A (en) * 2010-10-26 2012-05-02 Vestas Wind Sys As Material with radar absorbing circuit analogue elements for surface application to a wind turbine component
US20120141285A1 (en) * 2010-12-03 2012-06-07 Eads Deutschland Gmbh Rotor Blade for a Wind Turbine, and a Combination of a Radar Station and a Wind Turbine
EP2481918A1 (en) 2011-01-28 2012-08-01 Nordex Energy GmbH Method for operating a wind farm in a RADAR neighbourhood
GB2488561A (en) * 2011-03-01 2012-09-05 Vestas Wind Sys As Radar absorbing material compatible with lightning protection systems
WO2014108703A1 (en) * 2013-01-14 2014-07-17 Bae Systems Plc Electromagnetic absorbing composition
WO2014110463A3 (en) * 2013-01-11 2014-12-18 Sabic Innovative Plastics Ip B.V. Methods and compositions for destructive interference
WO2015052254A1 (en) * 2013-10-11 2015-04-16 Qinetiq Limited Electromagnetic field absorbing composition
US9961812B2 (en) 2013-03-15 2018-05-01 Flextronics Ap, Llc Method and apparatus for creating perfect microwave absorbing skins
WO2020244995A1 (en) 2019-06-05 2020-12-10 Basf Se Electromagnetic waves absorbing material
WO2020244994A1 (en) 2019-06-05 2020-12-10 Basf Se Electromagnetic wave transmission reducing material
DE102019114916A1 (en) * 2019-06-04 2020-12-10 WuF- Windenergie und Flugsicherheit GmbH Method, arrangement and system for operating wind turbines in the vicinity of a radar system that monitors flight movements
WO2022112524A1 (en) 2020-11-30 2022-06-02 Basf Se Electromagnetic waves absorbing material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480064A (en) * 2010-05-04 2011-11-09 Vestas Wind Sys As RAM panel arrangements for a wind turbine tower
PE20150113A1 (en) * 2012-03-30 2015-02-19 Micromag 2000 Sl ELECTROMAGNETIC RADIATION ATTENUATOR
JP5583718B2 (en) * 2012-07-10 2014-09-03 株式会社リケン Radio wave absorber
RU2526838C1 (en) * 2013-06-06 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) Heat-resistant radar-absorbing coating on mineral fibres
RU2561123C1 (en) * 2014-06-05 2015-08-20 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Near-infrared absorbing composite material
RU2570794C1 (en) * 2014-12-23 2015-12-10 Андрей Николаевич Пономарев Nanoporous carbon microfibre for producing radar absorbent materials
WO2017090623A1 (en) * 2015-11-25 2017-06-01 株式会社巴川製紙所 Matched-type electromagnetic wave absorber
JP2019186507A (en) * 2018-03-30 2019-10-24 デュポン帝人アドバンスドペーパー株式会社 Electromagnetic wave absorbing sheet and manufacturing method of the same
EP3780925A4 (en) * 2018-03-30 2021-12-22 Daikin Industries, Ltd. Radio wave absorbing material and radio wave absorbing sheet
US11831073B2 (en) 2020-07-17 2023-11-28 Synergy Microwave Corporation Broadband metamaterial enabled electromagnetic absorbers and polarization converters
KR102549185B1 (en) * 2022-09-16 2023-06-28 임윤희 Radar-absorbent materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569786A (en) * 1983-04-12 1986-02-11 Ube Industries, Ltd. Electrically conductive thermoplastic resin composition containing metal and carbon fibers
US4606848A (en) * 1984-08-14 1986-08-19 The United States Of America As Represented By The Secretary Of The Army Radar attenuating paint
US5394149A (en) * 1991-05-28 1995-02-28 Osaka Gas Company Limited Method of absorbing electromagnetic waves
EP0742095A2 (en) * 1995-05-12 1996-11-13 Oto Melara S.p.A. Composite material structure able to absorb and dissipate incident electromagnetic radiation power, in particular for air, water and land craft and for fixed ground installations
US20020171578A1 (en) * 2001-05-16 2002-11-21 General Dynamics Land Systems, Inc. Non-skid, radar absorbing system, its method of making, and method of use
US20080311373A1 (en) * 2007-06-12 2008-12-18 Jen-Sung Hsu Electromagnetic wave absorbing material and method for preparing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599994A (en) * 1952-06-10 hirsch
JPS60260651A (en) 1984-06-06 1985-12-23 Fujikura Ltd Electrically conductive resin composition
JP3016652B2 (en) * 1992-02-07 2000-03-06 松下電器産業株式会社 Gain control circuit
GB9619781D0 (en) * 1996-09-23 1996-11-06 Secr Defence Multi layer interference coatings
JP2001223494A (en) * 2000-02-10 2001-08-17 Yazaki Corp Microwave absorber
US20050127329A1 (en) * 2001-08-17 2005-06-16 Chyi-Shan Wang Method of forming nanocomposite materials
US6399737B1 (en) * 2001-09-21 2002-06-04 General Electric Company EMI-shielding thermoplastic composition, method for the preparation thereof, and pellets and articles derived therefrom
US6734262B2 (en) * 2002-01-07 2004-05-11 General Electric Company Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby
CN1470581A (en) 2003-06-13 2004-01-28 长春恒威电磁兼容技术有限公司 High-absorption light-type electromagnetic-absorbing coating
US20050272856A1 (en) * 2003-07-08 2005-12-08 Cooper Christopher H Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
WO2005050672A1 (en) 2003-11-14 2005-06-02 Polyone Corporation Dispersions of inherently conductive polymer in non-ionic waterborne polymers
CA2491308A1 (en) * 2004-12-29 2006-06-30 The Sherwin-Williams Company Method of applying automotive primer-surfacer using a squeegee
JP2007115854A (en) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc Electromagnetic wave absorber
WO2007126133A1 (en) * 2006-04-27 2007-11-08 Teijin Limited Composite carbon fiber sheet
CA2657037C (en) * 2006-07-14 2013-05-14 Vestas Wind Systems A/S Wind turbine comprising enclosure structure formed as a faraday cage
JP2009057407A (en) 2007-08-30 2009-03-19 Hodogaya Chem Co Ltd Method for improving electrical conductivity of carbon nanotube-containing resin molded body by lamination heating and pressurization
GB0801686D0 (en) 2008-01-31 2008-03-05 Qinetiq Ltd Paint composition
CN101255292A (en) * 2008-04-09 2008-09-03 海南大学 High-absorption light electromagnetic wave absorption coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569786A (en) * 1983-04-12 1986-02-11 Ube Industries, Ltd. Electrically conductive thermoplastic resin composition containing metal and carbon fibers
US4606848A (en) * 1984-08-14 1986-08-19 The United States Of America As Represented By The Secretary Of The Army Radar attenuating paint
US5394149A (en) * 1991-05-28 1995-02-28 Osaka Gas Company Limited Method of absorbing electromagnetic waves
EP0742095A2 (en) * 1995-05-12 1996-11-13 Oto Melara S.p.A. Composite material structure able to absorb and dissipate incident electromagnetic radiation power, in particular for air, water and land craft and for fixed ground installations
US20020171578A1 (en) * 2001-05-16 2002-11-21 General Dynamics Land Systems, Inc. Non-skid, radar absorbing system, its method of making, and method of use
US20080311373A1 (en) * 2007-06-12 2008-12-18 Jen-Sung Hsu Electromagnetic wave absorbing material and method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PITMAN K C; LINDLEY M W; SIMKIN D; COOPER J F: "Radar absorbers: better", 1991, DESIGN IEE PROC.-F, pages: 138 223

