WO2010107263A2 - Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device - Google Patents

Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device Download PDF

Info

Publication number
WO2010107263A2
WO2010107263A2 PCT/KR2010/001687 KR2010001687W WO2010107263A2 WO 2010107263 A2 WO2010107263 A2 WO 2010107263A2 KR 2010001687 W KR2010001687 W KR 2010001687W WO 2010107263 A2 WO2010107263 A2 WO 2010107263A2
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
low temperature
heat exchange
high temperature
cold
Prior art date
Application number
PCT/KR2010/001687
Other languages
French (fr)
Korean (ko)
Other versions
WO2010107263A3 (en
Inventor
박경식
Original Assignee
코리아워터텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090023283A external-priority patent/KR100967719B1/en
Application filed by 코리아워터텍 주식회사 filed Critical 코리아워터텍 주식회사
Priority to CN2010800215338A priority Critical patent/CN102428044A/en
Publication of WO2010107263A2 publication Critical patent/WO2010107263A2/en
Publication of WO2010107263A3 publication Critical patent/WO2010107263A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1123Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • B01F27/906Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms  with fixed axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the present invention relates to a sludge hydrolysis apparatus, a sludge hydrolysis method using the same, a contact heat exchange unit and a steam heat exchange unit provided in the sludge hydrolysis apparatus, and more specifically, the hydrolyzed hot sludge and the cold sludge to be hydrolyzed Regarding the sludge hydrolysis apparatus, the sludge hydrolysis method using the same, the contact heat exchange unit and the steam heat exchange unit provided in the sludge hydrolysis apparatus can reduce the energy required for the hydrolysis of the sludge by the heat exchange between the will be.
  • 'sludge' organic sludge
  • the sludge contains a lot of energy of more than 3000 kcal per kg after drying, it would be very economically useful if the energy can be recovered in the process of sludge, but the water content of the sludge is high to 80% so far, The energy involved is not being used economically.
  • the sludge can recover energy by removing more than 80% of the water contained or decomposing it into microorganisms, and many technologies have been developed for this purpose. Or there is a problem such as odor occurrence. Therefore, up to now, most of the sludge has been treated by ocean dumping or compost utilization. However, ocean dumping causes a problem of marine pollution, the use of compost has a problem that generates a large amount of methane gas causing global warming in the decomposition process.
  • organic substances are mostly composed of carbohydrates, proteins, and lipids, which are high molecular compounds in which glucose, amino acids, and fatty acids are combined, and when these organic substances are heated to a high temperature of 200 ° C. or higher with water, they are decomposed into glucose or amino acids. It is called.
  • the hydrolysis device Due to such a problem, the hydrolysis device has low energy efficiency because of less energy such as solids recovered than the input thermal energy, and thus, the sludge treatment method is not economical.
  • a heat exchanger capable of exchanging heat with the hydrolyzed high temperature sludge and the low temperature sludge to be hydrolyzed to reduce the input energy by reusing the energy used for heating in the hydrolysis apparatus is required.
  • a continuous hydrolysis device that can be continuously hydrolyzed to create a flow of heat exchange.
  • low-temperature sludge has extremely poor fluidity, so that heat transfer by convection is not performed, and thermal conductivity is very low, and thus heat transfer by contact is difficult.
  • the present invention has been made to solve the above-mentioned problems, and the heat exchange is performed between the cold sludge to be hydrolyzed and the hydrolyzed hot sludge, thereby reducing the energy used for heating the cold sludge and requiring an apparatus for cooling the hot sludge. It is an object of the present invention to provide a continuous sludge hydrolysis apparatus, a sludge hydrolysis method using the same, a contact heat exchange unit and a steam heat exchange unit provided in the apparatus.
  • Still another object of the present invention is to use a steam pressure curve of water, using the principle of heating the cold sludge when the hot sludge is rapidly cooled while generating steam when the pressure is lowered and condensed by contact with the cold sludge. And it is to provide a steam heat exchange unit, a sludge hydrolysis apparatus having the same, and a sludge hydrolysis method using the same so that heat exchange is carried out through the movement of steam between the low temperature sludge and the low temperature sludge.
  • Another object of the present invention is to place a plurality of the steam heat exchange unit in series so that the steam heat exchange between the high temperature sludge and the low temperature sludge is performed a plurality of times to significantly reduce the heat energy required for hydrolysis of the low temperature sludge. It is to provide a sludge hydrolysis apparatus that can be, and a sludge hydrolysis method using the same.
  • Still another object of the present invention is to provide a sludge hydrolysis apparatus and a sludge hydrolysis method using the same, in which the contact heat exchange is performed a plurality of times, thereby significantly reducing the thermal energy required for hydrolysis of low temperature sludge. .
  • Still another object of the present invention is to continuously inject low temperature sludge into a heating vessel of 210 ° C and 20 atm of high vapor pressure so that hydrolysis can be continuously performed by using fluidizing property when low temperature sludge having extremely poor fluidity is hydrolyzed.
  • a sludge hydrolysis apparatus using a continuous heating unit capable of continuously discharging sludge heated and hydrolyzed from a container, and a sludge hydrolysis method using the same.
  • the heating unit installs a partition wall in a pressure vessel so as to be horizontally partitioned into a hydrolysis vessel and a discharge vessel, and the hydrolysis vessel is vertically partitioned into a vapor space and a sludge space.
  • the stirring member reciprocates the steam space and the sludge space, the low temperature sludge and the water vapor are mixed and heated, and the low temperature sludge is hydrolyzed to melt like water and discharged into the discharge vessel over the bulkhead to continuously hydrolyze the low temperature sludge.
  • a heating unit in which the low temperature sludge is continuously hydrolyzed at a constant speed is devised, and the low temperature sludge and the high temperature sludge are heated to heat the low temperature sludge continuously supplied to the heating unit and to cool the high temperature sludge discharged continuously from the heating unit. Heat exchange between cold sludge and hot sludge using the temperature difference of.
  • the hydrolyzed hot sludge discharged from the heating unit has high temperature and pressure
  • high pressure steam having high energy density may be utilized as a medium for heat exchange. Therefore, the hot sludge is injected into a low pressure vessel to generate steam corresponding to the pressure difference, thereby cooling the hot sludge and sending the steam to the cold sludge container so as to contact the cold sludge to condense the steam so as to heat the cold sludge.
  • a heat exchange unit is used to exchange heat between the cold sludge and the hot sludge.
  • hydrolyzed hot sludge through the steam heat exchanger unit is cooled to some degree to produce high pressure steam, but the hydrolysis process is used to improve the fluidity.
  • the cold sludge to be cooled on contact and vice versa is heat exchanged using a contact heat exchange unit that is heated in contact with the outer surface of the cylinder.
  • low-temperature sludge having poor fluidity is sequentially passed through the contact heat exchanger and the steam heat exchanger, and the hydrolyzed high temperature sludge is sequentially applied to the steam heat exchanger and the contact heat exchanger. Make it through. Heat transfer between the hot sludge and the cold sludge during the contact heat exchanger and the steam heat exchanger minimizes the heating energy required to hydrolyze the cold sludge, as well as effectively cool and hydrolyze the hot sludge. The manufacturing cost of the device can also be reduced.
  • the steam heat exchange unit uses the principle of heating the low temperature sludge while condensing the water vapor when the low temperature sludge is in contact with the water vapor having a temperature and pressure on the vapor pressure curve. Specifically, water vapor with a temperature and pressure on the vapor pressure curve turns into water when it is only slightly cooled. In a steam heat exchange unit, the water vapor in this state is filled with water vapor, and when the cold sludge comes into contact with water vapor in this state, the contacted water vapor is cooled.
  • Condensation proceeds as space is emptied as condensation draws water vapor into continuous contact with the sludge, and the surface of the cold sludge is heated by the heat of condensation of the steam, and the heat of condensation is transferred to the inside of the sludge to heat the cold sludge do.
  • the hydrolyzed hot sludge is discharged from the contact heat exchange unit and then separated into a solid concentrate and a liquid fraction by a solid-liquid separator.
  • the solid concentrate is separated into a solid component and a liquid component using a conventional dehydrator such as a filter press or a centrifugal dehydrator.
  • the liquid fraction discharged from the solid-liquid separator and the liquid fraction discharged from the dehydrator are subjected to anaerobic digestion to obtain methane gas, and the digestion liquid is treated with aerobic microorganisms to make clean water and then released.
  • the sludge produced in this process is hydrolyzed again It is sent to the device and hydrolyzed.
  • Solids discharged from the dehydrator are thermally decomposed in an oxygen-free high temperature environment, and are made of gas and carbides to be energy resources.
  • 1 is a graph showing a vapor pressure curve of water and a relationship between water temperature and thermal energy.
  • Figure 2 is a view showing the configuration of the sludge hydrolysis apparatus according to the present invention, and the treatment of the hot sludge discharged from the sludge hydrolysis apparatus.
  • Figure 3 is a view showing a cross section of the heating unit and the pressurized injection unit of the sludge hydrolysis apparatus according to the present invention.
  • Figure 4 (a) is a perspective view showing a pressure injection unit provided in the sludge hydrolysis apparatus according to the present invention.
  • Figure 4 (b) is a perspective view showing a pressure injection unit provided in the sludge hydrolysis apparatus according to the present invention.
  • Figure 5 is a perspective view showing a first embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • FIG. 6 is a cross-sectional view showing the steam heat exchange unit of FIG.
  • FIG. 7 is a partial cutaway perspective view illustrating a hot sludge injection unit provided in the steam heat exchange unit of FIG. 5.
  • FIG. 8 is an exploded perspective view showing the first and second rotors provided in the steam heat exchange unit of FIG. 5.
  • FIG. 9 is a perspective view showing a second embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • FIG. 10 is a perspective view showing a plurality of steam heat exchange unit of Figure 9 connected in series.
  • FIG. 11 is a perspective view showing a first embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • FIG. 12 is a schematic view showing the longitudinal section of the contact heat exchange unit of FIG. 11.
  • FIG. 12 is a schematic view showing the longitudinal section of the contact heat exchange unit of FIG. 11.
  • FIG. 13 is a perspective view illustrating a unit member provided in the contact heat exchange unit of FIG. 11.
  • FIG. 14 is a cross-sectional view taken along the line A-A 'of the unit member of FIG.
  • Figure 15 is a longitudinal cross-sectional view showing a second embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • 16 is a view showing a power transmission configuration for driving the contact heat exchange unit of FIG.
  • FIG. 17 is a partial cutaway and partially exploded perspective view showing a third embodiment of the contact heat exchanger unit provided in the sludge hydrolysis apparatus according to the present invention.
  • FIG. 18 is a partially cut away and partially exploded perspective view showing a fourth embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • the temperature rises or the state changes from liquid to gas, while the temperature pressure curve is called the water vapor pressure curve.
  • water is present as a liquid if the external pressure is higher than the vapor pressure curve pressure and as a gas when the external pressure is low.
  • water vapor having a temperature and pressure on the vapor pressure curve immediately turns into water, and water having a temperature and pressure on the vapor pressure curve turns into water vapor even when the pressure is slightly lowered to maintain the equilibrium of the vapor pressure curve.
  • the heat energy required to raise the temperature of water is 100cal up to 100 °C, 151cal up to 150 °C, 203cal up to 200 °C, 259cal up to 250 °C, and 321cal up to 300 °C.
  • the temperature-energy relationship is similar at low and high temperatures, but for temperature and pressure As shown in Table 1, the pressure-to-pressure relationship rapidly rises at 1 ° C at 100 ° C, 4.7 atm at 150 ° C, 15.6 at 200 ° C, 40.1 at 250 ° C, and 86.5 at 300 ° C.
  • the temperature-energy relationship and the temperature-pressure relationship are shown in FIG. 1.
  • the sludge may be heated through direct heating or may be heated through heat exchange heating.
  • direct heating is a method of heating the sludge by supplying heat energy from the outside
  • heat exchange heating is a method of heating the low temperature sludge by heat exchange between the hot sludge and low temperature sludge without external heat energy supply.
  • heat exchange heating is more economical because direct heating requires both energy and equipment costs, but heat exchange heating requires no equipment costs and only equipment costs.
  • Heat exchange heating is a technology that uses the natural phenomenon of heat transfer in which medium sludge is made by using the temperature difference between high temperature sludge and low temperature sludge. Therefore, heat energy of hydrolyzed high temperature sludge is transferred to low temperature sludge to be hydrolyzed. After this heat exchange heating, the final heating up to the hydrolysis temperature should be directly heated.
  • Contact heat exchange is a method in which heat sludge and low temperature sludge are not mixed with each other in order to heat low temperature sludge, which is poor in fluidity, and heat exchanges with each other through heat conduction by contact and stirring through intermediate metals.
  • the steam heat exchange is cooled while generating hot steam when the hot sludge is exposed to a pressure lower than the vapor pressure, and the steam is transferred to the cold sludge container and condensed while contacting the cold sludge injected into the container, thereby heating the cold sludge. That's the way.
  • the sludge hydrolysis apparatus exchanges heat in a heat exchange method with a low temperature sludge while the hydrolyzed high temperature sludge is discharged, so that the heat of the high temperature sludge is reused, so that 1/3 to 1/5 of the sludge hydrolysis apparatus is not used. It is possible to hydrolyze low temperature sludge with only thermal energy, and no separate cooling device is required to cool the high temperature sludge.
  • the sludge components such as starch or protein exist in the polymer state, and when the heat is applied, the polymer stretches long and water is trapped in between, and the water is solidified so as not to be physically separated from the water.
  • the long starch and protein in the polymer state are decomposed into glucose or amino acid while being inserted into water molecules by hydrolysis at high temperature and high pressure, and the glucose or amino acid is well dissolved in water, It is separated into solids that do not hydrolyze and change to.
  • hydrolysis temperature when the temperature increases, the time for hydrolysis is shortened, but it usually takes about 90 minutes at 180 degrees, but it is faster to 30 minutes to 60 minutes at 200 degrees, 30 minutes or less at 210 degrees, and the degree of hydrolysis is different. Accordingly, other hydrolysis temperatures may be selected and used according to the hydrolysis target organic substance, and the present invention will be described using a hydrolysis temperature of 210 degrees.
  • the sludge has poor fluidity, so no convection circulation by heating occurs, which results in poor heat transfer and very low thermal conductivity, so that the sludge in contact with the container is heated even when the container is heated to a high temperature, but the sludge inside the container is not heated well. Do not. Therefore, for effective heating, steam heating in which hot steam is brought into direct contact with sludge and heated by condensation of water vapor is preferred.
  • the present invention utilizes "vapor contact heating".
  • steam-contact heating objects that come into contact with water vapor are first heated to the temperature of water vapor.
  • heat from the heated surface is sequentially transferred to the inside by heat transfer. It is made continuously, it means that the heating by the condensation of water vapor is continuously made until the same temperature as the water vapor to the inside of the object.
  • the rate of sludge heating due to the condensation of water vapor increases very rapidly, thereby overcoming the low thermal conductivity of the sludge and heating the sludge.
  • the steam contact heating technology is applied to the hydrolysis vessel of the heating unit and the low temperature heat exchanger vessel of the steam heat exchanger unit.
  • the temperature of the object to be heated and the steam to be heated may be the same, but in reality, the heating time is improved to improve the efficiency of the apparatus. To some extent a temperature difference occurs. Due to this feature, in the hydrolysis apparatus using steam contact heating technology, the supply and control of water vapor can be controlled at the measured pressure, so the configuration of the apparatus is very convenient and all other problems of the heating apparatus can be solved.
  • the sludge dehydrates as much as possible, but the fluidity is extremely poor, but after 80% of the water present in the cell solution is hydrolyzed, the solids present in the aqueous solution and hindering the fluidity are finely pulverized and the hydrolyzed sludge is rapidly improved. do. Therefore, the hydrolyzed sludge flows almost like water, and thus, the high-temperature sludge movement and heat exchanger configuration after hydrolysis are configured in consideration of the fluidity change.
  • the method of controlling the discharge device of the hydrolysis vessel or the discharge device of the high temperature heat exchange vessel by using a water level sensor takes into account the fluidity characteristics of the hydrolyzed hot sludge.
  • a configuration in which the hot sludge passes through the inside of the rotating cylindrical hot sludge tube and the low temperature sludge is in contact with the outside of the hot sludge tube for heat exchange is also a technology utilizing the change in fluidity.
  • the sludge hydrolysis apparatus includes a heating unit 400, a steam heat exchange unit 300, and a contact heat exchange unit 200.
  • the heating unit 400 heats and hydrolyzes the low-temperature sludge injected from the low-temperature heat exchange vessel 310 by using steam supplied from the boiler 640 to make high-temperature sludge and discharges the sludge. It is not batchwise but continuously at a constant speed.
  • the cold sludge is injected into the heating unit 400 by the pressure injection unit 420.
  • the steam heat exchange unit 300 includes a low temperature heat exchange vessel 310 and a high temperature heat exchange vessel 350.
  • the hot sludge discharged from the heating unit 400 is injected into the high temperature heat exchange vessel 350, and the cold sludge discharged from the contact heat exchange unit 200 is injected into the low temperature heat exchange vessel 310.
  • the steam moves from the high temperature heat exchange vessel 350 to the low temperature heat exchange vessel 310, and then condenses by contact with the low temperature sludge injected into the low temperature heat exchange vessel 310, and condenses heat generated by the condensation of the water vapor.
  • the cold sludge is thereby heated.
  • the cold sludge heated in this way is pressurized by the pressure injection unit 420 and injected into the heating unit 400 having a high pressure.
  • the low temperature sludge injected into the low temperature heat exchange vessel 310 is supplied from the contact type heat exchange unit 200.
  • the low temperature sludge is pressurized by the pressure injection unit 380 and injected into the low temperature heat exchange vessel 310.
  • the low temperature sludge is injected from the organic sludge tank 100 and the high temperature sludge discharged from the vapor type heat exchange unit 300 is injected into the contact heat exchange unit 200.
  • the contact heat exchange unit 200 passes through the interior of the high temperature sludge pipes 210 and 220 in which the hot sludge rotates, and makes contact with the low temperature sludge to the outer surface of the high temperature sludge pipes 210 and 220 so that the low temperature sludge and the high temperature sludge are heated.
  • the sludge is mutually heat exchanged.
  • the cold sludge is supplied to the contact heat exchange unit 200 by the pressure injection unit 270.
  • the steam heat exchange unit 300 may be connected in series in plurality to increase the heat exchange efficiency between the cold sludge and the hot sludge.
  • a plurality of contact heat exchange units 200 may be connected in series. Since the heat exchange units 200 and 300 are connected in series, the heat exchange of the hot sludge and the cold sludge may be repeated several times, thereby maximizing the reuse of thermal energy, thereby efficiently increasing the temperature of the cold sludge.
  • the hot sludge is hydrolyzed is discharged from the contact heat exchange unit 200, and then separated by the solid-liquid separator 610 into a solid concentrate and a liquid component by gravity.
  • the solid concentrate is separated into a solid component and a liquid component using a conventional dehydrator 620 such as a filter press or a centrifugal dehydrator.
  • the liquid component discharged from the solid-liquid separator 610 and the liquid component discharged from the dehydrator 620 may be subjected to anaerobic digestion (650) to obtain methane gas, and the digested liquid is again treated with aerobic microorganisms to make clean water and then discharged.
  • the sludge produced in this process is sent back to the hydrolysis unit for hydrolysis.
  • the solids discharged from the dehydrator 620 are pyrolyzed 640 in a high-temperature environment without oxygen, and are made of gas and carbides to be energy resources.
  • the sludge hydrolysis apparatus is not limited to the above description, and may be composed of only the heating unit 400 and the pressure injection unit 420. In addition, only one of the steam heat exchange unit 300 and the contact heat exchange unit 200 may be used as the heat exchange unit. That is, the sludge hydrolysis apparatus may be composed of only the heating unit 400 and the contact heat exchange unit 200, or may consist only of the heating unit 400 and the steam heat exchange unit 300.
  • the sludge hydrolysis device When the sludge hydrolysis device is composed of only the heating unit 400 and the contact heat exchange unit 200, the cold sludge discharged from the contact heat exchange unit 200 is immediately injected into the heating unit 400, and the heating unit 400 is applied. The hot sludge discharged from) is immediately injected into the contact heat exchange unit 200.
  • the sludge hydrolysis device is composed only of the heating unit 400 and the steam heat exchange unit 300
  • the low temperature sludge discharged from the steam heat exchange unit 300 is injected into the heating unit 400
  • the heating unit The hot sludge discharged from 400 is injected into the steam heat exchange unit 300, cooled by heat exchange with the cold sludge, and then discharged into the organic sludge storage tank 100.
  • the heating unit 400 includes a hydrolysis vessel 450 which is hydrolyzed by contact with the water vapor in a space filled with the introduced sludge, and a discharge container 440 which forms a passage through which the hydrolyzed sludge is discharged. And a partition wall 453 installed to distinguish the hydrolysis vessel 450 and the discharge vessel 440.
  • the hydrolysis vessel 450 is separated from the discharge vessel 440 by the partition wall 453.
  • the cold sludge injected through the inlet 401 is hydrolyzed while mixing and heating with water vapor, and is converted into hot sludge with good fluidity, thereby filling the lower portion of the hydrolysis vessel 450.
  • the hydrolyzed hot sludge in the same amount as the cold sludge injected thereafter flows into the discharge vessel 440 beyond the partition 453 and is "continuously" injected and discharged.
  • Water vapor having a pressure higher than the vapor pressure of the hydrolysis temperature is supplied to the hydrolysis vessel 450 through the steam injection portion 482, which vaporizes the internal space by heating all internal devices including the vessels 450, 440. Filled up.
  • a sludge inlet 401 is formed at the inlet of the hydrolysis vessel 450, and a pressurized injection unit 420 for injecting sludge into the hydrolysis vessel 450 is formed at the sludge inlet 401. It is provided.
  • the pressure injection unit 420 presses and injects the cold sludge at a pressure higher than the internal pressure of the hydrolysis vessel 450 in order to inject the cold sludge into the hydrolysis vessel 450 filled with steam of high temperature and high pressure.
  • the pressurized injection unit 420 includes injection means for preventing suction pressure from occurring in the cold sludge, and pressurizing means for pressurizing the sludge via the injection means, as shown in FIGS. 4 (a) and 4 (b). (423).
  • a separate sludge pump for transferring the cold sludge to the pressure injection unit 420 may be included.
  • the injection means has a case 421 having an inlet 421b for allowing the sludge to flow downward by its own load and an outlet 421a for discharging the sludge, and an inlet rotating while being installed inside the case 421 and engaging with each other. And a pair of rotors 422 for pushing the sludge introduced from 421b toward the outlet 421a.
  • the inlet 421b is wide, even the low-temperature sludge having poor fluidity, the sludge's own load has a greater force than the sludge's viscous resistance. Therefore, even low temperature sludge having poor fluidity is moved downward by the self load of the sludge.
  • Two rotating bodies 422 may be provided to form a pair, and each of the rotating bodies 422 is gear-coupled with each other so as to rotate in the inner center direction of the case 421.
  • the rotating body 421 may be made of a rubber material having a high elastic force so that the low temperature sludge can move more smoothly.
  • the pressing means 423 is provided below the injection means, and the pressing means 423 may be formed of a gear pump or a mono pump.
  • the drive motor 425 transmits a driving force to the pressing means 423 and the rotating body 422.
  • the upper portion of the pressing means 423 is connected to the lower side of the outlet 421a, the pressure discharge portion 423a is provided on one side of the pressing means 423.
  • the pressurized discharge part 423a is connected to the sludge inlet 401. Accordingly, the low temperature sludge discharged from the low temperature heat exchange vessel 310 is supplied into the hydrolysis vessel 450 by the pressure injection unit 420.
  • the interior of the hydrolysis vessel 450 is divided into a sludge space 451b and a water vapor space 451a by the partition 453 and gravity.
  • the steam space 451a is positioned above the sludge space 451b.
  • the cold sludge injected into the hydrolysis vessel 450 is contained in the sludge space 451b and steam is accommodated in the steam space 451a.
  • the upper surface of the sludge accommodated in the sludge space 451b keeps in contact with water vapor to maintain the temperature of the sludge, and when the height of the sludge becomes higher than the partition 453, the sludge flows over the partition 453 to the discharge container 440. .
  • the hydrolysis vessel 450 may be provided as one cylindrical tube, but may be installed by connecting two cylindrical tubes horizontally to each other in order to increase the section in which the sludge is hydrolyzed or shorten the length of the hydrolysis vessel.
  • the stirring member 455 is installed inside the hydrolysis vessel 450.
  • the stirring member 455 stirs and mixes the sludge while reciprocating the sludge space 451b and the steam space 451a, and is heated by steam condensation in the steam space 451a to store thermal energy and then heat the sludge space 451b. It discharges the sludge and moves the sludge toward the discharge container 440.
  • the sludge inside the hydrolysis vessel 450 comes into contact with the water vapor and is heated by the heat of condensation of the water vapor to be hydrolyzed. That is, the heat of condensation generated by condensation of water vapor in a large area such as the surface of the sludge or the stirring member 455 and the hydrolysis vessel 450 causes the sludge to be hydrolyzed at a high speed.
  • the hydrolyzed sludge is conveyed toward the partition 453 by gravity and the stirring member 455 in the state of improved fluidity. Thereafter, when the sludge is higher than the partition 453, the sludge flows into the discharge container 440 beyond the partition 453.
  • the sludge in the hydrolysis vessel 450 is automatically transferred to the discharge vessel 440 by the partition 453, so that the sludge can be continuously injected, heated, and discharged.
  • the hydrolysis vessel 450 is provided with a pressure sensor 457 capable of measuring the water vapor pressure inside the hydrolysis vessel 450.
  • the pressure sensor 457 may be installed in the discharge container 440.
  • the discharge vessel 440 is provided with a water level sensor 447 for measuring the level of sludge.
  • a sludge discharge part 481 is provided at the lower end of the discharge container 440 to adjust the discharge of the sludge.
  • the sludge discharge portion 481 may be configured as a valve.
  • the heating unit 400 is provided with a control member (not shown) for controlling the amount of water vapor flowing into the hydrolysis vessel 450 by controlling the water vapor injection unit 482 based on the measured value measured by the pressure sensor 457. . Specifically, the control member controls the supply amount of the steam to maintain a constant internal pressure of the hydrolysis vessel (450).
  • the steam inlet 482 may be installed at any one of the hydrolysis vessel 450 and the discharge vessel 440.
  • control member controls the sludge discharge unit 481 based on the measured value measured by the water level sensor 447 to adjust the discharge of the sludge.
  • control member may adjust the injection amount of the sludge injected into the hydrolysis vessel 450 based on the measured value measured by the water level sensor 447.
  • the heating unit is not limited to the above embodiment can be modified.
  • the heating unit may directly discharge the hot sludge from the hydrolysis vessel 450 without the discharge vessel 440.
  • the discharge of the hot sludge can be controlled using a valve or the like provided at the outlet.
  • a valve installed at the hot sludge discharge port of the contact heat exchange unit 200a may be used. To control the hot sludge discharge from the heating unit.
  • a portion of the hot sludge contained in the hydrolysis vessel 450 may be moved to the sludge inlet 401 and then injected into the hydrolysis vessel 450 through the sludge inlet 401 together with the low temperature sludge. That is, a portion of the hot sludge contained in the hydrolysis vessel 450 is moved to the sludge inlet 401 by using the pipe 490 and the pump 491 connecting the hydrolysis vessel 450 and the sludge inlet 401.
  • the low-temperature sludge is injected into the hydrolysis vessel 450 through the sludge inlet 401, the low-temperature sludge is injected into the hydrolysis vessel 450 while the temperature and fluidity of the injected low-temperature sludge are increased to increase the efficiency of hydrolysis. Can be.
  • the steam heat exchange unit 300 generates steam from the hot sludge to cool the hot sludge, and heats the low temperature sludge using the generated steam. As shown in FIGS. 5 and 6, the steam heat exchange unit 300 communicates the low temperature heat exchange vessel 310, the high temperature heat exchange vessel 350, and the high temperature heat exchange vessel 350 and the low temperature heat exchange vessel 310.
  • the unit 340 is included. The interior of the heat exchange vessels 310 and 350 and the communicating portion 340 is filled with steam that maintains the temperature and pressure on the vapor pressure curve of the cooled hot sludge.
  • the high temperature heat exchange container 350 includes a high temperature sludge injecting unit 360, a container body 351, and a high temperature sludge discharge unit 370.
  • the hot sludge injection part 360 is provided in the injection hole 352 to adjust the injection amount of the hot sludge injected through the injection hole 352.
  • the high temperature sludge injection unit 360 may control the internal pressure of the high temperature heat exchange container 350 by adjusting the opening and closing degree of the ball valve.
  • the ball valve has a worm gear 361 rotated by a driving force transmitted from a driving motor (not shown), a worm wheel gear 362 engaged with the worm gear 361, and a worm wheel gear 362. It is preferable to include a ball 365 connected to the injection hole 352 to adjust the injection cross-sectional area.
  • the ball 365 has a spherical shape and a through hole 366 is formed at the center thereof and is connected by the worm wheel gear 362 and the connecting rod 367. When the driving motor is operated, the ball 365 rotates.
  • the through hole 366 and the injection hole 352 are aligned in a line, hot sludge can be injected through the injection hole 352 and the through hole 366 and the injection hole ( When the 352 is 90 degrees, the injection hole 352 is blocked and hot sludge cannot be injected. Therefore, the amount of sludge passing through the opening 366 and the injection hole 352 may be adjusted by changing the area to pass therethrough.
  • the hot sludge injected by the hot sludge injection unit 360 is cooled at a high speed while hot steam is instantaneously generated by a difference between a vapor pressure thereof and an internal pressure of the high temperature heat exchange vessel 350.
  • the high temperature water vapor generated in the high temperature heat exchange vessel 350 moves to the low temperature heat exchange vessel 310 through the communicating portion 340, contacts with the low temperature sludge conveyed from the low temperature heat exchange vessel 310, and rapidly changes into water. .
  • the amount of steam generated in the high temperature heat exchange vessel 350 and the amount of water vapor condensation used in the low temperature heat exchange vessel 310 are balanced so that the internal pressure of the vessels 310 and 350 is kept constant.
  • the hot sludge cooled while passing through the container body 351 is discharged to the outside through the outlet 357.
  • the hot sludge discharge part 370 controls the discharge of the hot sludge, and has the same structure as the hot sludge injection part 360. Therefore, the high temperature sludge discharge part 370 may control whether the hot sludge is discharged and the discharge amount by adjusting the opening and closing degree of the ball valve.
  • the hot sludge injection unit 360 and the hot sludge discharge unit 370 are controlled by the control member.
  • the control member receives a signal from a pressure sensor (not shown) for detecting the pressure in the high temperature heat exchange vessel 350 and a water level sensor (not shown) for detecting the level of the hot sludge, so that the hot sludge injection unit 360 and the hot sludge
  • the discharge unit 370 is controlled. Since the control member controls the high temperature sludge injection unit 360 and the high temperature sludge discharge unit 370, the pressure inside the container body 351 may be kept constant.
  • the pressure difference between the pressure (high pressure) of the hot sludge continuously injected into the high temperature heat exchange container 350 and the internal pressure (low pressure) of the container 355 by continuously maintaining the internal pressure of the high temperature heat exchange container 350 are maintained.
  • Water vapor may be generated continuously in the hot sludge injected by.
  • the steam produced while the high temperature sludge is cooled is moved to the low temperature heat exchange vessel 310 through the communicating portion 340.
  • the water vapor transferred to the low temperature heat exchange vessel 310 contacts the low temperature sludge and rapidly condenses to change into water.
  • the internal pressure of 310 and 350 is kept constant.
  • the low temperature heat exchange container 310 is a pressurized injection unit 380 connected to the first injection hole 311, a distribution member 320 dispersing the injected low temperature sludge, and a lower side of the distribution member 320. It is installed in the cold sludge transport unit for transporting the cold sludge down 330, and the cold sludge discharge unit 390 connected to the outlet 318. Since the pressure injection unit 380 and the cold sludge discharge unit 390 have substantially the same configuration as the pressure injection unit 420 described above, the description of the pressure injection unit 380 and the cold sludge discharge unit 390 is described here. Will be omitted.
  • the distribution member 320 disperses the low temperature sludge thinly so that the low temperature sludge can be mixed with the water vapor and supplies it to the low temperature sludge transport unit 330.
  • Dispensing member 320 is connected to the fixed injection tube 312, the fixed injection tube 312 is injected into the cold sludge, the rotating distribution tank 325, connecting the fixed injection tube 312 and the distribution tank 325 Connection portion 313 for, and the nozzle 326 is installed in a position spaced apart from the central axis of the distribution tank 325.
  • the fixed injection pipe 312 communicates with the pressure discharge port of the pressure injection unit 380. Therefore, the cold sludge flows in through the fixed injection tube 312. Sludge passing through the fixed injection pipe 312 is introduced into the distribution tank (325). The cold sludge introduced into the distribution tank 325 is discharged to the cold sludge conveying unit 330 by the nozzle 326.
  • connection portion 313, for example, a rotary joint connects the fixed fixed injection tube 312 and the rotating distribution tank 325.
  • a worm wheel gear for rotating the distribution tank 325 is formed on the outer circumferential surface of the connecting portion 313.
  • the worm wheel gear is rotated by the worm gear 314. Therefore, when the connection portion 313 is rotated by the worm gear 314 and the worm wheel gear, the distribution tank 325 is rotated, so that the low temperature sludge can be evenly distributed.
  • the low temperature sludge conveying unit 330 includes a first rotating body 331 and a low temperature sludge container for conveying the low temperature sludge downward while pulling the sludge in the center direction of the container 310. And a second rotating body 335 for moving downward while being pushed in the inner wall direction of the 310, and a rotating shaft 339 for rotating the first rotating body 331 and the second rotating body 335.
  • the first rotating body 331 is fixed to the inner surface of the container 310 and is rotated on the rotating shaft 339 on the first pedestal 332 and the upper surface of the first pedestal 332, the first discharge port 334 is formed in the center It is installed so as to include a first rotary blade 333 formed to draw the cold sludge toward the first discharge port 334.
  • the second rotating body 335 is fixed to the inner surface of the container 310 and the second pedestal 336 having a second discharge port 338 formed on the outer portion thereof, and the rotating shaft 339 on the upper surface of the second pedestal 336. It is rotatably installed and includes a second rotary blade 337 formed to push the cold sludge to the second discharge port 338.
  • a plurality of first rotating bodies 331 and second rotating bodies 335 are alternately formed to form a layer.
  • the first rotary blade 333 and the second rotary blade 337 are rotated in the same direction by the same rotary shaft 339, but are the bent direction of the blades 333, 337.
  • the rotation shaft 339 is connected to the lower surface of the distribution member 320 to rotate together with the distribution member 320.
  • the cold sludge is injected through the injection port 311 by the pressure injection unit 380, after which the cold sludge is distributed through the distribution member 320 and the cold sludge It is transported while being agitated by the transfer unit 330, and is heated by the condensation of water vapor in contact during the stirring and transfer, and then discharged through the low temperature sludge discharge unit 390.
  • the steam heat exchange unit 300 may be arranged such that a plurality of steam heat exchange unit 300 is connected in series to increase the heat efficiency by making the heat exchange temperature in several stages. Since a plurality of steam heat exchange units 300 are arranged in series, heat exchange between the hot sludge and the cold sludge may be repeated, and thus, required for hydrolysis of the cold sludge in the heating unit 400 for heating and hydrolyzing the cold sludge. The supply of thermal energy can be significantly reduced.
  • the hot sludge injected into the high temperature heat exchange vessel 350 through the inlet 352 is cooled while generating steam due to the pressure difference.
  • the water vapor is moved to the low temperature heat exchange vessel 310 through the communicating portion 340.
  • the cooled hot sludge is discharged to the contact heat exchange unit 200 through the hot sludge discharge unit 370 or moved to the inlet 352 of the other steam heat exchange unit 300.
  • the cold sludge is injected through the injection hole 311 and dispersed by the distribution member 320, it is moved down by the cold sludge transport unit 330.
  • the distribution member 320 allows the low temperature sludge to be evenly distributed to the low temperature sludge transport unit 330.
  • the first and second rotating bodies 331 and 335 of the low temperature sludge transport unit 330 may stir the low temperature sludge so that the water vapor and the low temperature sludge contact each other.
  • the cold sludge moved downward while being heated by steam is discharged to the heating unit 400 by the cold sludge discharge unit 390 or moved to the inlet 311 of the other steam type heat exchange unit 300.
  • FIG 9 is a perspective view showing a second embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • the steam heat exchange unit 300a uses a steam injection method.
  • the steam heat exchange unit 300a includes a high temperature heat exchanger container 350a through which hot sludge flows in and stored therein, and a low temperature heat exchanger container 310a in which a stirring member for stirring and storing the low temperature sludge is introduced therein. And a communicating unit for supplying the water vapor of the high temperature heat exchange vessel 350a to the low temperature heat exchange vessel 310a.
  • the high temperature heat exchange container 350a is installed in the container body 351a, the high temperature sludge supply pipe 352a for supplying the hot sludge to the container body 351a, and the high temperature sludge supply pipe 352a to control the supply of the hot sludge.
  • a sludge injection unit 360a and a high temperature sludge discharge pipe 357a for discharging hot sludge from the container body 351a are provided. Since the high temperature sludge injection unit 360a has the same configuration as the above-described high temperature sludge injection unit 360, a detailed description thereof will be omitted.
  • the hot sludge supply pipe (352a) is connected to the hot sludge discharge pipe (357a) of the neighboring steam heat exchange unit (300a) or heated It is connected to the unit 400, the hot sludge discharge pipe (357a) is connected to the hot sludge supply pipe (352a) of another neighboring steam heat exchange unit (300a) or the contact heat exchange unit (200).
  • the hot sludge discharged from the heating unit 400 is supplied to the container body 351a through the hot sludge supply pipe 352a. At this time, due to the difference between the high pressure of the hot sludge and the internal pressure of the container body 351a, the hot sludge is cooled while generating steam. The water vapor is supplied to the low temperature heat exchange vessel 310a via the communicating portion.
  • the container body 351a is provided with a water level sensor (not shown) for measuring the level of hot sludge, and a pressure sensor (not shown) for measuring the pressure.
  • the water level sensor transmits a signal to a control member (not shown) when the water level of the hot sludge reaches a predetermined height in the container body 351a, and the control member discharges the hot sludge by opening the valve of the hot sludge discharge pipe 357a. do.
  • the discharged hot sludge is moved to the contact heat exchange unit 200.
  • the high temperature sludge discharged when a plurality of steam heat exchange units 300a are connected in series moves to a hot sludge supply pipe 352a of a neighboring steam heat exchange unit 300a or to a contact heat exchange unit 200. do.
  • the pressure sensor reduces or stops the inflow of high temperature sludge by adjusting the opening and closing degree of the hot sludge injection part 360a when the internal pressure of the container body 351a is high, and high temperature sludge when the internal pressure of the container body 351a is low.
  • the inflow of the hot sludge is increased by adjusting the opening and closing degree of the injection part 360a.
  • the internal pressure of the hot container is controlled to maintain the vapor pressure of the hot container corresponding to the pressure required for steam injection.
  • the low temperature heat exchange vessel 310a is a vessel body 312a, a pressure regulating auxiliary vessel 319a for maintaining a low temperature sludge pressure of the vessel body 312a and providing a compression space for the cold sludge required for steam injection, and a vessel body ( And a low temperature sludge supply pipe 311a for supplying the low temperature sludge to the 312a), and a low temperature sludge discharge tube 318a for discharging the low temperature sludge from the container body 312a.
  • the low temperature sludge supply pipe 311a may be provided with a pressure pump 380a for pressurizing the low temperature sludge for injection of the low temperature sludge.
  • the container body 312a is filled with cold sludge, and the water vapor is injected into the cold sludge contained in the container body 312a by the nozzle 320a.
  • the low temperature sludge may be rapidly heated by increasing the amount of the nozzle 320a to increase the contact area between the injected steam and the sludge, and stirring the inside to increase the mixing speed.
  • the stirring member is rotated by the driving motor 315a to stir the cold sludge while reciprocating the cold sludge space and the steam space.
  • the cold sludge supply pipe (311a) is connected to or contact with the cold sludge discharge pipe (318a) of the neighboring steam heat exchange unit (300a) It is connected to the heat exchange unit 200, the cold sludge discharge pipe (318a) is connected to the cold sludge supply pipe (311a) of another neighboring steam heat exchange unit (300a) or connected to the heating unit (400).
  • the communicating unit includes a connecting pipe 340a for connecting the container bodies 351a and 312a to each other, and a nozzle 320a installed at the predetermined intervals at the connecting pipe 340a to spray water vapor into the container body 312a. do.
  • the connecting pipe 340a may be provided with an opening / closing valve 341a for opening and closing the connecting pipe 340a, and a control valve 342a for controlling a supply amount of steam.
  • the pressure regulating auxiliary container 319a has a diaphragm in its inner space, and compressed air is filled inside the diaphragm.
  • the diaphragm may be moved by sliding according to the internal pressure of the container body 312a. That is, the diaphragm buffers a change in the internal pressure of the container body 312a generated due to the inflow or discharge of water vapor into the container body 312a.
  • the diaphragm moves to the inside of the pressure regulating auxiliary container 319a to buffer the increase in the internal pressure.
  • the hot sludge discharged from the heating unit 400 is injected into the container body 351a through the hot sludge supply pipe 352a.
  • the hot sludge injection unit 360a controls the injection and injection amount of the hot sludge.
  • the hot sludge injection unit 360a adjusts the injection and injection amount of the hot sludge according to the signals transmitted from the pressure sensor and the water level sensor.
  • the hot sludge injected into the container body 351a is cooled while generating steam due to the pressure difference, and the generated steam is injected into the low temperature sludge of the container body 312a through the connection pipe 340a and the nozzle 320a. do.
  • the cooled hot sludge is discharged through the hot sludge discharge pipe 357a when the predetermined temperature is reached.
  • the discharged hot sludge is moved to the neighboring steam heat exchange unit 300a or the contact heat exchange unit 200.
  • the low temperature sludge is injected into the container body 312a through the low temperature sludge supply pipe 311a.
  • the pressure pump 380a since the low temperature sludge has poor fluidity, it is preferable to use the pressure pump 380a.
  • the cold sludge injected into the container body 312a is heated while being in contact with water vapor.
  • the stirring member stirs the cold sludge so that the cold sludge is heated quickly.
  • the cold sludge heated by the steam contact heating is discharged through the cold sludge discharge pipe 318a.
  • the discharged low temperature sludge is moved to a neighboring neighboring steam heat exchange unit 300a or to a heating unit 400.
  • the steam heat exchange unit 300, 300a is not limited to the first and second embodiments can be variously modified within the scope that can implement the technical idea of the present invention.
  • one end thereof is installed at a position corresponding to the inlet 311 of the low temperature heat exchange vessel 310, and the other end thereof is disposed with the outlet 318 of the low temperature heat exchange vessel 310.
  • It may include a conveyor belt installed at a corresponding position.
  • the cold sludge As the cold sludge is transported on the conveyor belt, it comes into contact with water vapor generated from the hot sludge. At this time, the water vapor in contact with the cold sludge is condensed, the temperature of the cold sludge is increased due to the condensation of the steam. The hot sludge is cooled due to the generation of steam, and the cold sludge is heated by the heat of condensation of the steam.
  • 11 to 14 show a first embodiment of a contact heat exchange unit.
  • the contact heat exchange unit 200 includes a rotating high temperature sludge tube through which the hydrolyzed hot sludge moves, and a low temperature sludge moving unit through which the low temperature sludge to be hydrolyzed moves.
  • the high temperature sludge tube includes first and second high temperature sludge tubes 210a and 220a and rotation means for rotating the first and second high temperature sludge tubes 210a and 220a.
  • the hot sludge may be discharged from the steam type heat exchange unit 300, and in general, when discharged at a high temperature of more than 100 degrees, the high temperature sludge is injected at its own pressure by a high vapor pressure, and when the temperature is low, it is injected into the injection pump 219a.
  • the first and second high temperature sludge pipes 210a and 220a respectively.
  • First and second protrusions 211a and 221a are formed on the outer surfaces of the first and second high temperature sludge pipes 210a and 220a, and the first and second high temperature sludge pipes 210a and 220a are first and second.
  • the protrusions 211a and 221a may rotate while being engaged with each other.
  • the first and second high temperature sludge tubes 210a and 220a are preferably made of a metal having good thermal conductivity.
  • the first and second protrusions 211a and 221a accommodate the low temperature sludge between the first and second protrusions 211a and 221a when the first and second high temperature sludge pipes 210a and 220a are rotated.
  • the cold sludge is heated in one state and effectively moved from the cold sludge inlet 261a toward the outlet 262a.
  • the first and second protrusions 211a and 221a are engaged with each other, and in this process, the first and second protrusions 211a and 221a are engaged.
  • the first and second protrusions 211a and 221a are When falling, suction pressure is formed between the first protrusion 211a and the second protrusion 221a so that the low temperature sludge is received between the protrusions 211a and 221a.
  • the cold sludge is heated in close contact with the first and second high temperature sludge pipes 210a and 220a between the protrusions 211a and 221a.
  • Inner walls of the first and second high temperature sludge pipes 210a and 220a are repeatedly formed with recesses and protrusions, which are advantageous for stirring and heat conduction of the high temperature sludge.
  • the rotating means is respectively provided in the worm wheel gear 240a installed in the first high temperature sludge pipe 210a, the worm gear 242a rotated by the driving motor 241a, and the first and second high temperature sludge 210a and 220a.
  • the engaging gear 243a provided is provided.
  • Worm gear 242a is installed vertically to rotate a plurality of worm wheel gear (240a) at the same time.
  • the worm gear 242a is rotated by the driving motor 241a, and the worm wheel gear 240a is rotated in engagement with the worm gear 242a to rotate the first high temperature sludge pipe 210a.
  • the first high temperature sludge tube 121 is rotated, the first and second high temperature sludge tubes 210a and 220a are rotated together by the engagement gear 243a.
  • the first and second high temperature sludge pipes 210a and 220a When the first and second high temperature sludge pipes 210a and 220a are rotated together, the first and second high temperature sludge pipes 210a and 220a are cooled by the first and second protrusions 211a and 221a from the low temperature sludge inlet 261a via the moving space 264a. It is moved toward the sludge outlet 262a.
  • the upper and lower first high temperature sludge pipes 210a are connected to each other, and the upper and lower second high temperature sludge pipes 220a are connected to each other.
  • the end of the first high temperature sludge pipe 210a passing through the lower unit member 260a is the end of the first high temperature sludge pipe 210a passing through the upper unit member 260a and the first connection pipe 270a. Are connected to each other.
  • an end of the second high temperature sludge pipe 220a passing through the lower unit member 260a may be connected to an end of the second high temperature sludge pipe 220a passing through the upper unit member 260a and the second connection pipe 280a. Are connected to each other.
  • a rotary joint is installed between the first connection pipe 270a and the first high temperature sludge pipe 210a, and a rotary joint is also installed between the second connection 280a and the second high temperature sludge pipe 220a.
  • the rotary joint is widely used as a device used to connect a rotating tube and a fixed tube to each other, description thereof will be omitted.
  • the high temperature sludge injected by the injection pump 219a is It is moved from the bottom up.
  • the high temperature sludge discharged from the first and second high temperature sludge tubes 210a and 220a at the uppermost stage is moved to the solid-liquid separator 610.
  • the low temperature sludge moving unit includes a plurality of unit members 260a stacked vertically, and the unit member 260a includes a low temperature sludge inlet 261a, a low temperature sludge outlet 262a, and a moving space 264a.
  • a space is formed inside the unit member 260a, and the first and second high temperature sludge pipes 210a and 220a are installed in the space.
  • Low temperature sludge is introduced through the cold sludge inlet 261a, and heated cold sludge is discharged through the cold sludge outlet 262a.
  • the contact type heat exchange unit 200a is a unit for thermally contacting heat-exchanging sludge having a high viscosity at a temperature of less than 100 degrees (ie, less than 1 atm). 2, the contact heat exchange occurs between the hot sludge and the low temperature sludge inside the first and second high temperature sludge pipes 210a and 220a while moving using the protrusions 211a and 221a.
  • the cold sludge inlet 261a is connected to the cold sludge outlet 262a of the unit member 260a installed on the upper side, and the cold sludge outlet 262a is connected to the cold sludge inlet 261a of the unit member 260a installed on the lower side.
  • the low temperature sludge introduced through the low temperature sludge inlet 261a is heated by the first and second high temperature sludge pipes 210a and 220a while being moved to the low temperature sludge outlet 262a via the moving space 264a.
  • the moving space 264a is a narrow gap between the inner wall of the unit member 260a and the first high temperature sludge tube 210a and a narrow gap between the inner wall of the unit member 260a and the second high temperature sludge tube 220a.
  • the cold sludge becomes thinner while passing through the narrow gap, so that even cold sludge with poor heat transfer can be sufficiently heated.
  • the low temperature sludge is supplied from the organic sludge storage tank 100, the low temperature sludge is introduced through the low temperature sludge inlet 261a of the unit member 260a located at the top thereof. Subsequently, the low temperature sludge is heated by heat exchange via the moving space 264a and the low temperature sludge discharge port 262a, and moves to the unit unit 260a below.
  • the cold sludge discharged through the cold sludge discharge port 262a of the lowermost unit member 260a is moved to the steam heat exchange unit 300 by the discharge pump 290a.
  • the hot sludge is injected from the lowermost first and second high temperature sludge tubes 210a and 220a and then discharged from the uppermost first and second high temperature sludge tubes 210a and 220a while being cooled step by step.
  • the cold sludge is preferably injected from the uppermost unit member 126 and then discharged through the lowermost unit member 126 while being heated step by step. Because it can be moved.
  • heat exchange may be performed well because the temperature difference required for the heat exchange may be kept constant.
  • the high temperature sludge is injected into the first and second high temperature sludge tubes 210a and 220a at the lowermost stage by the injection pump 219a, respectively.
  • the hot sludge is discharged from the steam heat exchange unit 300. If a plurality of contact heat exchange units 200a are connected in series, the high temperature sludge is discharged from another contact heat exchange unit 200a or from a steam heat exchange unit 300.
  • the first and second high temperature sludge pipes 210a and 220a are rotated by receiving the rotational force of the driving motor 241a.
  • the first and second high temperature sludge pipes 210a and 220a are rotated to engage the first and second protrusions 211a and 221a formed on the outer circumferential surface thereof.
  • the high temperature sludge tube 210a Since the first high temperature sludge tube 210a is connected to the upper first hot sludge tube 210a and the second high temperature sludge tube 220a is connected to the upper second high temperature sludge tube 220a, the high temperature sludge After moving upwards from the bottom, the first hot sludge pipe 210a and the second high temperature sludge pipe 220a at the top are respectively discharged. The high temperature sludge discharged from the first and second high temperature sludge tubes 210a and 220a at the uppermost stage is moved to the solid-liquid separator 610.
  • the hot sludge While moving through the first and second high temperature sludge pipes 210a and 220a, the hot sludge is cooled by heat exchange with the low temperature sludge outside the first and second high temperature sludge pipes 210a and 220a.
  • the low temperature sludge is introduced through the inlet 261a of the uppermost unit member 260a and then moved through the moving space 264a to exchange heat with the first and second high temperature sludge pipes 210a and 220a, It moves to the inlet 261a of the lower unit member 260a through the outlet 262a.
  • the low temperature sludge is discharged in the discharge direction.
  • the cold sludge accommodated between the first protrusions 211a and the second protrusions 221a is heated.
  • the cold sludge is moved to the lowermost unit member 260a and then discharged by the discharge pump 290a.
  • the discharged cold sludge moves to the steam heat exchange unit 300. If a plurality of contact heat exchange units 200a are connected in series, the low temperature sludge is moved to another contact heat exchange unit 200a or to a steam heat exchange unit 300.
  • FIG. 15 is a cross sectional view showing a second embodiment of the contact heat exchange unit
  • FIG. 16 is a view showing a power transmission configuration for driving the contact heat exchange unit.
  • the contact heat exchange unit 200b includes a hermetically sealed frame 210b having a low temperature sludge inlet 211b and a low temperature sludge outlet 212b, a pair of first high temperature sludge tubes 220b interlocked with each other, and a pair of A pair of second high temperature sludge tubes 230b that rotate in a direction opposite to the rotation direction of the first high temperature sludge tube 220b is provided.
  • the frame 210b has a hollow connecting the inlet 211b and the outlet 212b therein along the longitudinal direction.
  • First and second high temperature sludge tubes 220b and 230b are installed in the hollow.
  • Low temperature sludge is introduced through the inlet 211b, and heat exchanges with the first and second high temperature sludge tubes 220b and 230b while moving through the hollow, and is discharged through the outlet 212b.
  • a separate pump (not shown) may be provided for the discharge.
  • the high temperature sludge is moved into the first and second high temperature sludge tubes 220b and 230b.
  • the pair of first high temperature sludge tubes 220b are rotated such that the protrusions 221b formed on the outer surfaces thereof mesh with each other.
  • the pair of second high temperature sludge pipes 230b are rotated such that the protrusions 231b formed on the outer surface thereof mesh with each other.
  • the pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 230b are alternately arranged to neighbor each other.
  • Cold sludge is accommodated in the grooves between the protrusions 221b and the grooves between the protrusions 231b and the low temperature sludge is moved to perform contact heat exchange with the first and second high temperature sludge tubes 220b and 230b.
  • the low-temperature sludge because the direction of rotation of the pair of first high temperature sludge tubes 220b and the direction of rotation of the pair of second high temperature sludge tubes 230b are opposite to each other. High pressure and low pressure will exist.
  • the point indicated by H is a place where the cold sludge is discharged from the groove as the protrusions 221b and 231b are engaged, so the pressure of the cold sludge is relatively high, and the point indicated by the L is the protrusion 221b.
  • the mesh 231b is engaged, the cold sludge pressure is relatively lower because the cold sludge is accommodated in the groove.
  • the arrow 225b indicates that the cold sludge received and moved in the groove of the protrusion 221b exits from the protrusion 221b as the protrusion 221b is engaged and thus escapes from the groove of the protrusion 221b.
  • the heated, cold sludge coming out is dispersed to the surroundings as shown by arrow 227b, increasing the pressure of the portion.
  • Arrow 235b indicates that the cold sludge that has been received and moved in the groove of the protrusion 231b exits from the protrusion 231b as the protrusion 231b is engaged, and thus the cold sludge that has escaped from the groove of the protrusion 231b is It is distributed around as shown by arrow 237b.
  • the low temperature sludge is received between the grooves of the protrusions 221b and 231b due to the engagement of the protrusions 221b and 231b. Will be lowered. Accordingly, the low temperature sludge inside the frame 210b moves from the high H to the low L, and the low temperature sludge which is not heated in this process is sequentially inserted into the grooves of the protrusions 221b and 231b to perform the circulation movement. Is heated.
  • the rotation of the first and second high temperature sludge tubes 220b and 230b may be achieved by installing a driving motor in each of the first high temperature sludge tube 220b and the second high temperature sludge tube 230b, but shown in FIG.
  • the sprockets 225b and 235b connected to the first and second high temperature sludge tubes 220b and 230b may be rotated together using the chain 250b. That is, the sprocket 225b is connected to the first high temperature sludge tube 220b and the sprocket 235b is connected to the second high temperature sludge tube 230b using the chain 250b and the driving sprocket 252b.
  • the sprockets 225b and 235b may be rotated at once.
  • the low temperature sludge is circulated and agitated to heat the first and second high temperature sludge pipes 220b and 230b to be heated. do.
  • the cold sludge introduced through the inlet 211b is discharged by being moved to the outlet 212b while performing the heat exchange, and controlling the discharge and residence time through the outlet 212b by adjusting the inflow of the cold sludge through the inlet 211b. do.
  • increasing the rotational speed of the hot sludge tubes 220b and 230b increases the circulation of the cold sludge and increases the number of times of heat exchange in the grooves of the hot sludge tubes 220b and 230b, thereby increasing the length of the frame 210b. Even if short, heat exchange can be made sufficiently.
  • the high temperature sludge pipes 220b and 230b are preferably connected to each other. Accordingly, the end of the lower hot sludge tube is connected to the end of the upper hot sludge tube. As described above, the connection may be made by the first and second connection pipes 270a and 280a and the rotary joint. By the connection, the hot sludge is injected into the lowermost hot sludge tube and then moved to the uppermost hot sludge tube and discharged.
  • the valve is installed at the outlet 212b through which the hot sludge is discharged, and the opening and closing amount of the valve is adjusted to discharge the hot sludge while maintaining a high pressure inside the hot sludge tube.
  • the contact heat exchange unit 200b may be installed horizontally.
  • the construction of the contact heat exchange unit 200b horizontally installed will be apparent to those skilled in the art with reference to the above description, and thus description thereof will be omitted.
  • the hot sludge is injected into the lowest hot sludge tube.
  • the hot sludge is discharged from the steam heat exchange unit 300. If a plurality of contact heat exchange units 200b are connected in series, the hot sludge is discharged from another contact heat exchange unit 200b or from a steam heat exchange unit 300.
  • the first and second high temperature sludge tubes 220b and 230b are rotated by receiving the rotational force of the driving sprocket 252b.
  • the pair of first high temperature sludge tubes 220b is rotated so that the protrusions 221b formed on the outer circumferential surface are engaged with each other, and the pair of second high temperature sludge tubes 230b is rotated so that the protrusions 231b formed on the outer circumferential surface are engaged with each other. do.
  • the low temperature sludge is heated in heat exchange with the first and second high temperature sludge tubes 220b and 230b while being accommodated and moved in the groove between the protrusions 221b and the groove between the protrusions 231b.
  • the hot sludge inside the sludge tubes 220b and 230b is cooled.
  • the pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 230b rotate in opposite directions, and the pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 220b are rotated in opposite directions. 230b are alternately arranged.
  • the inside of the frame 210b has a high pressure H and a low pressure L alternately, and the cold sludge moves to the outlet 212b while repeatedly dispersing and concentrating.
  • the low temperature sludge is supplied from the organic sludge storage tank (100). if. When a plurality of contact heat exchange units 200b are connected in series, the low temperature sludge is discharged from another contact heat exchange unit 200b or from the organic sludge storage tank 100.
  • the cold sludge is discharged from the discharge port 212b.
  • the discharged cold sludge is moved to the steam heat exchange unit 300 or to another contact heat exchange unit 200b.
  • a separate discharge pump (not shown) may be provided for the discharge.
  • Figure 17 is a view showing a third embodiment of the contact heat exchange unit.
  • the contact heat exchange unit 200c includes a sealed cylindrical frame 210c having a low temperature sludge inlet 211c and a low temperature sludge outlet 212c, and a pair of first high temperature sludge tubes 220c and 221c which rotate in engagement with each other. And a pair of second high temperature sludge tubes 230c and 231c which rotate in a direction opposite to the rotation direction of the pair of first high temperature sludge tubes 220c and 221c.
  • the first and second high temperature sludge tubes 220c, 221c, 230c and 231c are installed along the longitudinal direction of the cylindrical frame 210c inside the cylindrical frame 210c.
  • the hollow is formed in the cylindrical frame 210c along the longitudinal direction.
  • the cold sludge introduced through the inlet 211c is heat-exchanged with the first and second high temperature sludge pipes 220c, 221c, 230c and 231c while moving along the hollow and then discharged through the outlet 212c.
  • the frame 210c is cylindrical, it can withstand even a high internal pressure. Therefore, the cylindrical frame 210c may be used even when the temperature of the cold sludge is 100 degrees or more.
  • Protrusions are formed on the outer surfaces of the first high temperature sludge tubes 220c and 221c. As the protrusions engage with each other, the pair of first high temperature sludge tubes 220c and 221c are rotated. As in the above-described embodiment, as the protrusions are engaged with each other, the cold sludge received in the grooves between the protrusions is discharged, and as the engagement of the protrusions is opened, the cold sludge is introduced into the grooves between the protrusions.
  • connection pipe 240c One end of the pair of first high temperature sludge tubes 220c and 221c is connected to each other.
  • the connection may be made by a connection pipe 240c and a rotary joint 241c.
  • the rotary joint has been described above.
  • the hot sludge discharged from the steam heat exchange unit 300 is introduced through the other end of the first high temperature sludge tube 221c, and the other end of the first high temperature sludge tube 220c is the second high temperature sludge tube 230c. ).
  • the connection may also be made by a connection pipe 240c and a rotary joint 241c. Arrows shown in the figure indicate the path through which the hot sludge is moved.
  • a plurality of contact heat exchange unit 200c may be connected to each other in series, in this case, the hot sludge discharged from the neighboring contact heat exchange unit 200c is connected to the other end of the first high temperature sludge tube 220c. It flows through.
  • Protrusions are formed on the outer surfaces of the second high temperature sludge tubes 230c and 231c.
  • a pair of second high temperature sludge tubes 230c and 231c are rotated while the protrusions are engaged with each other, and a pair of second high temperature sludge tubes 230c and 231c is a pair of first high temperature sludge tubes 220c and 221c. ) Is rotated in a direction opposite to the direction in which it is rotated.
  • the cold sludge received in the grooves between the protrusions is discharged, and as the engagement of the protrusions is opened, the cold sludge is introduced into the grooves between the protrusions.
  • One end of the pair of second high temperature sludge pipes 230c and 231c is connected to each other.
  • the connection can also be made by the connection pipe 240c and the rotary joint.
  • the hot sludge is discharged through the other end of the second high temperature sludge tube 231c.
  • the hot sludge discharged through the other end of the second high temperature sludge tube 231c is discharged to the neighboring contact heat exchange unit 200c.
  • the pair of first high temperature sludge tubes 220c and 221c and the pair of second high temperature sludge tubes 230c and 231c may be rotated by respective driving motors, but the chain 250b and the sprocket 225b may be rotated. 235b and drive sprocket 252b may be used to rotate. This point will be readily apparent to those skilled in the art with reference to FIGS. 19, 20 and 21.
  • the protrusions of the pair of first high temperature sludge tubes 220c and 221c are engaged with each other and then open, and the protrusions of the pair of second high temperature sludge tubes 230c and 231c are mutually engaged and then open again.
  • the inside of the cylindrical frame (210c) has a high and low pressure of the low temperature sludge, there is a low temperature sludge is circulated while stirring and the first and second high temperature sludge tube (220c) (221c) (230c) (231c) (231c) ) Is heated by heat exchange.
  • the contact heat exchange unit 210c may not include a separate moving means for moving the cold sludge. By adjusting the amount of cold sludge introduced through the inlet 211c, the time for which the cold sludge stays in the cylindrical frame 210c and the discharge and residence time through the outlet 212c can be adjusted.
  • the hot sludge flows through the other end of the first hot sludge tube 221c and then moves along the path indicated by the arrow. That is, the hot sludge passes through the first high temperature sludge tube 221c, the first high temperature sludge tube 220c, the second high temperature sludge tube 230c, and the second high temperature sludge tube 231c in sequence, and exchanges heat with the low temperature sludge. do.
  • the low temperature sludge is introduced through the inlet 211c and heat-exchanged with the first and second high temperature sludge tubes 220c, 221c, 230c and 231c, and then is discharged through the outlet 212c.
  • the protrusions of the pair of first high temperature sludge pipes 220c and 221c are engaged with each other and then open, and the protrusions of the pair of second high temperature sludge pipes 230c and 231c are engaged with each other.
  • FIG. 18 is a view showing a fourth embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
  • both sides of the cylindrical frame 210d are open, but are sealed by a cover (not shown) in actual use.
  • the contact heat exchange unit 200d includes a cylindrical frame 210d and first and second high temperature sludge tubes 220d and 230d which rotate while being engaged with each other.
  • the cylindrical frame 210d includes a hollow formed therein, an inlet 211d through which the cold sludge flows, and an outlet 212d through which the cold sludge is discharged. Since the frame 210d is cylindrical, it can be used even when the internal pressure is large. Therefore, the cylindrical frame 210d can be used even when the cold sludge is 100 degrees or more.
  • the first high temperature sludge tube 220d has a protrusion 221d formed around it.
  • the low temperature sludge is received and moved in the grooves between the protrusions 221d to exchange heat with the first high temperature sludge tube 220d.
  • Arrow 222d indicates the rotation direction of the first high temperature sludge tube 220d.
  • the second high temperature sludge tube 230d has a protrusion 231d formed around the second hot sludge tube 230d.
  • the low temperature sludge is accommodated and moved in the groove between the protrusions 231d to exchange heat with the second high temperature sludge tube 230d.
  • An arrow 232d indicates a rotation direction of the second hot sludge tube 230d.
  • the first and second high temperature sludge tubes 220d and 230d are preferably made of a metal having excellent thermal conductivity.
  • a hot sludge inlet is formed at one end of the first high temperature sludge tube 220d.
  • the other end of the first high temperature sludge tube 220d communicates with the other end of the second high temperature sludge tube 230d, and a high temperature sludge discharge port is formed at one end of the second high temperature sludge tube 230d.
  • a connection pipe 270a and a 280a and a rotary joint are used in order to connect the other end of the first high temperature sludge tube 220d and the other end of the second high temperature sludge tube 230d to each other.
  • the connection pipes 270a and 280a and the rotary joint have been described above.
  • the cold sludge is circulated and heated while stirring. Therefore, even if the length of the cylindrical frame 210d is not long, it can be sufficiently heated because the low temperature sludge can stay for a sufficient time by the circulation and stirring.
  • the heated cold sludge is discharged through the discharge port 212d.
  • the discharge through the outlet 212d is adjusted by adjusting the amount of cold sludge introduced through the inlet 211d. That is, the discharge is controlled by adjusting the inflow of the cold sludge through the inlet 211d without using a separate pump (not shown) for discharging the cold sludge.
  • Cold sludge is injected through inlet 211d.
  • the low temperature sludge is supplied from the organic sludge storage tank (100).
  • the low temperature sludge is supplied from the organic sludge storage tank 100 or discharged from another contact heat exchange unit 200d.
  • the hot sludge After the hot sludge is injected through the hot sludge inlet, the hot sludge is cooled while sequentially passing through the first hot sludge tube 220d and the second hot sludge tube 230d, and then discharged through the hot sludge outlet.
  • the first and second high temperature sludge pipes 220d and 230d are cold sludges such as arrows 223d, 233d, 224d, 234d, 225d and 235d because the protrusions 221d and 231d rotate while being engaged with each other. A stream of is formed so that the cold sludge is circulated and stirred.
  • the cold sludge cooled by the stirring and heat exchange is discharged through the outlet 212d.
  • the present invention has the following effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

