WO2010107121A1 - 新規土壌診断方法 - Google Patents

新規土壌診断方法 Download PDF

Info

Publication number
WO2010107121A1
WO2010107121A1 PCT/JP2010/054892 JP2010054892W WO2010107121A1 WO 2010107121 A1 WO2010107121 A1 WO 2010107121A1 JP 2010054892 W JP2010054892 W JP 2010054892W WO 2010107121 A1 WO2010107121 A1 WO 2010107121A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
activity
potassium
compost
amount
Prior art date
Application number
PCT/JP2010/054892
Other languages
English (en)
French (fr)
Inventor
謙三 久保田
洋行 石森
芳樹 松宮
良一 深川
久保 幹
門倉 伸行
章雄 金森
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Priority to AU2010225633A priority Critical patent/AU2010225633B2/en
Priority to CN201080012772.7A priority patent/CN102356312B/zh
Priority to JP2011504900A priority patent/JP5578525B2/ja
Priority to US13/256,757 priority patent/US8962336B2/en
Publication of WO2010107121A1 publication Critical patent/WO2010107121A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/007Determining fertilization requirements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention mainly relates to a novel soil diagnosis method using the number of soil bacteria and the circulation activity of substances as indices, and a soil quality control method and improvement method using the diagnosis method.
  • Microorganisms play an important role in the conversion and circulation of substances in various environments including soil. For example, in order to convert nitrogen fertilizer into a form that is taken up by agricultural crops in farmland, it is necessary for microorganisms to “nitrify”.
  • Non-Patent Documents 1 and 2 soil evaluation has been centered on analysis for chemical farming methods, which have been mainly determined by physicochemical properties such as the concentration and pH of various inorganic ions, and the activity of microorganisms has not been considered.
  • the present invention provides a soil diagnosis method, a quality control method, and an improvement method in consideration of material circulation by soil microorganisms, and particularly provides a farmland quality diagnosis method, a management method, and an improvement method suitable for plant growth. This is the main issue.
  • the present inventor has conducted extensive studies on soil evaluation and diagnosis methods reflecting the activity of soil microorganisms. As a result, it was found that by combining the soil bacteria count and the analysis related to nitrogen, phosphorus and potassium, it was possible to make an appropriate diagnosis of soil, and further studies were made to complete the present invention.
  • the present invention relates to the following soil diagnosis method, quality control method, and improvement method.
  • Item 1 Circulating activity index calculated using the following (I) to (III): (I) Ammonia reduction rate in the target soil, (II) Soil diagnostics using phytic acid production activity from phytic acid in target soil, (III) potassium production activity from compost in target soil, and (IV) soil bacteria count in soil Diagnosis method.
  • Circulation activity index is With respect to the area of the equilateral triangle formed with the reference value of the ammonia reduction rate set in advance, the reference value of the phosphate generation activity from phytic acid and the reference value of the potassium generation activity from compost as the apex, (I) Ammonia reduction rate, (II) Phosphate production activity from phytic acid, and (III) Potassium production activity from compost placed on the line connecting the corresponding vertices from the center of gravity of the equilateral triangle Item 2.
  • the diagnostic method according to Item 1 which is a ratio of the area of a triangle formed with the measurement points of the above as apexes.
  • Item 3 A) Nitrogen circulation activity index calculated using the following (A-1) to (A-3): (A-1) Number of soil bacteria in the target soil, (A-2) Ammonia reduction rate in the target soil, and (A-3) Nitrite reduction rate in the target soil, B) Phosphorus circulating activity index calculated using (B-1) to (B-3) below: (B-1) Number of soil bacteria in the target soil, (B-2) Phosphate producing activity from phytic acid in the target soil, and (B-3) Phosphate producing activity from compost in the target soil, And C) an index of potassium circulation activity calculated using the following (C-1) to (C-3): (C-1) number of soil bacteria in the target soil, (C-2) A soil diagnosis method characterized in that soil diagnosis is performed using at least the potassium release rate in the target soil and (C-3) potassium generation activity from compost in the target soil.
  • Nitrogen cycling activity index is With respect to the area of the equilateral triangle formed with the reference value of the soil bacteria count set in advance, the reference value of the ammonia reduction rate, and the reference value of the nitrite reduction rate as a vertex, The (A-1) soil bacteria count, (A-2) ammonia reduction rate, and (A-3) nitrite reduction rate placed on the line connecting the corresponding vertices from the center of gravity of the equilateral triangle Item 4.
  • the diagnostic method according to Item 3 which is a ratio of the area of a triangle formed with a measurement point as a vertex.
  • Phosphorus circulating activity index is With respect to the area of an equilateral triangle formed with the reference value of the preset number of soil bacteria, the reference value of the phosphate production activity from phytic acid, and the reference value of the phosphate production activity from compost as the apex, (B-1) the number of soil bacteria placed on the line segment connecting the corresponding vertices from the center of gravity of the equilateral triangle, (B-2) the activity of producing phosphate from phytic acid, and (B-3) Item 5.
  • the diagnostic method according to item 3 or 4 which is a ratio of the area of a triangle formed with each measured value of phosphoric acid production activity from compost as a vertex.
  • the potassium circulatory activity index is With respect to the area of the equilateral triangle formed with the reference point of the preset soil bacteria count, the reference value of the potassium release rate, and the reference value of the potassium production activity from compost as the apex, The (C-1) soil bacteria count, (C-2) potassium release rate, and (C-3) potassium production from the compost placed on the line connecting the corresponding vertices from the center of gravity of the equilateral triangle Item 6.
  • the diagnostic method according to any one of Items 3 to 5, which is a ratio of an area of a triangle formed with each measured value of activity as a vertex.
  • Item 7 A soil quality control method, wherein the soil quality is managed by performing the diagnostic method according to any one of Items 1 to 6 over time and analyzing the change in the index over time .
  • Item 8 A method for improving soil, comprising performing the diagnosis method according to any one of Items 1 to 6 and performing a process for improving the index based on the obtained diagnosis result.
  • Soil diagnostic method 1.1 Soil diagnosis method (1) In the soil diagnosis method (1) of the present invention, the circulating activity index calculated using the following (I) to (III): (I) Ammonia reduction rate in the target soil, The soil diagnosis is performed using (II) phosphoric acid producing activity from phytic acid in the target soil, (III) potassium producing activity from compost in the target soil, and (IV) the number of soil bacteria in the soil.
  • the ammonia reduction rate in the target soil is a value indicating the reduction rate of the concentration of the ammonia compound administered to the target soil.
  • the ammonia reduction rate can be calculated as a value obtained by the following formula when an ammonia compound is administered to the target soil.
  • Ammonia reduction rate (%) [1- (N 1 ⁇ N 2 ) / N 1 ] ⁇ 100
  • N 1 represents the amount of ammonia nitrogen on the day of administration of the ammonia compound.
  • N 2 represents the amount of ammonia nitrogen after a certain period from the administration of the ammonia compound.
  • the ammonia compound administration date means the administration date of the ammonia compound to the target soil.
  • the amount of ammonia nitrogen on the day of administration of the ammonia compound can be expressed as the amount of ammonia nitrogen on day 0 of administration.
  • “after a certain period of time after administration of the ammonia compound” means the day when a certain period has elapsed since the administration of the ammonia compound to the target soil.
  • the amount of ammonia nitrogen after 3 days from the date of administration of the ammonia compound to the target soil can be expressed as the amount of ammonia nitrogen on the third day of administration.
  • the length of the fixed period can be set as appropriate, but is preferably 3 to 7 days, particularly 3 days after administration. When the period is shorter than this, or when it is extremely long, the difference in activity becomes difficult to distinguish.
  • ammonia reduction rate in the target soil is preferably a value obtained by the following formula:
  • the amount of ammonia nitrogen means the amount of ammonia nitrogen (NH 4 + ) per unit dry weight of the target soil.
  • the amount of ammonia nitrogen can be measured by the indophenol method, potassium chloride solution leaching method, high performance liquid chromatography and the like. More specifically, it can be measured by the ammonia nitrogen determination method in the examples.
  • ammonia compound to be administered to the target soil is not particularly limited, and examples thereof include ammonium salts such as ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium carbonate. Of these, ammonium sulfate, which is a common agricultural fertilizer, is preferably used.
  • the amount of ammonia compound to be administered to the target soil is not particularly limited, but considering the concentration of nitrogen-containing compounds in general field soil, it is 30 to 100 ⁇ g-N / g-dry per unit dry weight of the target soil.
  • the ammonia reduction rate reflects the conversion efficiency from ammonia nitrogen to nitrite nitrogen.
  • the larger the decrease rate the more the number of ammonia-oxidizing bacteria in the target soil or the activity per unit cell mass. It is thought to contain high ammonia oxidizing bacteria.
  • the smaller the decrease rate the smaller the number of ammonia-oxidizing bacteria.
  • the phosphate producing activity from phytic acid in the target soil is a value indicating the conversion activity of phytic acid administered to the target soil.
  • the phosphate production activity from phytic acid in the target soil can be calculated as a value obtained by the following formula when phytic acid is administered to the target soil.
  • Phosphate production activity from phytic acid [(P 3 ⁇ P 2 ) / P 1 ] ⁇ 100 (In the formula, P 1 represents the amount of phosphoric acid in phytic acid. P 2 represents the amount of water-soluble phosphoric acid on the day of phytic acid administration. P 3 represents the amount of water-soluble phosphoric acid after a certain period of time from phytic acid administration. To express.)
  • the amount of phosphoric acid in phytic acid can be calculated from the dose of phytic acid based on the fact that 6 moles of phosphoric acid are contained in 1 mole of phytic acid.
  • the phytic acid administration date means the phytic acid administration date for the target soil.
  • the amount of water-soluble phosphate on the day of administration of phytic acid can be expressed as the amount of water-soluble phosphate on day 0 of administration.
  • “after a certain period of time from phytic acid administration” means the day when a certain period has elapsed since phytic acid administration to the target soil.
  • the water-soluble phosphoric acid after 3 days from the day of administration of phytic acid to the target soil can be expressed as the amount of water-soluble phosphoric acid on the third day of administration.
  • the length of the fixed period can be set as appropriate, but is preferably 3 to 7 days, particularly 3 days after administration. When the period is shorter than this, or when it is extremely long, the difference in activity becomes difficult to distinguish.
  • the phosphoric acid production activity from phytic acid in the target soil is preferably a value determined by the following formula:
  • the amount of water-soluble phosphoric acid means the amount of water-soluble phosphoric acid per unit dry weight of the target soil.
  • the amount of water-soluble phosphoric acid can be measured by the molybdenum blue method, high performance liquid chromatography or the like. More specifically, it can be measured according to the method for quantifying water-soluble phosphoric acid in the examples.
  • the amount of phytic acid administered to the target soil is not particularly limited, but is about 0.5 to 5% (w / w), preferably about 1 to 2% (w / w) per unit dry weight of the target soil.
  • the activity of producing phosphoric acid from phytic acid reflects the conversion efficiency from phytic acid to water-soluble phosphoric acid, and it is considered that the higher the activity, the easier it is to use phosphorus contained in the plant body. From this, it is considered that the greater the activity, the better the quality of the soil, and the more the amount of externally applied phosphorus fertilizer can be suppressed.
  • the potassium production activity from compost in the target soil is a value indicating the conversion activity of potassium in the compost administered to the target soil to free potassium.
  • the compost is the same as that described in the above phosphorus circulation index, and examples thereof include plant compost such as bark compost, livestock compost such as bark compost, cattle manure, and pig manure compost, and seaweed compost. These may be used alone or in combination of two or more.
  • bark compost contains much potassium, more appropriate evaluation becomes possible.
  • the total potassium (K 2 O) content of bark compost is 0.1% or more (dry matter).
  • the administration form of compost is not limited, and compost mixed with culture soil may be used.
  • the mixing ratio is about 10 to 50%, preferably about 25 to 35% by weight of compost with respect to the total amount of the cultured soil.
  • the potassium production activity from compost in compost soil can be calculated as a value obtained by the following formula when compost is administered to the target soil.
  • K 4 represents the potassium content in the compost.
  • K 5 represents the potassium release amount on the compost administration day.
  • K 6 represents the potassium release amount after a certain period from the compost administration.
  • the potassium content in the compost can also be quantified according to a known method.
  • a filtrate obtained by adding an aqueous ammonium acetate solution to compost and filtering is used as a potassium extract, and the obtained extract is used as an atomic absorption photometer.
  • the date of compost administration means the date of administration of compost to the target soil.
  • the amount of potassium released on the day of administration of compost can be expressed as the amount of potassium released on the 0th day of administration.
  • “after a certain period of time from the administration of compost” means the day when a certain period has elapsed from the administration of compost to the target soil.
  • the amount of released potassium after 3 days from the day when compost was administered to the target soil can be expressed as the amount of released potassium on the third day of administration.
  • the length of the fixed period can be set as appropriate, but is preferably 3 to 7 days, particularly 3 days after administration. When the period is shorter than this, or when it is extremely long, the difference in activity becomes difficult to distinguish.
  • the potassium generation activity from compost in the target soil is preferably a value obtained by the following formula:
  • the amount of potassium released can be measured in the same manner as described later.
  • the potassium generation activity from compost reflects the conversion efficiency of potassium in compost to free potassium, and it is considered that the greater the activity, the easier it is to use potassium in compost. From now on, it is considered that the greater the activity, the better the quality of the soil and the less the amount of potassium input from the outside.
  • the number of soil bacteria represents the number of soil bacteria obtained based on the amount of DNA present per unit weight of sample collected from the target soil.
  • the number can be expressed in units of the number (cells / g-soil or cells / g-sample) per unit weight of the target soil (or sample).
  • the amount of DNA here refers to the amount of DNA present per unit weight of the sample collected from the target soil. More specifically, the total amount of DNA present per unit weight of the sample is shown regardless of the origin of the DNA.
  • the number of soil bacteria can be determined by converting the amount of DNA present per unit weight of sample collected from the target soil by an appropriate technique.
  • the correlation between the number of soil bacteria in the soil and the amount of DNA is obtained in advance, and the amount of DNA measured from the collected sample is collated with the correlation. be able to.
  • the number of soil bacteria is determined by converting the amount of DNA per unit weight of a sample collected from the target soil according to the following formula.
  • the sample collected from the target soil is the soil collected (sampled) from the target soil.
  • the collection method is not particularly limited, and can be appropriately performed according to a known method.
  • the collection conditions can be set as appropriate, from the viewpoint of appropriately judging the state of microorganisms in the target soil, it is preferable to collect the sample while avoiding the time when the target soil is not in a normal state due to rain or the like.
  • the amount of DNA per unit weight of sample collected from the target soil can be measured by eluting the DNA present in the sample collected from the soil to be diagnosed and quantifying the amount of the DNA.
  • the obtained sample should be kept at a low temperature (eg, about ⁇ 4 to ⁇ 80 degrees, preferably ⁇ 20 to ⁇ 80). Can be stored for about 1 day to 3 weeks.
  • a low temperature eg, about ⁇ 4 to ⁇ 80 degrees, preferably ⁇ 20 to ⁇ 80.
  • the method for eluting DNA from all the microorganisms contained in the sample is not particularly limited as long as the DNA is significantly decomposed or sheared and its quantification is adversely affected.
  • one embodiment of the DNA elution method is a method of treating the sample with a DNA elution solution.
  • Examples of the DNA elution solution used here include solutions generally used for eluting DNA from bacteria.
  • an inhibitor of a DNA degrading enzyme such as EDTA or EGTA, a cationic surfactant, a solution containing an anionic surfactant and / or a buffer containing them, etc.
  • the buffer can also contain a proteolytic enzyme such as proteinase K, thermolysin, and subtilisin.
  • the blending ratio of each component can be appropriately set within a range that does not significantly impair DNA extraction.
  • the elution conditions for DNA are not particularly limited.
  • DNA can be eluted by adding 2 to 20 ml, preferably 5 to 15 ml, more preferably 8 to 12 ml of the above DNA extraction solution to 1 g of soil subjected to the elution treatment. .
  • the elution temperature can be appropriately set according to the DNA elution solution to be used and the type of soil used for the elution treatment.
  • the elution time varies depending on the type of DNA extraction solution to be used, the type of soil subjected to the elution treatment, the elution temperature, etc., and cannot be defined uniformly, but as an example, 0.1 to 4 hours, preferably 0.2 Up to 2 hours, more preferably 0.3 to 1 hour can be mentioned.
  • the amount of DNA present in the target soil can be determined.
  • the DNA quantification method is not particularly limited, and for example, the eluted DNA can be purified and recovered as necessary, and quantified by a known or conventional DNA quantification method.
  • the DNA is stained with ethidium bromide and the fluorescence intensity of the DNA band on the gel is measured. The method of doing can be mentioned.
  • a method of dissolving the DNA recovered by purification in a buffer solution and measuring the absorbance at 260 nm of the solution can be mentioned.
  • the method for purifying DNA is not particularly limited, and can be performed according to a conventional method.
  • Examples of the method include a step of adding a DNA precipitating agent such as isopropyl alcohol, ethanol, or polyethylene glycol to the DNA-containing layer obtained in the above step to precipitate the DNA and recovering the DNA.
