WO2010106622A1 - Diameter detecting device and diameter detecting method - Google Patents

Diameter detecting device and diameter detecting method Download PDF

Info

Publication number
WO2010106622A1
WO2010106622A1 PCT/JP2009/055071 JP2009055071W WO2010106622A1 WO 2010106622 A1 WO2010106622 A1 WO 2010106622A1 JP 2009055071 W JP2009055071 W JP 2009055071W WO 2010106622 A1 WO2010106622 A1 WO 2010106622A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
diameter
circular object
coin
time
Prior art date
Application number
PCT/JP2009/055071
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 中塚
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2009/055071 priority Critical patent/WO2010106622A1/en
Publication of WO2010106622A1 publication Critical patent/WO2010106622A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • G01B21/12Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters of objects while moving
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation

Definitions

  • the present invention relates to a diameter detection device and a diameter detection method for detecting the diameter of a circular object to be conveyed, and in particular, a diameter detection device and a diameter detection capable of improving the detection accuracy of the diameter of a circular object while reducing cost. Regarding the method.
  • the determination frame is, for example, a set of threshold values that define an upper limit value and a lower limit value of allowable detection values.
  • Patent Document 1 discloses a method of detecting a diameter based on how many photoelectric elements arranged in a line in a direction orthogonal to the transport direction are blocked by coins.
  • Patent Document 2 discloses a technique for detecting a diameter by analyzing an image obtained by capturing a coin with a camera.
  • Patent Document 3 discloses a technique for detecting the diameter of a coin based on detection values of a magnetic sensor in which coils are respectively arranged on an upper surface side and a lower surface side of a conveyance surface.
  • JP 58-144703 A Japanese Patent No. 3361590 Japanese Patent Laid-Open No. 61-150092
  • Such a problem is not limited to the detection of the diameter of a coin, but also occurs when detecting the diameter and radius of a circular object.
  • the present invention has been made to solve the above-described problems of the prior art, and provides a diameter detection apparatus and a diameter detection method capable of improving the accuracy of detecting the diameter of a circular object while reducing cost. For the purpose.
  • the present invention is a diameter detection device that detects the diameter of a circular object to be conveyed, and is a non-conveying direction on the conveying surface where the front or back surface of the circular object contacts.
  • Detection means for detecting the presence or absence of a circular object using a first sensor and a second sensor provided on parallel straight lines, and detecting the circular object after the first sensor detects the circular object
  • a passage time calculation for calculating a first passage time that is a time until the second object passes and a second passage time that is a time from when the second sensor detects a circular object until the second object is no longer detected.
  • the present invention is the above invention, wherein the detection means detects the presence or absence of a circular object using the first sensor and the second sensor provided on the same orthogonal axis.
  • the detection unit further uses a third sensor provided at a position moved in parallel with the transport direction from the position of the first sensor or the second sensor. And detecting the presence or absence of a circular object, and the diameter calculating means calculates the transport speed based on a detection timing shift between the third sensor and the first sensor or the second sensor. The diameter of the circular object is calculated based on the conveyance speed.
  • the present invention is the above invention, wherein the detection means detects the presence or absence of a circular object using the first sensor and the second sensor respectively provided on different orthogonal axes, and the diameter
  • the calculating means calculates the transport speed based on a detection timing shift between the first sensor and the second sensor, and then calculates the diameter of the circular object based on the transport speed. To do.
  • the diameter calculating means multiplies the first passage time and the conveyance speed to thereby multiply the first string of the circular object that passes the position of the first sensor. And calculating the second chord length of the circular object passing through the position of the second sensor by multiplying the second passage time and the transport speed, and then calculating the first chord length.
  • the diameter of the circular object is calculated based on the chord length, the second chord length, and the orthogonal distance.
  • the circular object is a coin
  • the first sensor or the second sensor of the detection means is provided at a position where the hole of the coin passes. It is characterized by that.
  • the present invention is also a diameter detection method for detecting the diameter of a circular object to be conveyed, wherein the relationship of the installation position is provided on a straight line that is not parallel to the conveyance direction on the conveyance surface that contacts the front surface or the back surface of the circular object.
  • the presence or absence of a circular object is detected by using the first sensor and the second sensor provided on a straight line that is not parallel to the conveyance direction on the conveyance surface where the front surface or the back surface of the circular object contacts.
  • the first passage time which is the time from when the first sensor detects a circular object until it stops detecting the circular object
  • the time from when the second sensor detects the circular object until it stops detecting the circular object is the time from when the second sensor detects the circular object until it stops detecting the circular object.
  • the second passing time is calculated, the orthogonal distance obtained by projecting the distance between the first sensor and the second sensor to the orthogonal axis orthogonal to the transport direction on the transport surface, the calculated first passing time, Since the diameter of the circular object is calculated based on the second passage time and the predetermined transport speed, there is an effect that the detection accuracy of the diameter of the circular object can be improved while reducing the cost. . Moreover, even when the side surface of the circular object is transported away from the reference surface, the diameter of the circular object can be calculated.
  • the side surface of the circular object is a reference surface. Even in the case of being transported away from the center, there is an effect that the diameter of the circular object can be calculated with high accuracy.
  • the presence or absence of a circular object is detected by further using a third sensor provided at a position moved in parallel with the transport direction from the position of the first sensor or the second sensor. Since the conveyance speed is calculated based on the detection timing difference between the sensor No. 1 and the first sensor or the second sensor, the diameter of the circular object is calculated based on the calculated conveyance speed. By calculating the transport speed, it is possible to calculate the diameter of the circular object with high accuracy.
  • the presence or absence of a circular object is detected using the first sensor and the second sensor provided on different orthogonal axes, and the detection timing of the first sensor and the second sensor is detected. Since the conveyance speed is calculated based on the deviation of the circular object, and the diameter of the circular object is calculated based on the calculated conveyance speed, the cost of the circular object can be calculated by calculating the latest conveyance speed while reducing the cost. There is an effect that the diameter can be calculated with high accuracy.
  • the first chord length of the circular object passing through the position of the first sensor is calculated by multiplying the first passage time and the conveyance speed, and the second passage time is calculated.
  • the circular object is calculated based on the first chord length, the second chord length and the orthogonal distance.
  • the circular object is a coin
  • the first sensor or the second sensor is provided at a position where the hole of the coin passes, so the presence or absence of the hole is detected.
  • FIG. 1 is a diagram showing an outline of a diameter calculation method according to the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the coin discriminating apparatus according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of arrangement of timing sensors.
  • FIG. 4 is a diagram illustrating a circuit example of the timing sensor unit.
  • FIG. 5 is a diagram for explaining a diameter calculation process when two timing sensors are used.
  • FIG. 6 is a diagram for explaining a diameter calculation process when three timing sensors are used.
  • FIG. 7 is a diagram illustrating a modification of the diameter calculation process.
  • FIG. 8 is a flowchart showing a processing procedure executed by the coin discriminating apparatus.
  • FIG. 1 is a diagram showing an outline of a diameter calculation method according to the present invention.
  • (A) of the figure shows the diameter detection method according to the prior art
  • (B) of the figure shows the diameter detection method according to the present invention.
  • a timing sensor that detects the arrival of the coin 100 is provided on the upstream side in the transport direction, and the timing sensor detects the coin 100 based on the timing.
  • a coin is identified by a coin identification sensor (for example, a magnetic sensor) provided on the downstream side.
