WO2010108515A1 - Procédé et circuiterie pour faire fonctionner une éolienne - Google Patents

Procédé et circuiterie pour faire fonctionner une éolienne Download PDF

Info

Publication number
WO2010108515A1
WO2010108515A1 PCT/EP2009/002230 EP2009002230W WO2010108515A1 WO 2010108515 A1 WO2010108515 A1 WO 2010108515A1 EP 2009002230 W EP2009002230 W EP 2009002230W WO 2010108515 A1 WO2010108515 A1 WO 2010108515A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
load
supply network
circuit arrangement
output
Prior art date
Application number
PCT/EP2009/002230
Other languages
German (de)
English (en)
Inventor
Matthias Bartsch
Original Assignee
Powerwind Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerwind Gmbh filed Critical Powerwind Gmbh
Priority to PCT/EP2009/002230 priority Critical patent/WO2010108515A1/fr
Priority to EP09776482A priority patent/EP2411665A1/fr
Publication of WO2010108515A1 publication Critical patent/WO2010108515A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a method for operating a wind turbine on a load formed by an electrical supply network, in which in a normal state of the wind turbine, the electrical output of their driven by their wind rotor rotor electric generator is removed from the supply network, and wherein the wind turbine Entry of a failure of the power loss is transferred to a safe state, as well as a suitable circuitry for this purpose.
  • the electrical supply network decreases the output power generated by the generator.
  • a malfunction which may be caused for example by a fault in the electrical supply network or a converter of the wind turbine, the power loss is interrupted, this means for the generator, a sudden shutdown of the electrical load fed by him the counter torque exerted by him on the rotor drops abruptly. This leads to an increase in speed on the mechanical side, which can cause both the rotor and the generator to reach an overspeed range.
  • On the electrical side there is a voltage increase that can lead to overvoltages. Therefore, it is necessary in such disturbances of the power take-off, to convert the wind turbine into a safe state.
  • the invention has for its object to provide a method of the type mentioned, with which the wind turbine can be transferred in a failure of the power loss without the risk of overuse in a safe state, and to provide a suitable circuitry for this purpose.
  • this object is achieved in terms of the method in that the wind turbine is provided a replacement load from which the decrease in the output power of the generator is maintained for a transition occurring during the transition from its normal state to its safe state transitional time.
  • the mechanical and electrical load conditions of the wind turbine are kept virtually unchanged until the mechanical control takes effect, so that the wind turbine can be converted by the latter without harmful load jumps in their safe state.
  • the decrease in the replacement load corresponds to that of the supply network before the fault occurs.
  • the temporary loading of the very high but this is required only during the relatively short transitional period, which requires the mechanical control in order to down-regulate the torque absorption of the rotor from the incoming wind.
  • the transitional period in which the replacement load must take over the output of the electric generator lasts only a few seconds, for example 2 to 3 seconds.
  • An advantageous embodiment of the method according to the invention is that the wind turbine is disconnected from the supply network when the disturbance occurs and the equivalent load is connected directly to the output of the generator. This has the particular advantage that errors in the downstream equipment parts of the generator, for example, one of the power supply serving in the power supply inverter, do not affect the decrease in power by the equivalent load.
  • the replacement load emits the electrical power supplied to it as dissipation heat. Since the load of the replacement load lasts only a few seconds, it is possible even at a relatively high power rating of the wind turbine to deliver the generator power removed from the surplus load as Dissipations cale to the ambient air. In this context, it is expedient that the temperature of the substitute load is monitored and the excess of a predetermined limit value, the decrease in the output of the generator is stopped. This temperature monitoring and responsive decommissioning of the replacement load ensures that the latter is not thermally damaged or even destroyed.
  • FIG. 1 of the drawing an embodiment of a circuit arrangement according to the invention is shown schematically.
  • This comprises a generator G which is driven by a wind-driven rotor, not shown, and which in this exemplary embodiment is designed as a three-phase current generating asynchronous generator.
  • the line L emanating from the generator G designed as a three-phase three-phase line.
  • the generator for outputting its electrical output power to a supply network VN via a converter 12 is connected.
  • the converter 12 has in the usual way a rotor-side pulse-controlled inverter and a line-side pulse-controlled inverter, which are connected to one another via a DC intermediate circuit, and the detailed structure of the converter 12 will not be described further here, just as the coupling designed in the usual way to the supply network VN, in which the voltage is possibly further transformed via a medium voltage transformer to the mains voltage.
  • a first switch S1 is arranged to take the wind turbine off the grid in the event of a fault in the electrical supply network VN or in the inverter 12 through its opening.