  • the DNA extraction efficiency in each sample should be measured in advance and corrected for each target sample based on the extraction efficiency. It is desirable to determine the amount of DNA.
  • the DNA extraction efficiency means the ratio of the amount of DNA actually eluted and quantified from the sample to the amount of DNA contained in the sample collected from the target soil.
  • the number of soil bacteria can be determined according to the method described above.
  • the total amount of DNA derived from all bacteria present in the sample reflects the overall characteristics and status of the target soil. Therefore, the number of soil bacteria obtained based on the amount of DNA present per unit weight of sample collected from the target soil is an index for grasping the characteristics of the soil and the working conditions of the bacteria in the soil.
  • the soil is suitable for plant growth If one of the following conditions is not satisfied, it is determined that the soil is not suitable for plant growth.
  • a reference value for the activity of producing phosphate from phytic acid 1% (w / w) phytic acid per unit dry weight was administered to the target soil, and the amount of water-soluble phosphoric acid on day 0 and the water solubility on day 3
  • the reference value can be used. If the measured value is 10% or more, preferably 30% or more, it can be evaluated that the soil has excellent activity of producing phosphoric acid from phytic acid.
  • the standard value for the activity of producing potassium from compost is to administer 1% (w / w) compost per unit dry weight to the target soil and measure the amount of potassium released on day 0 and the amount of potassium released on day 3.
  • the case where the value obtained by the above formula is 100% can be used as the reference value. If the measured value is 5% or more, preferably 20% or more, it can be evaluated that the soil has an excellent potassium production activity from compost.
  • the method for calculating the circulatory activity index by combining the above (I), (II) and (III) is not particularly limited.
  • the reference value of the ammonia reduction rate set in advance, the phosphate generation activity from phytic acid, (I) Ammonia reduction rate placed on the line segment connecting the corresponding vertex from the center of gravity of the equilateral triangle, with respect to the area of the equilateral triangle formed with the reference value and the standard value of potassium production activity from compost as the apex It is preferably calculated as a ratio of the area of a triangle formed with the measurement points of (II) phosphoric acid producing activity from phytic acid and (III) potassium producing activity from compost as vertices.
  • the number of soil bacteria is 2 ⁇ 10 8 cells / g-soil or more, and the reference value is the top. If the ratio of the triangle formed with the measurement point with respect to the area of the equilateral triangle as a vertex is 10 or more, preferably 30 or more, it can be determined that the soil is suitable for the growth of the plant. It can be judged that the soil is not suitable for growth.
  • Soil diagnosis method (2) The soil diagnosis method of the present invention is characterized by evaluating or diagnosing soil using at least (A) a nitrogen cycling activity index, (B) a phosphorus cycling activity index, and (C) a potassium cycling activity index.
  • the nitrogen cycling activity index is an index for analyzing the relationship between conversion of nitrogen-containing compounds including nitrification and soil bacteria.
  • the nitrogen circulation activity index in the present invention is: (A-1) Number of soil bacteria in the target soil, (A-2) A value calculated using the ammonia reduction rate in the target soil and (A-3) the nitrous acid reduction rate in the target soil.
  • Organic nitrogen compounds added to the soil are decomposed into peptides, amino acids and the like, and then converted into ammonia nitrogen.
  • ammonia nitrogen (NH 4 + ) is converted to nitrite nitrogen (NO 2 ⁇ ) and nitrate nitrogen (NO 3 ⁇ ) sequentially. Some denitrification occurs and is converted to nitrogen (N 2 ).
  • the nitrous acid reduction rate in the target soil is a value indicating the reduction rate of the nitrite nitrogen (NO 2 ⁇ ) concentration administered to the target soil.
  • the nitrous acid reduction rate can be calculated as a value obtained by the following formula when a nitrite compound is administered to the target soil.
  • Nitrite reduction rate (%) [1- (N 3 ⁇ N 4 ) / N 3 ] ⁇ 100
  • N 3 represents the amount of nitrite nitrogen on the day of administration of the nitrite compound.
  • N 4 represents the amount of nitrite nitrogen after a certain period from administration of the nitrite compound.
  • the nitrite compound administration date means the administration date of the nitrite compound to the target soil.
  • the amount of nitrite nitrogen on the day of administration of the nitrite compound can be expressed as the amount of nitrite nitrogen on day 0 of administration.
  • the term “after a certain period after administration of the nitrite compound” means the day when a certain period has elapsed since the administration of the nitrite compound to the target soil.
  • the amount of nitrite nitrogen after 3 days from the day of administration of the nitrite compound to the target soil can be expressed as the amount of nitrite nitrogen on the third day of administration.
  • the length of the fixed period can be set as appropriate, but is preferably 3 to 7 days, particularly 3 days after administration. When the period is shorter than this, or when it is extremely long, the difference in activity becomes difficult to distinguish.
  • the nitrite reduction rate in the target soil is preferably a value obtained by the following formula:
  • the amount of nitrite nitrogen means the amount of nitrite nitrogen (NO 2 ⁇ ) per unit dry weight of the target soil.
  • the amount of nitrite nitrogen can be measured by the naphthylethylenediamine method, high performance liquid chromatography or the like. More specifically, it can be measured by the quantitative method of nitrite nitrogen in the examples.
  • Nitrite reduction rate reflects the conversion efficiency from nitrite nitrogen to nitrate nitrogen. The greater the decrease rate, the more nitrite-oxidizing bacteria in the target soil or the amount per unit cell mass It is thought that nitrite oxidizing bacteria with high activity are contained. In addition, the smaller the decrease rate, the smaller the number of nitrite-oxidizing bacteria.
  • the standard value of the number of soil bacteria 3.25 ⁇ 10 9 cells / g-soil, which is the average value of the number of soil bacteria in farmland soil, is used as the standard value. If the measured value is 10% or more, preferably 40% or more, it can be evaluated that the soil has an excellent number of soil bacteria.
  • the standard value of the ammonia reduction rate 60 ⁇ g-N / g-dry soil of ammonium sulfate was administered to the target soil, and the amount of ammonia nitrogen on the 0th day and the amount of ammonia nitrogen on the 3rd day were measured.
  • the case where the value obtained in step 100 is 100% can be used as the reference value.
  • the measured value is 30% or more, preferably 60% or more, it can be evaluated that the soil has an excellent ammonia reduction rate. Since the concentration of nitrogen-containing compounds in general field soil is about 60 ⁇ g-N / g-dry oilsoil, if the reduction rate of this amount is 100%, it has necessary and sufficient ammonia conversion activity. It can be evaluated that it is doing.
  • nitrite reduction rate 60 ⁇ g-N / g-dry soil potassium nitrite was administered to the target soil, and the amount of nitrite nitrogen on day 0 and the amount of nitrite nitrogen on day 3 were measured. The case where the value obtained by the above equation is 100% can be used as the reference value. If the measured value is 60% or more, preferably 90% or more, it can be evaluated that the soil has an excellent nitrite reduction rate. Since the concentration of nitrogen-containing compounds in general field soil is about 60 ⁇ g-N / g-dry soil, the necessary and sufficient nitrite conversion activity is obtained when the reduction rate of this amount is 100%. It can be evaluated as having.
  • the method for calculating the nitrogen cycling activity index by combining the above (A-1), (A-2) and (A-3) is not particularly limited, but the preset reference value for the number of soil bacteria, ammonia reduction
  • the (A-1) soil placed on the line segment connecting the corresponding vertex from the center of gravity of the equilateral triangle with respect to the area of the equilateral triangle formed with the reference value of the rate and the standard value of the nitrite reduction rate as the apex It is preferably calculated as a ratio of the area of a triangle formed with the measurement points of the number of bacteria, the (A-2) ammonia reduction rate, and the (A-3) nitrous acid reduction rate as vertices.
  • the nitrogen circulation activity index can be calculated by the calculation method described in the examples.
  • the phosphorous circulatory activity index is an activity to convert a phosphorus-containing organic compound into phosphoric acid, in other words, an activity to convert a phosphorous compound that cannot be used by plants into usable phosphoric acid. It is an index for analyzing the relationship between soil bacteria.
  • the phosphorus circulating activity index in the present invention is: (B-1) Number of soil bacteria in the target soil, (B-2) Phosphate producing activity from phytic acid in the target soil, and (B-3) Phosphate producing activity from compost in the target soil, Is a value calculated using.
  • plants absorb water-soluble phosphoric acid. For this reason, it is considered that phosphorus is easily absorbed by plants in soil with a large amount of water-soluble phosphoric acid in the soil.
  • phytic acid and compost are considered to be particularly important as phosphorus compounds.
  • Phytic acid is a substance for plants to store phosphorus, and is abundant in weeds and residues after harvesting crops. If the microorganisms in the target soil have a high activity of releasing phosphoric acid from phytin in these plants, it can be judged that the quality of the soil is high.
  • compost is used as a means to replenish phosphorus that is deficient in the soil from the outside.
  • compost contains phosphoric acid as a component of bark compost, not water-soluble phosphoric acid. If the activity of microorganisms in the target soil to generate phosphoric acid from compost is high, it can be determined that the quality of the soil is high.
  • the phosphate production activity from compost in the target soil refers to the conversion activity of compost administered to the target soil into phosphoric acid, in other words, conversion of compost It is a value indicating the activity of decomposing to release water-soluble phosphoric acid.
  • compost examples include plant compost such as bark compost, livestock compost such as chicken manure compost, cattle manure compost, and pig manure compost, and seaweed compost. These may be used alone or in combination of two or more.
  • bark compost contains a lot of phosphoric acid in the form of phytic acid or the like, more appropriate evaluation becomes possible.
  • the total phosphoric acid (P 2 O 5 ) content of bark compost is 0.5% or more (dry matter).
  • the administration form of compost is not limited, and compost mixed with culture soil may be used.
  • the mixing ratio is about 10 to 50%, preferably about 25 to 35% by weight of compost with respect to the total amount of the cultured soil.
  • the phosphoric acid production activity from compost can be calculated as a value obtained by the following formula when compost is administered to the target soil.
  • Phosphate production activity from compost (%) [(P 6 -P 5 ) / P 4 ] ⁇ 100 (In the formula, P 4 represents the amount of phosphoric acid in compost. P 5 represents the amount of water-soluble phosphoric acid on the day of compost administration. P 6 represents the amount of water-soluble phosphoric acid after a certain period of time from compost administration.)
  • the amount of phosphoric acid in compost can be measured according to a known phosphoric acid content determination method. For example, after decomposing organic matter in compost with perchloric acid, it is extracted with 0.002N sulfuric acid and subjected to the molybdenum blue method. It can be obtained by quantifying total phosphoric acid.
  • the date of compost administration means the date of administration of compost to the target soil.
  • the amount of water-soluble phosphoric acid on the day on which compost is administered can be expressed as the amount of water-soluble phosphoric acid on day 0 of administration.
  • “after a certain period of time from the administration of compost” means the day when a certain period has elapsed from the administration of compost to the target soil.
  • the amount of water-soluble phosphoric acid after 3 days from the day when compost is administered to the target soil can be expressed as the amount of water-soluble phosphoric acid on the third day of administration.
  • the length of the fixed period can be set as appropriate, but is preferably 3 to 7 days, particularly 3 days after administration. When the period is shorter than this, or when it is extremely long, the difference in activity becomes difficult to distinguish.
  • the phosphoric acid production activity from compost in the target soil is preferably a value determined by the following formula:
  • the amount of water-soluble phosphoric acid means the amount of water-soluble phosphoric acid per unit dry weight of the target soil, and can be measured by the same method as described above.
  • the phosphoric acid production activity from compost reflects the conversion efficiency from compost to water-soluble phosphoric acid, and it is considered that the greater the activity, the easier it is to use phosphorus contained in the compost. From this, it is considered that the greater the activity, the better the quality of the soil and the lower the input of compost. Moreover, it is considered that the smaller the activity, the more difficult it is to use the phosphorus in the compost. From this, it is considered that the smaller the activity is, the lower the quality of the soil is, and it is necessary to increase the amount of compost input or to add phosphorus fertilizer.
  • the standard value of the number of soil bacteria 3.25 ⁇ 10 9 cells / g-soil, which is the average value of the number of soil bacteria in farmland soil, is used as the standard value. If the measured value is 10% or more, preferably 40% or more, it can be evaluated that the soil has an excellent number of soil bacteria.
  • a reference value for the activity of producing phosphate from phytic acid 1% (w / w) phytic acid per unit dry weight was administered to the target soil, and the amount of water-soluble phosphoric acid on day 0 and the water solubility on day 3
  • the reference value can be used. If the measured value is 10% or more, preferably 30% or more, it can be evaluated that the soil has excellent activity of producing phosphoric acid from phytic acid.
  • the reference value for the activity of producing phosphoric acid from compost is to administer 1% (w / w) compost per unit dry weight to the target soil, the amount of water-soluble phosphoric acid on day 0 and water-soluble phosphorus on day 3
  • the reference value can be used. If the measured value is 10% or more, preferably 30% or more, it can be evaluated that the soil has excellent activity of producing phosphoric acid from compost.
  • the method for calculating the phosphorus circulation activity index by combining the above (B-1), (B-2) and (B-3) is not particularly limited, but a preset reference value for the number of soil bacteria, phytic acid Is placed on a line segment connecting the corresponding vertices from the center of gravity of the equilateral triangle with respect to the area of the equilateral triangle formed with the reference value of the phosphate producing activity from compost and the reference value of the phosphate producing activity from compost as the vertex. Furthermore, the triangle formed with the measurement points of (B-1) soil bacteria count, (B-2) phosphate production activity from phytic acid, and (B-3) phosphate production activity from compost as vertexes It is preferable to calculate as a percentage of the area.
  • the phosphorus circulating activity index can be calculated by the calculation method described in the examples.
  • the potassium cycle activity index is an index for analyzing the relationship between conversion of potassium-containing compounds and soil bacteria.
  • the potassium circulatory activity index in the present invention is: (C-1) number of soil bacteria in the target soil, (C-2) It is a value calculated using the potassium release rate in the target soil and (C-3) the potassium generation activity from compost in the target soil.
  • compost is used as a means for supplying potassium deficient in the soil from the outside.
  • a large amount of potassium is contained in the bodies of animals and plants in the compost.
  • plants can use free potassium. Therefore, it is considered that the activity of converting potassium contained in compost into free potassium by microorganisms is an important factor.
  • the potassium release rate in the target soil is a value indicating the amount of potassium per unit dry weight of the target soil.
  • the potassium release rate in the target soil is a value calculated by the following formula.
  • Potassium release rate (%) [(K 3 ⁇ K 2 ) / K 1 ] ⁇ 100 (In the formula, K 1 represents the potassium content in the target soil on the measurement start date. K 2 represents the potassium release amount on the measurement start date. K 3 represents the potassium release amount after a certain period from the measurement start date. .)
  • the potassium content in the target soil can be quantified according to a known method.
  • a filtrate obtained by adding an aqueous ammonium acetate solution to the soil and filtering is used as a potassium extract, and the obtained extract is subjected to atomic absorption spectrophotometry. It can be obtained by measuring the amount of potassium using a meter.
  • Potassium liberation means the amount of potassium per unit dry weight of the target soil.
  • Potassium liberation can be measured by atomic absorption spectrophotometry and ICP-MS. For example, it can be obtained by measuring a solution obtained by extracting potassium liberated from soil with distilled water using an atomic absorption photometer. Specifically, it can be measured by the method described in the quantitative determination method of potassium in soil by the atomic absorption photometer described in the examples.
  • the potassium release rate is Value obtained by the following formula:
  • the potassium release rate reflects the amount of potassium available to the plant, and the larger the value, the easier it is to use potassium in the soil. From this, it is considered that the larger the value, the better the quality of the soil, and the less the amount of potassium input from the outside.
  • the smaller the value the more difficult it is to use potassium in the soil. From this, it is diagnosed that the smaller the value, the poorer the quality of the soil and the greater the amount of potassium input from the outside.
  • the standard value of the number of soil bacteria 3.25 ⁇ 10 9 cells / g-soil, which is the average value of the number of soil bacteria in farmland soil, is used as the standard value. If the measured value is 10% or more, preferably 40% or more, it can be evaluated that the soil has an excellent number of soil bacteria.
  • the activity when all potassium in the target soil is converted to free potassium in 3 days can be defined as 100%. If the measured value is 5% or more, preferably 10% or more, it can be evaluated that the soil has an excellent potassium release rate.
  • the reference value for the activity of potassium production from compost is to administer 1% (w / w) compost per unit dry weight to the target soil and measure the amount of potassium released on day 0 and the amount of potassium released on day 3.
  • the case where the value obtained by the above formula is 100% can be used as the reference value. If the measured value is 5% or more, preferably 20% or more, it can be evaluated that it has excellent potassium production activity from compost.