In the present invention sludge is continuously subjected to hydrolysis by being heated with steam and, in the hydrolysis process, heat exchange is carried out between the low temperature sludge and the hydrolysed high temperature sludge, thereby making it possible to reduce the energy used to heat the low temperature sludge and obviating the need for equipment to cool the high temperature sludge.

Description

슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트Sludge hydrolysis device, sludge hydrolysis method using the same, contact heat exchange unit and steam heat exchange unit provided in the sludge hydrolysis device
본 발명은 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트에 관한 것으로서, 더욱 구체적으로는 가수분해된 고온 슬러지와 가수분해될 저온 슬러지 사이에 열교환이 이루어지도록 함으로써 슬러지의 가수분해에 소요되는 에너지를 줄일 수 있는, 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트에 관한 것이다. The present invention relates to a sludge hydrolysis apparatus, a sludge hydrolysis method using the same, a contact heat exchange unit and a steam heat exchange unit provided in the sludge hydrolysis apparatus, and more specifically, the hydrolyzed hot sludge and the cold sludge to be hydrolyzed Regarding the sludge hydrolysis apparatus, the sludge hydrolysis method using the same, the contact heat exchange unit and the steam heat exchange unit provided in the sludge hydrolysis apparatus can reduce the energy required for the hydrolysis of the sludge by the heat exchange between the will be.
본 출원은 2009년 3월 18일에 출원된 한국특허출원 10-2009-23282, 10-2009-23283, 10-2009-23284에 기초한 우선권을 주장하며, 상기 3개 출원의 명세서 및 도면에 개시된 내용들은 본 출원에 원용된다. This application claims the priority based on Korea Patent Application No. 10-2009-23282, 10-2009-23283, 10-2009-23284 filed March 18, 2009, the contents disclosed in the specification and drawings of the three applications Are incorporated herein by this application.
일반적으로, 하수슬러지와 음식물 쓰레기 및 축산폐수 등의 유기물 슬러지(본 명세서에서는 '슬러지'라고 칭한다)가 폐기물로 그대로 배출되면 침출수나 악취 및 해충 발생 등의 환경오염을 일으킬 수 있다. 한편, 슬러지에는 건조 후 1kg당 3000 kcal 이상의 많은 에너지가 포함되어 있는데, 슬러지를 처리하는 과정에서 상기 에너지를 회수할 수만 있다면 경제적으로 매우 유용하겠지만, 슬러지의 함수율이 80% 수준으로 높아서 아직까지는 슬러지에 포함된 에너지가 경제적으로 활용되지 못하고 있다. In general, when organic sludge (hereinafter referred to as 'sludge') in sewage sludge and food waste and livestock wastewater is discharged as waste, it may cause environmental pollution such as leachate, odor and pest generation. On the other hand, the sludge contains a lot of energy of more than 3000 kcal per kg after drying, it would be very economically useful if the energy can be recovered in the process of sludge, but the water content of the sludge is high to 80% so far, The energy involved is not being used economically.
즉, 슬러지는 함유된 80% 이상의 많은 물을 제거하거나 미생물로 분해하면 에너지를 회수할 수 있고, 이를 위하여 많은 기술이 개발되었지만, 대부분의 기술이 아직 회수되는 에너지보다 투입되는 에너지가 더 커서 경제성이 없거나 악취발생 등의 문제가 있다. 따라서, 현재까지는 대부분의 슬러지가 해양투기나 퇴비 활용 등으로 처리되고 있다. 그런데, 해양투기는 해양 오염 문제를 일으키고, 퇴비 활용은 분해과정에서 지구 온난화를 일으키는 메탄가스를 다량으로 발생시키는 문제가 있다.In other words, the sludge can recover energy by removing more than 80% of the water contained or decomposing it into microorganisms, and many technologies have been developed for this purpose. Or there is a problem such as odor occurrence. Therefore, up to now, most of the sludge has been treated by ocean dumping or compost utilization. However, ocean dumping causes a problem of marine pollution, the use of compost has a problem that generates a large amount of methane gas causing global warming in the decomposition process.
한편, 유기물은 대부분 포도당이나 아미노산 및 지방산이 결합한 고분자 화합물인 탄수화물, 단백질, 지질로 구성되고, 이 유기물을 물과 함께 200℃이상 고온으로 가열하면 포도당이나 아미노산 등으로 분해되는데, 이러한 현상을 가수분해라고 한다. On the other hand, organic substances are mostly composed of carbohydrates, proteins, and lipids, which are high molecular compounds in which glucose, amino acids, and fatty acids are combined, and when these organic substances are heated to a high temperature of 200 ° C. or higher with water, they are decomposed into glucose or amino acids. It is called.
상기 가수분해의 원리를 이용하여 슬러지를 처리하는 여러 가지 방법이 고안되었지만, 종래의 가수분해장치는 가열용기에 유입되는 슬러지를 가수분해하기 위하여 상온의 슬러지를 200℃이상으로 직접 가열하기 때문에 온도상승에 과다한 열에너지가 요구될 뿐 아니라 밀폐형 용기를 만들어 가수분해를 한번씩 배치식으로 처리해야 하는 문제점이 있었다.Various methods for treating sludge have been devised using the principle of hydrolysis. However, the conventional hydrolysis apparatus directly heats the sludge at room temperature to 200 ° C. or higher in order to hydrolyze the sludge introduced into the heating vessel. In addition to the excessive heat energy required, there was a problem in that a batch-type treatment of hydrolysis was made once by making a closed container.
이러한 문제로 인하여 상기 가수분해장치는 투입되는 열에너지에 비하여 회수되는 고형물 등의 에너지가 적기 때문에 에너지 효율이 낮으므로 슬러지 처리방법으로는 경제성이 없었다. Due to such a problem, the hydrolysis device has low energy efficiency because of less energy such as solids recovered than the input thermal energy, and thus, the sludge treatment method is not economical.
따라서, 가수분해장치에서 가열에 사용된 에너지를 재사용하여 투입 에너지를 절감할 수 있도록 가수분해된 고온 슬러지와 가수분해될 저온 슬러지를 서로 열교환을 시킬 수 있는 열교환 장치 등이 요구되며, 열교환을 위하여 슬러지가 연속적으로 가수분해가 이루어져 열교환의 흐름을 만들 수 있는 연속식 가수분해장치의 개발이 요구되는 실정이다.Therefore, a heat exchanger capable of exchanging heat with the hydrolyzed high temperature sludge and the low temperature sludge to be hydrolyzed to reduce the input energy by reusing the energy used for heating in the hydrolysis apparatus is required. There is a need for the development of a continuous hydrolysis device that can be continuously hydrolyzed to create a flow of heat exchange.
뿐만 아니라, 저온 슬러지는 유동성이 극히 불량하여 대류에 의한 열전달이 이루어지지 않으며 열전도율도 매우 낮아 접촉에 의한 열전달도 잘되지 않기 때문에 기존의 기술로는 열교환 장치의 구성이 어려운 실정이다.In addition, low-temperature sludge has extremely poor fluidity, so that heat transfer by convection is not performed, and thermal conductivity is very low, and thus heat transfer by contact is difficult.
따라서, 이러한 문제점을 개선하여 효율적인 가수분해를 위하여 새로운 슬러지 가수분해 장치와 방법 및, 열교환 장치의 개발이 필요한 실정이다. Therefore, the development of new sludge hydrolysis apparatus and method, and heat exchanger apparatus for efficient hydrolysis by improving these problems.
본 발명은 상술한 문제를 해결하기 위한 것으로서, 가수분해될 저온 슬러지와 가수분해된 고온 슬러지 사이에 열교환이 이루어지도록 함으로써 저온 슬러지의 가열에 사용되는 에너지가 절감되고 고온 슬러지를 냉각하기 위한 장치가 필요없도록 하는 연속식 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 상기 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트를 제공하는 데에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the heat exchange is performed between the cold sludge to be hydrolyzed and the hydrolyzed hot sludge, thereby reducing the energy used for heating the cold sludge and requiring an apparatus for cooling the hot sludge. It is an object of the present invention to provide a continuous sludge hydrolysis apparatus, a sludge hydrolysis method using the same, a contact heat exchange unit and a steam heat exchange unit provided in the apparatus.
본 발명의 또 다른 목적은, 물의 증기압 곡선을 이용하여, 고온 슬러지가 압력이 낮아지면 수증기를 발생시키면서 급속히 냉각되고 상기 수증기가 저온 슬러지에 접촉하여 응축되면 저온 슬러지를 가열하는 원리를 이용하여 고온 슬러지와 저온 슬러지 사이에 수증기의 이동을 통한 열교환이 이루어지도록 하는 증기식 열교환 유니트, 이를 구비하는 슬러지 가수분해 장치 및, 이를 이용한 슬러지 가수분해 방법을 제공하는 데 있다. Still another object of the present invention is to use a steam pressure curve of water, using the principle of heating the cold sludge when the hot sludge is rapidly cooled while generating steam when the pressure is lowered and condensed by contact with the cold sludge. And it is to provide a steam heat exchange unit, a sludge hydrolysis apparatus having the same, and a sludge hydrolysis method using the same so that heat exchange is carried out through the movement of steam between the low temperature sludge and the low temperature sludge.
본 발명의 또 다른 목적은 상기 증기식 열교환 유니트를 직렬로 다수 개를 배치함으로써 고온 슬러지와 저온 슬러지 사이에 증기식 열교환이 다수 회에 걸쳐 이루어지도록 함으로써 저온 슬러지의 가수분해에 필요한 열에너지를 현저히 절감시킬 수 있는 슬러지 가수분해 장치 및, 이를 이용한 슬러지 가수분해 방법을 제공하는 데 있다.Another object of the present invention is to place a plurality of the steam heat exchange unit in series so that the steam heat exchange between the high temperature sludge and the low temperature sludge is performed a plurality of times to significantly reduce the heat energy required for hydrolysis of the low temperature sludge. It is to provide a sludge hydrolysis apparatus that can be, and a sludge hydrolysis method using the same.
본 발명의 또 다른 목적은 물의 증기압이 낮아 수증기를 이용한 열교환이 효율적이지 못한 온도 범위에서 저온 슬러지를 열교환 가열하기 위하여, 유동성이 좋은 가수분해된 고온 슬러지가 지나는 고온 슬러지관의 외측면에 유동성이 나쁜 저온 슬러지를 얇은 두께로 접촉시키면서 고온 슬러지관을 회전시킴으로써 고온 슬러지관에 접촉된 고온 슬러지와 저온 슬러지 사이에 접촉에 의한 열교환이 이루어질 수 있도록 하는 접촉식 열교환 유니트, 이를 구비하는 슬러지 가수분해 장치 및, 이를 이용한 슬러지 가수분해 방법을 제공하는 데 있다.It is still another object of the present invention to provide low-temperature sludge heat exchange heating in a temperature range in which heat exchange using water vapor is not effective due to low vapor pressure of water, and has poor fluidity on the outer surface of the high-temperature sludge tube through which high-temperature hydrolyzed sludge flows. A contact heat exchange unit for allowing heat exchange by contact between the hot sludge in contact with the hot sludge tube and the cold sludge by rotating the hot sludge tube while contacting the low temperature sludge with a thin thickness, a sludge hydrolysis apparatus having the same; It is to provide a sludge hydrolysis method using the same.
본 발명의 또 다른 목적은 상기 접촉식 열교환이 다수 회에 걸쳐 이루어지도록 함으로써 저온 슬러지의 가수분해에 필요한 열에너지를 현저히 절감시킬 수 있는 슬러지 가수분해 장치 및, 이를 이용한 슬러지 가수분해 방법을 제공하는 데 있다. Still another object of the present invention is to provide a sludge hydrolysis apparatus and a sludge hydrolysis method using the same, in which the contact heat exchange is performed a plurality of times, thereby significantly reducing the thermal energy required for hydrolysis of low temperature sludge. .
본 발명의 또 다른 목적은 유동성이 극히 불량한 저온 슬러지가 가수분해되면 유동화하는 성질을 이용하여 가수분해가 연속적으로 이루어질 수 있도록 210도, 20기압의 높은 증기압 환경의 가열용기에도 저온 슬러지를 연속적으로 주입할 수 있고, 가열되어 가수분해가 이루어진 슬러지를 용기로부터 연속적으로 배출할 수 있는 연속식 가열 유니트를 이용한 슬러지 가수분해 장치 및, 이를 이용한 슬러지 가수분해 방법을 제공하는 데 있다. Still another object of the present invention is to continuously inject low temperature sludge into a heating vessel of 210 ° C and 20 atm of high vapor pressure so that hydrolysis can be continuously performed by using fluidizing property when low temperature sludge having extremely poor fluidity is hydrolyzed. And a sludge hydrolysis apparatus using a continuous heating unit capable of continuously discharging sludge heated and hydrolyzed from a container, and a sludge hydrolysis method using the same.
상기 목적을 달성하기 위해 본 발명에 따른 가열유니트는 압력 용기에 격벽을 설치하여 수평적으로 가수분해 용기와 배출용기로 구획되도록 하고, 상기 가수분해 용기는 수직적으로 수증기 공간과 슬러지 공간으로 구획되도록 한다. 수증기 공간과 슬러지 공간을 왕복하는 교반부재를 이용하면 저온 슬러지와 수증기가 혼합하여 가열되며 저온 슬러지의 가수분해가 이루어져 물처럼 녹아 격벽을 넘어 배출용기로 배출되면서 연속적으로 저온 슬러지의 가수분해가 이루어진다. In order to achieve the above object, the heating unit according to the present invention installs a partition wall in a pressure vessel so as to be horizontally partitioned into a hydrolysis vessel and a discharge vessel, and the hydrolysis vessel is vertically partitioned into a vapor space and a sludge space. . When the stirring member reciprocates the steam space and the sludge space, the low temperature sludge and the water vapor are mixed and heated, and the low temperature sludge is hydrolyzed to melt like water and discharged into the discharge vessel over the bulkhead to continuously hydrolyze the low temperature sludge.
이렇게 저온 슬러지가 일정한 속도로 연속적으로 가수분해가 이루어지는 가열 유니트를 고안하고, 이 가열 유니트에 연속적으로 공급되는 저온 슬러지를 가열하고 가열유니트로부터 연속적으로 배출되는 고온 슬러지를 냉각하기 위하여 저온 슬러지와 고온 슬러지의 온도 차이를 이용하여 저온 슬러지와 고온 슬러지 사이에 열교환한다. In this way, a heating unit in which the low temperature sludge is continuously hydrolyzed at a constant speed is devised, and the low temperature sludge and the high temperature sludge are heated to heat the low temperature sludge continuously supplied to the heating unit and to cool the high temperature sludge discharged continuously from the heating unit. Heat exchange between cold sludge and hot sludge using the temperature difference of.
먼저, 가열 유니트에서 배출되는 가수분해된 고온 슬러지는 온도와 압력이 높으므로 에너지 밀도가 높은 고압의 수증기를 열교환의 매개체로 활용할 수 있다. 따라서, 고온 슬러지를 낮은 압력용기에 주입하여 압력 차이에 상응하는 수증기를 발생시켜 고온 슬러지를 냉각시키고 이 수증기를 저온 슬러지 용기에 보내 저온 슬러지에 접촉되도록 함으로써 상기 수증기가 응축되도록 하여 저온 슬러지를 가열하는 증기식 열교환 유니트를 이용하여 저온 슬러지와 고온 슬러지 사이에 열교환이 이루어지도록 한다. First, since the hydrolyzed hot sludge discharged from the heating unit has high temperature and pressure, high pressure steam having high energy density may be utilized as a medium for heat exchange. Therefore, the hot sludge is injected into a low pressure vessel to generate steam corresponding to the pressure difference, thereby cooling the hot sludge and sending the steam to the cold sludge container so as to contact the cold sludge to condense the steam so as to heat the cold sludge. A heat exchange unit is used to exchange heat between the cold sludge and the hot sludge.
일단, 증기식 열교환 유니트를 경유한 가수분해된 고온 슬러지는 어느 정도 냉각이 이루어져 고압의 수증기를 생성할 수 없지만, 가수분해 과정을 통하여 유동성이 대폭 향상되는 특성을 이용하여 회전하는 원통의 내부면에 접촉하면서 냉각되고, 반대로 가수분해될 저온 슬러지는 이 원통의 외부면에 접촉하여 가열되는 접촉식 열교환 유니트를 이용하여 열교환한다. First, hydrolyzed hot sludge through the steam heat exchanger unit is cooled to some degree to produce high pressure steam, but the hydrolysis process is used to improve the fluidity. The cold sludge to be cooled on contact and vice versa is heat exchanged using a contact heat exchange unit that is heated in contact with the outer surface of the cylinder.
본 발명에 따른 슬러지 가수분해 장치는 유동성이 불량한 저온 슬러지가 상기 접촉식 열교환 장치와 상기 증기식 열교환 장치를 순차적으로 경유하게 하고 가수분해된 고온 슬러지는 증기식 열교환 장치와 접촉식 열교환 장치를 순차적으로 경유하게 한다. 접촉식 열교환 장치와 증기식 열교환 장치를 경유하는 동안에 고온 슬러지와 저온 슬러지 사이에 열전달이 이루어지도록 함으로써 저온 슬러지를 가수분해하기 위해서 필요한 가열 에너지를 최소화 할 뿐 아니라, 가수분해된 고온 슬러지도 효과적으로 냉각하고 장치의 제조비용도 줄일 수 있다. In the sludge hydrolysis apparatus according to the present invention, low-temperature sludge having poor fluidity is sequentially passed through the contact heat exchanger and the steam heat exchanger, and the hydrolyzed high temperature sludge is sequentially applied to the steam heat exchanger and the contact heat exchanger. Make it through. Heat transfer between the hot sludge and the cold sludge during the contact heat exchanger and the steam heat exchanger minimizes the heating energy required to hydrolyze the cold sludge, as well as effectively cool and hydrolyze the hot sludge. The manufacturing cost of the device can also be reduced.
또한, 본 발명에 따른 증기식 열교환 유니트는 저온 슬러지가 증기압 곡선상의 온도와 압력을 가진 수증기와 접촉하면 수증기가 응축하면서 저온 슬러지를 가열하는 원리를 이용한다. 구체적으로, 증기압 곡선상의 온도와 압력을 가진 수증기는 약간만 냉각되면 바로 물로 변하는데, 증기식 열교환 유니트에서는 이런 상태의 수증기로 가득 채워져 저온 슬러지가 이런 상태의 수증기와 접촉하게 되면 접촉된 수증기는 냉각되어 응축하면서 공간이 비워져 주변 수증기를 끌어와 슬러지와 계속 접촉시켜 응축이 계속 진행되고, 상기 저온 슬러지의 표면은 상기 수증기의 응축열에 의하여 가열되고, 상기 응축열은 상기 슬러지 내부로 열전달되어 상기 저온 슬러지가 가열된다. In addition, the steam heat exchange unit according to the present invention uses the principle of heating the low temperature sludge while condensing the water vapor when the low temperature sludge is in contact with the water vapor having a temperature and pressure on the vapor pressure curve. Specifically, water vapor with a temperature and pressure on the vapor pressure curve turns into water when it is only slightly cooled. In a steam heat exchange unit, the water vapor in this state is filled with water vapor, and when the cold sludge comes into contact with water vapor in this state, the contacted water vapor is cooled. Condensation proceeds as space is emptied as condensation draws water vapor into continuous contact with the sludge, and the surface of the cold sludge is heated by the heat of condensation of the steam, and the heat of condensation is transferred to the inside of the sludge to heat the cold sludge do.
가수분해가 이루어진 고온 슬러지는 접촉식 열교환 유니트로부터 배출된 후, 고액분리기에 의해서 고형 농축분과 액상분으로 분리된다. 상기 고형 농축분은 필터 프레스 또는 원심분리 탈수기와 같은 통상적인 탈수기를 이용하여 고형분과 액상분으로 분리한다. 고액분리기에서 배출된 액상분과 탈수기로부터 배출된 액상분은 혐기성 소화를 거치게 하여 메탄가스를 얻을 수 있고 소화액은 다시 호기성 미생물로 수처리하여 깨끗한 물로 만든 후 방출하는 데 이 과정에서 생성되는 슬러지는 다시 가수분해 장치로 보내져서 가수분해 처리된다. The hydrolyzed hot sludge is discharged from the contact heat exchange unit and then separated into a solid concentrate and a liquid fraction by a solid-liquid separator. The solid concentrate is separated into a solid component and a liquid component using a conventional dehydrator such as a filter press or a centrifugal dehydrator. The liquid fraction discharged from the solid-liquid separator and the liquid fraction discharged from the dehydrator are subjected to anaerobic digestion to obtain methane gas, and the digestion liquid is treated with aerobic microorganisms to make clean water and then released. The sludge produced in this process is hydrolyzed again It is sent to the device and hydrolyzed.
상기 탈수기로부터 배출된 고형분은 산소가 없는 고온 환경에서 열분해되어 가스와 탄화물로 만들어져서 에너지 자원화된다. Solids discharged from the dehydrator are thermally decomposed in an oxygen-free high temperature environment, and are made of gas and carbides to be energy resources.
도 1은 물의 증기압 곡선 및, 물의 온도와 열에너지의 관계를 보여주는 그래프. 1 is a graph showing a vapor pressure curve of water and a relationship between water temperature and thermal energy.
도 2는 본 발명에 따른 슬러지 가수분해 장치의 구성과, 슬러지 가수분해 장치로부터 배출된 고온 슬러지의 처리 과정을 보여주는 도면.Figure 2 is a view showing the configuration of the sludge hydrolysis apparatus according to the present invention, and the treatment of the hot sludge discharged from the sludge hydrolysis apparatus.
도 3은 본 발명에 따른 슬러지 가수분해 장치의 가열 유니트와 가압 주입유니트의 단면을 보여주는 도면. Figure 3 is a view showing a cross section of the heating unit and the pressurized injection unit of the sludge hydrolysis apparatus according to the present invention.
도 4(a)는 본 발명에 따른 슬러지 가수분해 장치에 구비되는 가압 주입유니트를 보여주는 사시도.Figure 4 (a) is a perspective view showing a pressure injection unit provided in the sludge hydrolysis apparatus according to the present invention.
도 4(b)는 본 발명에 따른 슬러지 가수분해 장치에 구비되는 가압 주입유니트를 보여주는 사시도.Figure 4 (b) is a perspective view showing a pressure injection unit provided in the sludge hydrolysis apparatus according to the present invention.
도 5는 본 발명에 따른 슬러지 가수분해 장치에 구비된 증기식 열교환 유니트의 제1 실시예를 보여주는 사시도. Figure 5 is a perspective view showing a first embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
도 6은 도 5의 증기식 열교환 유니트를 보여주는 단면도.6 is a cross-sectional view showing the steam heat exchange unit of FIG.
도 7은 도 5의 증기식 열교환 유니트에 구비된 고온 슬러지 주입부를 나타낸 부분 절개 사시도.FIG. 7 is a partial cutaway perspective view illustrating a hot sludge injection unit provided in the steam heat exchange unit of FIG. 5.
도 8은 도 5의 증기식 열교환 유니트에 구비된 제1,2 회전체를 보여주는 분해 사시도.8 is an exploded perspective view showing the first and second rotors provided in the steam heat exchange unit of FIG. 5.
도 9는 본 발명에 따른 슬러지 가수분해 장치에 구비된 증기식 열교환 유니트의 제2 실시예를 보여주는 사시도. 9 is a perspective view showing a second embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
도 10은 도 9의 증기식 열교환 유니트가 직렬로 다수 개가 연결된 것을 보여주는 사시도. 10 is a perspective view showing a plurality of steam heat exchange unit of Figure 9 connected in series.
도 11은 본 발명에 따른 슬러지 가수분해 장치에 구비된 접촉식 열교환 유니트의 제1 실시예를 보여주는 사시도.11 is a perspective view showing a first embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
도 12는 도 11의 접촉식 열교환 유니트의 종단면을 보여주는 주요 구성도.FIG. 12 is a schematic view showing the longitudinal section of the contact heat exchange unit of FIG. 11. FIG.
도 13은 도 11의 접촉식 열교환 유니트에 구비된 단위부재를 보여주는 사시도. FIG. 13 is a perspective view illustrating a unit member provided in the contact heat exchange unit of FIG. 11.
도 14는 도 16의 단위부재의 A-A' 단면도. 14 is a cross-sectional view taken along the line A-A 'of the unit member of FIG.
도 15는 본 발명에 따른 슬러지 가수분해 장치에 구비된 접촉식 열교환 유니트의 제2 실시예를 보여주는 종단면 구성도.Figure 15 is a longitudinal cross-sectional view showing a second embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
도 16은 도 15의 접촉식 열교환 유니트를 구동하기 위한 동력전달 구성을 보여주는 도면.16 is a view showing a power transmission configuration for driving the contact heat exchange unit of FIG.
도 17은 본 발명에 따른 슬러지 가수분해 장치에 구비된 접촉식 열교환 유니트의 제3 실시예를 보여주는 부분 절개 및 일부 분해 사시도.17 is a partial cutaway and partially exploded perspective view showing a third embodiment of the contact heat exchanger unit provided in the sludge hydrolysis apparatus according to the present invention.
도 18은 본 발명에 따른 슬러지 가수분해 장치에 구비된 접촉식 열교환 유니트의 제4 실시예를 보여주는 부분 절개 및 일부 분해 사시도.18 is a partially cut away and partially exploded perspective view showing a fourth embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention.
<도면의 주요 부분에 대한 부호의 설명> <Explanation of symbols for the main parts of the drawings>
100: 유기물 슬러지 저장탱크 100: organic sludge storage tank
200a, 200b, 200c, 200d: 접촉식 열교환 유니트200a, 200b, 200c, 200d: contact heat exchange unit
300, 300a: 증기식 열교환 유니트300, 300a: steam heat exchange unit
400: 가열 유니트400: heating unit
이하, 첨부된 도면들을 참조로 본 발명에 대해서 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 실시예들에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only embodiments of the present invention and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application It should be understood that there may be variations and variations.
도 1을 참조하여 물의 열적 특성에 대하여 먼저 설명하면 다음과 같다.Referring first to the thermal characteristics of the water with reference to Figure 1 as follows.
물은 에너지를 흡수하면 온도가 상승하거나 액체에서 기체로 상태를 변화하는데 물이 액체에서 기체로 상태가 변화는 온도 압력 곡선을 물의 증기압 곡선이라 한다. 특정 온도에서 증기압 곡선 압력보다 외부 압력이 높으면 물은 액체로 존재하고 외부 압력이 낮으면 기체로 존재한다.When water absorbs energy, the temperature rises or the state changes from liquid to gas, while the temperature pressure curve is called the water vapor pressure curve. At a certain temperature, water is present as a liquid if the external pressure is higher than the vapor pressure curve pressure and as a gas when the external pressure is low.
특히, 증기압 곡선상의 온도와 압력을 가진 수증기는 약간만 냉각되면 바로 물로 변하고, 또한 증기압 곡선상의 온도와 압력을 가진 물은 약간만 압력을 낮추어도 수증기로 변하며 증기압 곡선의 평형상태를 유지한다.In particular, water vapor having a temperature and pressure on the vapor pressure curve immediately turns into water, and water having a temperature and pressure on the vapor pressure curve turns into water vapor even when the pressure is slightly lowered to maintain the equilibrium of the vapor pressure curve.
물이 수증기로 상태가 변할 때 100℃ 1기압에서 540 kcal/kg의 에너지를 흡수하고 부피는 대략 1700배 팽창하며, 수증기에서 물로 변화할 때는 같은 에너지를 방출하고 응축한다. 상기 물의 증기압 곡선에서 압력과 온도 관계는 표 1에 나타나 있다.When water changes its state to water vapor, it absorbs 540 kcal / kg of energy at 1 atm of 100 ° C and expands approximately 1700 times in volume, and releases and condenses the same energy when changing from water vapor to water. The pressure and temperature relationships in the vapor pressure curve of water are shown in Table 1.
표 1
온도(℃) 압력(기압) 온도(℃) 압력(기압) 온도(℃) 압력(기압) 온도(℃) 압력(기압)
100 1.0 140 3.6 180 10.0 220 23.3
110 1.4 150 4.7 190 12.6 230 28.2
120 2.0 160 6.2 200 15.6 240 33.8
130 2.7 170 7.9 210 19.2 250 40.1
Table 1
Temperature (℃) Pressure (atmospheric pressure) Temperature (℃) Pressure (atmospheric pressure) Temperature (℃) Pressure (atmospheric pressure) Temperature (℃) Pressure (atmospheric pressure)
100 1.0 140 3.6 180 10.0 220 23.3
110 1.4 150 4.7 190 12.6 230 28.2
120 2.0 160 6.2 200 15.6 240 33.8
130 2.7 170 7.9 210 19.2 250 40.1
물의 온도를 올리는데 필요한 열에너지는 100℃까지 100cal, 150℃까지 151cal, 200℃까지 203cal, 250℃까지 259cal, 300℃까지 321cal 로 온도-에너지 관계는 저온과 고온에서 서로 비슷하지만, 온도와 압력의 경우 표 1에 보는 것처럼 100℃에서 1기압이 150℃에서 4.7기압, 200℃에서 15.6기압, 250℃에서 40.1기압, 300℃에서 86.5기압으로 온도-압력 관계는 온도가 높아지면 급격하게 상승한다. 상기 온도-에너지 관계와 온도-압력 관계를 도시하면 도 1과 같다.The heat energy required to raise the temperature of water is 100cal up to 100 ℃, 151cal up to 150 ℃, 203cal up to 200 ℃, 259cal up to 250 ℃, and 321cal up to 300 ℃. The temperature-energy relationship is similar at low and high temperatures, but for temperature and pressure As shown in Table 1, the pressure-to-pressure relationship rapidly rises at 1 ° C at 100 ° C, 4.7 atm at 150 ° C, 15.6 at 200 ° C, 40.1 at 250 ° C, and 86.5 at 300 ° C. The temperature-energy relationship and the temperature-pressure relationship are shown in FIG. 1.
한편, 슬러지는 직접 가열을 통하여 가열될 수도 있고 열교환 가열을 통하여 가열될 수도 있다. 여기서, 직접 가열은 외부에서 열에너지를 공급하여 슬러지를 가열하는 방식이고, 열교환 가열은 외부의 열에너지 공급 없이 고온 슬러지와 저온 슬러지 사이에 열교환이 이루어지도록 하여 저온 슬러지를 가열하는 방식이다. On the other hand, the sludge may be heated through direct heating or may be heated through heat exchange heating. Here, direct heating is a method of heating the sludge by supplying heat energy from the outside, heat exchange heating is a method of heating the low temperature sludge by heat exchange between the hot sludge and low temperature sludge without external heat energy supply.
상기 직접 가열과 열교환 가열에 소요되는 비용을 비교하면, 직접 가열은 에너지 비용과 장치비용이 모두 필요하지만 열교환 가열은 에너지 비용은 없고 장치비용만 필요하기 때문에 열교환 가열이 보다 경제적이다. Comparing the costs for direct heating and heat exchange heating, heat exchange heating is more economical because direct heating requires both energy and equipment costs, but heat exchange heating requires no equipment costs and only equipment costs.
열교환 가열은 높은 온도의 슬러지와 낮은 온도의 슬러지의 온도 차이를 이용하여 중간온도의 슬러지가 만들어지는 열전달의 자연현상을 이용하는 기술이므로 가수분해된 고온 슬러지의 열에너지를 가수분해될 저온 슬러지에게 전달하게 되지만 이러한 열교환 가열을 마친 다음 가수분해 온도까지의 최종 가열은 직접가열을 하여야 한다. Heat exchange heating is a technology that uses the natural phenomenon of heat transfer in which medium sludge is made by using the temperature difference between high temperature sludge and low temperature sludge. Therefore, heat energy of hydrolyzed high temperature sludge is transferred to low temperature sludge to be hydrolyzed. After this heat exchange heating, the final heating up to the hydrolysis temperature should be directly heated.
접촉식 열교환은 유동성이 불량하여 열전달이 잘 되지 않는 저온 슬러지를 가열하기 위하여 고온 슬러지와 저온 슬러지가 서로 혼합되지 않은 상태에서 중간 금속물을 통한 접촉과 교반으로 열전도를 통하여 서로 열교환되는 방식이다.Contact heat exchange is a method in which heat sludge and low temperature sludge are not mixed with each other in order to heat low temperature sludge, which is poor in fluidity, and heat exchanges with each other through heat conduction by contact and stirring through intermediate metals.
증기식 열교환은 고온 슬러지가 상기 증기압보다 낮은 압력 상태에 노출되면 수증기를 발생시키면서 냉각되고, 상기 수증기는 저온 슬러지 용기로 이동하여 용기 내부로 주입된 저온 슬러지와 접촉하면서 응축되어 저온 슬러지가 가열되는 열교환 방식이다.The steam heat exchange is cooled while generating hot steam when the hot sludge is exposed to a pressure lower than the vapor pressure, and the steam is transferred to the cold sludge container and condensed while contacting the cold sludge injected into the container, thereby heating the cold sludge. That's the way.
본 발명에 따른 슬러지 가수분해 장치는 가수분해된 고온 슬러지는 배출되면서 저온 슬러지와 열교환 방식으로 열을 교환하여 고온 슬러지가 가진 열이 재사용되기 때문에 열교환이 없는 경우에 비하여 1/3~1/5 정도의 열에너지만으로도 저온 슬러지를 가수분해할 수 있고 고온 슬러지를 냉각하기 위한 별도의 냉각장치도 필요하지 않다. The sludge hydrolysis apparatus according to the present invention exchanges heat in a heat exchange method with a low temperature sludge while the hydrolyzed high temperature sludge is discharged, so that the heat of the high temperature sludge is reused, so that 1/3 to 1/5 of the sludge hydrolysis apparatus is not used. It is possible to hydrolyze low temperature sludge with only thermal energy, and no separate cooling device is required to cool the high temperature sludge.
