WO2010107276A2 - Axial flow multistage turbine - Google Patents

Axial flow multistage turbine Download PDF

Info

Publication number
WO2010107276A2
WO2010107276A2 PCT/KR2010/001712 KR2010001712W WO2010107276A2 WO 2010107276 A2 WO2010107276 A2 WO 2010107276A2 KR 2010001712 W KR2010001712 W KR 2010001712W WO 2010107276 A2 WO2010107276 A2 WO 2010107276A2
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
fluid
housing
guide groove
front impeller
Prior art date
Application number
PCT/KR2010/001712
Other languages
French (fr)
Korean (ko)
Other versions
WO2010107276A3 (en
Inventor
최혁선
Original Assignee
Choi Hyuck Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choi Hyuck Sun filed Critical Choi Hyuck Sun
Publication of WO2010107276A2 publication Critical patent/WO2010107276A2/en
Publication of WO2010107276A3 publication Critical patent/WO2010107276A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes

Definitions

  • the present invention relates to an axial multistage turbine, and more particularly, to an axial multistage turbine that generates power by converting a linear motion of a fluid into a rotary motion.
  • Turbines are machines that convert the energy of fluids such as liquids and gases into useful mechanical work.
  • the turbine is to generate a rotational power by using the kinetic energy of the fluid flowing in a straight line, by planting a plurality of vanes or wings in the rotating body and by generating steam or gas to rotate the high speed to generate power.
  • the gas turbine compresses air, supplies it into a closed container, and injects fuel to inject the combustion gas of high temperature and high pressure into the blade of the turbine which is a rotating body to obtain rotational force.
  • the gas turbine has a disadvantage of low thermal efficiency, high fuel consumption, and complicated structure and large size of the rotating body, which requires a large space in the axial direction and thus is not easy to install.
  • Korean Patent Publication No. 10-0550366 discloses an axial multistage turbine.
  • the axial multi-stage turbine is a turbine impeller coupled with a circular cylindrical wheel formed at a diagonal angle in one direction from the fluid inlet at the front to the fluid outlet at the rear by drilling concentric circles adjacent to the circular plate body centered on the rotating shaft. It is provided.
  • the axial flow type multistage turbine does not affect the rotational force of the rotating body because the fluid introduced into the through hole of the circular plate is discharged to the rear of the circular plate instead of rotating the circular plate. Since the nozzle plate is fixed and the fluid is injected to the rear circular plate body, as the rotational speed of the circular plate body increases, the force of the fluid is inversely proportional to the rotational speed.
  • the axial multistage turbine is required to change the position of the through holes in multiple stages so as to interfere with the fluid passing through the through holes in order to increase the amount of power generated, so that a large number of circular plates are required, resulting in a large manufacturing cost and manpower. This is required, and the manufacturing process is complicated because each circular plate must be matched according to the moving direction of the fluid. There is a disadvantage in that it reduces the power production efficiency.
  • the present invention was devised to solve the above problems, and is easy to install or manufacture, and minimizes the loss and pressure drop of the fluid flowing into the housing, and the fluid hits the rotating body perpendicularly to the rotational direction of the rotating body. It is an object of the present invention to provide an axial multi-stage turbine that maximizes the power generation efficiency of a turbine.
  • the axial flow type multi-stage turbine includes a housing in which an inlet and an outlet are formed to allow fluid to flow therein, a rotating shaft rotatably installed in the housing, and installed in the rotating shaft.
  • a front impeller formed with a plurality of through holes penetrated to guide the fluid to the rear through the fluid, and fixed to the rotation shaft behind the front impeller, and rotating the fluid to rotate the rotation shaft.
  • At least one guide groove is formed to guide in the direction, the fluid flowing horizontally along the guide groove at the end of the guide groove perpendicularly hit the wall formed in the guide groove, discharge the fluid to the rear to generate a rotational force
  • At least one rear impeller having a rear outlet is formed.
  • the front impeller is fixed to the inside of the housing to rotatably support the rotating shaft, the through hole of the front impeller is in communication with the vertical portion and the vertical portion formed in parallel in the axial direction, the guide groove of the rear impeller It is preferable to have an inclined portion formed to be bent to guide the fluid.
  • the guide groove of the rear impeller is characterized in that formed in a plurality of branches along the circumferential direction.
  • the rear impeller further includes a plurality of airtight holding protrusions protruding on the outer circumferential surface so as to maintain the airtightness between the outer circumferential surface of the rear impeller and the housing, and the rear impeller installed on the rotating shaft at a position adjacent to the outlet is the rear outlet It further comprises a plurality of discharge guide protrusions protruded to guide the fluid discharged through the discharge port of the housing.
  • the front impeller according to another embodiment of the present invention for achieving the above object is fixed to the rotating shaft to rotate with the rotating shaft, the through hole of the front impeller is a vertical portion formed in parallel in the axial direction, the vertical It is in communication with the portion, and provided with an inclined portion formed to be bent to rotate the rotary shaft.
  • the front impeller may further include a plurality of resistance grooves or resistance protrusions formed along the circumferential direction on the upper surface of the front impeller so as to generate a rotational force by interfering with the fluid introduced into the housing.
  • the front impeller further includes at least one fluid guide groove for guiding the fluid flowing into the housing to the through hole of the front impeller.
  • the front impeller further includes a plurality of first outflow prevention protrusions protruding in a closed circuit along the circumferential direction on the upper edge of the front impeller so as to prevent the fluid flowing into the housing from leaking to the outer circumferential surface.
  • the axial flow type multi-stage turbine according to the present invention is easy to manufacture and install, thereby reducing the cost, and minimizing the pressure drop and the flow rate loss of the flowing fluid by maintaining the airtight inside the housing.
  • the fluid in the rotating body is perpendicular to the direction of rotation of the rotating body to increase the rotational force It provides the advantage of improving the power generation efficiency of the turbine.
  • FIG. 1 is a cross-sectional view of an axial multistage turbine according to a first embodiment of the present invention
  • Figure 2 is an exploded view of the axial multistage turbine of Figure 1
  • FIG. 3 is a partial cross-sectional view in the circumferential direction of the front impeller and the rear impeller of the axial multistage turbine of FIG.
  • FIG. 5 is a cross-sectional view of an axial multistage turbine according to a third embodiment of the present invention.
  • FIG. 6 is a perspective view of the front impeller of the axial multistage turbine according to the fourth embodiment of the present invention.
  • FIG. 7 is a perspective view of the front impeller of the axial multistage turbine according to the fifth embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional perspective view of the front impeller of the axial multistage turbine according to the sixth embodiment of the present invention.
  • FIG. 9 is a partial perspective view of a rear impeller of an axial multistage turbine according to a seventh embodiment of the present invention.
  • FIG. 10 is a partial perspective view of a rear impeller of an axial multistage turbine according to an eighth embodiment of the present invention.
  • FIG. 11 is a perspective view of a rear impeller of an axial multistage turbine according to a ninth embodiment of the present invention.
  • FIG. 12 is a perspective view of a rear impeller of an axial multistage turbine according to a tenth embodiment of the present invention
  • FIG. 13 is a perspective view of a rear impeller of an axial multistage turbine according to an eleventh embodiment of the present invention.
  • FIG. 14 is a perspective view of a rear impeller of an axial multistage turbine according to a twelfth embodiment of the present invention.
  • 15 is a partial cross-sectional view in the circumferential direction of the front impeller of the axial multistage turbine according to the thirteenth embodiment of the present invention.
  • FIG. 16 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fourteenth embodiment of the present invention.
  • FIG. 17 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fifteenth embodiment of the present invention.
  • FIG. 18 is a partial perspective view of a rear impeller of an axial multistage turbine according to a sixteenth embodiment of the present invention.
  • FIG. 19 is a partial cross-sectional perspective view of a rear impeller of an axial multistage turbine according to a seventeenth embodiment of the present invention.
  • interference hole 99 vortex blocker 244: front guide groove
  • resistance groove 456 airtight holding projection 460: fluid bypass
  • interference projection member 557 discharge guide target 610: first leakage preventing projection
  • FIGS. 1-10 An axial multistage turbine 10 according to an embodiment of the present invention is shown in FIGS.
  • the axial flow type multi-stage turbine 10 includes a housing 20 formed to allow fluid to flow therein, a rotation shaft 30 rotatably installed inside the housing 20, and a rotation shaft 30.
  • the front impeller 40 formed with a plurality of through holes 41 through which the fluid passes, and the rear impeller 50 fixed to the rotating shaft 30 to be located behind the front impeller 40 guide the flow of the fluid. Generate rotational force.
  • the housing 20 has a cylindrical body 22 having both sides open to allow a fluid, which is a gas or a liquid, to be introduced into the housing 20, and an inlet 24 through which the fluid is introduced into the housing 20.
  • the front cover 21 which covers the front of the 22, and the rear cover 23 is formed to cover the lower portion of the body 22, the discharge port 25 through which the fluid inside the housing 20 is discharged.
  • the housing 20 configured as described above will be described in more detail as follows.
  • the front cover 21 and the rear cover 23 is formed in a disc shape having an outer diameter corresponding to the outer diameter of the housing 20.
  • the through hole is formed in the center of the front cover 21 and the rear cover 23 so that the rotating shaft 30 can be inserted.
  • the through hole of the front cover 21 and the rear cover 23 is preferably provided with a bearing 26 so that the rotating shaft 30 can be easily rotated.
  • Edges of the front cover 21 and the rear cover 23 is formed with a plurality of through holes to be coupled to the housing 20 by a bolt.
  • the body 22 has a receiving space for accommodating the front impeller 40 and the plurality of rear impeller 50 therein.
  • the inner circumferential surface of the front end of the body 22 has an impeller fixing groove 27 for fixing the front impeller 40.
  • the rotating shaft 30 is formed in an annular bar shape, and both ends of the rotating shaft 30 are rotatably supported by the front cover 21 and the rear cover 23 covering both sides of the housing 20.
  • the front impeller 40 is formed in a disk-like structure, and since the inflow fluid may be in a high temperature and high pressure state, it is preferable that the front impeller 40 is formed of a heat resistant material. Although not shown in the drawings, the edge of the front impeller 40 is fixed to the impeller fixing groove 27 inside the housing 20 by fixing bolts.
  • the central part of the front impeller 40 is formed with a through hole so that the rotation shaft 30 can be rotatably supported.
  • the through hole of the front impeller 40 is preferably provided with a bearing 26 so that the rotating shaft 30 can be easily rotated.
  • the front impeller 40 passes through the fluid introduced into the housing 20 to pass through the front impeller 40 to be inclined to guide the guide groove 51 of the rear impeller 50 to be described later.
  • a sphere 41 is formed.
  • the through-hole 41 of the above-mentioned front impeller 40 will be described in detail as follows.
  • the through hole 41 of the front impeller 40 is a vertical portion 42 formed vertically in the interior from the front side of the front impeller 40, the vertical portion 42 is in communication with the guide groove of the rear impeller 50 A bent portion 43 bent to correspond to the position of 51 is provided.
  • the through hole 41 of the front impeller 40 is not divided into a vertical portion 42 and a bent portion 43, but is integrally formed with the rotation shaft 30. It may be formed to be inclined in a direction corresponding to the rotation direction.
  • the through holes 41 of the front impeller 40 are formed in one row along the circumferential direction, but the number of the arrangement of the through holes 41 to be applied is not limited to the illustrated example. Depending on the flow rate and pressure of the fluid may be formed in a plurality of rows.
  • front impeller 40 is further provided between the front impeller 40 and the rear impeller 50 is further provided with an auxiliary impeller member 700 for passing the fluid passing through the front impeller 40 to generate a rotational force.
  • the auxiliary impeller member 700 will be described in detail with reference to FIG. 4 as follows.
  • the auxiliary impeller member 700 is fixed to the rotation shaft 30 so as to rotate together with the rotation shaft 30, and is formed in a disc shape.
  • the auxiliary impeller member 700 includes a plurality of through holes 710 formed so that the fluid passing through the front impeller 40 fixed inside the housing 20 can be introduced therein.
  • the through hole 710 of the auxiliary impeller member 700 is formed in the same configuration as the through hole 41 of the front impeller 40, a detailed description thereof will be omitted.
  • the through holes 710 are formed in plural in the circumferential direction. The fluid passing through the front impeller 40 is discharged through the through hole 710 of the auxiliary impeller member 700 to press the bent portion of the through hole 710 to increase the rotational force of the rotary shaft (30).
  • FIG. 5 Another embodiment of the front impeller 140 is shown in FIG. 5.
  • the front impeller 140 is formed in a disk-like structure, is fixed to the rotary shaft 30 is installed to rotate with the rotary shaft 30.
  • the front impeller 140 has a plurality of through-holes 41 formed to obliquely penetrate the front impeller 140 so as to pass the fluid introduced into the housing 20 to rotate the rotation shaft 30.
  • the through-hole 41 of the front impeller 140 is in communication with the vertical portion 42 and the vertical portion 42 formed perpendicularly to the inside from the front side of the front impeller 40 in the rotational direction of the rotation shaft 30 A bent portion 43 correspondingly bent is provided.
  • the fluid flowing into the through hole 41 strongly strikes the walls of the vertical portion 42 and the bent portion 43 to provide an increase in rotational force to the front impeller 140. Since the front impeller 140 is fixed to the rotation shaft 30, the fluid rotates the rotation shaft 30.
  • the fluid that is not guided to the rear is discharged through the fluid bypass 460, the fluid bypass 460 is not counted to the outside of the rotor like the existing turbine, but because the fluid is guided to the outside of the central axis of the rotor fluid The area to be counted is greatly reduced, and the flow loss is also greatly reduced.
  • the through hole 41 of the front impeller 140 is not formed by being divided into the vertical portion 42 and the bent portion 43, but integrally with the rotating shaft 30. It may be formed to be inclined in a direction corresponding to the rotation direction.
  • FIG. 6 Another embodiment of the front impeller 240 is shown in FIG. 6.
  • a front guide groove 244 is formed on the front surface of the front impeller 240 to guide the fluid introduced into the housing 20 to the through hole 41 of the front impeller 240.
  • the front guide groove 244 is formed to be curved along the circumferential direction.
  • the width of the front guide groove 244 is uniformly formed to the through hole 41 of the front impeller 240, the width of the front guide groove 244 at the position where the through hole 41 is formed is the through hole 41 It has a size corresponding to the inner diameter of.
  • front guide groove 244 is covered with a whole except for the first part of the fluid flows to the through hole so that the introduced fluid flows out only through the through hole 41 and does not flow out of the front guide groove 244. It is configured not to.