  • the method for calculating the potassium circulatory activity index by combining the above (C-1), (C-2) and (C-3) is not particularly limited, but a preset reference value for the number of soil bacteria, potassium release With respect to the area of the equilateral triangle formed with the reference value of the amount and the reference value of the potassium production activity from compost as the apex, the (C-1 It is preferably calculated as the ratio of the area of a triangle formed with the measurement point of the number of soil bacteria, the (C-2) potassium liberation amount, and the (C-3) composting potassium production activity as the apex.
  • the measurement point for the area of the equilateral triangle formed with the reference value as the vertex is formed as the vertex. If the ratio of triangles to be applied is 1 or more, preferably 5 or more, it can be determined that the soil has excellent potassium cycle activity, and if it is less than the above value, it can be determined that the soil has no excellent potassium cycle activity.
  • the potassium cycle activity index can be calculated by the calculation method described in the examples.
  • Target soil the kind of soil used as object is not specifically limited, For example, farmland, the soil after a bioremediation process, etc. are mentioned.
  • the present invention is used as a farmland diagnostic method for diagnosing whether farmland is of a quality suitable for plant growth and whether the farmland needs to be improved for quality suitable for plant growth. Can do.
  • the present invention can be used as a method for diagnosing purified soil for determining whether or not the material circulation activity of soil microorganisms is recovered in the soil after bioremediation treatment and can be used for ordinary applications.
  • soil is diagnosed using the above circulating activity index, or the above (A) nitrogen circulating activity index, (B) phosphorus circulating activity index, and (C) potassium circulating activity index.
  • the above-mentioned circulatory activity index and other indices other than the above (A) to (C) may be used.
  • examples of other indicators include soil pH, electrical conductivity, dissolved oxygen concentration, particle size, or porosity. These can be measured according to a known method.
  • an index related to carbon for example, an index related to carbon
  • the total organic carbon content (TOC) may be used as an index.
  • TOC total organic carbon content
  • a carbon source as a biological component and an energy source for maintaining the activity are necessary, so the amount of carbon can also be an important factor. it is conceivable that.
  • the method of using the above indicators (A) to (C) for diagnosis is not particularly limited, but for example, obtaining a comprehensive indicator as the sum or product of the indicators (A) to (C) or their calculated values. Can make a diagnosis.
  • the soil with the larger sum of the indicators (A) to (C) has higher quality and can be diagnosed as soil suitable for plant growth.
  • the indicators (A) to (C) are calculated as the ratio of the triangles formed with vertices as the measurement points relative to the area of the regular triangle formed with the reference values as vertices as described above, and the average of the ratios is calculated.
  • the average is 10 or more, preferably 35 or more, it can be determined that the soil is suitable for plant growth, and if it is less than the above value, it can be determined that the soil is not suitable for plant growth.
  • the index of (A) to (C) is calculated as a ratio of the triangle formed with the measurement point with respect to the area of the regular triangle formed with the reference value as the vertex as described above, and then with 100 as the vertex. If the ratio of the triangle formed with the above-mentioned ratio placed on the line connecting the corresponding vertices from the center of gravity of the regular triangle to the area of the regular triangle formed is 1 or more, preferably 5 or more, It can be determined that the soil is suitable for plant growth, and if it is less than the above value, it can be determined that the soil is not suitable for plant growth.
  • each of the above-mentioned circulatory activity indicators or indicators (A) to (C) is diagnosed, which nitrogen, phosphorus or potassium circulatory system needs to be improved.
  • a diagnosis may be made as to whether it is effective or the improvement of the state of soil microorganisms is effective.
  • soil diagnosis can be performed as a comprehensive index combining the above indices (A) to (C) with other indices. Furthermore, diagnosis can be performed by examining the balance of the indicators (A) to (C) or by comparing with other indicators.
  • Soil Quality Management Method According to the present invention, a method for managing soil quality using the diagnostic method of the present invention is provided.
  • the above-described diagnostic method of the present invention is performed over time, and the circulation activity index, (A) nitrogen circulation activity index, (B) phosphorus circulation activity index, and (C) potassium
  • the soil quality is managed by analyzing the time course of the circulation activity index.
  • the analysis method of the change with time is not particularly limited, and can be appropriately performed according to a known method. For example, you may analyze using the value which further converted or calculated the parameter
  • the analysis can be performed by combining the circulatory activity index and changes over time of other indices other than the above (A) to (C).
  • the quality control method of the present invention not only the state of substances necessary for plant growth but also the state of microorganisms in the soil can be grasped. For this reason, according to the quality control method of the present invention, it is possible to grasp whether the ecosystem in the soil is well preserved through the growth of the plant and various substance circulation activities are functioning.
  • Soil Improvement Method there is provided a method for improving the quality of soil using the diagnostic method of the present invention.
  • the soil activity related to the circulation activity index (A) the nitrogen circulation activity index, (B) the phosphorus circulation activity index, and (C) the potassium circulation activity index.
  • the soil is improved by obtaining a diagnosis result and performing processing according to the diagnosis content.
  • the contents of the treatment include additional administration of nitrogen, phosphorus and / or potassium-containing fertilizers, administration of nutrients to activate the microorganisms in the soil, and the introduction of microorganisms having circulating activities of nitrogen, phosphorus and / or potassium. Administration is possible. For example, when the ammonia reduction rate is low, it is conceivable to administer ammonia oxidizing bacteria.
  • the soil improvement method of the present invention there is an advantage that it is possible to determine which component of nitrogen, phosphorus, and potassium is necessary, and further, it is possible to determine the treatment content in consideration of the action of microorganisms in the soil.
  • the plant cannot sufficiently use nitrogen. According to the present invention, it can be determined that treatment for increasing the activity of microorganisms and administration of microorganisms having such activities are effective for such situations. On the other hand, even if the amount of nitrogen in the soil is not sufficient and it is determined that external input of nitrogen is necessary, if the activity of the microorganism is known to be sufficient, the dosage of nitrogen can be adjusted and excess Administration can also be suppressed.
  • the soil can be improved by effectively utilizing the function of the ecosystem in the soil, and efficient soil improvement and further efficient food production can be achieved. Can be possible.
  • a soil diagnosis method reflecting the circulating activity in the soil, particularly a soil diagnosis method capable of judging the suitability for cultivation of agricultural products.
  • the soil diagnosis method of the present invention also reflects the state of microorganisms in the soil that are closely involved in the material circulation, making it possible to accurately diagnose the quality of farmland according to the natural circulation system.
  • the diagnostic method of the present invention can accurately diagnose the quality of soil suitable for farming methods that do not rely on chemical farming methods such as biomass.
  • the diagnostic method of the present invention it is necessary to improve which circulatory system of nitrogen, phosphorus and potassium, which is important for plant growth, and for the improvement, addition of additional components is effective, or In addition, it is possible to determine the processing contents of whether the improvement of the state of soil microorganisms is effective.
  • the quality control method of the present invention not only the state of substances necessary for plant growth but also the state of microorganisms in the soil can be grasped, and the ecosystem in the soil is well preserved through the growth of plants. It is also possible to grasp whether various substance circulation activities are functioning.
  • the soil improvement method of the present invention it is possible to improve the soil by effectively using the function of the ecosystem in the soil, and it is possible to improve the efficiency of the soil and further improve the profitability of agricultural production. To.
  • the present invention provides a soil quality diagnosis and improvement means based on the natural circulation function, and improves the profitability of farming methods in which the use of chemical substances such as organic farming methods has been reduced, and environmental conservation. This contributes to the establishment of a type agricultural production system.
  • FIG. A is a drawing for soil No. 1 and B is a drawing for soil No. 2.
  • is an uninoculated strain
  • is a A strain administered
  • is a diagram showing the results when a B strain is administered.
  • A Ammonium sulfate 4 ⁇ g-N / g-soil administration
  • B Ammonium sulfate 40 ⁇ g-N / g-soil administration
  • C Ammonium sulfate 400 ⁇ g-N / g-soil administration
  • Ammonia nitrogen
  • Nitrite nitrogen
  • Nitrate nitrogen It is drawing which shows the nitrogen circulation in the soil which administered potassium nitrite.
  • A Potassium nitrite 6 ⁇ g-N / g-soil administration
  • B Potassium nitrite 60 ⁇ g-N / g-soil administration
  • C Potassium nitrite 600 ⁇ g-N / g-soil administration
  • Ammonia nitrogen
  • Nitrite nitrogen
  • Nitrate nitrogen It is drawing which shows the relationship between the amount of nitrification per day, and the number of soil bacteria.
  • Kakihata
  • Kaki Paddy Field
  • Error bars other than farmland are standard deviation
  • nitrite nitrogen by naphthylethylenediamine method 1.0 ml of an inorganic nitrogen extract extracted from soil was dispensed into a 1.5 ml microtube, and 100 ⁇ l of the diazotizing agent shown in Table 3 was added and stirred. After leaving still at room temperature for 5 minutes, 100 microliters of coupling agents shown in Table 4 were added, and it left still again at room temperature for 20 minutes, and the light absorbency of 540 nm was measured. The amount of nitrite nitrogen (NO 2 -- N) was measured from a calibration curve prepared using a nitrite nitrogen standard solution.
  • 700 ⁇ l of the aqueous layer was taken into a new microtube, 700 ⁇ l of chloroform / isoamyl alcohol (24: 1, v / v) was added and mixed, and then centrifuged at 16 ° C. and 13,000 rpm for 10 minutes. After centrifugation, 500 ⁇ l of the aqueous layer was taken into a new microtube, 300 ⁇ l of 2-propanol was added, gently mixed, and centrifuged at 16 ° C. and 13,000 rpm for 15 minutes. After centrifugation, the supernatant was removed, 500 ⁇ l of 70% (v / v) ethanol was added, and the mixture was centrifuged at 16 ° C.
  • TE 10 1 buffer solution (pH 8.0) shown in Table 7 was added and dissolved well to obtain an eDNA solution.
  • Distilled water was added to 2.0 g of agarose, 4.0 ml of 50 ⁇ TAE buffer (pH 8.0) shown in Table 8 and 20 ⁇ l of 0.1 mM ethidium bromide solution to make 200 ml, and a 1.0% agarose gel was prepared.
  • a loading dye (Toyobo, Osaka) (1.0 ⁇ l) was mixed with eDNA solution (5.0 ⁇ l), and a total amount of 6.0 ⁇ l and a smart ladder (Nippon Gene, Toyama) containing a known amount of DNA were applied to an agarose gel. After electrophoresis at 100 V for 40 minutes, the agarose gel was irradiated with UV to confirm the DNA band. A smart ladder DNA band was analyzed using KODAK 1D Image Analysis software (KODAK, NY, USA), and a calibration curve of DNA amount against fluorescence intensity was prepared.
  • the amount of DNA was determined from the fluorescence intensity of the DNA band of each sample DNA solution, and the amount of eDNA per 1.0 g of each soil was calculated.
  • the number of soil bacteria was determined by a calibration curve for converting the amount of eDNA into the number of soil bacteria by DAPI staining.
  • the ammonia reduction rate and nitrite reduction rate were calculated from the amount of inorganic nitrogen reduction.
  • the ammonia reduction rate was calculated from the amount of ammonia nitrogen measured in the above 1b) and 1c) by the following formula:
  • the reduction rate of nitrous acid was calculated by the following formula from the amount of nitrite nitrogen (NO 2 ⁇ ⁇ N) measured in the above b) and d).
  • Fig. 1 shows the results of the ammonia reduction rate and nitrous acid reduction rate for each sample.
  • the decrease rate of nitrous acid was almost 100% in all samples. However, the rate of ammonia reduction varied from sample to sample: 72.0% for the highest sample and 3.10% for the lowest sample. Moreover, since the decrease rate of ammonia was lower than the decrease rate of nitrous acid in all samples, it was considered that the reaction from ammonia to nitrous acid was rate-limiting in the nitrification reaction.
  • the number of soil bacteria indicates the ratio of the number of soil bacteria in each sample, that is, the amount of bacteria when the average value of the number of soil bacteria in farmland soil is 3.25 ⁇ 10 9 cells / g-soil.
  • ammonia reduction rate indicates the ratio of the ammonia reduction rate of each sample when the activity of reducing 100 ⁇ % of the ammonia compound of 60 ⁇ g-N / g-dry soil in 100 days is defined as 100.
  • the nitrous acid reduction rate indicates the ratio of the nitrous acid reduction rate of each sample when the activity of reducing the nitrous acid compound of 60 ⁇ g-N / g-dry soil to 100% in 3 days is taken as 100.
  • sample No. 2 has a relatively high ammonia reduction rate, nitrous acid reduction rate, and the amount of bacteria, so when organic nitrogen is added to the soil, it is quickly converted to ammonia, It is thought that it is oxidized to nitric acid.
  • strains A and B Two types of autotrophic ammonia-oxidizing bacteria (strains A and B) were administered to the soil to examine whether nitrification was activated.
  • the culture solution of strain A or strain B was concentrated by centrifugation and administered to sterilized soil (soil 1 and 2) to 1.0 ⁇ 10 7 cells / g-dry soil. Furthermore, the ammonia nitrogen was applied to the soil so as to be 60 ⁇ g-N / g dry soil and left to stand for 3 days, and the temporal change in the amount of inorganic nitrogen was analyzed. The results are shown in FIG. Fig. 3 shows changes in the amount of nitrite nitrogen and nitrate nitrogen over time.
  • the amount of accumulated nitrite nitrogen and nitrate nitrogen increased when autotrophic ammonia-oxidizing bacteria were administered compared to when it was not.
  • the phytic acid 1% (w / w) was added to the sampled soil, stirred well, and left at room temperature for 3 days. Weigh 2.0 g of this soil into a 50 ml centrifuge tube, extract the water-soluble phosphoric acid by the method described above, subject it to the molybdenum blue method, measure the amount of water-soluble phosphoric acid, The amount.
  • the amount of phosphoric acid in phytic acid was calculated from the dose of phytic acid.
  • the activity of producing phosphoric acid from phytic acid was calculated from the following formula.
  • the phosphoric acid production activity from compost was calculated from the following formula.
  • the number of soil bacteria indicates the ratio of the number of soil bacteria in each sample when the average value of 3.25 ⁇ 10 9 cells / g-soil of soil bacteria in farmland soil is 100.
  • Phosphoric acid production activity from phytic acid is defined as 1% (w / w) of phosphoric acid in phytic acid converted to water-soluble phosphoric acid in 100 days. The ratio of the phosphate production activity from phytic acid of each sample is shown.
  • the phosphoric acid production activity from compost is 1% (w / w) of phosphoric acid in compost in 3 days when all are converted to water-soluble phosphoric acid in 100 days.
  • the ratio of the phosphate production activity from the compost of a sample is shown.
  • the soil of sample No. 12 has a high phosphorus cycle activity index, and can be evaluated as a soil in which plant phosphate absorption is easy to be performed.
  • the soil potassium cycle was analyzed using 10 samples (No. 11 to 20) of soils with different application and fertilization conditions.
  • the amount of potassium released was quantified in the same manner as the amount of potassium released on the third day.
  • the potassium release rate was calculated by the following formula.
  • the potassium content in the compost was measured in the same manner except that compost was used instead of the soil.
  • the potassium production activity from compost was calculated according to the following formula.
  • the number of soil bacteria indicates the ratio of the number of soil bacteria in each sample when the average value of 3.25 ⁇ 10 9 cells / g-soil of soil bacteria in farmland soil is 100.
  • the potassium release rate indicates the potassium release rate of each sample when the activity when all the potassium in the soil is converted to free potassium during 3 days is defined as 100.
  • the potassium generation activity from compost is 1% (w / w) of compost from each sample when the activity in converting all the potassium in compost to free potassium in 100 days is 100. The ratio of the potassium production activity is shown.
  • the soil of sample No. 11 has a high potassium cycle activity index, and can be evaluated as a soil in which plant potassium absorption is easily performed.
  • Table 16 shows the diagnostic values from the area of the triangle with the ammonia reduction rate, the phosphatic acid-forming activity from phytic acid, and the potassium-generating activity from compost as vertices. From this result, it was predicted that the higher the comprehensive diagnosis result of the soil, the better the plant growth.
  • FIG. 6 shows that when ammonium sulfate was added at 4, 40 ⁇ g / g-soil, almost all ammonia nitrogen was reduced and nitrate nitrogen was accumulated on the fourth day. When administered at 400 ⁇ g / g-soil, the difference in the amount of ammonia nitrogen decreased was smaller than that at the start.
  • ammonia nitrogen contained in various farmland was measured, it was in the range of 0-100 ⁇ g-N / g-soil in almost all soils. Therefore, the amount of ammonia nitrogen administered as a substrate on the basis of the following is shown. Were determined.
  • the substrate input is 40-60 ⁇ g / g-soil based on the amount of ammonia nitrogen contained in general soil. I thought that it should be done in the range. In the end, it was decided to input so as to obtain 60 ⁇ g / g-soil that was easy to calculate.
  • nitrite nitrogen was hardly contained, but nitrate nitrogen was contained in 0-100 ⁇ g-N / g-soil at the same level as ammonia nitrogen. From these facts, the amount of nitrite nitrogen to be administered as a substrate was determined on the basis of the following.
  • FIG. 8 shows the amount of nitrification per day.
  • the number of soil bacteria was quantified by the eDNA analysis method as in 1f.
  • the amount of nitrification indicates the total amount of nitrite nitrogen and nitrate nitrogen measured after administration to soil so that ammonia nitrogen becomes 60 ⁇ g-N / g dry soil and left to stand for 1 day.
  • the nitrification reaction did not proceed when the number of microorganisms was 200 million / g or less.
  • the lower limit ammonia reduction rate of the comprehensive diagnostic value, the phosphate production activity from phytin, and the potassium production activity from compost are 30, 10, 5 or less, it is not judged that the soil is excellent.
  • the ratio of the area of the triangle formed with the lower limit value placed on the line segment connecting the corresponding vertex from the center of gravity of the regular triangle to the area of the regular triangle formed with the reference value as the vertex is 1.7 points. Become. Therefore, if less than this point, it was judged that good plant growth could not be expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