  • a second switch S2 may be connected upstream of the input of the converter 12.
  • this second switch S2 is dispensable and is usually not used. Much more the second switch S2 is used when using synchronous generators.
  • the switch S2 is operated to shut down the system in case of faults, which are due to an error of the inverter 12.
  • the wind turbine can be taken off the grid by operating the switch S1 and / or the switch S2, if a fault occurs.
  • a substitute load which is indicated schematically in FIG. 1 as a dissipative resistor R1 is connected to the switching group designated by a third switch S3.
  • the substitute load may be formed by a number of load resistors which are connected in star configuration. Alternatively, it can also be provided to switch the load resistors in a triangular arrangement.
  • the load resistors are housed in the tower base of the wind energy plant.
  • the switching group 20 or the line section L3 leading to the switch S3 is switched on at a point P into the line L connecting the generator G and the supply network VN, which is connected directly downstream of the generator G.
  • the line section L1 between the generator G and the branch point P no power electronics of the inverter 12 is arranged more.
  • the latter is instead arranged in the section L2 of the line L which adjoins the branch point P downstream.
  • the fault is detected by a sensor, not shown, and signaled to a likewise not shown control of the circuit arrangement.
  • the latter outputs control signals for opening the first switch S1 and possibly the second switch S2.
  • the separation of the system from the supply network VN is typically carried out on a scale well below the mentioned settling time of the rotor blade adjustment.
  • the pitch control of the wind-driven rotor is controlled to change the angle of attack of the rotor blades in order to convert the rotor into a spinning movement.
  • the closing of the third switch S3 is effected by the controller.
  • the switch S3 can be designed as a normally open contact, is then open in the normal state of the switching arrangement and is actuated by a corresponding control signal (active) to close.
  • the switch S3 can also be designed as normally open in the open position, which automatically falls when detected power failure.
  • the electric output power of the generator G is removed from the equivalent load R1.
  • the resistances of the equivalent load R1 can be dimensionally adjustable, so that they are designed either to a partial load of the rated load, the rated load, but also a higher load than the rated load, z. B. up to 1, 5 times the rated load. Ideally, the resistances are set such that the equivalent load substantially corresponds to the load of the supply network VN at the time of its disconnection.
  • the switching group 20 therefore has the function of a brake chopper and can be decoupled by opening the switch S3 again, as soon as the torque generated by windangströmömten rotor has dropped by the made pitch under a predetermined limit.
  • the opening of the switch S3 is effected by the controller even if a temperature monitoring, not shown, the equivalent load R1 determines that the temperature of the resistors due to the high dissipatively converted electrical energy reaches a predetermined (critical) temperature limit, so as not to damage the
  • Replacement load R1 comes.
  • the switch S1 also several designs are conceivable. It can be designed, for example, as a fuse load disconnector or as a circuit breaker.
  • the use of a power contactor with protection is also intended.
  • power-electronic components with a switching function in particular with regard to the protection and monitoring aspects of the entire switching group.
  • IGBTs insulated gate bipolar transistors
  • the switch S3 is designed in accordance with three-phase conductor connection L3 as a triple switch.
  • the proposed switches are generously designed in order to switch the high voltages in the line branch L1, L3, which occur when the switch S1 is disconnected, to the equivalent load R1 in a failsafe manner, without a malfunction of the switch S3 having to be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une éolienne à une charge formée par un réseau de distribution électrique (VN), selon lequel dans une position normale de l'éolienne, la puissance électrique de sortie de sa génératrice électrique (G) entraînée par son rotor entraîné par le vent est absorbée par le réseau de distribution (VN) et selon lequel l'éolienne est mise en position de sécurité quand survient une déficience de l'absorption de puissance, une charge de remplacement (R1) étant mise à disposition de l'éolienne par laquelle l'absorption de la puissance de sortie de la génératrice (G) est maintenue pendant un temps de transition survenant lors du passage de sa position normale dans sa position de sécurité. L'invention concerne également une circuiterie appropriée pour mettre en oeuvre le procédé.
PCT/EP2009/002230 2009-03-26 2009-03-26 Procédé et circuiterie pour faire fonctionner une éolienne WO2010108515A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2009/002230 WO2010108515A1 (fr) 2009-03-26 2009-03-26 Procédé et circuiterie pour faire fonctionner une éolienne
EP09776482A EP2411665A1 (fr) 2009-03-26 2009-03-26 Procédé et circuiterie pour faire fonctionner une éolienne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/002230 WO2010108515A1 (fr) 2009-03-26 2009-03-26 Procédé et circuiterie pour faire fonctionner une éolienne