  • the coin 100 is conveyed so as to be in contact with the X axis in the figure (see 100a in the figure), but actually, the coin 100 is conveyed in a state separated from the X axis by about several millimeters (millimeters). It can happen.
  • the coin identification sensor detects the diameter of the coin 100 on the assumption that the coin 100 is in contact with the X axis, there is a problem that the accuracy of the detected diameter is low.
  • the diameter of the coin is calculated based on an image captured by the image sensor, the diameter can be accurately determined even when the coin 100 is conveyed away from the X axis. Can be calculated.
  • the image sensor is expensive, there arises a problem that the cost of the apparatus itself increases.
  • the diameter detection method according to the present invention conventionally, the diameter of the coin 100 is detected with high accuracy using a timing sensor used to detect the arrival of the coin 100. Since the timing sensor is inexpensive, there is no cost problem.
  • a plurality of timing sensors (sensor A, sensor B, and sensor C) are regularly arranged and output from each sensor. , The diameter of the coin 100 is detected.
  • the sensor B and the sensor C are arranged on the same axis parallel to the Y axis, and the sensor A and the sensor B are arranged on the same axis parallel to the X axis.
  • Each sensor is a position on the X-axis side of the center of the coin 100 in the coin 100 of various denominations, and the coin 100 is separated from the X-axis. Even if it exists, it shall be provided in the position which can detect the coin 100.
  • the sensor B and the sensor C are used to detect the chord length of the coin 100 that passes therethrough, and the sensor A is used to calculate the conveyance speed v based on a shift in detection timing with the sensor B.
  • the transport speed v needs to be constant while the coin 100 passes through the installation section of each sensor (sensor A, sensor B, and sensor C), but is constant throughout the transport path. There is no need.
  • the conveyance speed v is calculated based on the outputs from the sensor A and the sensor B (see (1) in the figure). Further, the chord length M shown in the figure is calculated based on the transport speed v and the output from the sensor B, and the chord length N shown in the figure is calculated based on the transport speed v and the output from the sensor C ( (See (2) in the figure).
  • the radius r of the coin 100 is calculated based on the positional relationship of each sensor (sensor A, sensor B, and sensor C), the chord length M, and the chord length N (see (3) in the figure). Note that specific formulas and procedures for calculating the radius r will be described later.
  • an inexpensive timing sensor is provided to satisfy a predetermined arrangement condition, and the diameter of the coin 100 is calculated based on the arrangement condition and the output of each sensor. It was.
  • the diameter detection method according to the present invention it is possible to improve the accuracy of detecting the diameter of the coin 100 while reducing the cost. If the diameter detection method according to the present invention is used, the diameter of a circular object such as a medal or a circular part can be detected without being limited to the coin 100.
  • the accurate conveyance speed is detected, and the sensor A is used to detect the accurate radius r based on the detected conveyance speed.
  • the sensor A may be omitted and a fixed conveyance speed may be used. Further, the sensor A, the sensor B, and the sensor C shown in FIG.
  • FIG. 2 is a block diagram showing the configuration of the coin discriminating apparatus 10 according to the present embodiment. In the figure, only components necessary for explaining the characteristics of the coin discriminating apparatus 10 are shown, and descriptions of the transport mechanism and the like are omitted.
  • the coin discriminating apparatus 10 includes a timing sensor unit 11, a coin identification sensor unit 12, a control unit 13, and a storage unit 14.
  • the control unit 13 includes a time difference calculation unit 13a, a conveyance speed calculation unit 13b, a switching unit 13c, a passage time calculation unit 13d, a chord length calculation unit 13e, a diameter calculation unit 13f, and a determination unit 13g. It has more.
  • storage part 14 memorize
  • the timing sensor unit 11 includes the sensors A, B, and C shown in FIG. 1, and indicates whether each timing sensor has detected an object by sampling a signal from each timing sensor. It is a device that performs processing for notifying the control unit 13 of changes in signal time.
  • the senor A As the sensor A, the sensor B, and the sensor C, it is preferable to use an optical sensor, but a magnetic sensor may be used. Moreover, it is good also as mixing an optical sensor and a magnetic sensor. Note that the timing sensor unit 11 is provided upstream of the coin identification sensor unit 12 in the transport direction.
  • the coin identification sensor unit 12 has a plurality of magnetic sensors that detect information such as material and thickness from the coin 100, and is a device that performs a process of notifying the control unit 13 of a signal from each magnetic sensor.
  • the coin identification sensor unit 12 is provided on the downstream side of the timing sensor unit 11 in the transport direction.
  • FIG. 3 is a diagram illustrating an example of arrangement of timing sensors.
  • (A) in the figure shows a perspective view of the conveyance path 110
  • (B) in the figure shows a configuration example of each timing sensor.
  • the coin 100 is transported in the transport direction 31 while being pressed against the transport surface of the transport path 110 by the transport belt 120.
  • the transport belt 120 In FIG. 3A, only the lower surface of the conveyance path 110 is shown, and the description of the upper surface is omitted.
  • the conveyance path 110 has a side-by-side guide 111 and a counter-side-side guide 112 that rise at a right angle from the conveyance surface, and the coin 100 is conveyed in contact with the side-by-side guide 111. That is, the transport direction 31 is parallel to the side-shift guide 111. Note that, as described above, the coin 100 may be transported somewhat away from the one-side guide 111.
  • the sensor A and the sensor B of the timing sensor unit 11 are arranged on a shaft 32 shown in FIG.
  • the shaft 32 is an axis parallel to the transport direction 31, that is, an axis parallel to the one-side guide 111.
  • Sensor B and sensor C are arranged on shaft 33 shown in the figure.
  • the shaft 33 is an axis orthogonal to the shaft 32, that is, an axis parallel to the one-side guide 111.
  • the coin identification sensor part 12 is provided in the downstream from the position where the sensor A, the sensor B, and the sensor C are provided.
  • the coin identification sensor unit 12 is disposed so as to wrap around the conveyance path 110, and coils are provided on the lower side and the upper side of the conveyance path 110. And various information is acquired from the coin 100 conveyed.
  • each timing sensor includes, for example, a light emitting sensor 36a provided on the lower surface 34 (transport surface) of the transport path 110, and a transport path. And a light receiving sensor 36b provided on the upper surface 35 of 110.
  • the light 37 emitted from the light emitting sensor 36a is received by the light receiving sensor 36b.
  • the output of the light receiving sensor 36b changes.
  • FIG. 4 is a diagram illustrating a circuit example of the timing sensor unit 11.
  • the timing sensor A11a corresponds to the sensor A
  • the timing sensor B11b corresponds to the sensor B
  • the timing sensor C11c corresponds to the sensor C.
  • the output from the timing sensor A11a is binarized by the comparator 11d and then input to the pulse count A circuit 11h.
  • the pulse count A circuit 11h receives a sampling pulse from the measurement pulse generation circuit 11g, and obtains the presence time and non-existence time of the detected object by counting the number of pulses.
  • a pulse train having a pulse width corresponding to a transport distance of 0.05 mm or less is used. It is preferable. Since the unit of the pulse width is time and the unit of the transport distance is length, the pulse width can be obtained by dividing the desired transport distance unit (for example, 0.05 mm) by the transport speed. it can. Such a pulse train is preferably generated based on a timer for timekeeping.
  • the output from the timing sensor B11b is input to the pulse count B circuit 11i via the comparator 11e, and the output from the timing sensor C11c is input to the pulse count C circuit 11j via the comparator 11f.