 開示されているのは、下記(I)~(III)を用いて算出される循環活性指標:(I)対象土壌におけるアンモニア減少率、(II)対象土壌におけるフィチン酸からのリン酸生成活性、及び(III)対象土壌における堆肥からのカリウム生成活性、並びに(IV)土壌における土壌バクテリア数を用いて土壌診断を行うことを特徴とする土壌の診断方法、土壌の品質管理方法、並びに土壌の改善方法である。

Description

新規土壌診断方法
 本発明は、土壌バクテリア数及び物質の循環活性を指標とする、新規土壌診断方法、並びに当該診断方法を利用した土壌の品質管理方法及び改善方法に主に関する。
 土壌をはじめとする様々な環境中で、微生物は、物質の変換及び循環に重要な役割を果たしている。例えば、農地中で窒素肥料が農作物に取り込まれる形に変換されるためには、微生物が「硝化」を行う必要がある。
 化学合成技術の進展により、戦後、化学肥料を用いた農法が広く行われてきた。しかし、消費者の安全・安心な農産物に対する要望の高まりや、持続可能な農業生産のため、有機農法や自然農法への転換が各地で進められている。このような農法では、土壌中の生態系の活用が重要である。更に、農産物は、土壌中の成分を利用・吸収して生長するため、土壌の適切な評価とその管理・改善は、収益性や生産性の向上につながると考えられる。
 しかし、これまで土壌の評価は化学農法のための分析が中心であり、各種無機イオンの濃度やpH等の物理化学的特性で主に判断されており、微生物の活性は考慮されていなかった(非特許文献1及び2参照)。
 このため、有機農法または自然農法による農作物の栽培に適した土壌か、あるいは改善が必要な土壌であるかを明確に判断できなかった。
日本土壌肥料学会 監修、土壌標準分析・測定法委員会 編、「土壌標準分析・測定法」博友社、107~117、1986年 岩田進午ら監修、「土の環境圏」、フジ・テクノシステム、223~228、1997年
 本発明は、土壌微生物による物質循環を考慮した土壌の診断方法、品質管理方法及び改善方法を提供すること、特に、植物の生長に適した農地品質の診断方法、管理方法及び改善方法を提供することを主な課題とする。
 本発明者は、上記課題に鑑み、土壌微生物の活性を反映した土壌の評価及び診断手法について鋭意検討を重ねた。その結果、土壌バクテリア数と、窒素、リン及びカリウムに係る解析を組合せることにより、土壌の適切な診断が可能になることを見出し、更に検討を重ねて、本発明を完成するに至った。
 即ち、本発明は、以下の土壌診断方法、品質管理方法、及び改善方法に関する。
 項1:下記(I)~(III)を用いて算出される循環活性指標:
(I)対象土壌におけるアンモニア減少率、
(II)対象土壌におけるフィチン酸からのリン酸生成活性、及び
(III)対象土壌における堆肥からのカリウム生成活性
並びに(IV)土壌における土壌バクテリア数
を用いて土壌診断を行うことを特徴とする土壌の診断方法。
 項2:循環活性指標が、
予め設定されたアンモニア減少率の基準値、フィチン酸からのリン酸生成活性の基準値及び堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、
前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(I) アンモニア減少率、前記(II) フィチン酸からのリン酸生成活性、及び前記(III) 堆肥からのカリウム生成活性の測定点を頂点として形成される三角形の面積の割合である、項1に記載の診断方法。
 項3:A)下記(A-1)~(A-3)を用いて算出される窒素循環活性指標:
(A-1)対象土壌における土壌バクテリア数、
(A-2)対象土壌におけるアンモニア減少率、及び
(A-3)対象土壌における亜硝酸減少率、
B)下記(B-1)~(B-3)を用いて算出されるリン循環活性指標:
(B-1)対象土壌における土壌バクテリア数、
(B-2)対象土壌におけるフィチン酸からのリン酸生成活性、及び
(B-3)対象土壌における堆肥からのリン酸生成活性、
並びに、C)下記(C-1)~(C-3)を用いて算出されるカリウム循環活性指標:
(C-1)対象土壌における土壌バクテリア数、
(C-2)対象土壌におけるカリウム遊離率、及び
(C-3)対象土壌における堆肥からのカリウム生成活性
を少なくとも用いて土壌診断を行うことを特徴とする土壌の診断方法。
 項4:窒素循環活性指標が、
予め設定された土壌バクテリア数の基準値、アンモニア減少率の基準値、及び亜硝酸減少率の基準値を頂点として形成される正三角形の面積に対する、
前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(A-1)土壌バクテリア数、前記(A-2)アンモニア減少率、及び前記(A-3)亜硝酸減少率の測定点を頂点として形成される三角形の面積の割合である、項3に記載の診断方法。
 項5:リン循環活性指標が、
予め設定された土壌バクテリア数の基準値、フィチン酸からのリン酸生成活性の基準値、及び堆肥からのリン酸生成活性の基準値を頂点として形成される正三角形の面積に対する、
前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(B-1)土壌バクテリア数、前記(B-2)フィチン酸からのリン酸生成活性、及び前記(B-3)堆肥からのリン酸生成活性の各測定値を頂点として形成される三角形の面積の割合である、項3又は4に記載の診断方法。
 項6:カリウム循環活性指標が、
予め設定された土壌バクテリア数の基準点、カリウム遊離率の基準値、及び、堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、
前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(C-1)土壌バクテリア数、前記(C-2)カリウム遊離率、及び前記(C-3)堆肥からのカリウム生成活性の各測定値を頂点として形成される三角形の面積の割合である、項3~5のいずれかに記載の診断方法。
 項7:項1~6のいずれかに記載の診断方法を経時的に行って、前記指標の経時変化を解析することにより、土壌の品質を管理することを特徴とする、土壌の品質管理方法。
 項8:項1~6のいずれかに記載の診断方法を行って、得られた診断結果に基づき、前記指標を改善するための処理を行うことを特徴とする土壌の改善方法。
 以下、本発明について、更に詳細に説明する。
 1.土壌診断方法
 1.1.土壌診断方法(1)
 本発明の土壌の診断方法(1)は、下記(I)~(III)を用いて算出される循環活性指標:
(I)対象土壌におけるアンモニア減少率、
(II)対象土壌におけるフィチン酸からのリン酸生成活性、及び
(III)対象土壌における堆肥からのカリウム生成活性
並びに(IV)土壌における土壌バクテリア数
を用いて土壌診断を行うことを特徴とする。
 (I)アンモニア減少率
 本発明において、対象土壌におけるアンモニア減少率とは、対象土壌に投与したアンモニア化合物濃度の減少割合を示す値である。
 具体的にアンモニア減少率は、対象土壌にアンモニア化合物を投与した場合における下記式で求められる値として算出することができる。
 アンモニア減少率(%)=[1-(N-N)/N]×100
(式中、Nはアンモニア化合物投与日のアンモニア態窒素量を表す。Nはアンモニア化合物投与から一定期間後のアンモニア態窒素量を表す。)
 アンモニア化合物投与日とは、対象土壌に対するアンモニア化合物の投与日を意味する。アンモニア化合物投与日のアンモニア態窒素量は、投与0日目のアンモニア態窒素量と表すことができる。
 また、アンモニア化合物投与から一定期間後とは、対象土壌に対するアンモニア化合物投与から一定期間経過した日を意味する。例えば、対象土壌にアンモニア化合物を投与した日から3日経過後のアンモニア態窒素量は、投与3日目のアンモニア態窒素量と表すことができる。
 一定期間の長さは、適宜設定可能であるが、投与から3~7日目、特に3日目であることが好ましい。これよりも期間が短い場合、或いは、極端に長い場合は、活性の差が判別し難くなる。
 別言すると、対象土壌におけるアンモニア減少率として、好ましくは、下記式で求められる値:
Figure JPOXMLDOC01-appb-M000001
を用いることができる。
 アンモニア態窒素量とは、対象土壌の単位乾燥重量あたりのアンモニア態窒素(NH4 +)の量を意味する。
 アンモニア態窒素量は、インドフェノール法、塩化カリウム液浸出法、高速液体クロマトグラフィーなどにより測定することができる。より具体的には実施例におけるアンモニア態窒素の定量方法により測定することができる。
 対象土壌に投与するアンモニア化合物の種類は特に限定されないが、例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、炭酸アンモニウム等のアンモニウム塩などが挙げられる。このうち、一般的な農業用肥料である硫酸アンモニウムが好ましく用いられる。
 また、対象土壌に投与するアンモニア化合物の量も、特に限定されないが、一般的な畑土壌中の含窒素化合物濃度を考慮すると、対象土壌の単位乾燥重量あたり30~100 μg-N/g-dry soil程度、好ましくは60~70 μg-N/g-dry soil程度である。
 アンモニア減少率は、アンモニア態窒素から亜硝酸態窒素への変換効率を反映しており、減少率が大きいほど、対象土壌中のアンモニア酸化細菌数が多いか、若しくは単位菌体量当たりの活性が高いアンモニア酸化細菌が含まれていると考えられる。また減少率が小さいほどアンモニア酸化細菌数が少ないと考えられる。
 (II) フィチン酸からのリン酸生成活性
 本発明において、対象土壌におけるフィチン酸からのリン酸生成活性とは、対象土壌に投与したフィチン酸の変換活性を示す値である。
 具体的に対象土壌におけるフィチン酸からのリン酸生成活性は、対象土壌にフィチン酸を投与した場合における下記式で求められる値として算出することができる。
 フィチン酸からのリン酸生成活性(%)=[(P3-P2)/P1]×100
(式中、P1はフィチン酸中のリン酸量を表す。P2はフィチン酸投与日の水溶性リン酸量を表す。P3はフィチン酸投与から一定期間後の水溶性リン酸量を表す。)
 フィチン酸中のリン酸量は、フィチン酸1モルに6分子のリン酸が含まれていることに基づき、フィチン酸の投与量から算出することができる。
 フィチン酸投与日とは、対象土壌に対するフィチン酸の投与日を意味する。フィチン酸投与日の水溶性リン酸量は、投与0日目の水溶性リン酸量と表すことができる。
 また、フィチン酸投与から一定期間後とは、対象土壌に対するフィチン酸投与から一定期間経過した日を意味する。例えば、対象土壌にフィチン酸を投与した日から3日経過後の水溶性リン酸は、投与3日目の水溶性リン酸量と表すことができる。
 一定期間の長さは、適宜設定可能であるが、投与から3~7日目、特に3日目であることが好ましい。これよりも期間が短い場合、或いは、極端に長い場合は、活性の差が判別し難くなる。
 別言すると、対象土壌におけるフィチン酸からのリン酸生成活性として、好ましくは、下記式で求められる値:
Figure JPOXMLDOC01-appb-M000002
を用いることができる。
 水溶性リン酸量とは、対象土壌の単位乾燥重量あたりの水溶性リン酸の量を意味する。
 水溶性リン酸量は、モリブデンブルー法、高速液体クロマトグラフィーなどにより測定することができる。より具体的には実施例における水溶性リン酸の定量方法に従って測定することができる。
 対象土壌に投与するフィチン酸の量は、特に限定されないが、対象土壌の単位乾燥重量あたり0.5~5%(w/w)程度、好ましくは1~2%(w/w)程度である。
 フィチン酸からのリン酸生成活性は、フィチン酸から水溶性リン酸への変換効率を反映しており、活性が大きいほど、植物体内に含まれるリンを利用しやすい状態にあると考えられる。これから、活性が大きいほど、土壌の質に優れ、外部からのリン肥料を投入する量を抑制することができると考えられる。
 一方、活性が小さいほど、植物体内のリンを利用し難い状態と考えられる。このため、活性が小さいほど、土壌の質が十分でなく、外部から堆肥又はリン肥料等を投入する必要があると考えられる。
 (III)堆肥からのカリウム生成活性
 本発明において、対象土壌における堆肥からのカリウム生成活性とは、対象土壌に投与した堆肥中のカリウムの遊離カリウムへの変換活性を示す値である。
 ここで、堆肥は、上記リン循環指標において説明したものと同様であり、バーク堆肥などの植物堆肥、鶏糞堆肥、牛糞堆肥、豚糞堆肥などの家畜堆肥、海藻堆肥などが挙げられる。これらは1種単独としてもよく、2種以上であってもよい。
 このうち、バーク堆肥が、カリウムも多く含まれているため、より適切な評価が可能となる。通常、バーク堆肥の全カリウム(K2O)の含量は0.1%以上(乾物)である。
 また、堆肥の投与形態も限定されず、堆肥を培養土に混合させたものであってもよい。この場合の混合割合は、培養土全量に対する堆肥の重量で10~50%、好ましくは25~35%程度である。
 堆肥土壌における堆肥からのカリウム生成活性は、対象土壌に堆肥を投与した場合における下記式で求められる値として算出することができる。
 堆肥からのカリウム生成活性(%)=[(K6-K5)/K4]×100
(式中、K4は堆肥中のカリウム含有量を表す。K5は堆肥投与日におけるカリウム遊離量を表す。K6は堆肥投与から一定期間後のカリウム遊離量を表す。)
 堆肥中のカリウム含有量も、公知の方法に従って定量することができるが、例えば、堆肥に酢酸アンモニウム水溶液を加えてろ過したろ液をカリウム抽出液とし、得られた抽出液を、原子吸光光度計を用いてカリウム量を測定することにより、得ることができる。
 堆肥投与日とは、対象土壌に対する堆肥の投与日を意味する。例えば、堆肥を投与した日のカリウム遊離量は、投与0日目のカリウム遊離量と表すことができる。
 また、堆肥投与から一定期間後とは、対象土壌に対する堆肥投与から一定期間経過した日を意味する。例えば、対象土壌に堆肥を投与した日から3日経過後のカリウム遊離量は、投与3日目のカリウム遊離量と表すことができる。
 一定期間の長さは、適宜設定可能であるが、投与から3~7日目、特に3日目であることが好ましい。これよりも期間が短い場合、或いは、極端に長い場合は、活性の差が判別し難くなる。
 別言すると、対象土壌における堆肥からのカリウム生成活性として、好ましくは、下記式で求められる値:
Figure JPOXMLDOC01-appb-M000003
を用いることができる。
 カリウム遊離量は、後記と同様にして、測定することができる。
 堆肥からのカリウム生成活性は、堆肥中のカリウムの遊離カリウムへの変換効率を反映しており、活性が大きいほど、堆肥中のカリウムを利用しやすい状態にあると考えられる。これから活性が大きいほど、土壌の品質に優れ、また外部からカリウムの投入量を抑えることができると考えられる。
 また活性が小さいほど、堆肥からのカリウムを利用し難い状態にあると考えられる。これから活性が小さいほど、土壌の品質が十分でなく、外部からのカリウム投入が必要と考えられる。
 (IV)土壌バクテリア数
 本発明において、土壌バクテリア数とは、対象土壌から採取した試料単位重量当たりに存在するDNA量に基づいて求められる土壌バクテリア数を表す。
 単位重量が1gである場合、その数は、対象土壌(又は試料)単位重量あたりの数(cells/g-soil又はcells/g-sample)の単位で表すことができる。
 なお、ここでいうDNA量とは、対象土壌から採取した試料単位重量当たりに存在するDNAの量を示す。より詳細には、DNAの由来に関わらず、該試料単位重量当たりに存在するDNAの総量を示す。
 土壌バクテリア数は、対象土壌から採取した試料単位重量当たりに存在するDNA量を、適当な手法で換算することにより求めることができる。
 例えば、顕微鏡等の測定手段を用いて、予め土壌中の土壌バクテリアの数とDNA量との相関関係を求めておき、採取した試料から測定されたDNA量を該相関関係に照合することによって求めることができる。
 好ましい態様の一例において、土壌バクテリア数は、対象土壌から採取した試料の単位重量あたりのDNA量を、下記式により換算することによって求められる。
 Y = 1.7 × 108 X(R2 = 0.96)[Y;土壌バクテリア数(cells/g-soil)、X;eDNA量(μg/g-soil)]
 対象土壌から採取された試料とは、上記対象土壌から採取(サンプリング)される土壌のことである。採取方法は特に限定されず、適宜公知の方法に従って行うことができる。
 採取条件も適宜設定し得るが、対象土壌における微生物の状況を適正に判断するという観点から、試料の採取は、雨等によって対象土壌が通常の状態でない時期を避けて行うことが好ましい。
 対象土壌から採取した試料単位重量あたりのDNA量は、診断対象の土壌から採取した試料に存在するDNAを溶出し、該DNAの量を定量することにより測定することができる。
 対象土壌から採取した試料におけるDNA量の測定は、試料を取得した後、直ちに行うことが望ましいが、取得された試料を、低温(例えば-4~-80度程度、好ましくは-20~-80度程度)で1日~3週間程度保存しておくこともできる。
 該試料に含まれる全微生物からDNAを溶出する方法としては、DNAが顕著に分解或いはせん断され、その定量に悪影響が及ぼされるものでない限り、特に制限されない。
 例えば、当該DNAの溶出方法の一態様として、該試料をDNA溶出溶液で処理する方法を挙げることができる。
 ここで使用されるDNA溶出溶液としては、バクテリアからDNAを溶出するために一般的に使用されている溶液を挙げることができる。
 具体的には、当該DNA抽出用溶液としては、EDTA、EGTA等のDNA分解酵素の阻害剤、陽イオン界面活性剤、陰イオン性界面活性剤を含む溶液及び/又はそれらを含む緩衝液等を用いることができる。また、緩衝液には、プロテイナーゼK、サーモライシン、サチライシン等のタンパク質分解酵素を含有させることもできる。各成分の配合割合は、DNAの抽出を著しく阻害しない範囲で適宜設定することができる。
 上記DNA溶出溶液を用いたDNAの溶出処理において、DNAの溶出条件については、特に制限されない。例えば、溶出処理に供される土壌1gに対して、上記DNA抽出溶液を2~20ml、好ましくは5~15ml、更に好ましくは8~12mlを添加混合することにより、DNAの溶出を行うことができる。
 また、溶出温度については、使用するDNA溶出溶液や溶出処理に供される土壌の種類等に応じて、適宜設定することができる。
 溶出時間については、使用するDNA抽出用溶液の種類、溶出処理に供される土壌の種類、溶出温度等によって異なり、一律に規定することはできないが、一例として、0.1~4時間、好ましくは0.2~2時間、更に好ましくは0.3~1時間を挙げることができる。
 かくして溶出されたDNAを定量することによって、対象土壌に存在するDNA量を求めることができる。
 DNAの定量方法は、特に制限されず、例えば、溶出されたDNAを、必要に応じて精製し、回収して、公知又は慣用のDNA定量方法により定量することができる。
 具体的に、DNAの定量方法としては、精製することにより回収したDNAをアガロースゲル電気泳動に供した後に、臭化エチジウムで該DNAを染色して、ゲル上のDNAのバンドの蛍光強度を測定する方法を挙げることができる。
 また例えば、精製することにより回収したDNAを緩衝液に溶解して、該溶液の260nmの吸光度を測定する方法を挙げることもできる。
 DNAを精製する方法も、特に制限されず、常法に従って行うことができる。例えば、DNAを精製する方法としては、上記のようにしてDNA溶出処理した後の溶液を遠心分離して、その上清を回収する工程;前記工程で得られた上清に、クロロホルム、クロロホルム-イソアミルアルコール等の上記上清と層分離する不純物除去用溶液を添加して、混合する工程;前記工程で得られた混合液からDNAを含有する層を取り出すことにより、不純物を除去する工程、及び前記工程で得られたDNAを含有する層にイソプロピルアルコール、エタノール又はポリエチレングリコール等のDNA沈殿剤を添加してDNAを沈殿させ、これを回収する工程を含有する方法を挙げることができる。