한편, 슬러지 속에서는 녹말이나 단백질 같은 성분이 고분자 상태로 존재하고 열을 가하면 고분자가 길게 늘어지며 그 사이 사이에 물이 갇혀 있어 물리적으로 물과 분리되지 않도록 응고되어 고함수 상태로 존재한다. 그런데, 더 많은 열을 가하여 180℃ 이상으로 가열하면 상기 고분자 상태의 긴 녹말과 단백질은 고온 고압에서 가수분해로 물분자가 삽입되면서 포도당이나 아미노산으로 분해되고, 상기 포도당이나 아미노산은 물에 잘 녹아 수용액으로 변하여 가수분해되지 않는 고형분과 분리된다. On the other hand, in the sludge, components such as starch or protein exist in the polymer state, and when the heat is applied, the polymer stretches long and water is trapped in between, and the water is solidified so as not to be physically separated from the water. However, when more heat is applied and heated to 180 ° C. or more, the long starch and protein in the polymer state are decomposed into glucose or amino acid while being inserted into water molecules by hydrolysis at high temperature and high pressure, and the glucose or amino acid is well dissolved in water, It is separated into solids that do not hydrolyze and change to.
이 때, 온도가 높아지면 가수분해되는 시간이 단축되는데 통상 180도에서는 90분 정도 소요되지만 200도에서는 30분~60분으로 빨라지고 210도에서는 30분 이하가 되며 가수분해의 정도도 다르므로 목적에 따라 또 가수분해 대상 유기물에 따라 다른 가수분해 온도를 선택하여 사용할 수 있으며, 본 발명에서는 210도의 가수분해 온도를 사용하여 설명한다.At this time, when the temperature increases, the time for hydrolysis is shortened, but it usually takes about 90 minutes at 180 degrees, but it is faster to 30 minutes to 60 minutes at 200 degrees, 30 minutes or less at 210 degrees, and the degree of hydrolysis is different. Accordingly, other hydrolysis temperatures may be selected and used according to the hydrolysis target organic substance, and the present invention will be described using a hydrolysis temperature of 210 degrees.
일반적으로 슬러지는 유동성이 나빠서 가열에 의한 대류 순환이 전혀 발생하지 않기 때문에 열전달 특성이 나쁘고 열전도율도 매우 낮아 용기를 고온으로 가열하여도 용기와 접촉된 슬러지만 가열될 뿐 용기 내부의 슬러지는 잘 가열되지 않는다. 따라서, 효과적인 가열을 위해서는 고온의 수증기를 직접 슬러지와 접촉시켜 수증기의 응축에 의해서 가열하는 증기 가열이 바람직하다. In general, the sludge has poor fluidity, so no convection circulation by heating occurs, which results in poor heat transfer and very low thermal conductivity, so that the sludge in contact with the container is heated even when the container is heated to a high temperature, but the sludge inside the container is not heated well. Do not. Therefore, for effective heating, steam heating in which hot steam is brought into direct contact with sludge and heated by condensation of water vapor is preferred.
이를 위하여 본 발명은 "증기접촉 가열"을 이용한다. 증기접촉 가열은 수증기와 접촉한 물체는 표면이 먼저 수증기의 온도로 가열되는데 먼저 가열된 표면의 열은 열전달에 의하여 내부까지 순차적으로 전달되며, 이러한 물체 내부로의 열전달에 따른 표면 냉각으로 수증기 응축도 계속적으로 이루어지게 되고, 물체의 내부까지 수증기와 같은 온도가 될 때까지 지속적으로 접촉하는 수증기 응축에 의한 가열이 이루어지는 것을 의미한다. 특히 슬러지와 수증기를 혼합 교반하면 이러한 수증기 응축에 의한 슬러지 가열 속도는 매우 빠르게 증가하여 슬러지의 낮은 열전도율을 극복하고 슬러지를 가열할 수 있다.For this purpose the present invention utilizes "vapor contact heating". In steam-contact heating, objects that come into contact with water vapor are first heated to the temperature of water vapor. First, heat from the heated surface is sequentially transferred to the inside by heat transfer. It is made continuously, it means that the heating by the condensation of water vapor is continuously made until the same temperature as the water vapor to the inside of the object. In particular, when the sludge and water vapor are mixed and stirred, the rate of sludge heating due to the condensation of water vapor increases very rapidly, thereby overcoming the low thermal conductivity of the sludge and heating the sludge.
포화된 수증기 속으로 차가운 물체가 이동하면 이 물체와 접촉하는 수증기는 냉각되어 물의 증기압에 의하여 순간적으로 물로 변하는데 이렇게 물로 변하면 부피가 1/1700로 변하므로 빈 공간이 발생하여 인근 수증기가 진공압에 의해서 끌려오고 이 수증기도 냉각되어 물로 변하면서 급속도로 인근 수증기를 빨아들이며 수증기가 접촉하는 면이 가열되어 수증기의 온도와 동일해질 때까지 응축이 급속하게 진행된다.When a cold object moves into saturated water vapor, the water vapor that comes into contact with the object is cooled and instantly turns into water by the vapor pressure of the water. When this water is turned into water, the volume changes to 1/1700. The water vapor is cooled and turns into water, rapidly absorbing the nearby water vapor, and condensation proceeds rapidly until the side where the water vapor contacts is heated to equal the temperature of the water vapor.
증기접촉 가열 기술은 가열 유니트의 가수분해 용기와 증기식 열교환 유니트의 저온 열교환용기에서 적용되는 원리로서, 가열하려는 물체와 가열하는 수증기의 온도가 동일해질 수도 있지만, 현실적으로 장치의 효율 향상을 위해서 가열시간이 단축되도록 어느 정도 온도 차이가 발생한다. 이러한 특징에 의해서 증기접촉 가열 기술을 이용하는 가수분해 장치에서는 수증기의 공급과 제어를 측정된 압력으로 통제할 수 있기 때문에 장치 구성이 대단히 편리하며 가열장치의 다른 여러 가지 문제점을 모두 해결할 수 있다.The steam contact heating technology is applied to the hydrolysis vessel of the heating unit and the low temperature heat exchanger vessel of the steam heat exchanger unit. The temperature of the object to be heated and the steam to be heated may be the same, but in reality, the heating time is improved to improve the efficiency of the apparatus. To some extent a temperature difference occurs. Due to this feature, in the hydrolysis apparatus using steam contact heating technology, the supply and control of water vapor can be controlled at the measured pressure, so the configuration of the apparatus is very convenient and all other problems of the heating apparatus can be solved.
한편, 슬러지는 최대한 탈수되어 유동성이 극히 불량하지만 세포액으로 존재하는 80%의 물이 가수분해 된 이후에는 수용액으로 존재하고 유동성을 방해하는 고형분이 미세하게 분쇄되어 가수분해 된 슬러지는 유동성이 급격하게 향상된다. 따라서 가수분해된 슬러지는 거의 물처럼 흐르게 되므로 가수분해된 이후의 고온 슬러지 이동 및 열교환 장치 구성에서는 이러한 유동성 변화를 고려하여 장치를 구성한다. On the other hand, the sludge dehydrates as much as possible, but the fluidity is extremely poor, but after 80% of the water present in the cell solution is hydrolyzed, the solids present in the aqueous solution and hindering the fluidity are finely pulverized and the hydrolyzed sludge is rapidly improved. do. Therefore, the hydrolyzed sludge flows almost like water, and thus, the high-temperature sludge movement and heat exchanger configuration after hydrolysis are configured in consideration of the fluidity change.
특히, 가수분해 용기의 배출장치나 고온 열교환 용기의 배출장치를 수위센서를 이용하여 제어하는 방식은 가수분해된 고온 슬러지의 유동성 특성을 고려한 것이다.In particular, the method of controlling the discharge device of the hydrolysis vessel or the discharge device of the high temperature heat exchange vessel by using a water level sensor takes into account the fluidity characteristics of the hydrolyzed hot sludge.
또한, 접촉식 열교환 유니트에서 고온 슬러지를 회전하는 원통형 고온 슬러지관의 내부로 통과시키고 저온 슬러지를 고온 슬러지관의 외부에 접촉시켜 열교환하는 구성도 이러한 유동성의 변화를 활용하는 기술이다.In addition, in the contact heat exchange unit, a configuration in which the hot sludge passes through the inside of the rotating cylindrical hot sludge tube and the low temperature sludge is in contact with the outside of the hot sludge tube for heat exchange is also a technology utilizing the change in fluidity.
즉, 유동성이 증가하면 대류에 의한 유체의 열전달이 이루어지므로 고온 슬러지관의 내부에서 고온 슬러지의 열전달이 원활하게 이루어져 고온 슬러지의 온도를 동일하게 유지하므로 고온 슬러지관을 계속 고온으로 유지할 수 있다.That is, when the fluidity is increased, the heat transfer of the fluid by convection is made, so that the heat transfer of the hot sludge inside the high temperature sludge tube is smooth, so that the temperature of the hot sludge is kept the same, so that the high temperature sludge tube can be kept at a high temperature.
도 2를 참조하여, 본 발명에 따른 슬러지 가수분해 장치에 대하여 설명한다. With reference to FIG. 2, the sludge hydrolysis apparatus which concerns on this invention is demonstrated.
슬러지 가수분해 장치는 가열 유니트(400), 증기식 열교환 유니트(300) 및, 접촉식 열교환 유니트(200)를 포함한다. The sludge hydrolysis apparatus includes a heating unit 400, a steam heat exchange unit 300, and a contact heat exchange unit 200.
가열 유니트(400)는 보일러(640)로부터 공급된 증기를 이용하여 저온 열교환 용기(310)로부터 주입된 저온 슬러지를 가열 및 가수분해하여 고온 슬러지로 만들어 배출하는데, 이러한 슬러지의 주입, 가열, 배출이 배치식이 아닌 연속적으로 일정한 속도로 이루어진다. 상기 저온 슬러지는 가압 주입유니트(420)에 의해 가열 유니트(400)에 주입된다.The heating unit 400 heats and hydrolyzes the low-temperature sludge injected from the low-temperature heat exchange vessel 310 by using steam supplied from the boiler 640 to make high-temperature sludge and discharges the sludge. It is not batchwise but continuously at a constant speed. The cold sludge is injected into the heating unit 400 by the pressure injection unit 420.
증기식 열교환 유니트(300)는 저온 열교환 용기(310) 및 고온 열교환 용기(350)를 포함한다. 고온 열교환 용기(350)에는 가열 유니트(400)로부터 배출된 고온 슬러지가 주입되고, 저온 열교환 용기(310)에는 접촉식 열교환 유니트(200)로부터 배출된 저온 슬러지가 주입된다. The steam heat exchange unit 300 includes a low temperature heat exchange vessel 310 and a high temperature heat exchange vessel 350. The hot sludge discharged from the heating unit 400 is injected into the high temperature heat exchange vessel 350, and the cold sludge discharged from the contact heat exchange unit 200 is injected into the low temperature heat exchange vessel 310.
고온 열교환 용기(350)에서는 주입된 고온 슬러지의 증기압과 고온 열교환 용기(350) 내부압력의 차이에 의해 고온 슬러지에서 수증기가 발생한다. 이때, 고온 슬러지에서 수증기가 발생되므로 인하여 고온 슬러지는 수증기의 기화열로 인하여 냉각된다.In the high temperature heat exchange vessel 350, water vapor is generated in the high temperature sludge due to a difference between the vapor pressure of the injected hot sludge and the internal pressure of the high temperature heat exchange vessel 350. At this time, since the steam is generated in the hot sludge, the hot sludge is cooled due to the heat of vaporization of the steam.
그리고, 상기 수증기는 고온 열교환 용기(350)에서 저온 열교환 용기(310)로 이동한 후, 저온 열교환 용기(310) 내로 주입된 저온 슬러지와 접촉하여 응축되고, 상기 수증기의 응축으로 인하여 발생되는 응축열에 의하여 상기 저온 슬러지는 가열된다. 이렇게 가열된 저온 슬러지는 가압 주입유니트(420)에 의해 가압되어 압력이 높은 가열유니트(400)에 주입된다. 한편, 저온 열교환 용기(310)에 주입되는 저온 슬러지는 접촉식 열교환 유니트(200)로부터 공급된다. 상기 저온 슬러지는 가압 주입유니트(380)에 의하여 가압되어 저온 열교환 용기(310)에 주입된다.In addition, the steam moves from the high temperature heat exchange vessel 350 to the low temperature heat exchange vessel 310, and then condenses by contact with the low temperature sludge injected into the low temperature heat exchange vessel 310, and condenses heat generated by the condensation of the water vapor. The cold sludge is thereby heated. The cold sludge heated in this way is pressurized by the pressure injection unit 420 and injected into the heating unit 400 having a high pressure. Meanwhile, the low temperature sludge injected into the low temperature heat exchange vessel 310 is supplied from the contact type heat exchange unit 200. The low temperature sludge is pressurized by the pressure injection unit 380 and injected into the low temperature heat exchange vessel 310.
접촉식 열교환 유니트(200)에는 유기물 슬러지 탱크(100)로부터 저온 슬러지가 주입되고 증기식 열교환 유니트(300)로부터 배출된 고온 슬러지가 주입된다. 접촉식 열교환 유니트(200)는 고온 슬러지가 회전하는 고온 슬러지관(210)(220)의 내부를 통과하고, 고온 슬러지관(210)(220)의 외측면에 저온 슬러지를 접촉시켜 저온 슬러지와 고온 슬러지를 상호 열교환 시키게 된다. 이 때, 상기 저온 슬러지는 가압 주입유니트(270)에 의하여 접촉식 열교환 유니트(200)로 공급된다.The low temperature sludge is injected from the organic sludge tank 100 and the high temperature sludge discharged from the vapor type heat exchange unit 300 is injected into the contact heat exchange unit 200. The contact heat exchange unit 200 passes through the interior of the high temperature sludge pipes 210 and 220 in which the hot sludge rotates, and makes contact with the low temperature sludge to the outer surface of the high temperature sludge pipes 210 and 220 so that the low temperature sludge and the high temperature sludge are heated. The sludge is mutually heat exchanged. At this time, the cold sludge is supplied to the contact heat exchange unit 200 by the pressure injection unit 270.
한편, 증기식 열교환 유니트(300)는 저온 슬러지와 고온 슬러지 간의 열교환 효율을 증대시킬 수 있도록 다수 개가 직렬로 연결될 수 있다. 마찬가지로, 접촉식 열교환 유니트(200)도 다수 개가 직렬로 연결될 수 있다. 열교환 유니트(200)(300)가 각각 직렬 연결됨으로써 고온 슬러지와 저온 슬러지의 열교환을 여러 번 반복함으로써 열에너지 재사용을 최대화하여 저온 슬러지의 온도가 효율적으로 상승될 수 있다.On the other hand, the steam heat exchange unit 300 may be connected in series in plurality to increase the heat exchange efficiency between the cold sludge and the hot sludge. Likewise, a plurality of contact heat exchange units 200 may be connected in series. Since the heat exchange units 200 and 300 are connected in series, the heat exchange of the hot sludge and the cold sludge may be repeated several times, thereby maximizing the reuse of thermal energy, thereby efficiently increasing the temperature of the cold sludge.
한편, 가수분해가 이루어진 고온 슬러지는 접촉식 열교환 유니트(200)로부터 배출된 후, 고액분리기(610)에 의해서 중력에 의해서 고형 농축분과 액상분으로 분리된다. 상기 고형 농축분은 필터 프레스 또는 원심분리 탈수기와 같은 통상적인 탈수기(620)를 이용하여 고형분과 액상분으로 분리한다. 고액분리기(610)에서 배출된 액상분과 탈수기(620)로부터 배출된 액상분은 혐기성 소화(650)를 거치게 하여 메탄가스를 얻을 수 있고 소화액은 다시 호기성 미생물로 수처리(660)하여 깨끗한 물로 만든 후 방출하는 데 이 과정에서 생성되는 슬러지는 다시 가수분해 장치로 보내져서 가수분해 처리된다. 그리고, 탈수기(620)로부터 배출된 고형분은 산소가 없는 고온 환경에서 열분해(640)되어 가스와 탄화물로 만들어져서 에너지 자원화된다. On the other hand, the hot sludge is hydrolyzed is discharged from the contact heat exchange unit 200, and then separated by the solid-liquid separator 610 into a solid concentrate and a liquid component by gravity. The solid concentrate is separated into a solid component and a liquid component using a conventional dehydrator 620 such as a filter press or a centrifugal dehydrator. The liquid component discharged from the solid-liquid separator 610 and the liquid component discharged from the dehydrator 620 may be subjected to anaerobic digestion (650) to obtain methane gas, and the digested liquid is again treated with aerobic microorganisms to make clean water and then discharged. The sludge produced in this process is sent back to the hydrolysis unit for hydrolysis. In addition, the solids discharged from the dehydrator 620 are pyrolyzed 640 in a high-temperature environment without oxygen, and are made of gas and carbides to be energy resources.
본 발명에 따른 슬러지 가수분해 장치는 상술한 설명에 한정되지 않고, 가열 유니트(400)와 가압 주입유니트(420)로만 구성될 수도 있다. 또한, 열교환 유니트로 증기식 열교환 유니트(300)나 접촉식 열교환 유니트(200) 중의 어느 하나만 사용할 수도 있다. 즉, 슬러지 가수분해 장치가 가열 유니트(400)와 접촉식 열교환 유니트(200)만으로 구성되거나, 가열 유니트(400)와 증기식 열교환 유니트(300)로만 구성될 수도 있다. The sludge hydrolysis apparatus according to the present invention is not limited to the above description, and may be composed of only the heating unit 400 and the pressure injection unit 420. In addition, only one of the steam heat exchange unit 300 and the contact heat exchange unit 200 may be used as the heat exchange unit. That is, the sludge hydrolysis apparatus may be composed of only the heating unit 400 and the contact heat exchange unit 200, or may consist only of the heating unit 400 and the steam heat exchange unit 300.
슬러지 가수분해 장치가 가열 유니트(400)와 접촉식 열교환 유니트(200)만으로 구성되는 경우에는 접촉식 열교환 유니트(200)로부터 배출된 저온 슬러지는 곧바로 가열유니트(400)에 주입되고, 가열 유니트(400)로부터 배출된 고온 슬러지는 곧바로 접촉식 열교환 유니트(200)에 주입된다. When the sludge hydrolysis device is composed of only the heating unit 400 and the contact heat exchange unit 200, the cold sludge discharged from the contact heat exchange unit 200 is immediately injected into the heating unit 400, and the heating unit 400 is applied. The hot sludge discharged from) is immediately injected into the contact heat exchange unit 200.
한편, 슬러지 가수분해 장치가 가열 유니트(400)와 증기식 열교환 유니트(300)로만 구성되는 경우에는 증기식 열교환 유니트(300)로부터 배출된 저온 슬러지는 가열유니트(400)에 주입되고, 가열유니트(400)로부터 배출된 고온 슬러지는 증기식 열교환 유니트(300)에 주입되어 저온 슬러지와 열교환하여 냉각된 후 유기물 슬러지 저장탱크(100)로 배출된다. On the other hand, when the sludge hydrolysis device is composed only of the heating unit 400 and the steam heat exchange unit 300, the low temperature sludge discharged from the steam heat exchange unit 300 is injected into the heating unit 400, the heating unit ( The hot sludge discharged from 400 is injected into the steam heat exchange unit 300, cooled by heat exchange with the cold sludge, and then discharged into the organic sludge storage tank 100.
상기 구성들은 이 명세서를 참조한 당업자가 용이하게 알 수 있을 것이다. Such configurations will be readily apparent to those skilled in the art upon reading this specification.
도 3을 참조하여, 본 발명에 따른 가열 유니트(400)의 일 실시예에 대하여 설명한다.3, an embodiment of a heating unit 400 according to the present invention will be described.
가열 유니트(400)는 유입된 슬러지가 수증기로 채워진 공간상에서 상기 수증기와의 접촉에 의하여 가수분해 되는 가수분해 용기(450)와, 상기 가수분해 된 슬러지가 배출되는 통로를 형성하는 배출용기(440)와, 상기 가수분해 용기(450)와 배출용기(440)를 구분하도록 설치되는 격벽(453)을 포함한다.The heating unit 400 includes a hydrolysis vessel 450 which is hydrolyzed by contact with the water vapor in a space filled with the introduced sludge, and a discharge container 440 which forms a passage through which the hydrolyzed sludge is discharged. And a partition wall 453 installed to distinguish the hydrolysis vessel 450 and the discharge vessel 440.
가수분해 용기(450)는 격벽(453)에 의해서 배출용기(440)와 구분된다. 주입구(401)를 통하여 주입된 저온 슬러지는 수증기와 혼합 가열되면서 가수분해되어 유동성이 좋은 고온 슬러지로 변하여 가수분해 용기(450)의 하부에 가득차게 된다. 이후에는 주입되는 저온 슬러지와 동일한 양의 가수분해된 고온 슬러지가 격벽(453)을 넘어 배출용기(440)로 흘러가서 들어가면서 "연속적으로" 슬러지의 주입과 배출이 이루어진다.The hydrolysis vessel 450 is separated from the discharge vessel 440 by the partition wall 453. The cold sludge injected through the inlet 401 is hydrolyzed while mixing and heating with water vapor, and is converted into hot sludge with good fluidity, thereby filling the lower portion of the hydrolysis vessel 450. The hydrolyzed hot sludge in the same amount as the cold sludge injected thereafter flows into the discharge vessel 440 beyond the partition 453 and is "continuously" injected and discharged.
수증기 주입부(482)를 통하여 가수분해 온도의 증기압 보다 높은 압력의 수증기가 가수분해 용기(450)에 공급되며, 이 수증기는 용기(450)(440)를 포함한 모든 내부장치를 가열하면서 내부 공간을 가득 채우게 된다. Water vapor having a pressure higher than the vapor pressure of the hydrolysis temperature is supplied to the hydrolysis vessel 450 through the steam injection portion 482, which vaporizes the internal space by heating all internal devices including the vessels 450, 440. Filled up.
가수분해 용기(450)의 입구부에는 슬러지가 주입되는 슬러지 주입구(401)가 형성되어 있고, 슬러지 주입구(401)에는 슬러지를 가수분해 용기(450) 내부로 주입하기 위한 가압 주입유니트(420)가 구비된다. 가압 주입유니트(420)는 고온 고압의 수증기로 채워진 가수분해 용기(450) 내부로 저온 슬러지를 주입하기 위하여 가수분해 용기(450)의 내부 압력보다 더 높은 압력으로 저온 슬러지를 가압하여 주입하게 된다.A sludge inlet 401 is formed at the inlet of the hydrolysis vessel 450, and a pressurized injection unit 420 for injecting sludge into the hydrolysis vessel 450 is formed at the sludge inlet 401. It is provided. The pressure injection unit 420 presses and injects the cold sludge at a pressure higher than the internal pressure of the hydrolysis vessel 450 in order to inject the cold sludge into the hydrolysis vessel 450 filled with steam of high temperature and high pressure.
가압 주입유니트(420)는, 도 4(a)와 도 4(b)에 나타난 바와 같이, 저온 슬러지에 흡입압이 발생하지 않도록 하는 주입수단과, 상기 주입수단을 경유한 슬러지를 가압하는 가압수단(423)을 포함한다. 물론, 저온 슬러지를 가압 주입유니트(420)로 이송하기 위한 별도의 슬러지 펌프가 포함될 수도 있다.The pressurized injection unit 420 includes injection means for preventing suction pressure from occurring in the cold sludge, and pressurizing means for pressurizing the sludge via the injection means, as shown in FIGS. 4 (a) and 4 (b). (423). Of course, a separate sludge pump for transferring the cold sludge to the pressure injection unit 420 may be included.
상기 주입수단은 슬러지가 자체하중에 의하여 하부로 유입되도록 하는 입구(421b)와 슬러지가 배출되는 배출구(421a)를 갖는 케이스(421)와, 케이스(421) 내부에 설치되고 서로 맞물려 회전하면서 입구(421b)에서 유입된 슬러지를 배출구(421a) 쪽으로 밀어내는 한 쌍의 회전체(422)를 포함한다.The injection means has a case 421 having an inlet 421b for allowing the sludge to flow downward by its own load and an outlet 421a for discharging the sludge, and an inlet rotating while being installed inside the case 421 and engaging with each other. And a pair of rotors 422 for pushing the sludge introduced from 421b toward the outlet 421a.
여기서, 입구(421b)가 넓게 형성되어 있기 때문에 유동성이 불량한 저온 슬러지라 하더라도 슬러지의 점성저항 보다 슬러지의 자체 하중이 더 큰 힘을 갖게 된다. 따라서, 유동성이 불량한 저온 슬러지라도 슬러지의 자체 하중에 의하여 하부로 이동되게 된다. Here, since the inlet 421b is wide, even the low-temperature sludge having poor fluidity, the sludge's own load has a greater force than the sludge's viscous resistance. Therefore, even low temperature sludge having poor fluidity is moved downward by the self load of the sludge.
회전체(422)는 두 개가 한 쌍을 이루도록 구비될 수 있으며, 각각의 회전체(422)가 케이스(421)의 내측 중앙방향으로 회전하도록 서로 기어 결합되는 것이 바람직하다. 회전체(421)는 저온 슬러지가 더욱 원활하게 이동할 수 있도록 탄성력이 높은 고무재질로 이루어질 수 있다Two rotating bodies 422 may be provided to form a pair, and each of the rotating bodies 422 is gear-coupled with each other so as to rotate in the inner center direction of the case 421. The rotating body 421 may be made of a rubber material having a high elastic force so that the low temperature sludge can move more smoothly.
상기 주입수단의 하측에는 가압수단(423)이 구비됨이 바람직하며, 가압수단(423)은 기어 펌프나 모노 펌프로 이루어질 수 있다. 구동모터(425)는 가압수단(423)과 회전체(422)에 구동력을 전달한다. It is preferable that the pressing means 423 is provided below the injection means, and the pressing means 423 may be formed of a gear pump or a mono pump. The drive motor 425 transmits a driving force to the pressing means 423 and the rotating body 422.
여기서, 가압수단(423)의 상부는 출구(421a)의 하측과 연결되고, 가압수단(423)의 일측에는 가압배출부(423a)가 구비된다. 가압배출부(423a)는 슬러지 주입구(401)와 연결된다. 이에 따라, 저온 열교환 용기(310)로부터 배출되는 저온 슬러지는 가압 주입유니트(420)에 의해 가수분해 용기(450)의 내부로 공급된다. Here, the upper portion of the pressing means 423 is connected to the lower side of the outlet 421a, the pressure discharge portion 423a is provided on one side of the pressing means 423. The pressurized discharge part 423a is connected to the sludge inlet 401. Accordingly, the low temperature sludge discharged from the low temperature heat exchange vessel 310 is supplied into the hydrolysis vessel 450 by the pressure injection unit 420.
상기 주입수단에 의하여 유동성이 불량한 저온의 슬러지가 주입되는 과정에서는 흡입압이 발생하지 않게 되고, 가압수단(423)에 의해서는 저온 슬러지가 일방향으로 원활하고 용이하게 주입될 수 있게 된다. In the process of injecting low-temperature sludge having poor fluidity by the injection means, suction pressure is not generated, and the low-pressure sludge can be smoothly and easily injected in one direction by the pressurizing means 423.
또한, 가수분해 용기(450)의 내부는 격벽(453)과 중력에 의하여 슬러지 공간(451b)과 수증기 공간(451a)으로 구분된다. 수증기 공간(451a)은 슬러지 공간(451b)의 상부에 위치하게 된다. 가수분해 용기(450)에 주입된 저온 슬러지는 슬러지 공간(451b)에 담기고 수증기는 수증기 공간(451a)에 수용된다. In addition, the interior of the hydrolysis vessel 450 is divided into a sludge space 451b and a water vapor space 451a by the partition 453 and gravity. The steam space 451a is positioned above the sludge space 451b. The cold sludge injected into the hydrolysis vessel 450 is contained in the sludge space 451b and steam is accommodated in the steam space 451a.
슬러지 공간(451b)에 수용된 슬러지의 상면은 계속 수증기에 접촉되어 슬러지의 온도가 유지됨과 동시에, 슬러지의 높이가 격벽(453)보다 높아지면 슬러지는 격벽(453)을 넘어 배출용기(440)로 흐른다. The upper surface of the sludge accommodated in the sludge space 451b keeps in contact with water vapor to maintain the temperature of the sludge, and when the height of the sludge becomes higher than the partition 453, the sludge flows over the partition 453 to the discharge container 440. .
가수분해 용기(450)는 하나의 원통관으로 구비될 수 있지만 슬러지가 가수분해되는 구간을 늘리거나 가수분해 용기의 길이를 단축하기 위하여 두 개의 원통관을 서로 수평으로 연결하여 설치될 수도 있다. The hydrolysis vessel 450 may be provided as one cylindrical tube, but may be installed by connecting two cylindrical tubes horizontally to each other in order to increase the section in which the sludge is hydrolyzed or shorten the length of the hydrolysis vessel.
바람직하게, 가수분해 용기(450) 내부에는 교반부재(455)가 설치된다. 교반부재(455)는 슬러지 공간(451b)과 수증기 공간(451a)을 왕복회전하면서 슬러지를 교반 혼합시키고 동시에 수증기 공간(451a)에서 수증기 응축으로 가열되어 열에너지를 비축한 후 슬러지 공간(451b)에서 열을 방출하여 슬러지를 가열시키고 슬러지를 배출용기(440) 쪽으로 이동시킨다. Preferably, the stirring member 455 is installed inside the hydrolysis vessel 450. The stirring member 455 stirs and mixes the sludge while reciprocating the sludge space 451b and the steam space 451a, and is heated by steam condensation in the steam space 451a to store thermal energy and then heat the sludge space 451b. It discharges the sludge and moves the sludge toward the discharge container 440.
결과적으로, 가수분해 용기(450)의 내부에서 슬러지는 수증기와 접촉하게 되면서 수증기의 응축열로 가열되어 가수분해된다. 즉, 슬러지나 교반부재(455) 그리고 가수분해 용기(450)의 표면 등 넓은 면적에서 수증기가 응축되면서 발생하는 응축열이 슬러지를 빠른 속도로 가열하여 가수분해시킨다. As a result, the sludge inside the hydrolysis vessel 450 comes into contact with the water vapor and is heated by the heat of condensation of the water vapor to be hydrolyzed. That is, the heat of condensation generated by condensation of water vapor in a large area such as the surface of the sludge or the stirring member 455 and the hydrolysis vessel 450 causes the sludge to be hydrolyzed at a high speed.
가수분해된 슬러지는 유동성이 좋아진 상태에서 중력과 교반부재(455)에 의하여 격벽(453)쪽으로 이송된다. 이후에, 슬러지가 격벽(453)보다 높게 고이면 격벽(453)을 넘어 배출용기(440)로 유입된다. 이 격벽(453)에 의하여 가수분해용기(450)에서 슬러지는 주입되는 양만큼 자동으로 배출용기(440)로 넘어가게 되어 슬러지의 주입, 가열, 배출이 연속적으로 이루어질 수 있게 된다. The hydrolyzed sludge is conveyed toward the partition 453 by gravity and the stirring member 455 in the state of improved fluidity. Thereafter, when the sludge is higher than the partition 453, the sludge flows into the discharge container 440 beyond the partition 453. The sludge in the hydrolysis vessel 450 is automatically transferred to the discharge vessel 440 by the partition 453, so that the sludge can be continuously injected, heated, and discharged.
또한, 가수분해 용기(450)에는 가수분해 용기(450) 내부의 수증기 압력을 측정할 수 있는 압력센서(457)가 설치된다. 물론, 압력센서(457)는 배출용기(440)에 설치될 수도 있다. 아울러, 배출용기(440)에는 슬러지의 수위를 측정하는 수위센서(447)가 설치된다. 나아가, 배출용기(440)의 하단에는 슬러지의 배출량을 조절하기 위한 슬러지 배출부(481)가 구비된다. 슬러지 배출부(481)는 밸브로 구성될 수 있다. In addition, the hydrolysis vessel 450 is provided with a pressure sensor 457 capable of measuring the water vapor pressure inside the hydrolysis vessel 450. Of course, the pressure sensor 457 may be installed in the discharge container 440. In addition, the discharge vessel 440 is provided with a water level sensor 447 for measuring the level of sludge. Further, a sludge discharge part 481 is provided at the lower end of the discharge container 440 to adjust the discharge of the sludge. The sludge discharge portion 481 may be configured as a valve.
가열 유니트(400)에는 압력센서(457)에서 측정된 측정값을 바탕으로 수증기 주입부(482)를 제어하여 가수분해 용기(450)로 유입되는 수증기량을 조절하는 제어부재(미도시)가 설치된다. 구체적으로, 제어부재는 상기 수증기의 공급량을 제어하여 가수분해 용기(450)의 내부 압력을 일정하게 유지시킨다.The heating unit 400 is provided with a control member (not shown) for controlling the amount of water vapor flowing into the hydrolysis vessel 450 by controlling the water vapor injection unit 482 based on the measured value measured by the pressure sensor 457. . Specifically, the control member controls the supply amount of the steam to maintain a constant internal pressure of the hydrolysis vessel (450).
배출용기(440)와 가수분해 용기(450)가 연통되어 있기 때문에 상기 수증기는 배출용기(440)와 가수분해 용기(450)를 자유롭게 이동한다. 따라서, 수증기 주입구(482)는 가수분해 용기(450)와 배출용기(440) 중 어느 곳에도 설치될 수 있다.Since the discharge vessel 440 and the hydrolysis vessel 450 are in communication with each other, the steam moves freely through the discharge vessel 440 and the hydrolysis vessel 450. Therefore, the steam inlet 482 may be installed at any one of the hydrolysis vessel 450 and the discharge vessel 440.
또한, 제어부재는 수위센서(447)에서 측정된 측정값을 바탕으로 슬러지 배출부(481)를 제어하여 슬러지의 배출량을 조절한다. 아울러, 제어부재는 수위센서(447)에서 측정된 측정값을 바탕으로 가수분해 용기(450)로 주입되는 슬러지의 주입량을 조절할 수 있다. In addition, the control member controls the sludge discharge unit 481 based on the measured value measured by the water level sensor 447 to adjust the discharge of the sludge. In addition, the control member may adjust the injection amount of the sludge injected into the hydrolysis vessel 450 based on the measured value measured by the water level sensor 447.
한편, 가열유니트는 상기 실시예에 한정되지 않고 변형될 수 있다. 예를 들어, 가열유니트는 배출용기(440)를 구비하지 않고 가수분해 용기(450)로부터 고온 슬러지를 직접 배출할 수 있다. 이 경우에는 배출구에 구비된 밸브 등을 이용하여 고온 슬러지의 배출을 조절할 수 있다. 만약, 상기 슬러지 가수분해 장치가 증기식 열교환유니트(300)를 구비하지 않고 가열유니트와 접촉식 열교환 유니트(200a)만을 구비하는 경우에는 접촉식 열교환유니트(200a)의 고온 슬러지 배출구에 설치된 밸브를 이용하여 상기 가열유니트에서의 고온 슬러지 배출을 조절할 수 있다. On the other hand, the heating unit is not limited to the above embodiment can be modified. For example, the heating unit may directly discharge the hot sludge from the hydrolysis vessel 450 without the discharge vessel 440. In this case, the discharge of the hot sludge can be controlled using a valve or the like provided at the outlet. If the sludge hydrolysis apparatus does not include the steam heat exchange unit 300 but only the heating unit and the contact heat exchange unit 200a, a valve installed at the hot sludge discharge port of the contact heat exchange unit 200a may be used. To control the hot sludge discharge from the heating unit.