  • the presence time and non-existence time of the detected object acquired by each sensor are passed to the control unit 13.
  • the control unit 13 performs a process of calculating the diameter of the coin 100 based on the signal received from the timing sensor unit 11 and denomination of the coin 100 based on the signal received from the coin identification sensor unit 12 and the calculated diameter. Or it is a process part which performs the process which discriminate
  • the time difference calculation unit 13a receives signals from the sensors A and B (see FIG. 1) from the timing sensor unit 11, and calculates a time difference between the detection timing of the coin 100 by the sensor A and the detection timing of the coin 100 by the sensor B. A processing unit that performs processing. The time difference calculation unit 13a also performs a process of passing the calculated time difference to the conveyance speed calculation unit 13b. Details of the process for calculating the time difference from the sensor signal will be described later with reference to FIG.
  • the switching unit 13 c is a processing unit that performs a process of switching between the conveyance speed received from the conveyance speed calculation unit 13 b and the standard conveyance speed 14 a stored in the storage unit 14. For example, the switching unit 13c receives a user switching instruction from an input unit (not shown), and switches between the transport speed and the standard transport speed 14a received from the transport speed calculation unit 13b according to the content of the instruction.
  • the switching unit 13c passes the switched transport speed to the chord length calculation unit 13e. Note that, when the switching unit 13c is switched to use the standard transport speed 14a, the operations of the time difference calculation unit 13a and the transport speed calculation unit 13b may be suspended.
  • the passage time calculation unit 13d receives signals from the sensors B and C (see FIG. 1) from the timing sensor unit 11, and calculates the passage time of the coin 100 detected by the sensor B and the passage time of the coin 100 detected by the sensor C. It is a processing part which performs the process to perform.
  • the passing time indicates the time from when each sensor (sensor A or sensor B) detects the coin 100 until the coin 100 is no longer detected.
  • the passage time calculation unit 13d also performs a process of passing each detected passage time to the chord length calculation unit 13e.
  • the chord length calculation unit 13e performs a process of calculating the chord length M and the chord length N illustrated in FIG. 1 based on the transport speed received from the switching calculation unit 13e and the passage times received from the passage time calculation unit 13d. Part.
  • the chord length calculation unit 13e also performs a process of passing each calculated chord length to the diameter calculation unit 13f.
  • the diameter calculation unit 13f is a processing unit that performs a process of calculating the radius r of the coin based on each string length (string length M and string length N) received from the string length calculation unit 13e and the sensor arrangement information 14b.
  • the detailed contents of the diameter calculating process performed by the diameter calculating unit 13f will be described with reference to FIGS.
  • FIG. 5 is a diagram for explaining a diameter calculation process when two timing sensors (sensor B and sensor C) are used.
  • (A) of the figure shows the positional relationship between the coin 100, the sensor B, and the sensor C
  • (B) of the figure shows the signals detected by the sensor B and the sensor C.
  • the coin 100 shall be conveyed by the conveyance direction 31 parallel to a X-axis.
  • the distance from the X axis to the sensor B is ⁇
  • the distance from the X axis to the sensor C is ⁇ .
  • ⁇ and ⁇ are included in the sensor arrangement information 14b.
  • the radius is r
  • the center point is o
  • one end of the string detected by the sensor B is m 1
  • the other end is m 2
  • one end of the string detected by the sensor C is n 1
  • the other end is and n 2.
  • the intersection of the perpendicular drawn from the center point o to the X axis and the line segment m 1 m 2 is p
  • the intersection of the line segment n 1 n 2 is q.
  • the length of the line segment m 1 p and the line segment m 2 p is m
  • the length of the line segment n 1 q and the line segment n 2 q is q.
  • g be the distance between the coin 100 and the X axis. Note that g is an unknown value, but will eventually be erased. Further, it is assumed that the value of g is constant during a period in which the sensor B and the sensor C are detecting the coin 100.
  • Equation (1) is obtained.
  • m (v stat ⁇ t m ) / 2”.
  • Equation (2) is obtained.
  • n (v stat ⁇ t n ) / 2” where the passing time detected by the sensor C is t n and the standard transport speed 14a is v stat .
  • the signals from the sensors B and C fluctuate with respect to the time axis (T) shown in the figure.
  • T time axis
  • the rise of the signal from the sensor B corresponds to the point m 1
  • the fall corresponds to the point m 2
  • the passing time t m is the time from the rise to the fall.
  • the rising edge of the signal from the sensor C corresponds to the point n 1 and the falling edge corresponds to the point n 2
  • the passing time t n is the time from the rising edge to the falling edge.
  • n is calculated using t n shown in FIG. 5B.
  • t 0 shown in FIG. 5B is appropriately reset by the measurement pulse generating circuit 11g shown in FIG.
  • the reset timing may be the timing when the coin 100 enters the sensor B.
  • FIG. 6 is a diagram for explaining a diameter calculation process when three timing sensors (sensor A, sensor B, and sensor C) are used.
  • FIG. 6 the same elements as those in FIG. 5 are denoted by the same reference numerals, and description of these elements is omitted.
  • (A) in the figure shows the positional relationship between the coin 100, sensor A, sensor B, and sensor C
  • (B) in the figure shows the signals detected by the sensor A and sensor B.
  • the coin 100 shall be conveyed by the conveyance direction 31 parallel to a X-axis.
  • the sensor A is provided at a position where the distance from the X-axis is the same ⁇ as that of the sensor B, and the position of the sensor B is translated upstream by a distance ⁇ along the X-axis. Note that ⁇ is included in the sensor arrangement information 14b.
  • the time difference between the sensor A signal and the sensor B signal is set to t diff .
  • m (v ⁇ t m ) / 2”
  • the latest transport speed can be calculated even when the transport speed varies. Therefore, it is possible to further increase the calculation accuracy of the radius r.
  • FIG. 6A shows the case where the sensor A is provided on the upstream side of the sensor B. However, if the distance from the X axis is the same ⁇ as the sensor B, the sensor A is provided on the downstream side of the sensor B. It is good. Further, the sensor A may be provided on the upstream side or the downstream side of the sensor C so that the distance from the X axis is the same ⁇ as the sensor C.
  • the radius r of the coin 100 is calculated using the distance ⁇ between the sensor B and the X axis and the distance ⁇ between the sensor C and the X axis.
  • the radius r may be calculated using the distance h.
  • FIG. 7 is a diagram showing a modification of the diameter calculation process.
  • the same elements as those in FIG. 5 or FIG. 6 are denoted by the same reference numerals, and description of such elements is omitted.
  • the distance between the sensor B and the sensor C is h.
  • the distance h is included in the sensor arrangement information 14b.
  • Equation (5) is obtained.
  • m (v stat ⁇ t m ) / 2”.
  • n (v stat ⁇ t n ) / 2” where the passing time detected by the sensor C is t n and the standard transport speed 14a is v stat .
  • Equation (8) s, which is an unknown variable, is deleted, and the radius r becomes It is expressed by equation (8).
  • m, n, and h included in the right side of Expression (8) are known values, so that the radius r can be calculated.
  • FIG. 7A shows the case where the sensor B and the sensor C are arranged on the same axis orthogonal to the X axis, it is not necessary to arrange the sensor B and the sensor C on the same axis.
  • FIG. 7B the case where the sensor B is placed at the position of the sensor A, that is, the case where the sensor A is used instead of the sensor B will be described.