 なお、DNAの抽出効率は、対象土壌の種類によって異なることがあるため、予め各試料におけるDNAの抽出効率を測定しておき、当該抽出効率に基づいて各対象試料毎に補正を行った上で、そのDNA量を求めることが望ましい。
 ここでいうDNA抽出効率とは、該対象土壌から採取した試料中に含まれるDNA量に対して、該試料から実際に溶出・定量されるDNA量の割合を意味する。
 上記のように測定されたDNA量から、上述の方法に従って、土壌バクテリア数を求めることができる。
 より具体的には、実施例に記載の方法に従って求めることができる。
 試料中に存在する全てのバクテリアに由来するDNAの総量は、対象土壌の総合的な特性や状況を反映している。従って、対象土壌から採取した試料単位重量当たりに存在するDNA量に基づいて求められる土壌バクテリア数は、土壌の特性や土壌中のバクテリアの働きの状況を把握する指標となる。
 土壌バクテリア数が大きいほど、土壌中の物質、例えば、各種有機物や窒素含有化合物、リン含有化合物などを変換する活性が高いと考えられる。又、土壌バクテリア数が小さいほど、汚染物質が残留し、土壌バクテリアの生育が抑制され、物質変換活性が低いと考えられる。土壌バクテリア数が2×108 cells/g-soilを下回ると循環活性が低下する。
 (V)循環活性の評価
 前記(I)、(II)、(III)、及び(IV)は、土壌中の窒素、リン酸、カリウム循環においていずれも重要な因子であり、これらを組み合わせて解析することが、適切な診断のために重要である。
 土壌バクテリア数が、2×108 cells/g-soil以上であり、且つ(I)、(II)、及び(III)について以下の条件をすべて充足すれば、植物の生育に適した土壌であると判断され、以下の条件を一つでも充足しなければ、植物の生育に適さない土壌であると判断される。
 (I)アンモニア減少率の基準値としては、対象土壌に60 μg-N/g-dry soilの硫酸アンモニウムを投与し、0日目のアンモニア態窒素量と3日目のアンモニア態窒素量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が30%以上、好ましくは60%以上であれば、優れたアンモニア変換活性を有した土壌であると評価できる。一般的な畑土壌中の含窒素化合物濃度は、60 μg-N/g-dry soil程度であることから、この程度の量の減少率が100 %である場合、必要十分なアンモニア変換活性を有していると評価できる。
 フィチン酸からのリン酸生成活性の基準値としては、対象土壌に単位乾燥重量あたり1%(w/w)のフィチン酸を投与し、0日目の水溶性リン酸量と3日目の水溶性リン酸量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が10%以上、好ましくは30%以上であれば、優れたフィチン酸からのリン酸生成活性を有した土壌であると評価できる。
 堆肥からのカリウム生成活性の基準値としては、対象土壌に単位乾燥重量あたり1%(w/w)の堆肥を投与し、0日目のカリウム遊離量と3日目のカリウム遊離量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が5%以上、好ましくは20%以上であれば、優れた堆肥からのカリウム生成活性を有した土壌であると評価できる。
 上記(I)、(II)及び(III)を組み合わせて、循環活性指標を算出する方法は、特に限定されないが、予め設定されたアンモニア減少率の基準値、フィチン酸からのリン酸生成活性の基準値及び堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(I)アンモニア減少率、前記(II) フィチン酸からのリン酸生成活性、及び前記(III) 堆肥からのカリウム生成活性の測定点を頂点として形成される三角形の面積の割合として算出されることが好ましい。
 この際、(I)、(II)、及び(III)について上記の条件をすべて充足し、土壌バクテリア数が2×108 cells/g-soil以上であり、且つ基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合が、10以上、好ましくは30以上であれば、植物の生育に適した土壌であると判断でき、上記範囲外であると植物の生育に適した土壌でないと判断できる。
 これにより、(I)、(II)及び(III)に基づく総合的な評価乃至判断が容易となる。更に、図示化して、指標の大きさを一目で把握することが可能となる。また(I)~(III)のうちのどの変数の改善が必要かの把握が容易となる。
 循環活性指標が高いほど、植物が窒素分、リン酸分、及びカリウム分を吸収し易く、また土壌中の窒素、リン酸及びカリウム循環効率が良好な状態にあると評価できる。
 1.2.土壌診断方法(2)
 本発明の土壌診断方法は、少なくとも(A)窒素循環活性指標、(B)リン循環活性指標、及び(C)カリウム循環活性指標を用いて、土壌の評価乃至診断を行うことを特徴とする。
 (A)窒素循環活性指標
 本発明において、窒素循環活性指標とは、硝化を含む窒素含有化合物の変換と土壌バクテリアの関係を解析するための指標である。
 本発明における窒素循環活性指標は、
(A-1)対象土壌における土壌バクテリア数、
(A-2)対象土壌におけるアンモニア減少率、及び
(A-3)対象土壌における亜硝酸減少率
を用いて算出される値である。
 土壌に加えられた有機窒素化合物は、ペプチド、アミノ酸等に分解された後、アンモニア態窒素に変化される。さらに、アンモニア態窒素(NH4 +)から 亜硝酸態窒素(NO2 -)、硝酸態窒素(NO3 -)へと順次変換される。一部は脱窒反応が起こり、窒素(N2)に変換される。
 このような有機窒素化合物の循環・変換経路において、アンモニア態窒素から亜硝酸態窒素への変換、並びに、亜硝酸態窒素から硝酸態窒素への変換が、有機窒素化合物から植物が吸収・利用可能な硝酸を生成するために不可欠な経路である。特にアンモニア態窒素から亜硝酸態窒素への変換経路は反応速度が非常に遅く、一連の含窒素化合物変換反応の律速となっている。このため、窒素循環活性の評価においては、アンモニア態窒素及び亜硝酸態窒素の減少割合が重要な因子と考えられる。
 (A-1)土壌バクテリア数
 対象土壌における土壌バクテリア数については、前記(IV)循環活性指標に記載したとおりである。
 (A-2)アンモニア減少率
 対象土壌におけるアンモニア減少率については、前記(I)循環活性指標に記載したとおりである。
 (A-3)亜硝酸減少率
 本発明において、対象土壌における亜硝酸減少率とは、対象土壌に投与した亜硝酸態窒素(NO2 -)濃度の減少割合を示す値である。
 具体的に亜硝酸減少率は、対象土壌に亜硝酸化合物を投与した場合における下記式で求められる値として算出することができる。
 亜硝酸減少率(%)=[1-(N-N4)/N]×100
(式中、Nは亜硝酸化合物投与日の亜硝酸態窒素量を表す。Nは亜硝酸化合物投与から一定期間後の亜硝酸態窒素量を表す。)
 亜硝酸化合物投与日とは、対象土壌に対する亜硝酸化合物の投与日を意味する。亜硝酸化合物投与日の亜硝酸態窒素量は、投与0日目の亜硝酸態窒素量と表すことができる。
 また、亜硝酸化合物投与から一定期間後とは、対象土壌に対する亜硝酸化合物投与から一定期間経過した日を意味する。例えば、対象土壌に亜硝酸化合物を投与した日から3日経過後の亜硝酸態窒素量は、投与3日目の亜硝酸態窒素量と表すことができる。
 一定期間の長さは、適宜設定可能であるが、投与から3~7日目、特に3日目であることが好ましい。これよりも期間が短い場合、或いは、極端に長い場合は、活性の差が判別し難くなる。
 別言すると、対象土壌における亜硝酸減少率として、好ましくは、下記式で求められる値:
Figure JPOXMLDOC01-appb-M000004
を用いることができる。
 亜硝酸態窒素量とは、対象土壌の単位乾燥重量あたりの亜硝酸態窒素(NO2 -)の量を意味する。
 亜硝酸態窒素量は、ナフチルエチレンジアミン法、高速液体クロマトグラフィーなどにより測定することができる。より具体的には実施例における亜硝酸態窒素の定量法により測定することができる。
 亜硝酸減少率は、亜硝酸態窒素から硝酸態窒素への変換効率を反映しており、減少率が大きいほど、対象土壌中の亜硝酸酸化細菌数が多いか、若しくは単位菌体量当たりの活性が高い亜硝酸酸化細菌が含まれていると考えられる。また減少率が小さいほど亜硝酸酸化細菌数が少ないと考えられる。
 (A-4)窒素循環活性の評価
 前記(A-1)、(A-2)、及び(A-3)は、土壌中の窒素循環においていずれも重要な因子であり、これらを組み合わせて解析することが、適切な診断のために重要である。
 (A-1)、(A-2)、及び(A-3)について以下の条件をすべて充足すれば、窒素循環活性に優れた土壌であると判断され、以下の条件を一つでも充足しなければ、窒素循環活性に優れた土壌でないと判断される。
 土壌バクテリア数の基準値としては、農地土壌における土壌バクテリア数の平均値である3.25×109 cells/g-soilを100%として基準値に用いる。そして、測定値が10%以上、好ましくは40%以上であれば、優れた土壌バクテリア数を有した土壌であると評価できる。
 アンモニア減少率の基準値としては、対象土壌に60 μg-N/g-dry soilの硫酸アンモニウムを投与し、0日目のアンモニア態窒素量と3日目のアンモニア態窒素量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が30%以上、好ましくは60%以上であれば、優れたアンモニア減少率を有した土壌であると評価できる。一般的な畑土壌中の含窒素化合物濃度は、60 μg-N/g-dry soil程度であることから、この程度の量の減少率が100 %である場合、必要十分なアンモニア変換活性を有していると評価できる。
 亜硝酸減少率の基準値としては、対象土壌に60 μg-N/g-dry soilの亜硝酸カリウムを投与し、0日目の亜硝酸態窒素量と3日目の亜硝酸態窒素量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が60%以上、好ましくは90%以上であれば、優れた亜硝酸減少率を有した土壌であると評価できる。一般的な畑土壌中の含窒素化合物濃度は、60 μg-N/g-dry soil程度であることから、この程度の量の減少率が100 %である場合、必要十分な亜硝酸変換活性を有していると評価できる。
 上記(A-1)、(A-2)及び(A-3)を組み合わせて、窒素循環活性指標を算出する方法は、特に限定されないが、予め設定された土壌バクテリア数の基準値、アンモニア減少率の基準値、及び亜硝酸減少率の基準値を頂点として形成される正三角形の面積に対する、前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(A-1)土壌バクテリア数、前記(A-2)アンモニア減少率、及び前記(A-3)亜硝酸減少率の測定点を頂点として形成される三角形の面積の割合として算出されることが好ましい。
 これにより、(A-1)、(A-2)及び(A-3)に基づく総合的な評価乃至判断が容易となる。更に、図2に示すように図示化して、指標の大きさを一目で把握することが可能となる。また(A-1)~(A-3)のうちのどの変数の改善が必要かの把握が容易となる。
 この際、(A-1)、(A-2)、及び(A-3)について上記の条件をすべて充足し、基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合が、10以上、好ましくは40以上であれば、窒素循環活性に優れた土壌であると判断でき、上記の値未満であると窒素循環活性に優れた土壌でないと判断できる。
 窒素循環活性指標は、より具体的には、実施例に記載の算出方法により、算出することができる。
 窒素循環活性指標が高いほど、植物が窒素分を吸収し易く、また土壌中の窒素循環効率が良好な状態にあると評価できる。
 (B)リン循環活性指標
 本発明において、リン循環活性指標とは、リン含有有機化合物からリン酸への変換活性、別言すると、植物が利用できないリン化合物を利用可能なリン酸に変換する活性、と土壌バクテリアの関係を解析するための指標である。
 本発明におけるリン循環活性指標は、
(B-1)対象土壌における土壌バクテリア数、
(B-2)対象土壌におけるフィチン酸からのリン酸生成活性、及び
(B-3)対象土壌における堆肥からのリン酸生成活性、
を用いて算出される値である。
 植物の三大栄養素の一つであるリンは植物生長と密接に関与していることから、土壌診断においては、リン循環活性の評価が重要と考えられる。
 また、植物は、水溶性リン酸を吸収する。このため、土壌中の水溶性リン酸量が多い土壌では、植物によるリンの吸収が行われやすいと考えられる。
 このため、リン循環活性について、リン化合物から水溶性リン酸への変換活性が重要な因子となると考えられる。
 また、リン化合物としては、特に、フィチン酸、及び、堆肥が重要と考えられる。
 フィチン酸は、植物がリンを貯蔵するための物質であり、雑草や農作物収穫後の残渣などに多く含まれる。対象土壌中の微生物が、これら植物体内にあるフィチンからリン酸を遊離させる活性が高ければ、土壌の品質は高いと判断できる。
 また、堆肥は、土壌で不足しているリンを外部から補給するための手段として用いられる。しかしながら、堆肥中には水溶性リン酸ではなく、バーク堆肥の含有成分等としてリン酸が含まれている。対象土壌中の微生物が堆肥からリン酸を生成できる活性が高ければ、土壌の品質は高いと判断できる。
 (B-1)土壌バクテリア数
 対象土壌における土壌バクテリア数については、前記(IV)循環活性指標に記載したとおりである。
 (B-2) フィチン酸からのリン酸生成活性
 対象土壌におけるフィチン酸からのリン酸生成活性については、前記(II)循環活性指標に記載したとおりである。
 (B-3)堆肥からのリン酸生成活性
 本発明において、対象土壌における堆肥からのリン酸生成活性とは、対象土壌に投与した堆肥のリン酸への変換活性、換言すると、堆肥を変換・分解して水溶性リン酸を遊離させる活性を示す値である。
 堆肥としては、バーク堆肥などの植物堆肥、鶏糞堆肥、牛糞堆肥、豚糞堆肥などの家畜堆肥、海藻堆肥などが挙げられる。これらは1種単独としてもよく、2種以上であってもよい。
 このうち、バーク堆肥が、フィチン酸などの形でリン酸が多く含まれているため、より適切な評価が可能となる。通常、バーク堆肥の全リン酸(P2O5)の含量は0.5%以上(乾物)である。
 また、堆肥の投与形態も限定されず、堆肥を培養土に混合させたものであってもよい。この場合の混合割合は、培養土全量に対する堆肥の重量で10~50%、好ましくは25~35%程度である。
 具体的に堆肥からのリン酸生成活性は、対象土壌に堆肥を投与した場合における下記式で求められる値として算出することができる。
 堆肥からのリン酸生成活性(%)=[(P6-P5)/P4]×100
(式中、P4は堆肥中のリン酸量を表す。P5は堆肥投与日における水溶性リン酸量を表す。P6は堆肥投与から一定期間後の水溶性リン酸量を表す。)
 堆肥中のリン酸量は、公知のリン酸含量定量法に従って測定することができるが、例えば、堆肥中の有機物を過塩素酸で分解した後、0.002N硫酸で抽出し、モリブデンブルー法に供して全リン酸を定量することにより、得ることができる。
 堆肥投与日とは、対象土壌に対する堆肥の投与日を意味する。堆肥を投与した日の水溶性リン酸量は、投与0日目の水溶性リン酸量と表すことができる。
 また、堆肥投与から一定期間後とは、対象土壌に対する堆肥投与から一定期間経過した日を意味する。例えば、対象土壌に堆肥を投与した日から3日経過後の水溶性リン酸量は、投与3日目の水溶性リン酸量と表すことができる。
 一定期間の長さは、適宜設定可能であるが、投与から3~7日目、特に3日目であることが好ましい。これよりも期間が短い場合、或いは、極端に長い場合は、活性の差が判別し難くなる。
 別言すると、対象土壌における堆肥からのリン酸生成活性として、好ましくは、下記式で求められる値:
Figure JPOXMLDOC01-appb-M000005
を用いることができる。
 水溶性リン酸量は、前述のとおり、対象土壌の単位乾燥重量あたりの水溶性リン酸の量を意味し、上記と同様の方法で測定することができる。
 堆肥からのリン酸生成活性は、堆肥から水溶性リン酸への変換効率を反映しており、活性が大きいほど、堆肥中に含まれるリンを利用しやすい状態にあると考えられる。これから、活性が大きいほど、土壌の質に優れ、堆肥の投入量を少なく抑えることができると考えられる。また活性が小さいほど、堆肥中のリンを利用し難い状況にあると考えられる。これから、活性が小さいほど、土壌の質が十分でなく、堆肥の投入量を多くするか、又はリン肥料を投入する必要があると考えられる。
 (B-4)リン循環活性の評価
 前記(B-1)、(B-2)、及び(B-3)は、土壌中のリン循環においていずれも重要な因子であり、これらを組み合わせて解析することが、適切な土壌診断のために重要である。
 (B-1)、(B-2)、及び(B-3)について以下の条件をすべて充足すれば、リン循環活性に優れた土壌であると判断され、以下の条件を一つでも充足しなければ、リン循環活性に優れた土壌でないと判断される。
 土壌バクテリア数の基準値としては、農地土壌における土壌バクテリア数の平均値である3.25×109 cells/g-soilを100%として基準値に用いる。そして、測定値が10%以上、好ましくは40%以上であれば、優れた土壌バクテリア数を有した土壌であると評価できる。
 フィチン酸からのリン酸生成活性の基準値としては、対象土壌に単位乾燥重量あたり1%(w/w)のフィチン酸を投与し、0日目の水溶性リン酸量と3日目の水溶性リン酸量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が10%以上、好ましくは30%以上であれば、優れたフィチン酸からのリン酸生成活性を有した土壌であると評価できる。
 堆肥からのリン酸生成活性の基準値としては、対象土壌に単位乾燥重量あたり1%(w/w)の堆肥を投与し、0日目の水溶性リン酸量と3日目の水溶性リン酸量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が10%以上、好ましくは30%以上であれば、優れた堆肥からのリン酸生成活性を有した土壌であると評価できる。
 上記(B-1)、(B-2)及び(B-3)を組み合わせて、リン循環活性指標を算出する方法は、特に限定されないが、予め設定された土壌バクテリア数の基準値、フィチン酸からのリン酸生成活性の基準値、及び堆肥からのリン酸生成活性の基準値を頂点として形成される正三角形の面積に対する、前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(B-1)土壌バクテリア数、前記(B-2)フィチン酸からのリン酸生成活性、及び前記(B-3)堆肥からのリン酸生成活性の測定点を頂点として形成される三角形の面積の割合として算出されることが好ましい。
 これにより、(B-1)、(B-2)及び(B-3)に基づく総合的な評価乃至判断が容易となる。更に、図4に示すように図示化して、指標の大きさを一目で把握することが可能となる。また(B-1)~(B-3)のうちのどの変数の改善が必要かの把握が容易となる。
 この際、(B-1)、(B-2)、及び(B-3)について上記の条件をすべて充足し、基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合が、1以上、好ましくは10以上であれば、リン循環活性に優れた土壌であると判断でき、上記の値未満であるとリン循環活性に優れた土壌でないと判断できる。
 リン循環活性指標は、より具体的には、実施例に記載の算出方法により、算出することができる。
 リン循環活性指標が高いほど、植物がリン分を吸収し易く、また土壌中のリン循環効率が良好な状態にあると評価できる。
 (C)カリウム循環活性指標 
 本発明において、カリウム循環活性指標とは、カリウム含有化合物の変換と土壌バクテリアの関係を解析するための指標である。
 本発明におけるカリウム循環活性指標は、
(C-1)対象土壌における土壌バクテリア数、
(C-2)対象土壌におけるカリウム遊離率、及び
(C-3)対象土壌における堆肥からのカリウム生成活性