또한, 가수분해 용기(450)에 수용된 고온 슬러지의 일부를 슬러지 주입구(401)로 이동시킨 후 저온 슬러지와 함께 슬러지 주입구(401)를 통하여 가수분해 용기(450)에 주입되도록 할 수도 있다. 즉, 가수분해 용기(450)와 슬러지 주입구(401)를 연결하는 배관(490)과 펌프(491)를 이용하여 가수분해 용기(450)에 수용된 고온 슬러지의 일부를 슬러지 주입구(401)로 이동시킨 후, 저온 슬러지와 함께 슬러지 주입구(401)를 통하여 가수분해 용기(450)에 주입되도록 하면 주입되는 저온 슬러지의 온도와 유동성이 증가한 상태로 가수분해 용기(450)로 주입되어 가수분해의 효율을 높일 수 있다. In addition, a portion of the hot sludge contained in the hydrolysis vessel 450 may be moved to the sludge inlet 401 and then injected into the hydrolysis vessel 450 through the sludge inlet 401 together with the low temperature sludge. That is, a portion of the hot sludge contained in the hydrolysis vessel 450 is moved to the sludge inlet 401 by using the pipe 490 and the pump 491 connecting the hydrolysis vessel 450 and the sludge inlet 401. Then, when the low-temperature sludge is injected into the hydrolysis vessel 450 through the sludge inlet 401, the low-temperature sludge is injected into the hydrolysis vessel 450 while the temperature and fluidity of the injected low-temperature sludge are increased to increase the efficiency of hydrolysis. Can be.
증기식 열교환 유니트(300)는 고온 슬러지에서 수증기를 발생시켜 고온 슬러지를 냉각하고, 발생된 수증기를 이용하여 저온 슬러지를 가열한다. 도 5와 도 6에 나타난 바와 같이, 증기식 열교환 유니트(300)는 저온 열교환 용기(310), 고온 열교환 용기(350) 및, 고온 열교환 용기(350)와 저온 열교환 용기(310)를 연통시키는 연통부(340)를 포함한다. 열교환 용기(310)(350)와 연통부(340)의 내부는 냉각된 고온 슬러지의 증기압 곡선상의 온도와 압력이 유지되는 수증기로 가득 채워져 있다.The steam heat exchange unit 300 generates steam from the hot sludge to cool the hot sludge, and heats the low temperature sludge using the generated steam. As shown in FIGS. 5 and 6, the steam heat exchange unit 300 communicates the low temperature heat exchange vessel 310, the high temperature heat exchange vessel 350, and the high temperature heat exchange vessel 350 and the low temperature heat exchange vessel 310. The unit 340 is included. The interior of the heat exchange vessels 310 and 350 and the communicating portion 340 is filled with steam that maintains the temperature and pressure on the vapor pressure curve of the cooled hot sludge.
고온 열교환 용기(350)는 고온 슬러지 주입부(360), 용기본체(351) 및, 고온 슬러지 배출부(370)를 포함한다. The high temperature heat exchange container 350 includes a high temperature sludge injecting unit 360, a container body 351, and a high temperature sludge discharge unit 370.
고온 슬러지 주입부(360)는 주입구(352)에 구비되어 주입구(352)를 통하여 주입되는 고온 슬러지의 주입량을 조절한다. 고온 슬러지 주입부(360)는 볼밸브의 개폐 정도를 조절하여 고온 열교환 용기(350)의 내부 압력을 조절할 수 있다.The hot sludge injection part 360 is provided in the injection hole 352 to adjust the injection amount of the hot sludge injected through the injection hole 352. The high temperature sludge injection unit 360 may control the internal pressure of the high temperature heat exchange container 350 by adjusting the opening and closing degree of the ball valve.
도 7에 나타난 바와 같이, 볼밸브는 구동모터(미도시)로부터 전달되는 구동력에 의해 회전하는 웜기어(361), 웜기어(361)와 맞물려 연동되는 웜휠기어(362) 및, 웜휠기어(362) 일측에 연결되어 주입구(352)의 주입 단면적을 조절하는 볼(365)을 포함하는 것이 바람직하다. 볼(365)은 구 형상이고 중앙에는 관통공(366)이 형성되며, 웜휠기어(362)와 연결로드(367)에 의해 연결된다. 상기 구동모터가 작동되면 볼(365)이 회전하는데, 관통공(366)과 주입구(352)가 일렬로 정렬되면 주입구(352)를 통하여 고온 슬러지가 주입될 수 있고 관통공(366)과 주입구(352)가 90도를 이루면 주입구(352)가 차단되어 고온 슬러지가 주입될 수 없다. 따라서, 관통공(366)과 주입구(352)의 각도를 조절하며 통과하는 면적을 변화시켜 통과하는 슬러지의 양을 조절할 수 있다. As shown in FIG. 7, the ball valve has a worm gear 361 rotated by a driving force transmitted from a driving motor (not shown), a worm wheel gear 362 engaged with the worm gear 361, and a worm wheel gear 362. It is preferable to include a ball 365 connected to the injection hole 352 to adjust the injection cross-sectional area. The ball 365 has a spherical shape and a through hole 366 is formed at the center thereof and is connected by the worm wheel gear 362 and the connecting rod 367. When the driving motor is operated, the ball 365 rotates. When the through hole 366 and the injection hole 352 are aligned in a line, hot sludge can be injected through the injection hole 352 and the through hole 366 and the injection hole ( When the 352 is 90 degrees, the injection hole 352 is blocked and hot sludge cannot be injected. Therefore, the amount of sludge passing through the opening 366 and the injection hole 352 may be adjusted by changing the area to pass therethrough.
고온 슬러지 주입부(360)에 의해 주입된 고온 슬러지는 자신이 가지는 증기압과 고온 열교환 용기(350)의 내부 압력의 차이에 의해서 고온의 수증기가 순간적으로 발생되면서 빠른 속도로 냉각된다.The hot sludge injected by the hot sludge injection unit 360 is cooled at a high speed while hot steam is instantaneously generated by a difference between a vapor pressure thereof and an internal pressure of the high temperature heat exchange vessel 350.
고온 열교환 용기(350) 내에서 발생된 고온의 수증기는 연통부(340)를 통하여 저온 열교환 용기(310)로 이동하여 저온 열교환 용기(310)에서 이송되는 저온 슬러지와 접촉하여 응축하여 급속하게 물로 변한다. 고온 열교환 용기(350)에서 발생한 수증기의 발생량과 저온 열교환 용기(310)에서 사용되는 수증기 응축량이 균형을 이루어 용기(310)(350)의 내부압력은 일정하게 유지된다. The high temperature water vapor generated in the high temperature heat exchange vessel 350 moves to the low temperature heat exchange vessel 310 through the communicating portion 340, contacts with the low temperature sludge conveyed from the low temperature heat exchange vessel 310, and rapidly changes into water. . The amount of steam generated in the high temperature heat exchange vessel 350 and the amount of water vapor condensation used in the low temperature heat exchange vessel 310 are balanced so that the internal pressure of the vessels 310 and 350 is kept constant.
한편, 용기본체(351)를 거치면서 냉각된 고온 슬러지는 배출구(357)를 통하여 외부로 배출된다. 고온 슬러지 배출부(370)는 고온 슬러지의 상기 배출을 조절하는데, 고온 슬러지 주입부(360)와 동일한 구조를 가진다. 따라서, 고온 슬러지 배출부(370)는 볼밸브의 개폐 정도를 조절하여 고온 슬러지를 배출여부 및 배출량을 조절할 수 있다. On the other hand, the hot sludge cooled while passing through the container body 351 is discharged to the outside through the outlet 357. The hot sludge discharge part 370 controls the discharge of the hot sludge, and has the same structure as the hot sludge injection part 360. Therefore, the high temperature sludge discharge part 370 may control whether the hot sludge is discharged and the discharge amount by adjusting the opening and closing degree of the ball valve.
바람직하게, 고온 슬러지 주입부(360)와 고온 슬러지 배출부(370)는 제어부재에 의해서 제어된다. 상기 제어부재는 고온 열교환 용기(350) 내의 압력을 감지하는 압력센서(미도시)와 고온 슬러지의 수위를 감지하는 수위센서(미도시)로부터 신호를 전달받아서 고온 슬러지 주입부(360) 및 고온 슬러지 배출부(370)를 제어한다. 제어부재가 고온 슬러지 주입부(360) 및 고온 슬러지 배출부(370)를 제어하기 때문에 용기본체(351) 내부의 압력을 일정하게 유지할 수 있다.Preferably, the hot sludge injection unit 360 and the hot sludge discharge unit 370 are controlled by the control member. The control member receives a signal from a pressure sensor (not shown) for detecting the pressure in the high temperature heat exchange vessel 350 and a water level sensor (not shown) for detecting the level of the hot sludge, so that the hot sludge injection unit 360 and the hot sludge The discharge unit 370 is controlled. Since the control member controls the high temperature sludge injection unit 360 and the high temperature sludge discharge unit 370, the pressure inside the container body 351 may be kept constant.
이와 같이, 고온 열교환 용기(350)의 내부 압력이 일정하게 유지됨으로써 고온 열교환 용기(350)의 내측으로 연속적으로 주입되는 고온 슬러지의 압력(고압)과 용기(355) 내부 압력(저압)의 압력차에 의해 주입된 고온 슬러지에서 연속적으로 수증기가 발생할 수 있다.As such, the pressure difference between the pressure (high pressure) of the hot sludge continuously injected into the high temperature heat exchange container 350 and the internal pressure (low pressure) of the container 355 by continuously maintaining the internal pressure of the high temperature heat exchange container 350 are maintained. Water vapor may be generated continuously in the hot sludge injected by.
고온 슬러지가 냉각되면서 만들어진 수증기는 연통부(340)를 통하여 저온 열교환 용기(310)로 이동되는데, 저온 열교환 용기(310)로 이동된 수증기는 저온 슬러지에 접촉하여 급속하게 응축되어 물로 변하기 때문에 용기(310)(350)의 내부압력은 일정하게 유지된다. The steam produced while the high temperature sludge is cooled is moved to the low temperature heat exchange vessel 310 through the communicating portion 340. The water vapor transferred to the low temperature heat exchange vessel 310 contacts the low temperature sludge and rapidly condenses to change into water. The internal pressure of 310 and 350 is kept constant.
저온 열교환 용기(310)에서 수증기를 응축하는 방법으로는 용기(310)에 수증기를 먼져 채우고 그 수증기 속으로 저온 슬러지를 주입하고 저온 슬러지 이송유니트(330)에 의하여 저온 슬러지가 이동하면서 수증기와 접촉하여 수증기가 응축되도록 하는 슬러지 주입방식과, 용기(310)에 저온 슬러지를 먼저 채우고 상기 저온 슬러지 속으로 수증기를 주입하여 수증기가 응축되도록 하는 증기 주입 방식의 2가지가 있다.As a method of condensing the water vapor in the low temperature heat exchange vessel 310, filling the water vapor into the vessel 310 first, injecting the low temperature sludge into the water vapor, and the low temperature sludge is moved by the low temperature sludge transfer unit 330 to be in contact with the water vapor. There are two types of sludge injection method for condensing water vapor and steam injection method for filling the vessel 310 with cold sludge first and injecting water vapor into the cold sludge to condense the water vapor.
먼저, 상기 슬러지 주입방식으로, 저온 열교환 용기(310)는 제1 주입구(311)에 연결된 가압 주입유니트(380), 주입된 저온 슬러지를 분산시키는 분배부재(320), 분배부재(320)의 하측에 설치되어 저온 슬러지를 아래로 이송하는 저온 슬러지 이송유니트(330) 및, 배출구(318)에 연결된 저온 슬러지 배출유니트(390)를 포함한다. 상기 가압 주입유니트(380)와 저온 슬러지 배출유니트(390)는 전술한 가압 주입유니트(420)와 실질적으로 동일한 구성을 가지므로 여기서는 가압 주입유니트(380)와 저온 슬러지 배출유니트(390)에 대한 설명을 생략하기로 한다. First, in the sludge injection method, the low temperature heat exchange container 310 is a pressurized injection unit 380 connected to the first injection hole 311, a distribution member 320 dispersing the injected low temperature sludge, and a lower side of the distribution member 320. It is installed in the cold sludge transport unit for transporting the cold sludge down 330, and the cold sludge discharge unit 390 connected to the outlet 318. Since the pressure injection unit 380 and the cold sludge discharge unit 390 have substantially the same configuration as the pressure injection unit 420 described above, the description of the pressure injection unit 380 and the cold sludge discharge unit 390 is described here. Will be omitted.
분배부재(320)는 저온 슬러지가 수증기와 잘 혼합이 될 수 있도록 저온 슬러지를 가늘게 분산시켜 저온 슬러지 이송유니트(330)로 공급한다.The distribution member 320 disperses the low temperature sludge thinly so that the low temperature sludge can be mixed with the water vapor and supplies it to the low temperature sludge transport unit 330.
분배부재(320)는 저온 슬러지가 주입되는 고정 주입관(312), 고정 주입관(312)과 연통되며 회전하는 분배탱크(325), 고정 주입관(312)과 분배탱크(325)를 연결하기 위한 연결부(313) 및, 분배탱크(325)의 중심축에서 이격된 위치에 설치되는 노즐(326)을 포함한다. Dispensing member 320 is connected to the fixed injection tube 312, the fixed injection tube 312 is injected into the cold sludge, the rotating distribution tank 325, connecting the fixed injection tube 312 and the distribution tank 325 Connection portion 313 for, and the nozzle 326 is installed in a position spaced apart from the central axis of the distribution tank 325.
고정 주입관(312)은 가압 주입유니트(380)의 가압배출구와 연통되어 있다. 따라서, 고정 주입관(312)을 통하여 저온 슬러지가 유입된다. 고정 주입관(312)을 통과한 슬러지는 분배탱크(325)로 유입된다. 분배탱크(325)로 유입된 저온 슬러지는 노즐(326)에 의해 저온 슬러지 이송유니트(330)로 배출된다.The fixed injection pipe 312 communicates with the pressure discharge port of the pressure injection unit 380. Therefore, the cold sludge flows in through the fixed injection tube 312. Sludge passing through the fixed injection pipe 312 is introduced into the distribution tank (325). The cold sludge introduced into the distribution tank 325 is discharged to the cold sludge conveying unit 330 by the nozzle 326.
이때, 연결부(313), 예를 들면 로터리 조인트는 고정된 고정 주입관(312)과 회전하는 분배탱크(325)를 연결시킨다. 연결부(313)의 외주면에는 분배탱크(325)를 회전시키기 위한 웜휠기어가 형성된다. 상기 웜휠기어는 웜기어(314)에 의해서 회전된다. 따라서, 웜기어(314)와 웜휠기어에 의해서 연결부(313)가 회전되면 분배탱크(325)가 회전되기 때문에 저온 슬러지를 골고루 분산시킬 수 있다. At this time, the connection portion 313, for example, a rotary joint connects the fixed fixed injection tube 312 and the rotating distribution tank 325. On the outer circumferential surface of the connecting portion 313, a worm wheel gear for rotating the distribution tank 325 is formed. The worm wheel gear is rotated by the worm gear 314. Therefore, when the connection portion 313 is rotated by the worm gear 314 and the worm wheel gear, the distribution tank 325 is rotated, so that the low temperature sludge can be evenly distributed.
저온 슬러지 이송유니트(330)는, 도 6과 도 8에 나타난 바와 같이, 저온 슬러지를 용기(310)의 중심 방향으로 당기면서 하부로 이송시키기 위한 제1 회전체(331), 저온 슬러지를 용기(310)의 내벽방향으로 밀어내면서 하부로 이송시키 위한 제2 회전체(335) 및, 제1 회전체(331)와 제2 회전체(335)를 회전시키는 회전축(339)을 포함한다.As shown in FIGS. 6 and 8, the low temperature sludge conveying unit 330 includes a first rotating body 331 and a low temperature sludge container for conveying the low temperature sludge downward while pulling the sludge in the center direction of the container 310. And a second rotating body 335 for moving downward while being pushed in the inner wall direction of the 310, and a rotating shaft 339 for rotating the first rotating body 331 and the second rotating body 335.
제1 회전체(331)는 용기(310) 내면에 밀착고정되고 중심부에 제1 토출구(334)가 형성된 제1 받침대(332)와, 제1 받침대(332)의 상면에서 회전축(339)에 회전가능하도록 설치되어 제1 토출구(334) 측으로 저온 슬러지를 끌어들이도록 형성된 제1 회전날개(333)를 포함한다.The first rotating body 331 is fixed to the inner surface of the container 310 and is rotated on the rotating shaft 339 on the first pedestal 332 and the upper surface of the first pedestal 332, the first discharge port 334 is formed in the center It is installed so as to include a first rotary blade 333 formed to draw the cold sludge toward the first discharge port 334.
제2 회전체(335)는 용기(310) 내면에 밀착고정되고 외곽부에 제2 토출구(338)가 형성된 제2 받침대(336)와, 제2 받침대(336)의 상면에서 회전축(339)에 회전가능하도록 설치되어 제2 토출구(338)로 저온 슬러지를 밀어내도록 형성된 제2 회전날개(337)를 포함한다. 제1 회전체(331)와 제2 회전체(335)는 교대로 복수 개가 설치되어 층을 이루고 있다. The second rotating body 335 is fixed to the inner surface of the container 310 and the second pedestal 336 having a second discharge port 338 formed on the outer portion thereof, and the rotating shaft 339 on the upper surface of the second pedestal 336. It is rotatably installed and includes a second rotary blade 337 formed to push the cold sludge to the second discharge port 338. A plurality of first rotating bodies 331 and second rotating bodies 335 are alternately formed to form a layer.
제1 회전날개(333)와 제2 회전날개(337)는 동일한 회전축(339)에 의하여 같은 방향으로 회전되지만, 날개(333)(337)의 굽어진 방향이다. 그리고, 회전축(339)은 분배부재(320)의 하면과 연결되어 분배부재(320)와 함께 회전하게 된다. The first rotary blade 333 and the second rotary blade 337 are rotated in the same direction by the same rotary shaft 339, but are the bent direction of the blades 333, 337. In addition, the rotation shaft 339 is connected to the lower surface of the distribution member 320 to rotate together with the distribution member 320.
저온 열교환 용기(310)에서의 저온 슬러지의 흐름을 살펴보면, 저온 슬러지는 가압 주입유니트(380)에 의해 주입구(311)를 통해 주입되며, 이후 저온 슬러지는 분배부재(320)를 거쳐 분배되고 저온 슬러지 이송유니트(330)에 의해 교반되면서 이송되며, 상기 교반 및 이송 도중에 접촉하는 수증기의 응축에 의하여 가열된 후 저온 슬러지 배출유니트(390)를 통하여 배출된다.Looking at the flow of cold sludge in the low temperature heat exchange vessel 310, the cold sludge is injected through the injection port 311 by the pressure injection unit 380, after which the cold sludge is distributed through the distribution member 320 and the cold sludge It is transported while being agitated by the transfer unit 330, and is heated by the condensation of water vapor in contact during the stirring and transfer, and then discharged through the low temperature sludge discharge unit 390.
한편, 본 발명에 따른 증기식 열교환 유니트(300)는 열교환 온도를 여러 단계로 만들어 열효율을 높일 수 있도록 다수 개의 증기식 열교환 유니트(300)가 직렬로 연결되도록 배치될 수 있다. 다수 개의 증기식 열교환 유니트(300)가 직렬로 배치됨으로써 고온 슬러지와 저온 슬러지의 열교환이 반복될 수 있으며, 이에 따라 저온 슬러지를 가열하여 가수분해시키는 가열 유니트(400)에서 저온 슬러지의 가수분해에 필요한 열에너지의 공급을 현저히 절감시킬 수 있다.On the other hand, the steam heat exchange unit 300 according to the present invention may be arranged such that a plurality of steam heat exchange unit 300 is connected in series to increase the heat efficiency by making the heat exchange temperature in several stages. Since a plurality of steam heat exchange units 300 are arranged in series, heat exchange between the hot sludge and the cold sludge may be repeated, and thus, required for hydrolysis of the cold sludge in the heating unit 400 for heating and hydrolyzing the cold sludge. The supply of thermal energy can be significantly reduced.
그러면, 증기식 열교환 유니트(300)의 작동과정을 설명하기로 한다.Then, the operation of the steam heat exchange unit 300 will be described.
주입구(352)를 통해서 고온 열교환 용기(350)에 주입된 고온 슬러지는 압력 차이로 인해 수증기를 발생시키면서 냉각된다. 상기 수증기는 연통부(340)를 통하여 저온 열교환 용기(310)로 이동된다. The hot sludge injected into the high temperature heat exchange vessel 350 through the inlet 352 is cooled while generating steam due to the pressure difference. The water vapor is moved to the low temperature heat exchange vessel 310 through the communicating portion 340.
냉각된 고온 슬러지는 고온 슬러지 배출부(370)를 통하여 접촉식 열교환 유니트(200)로 배출되거나 다른 증기식 열교환 유니트(300)의 주입구(352)로 이동된다. The cooled hot sludge is discharged to the contact heat exchange unit 200 through the hot sludge discharge unit 370 or moved to the inlet 352 of the other steam heat exchange unit 300.
한편, 저온 슬러지는 주입구(311)를 통하여 주입되고 분배부재(320)에 의해 분산된 후, 저온 슬러지 이송유니트(330)에 의해서 아래로 이동된다. On the other hand, the cold sludge is injected through the injection hole 311 and dispersed by the distribution member 320, it is moved down by the cold sludge transport unit 330.
분배부재(320)는 저온 슬러지를 저온 슬러지 이송유니트(330)에 골고루 분산되도록 한다. 저온 슬러지 이송유니트(330)의 제1,2 회전체(331)(335)는 저온 슬러지를 교반하여 상기 수증기와 저온 슬러지가 최대한 접촉하도록 한다. The distribution member 320 allows the low temperature sludge to be evenly distributed to the low temperature sludge transport unit 330. The first and second rotating bodies 331 and 335 of the low temperature sludge transport unit 330 may stir the low temperature sludge so that the water vapor and the low temperature sludge contact each other.
수증기에 의해 가열되면서 아래로 이동된 저온 슬러지는 저온 슬러지 배출유니트(390)에 의해 가열 유니트(400)로 배출되거나 다른 증기식 열교환 유니트(300)의 주입구(311)로 이동된다.The cold sludge moved downward while being heated by steam is discharged to the heating unit 400 by the cold sludge discharge unit 390 or moved to the inlet 311 of the other steam type heat exchange unit 300.
도 9는 본 발명에 따른 슬러지 가수분해 장치에 구비된 증기식 열교환 유니트의 제2 실시예를 보여주는 사시도이다. 상기 증기식 열교환 유니트(300a)는 증기 주입 방식을 사용한다.Figure 9 is a perspective view showing a second embodiment of the steam heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention. The steam heat exchange unit 300a uses a steam injection method.
증기식 열교환 유니트(300a)는 고온 슬러지가 유입되어 저장된 후 배출되는 고온 열교환 용기(350a), 저온 슬러지가 유입되어 저장된 후 배출되고 저온 슬러지를 교반하는 교반부재가 내부에 설치된 저온 열교환 용기(310a) 및, 고온 열교환 용기(350a)의 수증기를 저온 열교환 용기(310a)에 공급하는 연통부를 포함한다. The steam heat exchange unit 300a includes a high temperature heat exchanger container 350a through which hot sludge flows in and stored therein, and a low temperature heat exchanger container 310a in which a stirring member for stirring and storing the low temperature sludge is introduced therein. And a communicating unit for supplying the water vapor of the high temperature heat exchange vessel 350a to the low temperature heat exchange vessel 310a.
고온 열교환 용기(350a)는 용기본체(351a)와, 용기본체(351a)에 고온 슬러지를 공급하는 고온슬러지 공급관(352a)과, 고온슬러지 공급관(352a)에 설치되어 고온 슬러지의 공급을 조절하는 고온슬러지 주입부(360a)와, 용기본체(351a)로부터 고온 슬러지를 배출하는 고온슬러지 배출관(357a)을 구비한다. 고온슬러지 주입부(360a)는 전술한 고온슬러지 주입부(360)와 동일한 구성을 가지므로 여기서는 자세한 설명을 생략하기로 한다. The high temperature heat exchange container 350a is installed in the container body 351a, the high temperature sludge supply pipe 352a for supplying the hot sludge to the container body 351a, and the high temperature sludge supply pipe 352a to control the supply of the hot sludge. A sludge injection unit 360a and a high temperature sludge discharge pipe 357a for discharging hot sludge from the container body 351a are provided. Since the high temperature sludge injection unit 360a has the same configuration as the above-described high temperature sludge injection unit 360, a detailed description thereof will be omitted.
한편, 도 10에 나타난 바와 같이 다수 개의 증기식 열교환 유니트(300a)가 직렬로 연결된 경우에는 고온슬러지 공급관(352a)이 이웃하는 증기식 열교환 유니트(300a)의 고온 슬러지 배출관(357a)과 연결되거나 가열유니트(400)와 연결되고, 고온 슬러지 배출관(357a)은 또 다른 이웃하는 증기식 열교환 유니트(300a)의 고온 슬러지 공급관(352a)과 연결되거나 접촉식 열교환유니트(200)와 연결된다. On the other hand, when a plurality of steam heat exchange unit (300a) is connected in series as shown in FIG. 10, the hot sludge supply pipe (352a) is connected to the hot sludge discharge pipe (357a) of the neighboring steam heat exchange unit (300a) or heated It is connected to the unit 400, the hot sludge discharge pipe (357a) is connected to the hot sludge supply pipe (352a) of another neighboring steam heat exchange unit (300a) or the contact heat exchange unit (200).
가열유니트(400)로부터 배출된 고온 슬러지는 고온슬러지 공급관(352a)을 통하여 용기본체(351a)에 공급된다. 이 때, 고온 슬러지가 가진 고압과 용기본체(351a) 내부압력의 차이로 인해서 고온 슬러지는 수증기를 발생시키면서 냉각된다. 상기 수증기는 연통부를 경유하여 저온 열교환 용기(310a)에 공급된다. The hot sludge discharged from the heating unit 400 is supplied to the container body 351a through the hot sludge supply pipe 352a. At this time, due to the difference between the high pressure of the hot sludge and the internal pressure of the container body 351a, the hot sludge is cooled while generating steam. The water vapor is supplied to the low temperature heat exchange vessel 310a via the communicating portion.
바람직하게, 용기본체(351a)에는 고온 슬러지의 수위를 측정하는 수위센서(미도시)와, 압력을 측정하는 압력센서(미도시)가 설치된다. 수위센서는 용기본체(351a)에서 고온 슬러지의 수위가 일정 높이에 도달하면 그 신호를 제어부재(미도시)에 전달하고, 제어부재는 고온슬러지 배출관(357a)의 밸브를 개방하여 고온 슬러지를 배출한다. 배출된 고온 슬러지는 접촉식 열교환 유니트(200)로 이동된다. 한편, 다수 개의 증기식 열교환 유니트(300a)가 직렬로 연결된 경우에 배출된 고온 슬러지는 이웃하는 증기식 열교환 유니트(300a)의 고온 슬러지 공급관(352a)으로 이동하거나 접촉식 열교환유니트(200)로 이동된다. Preferably, the container body 351a is provided with a water level sensor (not shown) for measuring the level of hot sludge, and a pressure sensor (not shown) for measuring the pressure. The water level sensor transmits a signal to a control member (not shown) when the water level of the hot sludge reaches a predetermined height in the container body 351a, and the control member discharges the hot sludge by opening the valve of the hot sludge discharge pipe 357a. do. The discharged hot sludge is moved to the contact heat exchange unit 200. Meanwhile, the high temperature sludge discharged when a plurality of steam heat exchange units 300a are connected in series moves to a hot sludge supply pipe 352a of a neighboring steam heat exchange unit 300a or to a contact heat exchange unit 200. do.
상기 압력센서는 용기본체(351a)의 내부압력이 높으면 고온슬러지 주입부(360a)의 개폐정도를 조절하여 고온 슬러지의 유입을 줄이거나 중단시키고, 용기본체(351a)의 내부압력이 낮으면 고온슬러지 주입부(360a)의 개폐정도를 조절하여 고온 슬러지의 유입을 늘린다. 상기 증기 주입 방식에서는 발생하는 증기의 압력이 응축하는 저온 슬러지 용기(310)의 압력보다 높아야 하므로 증기 주입에 필요한 압력에 상응하는 고온 용기의 증기압이 유지되도록 고온 용기의 내부압력을 제어한다.The pressure sensor reduces or stops the inflow of high temperature sludge by adjusting the opening and closing degree of the hot sludge injection part 360a when the internal pressure of the container body 351a is high, and high temperature sludge when the internal pressure of the container body 351a is low. The inflow of the hot sludge is increased by adjusting the opening and closing degree of the injection part 360a. In the steam injection method, since the pressure of the generated steam must be higher than the pressure of the cold sludge container 310 to condense, the internal pressure of the hot container is controlled to maintain the vapor pressure of the hot container corresponding to the pressure required for steam injection.
저온 열교환 용기(310a)는 용기본체(312a)와, 용기본체(312a)의 저온 슬러지 압력을 유지하며 수증기 주입에 필요한 저온 슬러지의 압축공간을 제공하는 압력조절용 보조용기(319a)와, 용기본체(312a)에 저온 슬러지를 공급하는 저온슬러지 공급관(311a)과, 용기본체(312a)로부터 저온 슬러지를 배출하는 저온슬러지 배출관(318a)을 구비한다. 저온슬러지 공급관(311a)에는 저온 슬러지의 주입을 위해서 저온 슬러지를 가압하는 가압펌프(380a)가 설치될 수도 있다. The low temperature heat exchange vessel 310a is a vessel body 312a, a pressure regulating auxiliary vessel 319a for maintaining a low temperature sludge pressure of the vessel body 312a and providing a compression space for the cold sludge required for steam injection, and a vessel body ( And a low temperature sludge supply pipe 311a for supplying the low temperature sludge to the 312a), and a low temperature sludge discharge tube 318a for discharging the low temperature sludge from the container body 312a. The low temperature sludge supply pipe 311a may be provided with a pressure pump 380a for pressurizing the low temperature sludge for injection of the low temperature sludge.
용기본체(312a)에는 저온 슬러지가 가득 채워져 있으며, 상기 수증기는 노즐(320a)에 의해서 용기본체(312a)에 수용된 저온 슬러지 내부로 분사된다. 분사된 수증기와 슬러지의 접촉 면적이 증가하도록 노즐(320a)의 수량을 증가시키고 내부를 교반하여 혼합 속도를 증가시켜 빠르게 저온 슬러지를 가열할 수 있다. The container body 312a is filled with cold sludge, and the water vapor is injected into the cold sludge contained in the container body 312a by the nozzle 320a. The low temperature sludge may be rapidly heated by increasing the amount of the nozzle 320a to increase the contact area between the injected steam and the sludge, and stirring the inside to increase the mixing speed.
상기 교반부재는 구동모터(315a)에 의해 회전되어 상기 저온 슬러지 공간과 상기 수증기 공간을 왕복하면서 저온 슬러지를 교반한다. The stirring member is rotated by the driving motor 315a to stir the cold sludge while reciprocating the cold sludge space and the steam space.
한편, 도 10에 나타난 바와 같이 다수 개의 증기식 열교환 유니트(300a)가 직렬로 연결된 경우에는 저온슬러지 공급관(311a)은 이웃하는 증기식 열교환 유니트(300a)의 저온 슬러지 배출관(318a)과 연결되거나 접촉식 열교환유니트(200)에 연결되고, 저온 슬러지 배출관(318a)은 또 다른 이웃하는 증기식 열교환 유니트(300a)의 저온 슬러지 공급관(311a)과 연결되거나 가열유니트(400)에 연결된다. On the other hand, when a plurality of steam heat exchange unit (300a) is connected in series as shown in Figure 10, the cold sludge supply pipe (311a) is connected to or contact with the cold sludge discharge pipe (318a) of the neighboring steam heat exchange unit (300a) It is connected to the heat exchange unit 200, the cold sludge discharge pipe (318a) is connected to the cold sludge supply pipe (311a) of another neighboring steam heat exchange unit (300a) or connected to the heating unit (400).
연통부는 용기본체(351a)(312a)를 서로 연결하는 연결관(340a)과, 연결관(340a)에 소정 간격으로 설치되어 용기본체(312a)의 내부로 수증기를 분사하는 노즐(320a)을 구비한다. 연결관(340a)에는 연결관(340a)을 개폐하는 개폐용 밸브(341a)와, 수증기의 공급량을 조절하는 조절밸브(342a)가 설치될 수 있다. The communicating unit includes a connecting pipe 340a for connecting the container bodies 351a and 312a to each other, and a nozzle 320a installed at the predetermined intervals at the connecting pipe 340a to spray water vapor into the container body 312a. do. The connecting pipe 340a may be provided with an opening / closing valve 341a for opening and closing the connecting pipe 340a, and a control valve 342a for controlling a supply amount of steam.
압력조절용 보조용기(319a)는 그 내부 공간에 격막이 존재하고, 상기 격막의 내측에는 압축공기가 채워져 있다. 상기 격막은 용기본체(312a)의 내부압력에 따라 슬라이딩하여 이동될 수 있다. 즉, 상기 격막은 용기본체(312a)에 수증기가 유입 또는 배출되기 때문에 발생하는 용기본체(312a)의 내부압력 변화를 완충한다. 다시 말해서, 수증기가 유입되기 위한 공간을 확보하는 과정에서 용기본체(312a)의 내부압력이 증가하면 상기 격막이 압력조절용 보조용기(319a) 내부쪽으로 이동하여 상기 내부압력의 증가를 완충한다. The pressure regulating auxiliary container 319a has a diaphragm in its inner space, and compressed air is filled inside the diaphragm. The diaphragm may be moved by sliding according to the internal pressure of the container body 312a. That is, the diaphragm buffers a change in the internal pressure of the container body 312a generated due to the inflow or discharge of water vapor into the container body 312a. In other words, when the internal pressure of the container body 312a increases in the process of securing a space for the water vapor to be introduced, the diaphragm moves to the inside of the pressure regulating auxiliary container 319a to buffer the increase in the internal pressure.
