WO2010107064A1 - Power transmission - Google Patents

Power transmission Download PDF

Info

Publication number
WO2010107064A1
WO2010107064A1 PCT/JP2010/054559 JP2010054559W WO2010107064A1 WO 2010107064 A1 WO2010107064 A1 WO 2010107064A1 JP 2010054559 W JP2010054559 W JP 2010054559W WO 2010107064 A1 WO2010107064 A1 WO 2010107064A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
reduction gear
clutch
transmission
shaft
Prior art date
Application number
PCT/JP2010/054559
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2011504867A priority Critical patent/JP4834797B2/en
Publication of WO2010107064A1 publication Critical patent/WO2010107064A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/003Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion the gear-ratio being changed by inversion of torque direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature

Definitions

  • the present invention relates to a power transmission device that transmits the power of a motor, and more particularly to a power transmission device that can efficiently transmit the power of a motor and can be downsized.
  • Non-Patent Document 1 discloses a rear unit that decelerates input rotation from a motor with a reduction gear in a drive system of a hybrid vehicle.
  • Non-Patent Document 2 discloses a transmission that shifts input rotation from a motor in two stages by a planetary gear device by engaging and disengaging two multi-plate clutches. According to the transmission disclosed in Non-Patent Document 2, since the input rotation can be shifted in two stages, the motor can be used in an efficient rotation range in a wide vehicle speed range from low speed to high speed. Power can be transmitted efficiently.
  • Non-Patent Document 1 cannot decelerate the input rotation by simply decelerating the input rotation, when the motor is controlled in a wide vehicle speed range from low speed to high speed, the motor has an efficient rotation range. This makes it difficult to use the motor and the motor power cannot be efficiently transmitted.
  • a high-output motor is required to use the motor in an efficient rotation range in a wide range of vehicle speeds. There was a problem of inviting.
  • Non-Patent Document 2 Although the above-mentioned problems can be solved, since the multi-plate clutch is engaged and the input rotation is changed, a hydraulic system for engaging and disengaging the multi-plate clutch is required. However, there is a problem that the structure is complicated and the apparatus is enlarged. In addition, it is difficult to turn on and off the two multi-plate clutches. If the two multi-plate clutches are both disconnected, the transmission of power is cut off, causing a motor rotation increase and a shock at the time of shifting. If the clutches are connected at the same time, the planetary gear unit may double mesh and the transmission may be damaged. Further, energy loss is caused by the amount of heat energy released when the multi-plate clutch is connected.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power transmission device that can efficiently transmit power of a motor and can be downsized.
  • the power transmission device of the first aspect when the motor rotates forward, the power is transmitted from the input shaft to the first reduction gear, while the first reduction gear to the input shaft.
  • a biasing member that applies a biasing force to the sprag and tilts the sprag in the circumferential self-locking direction so that the engagement surface contacts the inner ring and the outer ring, and against the biasing force of the biasing member
  • a load applying device that applies a load to the sprag and tilts the sprag in a direction opposite to the self-locking direction and in a circumferential anti-locking direction.
  • the input rotation from the motor can be decelerated by the second reduction gear and decelerated at a reduction ratio larger than that of the first reduction gear.
  • the sprag is tilted in the self-locking direction by the urging force of the urging member, and the sprag is engaged with the inner ring and the outer ring, so that the input shaft
  • the power is transmitted from the first reduction gear to the output shaft, and the power is transmitted from the first reduction gear to the output shaft.
  • the rotation transmitted to the output shaft is transmitted to the transmission shaft.
  • the reduction ratio of the second reduction gear is set larger than the reduction ratio of the first reduction gear, the second clutch Then, the inner ring and the outer ring rotate so that the sprag tilts in the anti-self-locking direction, and the transmission of power from the transmission shaft to the second reduction gear is interrupted.
  • the input rotation from the motor can be decelerated by the first reduction gear and decelerated at a reduction ratio smaller than that of the second reduction gear.
  • the input rotation from the motor can be shifted in two stages by the first reduction gear and the second reduction gear, so that the motor can be efficiently operated in a wide vehicle speed range from low speed to high speed. It can be used in a good rotation range, and there is an effect that the power of the motor can be transmitted efficiently.
  • the first clutch switches between transmission and shut-off of power by tilting the sprag, compared to a configuration in which switching is performed by moving the sprag, the amount of sprag operation can be reduced and the time required for switching is shortened. It is possible to perform switching quickly. Furthermore, if the switching can be performed quickly, the inner ring and the outer ring do not run idle until the transmission of power is interrupted and the shock during power transmission can be prevented. There is.
  • the second clutch is configured to interrupt the transmission of power from the transmission shaft to the second reduction gear when the motor rotates in the forward direction
  • the first clutch is in the state where the motor is rotating in the forward direction. Even if the clutch load application device becomes inoperable, the transmission of power from the input shaft to the first reduction gear and the transmission of power from the transmission shaft to the second reduction gear are performed at the same time. There is an effect that it is possible to prevent double meshing between the second reduction gear and the second reduction gear.
  • the load applying device for the first clutch is operated to transmit power from the second reduction gear to the output shaft through the transmission shaft, while the load applying device for the first clutch is used. Is deactivated, and power is transmitted from the first reduction gear to the output shaft.
  • the third clutch for transmitting the reverse power from the first reduction gear to the input shaft when the reverse power is input to the output shaft so that the output shaft rotates forward. Therefore, in addition to the effect of the first or second aspect, the power transmission state in which the power of the motor is transmitted to the output shaft without switching the operation and non-operation of the load applying device of the first clutch, and the input to the output shaft. There is an effect that it is possible to switch between the power transmission state in which the reverse power transmitted to the motor is transmitted. Therefore, the control for switching the load applying device of the first clutch can be made unnecessary, and a shock at the time of switching the power transmission state can be prevented.
  • the power transmission device of the fourth aspect when the motor is rotating in the reverse direction, power is transmitted from the input shaft to the first reduction gear by the third clutch, and power is transmitted from the first reduction gear to the output shaft. Is done. In this case, the rotation transmitted to the output shaft is transmitted to the transmission shaft, but the transmission of power from the transmission shaft to the second reduction gear is interrupted by the second clutch. Therefore, in addition to the effect of the third aspect, there is an effect that power can be transmitted even in a state where the motor is rotating in the reverse direction.
  • the third clutch is disposed on the power transmission path from the input shaft to the first reduction gear, the load applying device for the first clutch and the second clutch in a state where the motor is rotating forward. Even if the operation of the first reduction gear becomes impossible, the transmission of power from the input shaft to the first reduction gear and transmission of power from the transmission shaft to the second reduction gear are not performed at the same time. There is an effect that double meshing with the gear can be prevented.
  • the load applying device of the second clutch when the reverse power is input to the output shaft so that the output shaft rotates in the reverse direction, the load applying device of the second clutch is deactivated so that the third clutch
  • the reverse power is transmitted from the first reduction gear to the input shaft, and at the same time, the reverse power is transmitted from the transmission shaft to the second reduction gear by the second clutch.
  • the first reduction gear and the second reduction gear when reverse power is input to the output shaft so that the output shaft rotates in the reverse direction, the first reduction gear and the second reduction gear can be double-engaged. effective. Therefore, for example, when the vehicle is stopped on an uphill, the vehicle can be prevented from retreating without operating the side brake or controlling the motor so as to obtain the necessary driving force. In addition, when the vehicle moves forward from a state where the vehicle has stopped climbing, the vehicle can be started only by driving the motor.
  • the power transmission device of the sixth aspect when the motor rotates in the reverse direction, the power is transmitted from the second reduction gear to the transmission shaft, and the reverse power is input to the output shaft so that the output shaft rotates in the forward direction.
  • the fourth clutch is provided to transmit the reverse power from the transmission shaft to the second reduction gear.
  • the output is performed so that the motor rotates backward and the output shaft rotates forward.
  • the power transmission device of the present invention when the motor rotates in the reverse direction, the power transmitted from the input shaft to the second reduction gear is transmitted from the second reduction gear to the transmission shaft by the fourth clutch. Power is transmitted from the shaft to the output shaft. In this case, the rotation transmitted to the output shaft is transmitted to the first reduction gear. By operating the load applying device of the first clutch, power is transmitted from the first reduction gear to the input shaft. Is cut off.
  • the reduction ratio is higher than that of the first reduction gear. Since power and reverse power can be transmitted by the large second reduction gear, a larger driving force can be obtained. In addition, when energy is regenerated using a motor as a generator, energy can be regenerated efficiently.
  • FIG. 4 is a cross-sectional view of the first clutch taken along line IV-IV in FIG. 3. It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG.
  • FIG. 4 which showed typically the internal structure of a power transmission device.
  • FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which the power transmission device 1 according to the first embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
  • the vehicle 100 drives a front unit 110 that drives a front wheel 101 (left front wheel 101FL and right front wheel 101FR) and a rear wheel 102 (left rear wheel 102BL and right rear wheel 102BR).
  • the rear unit 120 is configured to be able to drive the front wheel 101 and the rear wheel 102 independently of each other.
  • the front unit 110 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 113 that transmits the power of the engine 111 and the motor 112 to the front wheels 101.
  • the front unit 110 supplies two powers of the engine 111 and the motor 112.
  • the front wheel 101 can be driven by properly using it.
  • the rear unit 120 mainly includes a motor 121 as a power source and a power transmission device 1 that transmits the power of the motor 121 to the rear wheel 102, and the motor 121 is controlled according to the driving torque of the front wheel 101.
  • the rear wheels 102 can be driven so that the driving torques of the front wheels 101 and the rear wheels 102 can be distributed appropriately according to the traveling state of the vehicle 100.
  • the rear unit 120 is configured such that the motor 121 also has a function as a generator, and the electric power generated by the motor 121 can be regenerated.
  • vehicle 100 may be configured by only the rear unit 120 without the front unit 110, and in that case, the front wheel 101 may be driven by the rear unit 120.
  • FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1. In FIG. 2, only the configuration that bears the function of transmitting power is shown for easy understanding.
  • the power transmission device 1 includes an input shaft 2 to which power of the motor 121 is input, a first reduction gear 3 to which power is transmitted from the input shaft 2, and the first reduction gear 3.
  • a transmission shaft 6 to which power is transmitted from the second reduction gear 5 a second clutch 20 disposed on a power transmission path from the second reduction gear 5 to the transmission shaft 6, and the input shaft 2
  • the power transmitted to the first reduction gear 3 is transmitted to the output shaft 4 via the differential device 7, and the power transmitted to the output shaft 4 is also transmitted. It is configured to be output to the outside of the power transmission device 1 and transmitted to the rear wheel 102.
  • the differential device 7 is a device for absorbing the rotational difference between the left and right rear wheels 102BL and 102BR, and its configuration is well known (for example, Japanese Patent No. 4024897), and thus detailed description thereof is omitted.
  • the first reduction gear 3 is a gear pair that reduces the input rotation from the motor 121. As shown in FIG. 2, the first reduction gear 3 is driven by power transmitted from the input shaft 2, and the drive gear 3a. It is comprised by the driven gear 3b driven and the reduction ratio is set to Dh.
  • a reduction gear is formed between the driven gear 3b and the differential device 7, and even when power is transmitted from the driven gear 3b to the differential device 7.
  • the input rotation from the motor 121 is decelerated at a predetermined reduction ratio.
  • the first clutch 10 is for transmitting and interrupting power between the input shaft 2 and the first reduction gear 3, and when the motor 121 rotates in the forward direction, the first reduction gear 3 from the input shaft 2.
  • the transmission of power from the first reduction gear 3 to the input shaft 2 is interrupted, and the transmission of power from the input shaft 2 to the first reduction gear 3 can be interrupted.
  • FIGS. 3 is a cross-sectional view of the first clutch 10
  • FIG. 4 is a cross-sectional view of the first clutch 10 taken along the line IV-IV in FIG.
  • the first clutch 10 includes an inner ring 11, an outer ring 12 surrounding the outer periphery of the inner ring 11, and a plurality of sprags 13 disposed between the inner ring 11 and the outer ring 12.
  • the retainer 14 for holding the sprags 13 and the load applying device 15 are mainly provided.
  • the inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O.
  • the inner ring 11 is formed integrally with the input shaft 2 (see FIG. 2).
  • the outer ring 12 is a member having a function of transmitting power together with the inner ring 11. As shown in FIGS. 3 and 4, the outer ring 12 includes an inner circumferential surface 12 a having a circular cross section facing the outer circumferential surface 11 a of the inner ring 11. Similarly to the above, it is configured to be rotatable around the axis O.
  • the outer ring 12 is formed integrally with the drive gear 3a (see FIG. 2) of the first reduction gear 3.
  • the sprag 13 is a member having a function of engaging the inner ring 11 and the outer ring 12, and includes engagement surfaces 13a and 13b (see FIG. 5) that contact the outer peripheral surface 11a and the inner peripheral surface 12a, respectively, and is shown in FIG. As described above, a plurality of outer circumferential surfaces 11a and inner circumferential surfaces 12a are arranged at equal intervals in the circumferential direction between the opposing surfaces.
  • FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner.
  • the ribbon spring 16 applies an urging force to the sprag 13 so that the engagement surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • 5 is a member that generates a rotational moment, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and is configured to apply a biasing force to the sprag 13 using its elasticity.
  • the ribbon spring 16 may be constituted by a coil spring.
  • the sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • the sprag 13 tilts in the anti-self-lock direction against the urging force of the ribbon spring 16 due to the frictional force acting on the contact point B. As a result, the sprag 13 is engaged with the inner ring 11 and the outer ring 12. Is released, and transmission of power from the input shaft 2 to the first reduction gear 3 is interrupted.
  • locking direction when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “locking direction”), the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the first reduction gear 3 to the input shaft 2.
  • free direction when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 and rotates in the direction of the opposite arrow Ro (hereinafter referred to as “free direction”) in FIG.
  • the sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the acting frictional force.
  • the engagement of the sprag 13 with the inner ring 11 and the outer ring 12 is released, and the first reduction gear 3 From the power to the input shaft 2 is cut off.
  • the retainer 14 is a member that holds the sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a, the load transmitting portion 14b, It is configured with.
  • the holding part 14 a is a part that holds the sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the sprag 13.
  • the load transmitting portion 14b is a portion to which the load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG. Thereby, compared with the case where the load transmission part 14b is extended in the axial center O direction, the dimension of the axial direction O of the holder
  • retainer 14 can be shortened, and size reduction of the 1st clutch 10 can be achieved.
  • the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
  • the load applying device 15 is a device for applying a load to the sprags 13 against the urging force of the ribbon spring 16 and tilting the sprags 13 in the anti-self-lock direction (the anti-arrow S rotation direction in FIG. 5). As shown in FIGS. 3 and 4, the actuator 15a and the pinion 15b are provided.
  • the actuator 15a is a power source that generates a load to be applied to the sprags 13, and is configured by an electric motor (an AC motor or a DC motor), and is configured to be driven by electric power supplied from a power source (not shown).
  • the actuator 15a is comprised with the electric motor, compared with the case where the actuator 15a is comprised with a cylinder, a solenoid, etc., for example, the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can.
  • the load applying device 15 when the structure of the load applying device 15 is complicated, the load applying device 15 is increased in size, leading to an increase in the size of the first clutch 10.
  • the structure of the load applying device 15 is simplified and downsized. If possible, the first clutch 10 can be downsized.
  • the pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them.
  • the load of the sprag 13 is applied through the retainer 14 by transmitting the power of the actuator 15a to the retainer 14 by the pinion 15b.
  • the load application device 15 applies a load to the sprags 13 via the retainer 14, it is possible to apply a load to the plurality of sprags 13 at a time and efficiently apply a load to the sprags 13. Can do.
  • the load applying device 15 configured as described above, by applying a load to the sprag 13 against the urging force of the ribbon spring 16, the sprag 13 is tilted in the anti-self-lock direction, and the inner ring 11 and The engagement of the sprag 13 with the outer ring 12 can be forcibly released.
  • the second reduction gear 5 is a gear pair that reduces the input rotation from the motor 121 at a reduction ratio different from that of the first reduction gear 3, and is driven by the power transmitted from the input shaft 2 as shown in FIG.
  • the driving gear 5a and the driven gear 5b driven by the driving gear 5a, and the reduction ratio thereof is set to Dl.
  • the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh ⁇ Dl), and the input rotation from the motor 121 is reduced by the first reduction gear 3.
  • the second reduction gear 5 is configured to decelerate at a reduction ratio smaller than that in the case where the second reduction gear 5 decelerates.
  • the transmission shaft 6 transmits the power transmitted to the second reduction gear 5 to the output shaft 4, and is formed integrally with the driven gear 3b of the first reduction gear 3, as shown in FIG. Power is transmitted from 3b to the output shaft 4 via the differential device 7.
  • the second clutch 20 is a device for transmitting and interrupting power between the second reduction gear 5 and the transmission shaft 6, and transmits power from the second reduction gear 5 when the motor 121 rotates forward. While transmitting to the shaft 6, the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted, and when the motor 121 rotates in the reverse direction, transmission of power from the transmission shaft 6 to the second reduction gear 5 is performed. It is configured to be shut off. Since the second clutch 20 is configured in the same manner as the first clutch 10, detailed description thereof is omitted.
  • the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the second clutch 20, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
  • locking direction When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5.
  • free direction when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG.
  • free direction the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • the third clutch 30 is for transmitting and blocking power between the input shaft 2 and the first reduction gear 3, and reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward.
  • the reverse power is transmitted from the first reduction gear 3 to the input shaft 2, and the power can be transmitted from the input shaft 2 to the first reduction gear 3 when the motor 121 rotates in the reverse direction. Since the third clutch 30 is configured in the same manner as the first clutch 10 except that the load applying device 15 is omitted, detailed description thereof is omitted.
  • locking direction when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the input shaft 2 to the first reduction gear 3.
  • free direction when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG.
  • the engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the input shaft 2 to the first reduction gear 3 is interrupted.
  • locking direction when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “locking direction”), the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the first reduction gear 3 to the input shaft 2.
  • free direction when the outer ring 12 rotates relative to the sprag 13 in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”) as viewed from the inner ring 11 side relative to the inner ring 11, the inner ring 11 and The sprag 13 is disengaged from the outer ring 12 and the transmission of power from the first reduction gear 3 to the input shaft 2 is interrupted.
  • FIGS. 6 to 9 are schematic views schematically showing the internal structure of the power transmission device 1. 6 to 9, (a) schematically shows a side view of the internal structure, and (b) schematically shows a front view of the internal structure.
  • FIGS. 6 to 9 the power transmission path is indicated by an arrow P for easy understanding.
  • FIGS. 6B, 7B, 8B, and 9B the rotation of the inner ring 11 and the outer ring 12 of the first clutch 10, the second clutch 20, and the third clutch 30 is performed.
  • the directions are indicated by arrows R and F.
  • the arrow R indicates that the rotation direction is the lock direction with respect to the sprag 13
  • the arrow F indicates that the rotation direction is the free direction with respect to the sprag 13.
  • the sizes of the arrows R and F represent the rotational speed.
  • the operating state of the power transmission device 1 when the vehicle 100 moves forward will be described with reference to FIGS.
  • the motor 121 rotates in the forward direction, so that the inner ring 11 of the first clutch 10 rotates in the locking direction and the inner ring 11 of the third clutch 30 rotates in the free direction.
  • the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the locking direction.
  • power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the second clutch 20, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
  • the rotation transmitted to the driven gear 3b is transmitted to the drive gear 3a, whereby the outer ring 12 of the first clutch 10 rotates in the free direction.
  • the reduction ratio Dh of the first reduction gear 3 is The rotation speed of the inner ring 11 is faster than the rotation speed of the outer ring 12 in the first clutch 10 by the amount set to be smaller than the reduction ratio Dl of the second reduction gear 5, and the inner ring 11 relatively rotates in the locking direction. It becomes equal to the state.
  • the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 20 rotates in the free direction.
  • the rotation direction is a free direction, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh ⁇ Dl)
  • the outer ring 12 of the second clutch 20 is rotating in the locking direction. Even in the state, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • the load applying device 15 of the first clutch 10 when the load applying device 15 of the first clutch 10 is inactivated, the input rotation from the motor 121 is decelerated by the first reduction gear 3 and the reduction ratio is smaller than that of the second reduction gear 5. You can slow down.
  • the power is transmitted to the input shaft 2, whereby the rotation is transmitted to the second reduction gear 5, and the outer ring 12 of the second clutch 20 rotates in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh ⁇ Dl)
  • the outer ring 12 of the second clutch 20 is rotating in the locking direction. Even in the state, transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
  • the motor 121 can function as a generator by the power input from the output shaft 4, and the power generated by the motor 121 can be regenerated as a power source. Thereby, energy saving can be achieved.
  • the rotation of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the free direction.
  • the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 20 rotates in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5
  • the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the second clutch 20.
  • the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction.
  • the input rotation from the motor 121 can be shifted in two stages by the first reduction gear 3 and the second reduction gear 5 when the vehicle 100 moves forward.
  • the motor 121 can be used in an efficient rotation range in a wide vehicle speed range, and the power of the motor 121 can be transmitted to the rear wheel 102 efficiently.
  • the motor 121 can be used in an efficient rotation range in a wide range of vehicle speeds, a high-output motor is not required, and accordingly, an increase in the size of the apparatus accompanying the increase in the motor output is avoided. Thus, the size can be reduced.
  • a hydraulic system for intermittently engaging the multi-plate clutch is not required, and the structure is simplified and the size is reduced. Can do. Furthermore, in the case of a configuration in which the multi-plate clutch is intermittently connected to change the input rotation, heat energy is released when the multi-plate clutch is connected, resulting in energy loss. The multi-plate clutch is not required and energy loss is prevented. be able to.
  • the sprag 13 is compared with a configuration in which switching is performed by movement of the sprag 13. Since the amount of movement can be reduced, the time required for switching can be shortened, and switching can be performed quickly. Furthermore, if the switching can be performed quickly, the inner ring 11 and the outer ring 12 do not run idle until the transmission of power is interrupted, so that an impact during power transmission can be prevented. .
  • the second clutch 20 is configured to interrupt transmission of power from the transmission shaft 6 to the second reduction gear 5 when the motor 121 rotates in the forward direction
  • the third clutch 30 includes the input shaft 2. Is disposed on the power transmission path from the first reduction gear 3 to the first reduction gear 3, so that the electric circuit for supplying electric power to the load applying device 15 is abnormal (disconnected or shorted, etc.) while the motor 121 is rotating forward. ) And the load application device 15 of the first clutch 10 and the second clutch 20 becomes inoperable, the transmission of power from the input shaft 2 to the first reduction gear 3 and the transmission shaft 6 to the second reduction gear.
  • it is possible to prevent double meshing between the first reduction gear 3 and the second reduction gear 5 without transmitting power to the motor 5 at the same time.
  • the input rotation can be shifted without requiring complicated control by switching between the operation and non-operation of the load applying device 15 of the first clutch 10. Therefore, as compared with the conventional configuration in which two multi-plate clutches are intermittently engaged and the input rotation is shifted, a smooth shift without interruption of power transmission can be realized, and the first reduction gear 3 and the second reduction gear can be realized. Double engagement of the gear 5 can also be prevented.
  • the third clutch that transmits the reverse power from the first reduction gear 3 to the input shaft 2 when reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward.
  • the power transmission state in which power is transmitted to the motor 121 can be switched. Therefore, control for switching the load applying device 15 of the first clutch 10 can be made unnecessary, and a shock at the time of switching the power transmission state can be prevented.
  • the first reduction gear 3 and the second reduction gear 5 can be double-engaged. Therefore, for example, when the vehicle 100 is stopped uphill, the vehicle 100 can be prevented from retreating without operating the side brake or controlling the motor 121 so as to obtain a necessary driving force. In addition, when the vehicle 100 moves forward from the state where the climbing is stopped, the vehicle 100 can start by only driving the motor 121.
  • FIG. 10 is a schematic diagram schematically showing the internal structure of the power transmission device 201 in the second embodiment.
  • FIG. 10 only the configuration having the function of transmitting power is illustrated for easy understanding.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the power transmission device 201 includes an input shaft 2, a first reduction gear 3, an output shaft 4, a first clutch 10, a second reduction gear 5, and transmission.
  • the shaft 6 is mainly provided with a second clutch 220 and a fourth clutch 240 disposed on the power transmission path from the second reduction gear 5 to the transmission shaft 6.
  • the second clutch 220 is for transmitting and blocking power between the second reduction gear 5 and the transmission shaft 6, and transmits power from the second reduction gear 5 when the motor 121 rotates in the forward direction. While transmitting to the shaft 6, the transmission of power from the transmission shaft 6 to the second reduction gear 5 can be cut off. Since the second clutch 220 is configured in the same manner as the first clutch 10 except that the load applying device 15 is omitted, detailed description thereof is omitted.
  • the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the second clutch 220, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
  • locking direction When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5.
  • free direction when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG.
  • free direction the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • the fourth clutch 240 is a device for transmitting and interrupting power between the second reduction gear 5 and the transmission shaft 6, and reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward.
  • the reverse power is transmitted from the transmission shaft 4 to the second reduction gear 5 and the power can be transmitted from the second reduction gear 5 to the transmission shaft 6 when the motor 121 rotates in the reverse direction. Since the fourth clutch 240 is configured in the same manner as the first clutch 10, detailed description thereof is omitted.
  • the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the fourth clutch 240, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
  • locking direction When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5.
  • free direction when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG.
  • free direction the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • FIGS. 11 to 14 are schematic views schematically showing the internal structure of the power transmission device 201. 11 to 14, (a) schematically shows a side view of the internal structure, and (b) schematically shows a front view of the internal structure.
  • the power transmission path is indicated by an arrow P for easy understanding.
  • FIGS. 11B, 12B, 13B, and 14B the rotation of the inner ring 11 and the outer ring 12 of the first clutch 10, the second clutch 220, and the fourth clutch 240 is performed.
  • the directions are indicated by arrows R and F.
  • the arrow R indicates that the rotation direction is the lock direction with respect to the sprag 13
  • the arrow F indicates that the rotation direction is the free direction with respect to the sprag 13.
  • the sizes of the arrows R and F represent the rotational speed.
  • the operating state of the power transmission device 201 when the vehicle 100 moves forward will be described with reference to FIGS. 11 and 12.
  • the motor 121 rotates in the forward direction, so that the inner ring 11 of the first clutch 10 rotates in the locking direction.
  • the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 220 rotates in the locking direction and the outer ring 12 of the fourth clutch 240. Rotates in the free direction.
  • power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the second clutch 220, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
  • the rotation transmitted to the driven gear 3b is transmitted to the drive gear 3a, whereby the outer ring 12 of the first clutch 10 rotates in the free direction.
  • the reduction ratio Dh of the first reduction gear 3 is The rotation speed of the inner ring 11 is faster than the rotation speed of the outer ring 12 in the first clutch 10 by the amount set to be smaller than the reduction ratio Dl of the second reduction gear 5, and the inner ring 11 relatively rotates in the locking direction. It becomes equal to the state.
  • the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3 b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 220 rotates in the free direction and the fourth clutch 240.
  • the inner ring 11 rotates in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set to be smaller than the reduction ratio Dl of the second reduction gear 5
  • the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the fourth clutch 240.
  • the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5
  • the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the second clutch 220. Even when the outer ring 12 is rotating in the lock direction, the inner ring 11 is relatively equal to the state rotating in the free direction. Therefore, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
  • the load applying device 15 of the first clutch 10 when the load applying device 15 of the first clutch 10 is inactivated, the input rotation from the motor 121 is decelerated by the first reduction gear 3 and the reduction ratio is smaller than that of the second reduction gear 5. You can slow down.
  • the rotation is transmitted to the input shaft 2 so that the inner ring 11 of the first clutch 10 rotates in the locking direction.
  • the reduction ratio Dh of the first reduction gear 3 is set to be smaller than the reduction ratio Dl of the second reduction gear 5
  • the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the first clutch 10.
  • the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction. Therefore, by operating the load applying device 15 of the first clutch 10 and forcibly releasing the engagement of the sprags 13 with the inner ring 11 and the outer ring 12, power is transmitted from the input shaft 2 to the first reduction gear 3. Can be cut off.
  • the motor 121 can function as a generator by the power input from the output shaft 4, and the power generated by the motor 121 can be regenerated as a power source. Thereby, energy saving can be achieved.
  • the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 220 rotates in the free direction and the outer ring 12 of the fourth clutch 240. Rotates in the locking direction.
  • power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the fourth clutch 240, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
  • the power of the motor 121 can be efficiently transmitted to the rear wheel 102 and the size can be reduced. Can be planned.
  • the power transmission device 201 by reducing the configuration on the input shaft 2 arranged in series with the motor 121, it is possible to reduce the size as a space-efficient layout.
  • the power transmission device 201 when the motor 121 rotates in the reverse direction and when reverse power is input to the output shaft 4 so that the output shaft 4 rotates in the forward direction, the reduction ratio is higher than that of the first reduction gear 3. Power and reverse power can be transmitted by the large second reduction gear 5. Therefore, when the motor 121 rotates in the reverse direction and when reverse power is input to the output shaft 3 so that the output shaft 4 rotates in the forward direction, the power is driven by the second reduction gear 5 having a larger reduction ratio than the first reduction gear 3. Since the reverse power can be transmitted, a larger driving force can be obtained. Further, when energy regeneration is performed using the motor 121 as a generator, energy can be efficiently regenerated.
  • the power transmission device 1 is incorporated in the rear unit 120 of the vehicle 100 .
  • the present invention is not necessarily limited to this.
  • other vehicles locomotives, passenger cars, freight cars, Naturally, it can be incorporated into a power transmission device such as a traveling device, a working device, and a machine tool of a special vehicle.
  • the load applying device 15 is configured by an electric motor (an AC motor or a DC motor)
  • an electric motor an AC motor or a DC motor
  • Examples of other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
  • the actuator 15a when configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like.
  • the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
  • the load applying device 15 of the first clutch 10 when the load applying device 15 of the first clutch 10 is deactivated when the vehicle 100 moves forward, the load applying device 15 of the second clutch 20 is operated to operate the inner ring. 11 and the engagement of the sprags 13 with the outer ring 12 may be forcibly released.
  • the load applying device 15 of the first clutch 10 and the second clutch 20 may be operated to forcibly disengage the sprags 13 from the inner rings 11 and the outer rings 12.
  • the load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the sprags 13 with the inner ring 11 and the outer ring 12.
  • the load application device 15 of the first clutch 10 when the load application device 15 of the first clutch 10 is deactivated when the vehicle 100 moves forward, the load application device 15 of the fourth clutch 240 is operated to operate the inner ring. 11 and the engagement of the sprags 13 with the outer ring 12 may be forcibly released.
  • the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 may be forcibly released by operating the load applying device 15 of the first clutch 10 during coasting of the vehicle 100 and during reverse travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