を用いて算出される値である。
 植物の三大栄養素であるカリウムも植物生長と密接に関係していると考えられることから、土壌診断においては、カリウム循環活性の評価が重要と考えられる。
 植物は、土壌に遊離するカリウムを吸収する。そのため、カリウム循環活性においては、土壌中の遊離カリウム量が重要な因子となると考えられる。
 また、土壌で不足しているカリウムを外部から補給するための手段として堆肥が用いられる。堆肥中において、カリウムは、動植物の遺体内に多数含まれている。しかしながら、植物が利用できるのは遊離のカリウムである。そのため、堆肥に含まれるカリウムを、微生物が遊離のカリウムに変換する活性が重要な因子となると考えられる。
 (C-1)土壌バクテリア数
 対象土壌における土壌バクテリア数については、前記(IV)循環活性指標に記載したとおりである。
 (C-2)カリウム遊離率
 本発明において、対象土壌におけるカリウム遊離率とは、対象土壌の単位乾燥重量当たりのカリウム量を示す値である。
 具体的に対象土壌におけるカリウム遊離率とは、下記式で算出される値である。
 カリウム遊離率(%)=[(K3-K2)/K1]×100
(式中、K1は測定開始日における対象土壌中のカリウム含有量を表す。K2は測定開始日におけるカリウム遊離量を表す。K3は測定開始日から一定期間後のカリウム遊離量を表す。)
 対象土壌中のカリウム含有量は、公知の方法に従って定量することができるが、例えば、土壌に酢酸アンモニウム水溶液を加えてろ過したろ液をカリウム抽出液とし、得られた抽出液を、原子吸光光度計を用いてカリウム量を測定することにより、得ることができる。
 カリウム遊離量とは、対象土壌の単位乾燥重量あたりのカリウム量を意味する。
 カリウム遊離量は、原子吸光光度法、ICP-MSにより測定することができる。例えば、土壌中から遊離しているカリウムを蒸留水で抽出した液を、原子吸光光度計で測定することによって得ることができる。具体的には、実施例に記載の原子吸光光度計による土壌中のカリウムの定量法に記載の方法で測定することができる。
 好ましくは、カリウム遊離率は、
下記式で求められる値:
Figure JPOXMLDOC01-appb-M000006
を用いることができる。
 カリウム遊離率は、植物が利用可能なカリウム量を反映しており、値が大きいほど、土壌中のカリウムを利用しやすい状態にあると考えられる。これから、値が大きいほど、土壌の品質に優れ、また外部からカリウムの投入量を抑えることができると考えられる。
 また値が小さいほど、土壌中のカリウムが利用し難い状態と考えられる。これから、値が小さいほど、土壌の品質が十分でなく、また外部からカリウムの投入量を多くする必要があると診断される。
 (C-3)堆肥からのカリウム生成活性
 対象土壌における堆肥からのカリウム生成活性については、前記(III)循環活性指標に記載したとおりである。
 (C-4)カリウム循環活性の評価
 前記(C-1)、(C-2)、及び(C-3)は、土壌中のカリウム循環においていずれも重要な因子であり、これらを組み合わせて解析することが、適切な土壌診断のために重要である。
 (C-1)、(C-2)、及び(C-3)について以下の条件をすべて充足すれば、カリウム循環活性に優れた土壌であると判断され、以下の条件を一つでも充足しなければ、カリウム循環活性に優れた土壌でないと判断される。
 土壌バクテリア数の基準値としては、農地土壌における土壌バクテリア数の平均値である3.25×109 cells/g-soilを100%として基準値に用いる。そして、測定値が10%以上、好ましくは40%以上であれば、優れた土壌バクテリア数を有した土壌であると評価できる。
 カリウム遊離率の基準値としては、3日の間に対象土壌中のカリウムが全て遊離カリウムに変換されたときの活性を100%と定義することができる。そして、測定値が5%以上、好ましくは10%以上であれば、優れたカリウム遊離率を有した土壌であると評価できる。
 堆肥からのカリウム生成活性の基準値としては、対象土壌に単位乾燥重量あたり1%(w/w)の堆肥中を投与し、0日目のカリウム遊離量と3日目のカリウム遊離量を測定し、上記式で求められる値が100%となる場合を基準値とすることができる。そして、測定値が5%以上、好ましくは20%以上であれば、優れた堆肥からのカリウム生成活性を有していると評価できる。
 上記(C-1)、(C-2)及び(C-3)を組み合わせて、カリウム循環活性指標を算出する方法は、特に限定されないが、予め設定された土壌バクテリア数の基準値、カリウム遊離量の基準値、及び堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(C-1)土壌バクテリア数、前記(C-2)カリウム遊離量、及び前記(C-3)堆肥からのカリウム生成活性の測定点を頂点として形成される三角形の面積の割合として算出されることが好ましい。
 これにより、(C-1)、(C-2)及び(C-3)に基づく総合的な評価乃至判断が容易となる。更に、図5に示すように図示化して、指標の大きさを一目で把握することが可能となる。また(C-1)~(C-3)のうちのどの変数の改善が必要かの把握が容易となる。
 この際、(C-1)、(C-2)、及び(C-3)について上記の条件をすべて充足すれば、基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合が、1以上、好ましくは5以上であれば、カリウム循環活性に優れた土壌であると判断でき、上記の値未満であるとカリウム循環活性に優れた土壌でないと判断できる。
 カリウム循環活性指標は、より具体的には、実施例に記載の算出方法により、カリウム循環指標を算出することができる。
 カリウム循環活性指標が高いほど、植物がカリウム分を吸収し易く、また土壌中のカリウム循環効率が良好な状態にあると評価できる。
 1.3.対象土壌
 本発明において、対象となる土壌の種類は、特に限定されないが、例えば、農地や、バイオレメディエーション処理後の土壌等が挙げられる。
 例えば、本発明は、農地が植物の生長に適した品質であるか、また農地が植物の生長に適した品質とするために改善が必要であるかを診断するための農地診断方法として用いることができる。また、本発明は、バイオレメディエーション処理後の土壌において、土壌微生物の物質循環活性が回復し、通常の用途に使用できるか否かを判断するための浄化処理土壌の診断方法として用いることができる。
 1.4.診断
 本発明においては、上記循環活性指標、又は、上記(A)窒素循環活性指標、(B)リン循環活性指標、(C)カリウム循環活性指標を用いて、土壌の診断を行う。
 土壌の診断には、上記循環活性指標、及び上記(A)~(C)以外の他の指標を用いてもよい。他の指標としては、例えば、土壌のpH、電気伝導度、溶存酸素濃度、粒度、或いは間隙率等が挙げられる。これらは公知の方法に従って測定することができる。
 また、他の成分に関する指標、例えば、炭素に関する指標を更に加えて診断を行うこともできる。炭素に関する指標としては、全有機炭素量(TOC)を指標とすることが考えられる。微生物が種々の活性(窒素循環活性等)を有するためには、生体構成成分としての炭素源、および活性を維持するためのエネルギー源が必要であることから、炭素量も重要な因子になり得ると考えられる。
 また、全有機炭素量と全窒素量の比(C/N比)等の、土壌や堆肥に関する公知の指標等を更に用いてもよい。
 上記(A)~(C)の指標を診断に用いる方法は特に限定されないが、例えば、(A)~(C)の指標の和や積、又はそれらの演算値として総合的な指標を得て、診断を行うことができる。例えば、(A)~(C)の指標の和が大きい土壌ほど、品質が高く、植物の生長に適した土壌と診断できる。
 例えば、(A)~(C)の指標を前述のように基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合として算出し、それらの割合の平均を取った場合、その平均が10以上、好ましくは35以上であれば、植物の生育に適した土壌であると判断でき、上記の値未満であると植物の生育に適した土壌でないと判断できる。
 また、(A)~(C)の指標を前述のように基準値を頂点として形成される正三角形の面積に対する測定点を頂点として形成される三角形の割合として算出した上で、100を頂点として形成される正三角形の面積に対する、正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記割合を頂点として形成される三角形の割合が、1以上、好ましくは5以上であれば、植物の生育に適した土壌であると判断でき、上記の値未満であると植物の生育に適した土壌でないと判断できる。
 上記の様な判断を行う場合であっても、(A-1)~(A-3)、(B-1)~(B-3)、及び(C-1)~(C-3) についてすべてが上記の条件を充足していることが前提となる。
 また、上記循環活性指標、又は(A)~(C)の指標をそれぞれ診断し、窒素、リン、カリウムのどの循環系の改善が必要か、更に、その改善のために、追加成分の投入が有効か、或いは、土壌微生物の状況改善が有効かであるかの診断を行ってもよい。
 更に、上記(A)~(C)の指標と他の指標とを組合せた総合指標として、土壌の診断を行うこともできる。更に、(A)~(C)の指標のバランスを検討したり、他の指標と比較したりして、診断を行うことができる。
 2.土壌品質管理方法
 本発明によれば、上記本発明の診断方法を利用して、土壌の品質を管理する方法が提供される。
 本発明の土壌品質管理方法においては、上記本発明の記載の診断方法を経時的に行って、循環活性指標、(A)窒素循環活性指標、(B)リン循環活性指標、及び(C)カリウム循環活性指標の経時変化を解析することにより、土壌の品質を管理する。
 経時変化の解析手法は、特に限定されず、適宜公知の方法に従って行うことができる。例えば、指標を更に換算又は演算した値を用いて解析してもよい。また適当なグラフ又は図等の表示手段を用いて解析してもよい。
 また、上記循環活性指標、上記(A)~(C)以外の他の指標の経時変化も組合せて解析を行うことができる。
 他の指標としては、土壌のpH、電気伝導度、溶存酸素濃度、粒度、或いは間隙率等が挙げられる。また、全有機炭素量等、他の栄養成分に関する指標が挙げられる。
 更に、経時変化の解析の結果、必要に応じた処理を行うことにより、土壌の品質の維持を図ることができる。特に、本発明によれば、窒素、リン、カリウムのどの成分に関する処理が必要かを判断することができる。
 また、本発明の品質管理方法によれば、植物の生長に必要な物質の状態だけでなく、土壌の微生物の状態も把握することができる。このため、本発明の品質管理方法によれば、土壌中の生態系が植物の生長を通じて順調に保全され、種々の物質循環活性が機能しているかを把握することもできる。
 3.土壌改善方法
 本発明によれば、上記本発明の診断方法を利用して、土壌の品質を改善する方法が提供される。
 本発明の土壌改善方法においては、上記本発明の記載の診断方法により、循環活性指標、(A)窒素循環活性指標、(B)リン循環活性指標、及び(C)カリウム循環活性指標に関する土壌の診断結果を得て、その診断内容に応じた処理を行うことにより、土壌を改善する。
 処理内容としては、窒素、リン、及び/又はカリウム含有肥料の追加投与や、土壌の微生物を活性化するための栄養成分の投与や、窒素、リン、及び/又はカリウムの循環活性を有する微生物の投与などが考えられる。例えば、アンモニア減少率が低い場合には、アンモニア酸化細菌を投与することが考えられる。
 本発明の土壌改善方法においては、窒素、リン、カリウムのどの成分に関する処理が必要かを判断することができ、更に、土壌の微生物の働きを考慮して処理内容が判断できるという利点がある。
 例えば、土壌中に窒素化合物が多量に存在することがわかっても、それを変換する微生物の活性が十分でなければ、植物は窒素を十分に利用できない。本発明によれば、そのような状況に対し、微生物の活性を高める処理やそのような活性を有する微生物の投与が有効と判断できる。また、一方で、土壌中に窒素の量が十分でなく、窒素の外部投入が必要と判断される場合であっても、微生物の活性が十分とわかれば、窒素の投与量を調整し、過剰投与を抑制することもできる。
 このように、本発明の土壌改善方法によれば、土壌中の生態系の働きを有効に利用して土壌の改善を行うことができ、効率のよい土壌改善、更には効率のよい食物生産を可能にすることができる。
 本発明によれば、土壌中の循環活性を反映した土壌の診断方法、特に農作物の栽培適性を判断可能な土壌診断方法が提供される。
 本発明の土壌診断方法には、物質循環に密接に関与する土壌中の微生物の状態も反映されており、自然の循環系に従った農地品質を的確に診断することが可能になる。特に、本発明の診断方法は、バイオマス等の化学農法に頼らない農法に適した土壌の品質を的確に診断し得る。
 更に、本発明の診断方法によれば、植物の生長に重要となる窒素、リン、カリウムのどの循環系の改善が必要か、更に、その改善のために、追加成分の投入が有効か、或いは、土壌微生物の状況改善が有効かの処理内容の判断も可能となる。
 更に、本発明の品質管理方法によれば、植物の生長に必要な物質の状態だけでなく、土壌の微生物の状態も把握することができ、土壌中の生態系が植物の生長を通じて順調に保全され、種々の物質循環活性が機能しているかを把握することもできる。
 また、本発明の土壌改善方法によれば、土壌中の生態系の働きを有効に利用して土壌の改善を行うことができ、効率のよい土壌改善、更には農産物生産の収益性向上を可能にする。
 このように、本発明は、自然の循環機能に立脚した土壌品質の診断及び改善手段を提供するものであり、有機農法等の化学物質の使用が低減された農法の収益性を高め、環境保全型の農業生産システムの確立に寄与するものである。
実施例における各土壌サンプルにおけるアンモニア減少率及び亜硝酸減少率の結果を示す図面である。向かって左がアンモニア減少率、右が亜硝酸減少率の値を示す。 土壌バクテリア数、アンモニア減少率、及び亜硝酸減少率を用いた窒素循環活性の評価例を示す図面である。 実施例において独立栄養性アンモニア酸化細菌を投与した場合における土壌の窒素循環活性への影響を解析結果を示す図面である。図Aは土壌No. 1、Bは土壌No. 2についての図面である。また、◇は未植菌、○は A株を投与、△はB株を投与した場合の結果を示す図面である。 土壌バクテリア数、フィチン酸からのリン酸生成活性、及び堆肥からのリン酸生成活性を用いたリン循環活性の評価例を示す図面である。 土壌バクテリア数、カリウム遊離率、及び堆肥からのカリウム生成活性を用いたカリウム循環活性の評価例を示す図面である。 硫酸アンモニウムを投与した土壌での窒素循環を示す図面である。A:硫安4μg-N/g-土壌投与、B:硫安40μg-N/g-土壌投与、C:硫安400μg-N/g-土壌投与、◆:アンモニア態窒素、■:亜硝酸態窒素、▲:硝酸態窒素 亜硝酸カリウムを投与した土壌での窒素循環を示す図面である。A:亜硝酸カリ6μg-N/g-土壌投与、B:亜硝酸カリ60μg-N/g-土壌投与、C:亜硝酸カリ600μg-N/g-土壌投与、◆:アンモニア態窒素、■:亜硝酸態窒素、▲:硝酸態窒素 1日当たりの硝化量と土壌バクテリア数の関係を示す図面である。▲: 畑、 ◆: 水田、 ■: 農地以外、エラーバーは標準偏差
 以下、本発明をより詳細に説明するために、実施例や試験例を用いて説明するが、本発明はこれらの例に制限されるものではない。
1.窒素循環活性解析法の開発
 (1-1)実験方法
 1a)硝化能の評価
 土壌10 gをガラスシャーレに量り取り、110℃で2時間乾燥後、重量減少量から含水率を算出した。2 mmメッシュのふるいにかけた乾燥重量15 gの土壌を50 ml容UMサンプル瓶に入れ、硫酸アンモニウム水溶液(0.080 mM)もしくは亜硝酸カリウム水溶液(0.16 mM)をそれぞれ60 μg-N/g-dry soilとなるように添加した。土壌をよくかき混ぜた後、25℃、含水率一定で3日間静置した。
 1b)土壌からの無機態窒素の抽出
 50 ml容遠心チューブに土壌サンプル2.0 gと1 M塩化カリウム水溶液20 mlを加え懸濁し、100 rpmで1時間振とうした。振とう後、10,000 rpmで5分間遠心分離し、その上清を無機態窒素抽出液とした。
 1c)インドフェノール法によるアンモニア態窒素の定量
土壌から抽出した無機態窒素抽出液1.0 mlを2.0 ml容マイクロチューブに分注し、表1に示す次亜塩素酸ナトリウム溶液500 μlを加えて撹拌し、室温で5分間静置した。静置後、表2に示すフェノール・ニトロプルシッドナトリウム溶液500 μlを加えて撹拌し、30℃で60分間静置した。静置後、640 nmの吸光度を測定した。吸光度測定時にアンモニア態窒素標準液を用いて検量線を作成し、得られた関係式を用いてアンモニア態窒素量(NH4 +-N)を測定した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
1d)ナフチルエチレンジアミン法による亜硝酸態窒素の定量法
 土壌から抽出した無機態窒素抽出液1.0 mlを1.5 ml容マイクロチューブに分注し、表3に示すジアゾ化剤100 μlを加えて撹拌した。室温で5分間静置した後、表4に示すカップリング剤100 μlを加えて再び室温で20分間静置し、540 nmの吸光度を測定した。亜硝酸態窒素標準液を用いて作成した検量線から亜硝酸態窒素量(NO2 --N)を測定した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
1e)ブルシン・スルファニル酸法による硝酸態窒素の定量
 土壌から抽出した無機態窒素抽出液800 μlと、表5に示すブルシン・スルファニル酸溶液400 μlを試験管に分注し、硫酸溶液(硫酸:水 = 20:3) 4.0 mlを加えて撹拌した。冷暗所で40分間静置後、410 nmの吸光度を測定した。吸光度測定時に硝酸態窒素標準液を用いて検量線を作成し、得られた関係式を用いて硝酸態窒素量(NO3 --N)を測定した。
Figure JPOXMLDOC01-appb-T000011
1f)環境DNA(eDNA)解析法による土壌バクテリア数の定量
 50 ml容遠沈管に土壌1.0 gを量り取り、表6に示すDNA抽出緩衝液(pH 8.0)を8.0 ml、20 %(w/v)ドデシル硫酸ナトリウム溶液を1.0 ml加え、1,500 rpm、室温で20分間撹拌した。撹拌後、50 ml容遠沈管から滅菌済み1.5 mlマイクロチューブに1.5 ml分取し、16℃、8,000 rpmで10分間遠心分離した。水層を新たなマイクロチューブに700 μl分取し、クロロホルム・イソアミルアルコール(24:1、v/v)を700 μl加えて混和した後、16℃、13,000 rpmで10分遠心分離した。遠心分離後、水層を新たなマイクロチューブに500 μl分取し、2-プロパノールを300 μl加えて緩やかに混和し、16℃、13,000 rpmで15分遠心分離した。遠心分離後、上清を除去し、70 %(v/v)エタノールを500 μl加え16℃、13,000 rpmで5分遠心分離した。遠心分離後、上清を除去しアスピレーターで30分間減圧乾燥させた。これに表7に示すTE 10:1緩衝液(pH 8.0)を50 μl加えよく溶解させ、これをeDNA溶液とした。アガロース2.0 g、表8に示す50×TAE緩衝液(pH 8.0)4.0 ml及び0.1 mMエチジウムブロマイド溶液20 μlに蒸留水を加えて200 mlとし、1.0 %アガロースゲルを作製した。eDNA溶液5.0 μlにローディングダイ(東洋紡、大阪)1.0 μlを混合し、全量6.0 μl、既知量のDNAを含むスマートラダー(ニッポンジーン、富山)1.5 μlをアガロースゲルにアプライした。これを100 Vで40分間電気泳動を行った後アガロースゲルにUV照射し、DNAバンドを確認した。KODAK 1D Image Analysis software(KODAK、NY、USA)を用いてスマートラダーのDNAバンドを解析し、蛍光強度に対するDNA量の検量線を作成した。この検量線を用いて、各サンプルDNA溶液のDNAバンドの蛍光強度からDNA量を求め、各土壌1.0 g当たりのeDNA量を算出した。eDNA量をDAPI染色による土壌バクテリア数に換算する検量線によって土壌バクテリア数を求めた。定量したeDNA量を関係式