그러면, 증기식 열교환 유니트(300a)의 작동과정을 설명하기로 한다.Then, the operation of the steam heat exchange unit 300a will be described.
가열유니트(400)로부터 배출된 고온슬러지는 고온슬러지 공급관(352a)을 통하여 용기본체(351a)에 주입된다. 이 때, 고온슬러지 주입부(360a)가 고온 슬러지의 주입여부 및 주입량을 조절한다. 고온슬러지 주입부(360a)는 압력센서 및 수위센서로부터 전달된 신호에 따라 고온 슬러지의 주입여부 및 주입량을 조절한다. The hot sludge discharged from the heating unit 400 is injected into the container body 351a through the hot sludge supply pipe 352a. At this time, the hot sludge injection unit 360a controls the injection and injection amount of the hot sludge. The hot sludge injection unit 360a adjusts the injection and injection amount of the hot sludge according to the signals transmitted from the pressure sensor and the water level sensor.
용기본체(351a)에 주입된 고온 슬러지는 압력차이에 의해 수증기를 발생시키면서 냉각되고, 발생된 상기 수증기는 연결관(340a)과 노즐(320a)을 통하여 용기본체(312a)의 저온 슬러지 내부로 분사된다. 냉각된 고온 슬러지는 일정 수위가 되면 고온슬러지 배출관(357a)을 통해서 배출된다. 배출된 상기 고온 슬러지는 이웃하는 증기식 열교환 유니트(300a)로 이동되거나 접촉식 열교환 유니트(200)로 이동된다. The hot sludge injected into the container body 351a is cooled while generating steam due to the pressure difference, and the generated steam is injected into the low temperature sludge of the container body 312a through the connection pipe 340a and the nozzle 320a. do. The cooled hot sludge is discharged through the hot sludge discharge pipe 357a when the predetermined temperature is reached. The discharged hot sludge is moved to the neighboring steam heat exchange unit 300a or the contact heat exchange unit 200.
한편, 저온 슬러지는 저온슬러지 공급관(311a)을 통하여 용기본체(312a)에 주입된다. 이 때, 저온 슬러지는 유동성이 불량하기 때문에 가압펌프(380a)를 이용하는 것이 바람직하다. 용기본체(312a)에 주입된 저온 슬러지는 수증기와 접촉하면서 가열된다. 교반부재는 저온 슬러지를 교반하여 저온 슬러지가 빠르게 가열되도록 한다. 이와 같은 증기접촉가열에 의해서 가열된 저온 슬러지는 저온 슬러지 배출관(318a)을 통하여 배출된다. 배출된 저온 슬러지는 이웃하는 이웃하는 증기식 열교환 유니트(300a)로 이동되거나 가열유니트(400)로 이동된다.Meanwhile, the low temperature sludge is injected into the container body 312a through the low temperature sludge supply pipe 311a. At this time, since the low temperature sludge has poor fluidity, it is preferable to use the pressure pump 380a. The cold sludge injected into the container body 312a is heated while being in contact with water vapor. The stirring member stirs the cold sludge so that the cold sludge is heated quickly. The cold sludge heated by the steam contact heating is discharged through the cold sludge discharge pipe 318a. The discharged low temperature sludge is moved to a neighboring neighboring steam heat exchange unit 300a or to a heating unit 400.
한편, 본 발명에 따른 증기식 열교환유니트(300)(300a)는 상기 제1,2 실시예에 한정되지 않고 본 발명의 기술적 사상을 구현할 수 있는 범위 내에서 다양하게 변형될 수 있다. 예를 들어, 제1 실시예의 저온 슬러지 이송유니트는 일측 끝단이 저온 열교환 용기(310)의 주입구(311)와 대응되는 위치에 설치되고, 타측 끝단은 저온 열교환 용기(310)의 배출구(318)와 대응되는 위치에 설치되는 컨베이어 벨트를 포함할 수 있다.On the other hand, the steam heat exchange unit 300, 300a according to the present invention is not limited to the first and second embodiments can be variously modified within the scope that can implement the technical idea of the present invention. For example, in the low temperature sludge transport unit of the first embodiment, one end thereof is installed at a position corresponding to the inlet 311 of the low temperature heat exchange vessel 310, and the other end thereof is disposed with the outlet 318 of the low temperature heat exchange vessel 310. It may include a conveyor belt installed at a corresponding position.
저온 슬러지가 컨베이어 벨트에서 이송되면서 고온 슬러지에서 발생한 수증기와 접촉하게 된다. 이때, 저온 슬러지와 접촉한 수증기는 응축되고, 상기 수증기의 응축으로 인하여 저온 슬러지의 온도는 상승하게 된다. 고온 슬러지는 수증기의 발생으로 인하여 냉각되고, 저온 슬러지는 수증기의 응축열에 의하여 가열된다.As the cold sludge is transported on the conveyor belt, it comes into contact with water vapor generated from the hot sludge. At this time, the water vapor in contact with the cold sludge is condensed, the temperature of the cold sludge is increased due to the condensation of the steam. The hot sludge is cooled due to the generation of steam, and the cold sludge is heated by the heat of condensation of the steam.
도 11 내지 도 14는 접촉식 열교환 유니트의 제1 실시예를 보여주는 도면들이다.11 to 14 show a first embodiment of a contact heat exchange unit.
접촉식 열교환 유니트(200)는 가수분해된 고온 슬러지가 이동하는 회전하는 고온 슬러지관과, 가수분해될 저온 슬러지가 이동하는 저온 슬러지 이동부를 포함한다. The contact heat exchange unit 200 includes a rotating high temperature sludge tube through which the hydrolyzed hot sludge moves, and a low temperature sludge moving unit through which the low temperature sludge to be hydrolyzed moves.
고온 슬러지관은 제1,2 고온 슬러지관(210a)(220a) 및, 제1,2 고온 슬러지관(210a)(220a)을 회전시키는 회전수단을 포함한다. 고온 슬러지는 증기식 열교환 유니트(300)로부터 배출된 것일 수 있으며, 보통 100도가 훨씬 넘는 고온 상태에서 배출되는 경우는 높은 증기압에 의하여 자체 압력으로 주입되고, 온도가 낮은 경우는 주입펌프(219a)에 의하여 제1,2 고온 슬러지관(210a)(220a)에 각각 주입된다.The high temperature sludge tube includes first and second high temperature sludge tubes 210a and 220a and rotation means for rotating the first and second high temperature sludge tubes 210a and 220a. The hot sludge may be discharged from the steam type heat exchange unit 300, and in general, when discharged at a high temperature of more than 100 degrees, the high temperature sludge is injected at its own pressure by a high vapor pressure, and when the temperature is low, it is injected into the injection pump 219a. By the first and second high temperature sludge pipes 210a and 220a, respectively.
제1,2 고온 슬러지관(210a)(220a)의 외측면에는 제1,2 돌출부(211a)(221a)가 형성되는데, 제1,2 고온 슬러지관(210a)(220a)은 제1,2 돌출부(211a)(221a)가 서로 맞물리면서 회전할 수 있다. 제1,2 고온 슬러지관(210a)(220a)은 열전도성이 양호한 금속으로 만들어지는 것이 바람직하다. First and second protrusions 211a and 221a are formed on the outer surfaces of the first and second high temperature sludge pipes 210a and 220a, and the first and second high temperature sludge pipes 210a and 220a are first and second. The protrusions 211a and 221a may rotate while being engaged with each other. The first and second high temperature sludge tubes 210a and 220a are preferably made of a metal having good thermal conductivity.
제1,2 돌출부(211a)(221a)는 제1,2 고온 슬러지관(210a)(220a)이 회전되는 경우에 저온 슬러지를 제1 돌출부(211a) 사이와 제2 돌출부(221a) 사이에 수용한 상태에서 저온 슬러지를 가열하면서 저온 슬러지 유입구(261a)에서부터 배출구(262a) 쪽으로 효과적으로 이동시킨다. 제 1,2 고온 슬러지관(210a)(220a)이 서로 만나는 곳에서 제1 돌출부(211a)와 제2 돌출부(221a)가 서로 맞물리게 되는데, 이 과정에서 제1,2 돌출부(211a)(221a)가 만날 때 제1 돌출부(211a) 사이에 수용되어 있던 저온 슬러지와 제2 돌출부(221a) 사이에 수용되어 있던 저온 슬러지는 배출방향으로 밀려나가게 되며, 제1,2 돌출부(211a)(221a)가 떨어질 때에는 제1 돌출부(211a) 사이와 제2 돌출부(221a) 사이에 흡입압이 형성되어 저온 슬러지가 각각의 돌출부(211a)(221a) 사이에 수용된다. 이러한 과정을 통하여 저온 슬러지는 각각의 돌출부(211a)(221a) 사이에서 제 1,2 고온 슬러지관(210a)(220a)에 밀착되어 가열된다.The first and second protrusions 211a and 221a accommodate the low temperature sludge between the first and second protrusions 211a and 221a when the first and second high temperature sludge pipes 210a and 220a are rotated. The cold sludge is heated in one state and effectively moved from the cold sludge inlet 261a toward the outlet 262a. Where the first and second high temperature sludge tubes 210a and 220a meet each other, the first and second protrusions 211a and 221a are engaged with each other, and in this process, the first and second protrusions 211a and 221a are engaged. When the cold sludge accommodated between the first protrusion 211a and the low temperature sludge accommodated between the second protrusion 221a is pushed out in the discharge direction, the first and second protrusions 211a and 221a are When falling, suction pressure is formed between the first protrusion 211a and the second protrusion 221a so that the low temperature sludge is received between the protrusions 211a and 221a. Through this process, the cold sludge is heated in close contact with the first and second high temperature sludge pipes 210a and 220a between the protrusions 211a and 221a.
제1,2 고온 슬러지관(210a)(220a)의 내벽에는 요홈부와 돌기부가 반복적으로 형성되어 있어서 고온 슬러지의 교반 및 열전도에 유리하다.Inner walls of the first and second high temperature sludge pipes 210a and 220a are repeatedly formed with recesses and protrusions, which are advantageous for stirring and heat conduction of the high temperature sludge.
상기 회전수단은 제1 고온 슬러지관(210a)에 설치된 웜휠기어(240a)와, 구동모터(241a)에 의하여 회전되는 웜기어(242a) 및, 제1,2 고온 슬러지(210a)(220a)에 각각 설치된 맞물림 기어(243a)를 구비한다. The rotating means is respectively provided in the worm wheel gear 240a installed in the first high temperature sludge pipe 210a, the worm gear 242a rotated by the driving motor 241a, and the first and second high temperature sludge 210a and 220a. The engaging gear 243a provided is provided.
웜기어(242a)는 수직으로 설치되어 다수 개의 웜휠기어(240a)를 동시에 회전시킨다. 웜기어(242a)는 구동모터(241a)에 의하여 회전되고, 웜휠기어(240a)는 웜기어(242a)와 맞물려서 회전되어 제1 고온 슬러지관(210a)을 회전시킨다. 제1 고온 슬러지관(121)이 회전되면 맞물림 기어(243a)에 의하여 제1,2 고온 슬러지관(210a)(220a)이 함께 회전된다. Worm gear 242a is installed vertically to rotate a plurality of worm wheel gear (240a) at the same time. The worm gear 242a is rotated by the driving motor 241a, and the worm wheel gear 240a is rotated in engagement with the worm gear 242a to rotate the first high temperature sludge pipe 210a. When the first high temperature sludge tube 121 is rotated, the first and second high temperature sludge tubes 210a and 220a are rotated together by the engagement gear 243a.
제1,2 고온 슬러지관(210a)(220a)이 함께 회전되면, 제1,2 돌출부(211a)(221a)에 의하여 저온 슬러지가 저온 슬러지 유입구(261a)에서부터 이동공간(264a)을 경유하여 저온 슬러지 배출구(262a) 쪽으로 이동된다. When the first and second high temperature sludge pipes 210a and 220a are rotated together, the first and second high temperature sludge pipes 210a and 220a are cooled by the first and second protrusions 211a and 221a from the low temperature sludge inlet 261a via the moving space 264a. It is moved toward the sludge outlet 262a.
바람직하게, 상측과 하측의 제1 고온 슬러지관(210a)은 서로 연결되고, 상측과 하측의 제2 고온 슬러지관(220a)은 서로 연결된다. Preferably, the upper and lower first high temperature sludge pipes 210a are connected to each other, and the upper and lower second high temperature sludge pipes 220a are connected to each other.
즉, 하측 단위부재(260a)를 경유하는 제1 고온 슬러지관(210a)의 끝단은 상측의 단위부재(260a)를 경유하는 제1 고온 슬러지관(210a)의 끝단과 제1 연결관(270a)에 의하여 서로 연결된다. That is, the end of the first high temperature sludge pipe 210a passing through the lower unit member 260a is the end of the first high temperature sludge pipe 210a passing through the upper unit member 260a and the first connection pipe 270a. Are connected to each other.
또한, 하측 단위부재(260a)를 경유하는 제2 고온 슬러지관(220a)의 끝단은 상측 단위부재(260a)를 경유하는 제2 고온 슬러지관(220a)의 끝단과 제2 연결관(280a)에 의하여 서로 연결된다. In addition, an end of the second high temperature sludge pipe 220a passing through the lower unit member 260a may be connected to an end of the second high temperature sludge pipe 220a passing through the upper unit member 260a and the second connection pipe 280a. Are connected to each other.
제1 연결관(270a)과 제1 고온 슬러지관(210a) 사이에는 로터리 조인트가 설치되고, 제2 연결(280a)과 제2 고온 슬러지관(220a) 사이에도 로터리 조인트가 설치된다. A rotary joint is installed between the first connection pipe 270a and the first high temperature sludge pipe 210a, and a rotary joint is also installed between the second connection 280a and the second high temperature sludge pipe 220a.
로터리 조인트는 회전하는 관과 고정된 관을 서로 연결하기 위해서 사용되는 장치로서 널리 사용되고 있는 것이기 때문에 여기서는 설명을 생략하기로 한다.Since the rotary joint is widely used as a device used to connect a rotating tube and a fixed tube to each other, description thereof will be omitted.
이와 같이, 상,하측의 제1 고온 슬러지관(210a)이 서로 연결되고, 상,하측의 제2 고온 슬러지관(220a)이 서로 연결되어 있기 때문에 주입펌프(219a)에 의하여 주입된 고온 슬러지는 아래에서부터 위로 이동된다. 최상단의 제1,2 고온 슬러지관(210a)(220a)으로부터 배출된 고온 슬러지는 고액분리기(610)로 이동된다.As such, since the upper and lower first high temperature sludge tubes 210a are connected to each other, and the upper and lower second high temperature sludge tubes 220a are connected to each other, the high temperature sludge injected by the injection pump 219a is It is moved from the bottom up. The high temperature sludge discharged from the first and second high temperature sludge tubes 210a and 220a at the uppermost stage is moved to the solid-liquid separator 610.
저온 슬러지 이동부는 수직으로 적층된 다수의 단위부재(260a)를 포함하는데, 단위부재(260a)는 저온 슬러지 유입구(261a), 저온 슬러지 배출구(262a) 및, 이동공간(264a)을 포함한다.The low temperature sludge moving unit includes a plurality of unit members 260a stacked vertically, and the unit member 260a includes a low temperature sludge inlet 261a, a low temperature sludge outlet 262a, and a moving space 264a.
단위부재(260a)의 내부에는 공간이 형성되며, 상기 공간에는 제1,2 고온 슬러지관(210a)(220a)이 설치된다. 저온 슬러지 유입구(261a)를 통해서는 저온의 슬러지가 유입되게 되며, 저온 슬러지 배출구(262a)로는 가열된 저온 슬러지가 배출된다.A space is formed inside the unit member 260a, and the first and second high temperature sludge pipes 210a and 220a are installed in the space. Low temperature sludge is introduced through the cold sludge inlet 261a, and heated cold sludge is discharged through the cold sludge outlet 262a.
접촉식 열교환 유니트(200a)는 주로 100도 미만(즉, 1기압 미만)에서 점성이 큰 저온의 슬러지를 접촉식으로 열교환하는 유니트로서, 점성이 큰 슬러지의 특성에 맞도록 저온 슬러지를 제1,2 돌출부(211a)(221a)를 이용하여 이동시키면서 제1,2 고온 슬러지관(210a)(220a) 내부의 고온 슬러지와 저온 슬러지 사이에 접촉식 열교환이 최대로 일어나도록 한 것이다. The contact type heat exchange unit 200a is a unit for thermally contacting heat-exchanging sludge having a high viscosity at a temperature of less than 100 degrees (ie, less than 1 atm). 2, the contact heat exchange occurs between the hot sludge and the low temperature sludge inside the first and second high temperature sludge pipes 210a and 220a while moving using the protrusions 211a and 221a.
저온 슬러지 유입구(261a)는 상측에 설치된 단위부재(260a)의 저온 슬러지 배출구(262a)와 연결되고 저온 슬러지 배출구(262a)는 하측에 설치된 단위부재(260a)의 저온 슬러지 유입구(261a)와 연결되며, 저온 슬러지 유입구(261a)를 통하여 유입된 저온 슬러지는 이동공간(264a)를 경유하여 저온 슬러지 배출구(262a)로 이동되는 동안에 제1,2 고온 슬러지관(210a)(220a)에 의하여 가열된다. The cold sludge inlet 261a is connected to the cold sludge outlet 262a of the unit member 260a installed on the upper side, and the cold sludge outlet 262a is connected to the cold sludge inlet 261a of the unit member 260a installed on the lower side. The low temperature sludge introduced through the low temperature sludge inlet 261a is heated by the first and second high temperature sludge pipes 210a and 220a while being moved to the low temperature sludge outlet 262a via the moving space 264a.
이동공간(264a)은 단위부재(260a)의 내벽과 제1 고온 슬러지관(210a) 사이의 좁은 틈과, 단위부재(260a)의 내벽과 제2 고온 슬러지관(220a) 사이의 좁은 틈이다. 저온 슬러지는 상기 좁은 틈을 통과하면서 두께가 얇아지고, 이에 따라 열전달이 불량한 저온 슬러지일지라도 충분히 가열될 수 있다. The moving space 264a is a narrow gap between the inner wall of the unit member 260a and the first high temperature sludge tube 210a and a narrow gap between the inner wall of the unit member 260a and the second high temperature sludge tube 220a. The cold sludge becomes thinner while passing through the narrow gap, so that even cold sludge with poor heat transfer can be sufficiently heated.
저온 슬러지는 유기물 슬러지 저장탱크(100)로부터 공급된 후, 최상단에 위치한 단위부재(260a)의 저온 슬러지 유입구(261a)를 통하여 유입된다. 이어서, 저온 슬러지는 이동공간(264a)과 저온 슬러지 배출구(262a)를 경유하여 열교환을 하여 가열되어 아래의 단위부재(260a)로 이동한다. After the low temperature sludge is supplied from the organic sludge storage tank 100, the low temperature sludge is introduced through the low temperature sludge inlet 261a of the unit member 260a located at the top thereof. Subsequently, the low temperature sludge is heated by heat exchange via the moving space 264a and the low temperature sludge discharge port 262a, and moves to the unit unit 260a below.
최하단 단위부재(260a)의 저온 슬러지 배출구(262a)를 통하여 배출된 저온 슬러지는 배출펌프(290a)에 의하여 증기식 열교환 유니트(300)로 이동된다. The cold sludge discharged through the cold sludge discharge port 262a of the lowermost unit member 260a is moved to the steam heat exchange unit 300 by the discharge pump 290a.
위에서 설명한 바와 같이, 고온 슬러지는 최하단의 제1,2 고온 슬러지관(210a)(220a)에서 주입된 후 단계적으로 냉각되면서 최상단의 제1,2 고온 슬러지관(210a)(220a)으로부터 배출되고, 저온 슬러지는 최상단의 단위부재(126)에서 주입된 후 단계적으로 가열되면서 최하단의 단위부재(126)를 통하여 배출되는 것이 바람직한데, 이것은 고온 슬러지는 가수분해가 완료되어서 유동성이 크기 때문에 아래에서 위로 용이하게 이동될 수 있기 때문이다. As described above, the hot sludge is injected from the lowermost first and second high temperature sludge tubes 210a and 220a and then discharged from the uppermost first and second high temperature sludge tubes 210a and 220a while being cooled step by step. The cold sludge is preferably injected from the uppermost unit member 126 and then discharged through the lowermost unit member 126 while being heated step by step. Because it can be moved.
또한, 고온 슬러지와 저온 슬러지가 서로 반대방향으로 이동하면 열교환에 필요한 온도 차이를 일정하게 유지할 수 있기 때문에 열교환이 잘 이루어질 수 있다. In addition, when the hot sludge and the low temperature sludge move in opposite directions, heat exchange may be performed well because the temperature difference required for the heat exchange may be kept constant.
그러면, 접촉식 열교환 유니트(200a)의 작동과정을 설명하기로 한다. Then, the operation of the contact heat exchange unit 200a will be described.
고온 슬러지는 주입펌프(219a)에 의하여 최하단의 제1,2 고온 슬러지관(210a)(220a)에 각각 주입된다. 고온 슬러지는 증기식 열교환 유니트(300)으로부터 배출된 것이다. 만약, 접촉식 열교환 유니트(200a)가 직렬로 다수 개가 연결된 경우에는 상기 고온 슬러지는 다른 접촉식 열교환 유니트(200a)로부터 배출된 것이거나 증기식 열교환 유니트(300)으로부터 배출된 것이다.The high temperature sludge is injected into the first and second high temperature sludge tubes 210a and 220a at the lowermost stage by the injection pump 219a, respectively. The hot sludge is discharged from the steam heat exchange unit 300. If a plurality of contact heat exchange units 200a are connected in series, the high temperature sludge is discharged from another contact heat exchange unit 200a or from a steam heat exchange unit 300.
제1,2 고온 슬러지관(210a)(220a)은 구동모터(241a)의 회전력을 전달받아서 회전된다. 제1,2 고온 슬러지관(210a)(220a)은 외주면에 형성된 제1,2 돌출부(211a)(221a)가 서로 맞물리도록 회전된다. The first and second high temperature sludge pipes 210a and 220a are rotated by receiving the rotational force of the driving motor 241a. The first and second high temperature sludge pipes 210a and 220a are rotated to engage the first and second protrusions 211a and 221a formed on the outer circumferential surface thereof.
제1 고온 슬러지관(210a)은 상측의 제1 고온 슬러지관(210a)과 연결되어 있고, 제2 고온 슬러지관(220a)은 상측의 제2 고온 슬러지관(220a)과 연결되어 있기 때문에 고온 슬러지는 아래에서부터 위로 이동한 후, 최상단의 제1 고온 슬러지관(210a)과 제2 고온 슬러지관(220a)으로부터 각각 배출된다. 최상단의 제1,2 고온 슬러지관(210a)(220a)으로부터 배출된 고온 슬러지는 고액분리기(610)로 이동된다. Since the first high temperature sludge tube 210a is connected to the upper first hot sludge tube 210a and the second high temperature sludge tube 220a is connected to the upper second high temperature sludge tube 220a, the high temperature sludge After moving upwards from the bottom, the first hot sludge pipe 210a and the second high temperature sludge pipe 220a at the top are respectively discharged. The high temperature sludge discharged from the first and second high temperature sludge tubes 210a and 220a at the uppermost stage is moved to the solid-liquid separator 610.
제1,2 고온 슬러지관(210a)(220a)을 통하여 이동하는 도중에 고온 슬러지는 제1,2 고온 슬러지관(210a)(220a) 외부의 저온 슬러지와 열교환을 하여 냉각된다. While moving through the first and second high temperature sludge pipes 210a and 220a, the hot sludge is cooled by heat exchange with the low temperature sludge outside the first and second high temperature sludge pipes 210a and 220a.
한편, 저온 슬러지는 최상단 단위부재(260a)의 유입구(261a)를 통하여 유입된 후, 이동공간(264a)을 통하여 이동되면서 제1,2 고온 슬러지관(210a)(220a)과 열교환을 한 다음, 배출구(262a)를 통하여 하측 단위부재(260a)의 유입구(261a)로 이동한다. 전술한 바와 같이, 제1 돌출부(211a) 사이와 제2 돌출부(221a) 사이에는 저온 슬러지가 수용되었다가 제1,2 돌출부(211a)(221a)가 서로 맞물리면 저온 슬러지가 배출방향으로 배출되는데, 이러한 과정을 거쳐서 제1 돌출부(211a) 사이와 제2 돌출부(221a) 사이에 수용된 저온 슬러지가 가열된다. On the other hand, the low temperature sludge is introduced through the inlet 261a of the uppermost unit member 260a and then moved through the moving space 264a to exchange heat with the first and second high temperature sludge pipes 210a and 220a, It moves to the inlet 261a of the lower unit member 260a through the outlet 262a. As described above, when the low temperature sludge is accommodated between the first protrusion 211a and the second protrusion 221a and the first and second protrusions 211a and 221a are engaged with each other, the low temperature sludge is discharged in the discharge direction. Through this process, the cold sludge accommodated between the first protrusions 211a and the second protrusions 221a is heated.
이와 같은 과정을 통하여 저온 슬러지는 최하단 단위부재(260a)로 이동한 후, 배출펌프(290a)에 의해서 배출된다. 배출된 저온 슬러지는 증기식 열교환 유니트(300)로 이동한다. 만약, 접촉식 열교환 유니트(200a)가 직렬로 다수 개가 연결된 경우에는 상기 저온 슬러지는 다른 접촉식 열교환 유니트(200a)로 이동하거나 증기식 열교환 유니트(300)로 이동된다.Through such a process, the cold sludge is moved to the lowermost unit member 260a and then discharged by the discharge pump 290a. The discharged cold sludge moves to the steam heat exchange unit 300. If a plurality of contact heat exchange units 200a are connected in series, the low temperature sludge is moved to another contact heat exchange unit 200a or to a steam heat exchange unit 300.
도 15는 접촉식 열교환 유니트의 제2 실시예를 보여주는 단면 구성도이고, 도 16은 상기 접촉식 열교환 유니트를 구동하기 위한 동력전달 구성을 보여주는 도면이다.FIG. 15 is a cross sectional view showing a second embodiment of the contact heat exchange unit, and FIG. 16 is a view showing a power transmission configuration for driving the contact heat exchange unit.
접촉식 열교환 유니트(200b)는 저온 슬러지 유입구(211b)와 저온 슬러지 배출구(212b)가 형성된 밀폐된 프레임(210b), 서로 맞물려서 회전하는 한 쌍의 제1 고온 슬러지관(220b)과, 한 쌍의 제1 고온 슬러지관(220b)의 회전방향과 반대되는 방향으로 회전하는 한쌍의 제2 고온 슬러지관(230b)을 구비한다. 이 때, 프레임(210b)과 제1 고온 슬러지관(220b) 사이 및, 프레임(220b)과 제2 고온 슬러지관(220b) 사이에는 저온 슬러지가 압력을 받으면서 자유롭게 이동할 수 있는 충분한 간격이 있는 것이 바람직하다. The contact heat exchange unit 200b includes a hermetically sealed frame 210b having a low temperature sludge inlet 211b and a low temperature sludge outlet 212b, a pair of first high temperature sludge tubes 220b interlocked with each other, and a pair of A pair of second high temperature sludge tubes 230b that rotate in a direction opposite to the rotation direction of the first high temperature sludge tube 220b is provided. At this time, it is preferable that there is a sufficient distance between the frame 210b and the first high temperature sludge tube 220b and between the frame 220b and the second high temperature sludge tube 220b to allow the low temperature sludge to move freely under pressure. Do.
프레임(210b)은 그 내부에 유입구(211b)와 배출구(212b)를 연결하는 중공이 길이방향을 따라 형성된다. 상기 중공에는 제1,2 고온 슬러지관(220b)(230b)이 설치된다. 유입구(211b)를 통하여 저온 슬러지가 유입되고, 중공을 통하여 이동하면서 제1,2 고온 슬러지관(220b)(230b)과 열교환을 하며, 배출구(212b)를 통하여 배출된다. 상기 배출을 위해서 별도의 펌프(미도시)가 구비될 수 있다. The frame 210b has a hollow connecting the inlet 211b and the outlet 212b therein along the longitudinal direction. First and second high temperature sludge tubes 220b and 230b are installed in the hollow. Low temperature sludge is introduced through the inlet 211b, and heat exchanges with the first and second high temperature sludge tubes 220b and 230b while moving through the hollow, and is discharged through the outlet 212b. A separate pump (not shown) may be provided for the discharge.
제1,2 고온 슬러지관(220b)(230b)의 내부로는 고온 슬러지가 이동된다. 한 쌍의 제1 고온 슬러지관(220b)은 그 외측면에 형성된 돌출부(221b)가 서로 맞물리도록 회전된다. 또한, 한 쌍의 제2 고온 슬러지관(230b)은 그 외측면에 형성된 돌출부(231b)가 서로 맞물리도록 회전된다. 한 쌍의 제1 고온 슬러지관(220b)과 한 쌍의 제2 고온 슬러지관(230b)은 서로 이웃하도록 교대로 배치되는 것이 바람직하다. The high temperature sludge is moved into the first and second high temperature sludge tubes 220b and 230b. The pair of first high temperature sludge tubes 220b are rotated such that the protrusions 221b formed on the outer surfaces thereof mesh with each other. In addition, the pair of second high temperature sludge pipes 230b are rotated such that the protrusions 231b formed on the outer surface thereof mesh with each other. Preferably, the pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 230b are alternately arranged to neighbor each other.
돌출부(221b) 사이의 홈과 돌출부(231b) 사이의 홈에 저온 슬러지가 수용되어 저온 슬러지가 이동되면서 제1,2 고온 슬러지관(220b)(230b)과 접촉식 열교환을 한다. 도면에 화살표(222b)(232b)로 표시된 바와 같이, 한 쌍의 제1 고온 슬러지관(220b)의 회전방향과 한 쌍의 제2 고온 슬러지관(230b)의 회전방향이 서로 반대되기 때문에 저온 슬러지의 압력이 높은 곳과 낮은 곳이 존재하게 된다. 예를 들어, H로 표시된 지점은 돌출부(221b)(231b)가 맞물림에 따라 저온 슬러지가 상기 홈에서 배출되어 모여드는 곳이기 때문에 저온 슬러지의 압력이 상대적으로 높아지고, L로 표시된 지점은 돌출부(221b)(231b)의 맞물림이 벌어짐에 따라 저온 슬러지가 상기 홈에 수용되어 빠져나가는 곳이기 때문에 저온 슬러지의 압력이 상대적으로 낮아진다. Cold sludge is accommodated in the grooves between the protrusions 221b and the grooves between the protrusions 231b and the low temperature sludge is moved to perform contact heat exchange with the first and second high temperature sludge tubes 220b and 230b. As indicated by arrows 222b and 232b in the drawing, the low-temperature sludge because the direction of rotation of the pair of first high temperature sludge tubes 220b and the direction of rotation of the pair of second high temperature sludge tubes 230b are opposite to each other. High pressure and low pressure will exist. For example, the point indicated by H is a place where the cold sludge is discharged from the groove as the protrusions 221b and 231b are engaged, so the pressure of the cold sludge is relatively high, and the point indicated by the L is the protrusion 221b. As the mesh 231b is engaged, the cold sludge pressure is relatively lower because the cold sludge is accommodated in the groove.
더욱 구체적으로, 화살표(225b)는 돌출부(221b)의 홈에 수용되어 이동되던 저온 슬러지가 돌출부(221b)가 맞물림에 따라 돌출부(221b)로부터 빠져나오는 것을 나타내고, 이렇게 돌출부(221b)의 홈으로부터 빠져나온 가열된 저온 슬러지는 그 부분의 압력을 높이면서 화살표(227b)와 같이 주변으로 분산된다. 화살표(235b)는 돌출부(231b)의 홈에 수용되어 이동되던 저온 슬러지가 돌출부(231b)가 맞물림에 따라 돌출부(231b)로부터 빠져나오는 것을 나타내고, 이렇게 돌출부(231b)의 홈으로부터 빠져나온 저온 슬러지는 화살표(237b)와 같이 주변으로 분산된다.More specifically, the arrow 225b indicates that the cold sludge received and moved in the groove of the protrusion 221b exits from the protrusion 221b as the protrusion 221b is engaged and thus escapes from the groove of the protrusion 221b. The heated, cold sludge coming out is dispersed to the surroundings as shown by arrow 227b, increasing the pressure of the portion. Arrow 235b indicates that the cold sludge that has been received and moved in the groove of the protrusion 231b exits from the protrusion 231b as the protrusion 231b is engaged, and thus the cold sludge that has escaped from the groove of the protrusion 231b is It is distributed around as shown by arrow 237b.
이와 반대로, 돌출부(221b)(231b)의 맞물림이 벌어지는 L로 표시된 지점에서는 돌출부(221b)(231b)의 맞물림이 벌어짐으로 인해서 주변의 저온 슬러지가 돌출부(221b)(231b)의 홈 사이로 수용되면서 압력이 낮아지게 된다. 이에 따라 프레임(210b) 내부의 저온 슬러지는 압력이 높은 H에서 압력이 낮은 L로 이동하게 되고 이러한 과정에서 가열되지 않은 저온 슬러지는 차례차례 돌출부(221b)(231b)의 홈으로 삽입되어 순환 이동을 하면서 가열된다.On the contrary, at the point indicated by L where engagement of the protrusions 221b and 231b occurs, the low temperature sludge is received between the grooves of the protrusions 221b and 231b due to the engagement of the protrusions 221b and 231b. Will be lowered. Accordingly, the low temperature sludge inside the frame 210b moves from the high H to the low L, and the low temperature sludge which is not heated in this process is sequentially inserted into the grooves of the protrusions 221b and 231b to perform the circulation movement. Is heated.