[Object] To provide a power transmission that is small in size yet capable of transmitting power with high efficiency. [Solution] A power transmission (1) is capable of transmitting power from a motor (121) in two stages through a first reduction gear (3) and a second reduction gear (5) enabling the operation of the motor (121) with high efficiency within a wide range of rotation from low to a high speed thus transmitting power from the motor (121) to rear wheels (102) with high efficiency. With a transmission capable of transmitting power from the motor (121) with high efficiency within a wide range of rotation from low to a high speed, the motor power can be reduced and the size of the motor can be reduced. In comparison with a transmission with a multi-plate clutch which is engaged/disengaged to reduce the input speed, the present transmission is simple in structure and small in size because no hydraulic system is needed to engage/disengage the multi-plate clutch.

Description

動力伝達装置Power transmission device
 本発明は、モータの動力を伝達する動力伝達装置に関し、特に、モータの動力を効率良く伝達できると共に小型化を図ることができる動力伝達装置に関するものである。 The present invention relates to a power transmission device that transmits the power of a motor, and more particularly to a power transmission device that can efficiently transmit the power of a motor and can be downsized.
 従来、モータの動力を伝達する動力伝達装置として、例えば、非特許文献1には、ハイブリッド車両の駆動システムにおいて、モータからの入力回転を減速歯車により減速するリヤユニットが開示されている。 Conventionally, as a power transmission device that transmits power of a motor, for example, Non-Patent Document 1 discloses a rear unit that decelerates input rotation from a motor with a reduction gear in a drive system of a hybrid vehicle.
 また、非特許文献2には、2つの多板クラッチを断続させることで、モータからの入力回転を遊星歯車装置により2段に変速するトランスミッションが開示されている。この非特許文献2に開示されるトランスミッションによれば、入力回転を2段に変速できるので、低速から高速までの幅広い車速範囲においてモータを効率の良い回転域で使用することが可能となり、モータの動力を効率良く伝達することができる。 Further, Non-Patent Document 2 discloses a transmission that shifts input rotation from a motor in two stages by a planetary gear device by engaging and disengaging two multi-plate clutches. According to the transmission disclosed in Non-Patent Document 2, since the input rotation can be shifted in two stages, the motor can be used in an efficient rotation range in a wide vehicle speed range from low speed to high speed. Power can be transmitted efficiently.
 しかしながら、非特許文献1に開示されるリヤユニットでは、単に入力回転を減速するのみで変速できないので、低速から高速までの幅広い車速範囲においてモータを制御する場合には、モータを効率の良い回転域で使用することが困難となり、モータの動力を効率良く伝達することができないという問題点があった。また、入力回転を変速できないので、幅広い車速範囲においてモータを効率の良い回転域で使用するためには、高出力のモータが必要となり、その分、モータの高出力化に伴う装置の大型化を招くという問題点があった。 However, since the rear unit disclosed in Non-Patent Document 1 cannot decelerate the input rotation by simply decelerating the input rotation, when the motor is controlled in a wide vehicle speed range from low speed to high speed, the motor has an efficient rotation range. This makes it difficult to use the motor and the motor power cannot be efficiently transmitted. In addition, since the input rotation cannot be changed, a high-output motor is required to use the motor in an efficient rotation range in a wide range of vehicle speeds. There was a problem of inviting.
 一方、非特許文献2に開示されるトランスミッションでは、上述した問題点は解決できるものの、多板クラッチを断続させて入力回転を変速する構成なので、多板クラッチを断続させるための油圧システムが必要となり、構造が複雑化すると共に装置の大型化を招くという問題点があった。また、2つの多板クラッチを断続させるタイミングが難しく、2つの多板クラッチが共に切断されると、動力の伝達が遮断され、モータの回転上昇や変速時のショックを招くと共に、2つの多板クラッチが同時に接続されると、遊星歯車装置が二重噛み合いを起こし、トランスミッションが破損する等の恐れがあった。更に、多板クラッチの接続時に熱エネルギーが放出される分、エネルギー損失が生じていた。 On the other hand, in the transmission disclosed in Non-Patent Document 2, although the above-mentioned problems can be solved, since the multi-plate clutch is engaged and the input rotation is changed, a hydraulic system for engaging and disengaging the multi-plate clutch is required. However, there is a problem that the structure is complicated and the apparatus is enlarged. In addition, it is difficult to turn on and off the two multi-plate clutches. If the two multi-plate clutches are both disconnected, the transmission of power is cut off, causing a motor rotation increase and a shock at the time of shifting. If the clutches are connected at the same time, the planetary gear unit may double mesh and the transmission may be damaged. Further, energy loss is caused by the amount of heat energy released when the multi-plate clutch is connected.
 本発明は、上述した問題点を解決するためになされたものであり、モータの動力を効率良く伝達できると共に小型化を図ることができる動力伝達装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power transmission device that can efficiently transmit power of a motor and can be downsized.
課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention
 この目的を達成するために、請求項1記載の動力伝達装置によれば、モータが正回転する場合に動力を入力軸から第1減速歯車に伝達する一方、第1減速歯車から入力軸への動力の伝達を遮断すると共に、入力軸から第1減速歯車への動力の伝達を遮断可能に構成される第1クラッチを備え、第1クラッチは、内輪および外輪にそれぞれ接する係合面を有するスプラグと、そのスプラグに付勢力を付与して内輪および外輪に係合面が接するようにスプラグを円周方向のセルフロック方向へ傾動させる付勢部材と、その付勢部材の付勢力に抗してスプラグに荷重を付与してセルフロック方向とは逆方向であって円周方向の反セルフロック方向へスプラグを傾動させる荷重付与装置とを備えている。これにより、モータが正回転している状態において第1クラッチの荷重付与装置を作動させた場合には、付勢部材の付勢力に抗してスプラグが反セルフロック方向へ傾動し、内輪および外輪へのスプラグの係合が解除されることで、入力軸から第1減速歯車への動力の伝達が遮断される。一方で、この場合には、モータの動力が入力軸から第2減速歯車に伝達されることで、第2クラッチにより第2減速歯車から伝達軸に動力が伝達され、伝達軸から出力軸に動力が伝達される。また、この場合には、出力軸に伝達された回転が第1減速歯車に伝達されるが、第2減速歯車の減速比が第1減速歯車の減速比よりも大きい構成にあっても、第1クラッチにより第1減速歯車から入力軸への動力の伝達が遮断される。 In order to achieve this object, according to the power transmission device of the first aspect, when the motor rotates forward, the power is transmitted from the input shaft to the first reduction gear, while the first reduction gear to the input shaft. A sprag having a first clutch configured to block transmission of power and to block transmission of power from the input shaft to the first reduction gear, and the first clutch has engagement surfaces that respectively contact the inner ring and the outer ring. And a biasing member that applies a biasing force to the sprag and tilts the sprag in the circumferential self-locking direction so that the engagement surface contacts the inner ring and the outer ring, and against the biasing force of the biasing member A load applying device that applies a load to the sprag and tilts the sprag in a direction opposite to the self-locking direction and in a circumferential anti-locking direction. As a result, when the load applying device of the first clutch is operated while the motor is rotating forward, the sprag is tilted in the anti-self-lock direction against the urging force of the urging member, and the inner ring and the outer ring The transmission of power from the input shaft to the first reduction gear is interrupted by releasing the engagement of the sprag. On the other hand, in this case, the power of the motor is transmitted from the input shaft to the second reduction gear, whereby the power is transmitted from the second reduction gear to the transmission shaft by the second clutch, and the power is transmitted from the transmission shaft to the output shaft. Is transmitted. In this case, the rotation transmitted to the output shaft is transmitted to the first reduction gear. Even if the reduction ratio of the second reduction gear is greater than the reduction ratio of the first reduction gear, Transmission of power from the first reduction gear to the input shaft is interrupted by one clutch.
 よって、第1クラッチの荷重付与装置を作動させた場合には、モータからの入力回転を第2減速歯車により減速して、第1減速歯車よりも大きい減速比で減速することができる。 Therefore, when the load applying device of the first clutch is operated, the input rotation from the motor can be decelerated by the second reduction gear and decelerated at a reduction ratio larger than that of the first reduction gear.
 これに対し、第1クラッチの荷重付与装置を非作動とした場合には、付勢部材の付勢力によりスプラグがセルフロック方向へ傾動し、内輪および外輪にスプラグが係合することで、入力軸から第1減速歯車に動力が伝達され、第1減速歯車から出力軸に動力が伝達される。また、この場合には、出力軸に伝達された回転が伝達軸に伝達されるが、第2減速歯車の減速比が第1減速歯車の減速比よりも大きく設定されているので、第2クラッチでは、スプラグが反セルフロック方向へ傾動するように内輪および外輪が回転して、伝達軸から第2減速歯車への動力の伝達が遮断される。 On the other hand, when the load applying device of the first clutch is inactivated, the sprag is tilted in the self-locking direction by the urging force of the urging member, and the sprag is engaged with the inner ring and the outer ring, so that the input shaft The power is transmitted from the first reduction gear to the output shaft, and the power is transmitted from the first reduction gear to the output shaft. In this case, the rotation transmitted to the output shaft is transmitted to the transmission shaft. However, since the reduction ratio of the second reduction gear is set larger than the reduction ratio of the first reduction gear, the second clutch Then, the inner ring and the outer ring rotate so that the sprag tilts in the anti-self-locking direction, and the transmission of power from the transmission shaft to the second reduction gear is interrupted.
 よって、第1クラッチの荷重付与装置を非作動とした場合には、モータからの入力回転を第1減速歯車により減速して、第2減速歯車よりも小さい減速比で減速することができる。 Therefore, when the load applying device of the first clutch is inactivated, the input rotation from the motor can be decelerated by the first reduction gear and decelerated at a reduction ratio smaller than that of the second reduction gear.
 このように、本発明における動力伝達装置によれば、モータからの入力回転を第1減速歯車および第2減速歯車により2段に変速できるので、低速から高速までの幅広い車速範囲においてモータを効率の良い回転域で使用することが可能となり、モータの動力を効率良く伝達することができるという効果がある。 Thus, according to the power transmission device of the present invention, the input rotation from the motor can be shifted in two stages by the first reduction gear and the second reduction gear, so that the motor can be efficiently operated in a wide vehicle speed range from low speed to high speed. It can be used in a good rotation range, and there is an effect that the power of the motor can be transmitted efficiently.
 また、幅広い車速範囲においてモータを効率の良い回転域で使用することが可能となれば、高出力のモータを必要とせず、その分、モータの高出力化に伴う装置の大型化を回避して、小型化を図ることができるという効果がある。 In addition, if it becomes possible to use the motor in a wide range of vehicle speeds in an efficient rotation range, a high-output motor is not necessary, and the size of the device accompanying the increase in motor output is avoided accordingly. There is an effect that downsizing can be achieved.
 また、従来のように多板クラッチを断続させて入力回転を変速する構成と比較して、多板クラッチを断続させるための油圧システムを必要とせず、構造を簡素化すると共に小型化を図ることができるという効果がある。更に、多板クラッチを断続させて入力回転を変速する構成の場合には、多板クラッチの接続時に熱エネルギーが放出され、エネルギー損失が生じるところ、多板クラッチを不要として、エネルギー損失を防止することができるという効果がある。 Further, compared with the conventional configuration in which the multi-plate clutch is intermittently engaged and the input rotation is changed, a hydraulic system for intermittently engaging the multi-plate clutch is not required, and the structure is simplified and the size is reduced. There is an effect that can be. Furthermore, in the case of a configuration in which the multi-plate clutch is intermittently connected to change the input rotation, heat energy is released when the multi-plate clutch is connected, resulting in energy loss. The multi-plate clutch is not required and energy loss is prevented. There is an effect that can be.
 また、第1クラッチは、スプラグの傾動により動力の伝達および遮断の切り替えを行うので、スプラグの移動により切り替えを行う構成と比較して、スプラグの動作量を小さくできる分、切り替えに要する時間を短縮でき、切り替えを素早く行うことができるという効果がある。更に、切り替えを素早く行うことができれば、動力の伝達が遮断された状態から伝達されるまでの間に内輪と外輪とが空転することもなく、動力伝達時のショックを防止することができるという効果がある。 In addition, since the first clutch switches between transmission and shut-off of power by tilting the sprag, compared to a configuration in which switching is performed by moving the sprag, the amount of sprag operation can be reduced and the time required for switching is shortened. It is possible to perform switching quickly. Furthermore, if the switching can be performed quickly, the inner ring and the outer ring do not run idle until the transmission of power is interrupted and the shock during power transmission can be prevented. There is.
 また、第2クラッチは、モータが正回転する場合に、伝達軸から第2減速歯車への動力の伝達を遮断するように構成されているので、モータが正回転している状態において、第1クラッチの荷重付与装置が作動不能になったとしても、入力軸から第1減速歯車への動力の伝達と伝達軸から第2減速歯車への動力の伝達とが同時に行われて、第1減速歯車と第2減速歯車とが二重噛み合いを起こすのを防止することができるという効果がある。 Further, since the second clutch is configured to interrupt the transmission of power from the transmission shaft to the second reduction gear when the motor rotates in the forward direction, the first clutch is in the state where the motor is rotating in the forward direction. Even if the clutch load application device becomes inoperable, the transmission of power from the input shaft to the first reduction gear and the transmission of power from the transmission shaft to the second reduction gear are performed at the same time. There is an effect that it is possible to prevent double meshing between the second reduction gear and the second reduction gear.
 請求項2記載の動力伝達装置によれば、第1クラッチの荷重付与装置を作動させて、動力を第2減速歯車から伝達軸を介して出力軸に伝達する一方、第1クラッチの荷重付与装置を非作動として、動力を第1減速歯車から出力軸に伝達する。これにより、請求項1の効果に加え、第1クラッチの荷重付与装置の作動および非作動を切り替えることで、複雑な制御を必要とせずに入力回転を変速できるという効果がある。よって、従来のように2つの多板クラッチを断続させて入力回転を変速する構成と比較して、動力の伝達に途切れのないスムーズな変速を実現できると共に、第1減速歯車および第2減速歯車の二重噛み合いも防止することができる。 According to the power transmission device of the second aspect, the load applying device for the first clutch is operated to transmit power from the second reduction gear to the output shaft through the transmission shaft, while the load applying device for the first clutch is used. Is deactivated, and power is transmitted from the first reduction gear to the output shaft. Thus, in addition to the effect of the first aspect, there is an effect that the input rotation can be shifted without requiring complicated control by switching the operation and non-operation of the load applying device of the first clutch. Therefore, as compared with the conventional configuration in which two multi-plate clutches are intermittently engaged and the input rotation is changed, smooth transmission without interruption of transmission of power can be realized, and the first reduction gear and the second reduction gear. It is also possible to prevent double meshing.
 請求項3記載の動力伝達装置によれば、出力軸が正回転するように出力軸に逆動力が入力される場合に、逆動力を第1減速歯車から入力軸に伝達する第3クラッチを備えているので、請求項1又は2の効果に加え、第1クラッチの荷重付与装置の作動および非作動を切り替えなくとも、モータの動力を出力軸に伝達する動力伝達状態と、出力軸に入力される逆動力をモータに伝達する動力伝達状態とを切り替えることができるという効果がある。よって、第1クラッチの荷重付与装置を切り替える制御を不要にできると共に、動力伝達状態切り替え時のショックを防止することができる。 According to a third aspect of the present invention, there is provided the third clutch for transmitting the reverse power from the first reduction gear to the input shaft when the reverse power is input to the output shaft so that the output shaft rotates forward. Therefore, in addition to the effect of the first or second aspect, the power transmission state in which the power of the motor is transmitted to the output shaft without switching the operation and non-operation of the load applying device of the first clutch, and the input to the output shaft. There is an effect that it is possible to switch between the power transmission state in which the reverse power transmitted to the motor is transmitted. Therefore, the control for switching the load applying device of the first clutch can be made unnecessary, and a shock at the time of switching the power transmission state can be prevented.
 請求項4記載の動力伝達装置によれば、モータが逆回転している状態では、第3クラッチにより入力軸から第1減速歯車に動力が伝達され、第1減速歯車から出力軸に動力が伝達される。また、この場合には、出力軸に伝達された回転が伝達軸に伝達されるが、第2クラッチにより伝達軸から第2減速歯車への動力の伝達が遮断される。よって、請求項3の効果に加え、モータが逆回転している状態においても、動力を伝達することができるという効果がある。 According to the power transmission device of the fourth aspect, when the motor is rotating in the reverse direction, power is transmitted from the input shaft to the first reduction gear by the third clutch, and power is transmitted from the first reduction gear to the output shaft. Is done. In this case, the rotation transmitted to the output shaft is transmitted to the transmission shaft, but the transmission of power from the transmission shaft to the second reduction gear is interrupted by the second clutch. Therefore, in addition to the effect of the third aspect, there is an effect that power can be transmitted even in a state where the motor is rotating in the reverse direction.
 また、第3クラッチは、入力軸から第1減速歯車までの動力の伝達経路上に配設されているので、モータが正回転している状態において、第1クラッチ及び第2クラッチの荷重付与装置が作動不能になったとしても、入力軸から第1減速歯車への動力の伝達と伝達軸から第2減速歯車への動力の伝達とが同時に行われることなく、第1減速歯車と第2減速歯車との二重噛み合いを防止することができるという効果がある。 Further, since the third clutch is disposed on the power transmission path from the input shaft to the first reduction gear, the load applying device for the first clutch and the second clutch in a state where the motor is rotating forward. Even if the operation of the first reduction gear becomes impossible, the transmission of power from the input shaft to the first reduction gear and transmission of power from the transmission shaft to the second reduction gear are not performed at the same time. There is an effect that double meshing with the gear can be prevented.
 請求項5記載の動力伝達装置によれば、出力軸が逆回転するように出力軸に逆動力が入力される場合に、第2クラッチの荷重付与装置を非作動とすることで、第3クラッチにより逆動力が第1減速歯車から入力軸に伝達されると同時に第2クラッチにより逆動力が伝達軸から第2減速歯車に伝達される。これにより、請求項4の効果に加え、出力軸が逆回転するように出力軸に逆動力が入力される場合に、第1減速歯車と第2減速歯車とを二重噛み合いさせることができるという効果がある。よって、例えば、車両が登坂停止している場合に、サイドブレーキを作動させたり必要な駆動力が得られるようにモータを制御しなくとも、車両の後退を防止することができる。また、車両が登坂停止した状態から前進する場合には、モータを駆動するのみで発進することができる。 According to the power transmission device of the fifth aspect, when the reverse power is input to the output shaft so that the output shaft rotates in the reverse direction, the load applying device of the second clutch is deactivated so that the third clutch Thus, the reverse power is transmitted from the first reduction gear to the input shaft, and at the same time, the reverse power is transmitted from the transmission shaft to the second reduction gear by the second clutch. Thus, in addition to the effect of the fourth aspect, when reverse power is input to the output shaft so that the output shaft rotates in the reverse direction, the first reduction gear and the second reduction gear can be double-engaged. effective. Therefore, for example, when the vehicle is stopped on an uphill, the vehicle can be prevented from retreating without operating the side brake or controlling the motor so as to obtain the necessary driving force. In addition, when the vehicle moves forward from a state where the vehicle has stopped climbing, the vehicle can be started only by driving the motor.