Publications (1)

Publication Number Publication Date
WO2010108515A1 true WO2010108515A1 (fr) 2010-09-30

Family

ID=41567276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/002230 WO2010108515A1 (fr) 2009-03-26 2009-03-26 Procédé et circuiterie pour faire fonctionner une éolienne

Country Status (2)

Country Link
EP (1) EP2411665A1 (fr)
WO (1) WO2010108515A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811157A1 (fr) * 2013-06-05 2014-12-10 General Electric Company Procédés d'exploitation de système de turbine éolienne ayant un frein dynamique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206930A (en) * 1987-07-14 1989-01-18 Lawson Tancred H Sons & Co Sir Wind turbine operating system
EP1340910A1 (fr) * 2002-02-28 2003-09-03 Enel Green Power S.p.A. Eolienne à aimants permanents et regulation de celle-ci.
EP1863162A2 (fr) * 2006-06-02 2007-12-05 General Electric Company Frein électrique de relèvement et système de protection pour générateurs électriques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206930A (en) * 1987-07-14 1989-01-18 Lawson Tancred H Sons & Co Sir Wind turbine operating system
EP1340910A1 (fr) * 2002-02-28 2003-09-03 Enel Green Power S.p.A. Eolienne à aimants permanents et regulation de celle-ci.
EP1863162A2 (fr) * 2006-06-02 2007-12-05 General Electric Company Frein électrique de relèvement et système de protection pour générateurs électriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRAIG L M ET AL: "Electrodynamic braking of wind turbines", IEE PROCEEDINGS: ELECTRIC POWER APPLICATIONS, INSTITUTION OF ELECTRICAL ENGINEERS, GB, vol. 145, no. 2, 10 March 1998 (1998-03-10), pages 140 - 146, XP006011041, ISSN: 1350-2352 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811157A1 (fr) * 2013-06-05 2014-12-10 General Electric Company Procédés d'exploitation de système de turbine éolienne ayant un frein dynamique
US8975768B2 (en) 2013-06-05 2015-03-10 General Electic Company Methods for operating wind turbine system having dynamic brake

Also Published As

Publication number Publication date
EP2411665A1 (fr) 2012-02-01

Similar Documents

Publication Publication Date Title
EP1634365B1 (fr) Eolienne
DE102007017870B4 (de) Verfahren zum Betreiben einer Windenergieanlage bei Überspannungen im Netz
EP2878808B1 (fr) Système de pas et procédé de fonctionnement d'un système de pas d'une installation éolienne
EP1766765B1 (fr) Procede pour reguler un convertisseur de courant relie a une source de tension continue
DE102015114759A1 (de) System und Verfahren zur Reduzierung von Windenergieanlagenschwankungen, die durch Netzfehler verursacht werden
WO2020079059A1 (fr) Procédé servant à faire fonctionner une éolienne en cas d'incident
DE102009003691A1 (de) Blattwinkelverstellantrieb für eine Windkraftanlage
EP3386060A1 (fr) Éolienne avec conduite d'alimentation
DE102015114760A1 (de) System und Verfahren zur Verbesserung der Blindstromantwortzeit in einer Windenergieanlage
WO2010020411A1 (fr) Dispositif de limitation des courants de fuite dans une installation à courant alternatif et basse tension
DE202009018791U1 (de) Blattwinkelverstellantrieb für eine Windkraftanlage
EP2640970B1 (fr) Éolienne et procédé pour faire fonctionner une éolienne dotée d'un système de surveillance de la température du transformateur
EP2265816B1 (fr) Générateur asynchrone à double alimentation et procédé pour le faire fonctionner
EP2831988B1 (fr) Convertisseur à amplificateur à découpage pour éoliennes
EP2466715A2 (fr) Unité de commutation USV et procédé d'alimentation en électricité sans interruption d'utilisateurs d'une installation de production de courant
DE10116011B4 (de) Windenergieanlage
EP2411665A1 (fr) Procédé et circuiterie pour faire fonctionner une éolienne
DE202007016800U1 (de) Windkraftanlage mit Synchronisierungsschalter
EP3545601A1 (fr) Procédé de commande d'une éolienne
DE102018105683A1 (de) Verfahren zum Betreiben eines elektronischen Leistungsschalters eines Umrichters
WO2013120212A1 (fr) Dispositif de protection pour un générateur triphasé à double alimentation et procédé permettant de faire fonctionner un tel dispositif de protection
DE102017102807B9 (de) Windenergieanlage aufweisend eine elektrische Schaltanlage
WO2005078278A1 (fr) Procede d'exploitation d'une eolienne et eolienne conçue de maniere correspondante
DE102008064079A1 (de) Verfahren und elektrische Schaltung zur Erzeugung elektrischer Energie
EP3843227A1 (fr) Éolienne à double alimentation dotée d'un transformateur moyenne tension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009776482

Country of ref document: EP