제1,2 고온 슬러지관(220b)(230b)의 상기 회전은 각각의 제1 고온 슬러지관(220b)과 제2 고온 슬러지관(230b)에 구동모터를 설치함으로써 이루어질 수 있지만, 도 18에 나타난 바와 같이 체인(250b)을 이용하여 제1,2 고온 슬러지관(220b)(230b)과 연결된 스프라켓(225b)(235b)을 한꺼번에 회전시킴으로써 이루어질 수도 있다. 즉, 스프라켓(225b)은 제1 고온 슬러지관(220b)과 연결되고, 스프라켓(235b)은 제2 고온 슬러지관(230b)과 연결되어 있는데, 체인(250b)과 구동 스프라켓(252b)을 이용하여 스프라켓(225b)(235b)을 한꺼번에 회전시킬 수도 있다. The rotation of the first and second high temperature sludge tubes 220b and 230b may be achieved by installing a driving motor in each of the first high temperature sludge tube 220b and the second high temperature sludge tube 230b, but shown in FIG. As described above, the sprockets 225b and 235b connected to the first and second high temperature sludge tubes 220b and 230b may be rotated together using the chain 250b. That is, the sprocket 225b is connected to the first high temperature sludge tube 220b and the sprocket 235b is connected to the second high temperature sludge tube 230b using the chain 250b and the driving sprocket 252b. The sprockets 225b and 235b may be rotated at once.
이와 같이, 저온 슬러지의 압력이 높은 곳(H)과 낮은 곳(L)이 반복적으로 존재하기 때문에 저온 슬러지는 순환되면서 교반되어 제1,2 고온 슬러지관(220b)(230b)과 열교환을 하여 가열된다. 유입구(211b)를 통해서 유입된 저온 슬러지는 상기 열교환을 하면서 배출구(212b)로 이동되어 배출되는데, 유입구(211b)를 통한 저온 슬러지의 유입량을 조절함으로써 배출구(212b)을 통한 배출량과 체류시간을 조절한다. 특히, 상기 고온 슬러지 관(220b)(230b)의 회전 속도를 높이면 저온 슬러지의 순환이 빨라지면서 고온 슬러지관(220b)(230b)의 상기 홈에서 열교환하는 횟수가 증가하여 프레임(210b)의 길이를 짧게 하더라도 열교환이 충분히 이루어질 수 있다.As described above, since the high pressure H and the low pressure L of the low temperature sludge are repeatedly present, the low temperature sludge is circulated and agitated to heat the first and second high temperature sludge pipes 220b and 230b to be heated. do. The cold sludge introduced through the inlet 211b is discharged by being moved to the outlet 212b while performing the heat exchange, and controlling the discharge and residence time through the outlet 212b by adjusting the inflow of the cold sludge through the inlet 211b. do. In particular, increasing the rotational speed of the hot sludge tubes 220b and 230b increases the circulation of the cold sludge and increases the number of times of heat exchange in the grooves of the hot sludge tubes 220b and 230b, thereby increasing the length of the frame 210b. Even if short, heat exchange can be made sufficiently.
상기 고온 슬러지관(220b)(230b)은 서로 연결되는 것이 바람직하다. 이에 따라, 하측 고온 슬러지관의 끝단은 상측 고온 슬러지관의 끝단과 연결된다. 상기 연결은 제1,2 연결관(270a)(280a)과 로터리 조인트에 의해서 이루어질 수 있음은 전술한 바 있다. 상기 연결에 의해서, 고온 슬러지는 최하단 고온 슬러지관에 주입된 후 최상단 고온 슬러지관으로 이동되어 배출된다. The high temperature sludge pipes 220b and 230b are preferably connected to each other. Accordingly, the end of the lower hot sludge tube is connected to the end of the upper hot sludge tube. As described above, the connection may be made by the first and second connection pipes 270a and 280a and the rotary joint. By the connection, the hot sludge is injected into the lowermost hot sludge tube and then moved to the uppermost hot sludge tube and discharged.
이 때, 고온 슬러지가 배출되는 배출구(212b)에 밸브를 창착하어 고온 슬러지관 내부의 높은 압력이 유지되면서 고온 슬러지가 배출되도록 밸브의 개폐량을 조절한다.At this time, the valve is installed at the outlet 212b through which the hot sludge is discharged, and the opening and closing amount of the valve is adjusted to discharge the hot sludge while maintaining a high pressure inside the hot sludge tube.
한편, 이상에서는 접촉식 열교환 유니트(200b)가 수직으로 설치된 경우를 설명하였지만 접촉식 열교환 유니트(200b)는 수평으로 설치될 수도 있다. 수평으로 설치된 접촉식 열교환 유니트(200b)의 구성은 상기 내용을 참조한 당업자에게 자명할 것이므로 여기서는 설명을 생략하기로 한다. Meanwhile, the case where the contact heat exchange unit 200b is installed vertically is described above, but the contact heat exchange unit 200b may be installed horizontally. The construction of the contact heat exchange unit 200b horizontally installed will be apparent to those skilled in the art with reference to the above description, and thus description thereof will be omitted.
그러면, 접촉식 열교환 유니트(200b)의 작동과정을 설명하기로 한다.Then, the operation of the contact heat exchange unit 200b will be described.
고온 슬러지는 최하단 고온 슬러지관에 주입된다. 고온 슬러지는 증기식 열교환 유니트(300)으로부터 배출된 것이다. 만약, 접촉식 열교환 유니트(200b)가 직렬로 다수 개가 연결된 경우에는 상기 고온 슬러지는 다른 접촉식 열교환 유니트(200b)로부터 배출된 것이거나 증기식 열교환 유니트(300)으로부터 배출된 것이다.The hot sludge is injected into the lowest hot sludge tube. The hot sludge is discharged from the steam heat exchange unit 300. If a plurality of contact heat exchange units 200b are connected in series, the hot sludge is discharged from another contact heat exchange unit 200b or from a steam heat exchange unit 300.
제1,2 고온 슬러지관(220b)(230b)은 구동 스프라켓(252b)의 회전력을 전달받아서 회전된다. 한 쌍의 제1 고온 슬러지관(220b)은 외주면에 형성된 돌출부(221b)가 서로 맞물리도록 회전되고, 한 쌍의 제2 고온 슬러지관(230b)은 외주면에 형성된 돌출부(231b)가 서로 맞물리도록 회전된다. The first and second high temperature sludge tubes 220b and 230b are rotated by receiving the rotational force of the driving sprocket 252b. The pair of first high temperature sludge tubes 220b is rotated so that the protrusions 221b formed on the outer circumferential surface are engaged with each other, and the pair of second high temperature sludge tubes 230b is rotated so that the protrusions 231b formed on the outer circumferential surface are engaged with each other. do.
한편, 저온 슬러지는 돌출부(221b) 사이의 홈과 돌출부(231b) 사이의 홈에 수용되어 이동되면서 제1,2 고온 슬러지관(220b)(230b)과 열교환을 하여 가열되고, 제1,2 고온 슬러지관(220b)(230b)의 내부에 있는 고온 슬러지는 냉각된다. Meanwhile, the low temperature sludge is heated in heat exchange with the first and second high temperature sludge tubes 220b and 230b while being accommodated and moved in the groove between the protrusions 221b and the groove between the protrusions 231b. The hot sludge inside the sludge tubes 220b and 230b is cooled.
한 쌍의 제1 고온 슬러지관(220b)과 한 쌍의 제2 고온 슬러지관(230b)은 서로 반대방향으로 회전되고 한 쌍의 제1 고온 슬러지관(220b)과 한 쌍의 제2 고온 슬러지관(230b)이 교대로 배치된다. The pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 230b rotate in opposite directions, and the pair of first high temperature sludge tubes 220b and the pair of second high temperature sludge tubes 220b are rotated in opposite directions. 230b are alternately arranged.
돌출부(221b)가 서로 맞물리는 곳에서는 상기 홈에 수용되었던 저온 슬러지가 배출되기 때문에 저온 슬러지의 압력이 상대적으로 높아지고 돌출부(221b)의 맞물림이 벌어지는 곳에서는 상기 홈으로 저온 슬러지가 유입되기 때문에 저온 슬러지의 압력이 상대적으로 낮아진다. Where the projections 221b are engaged with each other, since the cold sludge stored in the grooves is discharged, the pressure of the cold sludge becomes relatively high, and where the engagement of the projections 221b occurs, the cold sludges flow into the grooves so that the cold sludges are introduced. Pressure is relatively low.
즉, 한 쌍의 돌출부(221b)가 서로 맞물리면서 회전하면 돌출부(221b)의 홈에 수용되어 이동되던 저온 슬러지는 화살표(225b)(227b)와 같은 방향으로 이동하고, 한 쌍의 돌출부(231b)가 서로 맞물리면서 회전하면 돌출부(231b)의 홈에 수용되어 이동되던 저온 슬러지는 화살표(235b)(237b)와 같은 방향으로 이동한다. 따라서, 프레임(210b)의 내부에는 압력이 높은 곳(H)과 압력이 낮은 곳(L)이 교대로 존재하게 되고, 저온 슬러지는 분산과 집중을 반복하면서 배출구(212b)로 이동하면서 제1,2 고온 슬러지관(220b)(230b)과 열교환을 한다. That is, when the pair of protrusions 221b rotate while being engaged with each other, the cold sludge that is received and moved in the groove of the protrusion 221b moves in the same direction as the arrows 225b and 227b, and the pair of protrusions 231b is moved. When rotated while being engaged with each other, the cold sludge received and moved in the groove of the protrusion 231b moves in the same direction as the arrows 235b and 237b. Accordingly, the inside of the frame 210b has a high pressure H and a low pressure L alternately, and the cold sludge moves to the outlet 212b while repeatedly dispersing and concentrating. 2 Heat exchange with the high temperature sludge tube (220b) (230b).
한편, 상기 저온 슬러지는 유기물 슬러지 저장탱크(100)로부터 공급된 것이다. 만약. 접촉식 열교환 유니트(200b)가 직렬로 다수 개가 연결된 경우에는 상기 저온 슬러지는 다른 접촉식 열교환 유니트(200b)로부터 배출된 것이거나 유기물 슬러지 저장탱크(100)로부터 배출된 것이다.On the other hand, the low temperature sludge is supplied from the organic sludge storage tank (100). if. When a plurality of contact heat exchange units 200b are connected in series, the low temperature sludge is discharged from another contact heat exchange unit 200b or from the organic sludge storage tank 100.
상기 열교환 후에 저온 슬러지는 배출구(212b)로부터 배출된다. 배출된 저온 슬러지는 증기식 열교환유니트(300)로 이동되거나 다른 접촉식 열교환 유니트(200b)로 이동된다. 상기 배출을 위해서 별도의 배출펌프(미도시)가 구비될 수도 있다. After the heat exchange, the cold sludge is discharged from the discharge port 212b. The discharged cold sludge is moved to the steam heat exchange unit 300 or to another contact heat exchange unit 200b. A separate discharge pump (not shown) may be provided for the discharge.
한편, 도 17은 접촉식 열교환 유니트의 제3 실시예를 보여주는 도면이다. On the other hand, Figure 17 is a view showing a third embodiment of the contact heat exchange unit.
접촉식 열교환 유니트(200c)는 저온 슬러지 유입구(211c)와 저온 슬러지 배출구(212c)가 형성된 밀폐된 원통형 프레임(210c), 서로 맞물려서 회전하는 한 쌍의 제1 고온 슬러지관(220c)(221c)과, 한 쌍의 제1 고온 슬러지관(220c)(221c)의 회전방향과 반대되는 방향으로 회전하는 한쌍의 제2 고온 슬러지관(230c)(231c)을 구비한다. 제1,2 고온 슬러지관(220c)(221c)(230c)(231c)은 원통형 프레임(210c)의 내부에 원통형 프레임(210c)의 길이방향을 따라 설치된다. The contact heat exchange unit 200c includes a sealed cylindrical frame 210c having a low temperature sludge inlet 211c and a low temperature sludge outlet 212c, and a pair of first high temperature sludge tubes 220c and 221c which rotate in engagement with each other. And a pair of second high temperature sludge tubes 230c and 231c which rotate in a direction opposite to the rotation direction of the pair of first high temperature sludge tubes 220c and 221c. The first and second high temperature sludge tubes 220c, 221c, 230c and 231c are installed along the longitudinal direction of the cylindrical frame 210c inside the cylindrical frame 210c.
원통형 프레임(210c)의 내부에는 길이방향을 따라 중공이 형성된다. 유입구(211c)를 통해 유입된 저온 슬러지는 상기 중공을 따라 이동하면서 제1,2 고온 슬러지관(220c)(221c)(230c)(231c)과 열교환하여 가열된 후 배출구(212c)를 통해서 배출된다. 프레임(210c)은 원통형이기 때문에 내부압력이 높은 경우에도 잘 견딜 수 있다. 따라서, 원통형 프레임(210c)은 저온 슬러지의 온도가 100도 이상인 경우에도 사용될 수 있다. The hollow is formed in the cylindrical frame 210c along the longitudinal direction. The cold sludge introduced through the inlet 211c is heat-exchanged with the first and second high temperature sludge pipes 220c, 221c, 230c and 231c while moving along the hollow and then discharged through the outlet 212c. . Since the frame 210c is cylindrical, it can withstand even a high internal pressure. Therefore, the cylindrical frame 210c may be used even when the temperature of the cold sludge is 100 degrees or more.
제1 고온 슬러지관(220c)(221c)의 외측면에는 돌출부가 형성된다. 돌출부가 서로 맞물리면서 한 쌍의 제1 고온 슬러지관(220c)(221c)이 회전된다. 전술한 실시예에서와 마찬가지로, 상기 돌출부가 서로 맞물림에 따라 돌출부 사이의 홈에 수용되었던 저온 슬러지가 배출되고, 돌출부의 상기 맞물림이 벌어짐에 따라 돌출부 사이의 홈에 저온 슬러지가 유입된다. Protrusions are formed on the outer surfaces of the first high temperature sludge tubes 220c and 221c. As the protrusions engage with each other, the pair of first high temperature sludge tubes 220c and 221c are rotated. As in the above-described embodiment, as the protrusions are engaged with each other, the cold sludge received in the grooves between the protrusions is discharged, and as the engagement of the protrusions is opened, the cold sludge is introduced into the grooves between the protrusions.
한 쌍의 제1 고온 슬러지관(220c)(221c)의 한쪽 끝단은 서로 연결된다. 상기 연결은 연결관(240c)과 로터리 조인트(241c)에 의해서 이루어질 수 있다. 로터리 조인트에 대해서는 전술한 바 있다. One end of the pair of first high temperature sludge tubes 220c and 221c is connected to each other. The connection may be made by a connection pipe 240c and a rotary joint 241c. The rotary joint has been described above.
제1 고온 슬러지관(221c)의 다른쪽 끝단을 통해서 증기식 열교환유니트(300)로부터 배출된 고온 슬러지가 유입되고, 제1 고온 슬러지관(220c)의 다른쪽 끝단은 제2 고온 슬러지관(230c)과 연결된다. 상기 연결도 연결관(240c)과 로터리 조인트(241c)에 의해서 이루어질 수 있다. 도면에서 표시된 화살표는 고온 슬러지가 이동되는 경로를 나타낸다. The hot sludge discharged from the steam heat exchange unit 300 is introduced through the other end of the first high temperature sludge tube 221c, and the other end of the first high temperature sludge tube 220c is the second high temperature sludge tube 230c. ). The connection may also be made by a connection pipe 240c and a rotary joint 241c. Arrows shown in the figure indicate the path through which the hot sludge is moved.
한편, 접촉식 열교환 유니트(200c)는 다수 개가 직렬로 서로 연결될 수 있는데, 이 경우에는 이웃하는 접촉식 열교환 유니트(200c)로부터 배출된 고온 슬러지가 제1 고온 슬러지관(220c)의 다른쪽 끝단을 통해서 유입된다. On the other hand, a plurality of contact heat exchange unit 200c may be connected to each other in series, in this case, the hot sludge discharged from the neighboring contact heat exchange unit 200c is connected to the other end of the first high temperature sludge tube 220c. It flows through.
제2 고온 슬러지관(230c)(231c)의 외측면에는 돌출부가 형성된다. 돌출부가 서로 맞물리면서 한 쌍의 제2 고온 슬러지관(230c)(231c)이 회전되되, 한 쌍의 제2 고온 슬러지관(230c)(231c)은 한 쌍의 제1 고온 슬러지관(220c)(221c)이 회전되는 방향과 반대되는 방향으로 회전된다. 전술한 실시예에서와 마찬가지로, 상기 돌출부가 서로 맞물림에 따라 돌출부 사이의 홈에 수용되었던 저온 슬러지가 배출되고, 돌출부의 상기 맞물림이 벌어짐에 따라 돌출부 사이의 홈에 저온 슬러지가 유입된다. Protrusions are formed on the outer surfaces of the second high temperature sludge tubes 230c and 231c. A pair of second high temperature sludge tubes 230c and 231c are rotated while the protrusions are engaged with each other, and a pair of second high temperature sludge tubes 230c and 231c is a pair of first high temperature sludge tubes 220c and 221c. ) Is rotated in a direction opposite to the direction in which it is rotated. As in the above-described embodiment, as the protrusions are engaged with each other, the cold sludge received in the grooves between the protrusions is discharged, and as the engagement of the protrusions is opened, the cold sludge is introduced into the grooves between the protrusions.
한 쌍의 제2 고온 슬러지관(230c)(231c)의 한쪽 끝단은 서로 연결된다. 상기 연결도 연결관(240c)과 로터리 조인트에 의해서 이루어질 수 있다. 고온 슬러지는 제2 고온 슬러지관(231c)의 다른쪽 끝단을 통해서 배출된다. 다수 개의 접촉식 열교환 유니트(200c)가 직렬로 서로 연결된 경우에는 제2 고온 슬러지관(231c)의 다른쪽 끝단을 통해서 배출된 고온 슬러지가 이웃하는 접촉식 열교환 유니트(200c)로 배출된다.One end of the pair of second high temperature sludge pipes 230c and 231c is connected to each other. The connection can also be made by the connection pipe 240c and the rotary joint. The hot sludge is discharged through the other end of the second high temperature sludge tube 231c. When the plurality of contact heat exchange units 200c are connected to each other in series, the hot sludge discharged through the other end of the second high temperature sludge tube 231c is discharged to the neighboring contact heat exchange unit 200c.
한 쌍의 제1 고온 슬러지관(220c)(221c)과 한 쌍의 제2 고온 슬러지관(230c)(231c)은 각각의 구동모터에 의해서 회전될 수도 있지만, 체인(250b)과 스프라켓(225b)(235b) 및 구동 스프라켓(252b)을 이용하여 회전시킬 수도 있다. 이 점은 도 19, 도 20 및, 도 21을 참조하면 당업자가 용이하게 알 수 있을 것이다. The pair of first high temperature sludge tubes 220c and 221c and the pair of second high temperature sludge tubes 230c and 231c may be rotated by respective driving motors, but the chain 250b and the sprocket 225b may be rotated. 235b and drive sprocket 252b may be used to rotate. This point will be readily apparent to those skilled in the art with reference to FIGS. 19, 20 and 21.
한 쌍의 제1 고온 슬러지관(220c)(221c)의 돌출부가 서로 맞물렸다가 벌어지는 것이 반복되고, 한 쌍의 제2 고온 슬러지관(230c)(231c)의 돌출부가 서로 맞물렸다가 벌어지는 것이 반복되면 원통형 프레임(210c)의 내부에는 저온 슬러지의 압력이 높은 곳과 낮은 곳이 존재하고, 이에 따라 저온 슬러지는 순환되면서 교반되고 제1,2 고온 슬러지관(220c)(221c)(230c)(231c)과 열교환을 하여 가열된다. The protrusions of the pair of first high temperature sludge tubes 220c and 221c are engaged with each other and then open, and the protrusions of the pair of second high temperature sludge tubes 230c and 231c are mutually engaged and then open again. When the inside of the cylindrical frame (210c) has a high and low pressure of the low temperature sludge, there is a low temperature sludge is circulated while stirring and the first and second high temperature sludge tube (220c) (221c) (230c) (231c) (231c) ) Is heated by heat exchange.
접촉식 열교환 유니트(210c)는 저온 슬러지를 이동시키기 위한 별도의 이동수단을 구비하지 않을 수도 있다. 유입구(211c)를 통해서 유입되는 저온 슬러지의 양을 조절함으로써 저온 슬러지가 원통형 프레임(210c)에서 체류하는 시간과 배출구(212c)를 통한 배출량과 체류시간을 조절할 수 있다. The contact heat exchange unit 210c may not include a separate moving means for moving the cold sludge. By adjusting the amount of cold sludge introduced through the inlet 211c, the time for which the cold sludge stays in the cylindrical frame 210c and the discharge and residence time through the outlet 212c can be adjusted.
그러면, 접촉식 열교환 유니트(210c)의 작동과정을 설명하기로 한다.Then, the operation of the contact heat exchange unit 210c will be described.
고온 슬러지는 제1 고온 슬러지관(221c)의 다른쪽 끝단을 통해서 유입된 후, 화살표로 표시된 경로를 따라 이동된다. 즉, 고온 슬러지는 제1 고온 슬러지관(221c), 제1 고온 슬러지관(220c), 제2 고온 슬러지관(230c), 제2 고온 슬러지관(231c)을 순차적으로 경유하면서 저온 슬러지와 열교환을 한다. The hot sludge flows through the other end of the first hot sludge tube 221c and then moves along the path indicated by the arrow. That is, the hot sludge passes through the first high temperature sludge tube 221c, the first high temperature sludge tube 220c, the second high temperature sludge tube 230c, and the second high temperature sludge tube 231c in sequence, and exchanges heat with the low temperature sludge. do.
한편, 저온 슬러지는 유입구(211c)를 통하여 유입되어 제1,2 고온 슬러지관(220c)(221c)(230c)(231c)과 열교환을 하여 가열된 후, 배출구(212c)를 통하여 배출된다. 이 때, 한 쌍의 제1 고온 슬러지관(220c)(221c)의 돌출부가 서로 맞물렸다가 벌어지는 것이 반복되고, 한 쌍의 제2 고온 슬러지관(230c)(231c)의 돌출부가 서로 맞물렸다가 벌어지는 것이 반복되며, 이와 동시에 한 쌍의 제1 고온 슬러지관(220c)(221c)과 한 쌍의 제2 고온 슬러지관(230c)(231c)이 서로 반대로 회전되면 원통형 프레임(210c)의 내부에는 저온 슬러지의 압력이 높은 곳과 낮은 곳이 존재하고, 이에 따라 저온 슬러지는 순환되면서 교반되고 제1,2 고온 슬러지관(220c)(221c)(230c)(231c)과 열교환을 하여 가열된다. On the other hand, the low temperature sludge is introduced through the inlet 211c and heat-exchanged with the first and second high temperature sludge tubes 220c, 221c, 230c and 231c, and then is discharged through the outlet 212c. At this time, the protrusions of the pair of first high temperature sludge pipes 220c and 221c are engaged with each other and then open, and the protrusions of the pair of second high temperature sludge pipes 230c and 231c are engaged with each other. What is happening is repeated, and at the same time, when the pair of first high temperature sludge tubes 220c and 221c and the pair of second high temperature sludge tubes 230c and 231c are rotated opposite to each other, the inside of the cylindrical frame 210c has a low temperature. The high and low pressure of the sludge is present, and thus the cold sludge is stirred while being circulated, and is heated by heat exchange with the first and second high temperature sludge tubes 220c, 221c, 230c and 231c.
도 18은 본 발명에 따른 슬러지 가수분해 장치에 구비된 접촉식 열교환 유니트의 제4 실시예를 보여주는 도면이다. 도면에는 원통형 프레임(210d)의 양측이 개방되어 있지만 실제 사용시에는 덮개(미도시)에 의해서 밀폐된다.18 is a view showing a fourth embodiment of the contact heat exchange unit provided in the sludge hydrolysis apparatus according to the present invention. In the figure, both sides of the cylindrical frame 210d are open, but are sealed by a cover (not shown) in actual use.
접촉식 열교환 유니트(200d)는 원통형 프레임(210d)과, 서로 맞물리면서 회전되는 제1,2 고온 슬러지관(220d)(230d)을 포함한다.The contact heat exchange unit 200d includes a cylindrical frame 210d and first and second high temperature sludge tubes 220d and 230d which rotate while being engaged with each other.
원통형 프레임(210d)은 그 내부에 형성된 중공과, 상기 중공에 저온 슬러지가 유입되는 유입구(211d)와, 상기 중공으로부터 저온 슬러지를 배출하는 배출구(212d)를 구비한다. 프레임(210d)은 원통형이기 때문에 내부 압력이 큰 경우에도 사용될 수 있다. 따라서, 원통형 프레임(210d)은 저온 슬러지가 100도 이상인 경우에도 사용될 수 있다.The cylindrical frame 210d includes a hollow formed therein, an inlet 211d through which the cold sludge flows, and an outlet 212d through which the cold sludge is discharged. Since the frame 210d is cylindrical, it can be used even when the internal pressure is large. Therefore, the cylindrical frame 210d can be used even when the cold sludge is 100 degrees or more.
제1 고온 슬러지관(220d)은 그 둘레에 형성된 돌출부(221d)를 구비한다. 돌출부(221d) 사이의 홈에 저온 슬러지가 수용되어 이동되면서 제1 고온 슬러지관(220d)과 열교환을 한다. 화살표(222d)는 제1 고온 슬러지관(220d)의 회전방향을 나타낸다.The first high temperature sludge tube 220d has a protrusion 221d formed around it. The low temperature sludge is received and moved in the grooves between the protrusions 221d to exchange heat with the first high temperature sludge tube 220d. Arrow 222d indicates the rotation direction of the first high temperature sludge tube 220d.
제2 고온 슬러지관(230d)은 그 둘레에 형성된 돌출부(231d)를 구비한다. 돌출부(231d) 사이의 홈에 저온 슬러지가 수용되어 이동되면서 제2 고온 슬러지관(230d)과 열교환을 한다. 화살표(232d)는 제2 고온 슬러지관(230d)의 회전방향을 나타낸다. The second high temperature sludge tube 230d has a protrusion 231d formed around the second hot sludge tube 230d. The low temperature sludge is accommodated and moved in the groove between the protrusions 231d to exchange heat with the second high temperature sludge tube 230d. An arrow 232d indicates a rotation direction of the second hot sludge tube 230d.
제1,2 고온 슬러지관(220d)(230d)은 열전도율이 우수한 금속으로 만들어지는 것이 바람직하다.  The first and second high temperature sludge tubes 220d and 230d are preferably made of a metal having excellent thermal conductivity.
제1 고온 슬러지관(220d)의 한쪽 끝단에는 고온 슬러지 주입구가 형성된다. 제1 고온 슬러지관(220d)의 다른쪽 끝단은 제2 고온 슬러지관(230d)의 다른쪽 끝단과 연통되고, 제2 고온 슬러지관(230d)의 한쪽 끝단에는 고온 슬러지 배출구가 형성된다. 제1 고온 슬러지관(220d)의 다른쪽 끝단과 제2 고온 슬러지관(230d)의 다른쪽 끝단을 서로 연결하기 위해서는 연결관(270a)(280a)과 로터리 조인트를 이용한다. 연결관(270a)(280a)과 로터리 조인트에 대해서는 전술한 바 있다. A hot sludge inlet is formed at one end of the first high temperature sludge tube 220d. The other end of the first high temperature sludge tube 220d communicates with the other end of the second high temperature sludge tube 230d, and a high temperature sludge discharge port is formed at one end of the second high temperature sludge tube 230d. In order to connect the other end of the first high temperature sludge tube 220d and the other end of the second high temperature sludge tube 230d to each other, a connection pipe 270a and a 280a and a rotary joint are used. The connection pipes 270a and 280a and the rotary joint have been described above.
돌출부(221d)(231d)가 서로 맞물리면 돌출부(221d)(231d)의 홈에 수용되어 있던 저온 슬러지가 밖으로 배출되는데 화살표(223d)(233d)는 저온 슬러지가 상기 홈으로부터 배출되는 것을 나타낸다. 상기 배출이 이루어지는 곳은 저온 슬러지의 압력이 높아진다. 상기 홈으로부터 배출된 저온 슬러지는 외측으로 이동하는데, 화살표(224d)(234d)(225d)(235d)는 상기 이동을 나타낸다. 한편, 맞물렸던 돌출부(221d)(231d)가 벌어지면 돌출부(221d)(231d)의 홈에 저온 슬러지가 유입되고 이에 따라 상기 유입이 이루어지는 곳은 저온 슬러지의 압력이 낮아져서 저온 슬러지가 순환된다. When the protrusions 221d and 231d are engaged with each other, the cold sludge contained in the grooves of the protrusions 221d and 231d is discharged outward, and arrows 223d and 233d indicate that the cold sludge is discharged from the grooves. Where the discharge is made, the pressure of the cold sludge becomes high. The cold sludge discharged from the groove moves outward, with arrows 224d, 234d, 225d and 235d indicating the movement. On the other hand, when the interlocking protrusions 221d and 231d are opened, the cold sludge flows into the grooves of the protrusions 221d and 231d, whereby the pressure of the cold sludge is lowered so that the cold sludge is circulated.
이와 같은 과정을 거치면서 저온 슬러지는 순환되고 교반되면서 가열된다. 따라서, 원통형 프레임(210d)의 길이가 길지 않아도 상기 순환, 교반에 의해서 저온 슬러지가 충분한 시간동안 체류할 수 있기 때문에 충분히 가열될 수 있다. Through this process, the cold sludge is circulated and heated while stirring. Therefore, even if the length of the cylindrical frame 210d is not long, it can be sufficiently heated because the low temperature sludge can stay for a sufficient time by the circulation and stirring.
가열된 저온 슬러지는 배출구(212d)를 통하여 배출된다. 바람직하게, 상기 배출구(212d)를 통한 배출은 유입구(211d)를 통해 유입되는 저온 슬러지의 양을 조절하여 조절한다. 즉, 저온 슬러지의 배출을 위한 별도의 펌프(미도시) 등을 이용하지 않고 유입구(211d)를 통한 저온 슬러지의 유입량을 조절함으로써 상기 배출량을 조절한다. The heated cold sludge is discharged through the discharge port 212d. Preferably, the discharge through the outlet 212d is adjusted by adjusting the amount of cold sludge introduced through the inlet 211d. That is, the discharge is controlled by adjusting the inflow of the cold sludge through the inlet 211d without using a separate pump (not shown) for discharging the cold sludge.
그러면, 접촉식 열교환 유니트(200d)의 작동과정을 설명하기로 한다. Then, the operation of the contact heat exchange unit 200d will be described.
저온 슬러지는 유입구(211d)를 통해 주입된다. 상기 저온 슬러지는 유기물 슬러지 저장탱크(100)로부터 공급된 것이다. 접촉식 열교환 유니트(200d)가 직렬로 다수 개가 연결되어 있는 경우에는 상기 저온 슬러지는 유기물 슬러지 저장탱크(100)로부터 공급된 것이거나 다른 접촉식 열교환 유니트(200d)로부터 배출된 것이다.Cold sludge is injected through inlet 211d. The low temperature sludge is supplied from the organic sludge storage tank (100). When a plurality of contact heat exchange units 200d are connected in series, the low temperature sludge is supplied from the organic sludge storage tank 100 or discharged from another contact heat exchange unit 200d.
고온 슬러지는 고온 슬러지 주입구를 통하여 주입된 후, 제1 고온 슬러지관(220d), 제2 고온 슬러지관(230d)을 순차적으로 경유하면서 냉각된 다음, 고온 슬러지 배출구를 통하여 배출된다. After the hot sludge is injected through the hot sludge inlet, the hot sludge is cooled while sequentially passing through the first hot sludge tube 220d and the second hot sludge tube 230d, and then discharged through the hot sludge outlet.
제1,2 고온 슬러지관(220d)(230d)은 돌출부(221d)(231d)가 서로 맞물리면서 회전하기 때문에 화살표(223d)(233d)(224d)(234d)(225d)(235d)와 같은 저온 슬러지의 흐름이 생겨서 저온 슬러지가 순환 및 교반된다. The first and second high temperature sludge pipes 220d and 230d are cold sludges such as arrows 223d, 233d, 224d, 234d, 225d and 235d because the protrusions 221d and 231d rotate while being engaged with each other. A stream of is formed so that the cold sludge is circulated and stirred.
상기 교반과 열교환에 의해서 냉각된 저온 슬러지는 배출구(212d)를 통하여 배출된다. The cold sludge cooled by the stirring and heat exchange is discharged through the outlet 212d.
본 발명은 다음과 같은 효과를 가진다. The present invention has the following effects.
첫째, 슬러지를 연속적으로 가수분해하면서 가수분해에 필요한 열에너지를 열교환을 통하여 재사용함으로서 연료비용을 대폭 절감하고, 고온 슬러지를 냉각하는 장치가 필요없는, 경제성이 높은 슬러지 처리 기술을 제공한다.First, by reusing the heat energy required for hydrolysis through heat exchange while continuously hydrolyzing the sludge, it provides a highly economical sludge treatment technology that significantly reduces fuel costs and does not require a device for cooling the hot sludge.
둘째, 가수분해를 통하여 슬러지에 포함된 악취성분이 모두 제거되어 슬러지 처리시설의 악취발생 문제를 원천적으로 해결하여 민원 발생 없이 슬러지 처리시설을 설치할 수 있다.Second, all odor components contained in the sludge are removed through hydrolysis, so that the sludge treatment facility can be installed without any complaints.
셋째, 가수분해를 통하여 폐기물인 슬러지를 에너지 자원으로 변환시켜 지구 온난화의 원인인 화석연료를 대체하는 재생에너지를 만들 수 있다.Third, by converting sludge, which is a waste, into an energy source through hydrolysis, renewable energy can be made to replace fossil fuels, which are the cause of global warming.
넷째, 슬러지의 해양투기나 육상투기를 대체할 수 있고 해양오염과 메탄가스 방출을 방지하여 환경을 보호할 수 있다. Fourth, it is possible to replace sludge ocean dumping or land dumping, and to protect the environment by preventing marine pollution and methane emission.
다섯째, 슬러지 처리 기술에 적합한 연속식 슬러지 가수분해 장치의 가열유니트, 증기식 열교환 유니트, 접촉식 열교환 유니트 및 열분해 장치와 협기성 소화 장치 등 다양한 장치의 생산이 이루어진다.Fifth, the production of a variety of devices such as a heating unit, a steam heat exchange unit, a contact heat exchange unit and a pyrolysis unit and an aerobic fire extinguishing unit of the continuous sludge hydrolysis unit suitable for the sludge treatment technology.
여섯째, 가압 주입유니트를 이용함으로써, 유동성이 극히 불량하여 열전달이 잘되지 않는 저온 슬러지에 고압을 가하여 유동화시킴으로써 열전달이 잘 이루어질 수 있도록 하고, 가수분해가 효과적으로 진행되는 210도에서 발생하는 20기압의 높은 증기압 환경의 용기에 슬러지를 주입할 수 있고, 열교환 유니트에서 가열된 슬러지를 용기로부터 배출할 수 있다.Sixth, by using a pressurized injection unit, by applying high pressure to the low temperature sludge, which is extremely poor in fluidity and heat transfer, the heat transfer can be performed well, and the high pressure of 20 atm generated at 210 degrees, where hydrolysis proceeds effectively. Sludge can be injected into the vessel in the vapor pressure environment, and the sludge heated in the heat exchange unit can be discharged from the vessel.