 請求項6記載の動力伝達装置によれば、モータが逆回転する場合に、動力を第2減速歯車から伝達軸に伝達すると共に、出力軸が正回転するように出力軸に逆動力が入力される場合に、逆動力を伝達軸から第2減速歯車に伝達する第4クラッチを備えているので、請求項1の効果に加え、モータが逆回転する場合および出力軸が正回転するように出力軸に逆動力が入力される場合に、第1減速歯車よりも減速比の大きい第2減速歯車により動力および逆動力を伝達することができるという効果がある。 According to the power transmission device of the sixth aspect, when the motor rotates in the reverse direction, the power is transmitted from the second reduction gear to the transmission shaft, and the reverse power is input to the output shaft so that the output shaft rotates in the forward direction. In this case, the fourth clutch is provided to transmit the reverse power from the transmission shaft to the second reduction gear. In addition to the effect of the first aspect, the output is performed so that the motor rotates backward and the output shaft rotates forward. When reverse power is input to the shaft, there is an effect that power and reverse power can be transmitted by the second reduction gear having a larger reduction ratio than the first reduction gear.
 即ち、本発明における動力伝達装置によれば、モータが逆回転する場合には、入力軸から第2減速歯車に伝達された動力が第4クラッチにより第2減速歯車から伝達軸に伝達され、伝達軸から出力軸に動力が伝達される。また、この場合には、出力軸に伝達された回転が第1減速歯車に伝達されるが、第1クラッチの荷重付与装置を作動させることで、第1減速歯車から入力軸への動力の伝達が遮断される。 That is, according to the power transmission device of the present invention, when the motor rotates in the reverse direction, the power transmitted from the input shaft to the second reduction gear is transmitted from the second reduction gear to the transmission shaft by the fourth clutch. Power is transmitted from the shaft to the output shaft. In this case, the rotation transmitted to the output shaft is transmitted to the first reduction gear. By operating the load applying device of the first clutch, power is transmitted from the first reduction gear to the input shaft. Is cut off.
 また、出力軸が正回転するように出力軸に逆動力が入力される場合には、逆動力が出力軸から伝達軸に伝達されると共に、伝達軸に伝達された逆動力が第4クラッチにより伝達軸から第2減速歯車に伝達され、第2減速歯車から入力軸に逆動力が伝達される。また、この場合には、出力軸に入力された回転が第1減速歯車に伝達されるが、第1クラッチにより第1減速歯車から入力軸への動力の伝達が遮断される。 Further, when reverse power is input to the output shaft so that the output shaft rotates forward, the reverse power is transmitted from the output shaft to the transmission shaft, and the reverse power transmitted to the transmission shaft is transmitted by the fourth clutch. Transmission is transmitted from the transmission shaft to the second reduction gear, and reverse power is transmitted from the second reduction gear to the input shaft. In this case, the rotation input to the output shaft is transmitted to the first reduction gear, but the transmission of power from the first reduction gear to the input shaft is blocked by the first clutch.
 このように、本発明における動力伝達装置によれば、モータが逆回転する場合および出力軸が正回転するように出力軸に逆動力が入力される場合に、第1減速歯車よりも減速比の大きい第2減速歯車により動力および逆動力を伝達することができるので、より大きい駆動力を得ることができる。また、モータを発電機としてエネルギー回生する場合には、効率良くエネルギーを回生することができる。 As described above, according to the power transmission device of the present invention, when the motor rotates in the reverse direction and when the reverse power is input to the output shaft so that the output shaft rotates in the forward direction, the reduction ratio is higher than that of the first reduction gear. Since power and reverse power can be transmitted by the large second reduction gear, a larger driving force can be obtained. In addition, when energy is regenerated using a motor as a generator, energy can be regenerated efficiently.
本発明の第1実施の形態における動力伝達装置が搭載される車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle by which the power transmission device in 1st Embodiment of this invention is mounted. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 第1クラッチの断面図である。It is sectional drawing of a 1st clutch. 図3のIV-IV線における第1クラッチの断面図である。FIG. 4 is a cross-sectional view of the first clutch taken along line IV-IV in FIG. 3. 図4のVで示す部分を拡大して示した第1クラッチの部分拡大断面図である。It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of a power transmission device. 第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment. 第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment. 第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment. 第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment. 第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment.
 以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は、本発明の第1実施の形態における動力伝達装置1が搭載される車両100を模式的に示した模式図である。なお、図1の矢印F-B,L-Rは、車両100の前後方向、左右方向をそれぞれ示している。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which the power transmission device 1 according to the first embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
 まず、車両100の概略構成について説明する。車両100は、図1に示すように、前輪101(左の前輪101FL及び右の前輪101FR)を駆動するフロントユニット110と、後輪102(左の後輪102BL及び右の後輪102BR)を駆動するリヤユニット120とを備え、前輪101及び後輪102をそれぞれ独立して駆動可能に構成されている。 First, a schematic configuration of the vehicle 100 will be described. As shown in FIG. 1, the vehicle 100 drives a front unit 110 that drives a front wheel 101 (left front wheel 101FL and right front wheel 101FR) and a rear wheel 102 (left rear wheel 102BL and right rear wheel 102BR). The rear unit 120 is configured to be able to drive the front wheel 101 and the rear wheel 102 independently of each other.
 フロントユニット110は、動力源としてのエンジン111及びモータ112と、それらエンジン111及びモータ112の動力を前輪101に伝達する動力伝達装置113とを主に備え、エンジン111及びモータ112の2つの動力を使い分けて前輪101を駆動可能に構成されている。 The front unit 110 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 113 that transmits the power of the engine 111 and the motor 112 to the front wheels 101. The front unit 110 supplies two powers of the engine 111 and the motor 112. The front wheel 101 can be driven by properly using it.
 リヤユニット120は、動力源としてのモータ121と、そのモータ121の動力を後輪102に伝達する動力伝達装置1とを主に備え、前輪101の駆動トルクに応じてモータ121が制御されることで、前輪101及び後輪102の駆動トルクが車両100の走行状態に応じた適切なトルク配分となるように後輪102を駆動可能に構成されている。 The rear unit 120 mainly includes a motor 121 as a power source and a power transmission device 1 that transmits the power of the motor 121 to the rear wheel 102, and the motor 121 is controlled according to the driving torque of the front wheel 101. Thus, the rear wheels 102 can be driven so that the driving torques of the front wheels 101 and the rear wheels 102 can be distributed appropriately according to the traveling state of the vehicle 100.
 また、このリヤユニット120は、モータ121が発電機としての機能を兼ね備えており、モータ121により発電した電力を回生可能に構成されている。 Further, the rear unit 120 is configured such that the motor 121 also has a function as a generator, and the electric power generated by the motor 121 can be regenerated.
 なお、車両100は、フロントユニット110を省略して、リヤユニット120のみで構成しても良く、その場合には、リヤユニット120により前輪101を駆動するように構成しても良い。 It should be noted that the vehicle 100 may be configured by only the rear unit 120 without the front unit 110, and in that case, the front wheel 101 may be driven by the rear unit 120.
 次いで、図2を参照して、動力伝達装置1の詳細構成について説明する。図2は、動力伝達装置1の内部構造を模式的に示した模式図である。なお、図2では、理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。 Next, the detailed configuration of the power transmission device 1 will be described with reference to FIG. FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1. In FIG. 2, only the configuration that bears the function of transmitting power is shown for easy understanding.
 動力伝達装置1は、図2に示すように、モータ121の動力が入力される入力軸2と、その入力軸2から動力が伝達される第1減速歯車3と、その第1減速歯車3から動力が伝達される出力軸4と、入力軸2から第1減速歯車3までの動力の伝達経路上に配設される第1クラッチ10と、入力軸2から動力が伝達される第2減速歯車5と、その第2減速歯車5から動力が伝達される伝達軸6と、第2減速歯車5から伝達軸6までの動力の伝達経路上に配設される第2クラッチ20と、入力軸2から第1減速歯車3までの動力の伝達経路上に配設される第3クラッチ30とを主に備えて構成されている。 As shown in FIG. 2, the power transmission device 1 includes an input shaft 2 to which power of the motor 121 is input, a first reduction gear 3 to which power is transmitted from the input shaft 2, and the first reduction gear 3. An output shaft 4 to which power is transmitted, a first clutch 10 disposed on a power transmission path from the input shaft 2 to the first reduction gear 3, and a second reduction gear to which power is transmitted from the input shaft 2. 5, a transmission shaft 6 to which power is transmitted from the second reduction gear 5, a second clutch 20 disposed on a power transmission path from the second reduction gear 5 to the transmission shaft 6, and the input shaft 2 To the first reduction gear 3 and mainly includes a third clutch 30 disposed on a power transmission path.
 但し、本実施の形態では、図2に示すように、第1減速歯車3に伝達された動力がデファレンシャル装置7を介して出力軸4に伝達されると共に、出力軸4に伝達された動力が動力伝達装置1の外部に出力され後輪102に伝達されるように構成されている。 However, in the present embodiment, as shown in FIG. 2, the power transmitted to the first reduction gear 3 is transmitted to the output shaft 4 via the differential device 7, and the power transmitted to the output shaft 4 is also transmitted. It is configured to be output to the outside of the power transmission device 1 and transmitted to the rear wheel 102.
 なお、デファレンシャル装置7は、左右の後輪102BL,102BRの回転差を吸収するための装置であり、その構成は周知(例えば、特許4024897号公報など)であるため、詳細な説明を省略する。 The differential device 7 is a device for absorbing the rotational difference between the left and right rear wheels 102BL and 102BR, and its configuration is well known (for example, Japanese Patent No. 4024897), and thus detailed description thereof is omitted.
 第1減速歯車3は、モータ121からの入力回転を減速する歯車対であり、図2に示すように、入力軸2から伝達された動力により駆動される駆動歯車3aと、その駆動歯車3aにより従動駆動される被動歯車3bとにより構成され、その減速比はDhに設定されている。 The first reduction gear 3 is a gear pair that reduces the input rotation from the motor 121. As shown in FIG. 2, the first reduction gear 3 is driven by power transmitted from the input shaft 2, and the drive gear 3a. It is comprised by the driven gear 3b driven and the reduction ratio is set to Dh.
 なお、本実施の形態では、図2に示すように、被動歯車3bとデファレンシャル装置7との間に減速歯車が構成されており、被動歯車3bからデファレンシャル装置7に動力が伝達される際にも、モータ121からの入力回転が所定の減速比で減速されるように構成されている。 In the present embodiment, as shown in FIG. 2, a reduction gear is formed between the driven gear 3b and the differential device 7, and even when power is transmitted from the driven gear 3b to the differential device 7. The input rotation from the motor 121 is decelerated at a predetermined reduction ratio.
 第1クラッチ10は、入力軸2と第1減速歯車3との間の動力の伝達および遮断を行うためのものであり、モータ121が正回転する場合に、入力軸2から第1減速歯車3に動力を伝達する一方、第1減速歯車3から入力軸2への動力の伝達を遮断すると共に、入力軸2から第1減速歯車3への動力の伝達を遮断可能に構成されている。 The first clutch 10 is for transmitting and interrupting power between the input shaft 2 and the first reduction gear 3, and when the motor 121 rotates in the forward direction, the first reduction gear 3 from the input shaft 2. The transmission of power from the first reduction gear 3 to the input shaft 2 is interrupted, and the transmission of power from the input shaft 2 to the first reduction gear 3 can be interrupted.
 ここで、図3及び図4を参照して、第1クラッチ10の詳細構成について説明する。図3は、第1クラッチ10の断面図であり、図4は、図3のIV-IV線における第1クラッチ10の断面図である。 Here, the detailed configuration of the first clutch 10 will be described with reference to FIGS. 3 is a cross-sectional view of the first clutch 10, and FIG. 4 is a cross-sectional view of the first clutch 10 taken along the line IV-IV in FIG.
 第1クラッチ10は、図3及び図4に示すように、内輪11と、その内輪11の外周を囲む外輪12と、それら内輪11と外輪12との間に配設される複数のスプラグ13と、それらスプラグ13を保持する保持器14と、荷重付与装置15とを主に備えて構成されている。 As shown in FIGS. 3 and 4, the first clutch 10 includes an inner ring 11, an outer ring 12 surrounding the outer periphery of the inner ring 11, and a plurality of sprags 13 disposed between the inner ring 11 and the outer ring 12. The retainer 14 for holding the sprags 13 and the load applying device 15 are mainly provided.
 内輪11は、動力を伝達する機能を担う部材であり、図3及び図4に示すように、断面円形状の外周面11aを備え、軸心O回りに回転可能に構成されている。また、この内輪11は、入力軸2(図2参照)と一体に形成されている。 The inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O. The inner ring 11 is formed integrally with the input shaft 2 (see FIG. 2).
 外輪12は、内輪11と共に動力を伝達する機能を担う部材であり、図3及び図4に示すように、内輪11の外周面11aに対向する断面円形状の内周面12aを備え、内輪11と同様に軸心O回りに回転可能に構成されている。また、この外輪12は、第1減速歯車3の駆動歯車3a(図2参照)と一体に形成されている。 The outer ring 12 is a member having a function of transmitting power together with the inner ring 11. As shown in FIGS. 3 and 4, the outer ring 12 includes an inner circumferential surface 12 a having a circular cross section facing the outer circumferential surface 11 a of the inner ring 11. Similarly to the above, it is configured to be rotatable around the axis O. The outer ring 12 is formed integrally with the drive gear 3a (see FIG. 2) of the first reduction gear 3.
 スプラグ13は、内輪11と外輪12とを係合する機能を担う部材であり、外周面11a及び内周面12aにそれぞれ接する係合面13a,13b(図5参照)を備え、図4に示すように、外周面11a及び内周面12aの対向間において円周方向に等間隔で複数配設されている。 The sprag 13 is a member having a function of engaging the inner ring 11 and the outer ring 12, and includes engagement surfaces 13a and 13b (see FIG. 5) that contact the outer peripheral surface 11a and the inner peripheral surface 12a, respectively, and is shown in FIG. As described above, a plurality of outer circumferential surfaces 11a and inner circumferential surfaces 12a are arranged at equal intervals in the circumferential direction between the opposing surfaces.
 また、このスプラグ13は、リボンスプリング16(図5参照)により内周面11a及び外周面12aの円周方向に付勢されている。ここで、図5を参照して、リボンスプリング16について説明する。図5は、図4のVで示す部分を拡大して示した第1クラッチ10の部分拡大断面図である。 The sprag 13 is biased in the circumferential direction of the inner peripheral surface 11a and the outer peripheral surface 12a by a ribbon spring 16 (see FIG. 5). Here, the ribbon spring 16 will be described with reference to FIG. FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner.
 リボンスプリング16は、スプラグ13に付勢力を付与して外周面11a及び内周面12aに係合面13a,13bが接するようにスプラグ13に図5の矢印S方向(以下「セルフロック方向」と称す)の回転モーメントを発生させる部材であり、図5に示すように、金属材料に波状の曲げ加工を施して形成され、その弾性を利用してスプラグ13に付勢力を付与可能に構成されている。但し、このリボンスプリング16は、コイルばねにより構成しても良い。 The ribbon spring 16 applies an urging force to the sprag 13 so that the engagement surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a. 5 is a member that generates a rotational moment, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and is configured to apply a biasing force to the sprag 13 using its elasticity. Yes. However, the ribbon spring 16 may be constituted by a coil spring.
 このリボンスプリング16によりスプラグ13に付勢力が付与されることで、外周面11a及び内周面12aに係合面13a,13bが接するようにスプラグ13がセルフロック方向へ傾動する。 By applying an urging force to the sprag 13 by the ribbon spring 16, the sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
 その結果、図5に示すように、内周面12aと係合面13bとの接点A及び外周面11aと係合面13aとの接点Bに摩擦力が発生すると共に外周面11a及び内周面12aの円周方向における各接点A,Bの位置ずれにより、内輪11及び外輪12が所定の方向へ回転する場合には、内輪11及び外輪12にスプラグ13が係合する。 As a result, as shown in FIG. 5, frictional force is generated at the contact A between the inner peripheral surface 12a and the engagement surface 13b and the contact B between the outer peripheral surface 11a and the engagement surface 13a, and the outer peripheral surface 11a and the inner peripheral surface. When the inner ring 11 and the outer ring 12 rotate in a predetermined direction due to the displacement of the respective contacts A and B in the circumferential direction of 12a, the sprags 13 engage with the inner ring 11 and the outer ring 12.
 これにより、モータ121が正回転する場合には、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転することで、内輪11及び外輪12にスプラグ13が係合して、入力軸2から第1減速歯車3に動力が伝達される。一方、モータ121が逆回転する場合には、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転することで、接点Bに作用する摩擦力によりスプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、その結果、内輪11及び外輪12へのスプラグ13の係合が解除され、入力軸2から第1減速歯車3への動力の伝達が遮断される。 Thus, when the motor 121 rotates in the forward direction, the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 as viewed from the outer ring 12 side in the direction of arrow Ri in FIG. 5 (hereinafter referred to as “lock direction”). , The sprag 13 is engaged with the inner ring 11 and the outer ring 12, and power is transmitted from the input shaft 2 to the first reduction gear 3. On the other hand, when the motor 121 rotates in the reverse direction, the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 as viewed from the outer ring 12 side, and is in the direction of the opposite arrow Ri in FIG. 5 (hereinafter referred to as “free direction”). The sprag 13 tilts in the anti-self-lock direction against the urging force of the ribbon spring 16 due to the frictional force acting on the contact point B. As a result, the sprag 13 is engaged with the inner ring 11 and the outer ring 12. Is released, and transmission of power from the input shaft 2 to the first reduction gear 3 is interrupted.
 また、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、第1減速歯車3から入力軸2に動力が伝達される。一方、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、接点Aに作用する摩擦力によりスプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、その結果、内輪11及び外輪12へのスプラグ13の係合が解除され、第1減速歯車3から入力軸2への動力の伝達が遮断される。 Further, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “locking direction”), the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the first reduction gear 3 to the input shaft 2. On the other hand, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 and rotates in the direction of the opposite arrow Ro (hereinafter referred to as “free direction”) in FIG. The sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the acting frictional force. As a result, the engagement of the sprag 13 with the inner ring 11 and the outer ring 12 is released, and the first reduction gear 3 From the power to the input shaft 2 is cut off.
 図3及び図4に戻って説明する。保持器14は、スプラグ13を外周面11a及び内周面12aの円周方向へ傾動可能に保持する部材であり、図3及び図4に示すように、保持部14aと、荷重伝達部14bとを備えて構成されている。保持部14aは、スプラグ13を保持する部位であり、図3及び図4に示すように、軸心O方向に延設され、スプラグ13の上端側を保持している。 Referring back to FIG. 3 and FIG. The retainer 14 is a member that holds the sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a, the load transmitting portion 14b, It is configured with. The holding part 14 a is a part that holds the sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the sprag 13.