  • the fluid introduced into the front guide groove 244 is guided only through the through hole 41 and cannot flow out of the front guide groove 244. Can be prevented.
  • the front impeller 240 has been described with a structure in which three front guide grooves 244 are formed along the circumferential direction, but the number of the front guide grooves 244 to be applied is not limited to the illustrated example. It is preferable to be formed to correspond to the number of guide grooves 51 of the rear impeller 50 to be described later.
  • the fluid injected through the inlet 24 of the housing 20 is guided to the through-hole 41 of the front impeller 240 by the front guide groove 244, and the front impeller 240 while passing through the through-hole 41. To generate torque.
  • the fluid generating a rotational force in the front impeller 240 while passing through the through-hole 41 is determined by the structure in which the front guide groove 244 is formed.
  • FIG. 3 Another embodiment of the front impeller 340 is shown in FIG.
  • the front impeller 340 has a plurality of resistance grooves 344 formed in the radial direction to generate a rotational force to interfere with the fluid introduced into the housing 20 on the front.
  • the resistance groove 344 is formed between the through holes 41 of the front impeller 340, and is formed in a concave structure in the rotation direction of the front impeller 340. Fluid introduced into the housing 20 impinges on the inner wall of the resistance groove 344 formed on the front surface of the front impeller 340 to rotate the front impeller 340.
  • the shape of the through-hole 41 is a spherical shape of the inlet is circular and the inner diameter gradually decreases as it enters the inside, while the fluid flowing into the through-hole 41 passes through the narrow interior It is the structure that a pressure rises.
  • the front impeller 340 forwards to the front of the front impeller 340 to interfere with the fluid introduced into the housing 20 instead of the resistance groove 344. It may be provided with a protrusion formed protrusion.
  • FIG. 8 Another embodiment of the front impeller is shown in FIG. 8.
  • the front impeller forms a closed circuit along the circumferential direction on the upper edge of the front impeller so as to prevent the fluid flowing into the housing 40 from leaking to the outer circumferential surface of the front impeller.
  • the prevention protrusion 610 is provided.
  • the front cover 21 forms a closed circuit along the circumferential direction of the front cover 21 at a position opposite to the first leakage preventing protrusion 610 so as to be inserted between the first leakage preventing protrusion 610. Protruding to form a second leakage preventing projection 620 for sealing the space between the front cover 21 and the front impeller.
  • first and second outflow prevention protrusions 610 and 620 are formed to be spaced apart from each other at predetermined intervals so that the front impeller 40 can easily rotate along the second outflow prevention protrusion 620. .
  • the fluid introduced into the housing 20 does not flow out between the outer circumferential surface of the front impeller and the inner wall of the housing. It flows into the through hole 41 of the front impeller. Accordingly, the flow rate loss and the pressure drop due to the outflow of the fluid can be reduced by the first and second outflow prevention protrusions 610 and 620.
  • first and second leakage preventing protrusions 610 and 620 are not formed only between the front cover 21 and the front impeller, but the front impeller is inside the housing 20.
  • fixing to the lower surface of the front impeller and the upper surface of the rear impeller 50 may be formed respectively to prevent the fluid flowing between each impeller flows through the outer peripheral surface of the impeller may reduce the pressure loss.
  • the rear impeller 50 is fixed to the rotation shaft 30 behind the front impeller 40 and is formed in a disk structure.
  • the front side of the rear impeller 50 is formed with a guide groove 51 for guiding the fluid in the rotational direction of the rotation shaft 30 to rotate the rotation shaft 30, the guide groove 51 at the end of the guide groove 51
  • a rear discharge port 55 is formed to obliquely penetrate the rear impeller 50 so as to discharge the fluid flowing along the 51 to the rear of the rear impeller 50.
  • the guide groove 51 of the rear impeller 50 is formed along the circumferential direction on the upper side of the rear impeller 50 at a position corresponding to the through hole 41 of the front impeller 40.
  • the guide groove 51 may be formed to have a size corresponding to the flow rate of the fluid to accommodate the fluid introduced into the housing 20.
  • the fluid passing through the through hole 41 is moved along the guide groove 51 of the rear impeller 50 in the rotational direction of the rotation shaft 30. At this time, the fluid rotates the rear impeller 50.
  • the fluid moving along the guide groove 51 is discharged to the rear of the rear impeller 50 through the rear discharge port 55 formed at the end.
  • the rotational force is further increased because the rear discharge port 55 vertically presses the bent portion of the rear impeller 50 while being discharged through the rear discharge port 55.
  • FIG. 9 Another embodiment of the rear impeller 150 is illustrated in FIG. 9.
  • the rear impeller 150 is formed to protrude upward in the guide groove 51, and further includes a plurality of resistance blades 52 for generating rotational force by interfering with the fluid flowing along the guide groove 51. Equipped.
  • the resistance blade 52 is formed in a streamlined cross section so that fluid introduced into the guide groove 51 can smoothly flow between the plurality of resistance blades 52, and is preferably formed to be inclined toward the rear side of the fluid flow.
  • the fluid passing through the through hole 41 is moved by the guide groove 51 in the rotational direction of the rotation shaft 30, at which time the fluid impinges on the resistance blade 52 formed along the guide groove 51 to impart a rear impeller. Rotate 150.
  • the structure of the plurality of resistance blades 52 formed along the guide grooves 51 are inclined in the same direction, but the direction of the applied resistance blades 52 is not limited to the illustrated example. It may be formed zigzag.
  • FIG 10 shows another embodiment of the rear impeller 250.
  • the rear impeller 250 has resistance blades 53 protruding from both sides of the guide groove 51 along the guide groove 51.
  • the resistance blade 53 has a front side formed in a streamlined shape so that fluid flowing along the guide groove 51 can move smoothly between the plurality of resistance blades 53, and flows into the guide groove 51.
  • the rotational force is further increased by hitting the resistor blades 53 perpendicularly.
  • each resistance blade 53 is preferably formed in a zigzag on both sides of the guide groove (51).
  • FIG. 11 Another embodiment of the rear impeller 350 is illustrated in FIG. 11.
  • the rear impeller 350 is formed with a guide groove 51 branched in three directions along the circumferential direction.
  • Each branched guide groove 54 is formed with a plurality of resistance blades 52 for generating a rotational force by interfering with the fluid flowing along the guide groove 54.
  • the guide groove branched in three directions widens the contact area with the fluid so that the fluid easily rotates the rear impeller 350.
  • the guide groove 54 may be formed by branching in two directions or a plurality of branches instead of branching in three directions.
  • FIG. 12 Another embodiment of the rear impeller 450 of the axial multistage turbine 10 according to the invention is shown in FIG. 12.
  • the rear impeller 450 includes a plurality of airtight holding protrusions 456 protruding from the outer circumferential surface to maintain the airtightness between the outer circumferential surface of the rear impeller 450 and the housing 20.
  • the airtight holding protrusion 456 is formed to be inclined in the rotational direction of the rear impeller 450 so as to raise the fluid flowing out between the edge of the rear impeller 450 and the inner wall of the housing 20 to the upper surface of the rear impeller 450. desirable.
  • FIG. 13 Another embodiment of the rear impeller 460 is shown in FIG. 13.
  • the rear impeller 460 is a through-hole 41 of the front impeller 40 or the rear outlet of the rear impeller 50 so as to generate a rotational force to interfere with the fluid flowing into the guide groove 51 55 is provided with an interference protrusion member 461 protruding upward from a lower surface of the guide groove 51 at a position corresponding to 55).
  • the interference protrusion member 461 is formed at a predetermined height so as not to block the flow of the fluid on the lower surface of the guide groove 51, and the front side of the interference protrusion member 461 has a fluid flowing along the guide groove 51. It is formed to be inclined to interfere.
  • the fluid discharged to the through hole 41 of the front impeller 40 or the rear discharge port 55 of the rear impeller 50 pressurizes the interference projecting member 461 formed on the flow path of the fluid to rotate the rear impeller 460. Let's do it.
  • FIG. 14 Another embodiment of the rear impeller 550 is shown in FIG. 14.
  • a fluid discharged through the rear outlet 55 of the rear impeller 550 is disposed on the rear surface of the rear impeller 550 installed on the rotation shaft 30 adjacent to the outlet 25 of the housing 20.
  • a plurality of discharge guide targets 557 are formed to protrude so as to be guided to the discharge port 25 of the 20.
  • the discharge guide target 557 is formed convexly in the rotational direction of the rear impeller 550.
  • the fluid discharged through the rear discharge port 55 is guided to the edge of the rear impeller 550 by the discharge guide target 557, and the outside of the housing 20 through the discharge port 25 formed at the edge of the rear cover 23. To be discharged.
  • the number of the rear impellers 50 to be applied is not limited to the illustrated example. Alternatively, a plurality of rear impellers 50 may be installed.
  • the through hole 41 of the front impeller 40 is the front impeller 40.
  • a vertical portion 42 vertically formed therein from the front side of the front side, and a bent portion 43 communicating with the vertical portion 42 and bent to correspond to the position of the guide groove 51 of the rear impeller 50.
  • the fluid introduced into the housing 20 passes through the through-hole 41 formed in the front impeller 40, the fluid introduced into the through-hole 41 is a vertical portion of the through-hole 41 ( 42) and a strong impact on the connecting portion of the bent portion 43 generates a strong rotational force, the fluid is discharged to the rear of the front impeller (40).
  • FIG. 16 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fourteenth embodiment of the present invention
  • FIG. 17 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fifteenth embodiment of the present invention.
  • FIG. 18 is a partial perspective view of a rear impeller of an axial multistage turbine according to a sixteenth embodiment of the present invention
  • FIG. 19 is a partial perspective view of a rear impeller of an axial multistage turbine according to a seventeenth embodiment of the present invention.
  • FIG. 9 a further embodiment of the rear impeller 150 shown in FIG. 9 is illustrated.
  • a rectangular resistance blade 52 is illustrated, but FIGS. The resistance blade 52 of the shape is shown.
  • the rear impeller 150 is formed to protrude upward in the guide groove 51, so that the triangular pillar-shaped resistance blade 52 interferes with the fluid flowing along the guide groove 51 to generate rotational force.
  • an eddy current prevention device 99 connected to a vertex of the resistance blade 52.
  • FIG. 17 illustrates a semi-circular pillar-shaped resistance blade 52 and a rear impeller 150 further provided with a vortex prevention tool 99 connected to the resistance blade 52
  • FIG. 18 illustrates a rhombus pillar-shaped resistor.
  • the rear impeller 150 is further provided with a blade 52 and a vortex breaker 99.
  • the resistance blades 52 of the various shapes are preferably formed to be inclined so that the fluid passing through the guide groove 51 to generate a rotational force and the fluid flow smoothly to the rear side of the resistance blade (52).
  • FIG. 19 is a partial cross-sectional perspective view of the front impeller of the axial multistage turbine according to the eighteenth embodiment of the present invention.
  • the front impeller 350 is a front impeller (fluid flowing into the housing 40).
  • a plurality of first outflow prevention projections 610 are formed in the circumferential direction to the upper edge of the front impeller in the circumferential direction, wherein the front cover 21 is The front cover 21 is formed in a closed circuit along the circumferential direction and protrudes downward in the front cover 21 at a position opposite to the first leakage preventing protrusion 610 so as to be inserted between the first leakage preventing protrusions 610.
  • a second outflow prevention protrusion 620 for sealing a space between the front impeller 350 and the front impeller 350.
  • first and second outflow prevention protrusions 610 and 620 are formed to be spaced apart from each other at predetermined intervals so that the front impeller 40 can easily rotate along the second outflow prevention protrusion 620.
  • the difference from the partial cross-sectional perspective view of the front impeller shown in FIG. 8 is that the first and second outflow prevention protrusions 610 and 620 are formed close to the rotation shaft 30, and the structure can minimize fluid loss.
  • the high pressure fluid is injected into the housing 20 through the inlet 24 of the front cover 21.
  • the fluid introduced into the housing 20 passes through the through hole 41 formed in the front impeller 40.
  • the fluid introduced into the through hole 41 of the front impeller 40 hits the connection portion between the vertical part 42 and the bent part 43 of the through hole 41 and is discharged to the rear of the front impeller 40.
  • the fluid discharged through the through hole 41 flows into the guide groove 51 of the rear impeller 50 installed at the rear of the front impeller 40. Fluid introduced into the guide groove 51 moves along the guide groove 51. At this time, the fluid strikes the resistance blade 52 protruding along the guide groove 51, thereby rotating the rear impeller 50.
  • Fluid flowing along the guide groove 51 is discharged to the rear of the rear impeller 50 through the rear discharge port 55 formed at the end of the guide groove 51.
  • the rear discharge port 55 is formed to be inclined to correspond to the rotational direction of the rotation shaft 30
  • the fluid is discharged to the rear of the rear impeller 50 while rotating the rear impeller 50, at which time, the rear located at the end Behind the impeller the fluid is discharged in the opposite direction of rotation.
  • the axial multistage turbine 10 is installed such that the front impeller 40 and the plurality of rear impellers 50 are in close contact with each other, and the airtight holding protrusions 456 and the first and the outer circumferential surfaces of the rear impeller 50 are provided.
  • the second outflow prevention protrusions 610 and 620 are formed to prevent the fluid from flowing out between the impellers, thereby preventing the pressure loss caused by the outflow of the fluid.
  • each impeller forms a fluid flow path by the through-hole 41 and the guide groove 51 to allow the fluid to pass through the inside of each impeller, each passage has a resistance groove 344 or a resistance blade ( By providing a fluid interference means as shown in 52) to generate a rotational force in the entire section of the fluid flow path to provide the advantage of improving the output of the turbine, and because each impeller rotates at high speed, the fluid flowing inside each impeller Pressing the inner wall of each impeller by the centrifugal force to generate a rotational force to increase the generating power of the axial flow multi-stage turbine (10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Turbines (AREA)

Abstract

The present invention relates to an axial flow multistage turbine, comprising: a housing defining an inlet and an outlet so as to enable fluid to flow therein; a rotating shaft rotatably installed in the housing; a front impeller installed on the rotating shaft and perforated so as to define a plurality of through-openings for guiding the flow of fluid therethrough and rearward; and at least one rear impeller fixed on the rotating shaft behind the front impeller, and defining at least one guide groove for guiding fluid in a rotating direction of the rotating shaft to rotate the rotating shaft, and having a rear outlet at an end of the guide groove for generating rotational force by means of the rearward discharge of fluid flowing along the guide groove. The axial flow multistage turbine according to the present invention is easy to install and manufacture, enabling a reduction in installation costs, and the loss of fluid flowing in the housing is minimized to provide the advantage of increased power-generating efficiency of the turbine.