Claims (26)

  1. 저온 슬러지가 가열된 증기에 의해서 가열되고 가수분해되어 고온 슬러지가 되어 배출되는 가열유니트; 및A heating unit in which the cold sludge is heated by the heated steam and hydrolyzed to discharge the hot sludge; And
    저온 슬러지와 가열유니트로부터 배출된 고온 슬러지가 서로 혼합되지 않도록 회전하는 원통관을 이용하여 열교환을 이루되, 원통관의 내측으로는 고온 슬러지가 통과하고 원통관의 외측으로는 저온 슬러지가 통과하도록 하여 원통관과 접촉하면서 열전도를 통하여 열교환 되는 접촉식 열교환유니트;를 구비하고,Heat exchange is performed by using a cylindrical tube rotating so that the low temperature sludge and the hot sludge discharged from the heating unit do not mix with each other, and the high temperature sludge passes through the inside of the cylindrical tube and the low temperature sludge passes outside the cylindrical tube. And a heat exchange unit contacting the heat exchanger through heat conduction while contacting the cylindrical tube;
    저온 슬러지는 접촉식 열교환유니트에서 가열된 후 가열 유니트에서 가수분해되고, 고온 슬러지는 가열유니트에서 만들어진 후 접촉식 열교환유니트에서 냉각되며, 상기 가열과 열교환이 연속적으로 이루어지는 것을 특징으로 하는 슬러지 가수분해 장치.The low temperature sludge is heated in a contact heat exchange unit and then hydrolyzed in a heating unit, and the high temperature sludge is made in a heating unit and cooled in a contact heat exchange unit, and the sludge hydrolysis apparatus is characterized in that the heating and heat exchange are performed continuously. .
  2. 제1항에 있어서,The method of claim 1,
    접촉식 열교환유니트로부터 배출된 저온 슬러지가 주입되고 가열유니트로부터 배출된 고온 슬러지가 주입된 후, 고온 슬러지는 압력차에 의해서 수증기를 발생하면서 냉각되고, 저온 슬러지는 상기 수증기와 접촉하여 수증기의 응축열에 의해서 가열되도록 하는 증기식 열교환유니트를 더 구비하는 것을 특징으로 하는 슬러지 가수분해 장치.After the low temperature sludge discharged from the contact heat exchange unit is injected and the high temperature sludge discharged from the heating unit is injected, the high temperature sludge is cooled while generating water vapor due to the pressure difference, and the low temperature sludge comes into contact with the water vapor to condense heat of the water vapor. Sludge hydrolysis apparatus further comprising a steam heat exchange unit to be heated by.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 접촉식 열교환 유니트는,The contact heat exchange unit,
    저온 슬러지가 이동하는 저온 슬러지 이동부가 상기 원통관과 서로 접하도록 설치되어 고온 슬러지의 열이 저온 슬러지로 전달될 수 있고, The low temperature sludge moving part to which the low temperature sludge moves may be installed to be in contact with the cylindrical tube so that heat of the high temperature sludge may be transferred to the low temperature sludge.
    상기 원통관은 제1,2 고온 슬러지관을 구비하며,The cylindrical tube has first and second high temperature sludge tubes,
    상기 저온 슬러지 이동부는 서로 연결되도록 설치된 다수의 단위부재를 포함하고, The low temperature sludge moving unit includes a plurality of unit members installed to be connected to each other,
    상기 단위부재는, The unit member,
    저온 슬러지가 유입되는 유입구; Inlet through which cold sludge is introduced;
    저온 슬러지가 배출되는 배출구; 및, An outlet through which cold sludge is discharged; And,
    유입구와 배출구 사이에 형성되고, 제1,2 고온 슬러지관이 설치되는 이동공간;을 포함하고, And a moving space formed between the inlet and the outlet and installed with the first and second high temperature sludge pipes.
    상기 유입구는 일측에 설치된 단위부재의 배출구와 연결되고 상기 배출구는 타측에 설치된 단위부재의 유입구와 연결되며, 유입구를 통하여 유입된 저온 슬러지가 배출구로 이동되는 동안에 제1,2 고온 슬러지관과의 접촉에 의하여 가열되는 것을 특징으로 하는 슬러지 가수분해 장치. The inlet is connected to the outlet of the unit member installed on one side and the outlet is connected to the inlet of the unit member installed on the other side, the cold sludge introduced through the inlet is in contact with the first and second hot sludge pipes while moving to the outlet Sludge hydrolysis apparatus, characterized in that heated by.
  4. 제3항에 있어서, The method of claim 3,
    제1 고온 슬러지관의 외주면에 제1 고온 슬러지관의 길이 방향을 따라 형성된 돌출부(211a);A protrusion 211a formed along the longitudinal direction of the first high temperature sludge tube on an outer circumferential surface of the first high temperature sludge tube;
    제2 고온 슬러지관의 외주면에 제2 고온 슬러지관의 길이 방향을 따라 형성된 돌출부(221a); 및A protrusion 221a formed along the longitudinal direction of the second high temperature sludge tube on an outer circumferential surface of the second high temperature sludge tube; And
    제1,2 고온 슬러지관을 회전시키는 회전수단;을 포함하고, Includes; Rotating means for rotating the first and second high temperature sludge tube,
    돌출부(211a) 사이의 홈과 돌출부(221a) 사이의 홈에 저온 슬러지가 수용되어 제1,2 고온 슬러지관과 열교환을 하고, 돌출부(211a)(221a)가 서로 맞물리면 상기 홈에 수용된 저온 슬러지가 홈 바깥으로 배출되고 상기 맞물림이 벌어지면 상기 홈으로 저온 슬러지가 유입되는 것을 특징으로 하는 슬러지 가수분해 장치. Low temperature sludge is accommodated in the grooves between the protrusions 211a and the grooves between the protrusions 221a to exchange heat with the first and second high temperature sludge tubes, and when the protrusions 211a and 221a are engaged with each other, the low temperature sludge contained in the grooves is Sludge hydrolysis apparatus, characterized in that the cold sludge is introduced into the groove when discharged out of the groove and the engagement is opened.
  5. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    접촉식 열교환 유니트는,Contact heat exchanger unit,
    저온 슬러지 유입구와 저온 슬러지 배출구가 형성된 밀폐된 프레임; A closed frame in which a cold sludge inlet and a cold sludge outlet are formed;
    상기 원통관;을 포함하고,It includes; and
    상기 원통관은,The cylindrical tube,
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외주면에는 돌출부(221d)가 형성된 제1 고온 슬러지관;A first high temperature sludge tube installed in the frame and having high temperature sludge moved therein and having a protrusion 221 d formed on an outer circumferential surface thereof;
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외주면에는 돌출부(221d)와 맞물릴 수 있는 돌출부(231b)가 형성된 제2 고온 슬러지관;을 포함하고, And a second high temperature sludge tube installed in the frame and having high temperature sludge moved therein, and having a protrusion 231b formed at an outer circumferential surface thereof to be engaged with the protrusion 221d.
    저온 슬러지 유입구를 통하여 유입된 저온 슬러지는 돌출부(221d) 사이의 홈과 돌출부(231d) 사이의 홈에 수용되어 이동하면서 제1,2 고온 슬러지관과 열교환을 하고, 상기 홈에 수용되었던 저온 슬러지는 돌출부(221d)(231d)가 맞물리면 상기 홈으로부터 배출되고 상기 맞물림이 벌어지면 상기 홈에 저온 슬러지가 유입되며, 상기 홈으로부터 저온 슬러지가 배출되고 상기 홈에 저온 슬러지가 유입되는 것에 의해서 프레임의 내부에는 저온 슬러지의 압력이 높은 곳과 낮은 곳이 존재하게 되는 것을 특징으로 하는 슬러지 가수분해 장치. The low temperature sludge introduced through the low temperature sludge inlet exchanges heat with the first and second high temperature sludge pipes while being accommodated in the grooves between the protrusions 221d and the grooves between the protrusions 231d, and the low temperature sludge contained in the grooves. When the protrusions 221d and 231d are engaged, they are discharged from the grooves, and when the engagement is opened, the cold sludge flows into the grooves, and the cold sludge is discharged from the grooves and the cold sludge flows into the grooves. Sludge hydrolysis apparatus, characterized in that there is a high and low pressure of the cold sludge.
  6. 제2항에 있어서, The method of claim 2,
    증기식 열교환 유니트는 고온 슬러지가 주입되는 고온 열교환 용기와, 저온 슬러지가 주입되는 저온 열교환 용기 및, 고온 열교환 용기와 저온 열교환 용기를 연통시키는 연통부를 포함하고,The steam heat exchange unit includes a high temperature heat exchanger container into which hot sludge is injected, a low temperature heat exchanger container into which low temperature sludge is injected, and a communicating portion communicating the high temperature heat exchanger container and the low temperature heat exchanger container,
    상기 가열 유니트로부터 주입되는 상기 고온 슬러지는 고온 열교환 용기 내부의 상대적으로 낮은 압력에 의해서 수증기를 발생시키면서 냉각된 후 배출되고, 저온 열교환 용기에 주입된 저온 슬러지는 상기 수증기와의 접촉에 의하여 가열된 후 배출되며, 상기 수증기는 연통부를 통하여 고온 열교환 용기에서 저온 열교환 용기로 이동되는 것을 특징으로 하는 슬러지 가수분해 장치. The hot sludge injected from the heating unit is cooled and discharged while generating steam by a relatively low pressure inside the hot heat exchange vessel, and the cold sludge injected into the low temperature heat exchange vessel is heated by contact with the steam. And the water vapor is moved from the high temperature heat exchange vessel to the low temperature heat exchange vessel through a communication unit.
  7. 제6항에 있어서,The method of claim 6,
    저온 열교환 용기의 내부에는 저온 슬러지를 배출구쪽으로 이동시키는 저온 슬러지 이송유니트를 더 포함하고, The inside of the low temperature heat exchange vessel further includes a low temperature sludge transfer unit for moving the low temperature sludge to the discharge port,
    저온 슬러지 이송유니트는,Low Temperature Sludge Transfer Unit,
    저온 슬러지를 저온 열교환 용기의 중심 방향으로 끌어들이면서 하부로 이송시키는 제1 회전체;A first rotating body for transferring the cold sludge downward while drawing the cold sludge toward the center of the cold heat exchange vessel;
    저온 슬러지를 저온 열교환 용기의 내벽방향으로 밀어내면서 하부로 이송시키는 제2 회전체; 및,A second rotating body for transferring the cold sludge downward while pushing the cold sludge toward the inner wall of the cold heat exchange vessel; And,
    제1 회전체와 제2 회전체를 회전시키는 회전축;을 포함하는 것을 특징으로 하는 슬러지 가수분해 장치.Sludge hydrolysis apparatus comprising a; rotating shaft for rotating the first and second rotating body.
  8. 제2항에 있어서, The method of claim 2,
    상기 증기식 열교환 유니트는,The steam heat exchange unit,
    고온 슬러지가 유입되어 저장된 후 배출되는 고온 열교환 용기; A high temperature heat exchange container in which hot sludge is introduced and stored and then discharged;
    저온 슬러지가 유입되어 저장된 후 배출되고, 저온 슬러지를 교반하는 교반부재가 설치된 저온 열교환 용기; 및, A low temperature heat exchange container in which cold sludge is introduced and stored and discharged, and a stirring member for stirring the low temperature sludge is installed; And,
    고온 열교환 용기의 수증기를 저온 열교환 용기에 공급하는 연통부;를 포함하고, 저온 열교환 용기에는 저온 슬러지가 가득 채워지고, 상기 수증기는 노즐에 의해서 저온 슬러지 용기에 수용된 저온 슬러지의 내부로 분사되는 것을 특징으로 하는 슬러지 가수분해 장치.And a communication unit for supplying steam of the high temperature heat exchanger container to the low temperature heat exchanger container, wherein the low temperature heat exchanger container is filled with low temperature sludge, and the water vapor is injected into the low temperature sludge contained in the low temperature sludge container by a nozzle. Sludge hydrolysis apparatus.
  9. 제1항에 있어서, The method of claim 1,
    상기 가열 유니트는 유입된 슬러지가 수증기로 채워진 공간상에서 상기 수증기와의 접촉에 의하여 가수분해 되는 가수분해 용기를 구비하고,The heating unit has a hydrolysis vessel that is hydrolyzed by contact with the water vapor in a space filled with the introduced sludge with water vapor,
    상기 가수분해 용기는 상기 슬러지가 수용된 슬러지 공간과 상기 수증기가 채워진 수증기 공간으로 이루어지는 것을 특징으로 하는 슬러지 가수분해 장치. The hydrolysis vessel is sludge hydrolysis apparatus, characterized in that the sludge containing the sludge space and the steam space filled with the steam filled.
  10. 제1항에 있어서, The method of claim 1,
    상기 가열 유니트는,The heating unit,
    유입된 슬러지가 수증기로 채워진 공간상에서 상기 수증기와의 접촉에 의하여 가수분해 되는 가수분해 용기;A hydrolysis vessel in which the introduced sludge is hydrolyzed by contact with the water vapor in a space filled with water vapor;
    상기 가수분해 된 슬러지가 배출되는 통로를 형성하는 배출용기; A discharge container forming a passage through which the hydrolyzed sludge is discharged;
    상기 가수분해 용기와 상기 배출용기를 구분하는 격벽; 및A partition wall separating the hydrolysis vessel and the discharge vessel; And
    상기 가수분해 용기에 설치된 교반부재;를 구비하고, A stirring member provided in the hydrolysis vessel;
    가수분해 용기는 가수분해된 슬러지가 격벽을 넘쳐 상기 배출용기로 이동되게 함으로써 상기 가수분해 용기의 내부공간을 상기 슬러지가 채워지는 슬러지 공간과, 상기 슬러지 공간의 상부에 위치하면서 상기 수증기가 통과할 수 있는 수증기 공간으로 구획되고,The hydrolysis vessel is a sludge space in which the sludge is filled and the water vapor can pass through the inner space of the hydrolysis vessel by allowing the hydrolyzed sludge to flow over the partition wall to the discharge vessel. Compartment into the vapor space,
    교반부재는 상기 슬러지 공간과 상기 수증기 공간을 회전하면서 상기 수증기와 상기 슬러지를 교반시킴과 동시에 상기 슬러지를 상기 배출용기 쪽으로 이동시키고, 상기 슬러지는 상기 수증기에 의하여 가열되는 것을 특징으로 하는 슬러지 가수분해 장치.The stirring member rotates the sludge space and the steam space, stirs the water vapor and the sludge and simultaneously moves the sludge to the discharge container, wherein the sludge is heated by the steam. .
  11. 제9항 또는 제10항에 있어서,  The method of claim 9 or 10,
    가수분해 용기에 수용된 고온 슬러지의 일부를 슬러지 주입구(401)로 이동시킨 후, 저온 슬러지와 함께 슬러지 주입구(401)를 통하여 가수분해 용기에 주입되도록 하는 것을 특징으로 하는 슬러지 가수분해 장치. Sludge hydrolysis apparatus, characterized in that the hot sludge contained in the hydrolysis vessel is moved to the sludge inlet 401, and then injected into the hydrolysis vessel through the sludge inlet 401 together with the cold sludge.
  12. 내측으로 고온 슬러지가 이동되고, 회전하는 고온 슬러지관; 및Hot sludge pipe is moved to the inside, the hot sludge tube rotates; And
    저온 슬러지가 고온 슬러지와 혼합되지 않도록 고온 슬러지관의 외측면과 열교환 하면서 이동하도록 하는 저온 슬러지 이동부;를 포함하며,And a low temperature sludge moving unit configured to move while exchanging heat with an outer surface of the high temperature sludge tube so that the low temperature sludge is not mixed with the high temperature sludge.
    저온 슬러지는 고온 슬러지관의 외측면에 접촉되어 이동하면서 고온 슬러지와의 열교환을 통해 가열되고, 고온 슬러지는 저온 슬러지와의 열교환을 통해 냉각되는 것을 특징으로 하는 접촉식 열교환 유니트.The low temperature sludge is heated by heat exchange with the hot sludge while moving in contact with the outer surface of the hot sludge tube, the hot sludge is cooled by heat exchange with the low temperature sludge.
  13. 제12항에 있어서, The method of claim 12,
    고온 슬러지관은 외측면에 형성된 돌출부가 서로 맞물리면서 회전되는 제1,2 고온 슬러지관으로 이루어지고, The high temperature sludge tube is composed of the first and second high temperature sludge tubes rotated while engaging the projections formed on the outer surface,
    상기 저온 슬러지 이동부는 서로 연결되도록 설치된 다수의 단위부재를 포함하며, The low temperature sludge moving unit includes a plurality of unit members installed to be connected to each other,
    상기 단위부재는, The unit member,
    저온의 유기물 슬러지가 유입되는 유입구; An inlet through which low temperature organic sludge is introduced;
    저온의 유기물 슬러지가 배출되는 배출구; 및, An outlet through which low temperature organic sludge is discharged; And,
    유입구와 배출구 사이에 형성되고, 제1,2 고온 슬러지관이 설치된 이동공간;을 포함하고, And a moving space formed between the inlet and the outlet, and having first and second high temperature sludge pipes installed therein.
    상기 유입구는 일측에 설치된 단위부재의 배출구와 연결되고 상기 배출구는 타측에 설치된 단위부재의 유입구와 연결되며, 유입구를 통하여 유입된 저온 슬러지가 배출구로 이동되는 동안에 제1,2 고온 슬러지관과의 접촉에 의하여 가열되며,The inlet is connected to the outlet of the unit member installed on one side and the outlet is connected to the inlet of the unit member installed on the other side, the cold sludge introduced through the inlet is in contact with the first and second hot sludge pipes while moving to the outlet Heated by
    저온 슬러지는 돌출부 사이의 홈에 수용되고, 상기 홈에 수용된 저온 슬러지는 돌출부가 서로 맞물리면 홈 밖으로 배출되고, 상기 맞물림이 벌어지면 상기 홈으로 저온 슬러지가 유입되는 것을 특징으로 하는 접촉식 열교환 유니트.Cold sludge is accommodated in the groove between the projections, the cold sludge accommodated in the groove is discharged out of the groove when the projections are engaged with each other, the contact heat exchange unit, characterized in that the cold sludge flows into the groove when the engagement is opened.
  14. 제12항에 있어서, The method of claim 12,
    저온 슬러지에 압력을 가하여 저온 슬러지를 저온 슬러지 이동부로 공급하는 가압 주입유니트를 더 포함하고, Further comprising a pressurized injection unit for supplying the cold sludge to the cold sludge moving unit by applying pressure to the cold sludge,
    가압 주입유니트는, Pressurized injection unit,
    저온 슬러지에 흡입압이 발생하지 않도록 하는 주입부와, 주입부를 경유한 저온 슬러지를 가압하는 가압부를 포함하는 것을 특징으로 하는 접촉식 열교환 유니트.A contact heat exchange unit comprising: an injection unit for preventing suction pressure from being generated in the cold sludge, and a pressurizing unit for pressurizing the cold sludge via the injection unit.
  15. 제12항에 있어서,The method of claim 12,
    저온 슬러지 유입구와 저온 슬러지 배출구가 형성된 밀폐된 프레임; A closed frame in which a cold sludge inlet and a cold sludge outlet are formed;
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외측면에 형성된 돌출부가 서로 맞물려서 회전하는 한 쌍의 제1 고온 슬러지관;A pair of first high temperature sludge tubes installed in the frame, wherein the hot sludge is moved, and the protrusions formed on the outer surface are engaged with each other to rotate;
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외측면에 형성된 돌출부가 서로 맞물려서 회전하며, 상기 한 쌍의 제1 고온 슬러지관의 회전방향과 반대방향으로 회전하는 한 쌍의 제2 고온 슬러지관;을 포함하고, A pair of second high temperature sludges installed in the frame, the high temperature sludge is moved therein, and the protrusions formed on the outer surface rotate in engagement with each other, and rotate in a direction opposite to the rotation direction of the pair of first high temperature sludge tubes. Including;
    한 쌍의 제1 고온 슬러지관과 한 쌍의 제1 고온 슬러지관은 이웃하도록 배치되며, 저온 슬러지 유입구를 통하여 유입된 저온 슬러지는 돌출부 사이의 홈에 수용되어 제1,2 고온 슬러지관의 회전에 의해서 저온 슬러지 배출구로 이동되면서 제1,2 고온 슬러지관과 열교환을 하고, The pair of first high temperature sludge tubes and the pair of first high temperature sludge tubes are arranged to be adjacent to each other, and the cold sludge introduced through the low temperature sludge inlet is accommodated in the grooves between the protrusions and rotates in the first and second high temperature sludge tubes. Heat exchanged with the first and second high temperature sludge pipe while moving to the low temperature sludge outlet by
    상기 홈에 수용된 저온 슬러지는 돌출부가 서로 맞물리면 홈 바깥으로 배출되고 상기 맞물림이 벌어지면 상기 홈으로 저온 슬러지가 유입되며 한 쌍의 제1 고온 슬러지관과 한 쌍의 제2 고온 슬러지관이 회전하여 프레임의 내부에는 저온 슬러지의 압력차이를 발생하여 저온 슬러지가 교반되는 것을 특징으로 하는 접촉식 열교환 유니트.The low temperature sludge accommodated in the groove is discharged out of the groove when the protrusions are engaged with each other, and when the engagement is made, the low temperature sludge flows into the groove, and the pair of first high temperature sludge tubes and the pair of second high temperature sludge tubes rotate to form a frame. Contact heat exchange unit, characterized in that the low temperature sludge is stirred by generating a pressure difference of the low temperature sludge.
  16. 제12항에 있어서,The method of claim 12,
    저온 슬러지 유입구와 저온 슬러지 배출구가 형성된 밀폐된 프레임; A closed frame in which a cold sludge inlet and a cold sludge outlet are formed;
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외측면에는 돌출부가 형성된 제1 고온 슬러지관;A first hot sludge tube installed in the frame, the hot sludge is moved therein, and a protruding portion formed on an outer surface thereof;
    프레임에 설치되고, 그 내부에는 고온 슬러지가 이동하며, 외측면에는 상기 돌출부와 맞물릴 수 있는 돌출부가 형성되고, 상기 돌출부들이 서로 맞물려서 제1 고온 슬러지관과 함께 회전되는 제2 고온 슬러지관;을 포함하고, A second hot sludge tube installed in the frame, the inside of which is heated hot sludge, and an outer side of which is formed a protrusion to be engaged with the protrusion, and the protrusions are engaged with each other to rotate together with the first hot sludge tube. Including,
    저온 슬러지 유입구를 통하여 유입된 저온 슬러지는 돌출부 사이의 홈에 수용되어 제1,2 고온 슬러지관의 회전에 의해서 저온 슬러지 배출구로 이동되면서 제1,2 고온 슬러지관과 열교환을 하고, The low temperature sludge introduced through the low temperature sludge inlet is accommodated in the groove between the protrusions and is moved to the low temperature sludge outlet by the rotation of the first and second high temperature sludge tubes, thereby exchanging heat with the first and second high temperature sludge tubes.
    상기 홈에 수용된 저온 슬러지는 돌출부가 서로 맞물리면 홈 바깥으로 배출되고 상기 맞물림이 벌어지면 상기 홈으로 저온 슬러지가 유입되며 제1,2 고온 슬러지관의 회전에 의하여 프레임의 내부에는 저온 슬러지의 압력이 높은 곳과 낮은 곳이 존재하는 것을 특징으로 하는 접촉식 열교환 유니트.The low temperature sludge accommodated in the groove is discharged out of the groove when the protrusions are engaged with each other, and when the engagement occurs, the low temperature sludge is introduced into the groove, and the low temperature sludge has a high pressure inside the frame due to the rotation of the first and second high temperature sludge tubes. Contact heat exchange unit, characterized in that there is a place and a low place.
  17. 제15항 또는 제16항에 있어서, The method according to claim 15 or 16,
    제1,2 고온 슬러지관은 프레임의 길이방향으로 설치되고, 프레임은 고압에 견딜 수 있도록 원통형인 것을 특징으로 하는 접촉식 열교환 유니트. First and second high temperature sludge tube is installed in the longitudinal direction of the frame, the contact heat exchange unit, characterized in that the frame is cylindrical to withstand high pressure.
  18. 고온 슬러지가 주입되는 고온 열교환 용기와, 저온 슬러지가 주입되는 저온 열교환 용기 및, 고온 열교환 용기와 저온 열교환 용기를 연통시키는 연통부를 포함하고,A high temperature heat exchanger container into which the hot sludge is injected, a low temperature heat exchanger container into which the low temperature sludge is injected, and a communicating portion communicating the high temperature heat exchanger container and the low temperature heat exchanger container,
    가열 유니트에서 가수분해된 후 고온 열교환 용기에 공급되는 고온 슬러지는 고온 열교환 용기 내부의 상대적으로 낮은 압력에 의해서 수증기를 발생시키면서 냉각된 후 배출되고, 저온 열교환 용기에 주입된 저온 슬러지는 상기 수증기와의 접촉에 의하여 가열된 후 배출되며, 상기 수증기는 연통부를 통하여 고온 열교환 용기에서 저온 열교환 용기로 이동되는 것을 특징으로 하는 증기식 열교환 유니트.The hot sludge which is hydrolyzed in the heating unit and supplied to the high temperature heat exchange vessel is cooled and discharged while generating water vapor by a relatively low pressure inside the high temperature heat exchange vessel, and the low temperature sludge injected into the low temperature heat exchange vessel is combined with the water vapor. And is discharged after being heated by contact, wherein the water vapor is moved from the high temperature heat exchange vessel to the low temperature heat exchange vessel through a communicating portion.
  19. 제18항에 있어서, The method of claim 18,
    저온 열교환 용기의 내부에는 저온 슬러지를 배출구쪽으로 이동시키는 저온 슬러지 이송유니트를 포함하고, Inside the low temperature heat exchange vessel includes a low temperature sludge transfer unit for moving the low temperature sludge to the discharge port,
    저온 슬러지 이송유니트는,Low Temperature Sludge Transfer Unit,
    저온 슬러지를 저온 열교환 용기의 중심 방향으로 끌어당기면서 하부로 이동시키는 제1 회전체;A first rotating body for moving the cold sludge downward while drawing the cold sludge toward the center of the cold heat exchange vessel;
    저온 슬러지를 저온 열교환 용기의 내벽 방향으로 밀어내면서 하부로 이동시키는 제2 회전체; 및,A second rotating body for moving the low temperature sludge downward while pushing the low temperature sludge toward the inner wall of the low temperature heat exchange vessel; And,
    제1 회전체와 제2 회전체를 회전시키는 회전축;을 포함하는 것을 특징으로 하는 증기식 열교환 유니트. Steam heat exchange unit comprising a; rotating shaft for rotating the first rotating body and the second rotating body.
  20. 제18항에 있어서,The method of claim 18,
    저온 열교환 용기에는 저온 슬러지를 교반하는 교반부재가 설치되고, 저온 열교환 용기에는 저온 슬러지가 가득 채워지고, 상기 수증기는 연통부에 설치된 노즐에 의해서 저온 슬러지 용기에 수용된 저온 슬러지의 내부로 분사되는 것을 특징으로 하는 증기식 열교환 유니트. The low temperature heat exchange vessel is provided with a stirring member for stirring the low temperature sludge, the low temperature heat exchange vessel is filled with the low temperature sludge, and the water vapor is injected into the inside of the low temperature sludge contained in the low temperature sludge container by a nozzle installed in the communication unit. Steam heat exchanger unit.
  21. (a) 증기를 이용하여 저온 슬러지를 가열하고 가수분해하여 고온 슬러지로 만드는 가수분해 단계; (a) a hydrolysis step of heating and hydrolyzing the cold sludge using steam to produce hot sludge;
    (b) 저온 슬러지와 가수분해된 고온 슬러지가 서로 혼합되지 않도록 고온 슬러지는 관의 내부에서 관과 접촉하고 저온 슬러지는 상기 관의 외부에서 관과 접촉하여 열전도에 의해서 열교환 하도록 하는 접촉식 열교환 단계;를 포함하고,(b) a contact heat exchange step in which the hot sludge contacts the tube inside the tube so that the cold sludge and the hydrolyzed hot sludge do not mix with each other and the cold sludge contacts the tube at the outside of the tube to exchange heat by heat conduction; Including,
    고온 슬러지는 가수분해단계 이후에 접촉식 열교환 단계에서 저온 슬러지와 열교환하여 냉각되고, 저온 슬러지는 접촉식 열교환 단계와 가수분해 단계를 순차적으로 거치면서 가열되며, 상기 가수분해 단계와 접촉식 열교환 단계는 연속적으로 이루어지는 것을 특징으로 하는 슬러지 가수분해 방법. The hot sludge is cooled by heat exchange with the cold sludge in the contact heat exchange step after the hydrolysis step, and the cold sludge is heated through the contact heat exchange step and the hydrolysis step sequentially, and the hydrolysis step and the contact heat exchange step are Sludge hydrolysis method, characterized in that made continuously.
  22. 제21항에 있어서,The method of claim 21,
    상기 (a) 단계와 (b) 단계 사이에 증기식 열교환 단계를 더 포함하고,Further comprising a steam heat exchange step between the step (a) and (b),
    증기식 열교환 단계는,Steam heat exchange stage,
    가수분해된 고온 슬러지를 고온 열교환 용기에 주입하고, 접촉식 열교환 단계를 거친 저온 슬러지를 저온 열교환 용기에 주입하며, 고온 열교환 용기에 주입된 고온 슬러지가 고온 열교환 용기 내부의 상대적으로 낮은 압력에 의해서 수증기를 발생시키면 냉각되도록 하고, 상기 수증기를 저온 열교환 용기에 공급하여 저온 열교환 용기 내부의 저온 슬러지에 접촉하여 저온 슬러지를 가열하도록 하는 것을 특징으로 하는 슬러지 가수분해 방법.The hydrolyzed hot sludge is injected into the hot heat exchange vessel, the cold sludge that has undergone the contact heat exchange step is injected into the cold heat exchange vessel, and the hot sludge injected into the hot heat exchange vessel is vaporized by relatively low pressure inside the hot heat exchange vessel. When it is generated to be cooled, the sludge hydrolysis method characterized in that for supplying the steam to the low temperature heat exchange vessel to contact the low temperature sludge inside the low temperature heat exchange vessel to heat the low temperature sludge.
  23. 제21항 또는 제22항에 있어서,The method of claim 21 or 22,
    가수분해 단계와 증기식 열교환 단계에서 저온 슬러지는 증기접촉가열에 의해서 가열되는 것을 특징으로 하는 슬러지 가수 분해 방법.Sludge hydrolysis method characterized in that the low temperature sludge in the hydrolysis step and steam heat exchange step is heated by steam contact heating.
  24. 제23항에 있어서,The method of claim 23, wherein
    상기 증기 또는 수증기를 이용하여 저온 슬러지를 가열할 때, 상기 증기 또는 수증기의 압력을 측정하여 증기 또는 수증기의 공급량을 제어하는 것을 특징으로 하는 슬러지 가수 분해 방법.When heating the low temperature sludge by using the steam or steam, the sludge hydrolysis method characterized in that for controlling the supply amount of steam or steam by measuring the pressure of the steam or steam.
  25. 제21항 또는 제22항에 있어서,The method of claim 21 or 22,
    상기 (b) 단계 이후에,After step (b),
    고온 슬러지의 성분 중에서 고형분을 고형분과 액상분으로 분리하고, 상기 액상분을 혐기성 소화시켜 메탄가스를 얻는 것을 특징으로 하는 슬러지 가수 분해 방법. Sludge hydrolysis method characterized by separating solid content from solid components and liquid component among the components of high temperature sludge, and anaerobic digesting the liquid component to obtain methane gas.
  26. 제21항 또는 제22항에 있어서,The method of claim 21 or 22,
    상기 (b) 단계 이후에,After step (b),
    고온 슬러지의 성분 중에서 고형분을 고형분과 액상분으로 분리하고, 상기 고형분을 열분해하여 열분해 가스와 탄화물을 얻는 것을 특징으로 하는 슬러지 가수 분해 방법.Sludge hydrolysis method characterized by separating solid content from solid component and liquid component among components of high temperature sludge, and pyrolyzing the said solid content to obtain pyrolysis gas and carbide.
PCT/KR2010/001687 2009-03-18 2010-03-18 Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device WO2010107263A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800215338A CN102428044A (en) 2009-03-18 2010-03-18 Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020090023283A KR100967719B1 (en) 2008-09-11 2009-03-18 Apparatus of steam type heat exchanging and method of heat exchanging sludge using the same and sludge treatment apparatus using the same
KR10-2009-0023282 2009-03-18
KR10-2009-0023283 2009-03-18
KR10-2009-0023284 2009-03-18
KR1020090023282A KR100968767B1 (en) 2008-09-11 2009-03-18 Apparatus for contact type heat exchange, method for contact type heat exchange and apparatus for hydrolyzing sludge using unit for contact type heat exchange
KR1020090023284A KR100968765B1 (en) 2008-09-11 2009-03-18 A apparatus for hydrolysis treatment of sludge and a method using the same