 荷重伝達部14bは、荷重付与装置15から荷重が伝達される部位であり、図3に示すように、軸心O方向と交差する方向に延設されている。これにより、荷重伝達部14bを軸心O方向に延設する場合と比較して、保持器14の軸心O方向の寸法を短縮でき、第1クラッチ10の小型化を図ることができる。 The load transmitting portion 14b is a portion to which the load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG. Thereby, compared with the case where the load transmission part 14b is extended in the axial center O direction, the dimension of the axial direction O of the holder | retainer 14 can be shortened, and size reduction of the 1st clutch 10 can be achieved.
 また、この荷重伝達部14bは、図4に示すように、歯車状に形成され、後述するピニオン15bとの間に構成される歯車機構を介して荷重付与装置15から荷重が伝達されるように構成されている。これにより、荷重付与装置15から保持器14までの荷重の伝達経路中に生じるエネルギー損失を小さくでき、効率良く保持器14に荷重を伝達することができる。 Further, as shown in FIG. 4, the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
 荷重付与装置15は、リボンスプリング16の付勢力に抗してスプラグ13に荷重を付与してスプラグ13を反セルフロック方向(図5の反矢印S回転方向)へ傾動させるための装置であり、図3及び図4に示すように、アクチュエータ15aと、ピニオン15bとを備えて構成されている。 The load applying device 15 is a device for applying a load to the sprags 13 against the urging force of the ribbon spring 16 and tilting the sprags 13 in the anti-self-lock direction (the anti-arrow S rotation direction in FIG. 5). As shown in FIGS. 3 and 4, the actuator 15a and the pinion 15b are provided.
 アクチュエータ15aは、スプラグ13に付与する荷重を生み出す動力源であり、電動機(交流モータ又は直流モータ)により構成され、電源(図示せず)から供給される電力により駆動可能に構成されている。 The actuator 15a is a power source that generates a load to be applied to the sprags 13, and is configured by an electric motor (an AC motor or a DC motor), and is configured to be driven by electric power supplied from a power source (not shown).
 このように、アクチュエータ15aが電動機により構成されているので、例えば、アクチュエータ15aをシリンダやソレノイド等により構成する場合と比較して、荷重付与装置15の構造を簡素化すると共に小型化を図ることができる。 Thus, since the actuator 15a is comprised with the electric motor, compared with the case where the actuator 15a is comprised with a cylinder, a solenoid, etc., for example, the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can.
 また、荷重付与装置15の構造が複雑な場合には、荷重付与装置15が大型化し、第1クラッチ10の大型化を招くところ、荷重付与装置15の構造を簡素化すると共に小型化を図ることができれば、第1クラッチ10の小型化を図ることができる。 In addition, when the structure of the load applying device 15 is complicated, the load applying device 15 is increased in size, leading to an increase in the size of the first clutch 10. However, the structure of the load applying device 15 is simplified and downsized. If possible, the first clutch 10 can be downsized.
 ピニオン15bは、アクチュエータ15aの動力を保持器14に伝達するための部材であり、図3に示すように、保持器14の荷重伝達部14bと噛み合う歯車状に形成され、荷重伝達部14bとの間に歯車機構を構成している。 The pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them.
 このピニオン15bによりアクチュエータ15aの動力が保持器14に伝達されることで、保持器14を介してスプラグ13に荷重が付与される。このように、荷重付与装置15は、保持器14を介してスプラグ13に荷重を付与するので、複数のスプラグ13に一度に荷重を付与することができ、効率良くスプラグ13に荷重を付与することができる。 The load of the sprag 13 is applied through the retainer 14 by transmitting the power of the actuator 15a to the retainer 14 by the pinion 15b. Thus, since the load application device 15 applies a load to the sprags 13 via the retainer 14, it is possible to apply a load to the plurality of sprags 13 at a time and efficiently apply a load to the sprags 13. Can do.
 上述したように構成される荷重付与装置15によれば、リボンスプリング16の付勢力に抗してスプラグ13に荷重を付与することで、スプラグ13を反セルフロック方向へ傾動させて、内輪11及び外輪12へのスプラグ13の係合を強制的に解除することができる。 According to the load applying device 15 configured as described above, by applying a load to the sprag 13 against the urging force of the ribbon spring 16, the sprag 13 is tilted in the anti-self-lock direction, and the inner ring 11 and The engagement of the sprag 13 with the outer ring 12 can be forcibly released.
 これにより、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみてロック方向(図5の矢印Ri方向)へ回転する場合、および、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみてロック方向(図5の矢印Ro方向)へ回転する場合でも、荷重付与装置15により内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、入力軸2から第1減速歯車3への動力の伝達および第1減速歯車3から入力軸2への動力の伝達を遮断することができる。 Thereby, when the inner ring 11 rotates relative to the sprag 13 in the locking direction (in the direction of the arrow Ri in FIG. 5) when viewed from the outer ring 12 side relative to the outer ring 12, Even when rotating relative to the inner ring 11 and rotating in the locking direction (in the direction of arrow Ro in FIG. 5) when viewed from the inner ring 11 side, the load application device 15 forcibly releases the engagement of the sprags 13 with the inner ring 11 and the outer ring 12. Thus, transmission of power from the input shaft 2 to the first reduction gear 3 and transmission of power from the first reduction gear 3 to the input shaft 2 can be interrupted.
 図2に戻って説明する。第2減速歯車5は、モータ121からの入力回転を第1減速歯車3とは異なる減速比で減速する歯車対であり、図2に示すように、入力軸2から伝達された動力により駆動される駆動歯車5aと、その駆動歯車5aにより従動駆動される被動歯車5bとにより構成され、その減速比はDlに設定されている。 Referring back to FIG. The second reduction gear 5 is a gear pair that reduces the input rotation from the motor 121 at a reduction ratio different from that of the first reduction gear 3, and is driven by the power transmitted from the input shaft 2 as shown in FIG. The driving gear 5a and the driven gear 5b driven by the driving gear 5a, and the reduction ratio thereof is set to Dl.
 ここで、第1減速歯車3の減速比Dhは、第2減速歯車5の減速比Dlよりも小さく設定されており(Dh<Dl)、モータ121からの入力回転を第1減速歯車3により減速する場合には、第2減速歯車5により減速する場合よりも小さい減速比で減速するように構成されている。 Here, the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh <Dl), and the input rotation from the motor 121 is reduced by the first reduction gear 3. In this case, the second reduction gear 5 is configured to decelerate at a reduction ratio smaller than that in the case where the second reduction gear 5 decelerates.
 伝達軸6は、第2減速歯車5に伝達された動力を出力軸4に伝達するものであり、図2に示すように、第1減速歯車3の被動歯車3bと一体に形成され、被動歯車3bからデファレンシャル装置7を介して出力軸4に動力を伝達するように構成されている。 The transmission shaft 6 transmits the power transmitted to the second reduction gear 5 to the output shaft 4, and is formed integrally with the driven gear 3b of the first reduction gear 3, as shown in FIG. Power is transmitted from 3b to the output shaft 4 via the differential device 7.
 第2クラッチ20は、第2減速歯車5と伝達軸6との間の動力の伝達および遮断を行うための装置であり、モータ121が正回転する場合に、動力を第2減速歯車5から伝達軸6に伝達する一方、伝達軸6から第2減速歯車5への動力の伝達を遮断すると共に、モータ121が逆回転する場合に、伝達軸6から第2減速歯車5への動力の伝達を遮断可能に構成されている。なお、この第2クラッチ20は、第1クラッチ10と同様に構成されているため、詳細な説明を省略する。 The second clutch 20 is a device for transmitting and interrupting power between the second reduction gear 5 and the transmission shaft 6, and transmits power from the second reduction gear 5 when the motor 121 rotates forward. While transmitting to the shaft 6, the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted, and when the motor 121 rotates in the reverse direction, transmission of power from the transmission shaft 6 to the second reduction gear 5 is performed. It is configured to be shut off. Since the second clutch 20 is configured in the same manner as the first clutch 10, detailed description thereof is omitted.
 但し、第1クラッチ10では、内輪11が入力軸2と一体に形成されると共に外輪12が第1減速歯車3の駆動歯車3aと一体に形成されているのに対し、第2クラッチ20では、内輪11が伝達軸6と一体に形成されると共に外輪12が第2減速歯車5の被動歯車5bと一体に形成されている。 However, in the first clutch 10, the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the second clutch 20, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
 これにより、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、第2減速歯車5から伝達軸6に動力が伝達される。一方、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、第2減速歯車5から伝達軸6への動力の伝達が遮断される。 As a result, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro (hereinafter referred to as “lock direction”) in FIG. The sprag 13 is engaged with the outer ring 12, and power is transmitted from the second reduction gear 5 to the transmission shaft 6. On the other hand, when the outer ring 12 rotates relative to the sprag 13 in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”) as viewed from the inner ring 11 side relative to the inner ring 11, the inner ring 11 and The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 また、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、伝達軸6から第2減速歯車5に動力が伝達される。一方、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、伝達軸6から第2減速歯車5への動力の伝達が遮断される。 When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5. On the other hand, when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG. The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 これに対し、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみてロック方向へ回転する場合、および、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、ロック方向へ回転する場合でも、荷重付与装置15により内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、第2減速歯車5から伝達軸6への動力の伝達および伝達軸6から第2減速歯車5への動力の伝達を遮断することができる。 In contrast, when the outer ring 12 rotates relative to the sprag 13 in the locking direction as viewed from the inner ring 11 side relative to the inner ring 11, and when the inner ring 11 rotates relative to the outer ring 12 relative to the sprag 13. Even when rotating in the locking direction when viewed from the outer ring 12 side, the load applying device 15 forcibly releases the engagement of the sprags 13 to the inner ring 11 and the outer ring 12, so that the second reduction gear 5 to the transmission shaft 6. And transmission of power from the transmission shaft 6 to the second reduction gear 5 can be cut off.
 第3クラッチ30は、入力軸2と第1減速歯車3との間の動力の伝達および遮断を行うためのものであり、出力軸4が正回転するように出力軸4に逆動力が入力される場合に、逆動力を第1減速歯車3から入力軸2に伝達すると共に、モータ121が逆回転する場合に、入力軸2から第1減速歯車3に動力を伝達可能に構成されている。なお、この第3クラッチ30は、荷重付与装置15が省略されている以外は第1クラッチ10と同様に構成されているため、詳細な説明を省略する。 The third clutch 30 is for transmitting and blocking power between the input shaft 2 and the first reduction gear 3, and reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward. In this case, the reverse power is transmitted from the first reduction gear 3 to the input shaft 2, and the power can be transmitted from the input shaft 2 to the first reduction gear 3 when the motor 121 rotates in the reverse direction. Since the third clutch 30 is configured in the same manner as the first clutch 10 except that the load applying device 15 is omitted, detailed description thereof is omitted.
 よって、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、入力軸2から第1減速歯車3に動力が伝達される。一方、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、入力軸2から第1減速歯車3への動力の伝達が遮断される。 Therefore, when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the input shaft 2 to the first reduction gear 3. On the other hand, when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG. The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the input shaft 2 to the first reduction gear 3 is interrupted.
 また、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、第1減速歯車3から入力軸2に動力が伝達される。一方、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、第1減速歯車3から入力軸2への動力の伝達が遮断される。 Further, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “locking direction”), the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the first reduction gear 3 to the input shaft 2. On the other hand, when the outer ring 12 rotates relative to the sprag 13 in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”) as viewed from the inner ring 11 side relative to the inner ring 11, the inner ring 11 and The sprag 13 is disengaged from the outer ring 12 and the transmission of power from the first reduction gear 3 to the input shaft 2 is interrupted.
 次いで、図6から図9を参照して、上述したように構成される動力伝達装置1の作動状態について説明する。図6から図9は、動力伝達装置1の内部構造を模式的に示した模式図である。なお、図6から図9において、(a)は、内部構造の側面視を模式的に示しており、(b)は、内部構造の正面視を模式的に示している。 Next, the operation state of the power transmission device 1 configured as described above will be described with reference to FIGS. 6 to 9 are schematic views schematically showing the internal structure of the power transmission device 1. 6 to 9, (a) schematically shows a side view of the internal structure, and (b) schematically shows a front view of the internal structure.
 ここで、図6から図9では、理解を容易とするために、動力の伝達経路を矢印Pで示している。また、図6(b)、図7(b)、図8(b)及び図9(b)では、第1クラッチ10、第2クラッチ20及び第3クラッチ30の各内輪11及び外輪12の回転方向を矢印R,Fで示しており、矢印Rは回転方向がスプラグ13に対してロック方向であることを、矢印Fは回転方向がスプラグ13に対してフリー方向であることを、それぞれ表すと共に、矢印R,Fの大きさは回転速度の大きさを表している。 Here, in FIGS. 6 to 9, the power transmission path is indicated by an arrow P for easy understanding. Further, in FIGS. 6B, 7B, 8B, and 9B, the rotation of the inner ring 11 and the outer ring 12 of the first clutch 10, the second clutch 20, and the third clutch 30 is performed. The directions are indicated by arrows R and F. The arrow R indicates that the rotation direction is the lock direction with respect to the sprag 13, and the arrow F indicates that the rotation direction is the free direction with respect to the sprag 13. The sizes of the arrows R and F represent the rotational speed.
 まず、図6及び図7を参照して、車両100の前進時における動力伝達装置1の作動状態について説明する。図6に示すように、車両100の前進時には、モータ121が正回転することで、第1クラッチ10の内輪11がロック方向へ回転すると共に第3クラッチ30の内輪11がフリー方向へ回転する。 First, the operating state of the power transmission device 1 when the vehicle 100 moves forward will be described with reference to FIGS. As shown in FIG. 6, when the vehicle 100 moves forward, the motor 121 rotates in the forward direction, so that the inner ring 11 of the first clutch 10 rotates in the locking direction and the inner ring 11 of the third clutch 30 rotates in the free direction.
 ここで、第1クラッチ10の荷重付与装置15を作動させた場合には、内輪11及び外輪12へのスプラグ13の係合が解除されることで、内輪11がロック方向へ回転している状態にあっても、入力軸2から第1減速歯車3への動力の伝達が遮断される。 Here, when the load application device 15 of the first clutch 10 is operated, the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 is released, so that the inner ring 11 is rotating in the locking direction. Even in this case, transmission of power from the input shaft 2 to the first reduction gear 3 is interrupted.
 一方で、この場合には、モータ121の動力が入力軸2から第2減速歯車5に伝達されることで、第2クラッチ20の外輪12がロック方向へ回転する。その結果、第2クラッチ20により第2減速歯車5から伝達軸6に動力が伝達され、第1減速歯車3の被動歯車3bからデファレンシャル装置7を介して出力軸4に動力が伝達される。 On the other hand, in this case, the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the locking direction. As a result, power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the second clutch 20, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
 また、この場合には、被動歯車3bに伝達された回転が駆動歯車3aに伝達されることで、第1クラッチ10の外輪12がフリー方向へ回転する。ここで、内輪11及び外輪12へのスプラグ13の係合および解除は、内輪11と外輪12との回転速度差で決定されるため、この場合には、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第1クラッチ10では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がロック方向へ回転している状態と等しくなる。しかしながら、第1クラッチ10の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除した状態にあるので、第1減速歯車3から入力軸2への動力の伝達は遮断される。 In this case, the rotation transmitted to the driven gear 3b is transmitted to the drive gear 3a, whereby the outer ring 12 of the first clutch 10 rotates in the free direction. Here, since the engagement and release of the sprags 13 to and from the inner ring 11 and the outer ring 12 are determined by the difference in rotational speed between the inner ring 11 and the outer ring 12, in this case, the reduction ratio Dh of the first reduction gear 3 is The rotation speed of the inner ring 11 is faster than the rotation speed of the outer ring 12 in the first clutch 10 by the amount set to be smaller than the reduction ratio Dl of the second reduction gear 5, and the inner ring 11 relatively rotates in the locking direction. It becomes equal to the state. However, since the load applying device 15 of the first clutch 10 is operated and the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 is forcibly released, the power from the first reduction gear 3 to the input shaft 2 is reduced. Transmission is blocked.
 このように、第1クラッチ10の荷重付与装置15を作動させた場合には、モータ121からの入力回転を第2減速歯車5により減速して、第1減速歯車3よりも大きい減速比で減速することができる。 Thus, when the load applying device 15 of the first clutch 10 is operated, the input rotation from the motor 121 is decelerated by the second reduction gear 5 and decelerated at a reduction ratio larger than that of the first reduction gear 3. can do.
 これに対し、図7に示すように、第1クラッチ10の荷重付与装置15を非作動とした場合には、内輪11及び外輪12にスプラグ13が係合することで、入力軸2から第1減速歯車3に動力が伝達され、デファレンシャル装置7を介して出力軸4に動力が伝達される。 On the other hand, as shown in FIG. 7, when the load applying device 15 of the first clutch 10 is inactivated, the sprag 13 is engaged with the inner ring 11 and the outer ring 12, so that the first from the input shaft 2. Power is transmitted to the reduction gear 3, and power is transmitted to the output shaft 4 via the differential device 7.
 また、この場合には、第1減速歯車3に伝達された回転が被動歯車3bから伝達軸6に伝達されることで、第2クラッチ20の内輪11がフリー方向へ回転する。しかしながら、その回転方向はフリー方向であるため、伝達軸6から第2減速歯車5への動力の伝達は遮断される。 In this case, the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 20 rotates in the free direction. However, since the rotation direction is a free direction, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 一方で、この場合には、モータ121の動力が入力軸2から第2減速歯車5に伝達されることで、第2クラッチ20の外輪12がロック方向へ回転する。しかしながら、第1減速歯車3の減速比Dhは第2減速歯車5の減速比Dlよりも小さく設定されているので(Dh<Dl)、第2クラッチ20の外輪12がロック方向へ回転している状態にあっても、伝達軸6から第2減速歯車5への動力の伝達は遮断される。 On the other hand, in this case, the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the locking direction. However, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh <Dl), the outer ring 12 of the second clutch 20 is rotating in the locking direction. Even in the state, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 即ち、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第2クラッチ20では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がフリー方向へ回転している状態と等しくなる。よって、第2減速歯車5から伝達軸6への動力の伝達は遮断される。 That is, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 becomes faster than the rotation speed of the outer ring 12 in the second clutch 20. This is relatively equal to the state in which the inner ring 11 is rotating in the free direction. Therefore, transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 このように、第1クラッチ10の荷重付与装置15を非作動とした場合には、モータ121からの入力回転を第1減速歯車3により減速して、第2減速歯車5よりも小さい減速比で減速することができる。 As described above, when the load applying device 15 of the first clutch 10 is inactivated, the input rotation from the motor 121 is decelerated by the first reduction gear 3 and the reduction ratio is smaller than that of the second reduction gear 5. You can slow down.