  • the distance between the sensor A and the sensor C If the Y-axis component of h is h, the radius r can be calculated using equation (8).
  • the radius r can be calculated based on the correct transport speed v.
  • the determination unit 13g is a processing unit that finally determines the coin 100 based on the radius of the coin 100 received from the diameter calculation unit 13f, the signal received from the coin identification sensor unit 12, and the threshold information 14c.
  • the threshold information 14c includes a determination frame for each signal value for each denomination of the coin 100. For example, a set of allowable lower limit value and upper limit value for the radius or diameter of the coin 100 is included for each denomination.
  • the determination unit 13g applies the threshold information 14c to the radius received from the diameter calculation unit 13f, the signal value related to the material received from the coin identification sensor unit 12, the signal value related to the thickness, and the like, thereby denomination of the coin 100. And whether it is true or false.
  • the storage unit 14 is a storage unit configured by a storage device such as a hard disk drive or a non-volatile memory, and stores a standard transport speed 14a, sensor arrangement information 14b, and threshold information 14c.
  • the standard transport speed 14a is a standard transport speed when the transport mechanism (not shown) passes the coin 100 through the timing sensor unit 11, and a static value is stored in advance.
  • the sensor arrangement information 14b is information defining an absolute position or a relative position of the sensor A, sensor B, or sensor C on the XY coordinate axes. Since the threshold information 14c has already been described, the description thereof is omitted here.
  • FIG. 8 is a flowchart showing a processing procedure executed by the coin discriminating apparatus 10.
  • the processing procedure for one coin 100 is shown, and in actuality, the flowchart shown in FIG. 8 is continuously executed.
  • the coin discriminating apparatus 10 resets the measurement counter (step S101), and determines whether or not the ON / OFF time measurement is completed in each sensor (sensor A, sensor B, and sensor C) (step S102).
  • the calculating unit 13f calculates the radius r based on the formula (4) or the formula (8) (step S105).
  • step S106 sets the first threshold value information 14c (step S106). Subsequently, it is determined whether or not the radius r matches the condition of the threshold information 14c (step S107). If the radius r matches (step S107, Yes), the denomination flag corresponding to the threshold information 14c is turned ON. (Step S108). On the other hand, when the determination condition of step S107 is not satisfied (step S107, No), the denomination flag corresponding to the threshold information 14c is turned OFF (step S109).
  • step S110 it is determined whether there is undetermined threshold information 14c (step S110). If there is undetermined threshold information 14c (step S110, Yes), the next threshold information 14c is set. (Step S111), the processing after Step S107 is repeated. On the other hand, when the determination condition of step S110 is not satisfied (step S110, No), the process ends.
  • the timing sensor unit is provided on a straight line that is not parallel to the transport direction on the transport surface that contacts the front or back surface of the coin, A coin is detected using the second sensor, and a first passage time, which is a time from when the first sensor detects a coin until the passage time calculation unit stops detecting the coin, and a second sensor The second passage time, which is the time from when a coin is detected until it is no longer detected, is calculated.
  • the diameter calculation unit projects the distance between the first sensor and the second sensor onto the orthogonal axis orthogonal to the conveyance direction on the conveyance surface, the calculated first passage time, and the second passage time.
  • the coin discriminating apparatus is configured to calculate the diameter of the coin based on a predetermined conveyance speed. Therefore, by calculating the diameter of the coin using an inexpensive timing sensor arranged regularly, the accuracy of detecting the diameter of the coin can be improved while reducing the apparatus cost.
  • the diameter detection device and the diameter detection method according to the present invention are useful when it is desired to calculate the diameter or radius of a circular object with low cost and high accuracy. It is suitable for application to devices used as denomination discrimination elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Abstract

A coin discriminating device is constructed such that a timing sensor section detects a coin by using a first sensor and a second sensor which detect whether or not a circular object is present and are arranged at positions which are located on a conveying surface with which the front side or the rear side of the coin make contact and on a straight line not parallel to the direction of conveyance of the coin, a passage time calculating section calculates both a first passage time which is a time after the first sensor detects the coin until the first sensor becomes not to detect the coin and a second passage time which is a time after the second sensor detects the coin until the second sensor becomes not to detect the coin, and a diameter calculating section calculates the diameter of the coin based on an orthogonal distance which is the distance between the first and second sensors which is projected to an axis orthogonal to the conveying direction on the conveying surface, the first and second passage times calculated, and a predetermined conveying speed.

Description

径検出装置および径検出方法Diameter detection apparatus and diameter detection method
 本発明は、搬送される円形物体の径を検出する径検出装置および径検出方法に関し、特に、コストを低減しつつ、円形物体の径の検出精度を向上させることができる径検出装置および径検出方法に関する。 The present invention relates to a diameter detection device and a diameter detection method for detecting the diameter of a circular object to be conveyed, and in particular, a diameter detection device and a diameter detection capable of improving the detection accuracy of the diameter of a circular object while reducing cost. Regarding the method.
 従来から、搬送機構を用いて硬貨を搬送し、搬送される硬貨の金種や真偽をセンサによって識別する硬貨識別装置が知られている。かかる硬貨識別装置では、硬貨の材質や厚み、直径などを検出し、これらの検出値が金種ごとの判定枠に合致するか否かを判定する。ここで、判定枠とは、たとえば、許容される検出値の上限値および下限値を定めた閾値の組である。 2. Description of the Related Art Conventionally, there has been known a coin identification device that conveys coins using a conveyance mechanism and identifies the denomination and authenticity of the conveyed coins with a sensor. In such a coin identification device, the material, thickness, diameter, etc. of the coin are detected, and it is determined whether or not these detected values match the determination frame for each denomination. Here, the determination frame is, for example, a set of threshold values that define an upper limit value and a lower limit value of allowable detection values.
 ここで、硬貨の直径や半径といった径を検出する手法に関しては、さまざまな手法が提案されている。たとえば、特許文献1には、搬送方向と直交する向きに一列に並べられた複数の光電素子が硬貨によって何個遮られたかによって径を検出する手法が開示されている。 Here, various methods have been proposed for detecting the diameter such as the diameter and radius of a coin. For example, Patent Document 1 discloses a method of detecting a diameter based on how many photoelectric elements arranged in a line in a direction orthogonal to the transport direction are blocked by coins.
 また、特許文献2には、硬貨をカメラで撮像した画像を解析することで径を検出する手法が開示されている。そして、特許文献3には、搬送面の上面側および下面側にそれぞれコイルを配置した磁気センサの検出値に基づいて硬貨の径を検出する手法が開示されている。 Patent Document 2 discloses a technique for detecting a diameter by analyzing an image obtained by capturing a coin with a camera. Patent Document 3 discloses a technique for detecting the diameter of a coin based on detection values of a magnetic sensor in which coils are respectively arranged on an upper surface side and a lower surface side of a conveyance surface.
特開昭58-144703号公報JP 58-144703 A 特許第3361590号公報Japanese Patent No. 3361590 特開昭61-150092号公報Japanese Patent Laid-Open No. 61-150092
 しかしながら、特許文献1の技術を用いた場合、径の算出精度は光電素子1個あたりの大きさに左右されるため、精度を向上させるためには細かいピッチで多数の光電素子を配置する必要がある。しかし、光電素子を多数設けると、装置コストが上昇してしまう。このため、低価格帯の装置への適用が不向きであるという問題がある。 However, when the technique of Patent Document 1 is used, the calculation accuracy of the diameter depends on the size of each photoelectric element, and in order to improve the accuracy, it is necessary to arrange a large number of photoelectric elements at a fine pitch. is there. However, when a large number of photoelectric elements are provided, the device cost increases. For this reason, there exists a problem that application to the apparatus of a low price range is unsuitable.