Y = 1.7 × 108 X(R2 = 0.96)[Y;土壌バクテリア数(cells/g-soil)、X;eDNA量(μg/g-soil)]を用いて土壌バクテリア数を算出した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 (1-2)硝化能の測定
 用途や施肥状況が異なる土壌10サンプル(No.1~10)を用いて、無機態窒素量として、上記1b)~1d)に従ってアンモニア態窒素量と亜硝酸態窒素量を測定し、土壌の硝化活性を解析した。各サンプルにおける静置0日目と3日目における無機態窒素量及びその減少量を表9に示す。
Figure JPOXMLDOC01-appb-T000015
 各サンプルにおける硝化の活性を更に解析するために、無機態窒素の減少量からアンモニア減少率及び亜硝酸減少率を算出した。
 アンモニア減少率は、上記1b)及び1c)で測定したアンモニア態窒素量から、下記式にて算出した:
Figure JPOXMLDOC01-appb-M000016
 亜硝酸減少率は、上記b)及びd)で測定した亜硝酸態窒素量(NO2 --N)から、下式にて算出した。
Figure JPOXMLDOC01-appb-M000017
 各サンプルにおけるアンモニア減少率及び亜硝酸減少率の結果を図1に示す。
 亜硝酸の減少率はすべてのサンプルでほぼ100 %であった。しかし、アンモニアの減少率はサンプルによって様々で、最も高いサンプルで72.0 %、最も低いサンプルで3.10 %であった。また、すべてのサンプルで亜硝酸の減少率と比べてアンモニアの減少率が低かった事から、硝化の反応においてはアンモニアから亜硝酸への反応が律速であると考えられた。
 この事から上記評価方法は、肥料成分が多量に含まれた土壌に関しても解析が可能であると示唆された。
 (1-3)土壌バクテリア数の解析
 物質循環では土壌バクテリアが密接に関与していると考えられる。このため、各サンプルにおける土壌バクテリア数を前記1fの方法で解析した。また、農地土壌における土壌バクテリア数のデータベースの平均値となる3.25×109 cells/g-soilを100として、測定した土壌バクテリア数の相対値(以下、バクテリア量ともいう)を算出した。各サンプルにおける土壌バクテリア数とバクテリア量を表10に示す。
Figure JPOXMLDOC01-appb-T000018
 (1-4)窒素循環活性解析
 得られた土壌バクテリア数、アンモニア減少率、亜硝酸減少率の3項目に基づき、土壌における窒素循環活性を評価するために、図2に示すチャートを作成した。
 図2において、土壌バクテリア数は、農地土壌における土壌バクテリア数の平均値3.25×109 cells/g-soilを100とする場合の、各サンプルの土壌バクテリア数の割合、即ち、バクテリア量を示す。
 また、アンモニア減少率は、60 μg-N/g-dry soilのアンモニア化合物を3日間で100 %減少する活性を100とする場合の、各サンプルのアンモニア減少率の割合を示す。
 また、亜硝酸減少率は、60 μg-N/g-dry soilの亜硝酸化合物を3日間で100 %減少する活性を100とする場合の、各サンプルの亜硝酸減少率の割合を示す。
 更に、チャートにおけるすべての頂点が100の三角形の面積を100とした際の内部の三角形の面積の相対値を、各サンプルについての窒素循環指標として算出した。表11に、各サンプルの窒素循環指標を示す。
Figure JPOXMLDOC01-appb-T000019
 表11及び図2に示されるように、サンプルNo. 2ではアンモニア減少率、亜硝酸減少率、バクテリア量が比較的高いため、有機態窒素が土壌に加わると速やかにアンモニアまで変換され、また、硝酸まで酸化されると考えられる。
 (1-5)独立栄養性アンモニア酸化細菌の土壌投与による窒素循環活性の改善
 硝化の活性、即ち、窒素循環活性が低い土壌には、アンモニアを酸化する微生物の投与が効果的であると考えられる。そこで、アンモニア酸化細菌の投与によって硝化が活性化するかを解析した。
 2種類の独立栄養性アンモニア酸化細菌(A株、B株)を土壌に投与し、硝化が活性化するかを検討した。
 A株もしくはB株の培養液を遠心濃縮し、1.0×107cells/g-dry soilとなるように滅菌土壌(土壌1及び2)に投与した。さらに、アンモニア態窒素が60 μg-N/g dry soilとなるように土壌に投与して3日間静置し、無機態窒素量の経時変化を解析した。その結果を図3に示す。図3に亜硝酸態窒素量及び硝酸態窒素量の経時変化を示す。
 図3に示されるように、独立栄養性アンモニア酸化細菌を投与した場合では、していない場合と比較して亜硝酸態窒素及び硝酸態窒素の蓄積量が増加した。
 この事から、独立栄養性アンモニア酸化細菌の土壌への投与により窒素循環活性を向上させる事ができると示唆された。
 2.リン循環活性解析
 用途や施肥状況が異なる土壌10サンプル(No.11~20)を用いて、土壌のリン循環を解析した。
 (2-1)実験方法
 2a)土壌バクテリア数の解析
 土壌バクテリア数は、前記1f)と同様に、eDNA解析法により定量した。
 2b)フィチン酸からのリン酸生成活性の解析
 250 ml容UMサンプル瓶に土壌サンプル100 gを入れ、よく撹拌した。この土壌2.0 gを50ml容遠心チューブに量り取り、蒸留水20 ml加え、100 rpmで60分間振とうした。10,000 rpm、5分間遠心分離し、その上清を水溶性リン酸抽出液としてモリブデンブルー法に供した。水溶性リン酸抽出液1.0 mlを1.5 ml容マイクロチューブに分注し、表12に示すモリブデンブルー ストック溶液:0.41 M L(+)-アスコルビン酸水溶液 = 5:1の混合溶液100 μlを加えて撹拌後、30℃で30分静置した。静置後、720 nmにおける吸光度を測定し、リン酸標準液を用いて作成した検量線から、土壌中の水溶性リン酸を定量し、0日目の水溶性リン酸量とした。
 サンプリング後の土壌にフィチン酸を1 %(w/w)加えてよく撹拌し、室温で3日静置した。この土壌2.0 gを50 ml容遠心チューブに量り取り、前述の方法で水溶性リン酸を抽出し、モリブデンブルー法に供し、水溶性リン酸量を測定して、3日目の水溶性リン酸量とした。
 また、フィチン酸1モルに6分子のリン酸が含まれることに基づき、フィチン酸の投与量から、フィチン酸中のリン酸量を算出した。
 得られた水溶性リン酸量、及び、フィチン酸中のリン酸量に基づき、下記式より、フィチン酸からのリン酸生成活性を算出した。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-T000021
 2c)堆肥からのリン酸生成活性の解析
 250 ml容UMサンプル瓶に土壌サンプル100 gを入れ、よく撹拌した。この土壌2.0 gを50ml容遠心チューブに量り取り、蒸留水20 ml加え、100 rpmで60分間振とうした。10,000 rpm、5分間遠心分離後、抽出した水溶性リン酸をモリブデンブルー法に供し、リン酸量を定量して、0日目の水溶性リン酸量とした。
 サンプリング後の土壌に、バーク堆肥含有培養土(「花ちゃん培養土」(花ごころ、名古屋))を1 %(w/w)加えてよく撹拌し、室温で3日静置した。この土壌2.0 gを50 ml容遠心チューブに量り取り、前述の方法で水溶性リン酸を抽出し、モリブデンブルー法に供して、水溶性リン酸量を測定し、3日目の水溶性リン酸量とした。
 また、堆肥中の有機物を過塩素酸で分解した後、0.002N硫酸で抽出し、モリブデンブルー法に供して、堆肥中のリン酸量を測定した。
 得られた水溶性リン酸量、及び、堆肥中のリン酸量に基づき、下記式より、堆肥からのリン酸生成活性を算出した。
Figure JPOXMLDOC01-appb-M000022
 (2-2)リン循環と土壌バクテリア数に基づく土壌評価
 土壌バクテリア数、フィチン酸からのリン酸生成活性、および堆肥からのリン酸生成活性の3項目を用いて、図4に示すチャートを作成した。
 図4において、土壌バクテリア数は、農地土壌における土壌バクテリア数の平均値3.25×109cells/g-soilを100とする場合の、各サンプルの土壌バクテリア数の割合を示す。
 また、フィチン酸からのリン酸生成活性とは、1%(w/w)のフィチン酸中のリン酸を、3日間で、全て水溶性リン酸に変換するときの活性を100とする場合の、各サンプルのフィチン酸からのリン酸生成活性の割合を示す。
 また、堆肥からのリン酸生成活性とは、1%(w/w)の堆肥中のリン酸を、3日間で、全て水溶性リン酸に変換するときの活性を100とする場合の、各サンプルの堆肥からのリン酸生成活性の割合を示す。
 更に、チャートにおけるすべての頂点が100の三角形の面積を100とした際の内部の三角形の面積の相対値を、各サンプルについてのリン循環活性指標として算出した。表13に、各サンプルのリン循環活性指標を示す。
Figure JPOXMLDOC01-appb-T000023
 サンプルNo.12の土壌は、リン循環活性指標が高く、植物のリン酸吸収利用が行われやすい土壌と評価できる。
 3.カリウム循環活性解析手法の構築
 用途や施肥状況が異なる土壌10サンプル(No.11~20)を用いて、土壌のカリウム循環を解析した。
 (3-1)実験方法
 3a)土壌バクテリア数の解析
 土壌バクテリア数は、前記1fと同様に、eDNA解析法により定量した。
 3b)カリウム遊離率の定量
 土壌3.0 gを50 ml容三角フラスコに量り取り、0.5 M硝酸40 mlを加えて60分間スターラーで撹拌した。撹拌後、ろ過し、ろ液をカリウム抽出液とした。この抽出液を原子吸光光度計(Z-2300、日立ハイテクノロジーズ、東京)を用いて測定した。測定条件は、燃料ガスとしてアセチレンを、助燃ガスとして圧縮空気を用い、圧力は共に0.5 MPaで測定した。カリウム標準液を用いて作成した検量線から、土壌中のカリウム遊離量を定量し、測定開始日(0日目)のカリウム遊離量とした。
 また、測定開始から3日後に同様の方法で、カリウム遊離量を定量し、3日目のカリウム遊離量とした。
 また、測定開始日と同じ日に採取した土壌3.0 gを50 ml容三角フラスコに量り取り、1 M 酢酸アンモニウム水溶液(pH 7.0)40 mlを加えて60分間スターラーで撹拌後、ろ過した。得られたろ液を、前記と同様にして原子吸光光度計にて測定し、対象土壌中のカリウム量を定量した。
 得られるカリウム遊離量、及び、対象土壌中のカリウム含有量に基づき、下記式によりカリウム遊離率を算出した。
Figure JPOXMLDOC01-appb-M000024
 3c)堆肥からのカリウム生成活性
 250 ml容UMサンプル瓶に土壌サンプル100 gを入れ、よく撹拌した。土壌3.0 gを50 ml容三角フラスコに量り取り、蒸留水40 mlを加えて60分間スターラーで撹拌した。撹拌後、ろ過し、ろ液をカリウム抽出液とした。この抽出液を、前記3b)と同様にして、原子吸光光度計に供し、カリウム量を定量して、0日目のカリウム遊離量とした。
 また、サンプリング後の土壌に、バーク堆肥含有培養土(「花ちゃん培養土」(花ごころ、名古屋))を1 %(w/w)加えてよく撹拌し、室温で3日静置した。この土壌3.0 gを50 ml容三角フラスコに量り取り、前述の方法でカリウムを抽出して原子吸光光度計に供し、カリウム遊離量を算出して、3日目のカリウム遊離量とした。
 また、前記3b)の対象土壌中のカリウム含有量の測定において、土壌に代えて堆肥を用いる以外は、同様として、堆肥中のカリウム含有量を測定した。
 得られる0日目及び3日目のカリウム遊離量、及び堆肥中のカリウム含有量に基づき、下記式により、堆肥からのカリウム生成活性を算出した。
Figure JPOXMLDOC01-appb-M000025
 (3-2)カリウム循環と土壌バクテリア数に基づく土壌評価
 土壌バクテリア数、カリウム遊離率、およびカリウムからのリン酸生成活性の3項目を用いて、図5に示すチャートを作成した。
 図5において、土壌バクテリア数は、農地土壌における土壌バクテリア数の平均値3.25×109 cells/g-soilを100とする場合の、各サンプルの土壌バクテリア数の割合を示す。
 また、カリウム遊離率は、3日の間に土壌中のカリウムが全て遊離カリウムに変換されたときの活性を100とする場合の、各サンプルのカリウム遊離率を示す。
 また、堆肥からのカリウム生成活性とは、1%(w/w)の堆肥中のカリウムを、3日間で、全て遊離カリウムに変換するときの活性を100とする場合の、各サンプルの堆肥からのカリウム生成活性の割合を示す。
 更に、チャートにおけるすべての頂点が100の三角形の面積を100とした際の内部の三角形の面積の相対値を、各サンプルについてのカリウム循環活性指標として算出した。表14に、各サンプルのカリウム循環活性指標を示す。
Figure JPOXMLDOC01-appb-T000026
 サンプルNo.11の土壌は、カリウム循環活性指標が高く、植物のカリウム吸収利用が行われやすい土壌と評価できる。
 4.総合診断と植物生長の関係解析
 窒素循環活性、リン循環活性、及びカリウム循環活性に基づく土壌の総合診断と、植物の生長の関係を以下の方法で解析した。土壌としては、用途や施肥状況が異なる土壌10サンプル(No.11~20)を用いた。
 (4-1)実験方法
 4a)土壌バクテリア数の解析
 土壌バクテリア数は、前記1fと同様に、eDNA解析法により定量した。
 4b)窒素循環活性の解析
 窒素循環活性は1項と同様にして解析した。
 4c)リン循環活性の解析
 リン酸循環活性は2項と同様にして解析した。
 4d)カリウム循環活性の解析
 カリウム循環活性は3項と同様にして解析した。
 4e)植物生長の解析
 育苗ポットに各土壌サンプルを入れ、各ウェルにコマツナの種子10個を播種した。これを25℃、6,000ルクスで1週間生育させた。1/5,000 aポットに赤玉土を敷き詰め、土壌サンプル約1 kg加えて、ほぼ同じ大きさの苗を1ポット当たり3本移植した。これを25℃、6,000ルクスでさらに3週間生育させ、コマツナの地上部の生重量を測定した。なお、土壌1サンプルにつき3ポットで試験を行い、その平均値で評価した。
 (4-2)総合診断と植物生長の関係解析
 各土壌サンプルについて得られた指標の和から、土壌の総合診断を行った。即ち、各指標の和を3で割った値を算出し、得られた値が大きいほど土壌の品質に優れ、値が小さいほど土壌の品質が十分でないと診断した。
 また診断結果と、コマツナの生重量の関係を調べた。結果を表15に示す。その結果、土壌の総合診断結果が高いほど、植物生長が良好であることが予測された。
 また、アンモニア減少率、フィチン酸からリン酸生成活性、及び堆肥からのカリウム生成活性を頂点とした三角形の面積からの診断値を表16に示す。この結果からも、土壌の総合診断結果が高いほど、植物生長が良好であることが予測された。
 更に、窒素、リン、カリウム単独ではなく、それらの指標を組み合わせた総合診断によって、植物の生長に適した土壌の品質が的確に評価できることが予測された。
 以上の結果より、本診断法は植物の生長に適した土壌の判別や、土壌改善の指標として有用であることが予測された。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 5.アンモニア循環活性測定のための基質投入量の決定
Figure JPOXMLDOC01-appb-C000029
 各種土壌でのアンモニア態窒素の循環活性を測定するため、投入する基質の量を検討した。基質として硫酸アンモニウムを、4、40、400μg-N/g-土壌となるように投与し、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の量を経時的に測定した(図6)。
 図6より、硫酸アンモニウムを4、40μg/g-土壌加えた場合、4日目でほぼ全てのアンモニア態窒素が減少し、硝酸態窒素が蓄積した。400μg/g-土壌となるように投与した場合はアンモニア態窒素の減少量が開始時と比較して差が小さかった。
 種々の農地に含まれるアンモニア態窒素を測定したところ、ほぼ全ての土壌で0~100μg-N/g-土壌の範囲であったことから、以下に示す根拠で基質として投与するアンモニア態窒素量を決定した。
 1)アンモニア態窒素の変化量が最も顕著に確認することが可能であり、さらに一般的な土壌に含まれているアンモニア態窒素量を基準として、基質投入量は40~60μg/g-土壌の範囲で行えば良いと考えた。最終的に、計算のしやすい60μg/g-土壌となるように投入すると決定した。
 2)出来るだけ短時間で測定するため、最も短時間でかつ確実にアンモニア態窒素量の差が確認される3日目で評価することとした。
 6.亜硝酸態窒素循環活性測定のための基質投入量の決定
Figure JPOXMLDOC01-appb-C000030
 各種土壌での亜硝酸態窒素の循環活性を測定するため、投入する基質の量を検討した。基質として亜硝酸カリウムを、6、60、600μg-N/g-土壌となるように投与し、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の量を経時的に測定した(図7)。
 図7より、亜硝酸カリウムを60μg/g-土壌加えた場合、2~4日目でほぼ全ての亜硝酸態窒素が減少し、硝酸態窒素が蓄積した。600μg/g-土壌を投与した場合も亜硝酸体窒素の経時的な減少が確認された。しかしながら、6μg/g-土壌となるように投与した場合は亜硝酸態窒素の減少量が開始時と比較して差が小さく、評価が困難であった。
 種々の農地土壌では、亜硝酸態窒素はほとんど含まれていないが、硝酸態窒素はアンモニア態窒素と同程度の0~100μg-N/g-土壌含まれていた。これらのことから、以下に示す根拠で基質として投与する亜硝酸態窒素量を決定した。
 1)亜硝酸態窒素の変化量が最も顕著に確認することが可能であり、さらに一般的な土壌に含まれている硝酸態窒素を基準として、計算のしやすい値を考慮し基質投入量を60μg/g-土壌と決定した。
 2)アンモニア態窒素量と同様、亜硝酸態窒素の変化量も3日間で評価することとした。
 7.バクテリア数の下限の根拠
 種々の土壌における硝化活性とバクテリア数との関係を調べた。図8に一日当たりの硝化量を示す。土壌バクテリア数は、前記1fと同様に、eDNA解析法により定量した。硝化量は、アンモニア態窒素が60 μg-N/g dry soilとなるように土壌に投与して1日間静置後に測定した亜硝酸態窒素量及び硝酸態窒素量の合計量を示している。その結果、微生物数が2億個/g以下になると、硝化反応が進まないことが明らかとなった。
 8.総合診断値の下限
 アンモニア減少率、フィチンからのリン酸生成活性、及び堆肥からのカリウム生成活性について、それぞれ30、10、5以下であれば優れた土壌であると判断されない。基準値を頂点として形成される正三角形の面積に対する、正三角形の重心から対応する頂点を結ぶ線分上に置かれたこれらの下限値を頂点として形成される三角形の面積の割合は1.7点となる。そのため、この点未満であれば、良好な植物生長が期待出来ないと判断した。
Figure JPOXMLDOC01-appb-T000031
 9.従来の技術との比較
 従来技術では土壌中に含まれる栄養素の量やpH、CEC(塩基置換容量)などを測定し、農作物の生産に役立ててきたが、これらの値では堆肥などの有機物を多く含む肥料を添加した時の肥効が正確に把握できない。
 滅菌した畑土壌と滅菌しない畑土壌(由来は同じ)とを用いて、窒素循環活性とコマツナ生重量を測定した(表18)。滅菌した土壌と滅菌しない土壌に2.5%量の堆肥をそれぞれ添加して、コマツナ生長を解析した。土壌にはどちらとも実験畑土壌を用いた。
 これらの土壌の化学特性は同一であるが(化学分析値は同じ)、滅菌した方では微生物が存在しないため、窒素循環活性が低くなっており(滅菌直後は無菌であるが、開放系の実験であるため、外部から微生物が入ってきて、徐々に微生物数は回復する)、コマツナの生重量も低くなっていた。以上のことから、従来の化学分析では区別のつかなかった土壌でも、本発明によって明確な差を示すことが可能であり、より正確な土壌評価に寄与するものである。
Figure JPOXMLDOC01-appb-T000032