 次いで、図8を参照して、車両100のコースト走行時(惰性走行時)における動力伝達装置1の作動状態について説明する。図8に示すように、車両100のコースト走行時には、出力軸4から逆動力が入力されることで、デファレンシャル装置7を介して第1減速歯車3に動力が伝達され、第1クラッチ10の外輪12がフリー方向へ回転すると共に第3クラッチ30の外輪12がロック方向へ回転する。その結果、第3クラッチ30により第1減速歯車3から入力軸2に動力が伝達される。 Next, the operating state of the power transmission device 1 when the vehicle 100 is coasting (at the time of coasting) will be described with reference to FIG. As shown in FIG. 8, when the vehicle 100 is coasting, reverse power is input from the output shaft 4, so that power is transmitted to the first reduction gear 3 via the differential device 7, and the outer wheel of the first clutch 10. 12 rotates in the free direction and the outer ring 12 of the third clutch 30 rotates in the locking direction. As a result, power is transmitted from the first reduction gear 3 to the input shaft 2 by the third clutch 30.
 一方で、この場合には、第1減速歯車3の被動歯車3bから伝達軸6に回転が伝達されることで、第2クラッチ20の内輪11がフリー方向へ回転する。しかしながら、その回転方向はフリー方向であるため、伝達軸6から第2減速歯車5への動力の伝達が遮断される。 On the other hand, in this case, rotation is transmitted from the driven gear 3b of the first reduction gear 3 to the transmission shaft 6, whereby the inner ring 11 of the second clutch 20 rotates in the free direction. However, since the rotation direction is a free direction, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 また、この場合には、入力軸2に動力が伝達されることで、第2減速歯車5に回転が伝達され、第2クラッチ20の外輪12がロック方向へ回転する。しかしながら、第1減速歯車3の減速比Dhは第2減速歯車5の減速比Dlよりも小さく設定されているので(Dh<Dl)、第2クラッチ20の外輪12がロック方向へ回転している状態にあっても、第2減速歯車5から伝達軸6への動力の伝達は遮断される。 In this case, the power is transmitted to the input shaft 2, whereby the rotation is transmitted to the second reduction gear 5, and the outer ring 12 of the second clutch 20 rotates in the locking direction. However, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5 (Dh <Dl), the outer ring 12 of the second clutch 20 is rotating in the locking direction. Even in the state, transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 即ち、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第2クラッチ20では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がフリー方向へ回転している状態と等しくなる。よって、第2減速歯車5から伝達軸6への動力の伝達は遮断される。 That is, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 becomes faster than the rotation speed of the outer ring 12 in the second clutch 20. This is relatively equal to the state in which the inner ring 11 is rotating in the free direction. Therefore, transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 このように、車両100のコースト走行時には、出力軸4から入力される動力によりモータ121を発電機として機能させて、モータ121により発電した電力を電源に回生することができる。これにより、省エネルギー化を図ることができる。 Thus, during coasting of the vehicle 100, the motor 121 can function as a generator by the power input from the output shaft 4, and the power generated by the motor 121 can be regenerated as a power source. Thereby, energy saving can be achieved.
 次いで、図9を参照して、車両100の後進時における動力伝達装置1の作動状態について説明する。図9に示すように、車両100の後進時には、モータ121が逆回転することで、第1クラッチ10の内輪11がフリー方向へ回転すると共に第3クラッチ30の内輪11がロック方向へ回転する。その結果、第3クラッチ30により入力軸2から第1減速歯車3に動力が伝達され、デファレンシャル装置7から出力軸4に動力が伝達される。 Next, the operating state of the power transmission device 1 when the vehicle 100 moves backward will be described with reference to FIG. As shown in FIG. 9, when the vehicle 100 moves backward, the motor 121 rotates in the reverse direction, whereby the inner ring 11 of the first clutch 10 rotates in the free direction and the inner ring 11 of the third clutch 30 rotates in the locking direction. As a result, power is transmitted from the input shaft 2 to the first reduction gear 3 by the third clutch 30, and power is transmitted from the differential device 7 to the output shaft 4.
 一方で、この場合には、モータ121の回転が入力軸2から第2減速歯車5に伝達されることで、第2クラッチ20の外輪12がフリー方向へ回転する。また、この場合には、第1減速歯車3に伝達された回転が被動歯車3bから伝達軸6に伝達されることで、第2クラッチ20の内輪11がロック方向へ回転する。この場合には、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第2クラッチ20では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がロック方向へ回転している状態と等しくなる。よって、第2クラッチ20の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、伝達軸6から第2減速歯車5への動力の伝達を遮断することができる。 On the other hand, in this case, the rotation of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 20 rotates in the free direction. In this case, the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 20 rotates in the locking direction. In this case, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the second clutch 20. And the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction. Therefore, by transmitting the load applying device 15 of the second clutch 20 and forcibly releasing the engagement of the sprags 13 with the inner ring 11 and the outer ring 12, the transmission of power from the transmission shaft 6 to the second reduction gear 5 is achieved. Can be cut off.
 以上説明したように、動力伝達装置1によれば、車両100の前進時においてモータ121からの入力回転を第1減速歯車3及び第2減速歯車5により2段に変速できるので、低速から高速までの幅広い車速範囲においてモータ121を効率の良い回転域で使用することが可能となり、モータ121の動力を効率良く後輪102に伝達することができる。 As described above, according to the power transmission device 1, the input rotation from the motor 121 can be shifted in two stages by the first reduction gear 3 and the second reduction gear 5 when the vehicle 100 moves forward. The motor 121 can be used in an efficient rotation range in a wide vehicle speed range, and the power of the motor 121 can be transmitted to the rear wheel 102 efficiently.
 また、幅広い車速範囲においてモータ121を効率の良い回転域で使用することが可能となれば、高出力のモータを必要とせず、その分、モータの高出力化に伴う装置の大型化を回避して、小型化を図ることができる。 Further, if the motor 121 can be used in an efficient rotation range in a wide range of vehicle speeds, a high-output motor is not required, and accordingly, an increase in the size of the apparatus accompanying the increase in the motor output is avoided. Thus, the size can be reduced.
 また、従来のように多板クラッチを断続させて入力回転を変速する構成と比較して、多板クラッチを断続させるための油圧システムを必要とせず、構造を簡素化すると共に小型化を図ることができる。更に、多板クラッチを断続させて入力回転を変速する構成の場合には、多板クラッチの接続時に熱エネルギーが放出され、エネルギー損失が生じるところ、多板クラッチを不要として、エネルギー損失を防止することができる。 Further, compared with the conventional configuration in which the multi-plate clutch is intermittently engaged and the input rotation is changed, a hydraulic system for intermittently engaging the multi-plate clutch is not required, and the structure is simplified and the size is reduced. Can do. Furthermore, in the case of a configuration in which the multi-plate clutch is intermittently connected to change the input rotation, heat energy is released when the multi-plate clutch is connected, resulting in energy loss. The multi-plate clutch is not required and energy loss is prevented. be able to.
 また、第1クラッチ10、第2クラッチ20及び第3クラッチ30は、スプラグ13の傾動により動力の伝達および遮断の切り替えを行うので、スプラグ13の移動により切り替えを行う構成と比較して、スプラグ13の動作量を小さくできる分、切り替えに要する時間を短縮でき、切り替えを素早く行うことができる。更に、切り替えを素早く行うことができれば、動力の伝達が遮断された状態から伝達されるまでの間に内輪11と外輪12とが空転することもなく、動力伝達時の衝撃を防止することができる。 Further, since the first clutch 10, the second clutch 20, and the third clutch 30 perform switching of transmission and cutoff of power by tilting the sprag 13, the sprag 13 is compared with a configuration in which switching is performed by movement of the sprag 13. Since the amount of movement can be reduced, the time required for switching can be shortened, and switching can be performed quickly. Furthermore, if the switching can be performed quickly, the inner ring 11 and the outer ring 12 do not run idle until the transmission of power is interrupted, so that an impact during power transmission can be prevented. .
 また、第2クラッチ20は、モータ121が正回転する場合に、伝達軸6から第2減速歯車5への動力の伝達を遮断するように構成されると共に、第3クラッチ30は、入力軸2から第1減速歯車3までの動力の伝達経路上に配設されているので、モータ121が正回転している状態において、荷重付与装置15に電力を供給する電気回路に異常(断線またはショートなど)が生じ、第1クラッチ10及び第2クラッチ20の荷重付与装置15が作動不能になったとしても、入力軸2から第1減速歯車3への動力の伝達と伝達軸6から第2減速歯車5への動力の伝達とが同時に行われることなく、第1減速歯車3と第2減速歯車5との二重噛み合いを防止することができる。 The second clutch 20 is configured to interrupt transmission of power from the transmission shaft 6 to the second reduction gear 5 when the motor 121 rotates in the forward direction, and the third clutch 30 includes the input shaft 2. Is disposed on the power transmission path from the first reduction gear 3 to the first reduction gear 3, so that the electric circuit for supplying electric power to the load applying device 15 is abnormal (disconnected or shorted, etc.) while the motor 121 is rotating forward. ) And the load application device 15 of the first clutch 10 and the second clutch 20 becomes inoperable, the transmission of power from the input shaft 2 to the first reduction gear 3 and the transmission shaft 6 to the second reduction gear. Thus, it is possible to prevent double meshing between the first reduction gear 3 and the second reduction gear 5 without transmitting power to the motor 5 at the same time.
 また、動力伝達装置1によれば、第1クラッチ10の荷重付与装置15の作動および非作動を切り替えることで、複雑な制御を必要とせずに入力回転を変速できる。よって、従来のように2つの多板クラッチを断続させて入力回転を変速する構成と比較して、動力の伝達に途切れのないスムーズな変速を実現できると共に、第1減速歯車3及び第2減速歯車5の二重噛み合いも防止することができる。 Moreover, according to the power transmission device 1, the input rotation can be shifted without requiring complicated control by switching between the operation and non-operation of the load applying device 15 of the first clutch 10. Therefore, as compared with the conventional configuration in which two multi-plate clutches are intermittently engaged and the input rotation is shifted, a smooth shift without interruption of power transmission can be realized, and the first reduction gear 3 and the second reduction gear can be realized. Double engagement of the gear 5 can also be prevented.
 また、動力伝達装置1によれば、出力軸4が正回転するように出力軸4に逆動力が入力される場合に、逆動力を第1減速歯車3から入力軸2に伝達する第3クラッチ30を備えているので、第1クラッチ10の荷重付与装置15の作動および非作動を切り替えなくとも、モータ121の動力を出力軸4に伝達する動力伝達状態と、出力軸4に入力される逆動力をモータ121に伝達する動力伝達状態とを切り替えることができる。よって、第1クラッチ10の荷重付与装置15を切り替える制御を不要にできると共に、動力伝達状態切り替え時のショックを防止することができる。 Further, according to the power transmission device 1, the third clutch that transmits the reverse power from the first reduction gear 3 to the input shaft 2 when reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward. 30, the power transmission state in which the power of the motor 121 is transmitted to the output shaft 4 and the reverse input to the output shaft 4 without switching the operation and non-operation of the load applying device 15 of the first clutch 10. The power transmission state in which power is transmitted to the motor 121 can be switched. Therefore, control for switching the load applying device 15 of the first clutch 10 can be made unnecessary, and a shock at the time of switching the power transmission state can be prevented.
 更に、出力軸4が逆回転するように出力軸4に逆動力が入力される場合に、第1減速歯車3と第2減速歯車5とを二重噛み合いさせることができる。よって、例えば、車両100が登坂停止している場合に、サイドブレーキを作動させたり必要な駆動力が得られるようにモータ121を制御しなくとも、車両100の後退を防止することができる。また、車両100が登坂停止した状態から前進する場合には、モータ121を駆動するのみで発進することができる。 Furthermore, when reverse power is input to the output shaft 4 so that the output shaft 4 rotates in the reverse direction, the first reduction gear 3 and the second reduction gear 5 can be double-engaged. Therefore, for example, when the vehicle 100 is stopped uphill, the vehicle 100 can be prevented from retreating without operating the side brake or controlling the motor 121 so as to obtain a necessary driving force. In addition, when the vehicle 100 moves forward from the state where the climbing is stopped, the vehicle 100 can start by only driving the motor 121.
 次いで、図10を参照して、第2実施の形態における動力伝達装置201ついて説明する。図10は、第2実施の形態における動力伝達装置201の内部構造を模式的に示した模式図である。なお、図10では、理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。以下、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。 Next, the power transmission device 201 according to the second embodiment will be described with reference to FIG. FIG. 10 is a schematic diagram schematically showing the internal structure of the power transmission device 201 in the second embodiment. In FIG. 10, only the configuration having the function of transmitting power is illustrated for easy understanding. Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 第2実施の形態における動力伝達装置201は、図10に示すように、入力軸2と、第1減速歯車3と、出力軸4と、第1クラッチ10と、第2減速歯車5と、伝達軸6と、第2減速歯車5から伝達軸6までの動力の伝達経路上に配設される第2クラッチ220及び第4クラッチ240とを主に備えて構成されている。 As shown in FIG. 10, the power transmission device 201 according to the second embodiment includes an input shaft 2, a first reduction gear 3, an output shaft 4, a first clutch 10, a second reduction gear 5, and transmission. The shaft 6 is mainly provided with a second clutch 220 and a fourth clutch 240 disposed on the power transmission path from the second reduction gear 5 to the transmission shaft 6.
 第2クラッチ220は、第2減速歯車5と伝達軸6との間の動力の伝達および遮断を行うためのものであり、モータ121が正回転する場合に、動力を第2減速歯車5から伝達軸6に伝達する一方、伝達軸6から第2減速歯車5への動力の伝達を遮断可能に構成されている。なお、この第2クラッチ220は、荷重付与装置15が省略されている以外は第1クラッチ10と同様に構成されているため、詳細な説明を省略する。 The second clutch 220 is for transmitting and blocking power between the second reduction gear 5 and the transmission shaft 6, and transmits power from the second reduction gear 5 when the motor 121 rotates in the forward direction. While transmitting to the shaft 6, the transmission of power from the transmission shaft 6 to the second reduction gear 5 can be cut off. Since the second clutch 220 is configured in the same manner as the first clutch 10 except that the load applying device 15 is omitted, detailed description thereof is omitted.
 但し、第1クラッチ10では、内輪11が入力軸2と一体に形成されると共に外輪12が第1減速歯車3の駆動歯車3aと一体に形成されているのに対し、第2クラッチ220では、内輪11が伝達軸6と一体に形成されると共に外輪12が第2減速歯車5の被動歯車5bと一体に形成されている。 However, in the first clutch 10, the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the second clutch 220, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
 これにより、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、第2減速歯車5から伝達軸6に動力が伝達される。一方、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、第2減速歯車5から伝達軸6への動力の伝達が遮断される。 As a result, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro (hereinafter referred to as “lock direction”) in FIG. The sprag 13 is engaged with the outer ring 12, and power is transmitted from the second reduction gear 5 to the transmission shaft 6. On the other hand, when the outer ring 12 rotates relative to the sprag 13 in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”) as viewed from the inner ring 11 side relative to the inner ring 11, the inner ring 11 and The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 また、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、伝達軸6から第2減速歯車5に動力が伝達される。一方、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、伝達軸6から第2減速歯車5への動力の伝達が遮断される。 When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5. On the other hand, when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG. The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 第4クラッチ240は、第2減速歯車5と伝達軸6との間の動力の伝達および遮断を行うための装置であり、出力軸4が正回転するように出力軸4に逆動力が入力される場合に、逆動力を伝達軸4から第2減速歯車5に伝達すると共に、モータ121が逆回転する場合に、第2減速歯車5から伝達軸6に動力を伝達可能に構成されている。なお、この第4クラッチ240は、第1クラッチ10と同様に構成されているため、詳細な説明を省略する。 The fourth clutch 240 is a device for transmitting and interrupting power between the second reduction gear 5 and the transmission shaft 6, and reverse power is input to the output shaft 4 so that the output shaft 4 rotates forward. In this case, the reverse power is transmitted from the transmission shaft 4 to the second reduction gear 5 and the power can be transmitted from the second reduction gear 5 to the transmission shaft 6 when the motor 121 rotates in the reverse direction. Since the fourth clutch 240 is configured in the same manner as the first clutch 10, detailed description thereof is omitted.
 但し、第1クラッチ10では、内輪11が入力軸2と一体に形成されると共に外輪12が第1減速歯車3の駆動歯車3aと一体に形成されているのに対し、第4クラッチ240では、内輪11が伝達軸6と一体に形成されると共に外輪12が第2減速歯車5の被動歯車5bと一体に形成されている。 However, in the first clutch 10, the inner ring 11 is formed integrally with the input shaft 2 and the outer ring 12 is formed integrally with the drive gear 3 a of the first reduction gear 3, whereas in the fourth clutch 240, The inner ring 11 is formed integrally with the transmission shaft 6 and the outer ring 12 is formed integrally with the driven gear 5 b of the second reduction gear 5.
 これにより、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、第2減速歯車5から伝達軸6に動力が伝達される。一方、外輪12がスプラグ13に対して、内輪11との相対回転で内輪11側からみて、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、第2減速歯車5から伝達軸6への動力の伝達が遮断される。 As a result, when the outer ring 12 rotates relative to the sprag 13 relative to the inner ring 11 in the direction of the arrow Ro (hereinafter referred to as “lock direction”) in FIG. The sprag 13 is engaged with the outer ring 12, and power is transmitted from the second reduction gear 5 to the transmission shaft 6. On the other hand, when the outer ring 12 rotates relative to the sprag 13 in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”) as viewed from the inner ring 11 side relative to the inner ring 11, the inner ring 11 and The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the second reduction gear 5 to the transmission shaft 6 is interrupted.
 また、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転する場合には、内輪11及び外輪12にスプラグ13が係合して、伝達軸6から第2減速歯車5に動力が伝達される。一方、内輪11がスプラグ13に対して、外輪12との相対回転で外輪12側からみて、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転する場合には、内輪11及び外輪12へのスプラグ13の係合が解除され、伝達軸6から第2減速歯車5への動力の伝達が遮断される。 When the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the arrow Ri in FIG. 5 (hereinafter referred to as “locking direction”) when viewed from the outer ring 12 side, the inner ring 11 and the outer ring 12 is engaged with the sprag 13, and power is transmitted from the transmission shaft 6 to the second reduction gear 5. On the other hand, when the inner ring 11 rotates relative to the sprag 13 relative to the outer ring 12 in the direction of the opposite arrow Ri (hereinafter referred to as “free direction”) in FIG. The engagement of the sprag 13 with the outer ring 12 is released, and the transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 これに対し、外輪12がスプラグ13に対してロック方向へ回転する場合および内輪11がスプラグ13に対してロック方向へ回転する場合でも、荷重付与装置15により内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、第2減速歯車5から伝達軸6への動力の伝達および伝達軸6から第2減速歯車5への動力の伝達を遮断することができる。 On the other hand, even when the outer ring 12 rotates in the locking direction with respect to the sprag 13 and when the inner ring 11 rotates in the locking direction with respect to the sprag 13, the sprag 13 is applied to the inner ring 11 and the outer ring 12 by the load applying device 15. By forcibly releasing the engagement, transmission of power from the second reduction gear 5 to the transmission shaft 6 and transmission of power from the transmission shaft 6 to the second reduction gear 5 can be interrupted.