 また、特許文献2の技術のように、画像解析に基づいて径を算出する場合には、画像を撮像する部品が高価であるうえ、解析処理に用いる処理回路も複雑化してしまうため、装置のコストが上昇してしまう。このため、特許文献1の技術と同様に、低価格帯の装置への適用が不向きであるという問題がある。 In addition, when the diameter is calculated based on image analysis as in the technique of Patent Document 2, parts for capturing an image are expensive, and the processing circuit used for the analysis processing becomes complicated. Cost will rise. For this reason, similarly to the technique of Patent Document 1, there is a problem that application to a low-priced device is unsuitable.
 また、特許文献3の技術のように、磁気センサを用いて径を算出する場合には、装置コストの面で、特許文献1あるいは特許文献2の技術よりも有利であるが、径算出の精度の面で不十分であるという問題がある。具体的には、たとえ、同一径であっても硬貨の材質によってセンサ出力が変動するため、算出される径の精度が十分とはいえない。 In addition, when the diameter is calculated using a magnetic sensor as in the technique of Patent Document 3, it is more advantageous than the technique of Patent Document 1 or Patent Document 2 in terms of apparatus cost, but the accuracy of the diameter calculation. There is a problem that this is insufficient. Specifically, even if the diameter is the same, the sensor output varies depending on the material of the coin, so the accuracy of the calculated diameter is not sufficient.
 これらのことから、コストを低減しつつ、硬貨の径の検出精度を向上させることができる硬貨識別装置あるいは硬貨識別方法をいかにして実現するかが大きな課題となっている。なお、かかる課題は、硬貨の径の検出に限らず、円形物体の直径や半径を検出する場合にも同様に発生する課題である。 For these reasons, it is a major issue how to realize a coin identification device or a coin identification method capable of improving the accuracy of detecting the diameter of a coin while reducing costs. Such a problem is not limited to the detection of the diameter of a coin, but also occurs when detecting the diameter and radius of a circular object.
 本発明は、上述した従来技術の課題を解決するためになされたものであり、コストを低減しつつ、円形物体の径の検出精度を向上させることができる径検出装置および径検出方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and provides a diameter detection apparatus and a diameter detection method capable of improving the accuracy of detecting the diameter of a circular object while reducing cost. For the purpose.
 上述した課題を解決し、目的を達成するために、本発明は、搬送される円形物体の径を検出する径検出装置であって、円形物体の表面または裏面が接する搬送面において搬送方向と非平行な直線上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出する検出手段と、前記第1のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第1の通過時間と、前記第2のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第2の通過時間とを算出する通過時間算出手段と、前記第1のセンサと前記第2のセンサとの距離を前記搬送面において前記搬送方向と直交する直交軸へ射影した直交距離、前記通過時間算出手段によって算出された前記第1の通過時間、前記第2の通過時間および所定の搬送速度に基づいて円形物体の径を算出する径算出手段とを備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a diameter detection device that detects the diameter of a circular object to be conveyed, and is a non-conveying direction on the conveying surface where the front or back surface of the circular object contacts. Detection means for detecting the presence or absence of a circular object using a first sensor and a second sensor provided on parallel straight lines, and detecting the circular object after the first sensor detects the circular object A passage time calculation for calculating a first passage time that is a time until the second object passes and a second passage time that is a time from when the second sensor detects a circular object until the second object is no longer detected. An orthogonal distance obtained by projecting the distance between the first sensor and the second sensor onto an orthogonal axis orthogonal to the transport direction on the transport surface, and the first passage calculated by the passage time calculation means by the time Characterized in that a diameter calculating means for calculating a diameter of the circular object based on the second passage time and a predetermined conveying speed.
 また、本発明は、上記の発明において、前記検出手段は、同一の前記直交軸上に設けられた前記第1のセンサおよび前記第2のセンサを用いて円形物体の有無を検出することを特徴とする。 Further, the present invention is the above invention, wherein the detection means detects the presence or absence of a circular object using the first sensor and the second sensor provided on the same orthogonal axis. And
 また、本発明は、上記の発明において、前記検出手段は、前記第1のセンサまたは前記第2のセンサの位置から前記搬送方向と平行に移動した位置に設けられた第3のセンサをさらに用いて円形物体の有無を検出し、前記径算出手段は、前記第3のセンサと、前記第1のセンサまたは前記第2のセンサとの検出タイミングのずれに基づいて前記搬送速度を算出したうえで、当該搬送速度に基づいて円形物体の径を算出することを特徴とする。 In the present invention, in the above invention, the detection unit further uses a third sensor provided at a position moved in parallel with the transport direction from the position of the first sensor or the second sensor. And detecting the presence or absence of a circular object, and the diameter calculating means calculates the transport speed based on a detection timing shift between the third sensor and the first sensor or the second sensor. The diameter of the circular object is calculated based on the conveyance speed.
 また、本発明は、上記の発明において、前記検出手段は、異なる前記直交軸上にそれぞれ設けられた前記第1のセンサおよび前記第2のセンサを用いて円形物体の有無を検出し、前記径算出手段は、前記第1のセンサと前記第2のセンサとの検出タイミングのずれに基づいて前記搬送速度を算出したうえで、当該搬送速度に基づいて円形物体の径を算出することを特徴とする。 Further, the present invention is the above invention, wherein the detection means detects the presence or absence of a circular object using the first sensor and the second sensor respectively provided on different orthogonal axes, and the diameter The calculating means calculates the transport speed based on a detection timing shift between the first sensor and the second sensor, and then calculates the diameter of the circular object based on the transport speed. To do.
 また、本発明は、上記の発明において、前記径算出手段は、前記第1の通過時間と前記搬送速度とを乗算することで前記第1のセンサの位置を通過する円形物体の第1の弦長を算出するとともに、前記第2の通過時間と前記搬送速度とを乗算することで前記第2のセンサの位置を通過する円形物体の第2の弦長を算出したうえで、前記第1の弦長、前記第2の弦長および前記直交距離に基づいて円形物体の径を算出することを特徴とする。 Further, according to the present invention, in the above-mentioned invention, the diameter calculating means multiplies the first passage time and the conveyance speed to thereby multiply the first string of the circular object that passes the position of the first sensor. And calculating the second chord length of the circular object passing through the position of the second sensor by multiplying the second passage time and the transport speed, and then calculating the first chord length. The diameter of the circular object is calculated based on the chord length, the second chord length, and the orthogonal distance.
 また、本発明は、上記の発明において、前記円形物体は、硬貨であって、前記検出手段の前記第1のセンサまたは前記第2のセンサは、前記硬貨の穴部が通過する位置に設けられたことを特徴とする。 Also, in the present invention according to the above invention, the circular object is a coin, and the first sensor or the second sensor of the detection means is provided at a position where the hole of the coin passes. It is characterized by that.