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176056B2 (en) 2010-01-25 2015-11-03 Qinetiq Limited Measurement apparatus and method
WO2011089399A1 (en) * 2010-01-25 2011-07-28 Qinetiq Limited Measurement apparatus and method
US9506349B2 (en) 2010-10-26 2016-11-29 Vestas Wind Systems A/S Wind turbine component comprising radar-absorbing material
GB2484941A (en) * 2010-10-26 2012-05-02 Vestas Wind Sys As Material with radar absorbing circuit analogue elements for surface application to a wind turbine component
WO2012056230A1 (en) 2010-10-26 2012-05-03 Vestas Wind Systems A/S Wind turbine component comprising radar -absorbing material
US20120141285A1 (en) * 2010-12-03 2012-06-07 Eads Deutschland Gmbh Rotor Blade for a Wind Turbine, and a Combination of a Radar Station and a Wind Turbine
US9062658B2 (en) * 2010-12-03 2015-06-23 Eads Deutschland Gmbh Rotor blade for a wind turbine, and a combination of a radar station and a wind turbine
US9033660B2 (en) 2011-01-28 2015-05-19 Nordex Energy Gmbh Method for operating a wind turbine, arrangement and system
EP2481918A1 (en) 2011-01-28 2012-08-01 Nordex Energy GmbH Method for operating a wind farm in a RADAR neighbourhood
GB2488561A (en) * 2011-03-01 2012-09-05 Vestas Wind Sys As Radar absorbing material compatible with lightning protection systems
US9422914B2 (en) 2011-03-01 2016-08-23 Vestas Wind Systems A/S Radar absorbing material compatible with lightning protection systems
WO2014110463A3 (en) * 2013-01-11 2014-12-18 Sabic Innovative Plastics Ip B.V. Methods and compositions for destructive interference
US9356357B2 (en) 2013-01-11 2016-05-31 Sabic Global Technologies B.V. Methods and compositions for destructive interference
CN105027694A (en) * 2013-01-11 2015-11-04 沙特基础全球技术有限公司 Methods and compositions for destructive interference
GB2512699B (en) * 2013-01-14 2015-06-24 Bae Systems Plc Electromagnetic absorbing composition
GB2512699A (en) * 2013-01-14 2014-10-08 Bae Systems Plc Electromagnetic absorbing composition
WO2014108703A1 (en) * 2013-01-14 2014-07-17 Bae Systems Plc Electromagnetic absorbing composition
US9961812B2 (en) 2013-03-15 2018-05-01 Flextronics Ap, Llc Method and apparatus for creating perfect microwave absorbing skins
US10085370B2 (en) 2013-03-15 2018-09-25 Flextronics Ap, Llc. Powder coating method and apparatus for absorbing electromagnetic interference (EMI)
US10285312B2 (en) 2013-03-15 2019-05-07 Flextronics Ap, Llc Method and apparatus for creating perfect microwave absorbing printed circuit boards
WO2015052254A1 (en) * 2013-10-11 2015-04-16 Qinetiq Limited Electromagnetic field absorbing composition
DE102019114916A1 (en) * 2019-06-04 2020-12-10 WuF- Windenergie und Flugsicherheit GmbH Method, arrangement and system for operating wind turbines in the vicinity of a radar system that monitors flight movements
WO2020244995A1 (en) 2019-06-05 2020-12-10 Basf Se Electromagnetic waves absorbing material
WO2020244994A1 (en) 2019-06-05 2020-12-10 Basf Se Electromagnetic wave transmission reducing material
WO2022112524A1 (en) 2020-11-30 2022-06-02 Basf Se Electromagnetic waves absorbing material