 次いで、図11から図14を参照して、上述したように構成される動力伝達装置201の作動状態について説明する。図11から図14は、動力伝達装置201の内部構造を模式的に示した模式図である。なお、図11から図14において、(a)は、内部構造の側面視を模式的に示しており、(b)は、内部構造の正面視を模式的に示している。 Next, the operation state of the power transmission device 201 configured as described above will be described with reference to FIGS. 11 to 14 are schematic views schematically showing the internal structure of the power transmission device 201. 11 to 14, (a) schematically shows a side view of the internal structure, and (b) schematically shows a front view of the internal structure.
 ここで、図11から図14では、理解を容易とするために、動力の伝達経路を矢印Pで示している。また、図11(b)、図12(b)、図13(b)及び図14(b)では、第1クラッチ10、第2クラッチ220及び第4クラッチ240の各内輪11及び外輪12の回転方向を矢印R,Fで示しており、矢印Rは回転方向がスプラグ13に対してロック方向であることを、矢印Fは回転方向がスプラグ13に対してフリー方向であることを、それぞれ表すと共に、矢印R,Fの大きさは回転速度の大きさを表している。 Here, in FIG. 11 to FIG. 14, the power transmission path is indicated by an arrow P for easy understanding. Further, in FIGS. 11B, 12B, 13B, and 14B, the rotation of the inner ring 11 and the outer ring 12 of the first clutch 10, the second clutch 220, and the fourth clutch 240 is performed. The directions are indicated by arrows R and F. The arrow R indicates that the rotation direction is the lock direction with respect to the sprag 13, and the arrow F indicates that the rotation direction is the free direction with respect to the sprag 13. The sizes of the arrows R and F represent the rotational speed.
 まず、図11及び図12を参照して、車両100の前進時における動力伝達装置201の作動状態について説明する。図11に示すように、車両100の前進時には、モータ121が正回転することで、第1クラッチ10の内輪11がロック方向へ回転する。 First, the operating state of the power transmission device 201 when the vehicle 100 moves forward will be described with reference to FIGS. 11 and 12. As shown in FIG. 11, when the vehicle 100 moves forward, the motor 121 rotates in the forward direction, so that the inner ring 11 of the first clutch 10 rotates in the locking direction.
 ここで、第1クラッチ10の荷重付与装置15を作動させた場合には、内輪11及び外輪12へのスプラグ13の係合が解除されることで、内輪11がロック方向へ回転している状態にあっても、入力軸2から第1減速歯車3への動力の伝達は遮断される。 Here, when the load application device 15 of the first clutch 10 is operated, the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 is released, so that the inner ring 11 is rotating in the locking direction. Even in this case, transmission of power from the input shaft 2 to the first reduction gear 3 is cut off.
 一方で、この場合には、モータ121の動力が入力軸2から第2減速歯車5に伝達されることで、第2クラッチ220の外輪12がロック方向へ回転すると共に第4クラッチ240の外輪12がフリー方向へ回転する。その結果、第2クラッチ220により第2減速歯車5から伝達軸6に動力が伝達され、第1減速歯車3の被動歯車3bからデファレンシャル装置7を介して出力軸4に動力が伝達される。 On the other hand, in this case, the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 220 rotates in the locking direction and the outer ring 12 of the fourth clutch 240. Rotates in the free direction. As a result, power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the second clutch 220, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
 また、この場合には、被動歯車3bに伝達された回転が駆動歯車3aに伝達されることで、第1クラッチ10の外輪12がフリー方向へ回転する。ここで、内輪11及び外輪12へのスプラグ13の係合および解除は、内輪11と外輪12との回転速度差で決定されるため、この場合には、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第1クラッチ10では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がロック方向へ回転している状態と等しくなる。しかしながら、第1クラッチ10の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除した状態にあるので、第1減速歯車3から入力軸2への動力の伝達は遮断される。 In this case, the rotation transmitted to the driven gear 3b is transmitted to the drive gear 3a, whereby the outer ring 12 of the first clutch 10 rotates in the free direction. Here, since the engagement and release of the sprags 13 to and from the inner ring 11 and the outer ring 12 are determined by the difference in rotational speed between the inner ring 11 and the outer ring 12, in this case, the reduction ratio Dh of the first reduction gear 3 is The rotation speed of the inner ring 11 is faster than the rotation speed of the outer ring 12 in the first clutch 10 by the amount set to be smaller than the reduction ratio Dl of the second reduction gear 5, and the inner ring 11 relatively rotates in the locking direction. It becomes equal to the state. However, since the load applying device 15 of the first clutch 10 is operated and the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 is forcibly released, the power from the first reduction gear 3 to the input shaft 2 is reduced. Transmission is blocked.
 このように、第1クラッチ10の荷重付与装置15を作動させた場合には、モータ121からの入力回転を第2減速歯車5により減速して、第1減速歯車3よりも大きい減速比で減速することができる。 Thus, when the load applying device 15 of the first clutch 10 is operated, the input rotation from the motor 121 is decelerated by the second reduction gear 5 and decelerated at a reduction ratio larger than that of the first reduction gear 3. can do.
 これに対し、図12に示すように、第1クラッチ10の荷重付与装置15を非作動とした場合には、内輪11及び外輪12にスプラグ13が係合することで、入力軸2から第1減速歯車3に動力が伝達され、デファレンシャル装置7を介して出力軸4に動力が伝達される。 On the other hand, as shown in FIG. 12, when the load applying device 15 of the first clutch 10 is not operated, the sprag 13 is engaged with the inner ring 11 and the outer ring 12, so that the first from the input shaft 2. Power is transmitted to the reduction gear 3, and power is transmitted to the output shaft 4 via the differential device 7.
 また、この場合には、第1減速歯車3に伝達された回転が被動歯車3bから伝達軸6に伝達されることで、第2クラッチ220の内輪11がフリー方向へ回転すると共に第4クラッチ240の内輪11がロック方向へ回転する。この場合には、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第4クラッチ240では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がロック方向へ回転している状態と等しくなる。よって、第4クラッチ240の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、伝達軸6から第2減速歯車5への動力の伝達を遮断することができる。 In this case, the rotation transmitted to the first reduction gear 3 is transmitted from the driven gear 3 b to the transmission shaft 6, whereby the inner ring 11 of the second clutch 220 rotates in the free direction and the fourth clutch 240. The inner ring 11 rotates in the locking direction. In this case, since the reduction ratio Dh of the first reduction gear 3 is set to be smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the fourth clutch 240. And the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction. Therefore, by transmitting the load applying device 15 of the fourth clutch 240 and forcibly releasing the engagement of the sprags 13 with the inner ring 11 and the outer ring 12, the transmission of power from the transmission shaft 6 to the second reduction gear 5 is achieved. Can be cut off.
 また、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第2クラッチ220では内輪11の回転速度が外輪12の回転速度よりも速くなり、外輪12がロック方向へ回転している状態にあっても、相対的に内輪11がフリー方向へ回転している状態と等しくなる。よって、伝達軸6から第2減速歯車5への動力の伝達は遮断される。 Further, since the reduction ratio Dh of the first reduction gear 3 is set smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the second clutch 220. Even when the outer ring 12 is rotating in the lock direction, the inner ring 11 is relatively equal to the state rotating in the free direction. Therefore, transmission of power from the transmission shaft 6 to the second reduction gear 5 is interrupted.
 このように、第1クラッチ10の荷重付与装置15を非作動とした場合には、モータ121からの入力回転を第1減速歯車3により減速して、第2減速歯車5よりも小さい減速比で減速することができる。 As described above, when the load applying device 15 of the first clutch 10 is inactivated, the input rotation from the motor 121 is decelerated by the first reduction gear 3 and the reduction ratio is smaller than that of the second reduction gear 5. You can slow down.
 次いで、図13を参照して、車両100のコースト走行時(惰性走行時)における動力伝達装置201の作動状態について説明する。図13に示すように、車両100のコースト走行時には、出力軸4から逆動力が入力されることで、デファレンシャル装置7を介して第1減速歯車3に動力が伝達され、第1クラッチ10の外輪12がフリー方向へ回転する。 Next, the operating state of the power transmission device 201 when the vehicle 100 is coasting (at the time of coasting) will be described with reference to FIG. As shown in FIG. 13, during coasting of the vehicle 100, reverse power is input from the output shaft 4, so that power is transmitted to the first reduction gear 3 via the differential device 7, and the outer wheel of the first clutch 10. 12 rotates in the free direction.
 一方で、この場合には、第1減速歯車3の被動歯車3bから伝達軸6に動力が伝達されることで、第2クラッチ220の内輪11がフリー方向へ回転すると共に第4クラッチ240の内輪11がロック方向へ回転する。その結果、第4クラッチ240により伝達軸6から第2減速歯車5に動力が伝達され、第2減速歯車5の駆動歯車5bから入力軸2に動力が伝達される。 On the other hand, in this case, power is transmitted from the driven gear 3b of the first reduction gear 3 to the transmission shaft 6, whereby the inner ring 11 of the second clutch 220 rotates in the free direction and the inner ring of the fourth clutch 240. 11 rotates in the locking direction. As a result, power is transmitted from the transmission shaft 6 to the second reduction gear 5 by the fourth clutch 240, and power is transmitted from the drive gear 5 b of the second reduction gear 5 to the input shaft 2.
 また、この場合には、入力軸2に回転が伝達されることで、第1クラッチ10の内輪11がロック方向へ回転する。この場合には、第1減速歯車3の減速比Dhが第2減速歯車5の減速比Dlよりも小さく設定されている分、第1クラッチ10では内輪11の回転速度が外輪12の回転速度よりも速くなり、相対的に内輪11がロック方向へ回転している状態と等しくなる。よって、第1クラッチ10の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除することで、入力軸2から第1減速歯車3への動力の伝達を遮断することができる。 Further, in this case, the rotation is transmitted to the input shaft 2 so that the inner ring 11 of the first clutch 10 rotates in the locking direction. In this case, since the reduction ratio Dh of the first reduction gear 3 is set to be smaller than the reduction ratio Dl of the second reduction gear 5, the rotation speed of the inner ring 11 is higher than the rotation speed of the outer ring 12 in the first clutch 10. And the speed is relatively equal to the state in which the inner ring 11 is rotating in the locking direction. Therefore, by operating the load applying device 15 of the first clutch 10 and forcibly releasing the engagement of the sprags 13 with the inner ring 11 and the outer ring 12, power is transmitted from the input shaft 2 to the first reduction gear 3. Can be cut off.
 このように、車両100のコースト走行時には、出力軸4から入力される動力によりモータ121を発電機として機能させて、モータ121により発電した電力を電源に回生することができる。これにより、省エネルギー化を図ることができる。 Thus, during coasting of the vehicle 100, the motor 121 can function as a generator by the power input from the output shaft 4, and the power generated by the motor 121 can be regenerated as a power source. Thereby, energy saving can be achieved.
 次いで、図14を参照して、車両100の後進時における動力伝達装置201の作動状態について説明する。図14に示すように、車両100の後進時には、モータ121が逆回転することで、第1クラッチ10の内輪11がフリー方向へ回転する。 Next, the operating state of the power transmission device 201 when the vehicle 100 moves backward will be described with reference to FIG. As shown in FIG. 14, when the vehicle 100 moves backward, the motor 121 rotates in the reverse direction, so that the inner ring 11 of the first clutch 10 rotates in the free direction.
 一方で、この場合には、モータ121の動力が入力軸2から第2減速歯車5に伝達されることで、第2クラッチ220の外輪12がフリー方向へ回転すると共に第4クラッチ240の外輪12がロック方向へ回転する。その結果、第4クラッチ240により第2減速歯車5から伝達軸6に動力が伝達され、第1減速歯車3の被動歯車3bからデファレンシャル装置7を介して出力軸4に動力が伝達される。 On the other hand, in this case, the power of the motor 121 is transmitted from the input shaft 2 to the second reduction gear 5, whereby the outer ring 12 of the second clutch 220 rotates in the free direction and the outer ring 12 of the fourth clutch 240. Rotates in the locking direction. As a result, power is transmitted from the second reduction gear 5 to the transmission shaft 6 by the fourth clutch 240, and power is transmitted from the driven gear 3 b of the first reduction gear 3 to the output shaft 4 via the differential device 7.
 また、この場合には、被動歯車3bに伝達された回転が駆動歯車3aに伝達されることで、第1クラッチ10の外輪12がフリー方向へ回転する。しかしながら、その回転方向はフリー方向であるため、第1減速歯車3から入力軸2への動力の伝達は遮断される。 In this case, the rotation transmitted to the driven gear 3b is transmitted to the drive gear 3a, whereby the outer ring 12 of the first clutch 10 rotates in the free direction. However, since the rotation direction is a free direction, transmission of power from the first reduction gear 3 to the input shaft 2 is interrupted.
 以上説明したように、本実施の形態における動力伝達装置201によれば、第1実施の形態における動力伝達装置1と同様に、モータ121の動力を効率良く後輪102に伝達できると共に小型化を図ることができる。 As described above, according to the power transmission device 201 in the present embodiment, as with the power transmission device 1 in the first embodiment, the power of the motor 121 can be efficiently transmitted to the rear wheel 102 and the size can be reduced. Can be planned.
 また、動力伝達装置201によれば、モータ121と直列に配置される入力軸2上の構成を少なくすることで、スペース効率の良いレイアウトとして、小型化を図ることができる。 Further, according to the power transmission device 201, by reducing the configuration on the input shaft 2 arranged in series with the motor 121, it is possible to reduce the size as a space-efficient layout.
 また、動力伝達装置201によれば、モータ121が逆回転する場合および出力軸4が正回転するように出力軸4に逆動力が入力される場合に、第1減速歯車3よりも減速比の大きい第2減速歯車5により動力および逆動力を伝達することができる。よって、モータ121が逆回転する場合および出力軸4が正回転するように出力軸3に逆動力が入力される場合に、第1減速歯車3よりも減速比の大きい第2減速歯車5により動力および逆動力を伝達することができるので、より大きい駆動力を得ることができる。また、モータ121を発電機としてエネルギー回生する場合には、効率良くエネルギーを回生することができる。 Further, according to the power transmission device 201, when the motor 121 rotates in the reverse direction and when reverse power is input to the output shaft 4 so that the output shaft 4 rotates in the forward direction, the reduction ratio is higher than that of the first reduction gear 3. Power and reverse power can be transmitted by the large second reduction gear 5. Therefore, when the motor 121 rotates in the reverse direction and when reverse power is input to the output shaft 3 so that the output shaft 4 rotates in the forward direction, the power is driven by the second reduction gear 5 having a larger reduction ratio than the first reduction gear 3. Since the reverse power can be transmitted, a larger driving force can be obtained. Further, when energy regeneration is performed using the motor 121 as a generator, energy can be efficiently regenerated.
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
 上記実施の形態では、動力伝達装置1が車両100のリヤユニット120に組み込まれる場合を説明したが、必ずしもこれに限られるものではなく、例えば、他の車両(機関車、旅客車、貨物車および特殊車など)の走行装置、作業装置および工作機械などの動力伝達装置に組み込むことは当然可能である。 In the above embodiment, the case where the power transmission device 1 is incorporated in the rear unit 120 of the vehicle 100 has been described. However, the present invention is not necessarily limited to this. For example, other vehicles (locomotives, passenger cars, freight cars, Naturally, it can be incorporated into a power transmission device such as a traveling device, a working device, and a machine tool of a special vehicle.
 上記実施の形態では、荷重付与装置15(アクチュエータ15a)が電動機(交流電動機または直流電動機)により構成される場合を説明したが、必ずしもこれに限られるものではなく、他の動力源を採用することは当然可能である。他の動力源としては、例えば、直流電動機、油圧モータ、空気圧シリンダ、油圧シリンダ、交流ソレノイド及び直流ソレノイド等が例示される。 In the above-described embodiment, the case where the load applying device 15 (actuator 15a) is configured by an electric motor (an AC motor or a DC motor) has been described. Is of course possible. Examples of other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
 ここで、アクチュエータ15aをソレノイドにより構成する場合には、歯車機構などによりスプラグ13に荷重を付与する場合に限られず、例えば、電磁力を利用してスプラグ13に荷重を付与するように構成しても良い。 Here, when the actuator 15a is configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like. For example, the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
 上記第1実施の形態では説明を省略したが、車両100の前進時において第1クラッチ10の荷重付与装置15を非作動とした場合に、第2クラッチ20の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除しても良い。 Although the description is omitted in the first embodiment, when the load applying device 15 of the first clutch 10 is deactivated when the vehicle 100 moves forward, the load applying device 15 of the second clutch 20 is operated to operate the inner ring. 11 and the engagement of the sprags 13 with the outer ring 12 may be forcibly released.
 同様に、車両100のコースト走行時に、第1クラッチ10及び第2クラッチ20の荷重付与装置15を作動させて各内輪11及び外輪12へのスプラグ13の係合を強制的に解除しても良く、また、車両100の後進時に、第1クラッチ10の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除しても良い。 Similarly, when the vehicle 100 is traveling on the coast, the load applying device 15 of the first clutch 10 and the second clutch 20 may be operated to forcibly disengage the sprags 13 from the inner rings 11 and the outer rings 12. In addition, when the vehicle 100 moves backward, the load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the sprags 13 with the inner ring 11 and the outer ring 12.
 上記第2実施の形態では説明を省略したが、車両100の前進時において第1クラッチ10の荷重付与装置15を非作動とした場合に、第4クラッチ240の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除しても良い。 Although description is omitted in the second embodiment, when the load application device 15 of the first clutch 10 is deactivated when the vehicle 100 moves forward, the load application device 15 of the fourth clutch 240 is operated to operate the inner ring. 11 and the engagement of the sprags 13 with the outer ring 12 may be forcibly released.
 同様に、車両100のコースト走行時および後進時に、第1クラッチ10の荷重付与装置15を作動させて内輪11及び外輪12へのスプラグ13の係合を強制的に解除しても良い。 Similarly, the engagement of the sprags 13 with the inner ring 11 and the outer ring 12 may be forcibly released by operating the load applying device 15 of the first clutch 10 during coasting of the vehicle 100 and during reverse travel.
1       動力伝達装置
2       入力軸
3       第1減速歯車
4       出力軸
5       第2減速歯車
6       伝達軸
10      第1クラッチ
11      内輪
11a     外周面
12      外輪
12a     内周面
13      スプラグ
13a,13b 係合面
14      保持器
15      荷重付与装置
16      リボンスプリング(付勢部材)
20,220  第2クラッチ
30      第3クラッチ
121     モータ
240     第4クラッチ
A,B    接点
O      軸心
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Input shaft 3 1st reduction gear 4 Output shaft 5 2nd reduction gear 6 Transmission shaft 10 1st clutch 11 Inner ring 11a Outer surface 12 Outer ring 12a Inner surface 13 Sprags 13a, 13b Engagement surface 14 Cage 15 Load applying device 16 Ribbon spring (biasing member)
20, 220 Second clutch 30 Third clutch 121 Motor 240 Fourth clutch A, B Contact O Axle