 また、本発明は、搬送される円形物体の径を検出する径検出方法であって、円形物体の表面または裏面が接する搬送面に設置位置の関係が搬送方向と非平行な直線上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出する検出工程と、前記第1のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第1の通過時間と、前記第2のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第2の通過時間とを算出する通過時間算出工程と、前記第1のセンサと前記第2のセンサとの距離を前記搬送面において前記搬送方向と直交する直交軸へ射影した直交距離、前記通過時間算出工程によって算出された前記第1の通過時間、前記第2の通過時間および所定の搬送速度に基づいて円形物体の径を算出する径算出工程とを含んだことを特徴とする。 The present invention is also a diameter detection method for detecting the diameter of a circular object to be conveyed, wherein the relationship of the installation position is provided on a straight line that is not parallel to the conveyance direction on the conveyance surface that contacts the front surface or the back surface of the circular object. A detection step of detecting the presence or absence of a circular object using the first sensor and the second sensor, and a time from when the first sensor detects a circular object until the circular object is no longer detected. A transit time calculating step of calculating a transit time of 1 and a second transit time that is a time from when the second sensor detects a circular object to when it no longer detects the circular object; The orthogonal distance obtained by projecting the distance between the sensor and the second sensor onto the orthogonal axis orthogonal to the conveyance direction on the conveyance surface, the first passage time calculated by the passage time calculation step, and the second passage Time and prescribed Based on the feed rate, characterized in that it includes a diameter calculating step calculates the diameter of the circular object.
 本発明によれば、円形物体の表面または裏面が接する搬送面において搬送方向と非平行な直線上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出し、第1のセンサが円形物体を検出してから円形物体を検出しなくなるまでの時間である第1の通過時間と、第2のセンサが円形物体を検出してから円形物体を検出しなくなるまでの時間である第2の通過時間とを算出し、第1のセンサと第2のセンサとの距離を搬送面において搬送方向と直交する直交軸へ射影した直交距離、算出された第1の通過時間、第2の通過時間および所定の搬送速度に基づいて円形物体の径を算出することとしたので、コストを低減しつつ、円形物体の径の検出精度を向上させることができることができるという効果を奏する。また、円形物体の側面が基準となる面から離れて搬送される場合であっても、円形物体の径を算出することができるという効果を奏する。 According to the present invention, the presence or absence of a circular object is detected by using the first sensor and the second sensor provided on a straight line that is not parallel to the conveyance direction on the conveyance surface where the front surface or the back surface of the circular object contacts. The first passage time, which is the time from when the first sensor detects a circular object until it stops detecting the circular object, and the time from when the second sensor detects the circular object until it stops detecting the circular object. The second passing time is calculated, the orthogonal distance obtained by projecting the distance between the first sensor and the second sensor to the orthogonal axis orthogonal to the transport direction on the transport surface, the calculated first passing time, Since the diameter of the circular object is calculated based on the second passage time and the predetermined transport speed, there is an effect that the detection accuracy of the diameter of the circular object can be improved while reducing the cost. . Moreover, even when the side surface of the circular object is transported away from the reference surface, the diameter of the circular object can be calculated.
 また、本発明によれば、同一の直交軸上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出することとしたので、円形物体の側面が基準となる面から離れて搬送される場合であっても、円形物体の径を高精度に算出することができるという効果を奏する。 In addition, according to the present invention, since the presence or absence of a circular object is detected using the first sensor and the second sensor provided on the same orthogonal axis, the side surface of the circular object is a reference surface. Even in the case of being transported away from the center, there is an effect that the diameter of the circular object can be calculated with high accuracy.
 また、本発明によれば、第1のセンサまたは第2のセンサの位置から搬送方向と平行に移動した位置に設けられた第3のセンサをさらに用いて円形物体の有無を検出し、第3のセンサと、第1のセンサまたは第2のセンサとの検出タイミングのずれに基づいて搬送速度を算出したうえで、算出した搬送速度に基づいて円形物体の径を算出することとしたので、最新の搬送速度を算出することによって円形物体の径を高精度に算出することができるという効果を奏する。 Further, according to the present invention, the presence or absence of a circular object is detected by further using a third sensor provided at a position moved in parallel with the transport direction from the position of the first sensor or the second sensor. Since the conveyance speed is calculated based on the detection timing difference between the sensor No. 1 and the first sensor or the second sensor, the diameter of the circular object is calculated based on the calculated conveyance speed. By calculating the transport speed, it is possible to calculate the diameter of the circular object with high accuracy.
 また、本発明によれば、異なる直交軸上にそれぞれ設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出し、第1のセンサと第2のセンサとの検出タイミングのずれに基づいて搬送速度を算出したうえで、算出した搬送速度に基づいて円形物体の径を算出することとしたので、コストを低減しつつ、最新の搬送速度を算出することによって円形物体の径を高精度に算出することができるという効果を奏する。 Further, according to the present invention, the presence or absence of a circular object is detected using the first sensor and the second sensor provided on different orthogonal axes, and the detection timing of the first sensor and the second sensor is detected. Since the conveyance speed is calculated based on the deviation of the circular object, and the diameter of the circular object is calculated based on the calculated conveyance speed, the cost of the circular object can be calculated by calculating the latest conveyance speed while reducing the cost. There is an effect that the diameter can be calculated with high accuracy.
 また、本発明によれば、第1の通過時間と搬送速度とを乗算することで第1のセンサの位置を通過する円形物体の第1の弦長を算出するとともに、第2の通過時間と搬送速度とを乗算することで第2のセンサの位置を通過する円形物体の第2の弦長を算出したうえで、第1の弦長、第2の弦長および直交距離に基づいて円形物体の径を算出することとしたので、算出処理の処理負荷を低減することができるという効果を奏する。 According to the present invention, the first chord length of the circular object passing through the position of the first sensor is calculated by multiplying the first passage time and the conveyance speed, and the second passage time is calculated. After calculating the second chord length of the circular object passing through the position of the second sensor by multiplying by the conveyance speed, the circular object is calculated based on the first chord length, the second chord length and the orthogonal distance. As a result, the processing load of the calculation process can be reduced.
 また、本発明によれば、円形物体は、硬貨であって、第1のセンサまたは第2のセンサは、硬貨の穴部が通過する位置に設けられることとしたので、穴部の有無を検出することができるという効果を奏する。これによって、たとえば、後段の金種判別処理の対象となる金種を絞り込むことができるという効果を奏する。 Further, according to the present invention, the circular object is a coin, and the first sensor or the second sensor is provided at a position where the hole of the coin passes, so the presence or absence of the hole is detected. There is an effect that can be done. Thereby, for example, there is an effect that it is possible to narrow down the denominations to be subjected to the denomination determination process in the subsequent stage.
図1は、本発明に係る径算出手法の概要を示す図である。FIG. 1 is a diagram showing an outline of a diameter calculation method according to the present invention. 図2は、本実施例に係る硬貨判別装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the coin discriminating apparatus according to the present embodiment. 図3は、タイミングセンサの配置例を示す図である。FIG. 3 is a diagram illustrating an example of arrangement of timing sensors. 図4は、タイミングセンサ部の回路例を示す図である。FIG. 4 is a diagram illustrating a circuit example of the timing sensor unit. 図5は、2つのタイミングセンサを使用した場合における径算出処理を説明するための図である。FIG. 5 is a diagram for explaining a diameter calculation process when two timing sensors are used. 図6は、3つのタイミングセンサを使用した場合における径算出処理を説明するための図である。FIG. 6 is a diagram for explaining a diameter calculation process when three timing sensors are used. 図7は、径算出処理の変形例を示す図である。FIG. 7 is a diagram illustrating a modification of the diameter calculation process. 図8は、硬貨判別装置が実行する処理手順を示すフローチャートである。FIG. 8 is a flowchart showing a processing procedure executed by the coin discriminating apparatus.