Description

[규칙 제26조에 의한 보정 15.06.2010] 축류형 다단터빈 [Revision 15.06.2010 under Rule 26] Axial Flow Multistage Turbines
본 발명은 축류형 다단터빈에 관한 것으로서, 더욱 상세하게는 유체의 직진 운동을 회전운동으로 변환하여 동력을 발생시키는 축류형 다단터빈에 관한 것이다.The present invention relates to an axial multistage turbine, and more particularly, to an axial multistage turbine that generates power by converting a linear motion of a fluid into a rotary motion.
터빈은 액체와 기체 등의 유체가 가지는 에너지를 유용한 기계적인 일로 변환시키는 기계이다. 일반적으로 터빈은 직진하여 흐르는 유체의 운동에너지를 이용하여 회전동력을 발생시킬 수 있게, 회전체에 여러개의 깃 또는 날개를 심고 거기에 증기 또는 가스를 내뿜어 고속회전시켜 동력을 발생시킨다. Turbines are machines that convert the energy of fluids such as liquids and gases into useful mechanical work. In general, the turbine is to generate a rotational power by using the kinetic energy of the fluid flowing in a straight line, by planting a plurality of vanes or wings in the rotating body and by generating steam or gas to rotate the high speed to generate power.
가스터빈은 공기를 압축하여 밀폐된 용기내로 공급한 후 연료를 분사시켜 연소시켜 발생하는 고온 고압의 연소가스를 회전체인 터빈의 날개에 분사하여 회전력은 얻는다. 그러나 가스터빈은 열효율이 낮고 연료 소비가 크며, 회전체의 구조가 복잡하고 대형화되어 축방향으로 넓은 공간이 필요하여 설치가 용이하지 못하는 단점이 있다. The gas turbine compresses air, supplies it into a closed container, and injects fuel to inject the combustion gas of high temperature and high pressure into the blade of the turbine which is a rotating body to obtain rotational force. However, the gas turbine has a disadvantage of low thermal efficiency, high fuel consumption, and complicated structure and large size of the rotating body, which requires a large space in the axial direction and thus is not easy to install.
이러한 문제점을 개선하기 위해 한국 공개 특허 10-0550366호에서는 축류형 다단터빈이 개시되어 있다. In order to improve this problem, Korean Patent Publication No. 10-0550366 discloses an axial multistage turbine.
상기 축류형 다단터빈은 회전축을 중심으로 하는 원형판체의 외곽에 다수 개의 통공을 인접하도록 동심원을 뚫어 전면의 유체입구에서 후면의 유체출구를 향해 일방향의 대각선 각도로 형성된 원반통공휠로 결합된 터빈임펠러를 구비한다. The axial multi-stage turbine is a turbine impeller coupled with a circular cylindrical wheel formed at a diagonal angle in one direction from the fluid inlet at the front to the fluid outlet at the rear by drilling concentric circles adjacent to the circular plate body centered on the rotating shaft. It is provided.
그러나 상기 축류형 다단터빈은 유체가 불연속적으로 실린더 하우징 내부로 유입될 경우 원형판체의 통공으로 유입된 유체는 원형판체를 회전시키지 못하고 원형판체의 후방으로 배출되므로 회전체의 회전력 증가에 영향을 미치지 못하며, 노즐판이 고정된 상태에서 후방의 원형판체에 유체를 분사하기 때문에 원형판체의 회전속도가 빨라질수록 유체의 힘은 회전속도에 반비례해서 원형판체에 전달되는 힘이 저하되는 단점이 있다.However, when the fluid flows into the cylinder housing discontinuously, the axial flow type multistage turbine does not affect the rotational force of the rotating body because the fluid introduced into the through hole of the circular plate is discharged to the rear of the circular plate instead of rotating the circular plate. Since the nozzle plate is fixed and the fluid is injected to the rear circular plate body, as the rotational speed of the circular plate body increases, the force of the fluid is inversely proportional to the rotational speed.
또한, 상기 축류형 다단터빈은 동력 발생량을 증가시키기 위해서는 통공 사이를 통과하는 유체를 간섭할 수 있게 다단으로 통공의 위치를 변화시키며 유로를 형성시켜야 하므로 다수의 원형판체가 요구되어 많은 제조비용 및 제조인력이 요구되며, 유체의 진행방향에 따라 각각의 원형판체를 맞춰야 하므로 제조공정이 복잡하고, 원반통공휠에서의 라인딩이나 유선화되지 못한 각도 변화, 통공의 내경 변화에 따른 불일치에 의해 마찰저항이 발생하여 동력 생산효율을 감소시키는 단점이 있다. In addition, the axial multistage turbine is required to change the position of the through holes in multiple stages so as to interfere with the fluid passing through the through holes in order to increase the amount of power generated, so that a large number of circular plates are required, resulting in a large manufacturing cost and manpower. This is required, and the manufacturing process is complicated because each circular plate must be matched according to the moving direction of the fluid. There is a disadvantage in that it reduces the power production efficiency.
본 발명은 상기와 같은 문제점을 개선하기 위해 창안된 것으로서, 설치 또는 제조가 용이하며 하우징 내부로 유동되는 유체의 손실과 압력저하를 최소화하고, 유체가 회전체에 회전체의 회전방향에 수직으로 부딪혀서 터빈의 동력 발생 효율을 최고로 향상시키는 축류형 다단터빈을 제공하는 데 그 목적이 있다. The present invention was devised to solve the above problems, and is easy to install or manufacture, and minimizes the loss and pressure drop of the fluid flowing into the housing, and the fluid hits the rotating body perpendicularly to the rotational direction of the rotating body. It is an object of the present invention to provide an axial multi-stage turbine that maximizes the power generation efficiency of a turbine.
상기의 목적을 달성하기 위하여 본 발명에 따른 축류형 다단터빈은 유체가 내부로 유동될 수 있게 주입구와 배출구가 형성된 하우징과, 상기 하우징 내부에 회전가능하게 설치된 회전축과, 상기 회전축에 설치되며, 상기 유체를 통과시켜 상기 유체를 후방으로 가이드할 수 있도록 관통된 다수의 관통구가 형성된 전방임펠러와, 상기 전방임펠러 후방의 상기 회전축에 고정되고, 상기 회전축을 회전시킬 수 있게 상기 유체를 상기 회전축의 회전방향으로 가이드하는 적어도 하나의 가이드홈이 형성되고, 상기 가이드홈의 단부에 상기 가이드홈을 따라 수평으로 유동하는 유체를 가이드홈에 형성된 벽에 수직으로 부딪히고, 유체를 후방으로 배출시켜 회전력을 발생시키는 후방배출구가 형성된 적어도 하나의 후방임펠러를 구비한다. In order to achieve the above object, the axial flow type multi-stage turbine according to the present invention includes a housing in which an inlet and an outlet are formed to allow fluid to flow therein, a rotating shaft rotatably installed in the housing, and installed in the rotating shaft. A front impeller formed with a plurality of through holes penetrated to guide the fluid to the rear through the fluid, and fixed to the rotation shaft behind the front impeller, and rotating the fluid to rotate the rotation shaft. At least one guide groove is formed to guide in the direction, the fluid flowing horizontally along the guide groove at the end of the guide groove perpendicularly hit the wall formed in the guide groove, discharge the fluid to the rear to generate a rotational force At least one rear impeller having a rear outlet is formed.
상기 전방임펠러는 상기 하우징의 내부에 고정되어 상기 회전축을 회전가능하게 지지하며, 상기 전방임펠러의 관통구는 축방향으로 평행하게 형성된 수직부와, 상기 수직부에 연통되며, 상기 후방임펠러의 가이드홈으로 상기 유체를 가이드할 수 있도록 절곡되게 형성된 경사부를 구비하는 것이 바람직하다. The front impeller is fixed to the inside of the housing to rotatably support the rotating shaft, the through hole of the front impeller is in communication with the vertical portion and the vertical portion formed in parallel in the axial direction, the guide groove of the rear impeller It is preferable to have an inclined portion formed to be bent to guide the fluid.
상기 후방임펠러의 가이드홈에 돌출되게 형성되어, 상기 가이드홈을 따라 유동하는 유체를 간섭하여 회전력을 발생시키는 다수의 저항블레이드를 더 구비한다. It is further formed to protrude in the guide groove of the rear impeller, and further comprises a plurality of resistance blades for generating a rotational force by interfering with the fluid flowing along the guide groove.
또한, 상기 후방임펠러의 가이드홈은 원주방향을 따라 다수의 갈래로 분기되어 형성되는 것을 특징으로 한다. In addition, the guide groove of the rear impeller is characterized in that formed in a plurality of branches along the circumferential direction.
상기 후방임펠러는 상기 후방임펠러의 외주면과 하우징 사이 기밀을 유지할 수 있도록 외주면에 돌출형성된 다수의 기밀유지돌기를 더 구비하고, 상기 배출구에 인접한 위치의 상기 회전축에 설치된 상기 후방임펠러는 후면에 상기 후방배출구를 통해 배출되는 유체를 상기 하우징의 배출구로 배출시킬 수 있도록 가이드할 수 있게 돌출형성된 다수의 배출가이드깃을 더 구비한다.The rear impeller further includes a plurality of airtight holding protrusions protruding on the outer circumferential surface so as to maintain the airtightness between the outer circumferential surface of the rear impeller and the housing, and the rear impeller installed on the rotating shaft at a position adjacent to the outlet is the rear outlet It further comprises a plurality of discharge guide protrusions protruded to guide the fluid discharged through the discharge port of the housing.
상기 목적을 달성하기 위한 본 발명의 또 다른 실시 예에 따른 상기 전방임펠러는 상기 회전축과 함께 회전할 수 있도록 회전축에 고정되며, 상기 전방임펠러의 관통구는 축방향으로 평행하게 형성된 수직부와, 상기 수직부에 연통되며, 상기 회전축을 회전시킬 수 있게 절곡되게 형성된 경사부를 구비한다. The front impeller according to another embodiment of the present invention for achieving the above object is fixed to the rotating shaft to rotate with the rotating shaft, the through hole of the front impeller is a vertical portion formed in parallel in the axial direction, the vertical It is in communication with the portion, and provided with an inclined portion formed to be bent to rotate the rotary shaft.
상기 전방임펠러는 하우징 내부로 유입된 유체를 간섭하여 회전력을 발생시킬 수 있도록 상면에 원주방향을 따라 형성된 다수의 저항홈 또는 저항돌기를 더 구비하는 것이 바람직하다. The front impeller may further include a plurality of resistance grooves or resistance protrusions formed along the circumferential direction on the upper surface of the front impeller so as to generate a rotational force by interfering with the fluid introduced into the housing.
상기 전방임펠러는 상기 하우징 내부로 유입되는 유체를 상기 전방임펠러의 관통구로 가이드하는 적어도 하나의 유체가이드홈을 더 구비한다. The front impeller further includes at least one fluid guide groove for guiding the fluid flowing into the housing to the through hole of the front impeller.
상기 전방임펠러는 상기 하우징 내부로 유입되는 유체가 외주면으로 유출되는 것을 방지할 수 있도록 상면 가장자리에 원주방향을 따라 폐회로를 이루며 돌출형성된 다수의 제 1유출방지돌기를 더 구비하며, 상기 하우징은 상기 제 1유출방지돌기 사이에 삽입되어 상기 하우징과 상기 전방임펠러 사이를 밀폐시킬 수 있도록 상기 제 1유출방지돌기에 대향되는 위치의 상기 하우징에 원주방향을 따라 폐회로를 이루며 상기 전방임펠러 방향으로 돌출형성된 제 2유출방지돌기를 더 구비한다.The front impeller further includes a plurality of first outflow prevention protrusions protruding in a closed circuit along the circumferential direction on the upper edge of the front impeller so as to prevent the fluid flowing into the housing from leaking to the outer circumferential surface. A second interposed between the outflow prevention protrusions and protruding in the forward impeller direction to form a closed circuit along the circumferential direction of the housing at a position opposite to the first outflow prevention protrusion so as to seal between the housing and the front impeller; It further comprises an outflow prevention projections.
본 발명에 따른 축류형 다단터빈은 제조 및 설치가 용이하여 비용절감의 효과가 있고, 하우징 내부의 기밀을 유지함으로써 유동되는 유체의 압력저하와 유량손실을 최소화한다.The axial flow type multi-stage turbine according to the present invention is easy to manufacture and install, thereby reducing the cost, and minimizing the pressure drop and the flow rate loss of the flowing fluid by maintaining the airtight inside the housing.
또한, 유체가 각 임펠러 내부에서 연속적으로 유동할 수 있도록 하는 유로를 제공하고, 유동하는 유체를 유로를 통해 다단으로 간섭하며, 회전체에 유체가 회전체의 회전방향에 수직으로 부딪혀 회전력을 증가시킴으로써 터빈의 동력 발생 효율을 향상시키는 장점을 제공한다. In addition, by providing a flow path that allows the fluid to flow continuously inside each impeller, interfering the flowing fluid in multiple stages through the flow path, the fluid in the rotating body is perpendicular to the direction of rotation of the rotating body to increase the rotational force It provides the advantage of improving the power generation efficiency of the turbine.
도 1은 본 발명의 제 1실시 예에 따른 축류형 다단터빈의 단면도이고,1 is a cross-sectional view of an axial multistage turbine according to a first embodiment of the present invention,
도 2는 도 1의 축류형 다단터빈의 분해조립도이고,Figure 2 is an exploded view of the axial multistage turbine of Figure 1,
도 3은 도 1의 축류형 다단터빈의 전방임펠러와 후방임펠러의 원주 방향의 부분단면도이고,3 is a partial cross-sectional view in the circumferential direction of the front impeller and the rear impeller of the axial multistage turbine of FIG.
도 4는 본 발명의 제 2실시 예에 따른 축류형 다단터빈의 보조임펠러이고,4 is an auxiliary impeller of an axial multistage turbine according to a second embodiment of the present invention,
도 5는 본 발명의 제 3실시 예에 따른 축류형 다단터빈의 단면도이고,5 is a cross-sectional view of an axial multistage turbine according to a third embodiment of the present invention;
도 6는 본 발명의 제 4실시 예에 따른 축류형 다단터빈의 전방임펠러의 사시도이고,6 is a perspective view of the front impeller of the axial multistage turbine according to the fourth embodiment of the present invention,
도 7은 본 발명의 제 5실시 예에 따른 축류형 다단터빈의 전방임펠러의 사시도이고,7 is a perspective view of the front impeller of the axial multistage turbine according to the fifth embodiment of the present invention,
도 8은 본 발명의 제 6실시 예에 따른 축류형 다단터빈의 전방임펠러의 부분 단면사시도이고,8 is a partial cross-sectional perspective view of the front impeller of the axial multistage turbine according to the sixth embodiment of the present invention;
도 9은 본 발명의 제 7실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이고, 9 is a partial perspective view of a rear impeller of an axial multistage turbine according to a seventh embodiment of the present invention,
도 10는 본 발명의 제 8실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이고,10 is a partial perspective view of a rear impeller of an axial multistage turbine according to an eighth embodiment of the present invention;
도 11은 본 발명의 제 9실시 예에 따른 축류형 다단터빈의 후방임펠러의 사시도이고,11 is a perspective view of a rear impeller of an axial multistage turbine according to a ninth embodiment of the present invention,
도 12은 본 발명의 제 10실시 예에 따른 축류형 다단터빈의 후방임펠러의 사시도이고,12 is a perspective view of a rear impeller of an axial multistage turbine according to a tenth embodiment of the present invention,
도 13은 본 발명의 제 11실시 예에 따른 축류형 다단터빈의 후방임펠러의 사시도이고,13 is a perspective view of a rear impeller of an axial multistage turbine according to an eleventh embodiment of the present invention;
도 14은 본 발명의 제 12실시 예에 따른 축류형 다단터빈의 후방임펠러의 사시도이다. 14 is a perspective view of a rear impeller of an axial multistage turbine according to a twelfth embodiment of the present invention.
도 15는 본 발명의 제 13실시 예에 따른 축류형 다단터빈의 전방임펠러의 원주방향의 부분단면도15 is a partial cross-sectional view in the circumferential direction of the front impeller of the axial multistage turbine according to the thirteenth embodiment of the present invention;
도 16은 본 발명의 제 14실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도16 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fourteenth embodiment of the present invention;
도 17은 본 발명의 제 15실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도17 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fifteenth embodiment of the present invention;
도 18은 본 발명의 제 16실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도18 is a partial perspective view of a rear impeller of an axial multistage turbine according to a sixteenth embodiment of the present invention;