Claims (6)

  1.  モータの動力が入力される入力軸と、その入力軸から前記動力が伝達されると共に前記モータからの入力回転を減速する第1減速歯車と、その第1減速歯車から前記動力が伝達される出力軸とを備えた動力伝達装置において、
     前記入力軸から前記第1減速歯車までの前記動力の伝達経路上に配設され、前記モータが正回転する場合に、前記動力を前記入力軸から前記第1減速歯車に伝達する一方、前記第1減速歯車から前記入力軸への前記動力の伝達を遮断すると共に、前記入力軸から前記第1減速歯車への前記動力の伝達を遮断可能に構成される第1クラッチと、
     前記入力軸から前記動力が伝達されると共に前記入力回転を前記第1減速歯車の減速比よりも大きい減速比で減速する第2減速歯車と、
     その第2減速歯車から前記動力が伝達されると共に前記動力を前記出力軸に伝達する伝達軸と、
     前記第2減速歯車から前記伝達軸までの前記動力の伝達経路上に配設され、前記モータが正回転する場合に、前記動力を前記第2減速歯車から前記伝達軸に伝達する一方、前記伝達軸から第2減速歯車への前記動力の伝達を遮断する第2クラッチとを備え、
     前記第1クラッチは、
     断面円形状の外周面を有し軸心回りに回転可能に構成される内輪と、
     その内輪の前記外周面に対向する断面円形状の内周面を有し前記軸心回りに回転可能に構成される外輪と、
     前記外周面および前記内周面にそれぞれ接する係合面を有し前記外周面および前記内周面の対向間において円周方向に複数配設されるスプラグと、
     そのスプラグを前記外周面および前記内周面の円周方向へ傾動可能に保持する保持器と、
     前記スプラグに付勢力を付与して前記外周面および前記内周面に前記係合面が接するように前記スプラグを前記円周方向のセルフロック方向へ傾動させる付勢部材と、
     その付勢部材の付勢力に抗して前記スプラグに荷重を付与して前記セルフロック方向とは逆方向であって前記円周方向の反セルフロック方向へ前記スプラグを傾動させる荷重付与装置とを備えた切替式クラッチとして構成されていることを特徴とする動力伝達装置。
    An input shaft to which power of the motor is input, a first reduction gear that transmits the power from the input shaft and decelerates input rotation from the motor, and an output to which the power is transmitted from the first reduction gear In a power transmission device including a shaft,
    The power is disposed on the power transmission path from the input shaft to the first reduction gear, and transmits the power from the input shaft to the first reduction gear when the motor rotates forward. A first clutch configured to block transmission of the power from one reduction gear to the input shaft and to block transmission of the power from the input shaft to the first reduction gear;
    A second reduction gear that transmits the power from the input shaft and decelerates the input rotation at a reduction ratio larger than the reduction ratio of the first reduction gear;
    A transmission shaft that transmits the power from the second reduction gear and transmits the power to the output shaft;
    The power is disposed on the power transmission path from the second reduction gear to the transmission shaft, and transmits the power from the second reduction gear to the transmission shaft when the motor rotates forward. A second clutch for interrupting transmission of the power from the shaft to the second reduction gear,
    The first clutch is
    An inner ring having an outer peripheral surface with a circular cross section and configured to be rotatable about an axis;
    An outer ring having an inner peripheral surface with a circular cross section facing the outer peripheral surface of the inner ring and configured to be rotatable about the axis;
    A plurality of sprags having engagement surfaces in contact with the outer peripheral surface and the inner peripheral surface and disposed in a circumferential direction between the outer peripheral surface and the inner peripheral surface;
    A retainer that holds the sprag so as to be tiltable in a circumferential direction of the outer peripheral surface and the inner peripheral surface;
    A biasing member that applies a biasing force to the sprag and tilts the sprag in the circumferential self-locking direction so that the engagement surface is in contact with the outer peripheral surface and the inner peripheral surface;
    A load applying device that applies a load to the sprag against the urging force of the urging member and tilts the sprag in a direction opposite to the self-locking direction and in the circumferential anti-locking direction. A power transmission device configured as a switchable clutch provided.
  2.  前記第1クラッチの前記荷重付与装置を作動させて、前記動力を前記第2減速歯車から前記伝達軸を介して前記出力軸に伝達する一方、前記第1クラッチの前記荷重付与装置を非作動として、前記動力を前記第1減速歯車から前記出力軸に伝達することを特徴とする請求項1記載の動力伝達装置。 The load application device of the first clutch is operated to transmit the power from the second reduction gear to the output shaft through the transmission shaft, while the load application device of the first clutch is deactivated. The power transmission device according to claim 1, wherein the power is transmitted from the first reduction gear to the output shaft.
  3.  前記入力軸から前記第1減速歯車までの前記動力の伝達経路上に配設され、前記出力軸が正回転するように前記出力軸に逆動力が入力される場合に、前記逆動力を前記第1減速歯車から前記入力軸に伝達する第3クラッチを備え、
     その第3クラッチは、前記動力を伝達する場合に、前記第1減速歯車から前記入力軸への前記動力の伝達を遮断するものであることを特徴とする請求項1又は2に記載の動力伝達装置。
    The reverse power is disposed on the power transmission path from the input shaft to the first reduction gear, and reverse power is input to the output shaft so that the output shaft rotates forward. A third clutch for transmitting from one reduction gear to the input shaft;
    3. The power transmission according to claim 1, wherein the third clutch interrupts transmission of the power from the first reduction gear to the input shaft when transmitting the power. 4. apparatus.
  4.  前記第3クラッチは、前記モータが逆回転する場合に、前記動力を前記入力軸から前記第1減速歯車に伝達するものであり、
     前記第2クラッチは、前記切替式クラッチにより構成され、前記モータが逆回転する場合に、前記伝達軸から前記第2減速歯車への前記動力の伝達を遮断可能に構成されていることを特徴とする請求項3記載の動力伝達装置。
    The third clutch transmits the power from the input shaft to the first reduction gear when the motor rotates in reverse.
    The second clutch is constituted by the switching clutch, and is configured to be capable of interrupting transmission of the power from the transmission shaft to the second reduction gear when the motor rotates in the reverse direction. The power transmission device according to claim 3.
  5.  前記出力軸が逆回転するように前記出力軸に逆動力が入力される場合に、前記第2クラッチの前記荷重付与装置を非作動とすることで、前記第3クラッチにより前記逆動力が前記第1減速歯車から前記入力軸に伝達されると同時に前記第2クラッチにより前記逆動力が前記伝達軸から前記第2減速歯車に伝達されることを特徴とする請求項4記載の動力伝達装置。 When reverse power is input to the output shaft so that the output shaft rotates in the reverse direction, the load applying device of the second clutch is deactivated so that the reverse power is generated by the third clutch. The power transmission device according to claim 4, wherein the reverse power is transmitted from the transmission shaft to the second reduction gear by the second clutch simultaneously with transmission from the one reduction gear to the input shaft.
  6.  前記第2減速歯車から前記伝達軸までの前記動力の伝達経路上に配設され、前記モータが逆回転する場合に、前記動力を前記第2減速歯車から前記伝達軸に伝達すると共に、前記出力軸が正回転するように前記出力軸に逆動力が入力される場合に、前記逆動力を前記伝達軸から前記第2減速歯車に伝達する第4クラッチを備え、
     前記第1クラッチは、前記出力軸が正回転するように前記出力軸に逆動力が入力される場合に、前記第1減速歯車から前記入力軸への動力の伝達を遮断すると共に、前記モータが逆回転する場合に、前記第1減速歯車から前記入力軸への前記動力の伝達を遮断可能に構成され、
     前記第4クラッチは、前記切替式クラッチにより構成され、前記モータが正回転する場合に、前記伝達軸から前記第2減速歯車への前記動力の伝達を遮断可能に構成されていることを特徴とする請求項1記載の動力伝達装置。
    The power is disposed on the power transmission path from the second reduction gear to the transmission shaft, and transmits the power from the second reduction gear to the transmission shaft when the motor rotates in reverse. A fourth clutch for transmitting the reverse power from the transmission shaft to the second reduction gear when reverse power is input to the output shaft so that the shaft rotates forward;
    The first clutch interrupts transmission of power from the first reduction gear to the input shaft when reverse power is input to the output shaft so that the output shaft rotates forward. In the case of reverse rotation, the transmission of the power from the first reduction gear to the input shaft is configured to be interrupted,
    The fourth clutch is constituted by the switching clutch, and is configured to be capable of interrupting transmission of the power from the transmission shaft to the second reduction gear when the motor rotates forward. The power transmission device according to claim 1.
PCT/JP2010/054559 2009-03-18 2010-03-17 Power transmission WO2010107064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504867A JP4834797B2 (en) 2009-03-18 2010-03-17 Power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009065570 2009-03-18
JP2009-065570 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010107064A1 true WO2010107064A1 (en) 2010-09-23