符号の説明Explanation of symbols
  10  硬貨判別装置
  11  タイミングセンサ部
  12  硬貨識別センサ部
  13  制御部
  13a 時間差算出部
  13b 搬送速度算出部
  13c 切替部
  13d 通過時間算出部
  13e 弦長算出部
  13f 径算出部
  13g 判別部
  14  記憶部
  14a 標準搬送速度
  14b センサ配置情報
  14c 閾値情報
 100  硬貨
 110  搬送路
 111  片寄せ側ガイド
 112  反片寄せ側ガイド
 120  搬送ベルト
DESCRIPTION OF SYMBOLS 10 Coin discrimination | determination apparatus 11 Timing sensor part 12 Coin identification sensor part 13 Control part 13a Time difference calculation part 13b Transport speed calculation part 13c Switching part 13d Passing time calculation part 13e String length calculation part 13f Diameter calculation part 13g Discrimination part 14 Storage part 14a Standard Conveying speed 14b Sensor arrangement information 14c Threshold information 100 Coin 110 Conveying path 111 Partially moving side guide 112 Anti-sidelly moving side guide 120 Conveying belt
 以下に、添付図面を参照して、本発明に係る径検出手法の好適な実施例を詳細に説明する。なお、以下では、本発明に係る径検出手法の概要について図1を用いて説明した後に、本発明に係る径検出手法を適用した硬貨判別装置についての実施例を図2~図8を用いて説明する。また、硬貨判別装置を適用した入手金処理装置について、図9および図10を用いて説明することとする。 Hereinafter, preferred embodiments of the diameter detection method according to the present invention will be described in detail with reference to the accompanying drawings. In the following, the outline of the diameter detection method according to the present invention will be described with reference to FIG. 1, and then an embodiment of a coin discriminating apparatus to which the diameter detection method according to the present invention is applied will be described with reference to FIGS. explain. Further, an acquisition processing apparatus to which the coin discriminating apparatus is applied will be described with reference to FIGS. 9 and 10.
 また、以下では、円形物体の代表例として、硬貨の径を算出する場合について説明することとする。そして、以下では、硬貨の外周が真円であることを前提として説明を行うこととする。 In the following, a case where the diameter of a coin is calculated will be described as a representative example of a circular object. In the following description, it is assumed that the outer circumference of the coin is a perfect circle.
 まず、本発明に係る径検出手法の概要について図1を用いて説明する。図1は、本発明に係る径算出手法の概要を示す図である。なお、同図の(A)には、従来技術に係る径検出手法について、同図の(B)には、本発明に係る径検出手法について、それぞれ示している。 First, an outline of the diameter detection method according to the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an outline of a diameter calculation method according to the present invention. In addition, (A) of the figure shows the diameter detection method according to the prior art, and (B) of the figure shows the diameter detection method according to the present invention.
 また、同図では、硬貨100が搬送面の側壁に沿うように、同図に示した搬送方向に搬送される場合を示しており、以下では、かかる側壁をX軸と、搬送面においてX軸と直交する軸をY軸とする座標軸を用いて説明することとする。 Moreover, in the same figure, the case where the coin 100 is conveyed in the conveyance direction shown in the figure so as to be along the side wall of the conveyance surface is shown. A description will be made using a coordinate axis having an axis orthogonal to the Y axis as the axis.
 図1の(A)に示したように、従来技術に係る径検出手法では、搬送方向の上流側に硬貨100の到来を検出するタイミングセンサを設け、タイミングセンサが硬貨100を検出したタイミングに基づき、下流側に設けた硬貨識別センサ(たとえば、磁気センサ)で硬貨を識別していた。 As shown in FIG. 1A, in the diameter detection method according to the related art, a timing sensor that detects the arrival of the coin 100 is provided on the upstream side in the transport direction, and the timing sensor detects the coin 100 based on the timing. A coin is identified by a coin identification sensor (for example, a magnetic sensor) provided on the downstream side.
 ここで、硬貨100は、同図のX軸と接するように(同図の100a参照)搬送されることが好ましいが、実際には、数mm(ミリメートル)程度、X軸から離れた状態で搬送されることも起こりうる。しかし、硬貨識別センサでは、硬貨100がX軸に接していることを前提として硬貨100の径を検出していたため、検出される径の精度が低いという問題があった。 Here, it is preferable that the coin 100 is conveyed so as to be in contact with the X axis in the figure (see 100a in the figure), but actually, the coin 100 is conveyed in a state separated from the X axis by about several millimeters (millimeters). It can happen. However, since the coin identification sensor detects the diameter of the coin 100 on the assumption that the coin 100 is in contact with the X axis, there is a problem that the accuracy of the detected diameter is low.
 なお、硬貨識別センサとして画像センサを用い、画像センサが撮像した画像に基づいて硬貨の径を算出することとすれば、硬貨100がX軸から離れて搬送された場合であっても精度良く径を算出することが可能である。しかし、画像センサは、高価であるため、装置自体のコストが上昇してしまうという問題が発生する。 If an image sensor is used as the coin identification sensor and the diameter of the coin is calculated based on an image captured by the image sensor, the diameter can be accurately determined even when the coin 100 is conveyed away from the X axis. Can be calculated. However, since the image sensor is expensive, there arises a problem that the cost of the apparatus itself increases.
 そこで、本発明に係る径検出手法では、従来は、硬貨100の到来を検出するために用いられていたタイミングセンサを利用して硬貨100の径を高精度に検出することとした。なお、タイミングセンサは安価であるため、コスト面での問題は生じない。 Therefore, in the diameter detection method according to the present invention, conventionally, the diameter of the coin 100 is detected with high accuracy using a timing sensor used to detect the arrival of the coin 100. Since the timing sensor is inexpensive, there is no cost problem.
 すなわち、図1の(B)に示したように、本発明に係る径検出手法では、複数個のタイミングセンサ(センサA、センサBおよびセンサC)を規則的に配置し、各センサからの出力を組み合わせることで、硬貨100の径を検出する。 That is, as shown in FIG. 1B, in the diameter detection method according to the present invention, a plurality of timing sensors (sensor A, sensor B, and sensor C) are regularly arranged and output from each sensor. , The diameter of the coin 100 is detected.
 ここで、センサBおよびセンサCは、Y軸と平行な同一軸上に配置され、センサAおよびセンサBは、X軸と平行な同一軸上に配置される。また、各センサ(センサA、センサBおよびセンサC)は、様々な金種の硬貨100において、硬貨100の中心よりもX軸側の位置であって、硬貨100がX軸から離れた場合であっても硬貨100を検出することができる位置に設けられるものとする。 Here, the sensor B and the sensor C are arranged on the same axis parallel to the Y axis, and the sensor A and the sensor B are arranged on the same axis parallel to the X axis. Each sensor (sensor A, sensor B, and sensor C) is a position on the X-axis side of the center of the coin 100 in the coin 100 of various denominations, and the coin 100 is separated from the X-axis. Even if it exists, it shall be provided in the position which can detect the coin 100.