도 19는 본 발명의 제 17실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분단면사시도19 is a partial cross-sectional perspective view of a rear impeller of an axial multistage turbine according to a seventeenth embodiment of the present invention;
※도면의 주요부분에 대한 부호의 설명※※ Explanation of symbols about main part of drawing ※
10 : 다단터빈 20 : 하우징 21 : 전방덮개10 multistage turbine 20 housing 21 front cover
22 : 몸체 23 : 후방덮개 24 : 주입구22: body 23: rear cover 24: injection hole
25 : 배출구 26 : 베어링 30 : 회전축25 outlet 26 bearing 30 rotation shaft
40, 140, 240, 340 : 전방임펠러 41 : 관통구40, 140, 240, 340: front impeller 41: through hole
42 : 수직부 43 : 절곡부42: vertical portion 43: bent portion
50, 150, 250, 350, 450, 460, 550 : 후방임펠러50, 150, 250, 350, 450, 460, 550: rear impeller
51, 54 : 가이드홈 52, 53 : 저항블레이드 55 : 후방배출구51, 54: guide groove 52, 53: resistance blade 55: rear outlet
98 : 간섭구 99 : 와류방지구 244 : 전방가이드홈98: interference hole 99: vortex blocker 244: front guide groove
344 : 저항홈 456 : 기밀유지돌기 460 : 유체우회로344: resistance groove 456: airtight holding projection 460: fluid bypass
461 : 간섭돌출부재 557 : 배출가이드깃 610 : 제1유출방지돌기461: interference projection member 557: discharge guide target 610: first leakage preventing projection
620 : 제2유출방지돌기 700 : 보조임펠러부재 710 : 관통구620: second outflow prevention protrusion 700: auxiliary impeller member 710: through hole
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 축류형 다단터빈을 더욱 상세하게 설명한다. Hereinafter, an axial multistage turbine according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시 예에 따른 축류형 다단터빈(10)이 도 1 내지 도 3에 도시되어 있다. An axial multistage turbine 10 according to an embodiment of the present invention is shown in FIGS.
도면을 참조하면 축류형 다단터빈(10)은 유체가 내부로 유동될 수 있게 형성된 하우징(20)과, 하우징(20) 내부에 회전가능하게 설치된 회전축(30)과, 회전축(30)에 설치되며 상기 유체가 통과하는 다수의 관통구(41)가 형성된 전방임펠러(40)와, 전방임펠러(40) 후방에 위치하도록 회전축(30)에 고정되는 후방임펠러(50)는 상기 유체의 흐름을 가이드하여 회전력을 발생시킨다.Referring to the drawings, the axial flow type multi-stage turbine 10 includes a housing 20 formed to allow fluid to flow therein, a rotation shaft 30 rotatably installed inside the housing 20, and a rotation shaft 30. The front impeller 40 formed with a plurality of through holes 41 through which the fluid passes, and the rear impeller 50 fixed to the rotating shaft 30 to be located behind the front impeller 40 guide the flow of the fluid. Generate rotational force.
상술된 바와 같이 구성된 축류형 다단터빈(10)의 구성요소를 더욱 상세하게 설명하면 다음과 같다. Referring to the components of the axial multistage turbine 10 configured as described above in more detail as follows.
하우징(20)은 기체 또는 액체인 유체가 내부로 유입될 수 있게 양측면이 개방된 원통 구조로 된 몸체(22)와, 유체가 하우징(20)내부로 유입되는 주입구(24)가 형성되며, 몸체(22)의 전방을 덮는 전방덮개(21)와, 상기 몸체(22)의 하방을 덮으며, 하우징(20) 내부의 유체가 배출되는 배출구(25)가 형성된 후방덮개(23)를 구비한다. The housing 20 has a cylindrical body 22 having both sides open to allow a fluid, which is a gas or a liquid, to be introduced into the housing 20, and an inlet 24 through which the fluid is introduced into the housing 20. The front cover 21 which covers the front of the 22, and the rear cover 23 is formed to cover the lower portion of the body 22, the discharge port 25 through which the fluid inside the housing 20 is discharged.
상술된 바와 같이 구성된 하우징(20)을 더욱 상세히 설명하면 다음과 같다. The housing 20 configured as described above will be described in more detail as follows.
전방덮개(21) 및 후방덮개(23)는 하우징(20)의 외경에 대응되는 외경을 갖는 원판형으로 형성되어 있다. 전방덮개(21) 및 후방덮개(23)의 중심부에는 회전축(30)이 삽입될 수 있게 관통구가 형성되어 있다. 상기 전방덮개(21) 및 후방덮개(23)의 관통구에는 회전축(30)이 용이하게 회전할 수 있도록 각각 베어링(26)이 설치되는 것이 바람직하다. 전방덮개(21) 및 후방덮개(23)의 가장자리는 상기 하우징(20)과 볼트에 의해 결합할 수 있게 다수의 관통홀이 형성되어 있다. The front cover 21 and the rear cover 23 is formed in a disc shape having an outer diameter corresponding to the outer diameter of the housing 20. The through hole is formed in the center of the front cover 21 and the rear cover 23 so that the rotating shaft 30 can be inserted. The through hole of the front cover 21 and the rear cover 23 is preferably provided with a bearing 26 so that the rotating shaft 30 can be easily rotated. Edges of the front cover 21 and the rear cover 23 is formed with a plurality of through holes to be coupled to the housing 20 by a bolt.
몸체(22)는 내부에 전방임펠러(40)와 다수의 후방임펠러(50)를 수용할 수 있는 수용공간을 구비한다. 몸체(22) 전단부의 내주면에는 전방임펠러(40)을 고정할 수 있는 임펠러고정홈(27)이 형성되어 있다. The body 22 has a receiving space for accommodating the front impeller 40 and the plurality of rear impeller 50 therein. The inner circumferential surface of the front end of the body 22 has an impeller fixing groove 27 for fixing the front impeller 40.
회전축(30)은 환봉형으로 형성되어 있으며, 하우징(20)의 양측면을 덮는 전방덮개(21) 및 후방덮개(23)에 양단이 회전가능하게 지지된다.The rotating shaft 30 is formed in an annular bar shape, and both ends of the rotating shaft 30 are rotatably supported by the front cover 21 and the rear cover 23 covering both sides of the housing 20.
전방임펠러(40)는 디스크형 구조로 형성되어 있으며, 유입되는 유체가 고온 고압의 상태일 수 있으므로, 내열재료로 형성되는 것이 바람직하다. 도면에 도시되진 않았지만 전방임펠러(40)의 가장자리는 고정볼트에 의해 하우징(20) 내부의 임펠러고정홈(27)에 고정되어 있다. 전방임펠러(40)의 중심부는 상기 회전축(30)을 삽입하여 회전가능하게 지지할 수 있도록 관통홀이 형성되어 있다. 상기 전방임펠러(40)의 관통구에는 회전축(30)이 용이하게 회전할 수 있도록 베어링(26)이 설치되는 것이 바람직하다. The front impeller 40 is formed in a disk-like structure, and since the inflow fluid may be in a high temperature and high pressure state, it is preferable that the front impeller 40 is formed of a heat resistant material. Although not shown in the drawings, the edge of the front impeller 40 is fixed to the impeller fixing groove 27 inside the housing 20 by fixing bolts. The central part of the front impeller 40 is formed with a through hole so that the rotation shaft 30 can be rotatably supported. The through hole of the front impeller 40 is preferably provided with a bearing 26 so that the rotating shaft 30 can be easily rotated.
또한, 전방임펠러(40)는 하우징(20) 내부로 유입된 유체를 통과시켜 후술되는 후방임펠러(50)의 가이드홈(51)으로 가이드할 수 있게 전방임펠러(40)를 경사지게 관통하는 다수의 관통구(41)가 형성되어 있다. In addition, the front impeller 40 passes through the fluid introduced into the housing 20 to pass through the front impeller 40 to be inclined to guide the guide groove 51 of the rear impeller 50 to be described later. A sphere 41 is formed.
상기 언급된 전방임펠러(40)의 관통구(41)를 상세히 설명하면 다음과 같다. The through-hole 41 of the above-mentioned front impeller 40 will be described in detail as follows.
상기 전방임펠러(40)의 관통구(41)는 전방임펠러(40)의 전방 측면으로부터 내부에 수직하게 형성된 수직부(42)와, 수직부(42)에 연통되며 후방임펠러(50)의 가이드홈(51)의 위치에 대응되게 절곡된 절곡부(43)를 구비한다. The through hole 41 of the front impeller 40 is a vertical portion 42 formed vertically in the interior from the front side of the front impeller 40, the vertical portion 42 is in communication with the guide groove of the rear impeller 50 A bent portion 43 bent to correspond to the position of 51 is provided.
도면에 도시되진 않았지만, 본 실시 예와는 다르게 전방임펠러(40)의 관통구(41)는 수직부(42)와 절곡부(43)로 구분되어 형성되는 것이 아니라, 일체로 회전축(30)의 회전방향에 대응되는 방향으로 경사지게 형성될 수도 있다.Although not shown in the drawings, unlike the present embodiment, the through hole 41 of the front impeller 40 is not divided into a vertical portion 42 and a bent portion 43, but is integrally formed with the rotation shaft 30. It may be formed to be inclined in a direction corresponding to the rotation direction.
한편, 도시된 예에서는 전방임펠러(40)의 관통구(41)가 원주방향으로 따라 1열로 형성된 구조를 설명하였으나, 적용되는 관통구(41)의 배열 수는 도시된 예에 한정하지 않고 유입되는 유체의 유량과 압력에 따라 다수개의 열로 형성될 수도 있다. Meanwhile, in the illustrated example, a structure in which the through holes 41 of the front impeller 40 are formed in one row along the circumferential direction is described, but the number of the arrangement of the through holes 41 to be applied is not limited to the illustrated example. Depending on the flow rate and pressure of the fluid may be formed in a plurality of rows.
또한, 전방임펠러(40)는 전방임펠러(40)와 후방임펠러(50) 사이에 설치되어 전방임펠러(40)를 통과한 유체를 통과시켜 회전력을 발생시키는 보조임펠러부재(700)를 더 구비한다. In addition, the front impeller 40 is further provided between the front impeller 40 and the rear impeller 50 is further provided with an auxiliary impeller member 700 for passing the fluid passing through the front impeller 40 to generate a rotational force.
보조임펠러부재(700)는 도 4를 참조하면서 상세히 설명하면 다음과 같다. The auxiliary impeller member 700 will be described in detail with reference to FIG. 4 as follows.
앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조 부호로 표기한다. Elements having the same function as in the above-described drawings are denoted by the same reference numerals.
보조임펠러부재(700)는 회전축(30)과 함께 회전할 수 있도록 회전축(30)에 고정되어 있으며, 원판형 구조로 형성되어 있다. 보조임펠러부재(700)는 하우징(20) 내부에 고정된 전방임펠러(40)를 통과한 유체가 유입될 수 있도록 형성된 다수의 관통구(710)를 구비한다. The auxiliary impeller member 700 is fixed to the rotation shaft 30 so as to rotate together with the rotation shaft 30, and is formed in a disc shape. The auxiliary impeller member 700 includes a plurality of through holes 710 formed so that the fluid passing through the front impeller 40 fixed inside the housing 20 can be introduced therein.
보조임펠러부재(700)의 관통구(710)는 전방임펠러(40)의 관통구(41)와 동일한 구성으로 형성되어 있으므로 상세한 설명은 생략한다. 상기 관통구(710)는 원주방향으로 다수개가 형성되어 있다. 전방임펠러(40)를 통과한 유체는 보조임펠러부재(700)의 관통구(710)를 통해 배출되면서 관통구(710)의 절곡된 부분을 가압하여 회전축(30)의 회전력을 증가시킨다. Since the through hole 710 of the auxiliary impeller member 700 is formed in the same configuration as the through hole 41 of the front impeller 40, a detailed description thereof will be omitted. The through holes 710 are formed in plural in the circumferential direction. The fluid passing through the front impeller 40 is discharged through the through hole 710 of the auxiliary impeller member 700 to press the bent portion of the through hole 710 to increase the rotational force of the rotary shaft (30).
한편, 전방임펠러(140)의 또 다른 실시 예가 도 5에 도시되어 있다. Meanwhile, another embodiment of the front impeller 140 is shown in FIG. 5.
앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조 부호로 표기한다. Elements having the same function as in the above-described drawings are denoted by the same reference numerals.
도면을 참조하면, 전방임펠러(140)는 디스크형 구조로 형성되어 있으며,회전축(30)에 고정되어 회전축(30)과 함께 회전하게 설치된다. 전방임펠러(140)는 하우징(20) 내부로 유입된 유체를 통과시켜 회전축(30)을 회전시킬 수 있게 전방임펠러(140)를 경사지게 관통하는 다수의 관통구(41)가 형성되어 있다. Referring to the drawings, the front impeller 140 is formed in a disk-like structure, is fixed to the rotary shaft 30 is installed to rotate with the rotary shaft 30. The front impeller 140 has a plurality of through-holes 41 formed to obliquely penetrate the front impeller 140 so as to pass the fluid introduced into the housing 20 to rotate the rotation shaft 30.
상기 전방임펠러(140)의 관통구(41)는 전방임펠러(40)의 전방 측면으로부터 내부에 수직하게 형성된 수직부(42)와, 수직부(42)에 연통되며 회전축(30)의 회전방향에 대응되게 절곡된 절곡부(43)를 구비한다. 관통구(41)로 유입되는 유체는 수직부(42)와 절곡부(43)의 벽면에 강하게 부딪혀 전방임펠러(140)에 회전력 증가를 제공한다. 전방임펠러(140)는 회전축(30)에 고정되어 있으므로 유체는 회전축(30)을 회전시키게 된다. The through-hole 41 of the front impeller 140 is in communication with the vertical portion 42 and the vertical portion 42 formed perpendicularly to the inside from the front side of the front impeller 40 in the rotational direction of the rotation shaft 30 A bent portion 43 correspondingly bent is provided. The fluid flowing into the through hole 41 strongly strikes the walls of the vertical portion 42 and the bent portion 43 to provide an increase in rotational force to the front impeller 140. Since the front impeller 140 is fixed to the rotation shaft 30, the fluid rotates the rotation shaft 30.
또한, 후방으로 유도되지 못한 유체는 유체우회로(460)를 통해 배출되며, 이러한 유체우회로(460)는 기존 터빈과 같이 회전체의 외측으로 세어 나가는 것이 아니고 회전체 중심축의 외측으로 유도되기 때문에 유체가 세어나가는 면적이 대폭 감소되어 유량손실 또한 대폭 감소된다.In addition, the fluid that is not guided to the rear is discharged through the fluid bypass 460, the fluid bypass 460 is not counted to the outside of the rotor like the existing turbine, but because the fluid is guided to the outside of the central axis of the rotor fluid The area to be counted is greatly reduced, and the flow loss is also greatly reduced.
도면에 도시되진 않았지만, 본 실시 예와는 다르게 전방임펠러(140)의 관통구(41)는 수직부(42)와 절곡부(43)로 구분되어 형성되는 것이 아니라, 일체로 회전축(30)의 회전방향에 대응되는 방향으로 경사지게 형성될 수도 있다.Although not shown in the drawing, unlike the present embodiment, the through hole 41 of the front impeller 140 is not formed by being divided into the vertical portion 42 and the bent portion 43, but integrally with the rotating shaft 30. It may be formed to be inclined in a direction corresponding to the rotation direction.
전방임펠러(240)의 또 다른 실시 예가 도 6에 도시되어 있다. Another embodiment of the front impeller 240 is shown in FIG. 6.
도면을 참조하면, 전방임펠러(240)의 전면에는 하우징(20) 내부로 유입된 유체를 전방임펠러(240)의 관통구(41)로 가이드하는 전방가이드홈(244)이 형성되어 있다.Referring to the drawings, a front guide groove 244 is formed on the front surface of the front impeller 240 to guide the fluid introduced into the housing 20 to the through hole 41 of the front impeller 240.
전방가이드홈(244)은 원주방향을 따라 만곡되게 형성되어 있다. 전방가이드홈(244)의 폭은 전방임펠러(240)의 관통구(41)까지 일정하게 형성되어 있으며, 관통구(41)가 형성된 위치의 전방가이드홈(244)의 폭은 관통구(41)의 내경에 대응되는 크기를 갖는다. The front guide groove 244 is formed to be curved along the circumferential direction. The width of the front guide groove 244 is uniformly formed to the through hole 41 of the front impeller 240, the width of the front guide groove 244 at the position where the through hole 41 is formed is the through hole 41 It has a size corresponding to the inner diameter of.
또한, 상기 전방가이드홈(244)은 관통구까지 유체가 유입되는 초입 일부를 제외한 전체가 덮여있어 유입된 유체가 오직 관통구(41)를 통해 유출되고 전방가이드홈(244)의 외부로 유출되지 못하도록 구성되어 있다.In addition, the front guide groove 244 is covered with a whole except for the first part of the fluid flows to the through hole so that the introduced fluid flows out only through the through hole 41 and does not flow out of the front guide groove 244. It is configured not to.