Publications (2)

Publication Number Publication Date
WO2010107263A2 true WO2010107263A2 (en) 2010-09-23
WO2010107263A3 WO2010107263A3 (en) 2010-12-23

Family

ID=42740348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001687 WO2010107263A2 (en) 2009-03-18 2010-03-18 Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device

Country Status (1)

Country Link
WO (1) WO2010107263A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424508A (en) * 2011-10-28 2012-04-25 广西博世科环保科技股份有限公司 Sludge pyrolytic digestion process for efficiently recovering heat energy and equipment thereof
CN103373801A (en) * 2012-04-20 2013-10-30 青岛大学 Continuous dehydrating method and device for explosive production wastewater and sludge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047175A (en) * 1999-11-18 2001-06-15 이윤석 The drying method and the same apparatus of sludge
JP2004230227A (en) * 2003-01-28 2004-08-19 Okayamaken Seibu Eisei Shisetsu Kumiai Method for drying sludge derived from excreta
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007203213A (en) * 2006-02-02 2007-08-16 Nishimuragumi:Kk Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047175A (en) * 1999-11-18 2001-06-15 이윤석 The drying method and the same apparatus of sludge
JP2004230227A (en) * 2003-01-28 2004-08-19 Okayamaken Seibu Eisei Shisetsu Kumiai Method for drying sludge derived from excreta
JP2007007622A (en) * 2005-07-04 2007-01-18 Eco Material Kk Treating apparatus of organic waste
JP2007203213A (en) * 2006-02-02 2007-08-16 Nishimuragumi:Kk Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424508A (en) * 2011-10-28 2012-04-25 广西博世科环保科技股份有限公司 Sludge pyrolytic digestion process for efficiently recovering heat energy and equipment thereof
CN103373801A (en) * 2012-04-20 2013-10-30 青岛大学 Continuous dehydrating method and device for explosive production wastewater and sludge

Also Published As

Publication number Publication date
WO2010107263A3 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2018084330A1 (en) Continuous pyrolysis device and pyrolysis method
WO2012074283A2 (en) Apparatus for pressurizing delivery of low-temperature liquefied material
WO2012144700A1 (en) Biomass solid manufacturing system and manufacturing method
WO2015122688A1 (en) System for producing biochar, and method for producing biochar
WO2010107263A2 (en) Sludge hydrolysis device, a sludge hydrolysis method using the same, and a contact type of heat exchange unit and steam type of heat exchange unit provided in the sludge hydrolysis device
US20100119440A1 (en) Method for producing a product gas rich in hydrogen
WO2013094859A1 (en) Operation logic of an organic material thermohydrolysis system
WO2010008155A2 (en) Method and apparatus for producing expanded particles of polyolefin, and molded body thereof
WO2017159960A1 (en) Insulating oil reloading device and insulating oil reloading method of x-ray tube module
WO2023113413A1 (en) Waste synthetic polymer pyrolysis system
WO2018066845A1 (en) Hybrid-type generation system
WO2020175743A1 (en) Continuous activated carbon regeneration apparatus using hydrothermal pressurization, having structure connected with filter, and continuous activated carbon regeneration method using same
WO2018048179A1 (en) Method and system for thermochemically converting combustible material by circulating thermal medium
WO2014155058A1 (en) A method and apparatus for producing biochar
KR101596931B1 (en) High Efficiency Batch Type Thermal Hydrolysis System containing Intergrated Condenser-Heat Exchanger and Method
WO2013025018A9 (en) Mobile apparatus for continuously producing asphalt concrete
WO2010030086A2 (en) Sludge heating unit, sludge heating method, and sludge hydrolysis apparatus using same
WO2009130524A1 (en) Pyrolytic apparatus and method
WO2022250317A1 (en) Apparatus for rapid drying and fermentation of organic waste
KR101937192B1 (en) Energy production system using waste gas generated from waste plastic emulsification process and method thereof
DK2655996T3 (en) Heating module, heating system with several heating modules and systems with such heating system
KR100599377B1 (en) Dechlorination System by Indirect Heating for Removal of Chlorine From Mixed Polymer Wastes Including PVC
RU2700862C1 (en) Method of recycling polymer components of municipal and industrial wastes and device for its implementation
KR20230069677A (en) Transfer equipment for Ultrasonic pyrolysis of Polymer waste
WO2020141867A1 (en) Exhaust gas treatment apparatus, and ship comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021533.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753713

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7981/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10753713

Country of ref document: EP

Kind code of ref document: A2