Claims (8)

  1. 下記(I)~(III)を用いて算出される循環活性指標:
    (I)対象土壌におけるアンモニア減少率、
    (II)対象土壌におけるフィチン酸からのリン酸生成活性、及び
    (III)対象土壌における堆肥からのカリウム生成活性
    並びに(IV)土壌における土壌バクテリア数
    を用いて土壌診断を行うことを特徴とする土壌の診断方法。
  2. 循環活性指標が、
    予め設定されたアンモニア減少率の基準値、フィチン酸からのリン酸生成活性の基準値及び堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、
    前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(I) アンモニア減少率、前記(II) フィチン酸からのリン酸生成活性、及び前記(III) 堆肥からのカリウム生成活性の測定点を頂点として形成される三角形の面積の割合である、請求項1に記載の診断方法。
  3. A)下記(A-1)~(A-3)を用いて算出される窒素循環活性指標:
    (A-1)対象土壌における土壌バクテリア数、
    (A-2)対象土壌におけるアンモニア減少率、及び
    (A-3)対象土壌における亜硝酸減少率、
    B)下記(B-1)~(B-3)を用いて算出されるリン循環活性指標:
    (B-1)対象土壌における土壌バクテリア数、
    (B-2)対象土壌におけるフィチン酸からのリン酸生成活性、及び
    (B-3)対象土壌における堆肥からのリン酸生成活性、
    並びに、C)下記(C-1)~(C-3)を用いて算出されるカリウム循環活性指標:
    (C-1)対象土壌における土壌バクテリア数、
    (C-2)対象土壌におけるカリウム遊離率、及び
    (C-3)対象土壌における堆肥からのカリウム生成活性
    を少なくとも用いて土壌診断を行うことを特徴とする土壌の診断方法。
  4. 窒素循環活性指標が、
    予め設定された土壌バクテリア数の基準値、アンモニア減少率の基準値、及び亜硝酸減少率の基準値を頂点として形成される正三角形の面積に対する、
    前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(A-1)土壌バクテリア数、前記(A-2)アンモニア減少率、及び前記(A-3)亜硝酸減少率の測定点を頂点として形成される三角形の面積の割合である、請求項3に記載の診断方法。
  5. リン循環活性指標が、
    予め設定された土壌バクテリア数の基準値、フィチン酸からのリン酸生成活性の基準値、及び堆肥からのリン酸生成活性の基準値を頂点として形成される正三角形の面積に対する、
    前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(B-1)土壌バクテリア数、前記(B-2)フィチン酸からのリン酸生成活性、及び前記(B-3)堆肥からのリン酸生成活性の各測定値を頂点として形成される三角形の面積の割合である、請求項3又は4に記載の診断方法。
  6. カリウム循環活性指標が、
    予め設定された土壌バクテリア数の基準点、カリウム遊離率の基準値、及び、堆肥からのカリウム生成活性の基準値を頂点として形成される正三角形の面積に対する、
    前記正三角形の重心から対応する頂点を結ぶ線分上に置かれた前記(C-1)土壌バクテリア数、前記(C-2)カリウム遊離率、及び前記(C-3)堆肥からのカリウム生成活性の各測定値を頂点として形成される三角形の面積の割合である、請求項3又は4に記載の診断方法。
  7. 請求項1又は3に記載の診断方法を経時的に行って、前記指標の経時変化を解析することにより、土壌の品質を管理することを特徴とする、土壌の品質管理方法。
  8. 請求項1又は3に記載の診断方法を行って、得られた診断結果に基づき、前記指標を改善するための処理を行うことを特徴とする土壌の改善方法。
     
     
PCT/JP2010/054892 2009-03-19 2010-03-19 新規土壌診断方法 WO2010107121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2010225633A AU2010225633B2 (en) 2009-03-19 2010-03-19 Novel soil diagnosis method
CN201080012772.7A CN102356312B (zh) 2009-03-19 2010-03-19 土壤诊断方法
JP2011504900A JP5578525B2 (ja) 2009-03-19 2010-03-19 新規土壌診断方法
US13/256,757 US8962336B2 (en) 2009-03-19 2010-03-19 Soil diagnosis and improvement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-068788 2009-03-19
JP2009068788 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010107121A1 true WO2010107121A1 (ja) 2010-09-23

Family

ID=42739777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054892 WO2010107121A1 (ja) 2009-03-19 2010-03-19 新規土壌診断方法

Country Status (4)

Country Link
US (1) US8962336B2 (ja)
JP (1) JP5578525B2 (ja)
CN (1) CN102356312B (ja)
WO (1) WO2010107121A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364232A (zh) * 2013-07-22 2013-10-23 北京林业大学 土壤氨气收集装置及利用该装置测定土壤氮素损伤量方法
EP2641083A4 (en) * 2010-10-29 2016-12-28 Solum Inc MICRO-NUTRIENT SAMPLES MEASUREMENT
KR101833145B1 (ko) 2016-11-10 2018-02-28 대한민국(농촌진흥청장) 토양 내 수용성 칼륨 및 암모니아의 동시 측정방법 및 측정키트

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682584B2 (en) * 2011-08-19 2014-03-25 Brookside Laboratories, Inc. Nitrogen potential index
FR2997961B1 (fr) * 2012-11-12 2014-12-05 Polyor Sarl Diagnostic de l'etat microbiologique de sols en fonction de la resilience de populations bacteriennes qu'ils contiennent
FR3072854B1 (fr) * 2017-11-02 2019-11-29 Sarl Polyor Methode pour la formation d’un indicateur elementaire de l’efficacite agronomique d’azotobacteries en sols arables
FR3078782A1 (fr) * 2018-03-07 2019-09-13 Sarl Polyor Procede pour l’obtention d’un indicateur elementaire de la resilience de populations bacteriennes et azotobacteriennes du sol et son application a la fertilisation raisonnee
CN109064039B (zh) * 2018-06-04 2022-02-11 北京捷西农业科技有限责任公司 一种农田土壤健康评价方法
CN111912802B (zh) * 2020-08-25 2023-05-26 潍坊市生态环境局寿光分局 一种分光光度法检测亚硝酸盐氮的方法
CN113020232B (zh) * 2021-03-09 2022-03-15 农业农村部环境保护科研监测所 一种受污染耕地综合治理及动态调控方法
CN116754021B (zh) * 2023-08-22 2023-12-08 四川省生态环境科学研究院 一种用于环境保护的土壤质量检测方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523008A (ja) * 1997-11-12 2001-11-20 アルバート・アインシュタイン・ヘルスケア・ネットワーク 環境監視システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668719A (en) * 1994-08-05 1997-09-16 Tyler Limited Partnership Method of fertilizer application and field treatment
US5768128A (en) * 1995-09-18 1998-06-16 Iboco, Inc. System for determining fertilizer blend and application rate method and apparatus for determining optimum fertilizer blends, based on a plurality of factors, to match field nutrient requirements
GB9808018D0 (en) * 1998-04-16 1998-06-17 Univ Lancaster Soil test
US6591702B2 (en) * 2000-12-04 2003-07-15 Gas Technology Institute Method for identifying sources of rapidly released contaminants at contaminated sites
CN100396232C (zh) * 2005-04-06 2008-06-25 红电医学科技股份有限公司 奶嘴体温计
US8340910B1 (en) * 2009-02-02 2012-12-25 Green Badge LLC Method and system for monitoring soil and water resources
EP2532752B1 (en) * 2010-02-01 2016-05-25 DGC Technology Inc. Method for measuring crop cultivation frequency of soil and method for assessing production region deception
US8682584B2 (en) * 2011-08-19 2014-03-25 Brookside Laboratories, Inc. Nitrogen potential index

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523008A (ja) * 1997-11-12 2001-11-20 アルバート・アインシュタイン・ヘルスケア・ネットワーク 環境監視システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Abstracts of the 60th Annual Meeting of the Society for Biotechnology, Japan, 11 July 2008 (11.07.2008)", article MOROE ET AL.: "Evaluation of soil condition by analysis of relationship between nitrogen circulation and soil bacterial biomass", pages: 81 *
SATO ET AL.: "Ammonia Sanka Saikin o Mochiita Chisso Junkan no Kasseika ni Kansuru Kenkyu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2008 NENDO (HEISEI 20 NENDO) TAIKAI KOEN YOSHISHU, 5 March 2008 (2008-03-05), pages 202 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641083A4 (en) * 2010-10-29 2016-12-28 Solum Inc MICRO-NUTRIENT SAMPLES MEASUREMENT
CN103364232A (zh) * 2013-07-22 2013-10-23 北京林业大学 土壤氨气收集装置及利用该装置测定土壤氮素损伤量方法
KR101833145B1 (ko) 2016-11-10 2018-02-28 대한민국(농촌진흥청장) 토양 내 수용성 칼륨 및 암모니아의 동시 측정방법 및 측정키트

Also Published As

Publication number Publication date
US8962336B2 (en) 2015-02-24
US20120014748A1 (en) 2012-01-19
CN102356312B (zh) 2014-08-13
AU2010225633A1 (en) 2011-10-06
CN102356312A (zh) 2012-02-15
JP5578525B2 (ja) 2014-08-27
JPWO2010107121A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5578525B2 (ja) 新規土壌診断方法
Ji et al. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation
Warneke et al. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds
De Vries et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management
Bhattacharyya et al. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice
Zhao et al. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions
Johnson et al. Faster anaerobic decomposition of a brittle straw rice mutant: implications for residue management
Tang et al. Artificial humic substances improve microbial activity for binding CO2
Yu et al. Changes in abundance and composition of nitrifying communities in barley (Hordeum vulgare L.) rhizosphere and bulk soils over the growth period following combined biochar and urea amendment
Jin et al. Response of rice and bacterial community to phosphorus-containing materials in soil-plant ecosystem of rare earth mining area
Lu et al. Effects of N fertilization and maize straw on the transformation and fate of labeled (15NH4) 2SO4 among three continuous crop cultivations
Walkup et al. Pasture in crop rotations influences microbial biodiversity and function reducing the potential for nitrogen loss from compost
Han et al. Effects of biogas residues containing antibiotics on soil enzyme activity and lettuce growth
Zhang et al. Increased microbial biomass and turnover underpin efficient phosphorus acquisition by Brassica chinensis
Qing et al. Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications
Bi et al. Proper organic substitution attenuated both N2O and NO emissions derived from AOB in vegetable soils by enhancing the proportion of Nitrosomonas
Luo et al. Microbial biomass C: N: P as a better indicator than soil and ecoenzymatic C: N: P for microbial nutrient limitation and C dynamics in Zoige Plateau peatland soils
Sarkar et al. Transgenic Bt‐Cotton affects enzyme activity and nutrient availability in a sub‐tropical Inceptisol
Tan et al. Responses of soil nutrient and enzyme activities to long-term mulched drip irrigation (MDI) after the conversion of wasteland to cropland
Cheng et al. Effects of the salt-tolerant gramineous forage echinochloa frumentacea on biological improvement and crop productivity in saline–alkali land on the Hetao Ningxia plain in China
Li et al. Main controls on the denitrification rates during cropland revegetation in the southwest China Karst Critical Zone Observatory
Bossolani et al. Nitrogen input on organic amendments alters the pattern of soil–microbe-plant co-dependence
Bu et al. Effects of Pilot-Scale Co-composting of Gentamicin Mycelial Residue with Rice Chaff on Gentamicin Degradation, Compost Maturity and Microbial Community Dynamics
Dedourge et al. Effects of glucose and rhizodeposits (with or without cysteine‐S) on immobilized‐35S, microbial biomass‐35S and arylsulphatase activity in a calcareous and an acid brown soil
JP7485272B2 (ja) 植物生長促進剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012772.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504900

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010225633

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13256757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010225633

Country of ref document: AU

Date of ref document: 20100319

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10753612

Country of ref document: EP

Kind code of ref document: A1