따라서, 전방가이드홈(244)으로 유입된 유체는 오직 관통구(41)로만 유도될 뿐 전방가이드홈(244)의 외부로 유출될 수 없으므로 상기 전방가이드홈(244) 내부에서의 유체는 압력저하를 방지할 수 있다.Accordingly, the fluid introduced into the front guide groove 244 is guided only through the through hole 41 and cannot flow out of the front guide groove 244. Can be prevented.
한편, 도시된 예에서는 전방임펠러(240)에 원주방향을 따라 3개의 전방가이드홈(244)이 형성된 구조를 설명하였으나, 적용되는 전방가이드홈(244)의 개수는 도시된 예에 한정하지 않고, 후술되는 후방임펠러(50)의 가이드홈(51)의 개수에 대응되게 형성되는 것이 바람직하다. Meanwhile, in the illustrated example, the front impeller 240 has been described with a structure in which three front guide grooves 244 are formed along the circumferential direction, but the number of the front guide grooves 244 to be applied is not limited to the illustrated example. It is preferable to be formed to correspond to the number of guide grooves 51 of the rear impeller 50 to be described later.
하우징(20)의 주입구(24)를 통해 주입된 유체는 전방가이드홈(244)에 의해 전방임펠러(240)의 관통구(41)로 가이드되고, 관통구(41)를 통과하면서 전방임펠러(240)에 회전력을 발생시킨다. The fluid injected through the inlet 24 of the housing 20 is guided to the through-hole 41 of the front impeller 240 by the front guide groove 244, and the front impeller 240 while passing through the through-hole 41. To generate torque.
한편, 상기 관통구(41)를 통과하면서 전방임펠러(240)에 회전력을 발생시키는 유체는 전방가이드홈(244)이 형성된 구조에 의해 회전방향을 결정하게 된다.On the other hand, the fluid generating a rotational force in the front impeller 240 while passing through the through-hole 41 is determined by the structure in which the front guide groove 244 is formed.
또한, 전방임펠러(340)의 또 다른 실시 예가 도 7에 도시되어 있다. In addition, another embodiment of the front impeller 340 is shown in FIG.
도면을 참조하면, 전방임펠러(340)는 전면에 하우징(20) 내부로 유입된 유체를 간섭하여 회전력을 발생시킬 수 있도록 반지름방향으로 형성된 다수의 저항홈(344)을 구비한다. Referring to the drawings, the front impeller 340 has a plurality of resistance grooves 344 formed in the radial direction to generate a rotational force to interfere with the fluid introduced into the housing 20 on the front.
저항홈(344)은 전방임펠러(340)의 관통구(41) 사이에 형성되며, 전방임펠러(340)의 회전방향으로 오목한 구조로 형성되어 있다. 하우징(20) 내부로 유입된 유체는 전방임펠러(340)의 전면에 형성된 저항홈(344)의 내벽에 충돌하여 전방임펠러(340)를 회전시킨다. The resistance groove 344 is formed between the through holes 41 of the front impeller 340, and is formed in a concave structure in the rotation direction of the front impeller 340. Fluid introduced into the housing 20 impinges on the inner wall of the resistance groove 344 formed on the front surface of the front impeller 340 to rotate the front impeller 340.
또한, 도 7에서 확인되는 바와 같이, 관통구(41)의 형상은 입구가 원형이고 그 내부로 들어갈수록 내경이 점차 줄어드는 나발형상으로서, 관통구(41)로 유입된 유체가 좁은 내부를 통과하면서 압력이 상승하도록 되어 있는 구조이다.In addition, as can be seen in Figure 7, the shape of the through-hole 41 is a spherical shape of the inlet is circular and the inner diameter gradually decreases as it enters the inside, while the fluid flowing into the through-hole 41 passes through the narrow interior It is the structure that a pressure rises.
한편, 도면에 도시되진 않았지만 본 실시 예와는 다르게 전방임펠러(340)는 저항홈(344) 대신에 하우징(20) 내부로 유입된 유체를 간섭할 수 있도록 전방임펠러(340)의 전면에 전방으로 돌출형성된 저항돌기를 구비할 수도 있다. On the other hand, although not shown in the drawing, unlike the present embodiment, the front impeller 340 forwards to the front of the front impeller 340 to interfere with the fluid introduced into the housing 20 instead of the resistance groove 344. It may be provided with a protrusion formed protrusion.
또한, 전방임펠러의 또 다른 실시 예가 도 8에 도시되어 있다. In addition, another embodiment of the front impeller is shown in FIG. 8.
도면을 참조하면, 전방임펠러는 하우징(40) 내부로 유입되는 유체가 전방임펠러의 외주면으로 유출되는 것을 방지할 수 있도록 전방임펠러의 상면 가장자리에 원주방향을 따라 폐회로를 이루며 돌출형성된 다수의 제 1유출방지돌기(610)를 구비한다. Referring to the drawings, the front impeller forms a closed circuit along the circumferential direction on the upper edge of the front impeller so as to prevent the fluid flowing into the housing 40 from leaking to the outer circumferential surface of the front impeller. The prevention protrusion 610 is provided.
이때, 전방덮개(21)는 상기 제 1유출방지돌기(610) 사이에 삽입될 수 있도록 제 1유출방지돌기(610)에 대향된 위치의 전방덮개(21)에 원주방향을 따라 폐회로를 이루며 하방으로 돌출형성되어 전방덮개(21)와 전방임펠러 사이의 공간을 밀폐시키는 제 2유출방지돌기(620)를 구비한다. In this case, the front cover 21 forms a closed circuit along the circumferential direction of the front cover 21 at a position opposite to the first leakage preventing protrusion 610 so as to be inserted between the first leakage preventing protrusion 610. Protruding to form a second leakage preventing projection 620 for sealing the space between the front cover 21 and the front impeller.
한편, 제 1및 제 2유출방지돌기(610,620)는 전방임펠러(40)가 제 2유출방지돌기(620)를 따라 용이하게 회전할 수 있도록 상호 소정의 간격으로 이격되어 맞물리도록 형성되는 것이 바람직하다. On the other hand, it is preferable that the first and second outflow prevention protrusions 610 and 620 are formed to be spaced apart from each other at predetermined intervals so that the front impeller 40 can easily rotate along the second outflow prevention protrusion 620. .
제 1 및 제 2유출방지돌기(610,620)에 의해 전방임펠러와 전방덮개(21) 사이의 공간이 밀폐되므로 하우징(20)내부로 유입된 유체는 전방임펠러의 외주면과 하우징의 내벽 사이로 유출되지 않고, 전방임펠러의 관통구(41)로 유입된다. 따라서, 제 1및 제 2유출방지돌기(610,620)에 의해 유체 유출에 의한 유량손실과 압력저하를 감소시킬 수 있다. Since the space between the front impeller and the front cover 21 is sealed by the first and second outflow prevention protrusions 610 and 620, the fluid introduced into the housing 20 does not flow out between the outer circumferential surface of the front impeller and the inner wall of the housing. It flows into the through hole 41 of the front impeller. Accordingly, the flow rate loss and the pressure drop due to the outflow of the fluid can be reduced by the first and second outflow prevention protrusions 610 and 620.
또한, 도면에 도시되진 않았았지만, 본 실시 예와는 다르게 제 1및 제 2유출방지돌기(610,620)는 전방덮개(21)와 전방임펠러 사이에만 형성되는 것이 아니라, 전방임펠러가 하우징(20) 내부에 고정 시에는 전방임펠러의 하면과 후방임펠러(50)의 상면에 각각 형성되어 각 임펠러 사이에 유입되는 유체가 임펠러의 외주면을 통해 유출되는 것을 방지하여 압력손실을 감소시킬 수도 있다. In addition, although not shown in the drawings, unlike the present embodiment, the first and second leakage preventing protrusions 610 and 620 are not formed only between the front cover 21 and the front impeller, but the front impeller is inside the housing 20. In fixing to the lower surface of the front impeller and the upper surface of the rear impeller 50 may be formed respectively to prevent the fluid flowing between each impeller flows through the outer peripheral surface of the impeller may reduce the pressure loss.
한편, 본 발명에 따른 축류형 다단터빈(10)의 후방임펠러(50)를 상세하게 설명하면 다음과 같다. Meanwhile, the rear impeller 50 of the axial multistage turbine 10 according to the present invention will be described in detail as follows.
후방임펠러(50)는 전방임펠러(40) 후방의 회전축(30)에 고정되며, 디스크 구조로 형성되어 있다. 후방임펠러(50)의 전방측면에는 회전축(30)을 회전시킬 수 있게 유체를 회전축(30)의 회전방향으로 가이드하는 가이드홈(51)이 형성되어 있으며, 가이드홈(51)의 단부에는 가이드홈(51)을 따라 유동하는 유체를 후방임펠러(50)의 후방으로 배출시킬 수 있게 후방임펠러(50)를 경사지게 관통한 후방배출구(55)가 형성되어 있다. The rear impeller 50 is fixed to the rotation shaft 30 behind the front impeller 40 and is formed in a disk structure. The front side of the rear impeller 50 is formed with a guide groove 51 for guiding the fluid in the rotational direction of the rotation shaft 30 to rotate the rotation shaft 30, the guide groove 51 at the end of the guide groove 51 A rear discharge port 55 is formed to obliquely penetrate the rear impeller 50 so as to discharge the fluid flowing along the 51 to the rear of the rear impeller 50.
상기에 언급된 후방임펠러(50)의 가이드홈(51)을 더욱 상세하게 설명하면 다음과 같다. Referring to the guide groove 51 of the rear impeller 50 mentioned above in more detail as follows.
후방임펠러(50)의 가이드홈(51)은 상기 전방임펠러(40)의 관통구(41)에 대응되는 위치의 후방임펠러(50)의 상측면에 원주방향을 따라 형성되어 있다. 상기 가이드홈(51)는 하우징(20) 내부로 유입된 유체를 수용할 수 있도록 유체의 유량에 대응되는 크기로 형성되는 것이 바람직하다. The guide groove 51 of the rear impeller 50 is formed along the circumferential direction on the upper side of the rear impeller 50 at a position corresponding to the through hole 41 of the front impeller 40. The guide groove 51 may be formed to have a size corresponding to the flow rate of the fluid to accommodate the fluid introduced into the housing 20.
상기 관통구(41)를 통과한 유체는 후방임펠러(50)의 가이드홈(51)을 따라 회전축(30)의 회전방향으로 이동하게 된다. 이때 유체는 후방임펠러(50)를 회전시킨다. The fluid passing through the through hole 41 is moved along the guide groove 51 of the rear impeller 50 in the rotational direction of the rotation shaft 30. At this time, the fluid rotates the rear impeller 50.
또한, 가이드홈(51)을 따라 이동하는 유체는 단부에 형성된 후방배출구(55)를 통해 후방임펠러(50)의 후방으로 배출된다. 이때, 후방배출구(55)는 회전방향으로 경사지게 형성되어 있으므로 후방배출구(55)를 통해 배출되면서 후방임펠러(50)의 절곡된 부분을 수직으로 가압하기 때문에 회전력을 더욱 증가시킨다. In addition, the fluid moving along the guide groove 51 is discharged to the rear of the rear impeller 50 through the rear discharge port 55 formed at the end. At this time, since the rear discharge port 55 is formed to be inclined in the rotational direction, the rotational force is further increased because the rear discharge port 55 vertically presses the bent portion of the rear impeller 50 while being discharged through the rear discharge port 55.
한편, 도 9에는 후방임펠러(150)의 또 다른 실시 예가 도시되어 있다. Meanwhile, another embodiment of the rear impeller 150 is illustrated in FIG. 9.
도면을 참조하면, 후방임펠러(150)는 가이드홈(51)에 상방으로 돌출되게 형성되어, 가이드홈(51)을 따라 유동하는 유체를 간섭하여 회전력을 발생시키는 다수의 저항블레이드(52)를 더 구비한다. Referring to the drawings, the rear impeller 150 is formed to protrude upward in the guide groove 51, and further includes a plurality of resistance blades 52 for generating rotational force by interfering with the fluid flowing along the guide groove 51. Equipped.
저항블레이드(52)는 가이드홈(51)으로 유입된 유체가 다수의 저항블레이드(52) 사이를 원활하게 유동할 수 있게 유선형의 단면으로 형성되며, 유체 흐름의 후방측으로 경사지게 형성되는 것이 바람직하다. 관통구(41)를 통과한 유체는 가이드홈(51)에 의해 회전축(30)의 회전방향으로 이동하는 데, 이 때 유체는 가이드홈(51)을 따라 형성된 저항블레이드(52)에 부딪혀 후방임펠러(150)를 회전시킨다. The resistance blade 52 is formed in a streamlined cross section so that fluid introduced into the guide groove 51 can smoothly flow between the plurality of resistance blades 52, and is preferably formed to be inclined toward the rear side of the fluid flow. The fluid passing through the through hole 41 is moved by the guide groove 51 in the rotational direction of the rotation shaft 30, at which time the fluid impinges on the resistance blade 52 formed along the guide groove 51 to impart a rear impeller. Rotate 150.
한편, 도시된 예에서는 가이드홈(51)을 따라 형성된 다수의 저항블레이드(52)가 모두 동일한 방향으로 경사지게 형성된 구조를 설명하였으나, 적용되는 저항블레이드(52)의 방향은 도시된 예에 한정하지 않고 지그재그로 형성될 수도 있다. Meanwhile, in the illustrated example, the structure of the plurality of resistance blades 52 formed along the guide grooves 51 are inclined in the same direction, but the direction of the applied resistance blades 52 is not limited to the illustrated example. It may be formed zigzag.
도 10에는 후방임펠러(250)의 또 다른 실시 예가 도시되어 있다. 10 shows another embodiment of the rear impeller 250.
도면을 참조하면, 후방임펠러(250)는 가이드홈(51)을 따라 가이드홈(51)의 양측면에 돌출형성된 저항블레이드(53)를 구비한다.Referring to the drawings, the rear impeller 250 has resistance blades 53 protruding from both sides of the guide groove 51 along the guide groove 51.
상기 저항블레이드(53)는 가이드홈(51)을 따라 유동하는 유체가 다수의 저항블레이드(53) 사이를 원활하게 이동할 수 있도록, 전방측면이 유선형으로 형성되어 있으며, 상기 가이드홈(51)으로 유입된 상기 저항블레이드(53)에 수직으로 부딪혀 회전력을 더욱 증가시킨다.The resistance blade 53 has a front side formed in a streamlined shape so that fluid flowing along the guide groove 51 can move smoothly between the plurality of resistance blades 53, and flows into the guide groove 51. The rotational force is further increased by hitting the resistor blades 53 perpendicularly.
특히, 각각의 저항블레이드(53)는 가이드홈(51)의 양측면에 지그재그로 형성되는 것이 바람직하다. In particular, each resistance blade 53 is preferably formed in a zigzag on both sides of the guide groove (51).
한편, 도 11에는 후방임펠러(350)의 또 다른 실시 예가 도시되어 있다. Meanwhile, another embodiment of the rear impeller 350 is illustrated in FIG. 11.
도면을 참조하면, 후방임펠러(350)는 원주방향을 따라 3방향으로 분기된 가이드홈(51)이 형성되어 있다. 각각의 분기된 가이드홈(54)에는 가이드홈(54)을 따라 흐르는 유체를 간섭하여 회전력을 발생시키는 다수의 저항블레이드(52)가 형성되어 있다. 3방향으로 분기된 가이드홈은 유체와의 접촉면적을 넓혀 유체가 용이하게 후방임펠러(350)를 회전시키게 한다. 도면에 도시되진 않았지만, 본 실시 예와는 다르게 가이드홈(54)은 3방향으로 분기된 것이 아니라 2방향 또는 다수의 갈래로 분기되어 형성될 수도 있다. Referring to the drawings, the rear impeller 350 is formed with a guide groove 51 branched in three directions along the circumferential direction. Each branched guide groove 54 is formed with a plurality of resistance blades 52 for generating a rotational force by interfering with the fluid flowing along the guide groove 54. The guide groove branched in three directions widens the contact area with the fluid so that the fluid easily rotates the rear impeller 350. Although not shown in the drawings, unlike the present embodiment, the guide groove 54 may be formed by branching in two directions or a plurality of branches instead of branching in three directions.
저항블레이드(52)의 구조는 앞서 언급된 바와 동일하므로 상세한 설명은 생략한다. Since the structure of the resistance blade 52 is the same as mentioned above, a detailed description thereof will be omitted.
본 발명에 따른 축류형 다단터빈(10)의 후방임펠러(450)의 또 다른 실시 예가 도 12에 도시되어 있다. Another embodiment of the rear impeller 450 of the axial multistage turbine 10 according to the invention is shown in FIG. 12.
도면을 참조하면, 후방임펠러(450)는 후방임펠러(450)의 외주면과 하우징(20) 사이에 기밀을 유지할 수 있도록 외주면에 돌출형성된 다수의 기밀유지돌기(456)를 구비한다. Referring to the drawings, the rear impeller 450 includes a plurality of airtight holding protrusions 456 protruding from the outer circumferential surface to maintain the airtightness between the outer circumferential surface of the rear impeller 450 and the housing 20.
기밀유지돌기(456)는 후방임펠러(450)의 가장자리와 하우징(20) 내벽 사이로 유출되는 유체를 후방임펠러(450)의 상면으로 상승시킬 수 있도록 후방임펠러(450)의 회전방향으로 경사지게 형성되는 것이 바람직하다. The airtight holding protrusion 456 is formed to be inclined in the rotational direction of the rear impeller 450 so as to raise the fluid flowing out between the edge of the rear impeller 450 and the inner wall of the housing 20 to the upper surface of the rear impeller 450. desirable.