Family

ID=42739723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054559 WO2010107064A1 (en) 2009-03-18 2010-03-17 Power transmission

Country Status (2)

Country Link
JP (1) JP4834797B2 (en)
WO (1) WO2010107064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172796A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Driving device
CN111322364A (en) * 2020-03-03 2020-06-23 吉林大学 Automatic gear shifting system of one-way overrunning clutch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422756A (en) * 2015-11-17 2016-03-23 陈伯恒 Mechanical automatic speed-change mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022879A (en) * 2004-07-07 2006-01-26 Gkn ドライブライン トルクテクノロジー株式会社 Electric motor drive mechanism
JP2006046612A (en) * 2004-08-09 2006-02-16 Ntn Corp One-way clutch
JP2007092870A (en) * 2005-09-28 2007-04-12 Jtekt Corp One-way clutch
JP2007145088A (en) * 2005-11-24 2007-06-14 Gkn ドライブライン トルクテクノロジー株式会社 Power transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022879A (en) * 2004-07-07 2006-01-26 Gkn ドライブライン トルクテクノロジー株式会社 Electric motor drive mechanism
JP2006046612A (en) * 2004-08-09 2006-02-16 Ntn Corp One-way clutch
JP2007092870A (en) * 2005-09-28 2007-04-12 Jtekt Corp One-way clutch
JP2007145088A (en) * 2005-11-24 2007-06-14 Gkn ドライブライン トルクテクノロジー株式会社 Power transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172796A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Driving device
CN111322364A (en) * 2020-03-03 2020-06-23 吉林大学 Automatic gear shifting system of one-way overrunning clutch
CN111322364B (en) * 2020-03-03 2021-06-04 吉林大学 Automatic gear shifting system of one-way overrunning clutch

Also Published As

Publication number Publication date
JP4834797B2 (en) 2011-12-14
JPWO2010107064A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5633703B2 (en) Electric car
JP4981993B2 (en) Power transmission device
JP5876410B2 (en) Power transmission device
JP5735754B2 (en) Power transmission device
JP5750395B2 (en) Vehicle drive device
JP5465614B2 (en) VEHICLE MOTOR DRIVE DEVICE AND AUTOMOBILE
JP5841991B2 (en) Transportation drive
JP4834797B2 (en) Power transmission device
JP2010264783A (en) Power transmission device for drive motor
JP5104658B2 (en) Drive device
JP4862104B2 (en) Power transmission device
WO2015098846A1 (en) Drive device for transportation engine
JP2005098477A (en) Rotation interrupting device
JP5087572B2 (en) Power transmission device
JP2011088625A (en) Drive device for vehicle
JP5490115B2 (en) Vehicle control device
JP2010216597A (en) Power transmitting device
JP5001538B2 (en) Power distribution device
JP5481550B2 (en) Vehicle drive device
JP2012225364A (en) Transmission for electric vehicle
JP2017043235A (en) Hybrid vehicle drive device
JP2012162159A (en) Vehicle driving device
JP6025901B2 (en) Vehicle drive device
JP5927006B2 (en) Vehicle drive device
JP2011062011A (en) Electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011504867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753555

Country of ref document: EP

Kind code of ref document: A1