Also Published As

Publication number Publication date
CN102449050A (en) 2012-05-09
EP2411462B1 (en) 2016-05-11
KR20120013345A (en) 2012-02-14
US9806426B2 (en) 2017-10-31
CN102449050B (en) 2013-12-25
CA2756647C (en) 2017-12-12
KR101771891B1 (en) 2017-08-28
EP2411462A1 (en) 2012-02-01
GB0905312D0 (en) 2009-05-13
ES2582793T3 (en) 2016-09-15
CA2756647A1 (en) 2010-09-30
US20120025111A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
CA2756647C (en) Electromagnetic field absorbing composition
EP3055903B1 (en) Electromagnetic field absorbing composition
CN1304497C (en) Carbon nano-pipe composite coating layer type wave absorption material and its preparation method
CN101235206A (en) Core-shell type lightweight broad-band composite wave-absorbing material and preparation method thereof
EP2833478A1 (en) Electromagnetic radiation attenuator
Gupta et al. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix
Yang et al. Dielectric and microwave absorption properties of TiAlCo ceramic fabricated by atmospheric plasma spraying
RU2370866C1 (en) Antiradar coating
Iqbal et al. Investigations on ZnO/polymer nanocomposite thin film for polymer based devices
CN105111808A (en) Nano wave-absorbing coating material and preparation method thereof
GB2457129A (en) Electromagnetic shielding paint composition
EP0380267B1 (en) Microwave absorber employing acicular magnetic metallic filaments
KR101434656B1 (en) Wind energy plant
Rezende et al. Radar cross section measurements (8-12 GHz) of flat plates painted with microwave absorbing materials
CN115651460A (en) MgO coating for radiation cooling and preparation process thereof
CN2508957Y (en) Hollow microsphere for invisible material
JP2000357893A (en) Electromagnetic wave shielding film and electromagnetic wave shielding paint
JPH107867A (en) Electromagnetic wave-absorbing resin composition
RU2427601C1 (en) Protective coating
RU2300832C2 (en) Anti-radar material
CN113708086B (en) Transition metal nano powder/carbon nano tube composite material and preparation method and application thereof
JPS61157541A (en) Electrically conductive filter
KR100522537B1 (en) EMI wall paper and the method for making it
JP2001320191A (en) Electromagnetic wave absorbing material
KR20050010126A (en) Coating method of case

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023362.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10713696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2756647

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13260612

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010713696

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117025217

Country of ref document: KR

Kind code of ref document: A