또한, 후방임펠러(460)의 또 다른 실시 예가 도 13에 도시되어 있다In addition, another embodiment of the rear impeller 460 is shown in FIG. 13.
도면을 참조하면, 후방임펠러(460)는 가이드홈(51)으로 유입되는 유체를 간섭하여 회전력을 발생시킬 수 있도록 전방임펠러(40)의 관통구(41) 또는 후방임펠러(50)의 후방배출구(55)에 대응되는 위치의 가이드홈(51) 하면에 상방으로 돌출형성된 간섭돌출부재(461)를 구비한다. Referring to the drawings, the rear impeller 460 is a through-hole 41 of the front impeller 40 or the rear outlet of the rear impeller 50 so as to generate a rotational force to interfere with the fluid flowing into the guide groove 51 55 is provided with an interference protrusion member 461 protruding upward from a lower surface of the guide groove 51 at a position corresponding to 55).
간섭돌출부재(461)는 가이드홈(51)의 하면에 유체의 흐름을 가로막지 않도록 소정의 높이만큼 형성되어 있으며, 간섭돌출부재(461)의 전방측은 가이드홈(51)을 따라 유동하는 유체를 간섭할 수 있도록 경사지게 형성되어 있다. 전방임펠러(40)의 관통구(41) 또는 후방임펠러(50)의 후방배출구(55)로 배출되는 유체는 유체의 유로 상에 형성된 간섭돌출부재(461)를 가압하여 후방임펠러(460)를 회전시킨다. The interference protrusion member 461 is formed at a predetermined height so as not to block the flow of the fluid on the lower surface of the guide groove 51, and the front side of the interference protrusion member 461 has a fluid flowing along the guide groove 51. It is formed to be inclined to interfere. The fluid discharged to the through hole 41 of the front impeller 40 or the rear discharge port 55 of the rear impeller 50 pressurizes the interference projecting member 461 formed on the flow path of the fluid to rotate the rear impeller 460. Let's do it.
또한, 후방임펠러(550)의 또 다른 실시 예가 도 14에 도시되어 있다. Further, another embodiment of the rear impeller 550 is shown in FIG. 14.
도면을 참조하면, 하우징(20)의 배출구(25)에 인접한 위치의 회전축(30)에 설치된 후방임펠러(550)의 후면에는 후방임펠러(550)의 후방배출구(55)를 통해 배출되는 유체를 하우징(20)의 배출구(25)로 배출시킬 수 있도록 가이드할 수 있게 다수의 배출가이드깃(557)이 돌출형성되어 있다. Referring to the drawings, a fluid discharged through the rear outlet 55 of the rear impeller 550 is disposed on the rear surface of the rear impeller 550 installed on the rotation shaft 30 adjacent to the outlet 25 of the housing 20. A plurality of discharge guide targets 557 are formed to protrude so as to be guided to the discharge port 25 of the 20.
배출가이드깃(557)은 후방임펠러(550)의 회전방향으로 볼록하게 형성되어 있다. 후방배출구(55)를 통해 배출된 유체는 배출가이드깃(557)에 의해 후방임펠러(550)의 가장자리로 가이드되며, 후방덮개(23)의 가장자리에 형성된 배출구(25)를 통해 하우징(20) 외부로 배출된다. The discharge guide target 557 is formed convexly in the rotational direction of the rear impeller 550. The fluid discharged through the rear discharge port 55 is guided to the edge of the rear impeller 550 by the discharge guide target 557, and the outside of the housing 20 through the discharge port 25 formed at the edge of the rear cover 23. To be discharged.
한편, 도시된 예에서는 전방임펠러(40) 후방에 9개의 후방임펠러(50)가 설치된 구조를 설명하였으나, 적용되는 후방임펠러(50)의 개수는 도시된 예에 한정하지 않고, 1개, 2개 또는 다수의 후방임펠러(50)가 설치될 수도 있다. Meanwhile, in the illustrated example, a structure in which nine rear impellers 50 are installed behind the front impeller 40 has been described. However, the number of the rear impellers 50 to be applied is not limited to the illustrated example. Alternatively, a plurality of rear impellers 50 may be installed.
도 15는 본 발명의 제 13실시 예에 따른 축류형 다단터빈의 전방임펠러의 원주방향의 부분단면도로서, 도 15를 참조하면, 상기 전방임펠러(40)의 관통구(41)는 전방임펠러(40)의 전방 측면으로부터 내부에 수직하게 형성된 수직부(42)와, 상기 수직부(42)에 연통되며 후방임펠러(50)의 가이드홈(51)의 위치에 대응되게 절곡된 절곡부(43)를 구비하는 것으로서, 하우징(20) 내부로 유입된 유체는 전방임펠러(40)에 형성된 관통구(41)를 통과하며, 상기 관통구(41)로 유입된 유체는 관통구(41)의 수직부(42)와 절곡부(43)의 연결부위에 강하게 부딪혀 강한 회전력을 발생시키며, 이때 유체는 전방임펠러(40)의 후방으로 배출된다.15 is a partial cross-sectional view of the front impeller of the axial multistage turbine according to the thirteenth embodiment of the present invention. Referring to FIG. 15, the through hole 41 of the front impeller 40 is the front impeller 40. A vertical portion 42 vertically formed therein from the front side of the front side, and a bent portion 43 communicating with the vertical portion 42 and bent to correspond to the position of the guide groove 51 of the rear impeller 50. As provided, the fluid introduced into the housing 20 passes through the through-hole 41 formed in the front impeller 40, the fluid introduced into the through-hole 41 is a vertical portion of the through-hole 41 ( 42) and a strong impact on the connecting portion of the bent portion 43 generates a strong rotational force, the fluid is discharged to the rear of the front impeller (40).
도 16은 본 발명의 제 14실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이고, 도 17은 본 발명의 제 15실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이다.16 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fourteenth embodiment of the present invention, and FIG. 17 is a partial perspective view of a rear impeller of an axial multistage turbine according to a fifteenth embodiment of the present invention.
또한, 도 18은 본 발명의 제 16실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이고, 도 19는 본 발명의 제 17실시 예에 따른 축류형 다단터빈의 후방임펠러의 부분사시도이다. 18 is a partial perspective view of a rear impeller of an axial multistage turbine according to a sixteenth embodiment of the present invention, and FIG. 19 is a partial perspective view of a rear impeller of an axial multistage turbine according to a seventeenth embodiment of the present invention.
도 16 내지 도 18을 참조하면, 도 9에 도시된 후방임펠러(150)의 또 다른 실시예를 도시한 것으로서, 도 9에는 사각형상의 저항블레이드(52)를 도시하였으나, 도 16 내지 도 18은 다양한 형상의 저항블레이드(52)를 보여주고 있다.16 to 18, a further embodiment of the rear impeller 150 shown in FIG. 9 is illustrated. In FIG. 9, a rectangular resistance blade 52 is illustrated, but FIGS. The resistance blade 52 of the shape is shown.
도 16을 참조하면, 후방임펠러(150)는 가이드홈(51)에 상방으로 돌출되게 형성되어, 가이드홈(51)을 따라 유동하는 유체를 간섭하여 회전력을 발생시키는 삼각 기둥모양의 저항블레이드(52) 및 상기 저항블레이드(52)의 꼭지점에 연결된 와류방지구(99)를 더 구비한다.Referring to FIG. 16, the rear impeller 150 is formed to protrude upward in the guide groove 51, so that the triangular pillar-shaped resistance blade 52 interferes with the fluid flowing along the guide groove 51 to generate rotational force. And an eddy current prevention device 99 connected to a vertex of the resistance blade 52.
또한, 도 17에는 반원 기둥형상의 저항블레이드(52) 및 상기 저항블레이드(52)에 연결된 와류방지구(99)가 더 구비된 후방임펠러(150)를 도시하였고, 도 18에는 마름모 기둥형상의 저항블레이드(52) 및 와류방지구(99)가 더 구비된 후방임펠러(150)를 도시하였다.In addition, FIG. 17 illustrates a semi-circular pillar-shaped resistance blade 52 and a rear impeller 150 further provided with a vortex prevention tool 99 connected to the resistance blade 52, and FIG. 18 illustrates a rhombus pillar-shaped resistor. The rear impeller 150 is further provided with a blade 52 and a vortex breaker 99.
또한, 상기 다양한 형상의 저항블레이드(52)는 가이드홈(51)을 통과하는 유체가 부딪혀 회전력을 발생시키고 저항블레이드(52)의 후방측으로 유체 흐름이 원활하도록 경사지게 형성되는 것이 바람직하다.In addition, the resistance blades 52 of the various shapes are preferably formed to be inclined so that the fluid passing through the guide groove 51 to generate a rotational force and the fluid flow smoothly to the rear side of the resistance blade (52).
따라서, 상기와 같이 다양한 형상의 저항블레이드(52) 및 와류방지구(99)와 간섭구(98)를 통하여, 강한 회전력을 발생시킬 수 있게 된다.Therefore, through the resistance blades 52, the vortex breakers 99 and the interference holes 98 of various shapes as described above, it is possible to generate a strong rotational force.
도 19는 본 발명의 제 18실시 예에 따른 축류형 다단터빈의 전방임펠러의 부분단면사시도로서, 도 19를 참조하면, 전방임펠러(350)는 하우징(40) 내부로 유입되는 유체가 전방임펠러(350)의 외주면으로 유출되는 것을 방지할 수 있도록 전방임펠러의 상면 가장자리에 원주방향을 따라 폐회를 이루며 돌출형성된 다수의 제 1유출방지돌기(610)를 구비하며, 이때, 전방덮개(21)는 상기 제 1유출방지돌기(610) 사이에 삽입될 수 있도록 제 1유출방지돌기(610)에 대향된 위치의 전방덮개(21)에 원주방향을 따라 폐회로를 이루며 하방으로 돌출형성되어 전방덮개(21)와 전방임펠러(350) 사이의 공간을 밀폐시키는 제 2유출방지돌기(620)를 구비한다. 19 is a partial cross-sectional perspective view of the front impeller of the axial multistage turbine according to the eighteenth embodiment of the present invention. Referring to FIG. 19, the front impeller 350 is a front impeller (fluid flowing into the housing 40). In order to prevent the outflow to the outer circumferential surface of the 350 is provided with a plurality of first outflow prevention projections 610 are formed in the circumferential direction to the upper edge of the front impeller in the circumferential direction, wherein the front cover 21 is The front cover 21 is formed in a closed circuit along the circumferential direction and protrudes downward in the front cover 21 at a position opposite to the first leakage preventing protrusion 610 so as to be inserted between the first leakage preventing protrusions 610. And a second outflow prevention protrusion 620 for sealing a space between the front impeller 350 and the front impeller 350.
한편, 제 1및 제 2유출방지돌기(610,620)는 전방임펠러(40)가 제 2유출방지돌기(620)를 따라 용이하게 회전할 수 있도록 상호 소정의 간격으로 이격되어 맞물리도록 형성되는 것이 바람직하다. 도 8에 도시된 전방임펠러의 부분단면사시도와의 차이점은 상기 제 1및 제 2유출방지돌기(610,620)가 회전축(30)에 가까이 형성된 것으로서, 손실되는 유체를 최소화할 수 있는 구조라는 점이다.On the other hand, it is preferable that the first and second outflow prevention protrusions 610 and 620 are formed to be spaced apart from each other at predetermined intervals so that the front impeller 40 can easily rotate along the second outflow prevention protrusion 620. . The difference from the partial cross-sectional perspective view of the front impeller shown in FIG. 8 is that the first and second outflow prevention protrusions 610 and 620 are formed close to the rotation shaft 30, and the structure can minimize fluid loss.
상술된 바와 같이 구성된 본 발명에 따른 축류형 다단터빈(10)의 작동을 설명하면 다음과 같다. The operation of the axial multistage turbine 10 according to the present invention configured as described above is as follows.
먼저, 고압의 유체를 전방덮개(21)의 주입구(24)를 통해 하우징(20) 내부로 주입시킨다. First, the high pressure fluid is injected into the housing 20 through the inlet 24 of the front cover 21.
하우징(20) 내부로 유입된 유체는 전방임펠러(40)에 형성된 관통구(41)를 통과한다. 전방임펠러(40)의 관통구(41)로 유입된 유체는 관통구(41)의 수직부(42)와 절곡부(43)의 연결부위에 부딪치며, 전방임펠러(40)의 후방으로 배출된다. The fluid introduced into the housing 20 passes through the through hole 41 formed in the front impeller 40. The fluid introduced into the through hole 41 of the front impeller 40 hits the connection portion between the vertical part 42 and the bent part 43 of the through hole 41 and is discharged to the rear of the front impeller 40.
상기 관통구(41)를 통해 배출된 유체는 전방임펠러(40)의 후방에 설치된 후방임펠러(50)의 가이드홈(51)으로 유입된다. 가이드홈(51)으로 유입된 유체는 가이드홈(51)을 따라 이동한다. 이때, 유체는 가이드홈(51)을 따라 돌출형성된 저항블레이드(52)에 부딪쳐, 후방임펠러(50)를 회전시킨다. The fluid discharged through the through hole 41 flows into the guide groove 51 of the rear impeller 50 installed at the rear of the front impeller 40. Fluid introduced into the guide groove 51 moves along the guide groove 51. At this time, the fluid strikes the resistance blade 52 protruding along the guide groove 51, thereby rotating the rear impeller 50.
가이드홈(51)을 따라 흐르는 유체는 가이드홈(51)의 단부에 형성된 후방배출구(55)를 통해 후방임펠러(50)의 후방으로 배출된다. 이때 후방배출구(55)는 회전축(30)의 회전방향에 대응되게 경사지게 형성되어 있으므로, 유체는 후방임펠러(50)를 회전시키면서 후방임펠러(50)의 후방으로 배출되는데, 이때, 최후에 위치된 후방임펠러 후방에서 유체는 회전 반대방향으로 배출된다. Fluid flowing along the guide groove 51 is discharged to the rear of the rear impeller 50 through the rear discharge port 55 formed at the end of the guide groove 51. At this time, since the rear discharge port 55 is formed to be inclined to correspond to the rotational direction of the rotation shaft 30, the fluid is discharged to the rear of the rear impeller 50 while rotating the rear impeller 50, at which time, the rear located at the end Behind the impeller the fluid is discharged in the opposite direction of rotation.
후방임펠러(50)의 후방으로 배출된 유체는 또 다른 후방임펠러(50)의 가이드홈(51)과 후방배출구(55)를 통과하면서 경사지게 형성된 후방배출구(55)의 내벽에 충돌하여 회전축(30)을 회전시킨다. The fluid discharged to the rear of the rear impeller 50 impinges on the inner wall of the rear discharge port 55 inclined while passing through the guide groove 51 and the rear discharge port 55 of the other rear impeller 50 and the rotating shaft 30. Rotate
상기 언급된 바와 같이 축류형 다단터빈(10)은 전방임펠러(40)와 다수의 후방임펠러(50)가 상호 밀착되게 설치되고 후방임펠러(50)의 외주면에는 기밀유지돌기(456)및 제 1및 2유출방지돌기(610,620)가 형성되어 각각의 임펠러 사이로 유체가 유출되는 것을 막아 유체의 유출에 의한 압력손실이 발생하는 것을 방지한다. As mentioned above, the axial multistage turbine 10 is installed such that the front impeller 40 and the plurality of rear impellers 50 are in close contact with each other, and the airtight holding protrusions 456 and the first and the outer circumferential surfaces of the rear impeller 50 are provided. The second outflow prevention protrusions 610 and 620 are formed to prevent the fluid from flowing out between the impellers, thereby preventing the pressure loss caused by the outflow of the fluid.
또한, 각각의 임펠러는 각 임펠러의 내부를 유체가 통과할 수 있게 관통구(41)와 가이드홈(51)에 의해 유체 유동유로를 형성하고, 각각의 유로에는 저항홈(344) 또는 저항블레이드(52)와 같은 유체 간섭 수단을 마련하여 유체 유동유로의 전 구간에서 회전력을 발생시켜, 터빈의 출력을 향상시키는 장점을 제공하며, 각 임펠러가 고속으로 회전하므로, 각 임펠러의 내부에 유동하는 유체는 원심력에 의해 각 임펠러의 내벽을 가압하여 회전력을 발생시켜 축류형 다단터빈(10)의 발생동력을 증가시킨다. In addition, each impeller forms a fluid flow path by the through-hole 41 and the guide groove 51 to allow the fluid to pass through the inside of each impeller, each passage has a resistance groove 344 or a resistance blade ( By providing a fluid interference means as shown in 52) to generate a rotational force in the entire section of the fluid flow path to provide the advantage of improving the output of the turbine, and because each impeller rotates at high speed, the fluid flowing inside each impeller Pressing the inner wall of each impeller by the centrifugal force to generate a rotational force to increase the generating power of the axial flow multi-stage turbine (10).
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다. Although the present invention has been described with reference to the embodiments illustrated in the drawings, these are merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent embodiments thereof are possible.
따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다. Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

Claims (11)

  1. 유체가 내부로 유입 및 유출될 수 있도록 주입구와 배출구가 형성된 하우징과;A housing in which an inlet and an outlet are formed to allow the fluid to flow in and out;
    상기 하우징 내부에 회전가능하게 설치된 회전축과;A rotating shaft rotatably installed in the housing;
    상기 회전축에 고정 설치되고, 유체를 통과시켜 후방으로 유도할 수 있도록 관통된 다수의 관통구가 형성된 전방임펠러와;A front impeller fixed to the rotating shaft and having a plurality of through holes formed therethrough so as to pass through the fluid and to be led backward;
    상기 전방임펠러 후방의 회전축에 고정되고, 상기 회전축을 회전시킬 수 있게 상기 유체를 상기 회전축의 회전방향으로 가이드하는 적어도 하나의 가이드홈이 형성되고, 상기 가이드홈의 단부에 상기 가이드홈을 따라 유동하는 유체를 후방으로 배출시켜 회전력을 발생시키는 후방배출구가 형성된 적어도 하나 이상의 후방임펠러;가 구비되는 것을 특징으로 하는 축류형 다단터빈. At least one guide groove is fixed to the rotary shaft behind the front impeller, the guide groove for guiding the fluid in the rotational direction of the rotary shaft to rotate the rotary shaft is formed, and flows along the guide groove at the end of the guide groove And at least one rear impeller having a rear discharge port configured to discharge the fluid to the rear to generate a rotational force.
  2. 제 1항에 있어서,The method of claim 1,
    상기 전방임펠러의 관통구는 축방향으로 평행하게 형성된 수직부와;The through hole of the front impeller is a vertical portion formed in parallel in the axial direction;
    상기 수직부에 연통되고 상기 회전축을 회전시킬 수 있도록 절곡되게 형성된 경사부;로 구성되는 것을 특징으로 하는 축류형 다단터빈.And an inclined portion that is in communication with the vertical portion and is bent to rotate the rotational shaft.
  3. 제 1항에 있어서, The method of claim 1,
    상기 전방임펠러는 하우징 내부로 유입된 유체를 간섭하여 회전력을 발생시킬 수 있도록 상면에 반지름방향으로 형성된 다수의 저항홈 또는 저항돌기를 더 구비하는 것을 특징으로 하는 축류형 다단터빈.The front impeller further comprises a plurality of resistance grooves or resistance protrusions formed in the radial direction on the upper surface so as to generate a rotational force by interfering with the fluid introduced into the housing.
  4. 제 1항에 있어서,The method of claim 1,
    상기 전방임펠러는 상기 하우징 내부로 유입되는 유체를 상기 전방임펠러의 관통구로 가이드하는 적어도 하나 이상의 유체가이드홈을 더 구비하는 것을 특징으로 하는 축류형 다단터빈. The front impeller further comprises at least one fluid guide groove for guiding the fluid flowing into the housing through the through-hole of the front impeller.
  5. 제 1항에 있어서, The method of claim 1,
    상기 전방임펠러는 상기 하우징 내부로 유입되는 유체가 외주면으로 유출되는 것을 방지할 수 있도록 상면 가장자리에 원주방향을 따라 폐회로를 이루며 돌출형성된 다수의 제 1유출방지돌기;를 더 구비하며, The front impeller further comprises a plurality of first outflow prevention protrusions formed in a closed circuit along the circumferential direction on the upper edge of the front impeller so as to prevent the fluid flowing into the housing from leaking to the outer circumferential surface.
    상기 하우징은 상기 제 1유출방지돌기 사이에 삽입되어 상기 하우징과 상기 전방임펠러 사이를 밀폐시킬 수 있도록 상기 제 1유출방지돌기에 대향되는 위치의 상기 하우징에 원주방향을 따라 폐회로를 이루며 상기 전방임펠러 방향으로 돌출형성된 제 2유출방지돌기;를 더 구비하는 것을 특징으로 하는 축류형 다단터빈.The housing is inserted between the first outflow prevention projections to form a closed circuit along the circumferential direction in the housing at a position opposite to the first outflow prevention projection so as to seal between the housing and the front impeller. An axial flow type multi-stage turbine, characterized in that it further comprises;
  6. 제 1항에 있어서, The method of claim 1,
    상기 후방임펠러의 가이드홈에 돌출되게 형성되어, 상기 가이드홈을 따라 유동하는 유체를 간섭함으로써 회전력을 발생시키는 다수의 저항블레이드를 더 구비하는 것을 특징으로 하는 축류형 다단터빈. And a plurality of resistance blades protruding from the guide grooves of the rear impeller and generating rotational forces by interfering with the fluid flowing along the guide grooves.
  7. 제 1항 또는 제 3항의 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 후방임펠러의 가이드홈은 원주방향을 따라 하나 또는 다수의 갈래로 분기되어 형성되는 것을 특징으로 하는 축류형 다단터빈.The guide groove of the rear impeller is an axial flow type multi-stage turbine, characterized in that formed in one or a plurality of branches along the circumferential direction.
  8. 제 1항에 있어서, The method of claim 1,
    상기 후방임펠러는 상기 후방임펠러의 외주면과 하우징 사이 기밀을 유지할 수 있도록 외주면에 돌출형성된 다수의 기밀유지돌기를 더 구비하는 것을 특징으로 하는 축류형 다단터빈.The rear impeller further includes a plurality of airtight holding protrusions protruding from the outer circumferential surface to maintain the airtightness between the outer circumferential surface of the rear impeller and the housing.
  9. 제 1항에 있어서,The method of claim 1,
    상기 배출구에 인접한 위치의 상기 회전축에 설치된 상기 후방임펠러는 후면에 상기 후방배출구를 통해 배출되는 유체를 상기 하우징의 배출구로 배출시킬 수 있도록 가이드할 수 있게 돌출형성된 다수의 배출가이드깃을 더 구비하는 것을 특징으로 하는 축류형 다단터빈.The rear impeller installed on the rotary shaft in a position adjacent to the discharge port further includes a plurality of discharge guides protruding to guide the liquid discharged through the rear discharge port to the discharge port of the housing at a rear surface thereof. Axial flow type multistage turbine.
  10. 제 1항에 있어서, The method of claim 1,
    상기 전방임펠러는 상기 하우징의 내부에 고정되어 상기 회전축을 회전가능하게 지지하고,The front impeller is fixed to the inside of the housing to rotatably support the rotating shaft,
    상기 전방임펠러와 상기 후방임펠러 사이의 상기 회전축에 고정되며, 상기 유체를 통과시켜 상기 유체를 후방으로 가이드할 수 있도록 관통된 다수의 관통구가 형성된 보조임펠러부재;를 더 구비하고,  And an auxiliary impeller member fixed to the rotary shaft between the front impeller and the rear impeller and having a plurality of through holes formed therethrough so as to pass the fluid and guide the fluid backward.
    상기 전방임펠러 및 상기 보조임펠러부재의 관통구는 축방향으로 평행하게 형성된 수직부와;The through hole of the front impeller and the auxiliary impeller member is a vertical portion formed in parallel in the axial direction;
    상기 수직부에 연통되며, 상기 후방임펠러의 가이드홈으로 상기 유체를 가이드할 수 있도록 절곡되게 형성된 경사부;를 구비하는 것을 특징으로 하는 축류형 다단터빈.And an inclined portion communicating with the vertical portion and formed to be bent to guide the fluid to the guide groove of the rear impeller.
  11. 유체가 내부로 유입 및 유출될 수 있도록 주입구와 배출구가 형성된 하우징과;A housing in which an inlet and an outlet are formed to allow the fluid to flow in and out;
    상기 하우징 내부에 회전가능하게 설치된 회전축과;A rotating shaft rotatably installed in the housing;
    상기 회전축에 회전될 수 있도록 고정 설치되며, 유체를 통과시켜 후방으로 유도할 수 있도록 관통된 다수의 관통구가 형성된 전방임펠러와;A front impeller fixedly installed on the rotating shaft and having a plurality of through holes penetrated to guide the fluid through the fluid;
    상기 전방임펠러의 관통구를 통해 후방으로 유도되지 못한 유체가 배출될 수 있도록 형성된 유체우회로;와A fluid bypass configured to discharge a fluid which is not guided backward through the through hole of the front impeller; and
    상기 전방임펠러 후방의 회전축에 고정되고, 상기 회전축을 회전시킬 수 있게 상기 유체를 상기 회전축의 회전방향으로 가이드하는 적어도 하나의 가이드홈이 형성되고, 상기 가이드홈의 단부에 상기 가이드홈을 따라 유동하는 유체를 후방으로 배출시켜 회전력을 발생시키는 후방배출구가 형성된 적어도 하나 이상의 후방임펠러;가 구비되는 것을 특징으로 하는 축류형 다단터빈.At least one guide groove is fixed to the rotary shaft behind the front impeller, the guide groove for guiding the fluid in the rotational direction of the rotary shaft to rotate the rotary shaft is formed, and flows along the guide groove at the end of the guide groove And at least one rear impeller having a rear discharge port configured to discharge the fluid to the rear to generate a rotational force.
PCT/KR2010/001712 2009-03-20 2010-03-19 Axial flow multistage turbine WO2010107276A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0023951 2009-03-20
KR1020090023951A KR101033324B1 (en) 2009-03-20 2009-03-20 Turbine with multistage inpeller for an axis line

Publications (2)

Publication Number Publication Date
WO2010107276A2 true WO2010107276A2 (en) 2010-09-23
WO2010107276A3 WO2010107276A3 (en) 2010-12-09

Family

ID=42740144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001712 WO2010107276A2 (en) 2009-03-20 2010-03-19 Axial flow multistage turbine

Country Status (2)

Country Link
KR (1) KR101033324B1 (en)
WO (1) WO2010107276A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647421B1 (en) * 2016-03-24 2016-08-10 동원펌프주식회사 a centrifugal pump of multiple-stage

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184877B1 (en) 2011-04-05 2012-09-26 최혁선 A improved structure of turbine with impeller for an axis line
WO2013051818A1 (en) 2011-10-04 2013-04-11 Choi Hyuk Sun Axial turbine
KR101272820B1 (en) * 2012-04-26 2013-06-11 써클파워 주식회사 Zet turbine
KR101332613B1 (en) * 2013-08-09 2013-11-25 이재본 Radial impeller combined multi-layer turbine
KR101418345B1 (en) 2013-09-27 2014-07-10 최혁선 A structure of turbine with impeller for an axis line
KR20160053684A (en) * 2014-11-05 2016-05-13 이만숙 Impulse type turbine system with independent wings
KR102034700B1 (en) 2017-12-28 2019-10-21 김주섭 Independent-reaction complex turbine apparatus for electric generation
KR102054004B1 (en) 2019-05-17 2019-12-09 백종빈 axial flow turbine
KR102486265B1 (en) 2020-11-11 2023-01-10 박방림 Improved structure of high efficiency axial turbine
KR20240031744A (en) 2022-09-01 2024-03-08 박영석 High Efficiency Axial Flow Turbine with Improved Functionality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692232B1 (en) * 2001-03-16 2004-02-17 Guy Louis Letourneau Rotor assembly for disc turbine
KR100531264B1 (en) * 2003-07-30 2005-11-28 이재본 Axial multistage turbine converts fluid motion into rotational power
KR100550366B1 (en) * 2004-03-17 2006-02-13 이재본 Turbine with multistage impeller for an axis line
US20060233647A1 (en) * 2005-04-14 2006-10-19 Saunders Robert D Slotted bladeless turbine disc

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448145B2 (en) * 1995-11-24 2003-09-16 三菱重工業株式会社 Heat recovery type gas turbine rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692232B1 (en) * 2001-03-16 2004-02-17 Guy Louis Letourneau Rotor assembly for disc turbine
KR100531264B1 (en) * 2003-07-30 2005-11-28 이재본 Axial multistage turbine converts fluid motion into rotational power
KR100550366B1 (en) * 2004-03-17 2006-02-13 이재본 Turbine with multistage impeller for an axis line
US20060233647A1 (en) * 2005-04-14 2006-10-19 Saunders Robert D Slotted bladeless turbine disc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647421B1 (en) * 2016-03-24 2016-08-10 동원펌프주식회사 a centrifugal pump of multiple-stage

Also Published As

Publication number Publication date
WO2010107276A3 (en) 2010-12-09
KR101033324B1 (en) 2011-05-09
KR20100105103A (en) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2010107276A2 (en) Axial flow multistage turbine
WO2016195238A1 (en) Direct drive-type turbo blower cooling structure
KR100551523B1 (en) Centrifugal compressor
WO2017039108A1 (en) Direct drive type dual turbo blower cooling structure
KR100413754B1 (en) Compressed Opportunities for Gas Turbines
EP2009248B1 (en) Turbine arrangement and method of cooling a shroud located at the tip of a turbine blade
US5290144A (en) Shroud ring for an axial flow turbine
CA2464414C (en) High pressure turbine blade cooling scoop
WO2012030052A2 (en) Reaction-type turbine
EP2715069B1 (en) Piston seal ring
WO2010107146A1 (en) Reaction-type turbine
CN103775135B (en) Gas turbine and the turbine blade for such gas turbine
CN108060979B (en) Gas turbine and swirling device thereof
CN1705203B (en) Gas cooling electric machine with pressure unit
JP6118018B2 (en) Shroud leak cover
CN1380487A (en) Gas turbine
WO2018182272A1 (en) Centripetal turbine apparatus comprising nozzles inside sealed turbine
WO2016167456A1 (en) Volute casing and rotary machine having same
WO2015108353A1 (en) Turbine cooling device
WO2015108354A1 (en) Blade tip sealing apparatus for gas turbine
WO2013058500A1 (en) Reaction-type turbine
WO2018199708A1 (en) Vertical shaft impeller blade propulsion apparatus for electric propulsion vessel
US20240018945A1 (en) Labyrinth seal device for an air passage for cooling air of a cooling system of a generator of a wind power installation and use thereof, and air passage, generator and wind power installation
WO2023095964A1 (en) Structure for increasing motor efficiency of turbo blower permanent magnet motor
WO2019139199A1 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753726

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10753726

Country of ref document: EP

Kind code of ref document: A2