 そして、センサBおよびセンサCは、通過する硬貨100の弦長を検出するために、センサAは、センサBとの検出タイミングのずれに基づいて搬送速度vを算出するために、それぞれ用いられる。なお、かかる搬送速度vは、硬貨100が各センサ(センサA、センサBおよびセンサC)の設置区間を通過する間は一定速度であることが必要であるが、搬送路全体を通じて一定速度である必要はない。 The sensor B and the sensor C are used to detect the chord length of the coin 100 that passes therethrough, and the sensor A is used to calculate the conveyance speed v based on a shift in detection timing with the sensor B. The transport speed v needs to be constant while the coin 100 passes through the installation section of each sensor (sensor A, sensor B, and sensor C), but is constant throughout the transport path. There is no need.
 具体的には、本発明に係る径検出手法では、センサAおよびセンサBからの出力に基づいて搬送速度vを算出する(同図の(1)参照)。また、搬送速度vおよびセンサBからの出力に基づいて同図に示した弦長Mを、搬送速度vおよびセンサCからの出力に基づいて同図に示した弦長Nを、それぞれ算出する(同図の(2)参照)。 Specifically, in the diameter detection method according to the present invention, the conveyance speed v is calculated based on the outputs from the sensor A and the sensor B (see (1) in the figure). Further, the chord length M shown in the figure is calculated based on the transport speed v and the output from the sensor B, and the chord length N shown in the figure is calculated based on the transport speed v and the output from the sensor C ( (See (2) in the figure).
 そして、各センサ(センサA、センサBおよびセンサC)の位置関係、弦長Mおよび弦長Nに基づいて硬貨100の半径rを算出する(同図の(3)参照)。なお、半径rを算出するための具体的な式や、手順については後述することとする。 Then, the radius r of the coin 100 is calculated based on the positional relationship of each sensor (sensor A, sensor B, and sensor C), the chord length M, and the chord length N (see (3) in the figure). Note that specific formulas and procedures for calculating the radius r will be described later.
 このように、本発明に係る径検出手法では、安価なタイミングセンサを所定の配置条件を満たすように設けたうえで、かかる配置条件および各センサの出力に基づいて硬貨100の径を算出することとした。 Thus, in the diameter detection method according to the present invention, an inexpensive timing sensor is provided to satisfy a predetermined arrangement condition, and the diameter of the coin 100 is calculated based on the arrangement condition and the output of each sensor. It was.
 したがって、コストを低減しつつ、硬貨100の径の検出精度を向上させることができる。そして、本発明に係る径検出手法を用いれば、硬貨100に限らず、メダルや円形部品といった円形物体の径を検出することができる。 Therefore, it is possible to improve the accuracy of detecting the diameter of the coin 100 while reducing the cost. If the diameter detection method according to the present invention is used, the diameter of a circular object such as a medal or a circular part can be detected without being limited to the coin 100.
 なお、図1では、搬送速度に変動がある場合であっても正確な搬送速度を検出し、検出した搬送速度に基づいて正確な半径rを検出するためにセンサAを用いることとした。しかし、搬送速度の変動が小さい場合には、センサAを省略して固定値の搬送速度を用いることとしてもよい。また、図1に示したセンサA、センサBおよびセンサCは、従来と同様に、タイミングセンサとして機能させることもできる。 In FIG. 1, even if there is a variation in the conveyance speed, the accurate conveyance speed is detected, and the sensor A is used to detect the accurate radius r based on the detected conveyance speed. However, when the variation in the conveyance speed is small, the sensor A may be omitted and a fixed conveyance speed may be used. Further, the sensor A, the sensor B, and the sensor C shown in FIG.
 以下では、図1に示した本発明に係る径検出手法を適用した硬貨判別装置についての実施例を説明する。 Hereinafter, an embodiment of the coin discriminating apparatus to which the diameter detection method according to the present invention shown in FIG. 1 is applied will be described.
 図2は、本実施例に係る硬貨判別装置10の構成を示すブロック図である。なお、同図では、硬貨判別装置10の特徴を説明するために必要な構成要素のみを示しており、搬送機構などの記載を省略している。 FIG. 2 is a block diagram showing the configuration of the coin discriminating apparatus 10 according to the present embodiment. In the figure, only components necessary for explaining the characteristics of the coin discriminating apparatus 10 are shown, and descriptions of the transport mechanism and the like are omitted.
 同図に示すように、硬貨判別装置10は、タイミングセンサ部11と、硬貨識別センサ部12と、制御部13と、記憶部14とを備えている。また、制御部13は、時間差算出部13aと、搬送速度算出部13bと、切替部13cと、通過時間算出部13dと、弦長算出部13eと、径算出部13fと、判別部13gとをさらに備えている。そして、記憶部14は、標準搬送速度14aと、センサ配置情報14bと、閾値情報14cとを記憶する。 As shown in the figure, the coin discriminating apparatus 10 includes a timing sensor unit 11, a coin identification sensor unit 12, a control unit 13, and a storage unit 14. The control unit 13 includes a time difference calculation unit 13a, a conveyance speed calculation unit 13b, a switching unit 13c, a passage time calculation unit 13d, a chord length calculation unit 13e, a diameter calculation unit 13f, and a determination unit 13g. It has more. And the memory | storage part 14 memorize | stores the standard conveyance speed 14a, the sensor arrangement | positioning information 14b, and the threshold value information 14c.
 タイミングセンサ部11は、図1に示したセンサA、センサBおよびセンサCを有しており、各タイミングセンサからの信号をサンプリングすることで、各タイミングセンサが物体を検出したか否かを示す信号の時間変化を制御部13へ通知する処理を行うデバイスである。 The timing sensor unit 11 includes the sensors A, B, and C shown in FIG. 1, and indicates whether each timing sensor has detected an object by sampling a signal from each timing sensor. It is a device that performs processing for notifying the control unit 13 of changes in signal time.
 ここで、センサA、センサBおよびセンサCとしては、光センサを用いることが好ましいが、磁気センサを用いることとしてもよい。また、光センサと磁気センサとを混在させることとしてもよい。なお、タイミングセンサ部11は、硬貨識別センサ部12よりも搬送方向について上流側に設けられる。 Here, as the sensor A, the sensor B, and the sensor C, it is preferable to use an optical sensor, but a magnetic sensor may be used. Moreover, it is good also as mixing an optical sensor and a magnetic sensor. Note that the timing sensor unit 11 is provided upstream of the coin identification sensor unit 12 in the transport direction.
 硬貨識別センサ部12は、硬貨100から材質や厚みといった情報を検出する複数の磁気センサを有しており、各磁気センサからの信号を制御部13へ通知する処理を行うデバイスである。 The coin identification sensor unit 12 has a plurality of magnetic sensors that detect information such as material and thickness from the coin 100, and is a device that performs a process of notifying the control unit 13 of a signal from each magnetic sensor.
 なお、本実施例では、硬貨識別センサ部12として磁気センサを用いる場合について示すが、画像センサを用いることとしてもよい。また、硬貨識別センサ部12は、タイミングセンサ部11よりも搬送方向について下流側に設けられる。 In the present embodiment, a case where a magnetic sensor is used as the coin identification sensor unit 12 is shown, but an image sensor may be used. Further, the coin identification sensor unit 12 is provided on the downstream side of the timing sensor unit 11 in the transport direction.
 ここで、タイミングセンサ部11について図3および図4を用いてさらに詳細に説明しておく。図3は、タイミングセンサの配置例を示す図である。なお、同図の(A)には、搬送路110の斜視図を、同図の(B)には、各タイミングセンサの構成例を、それぞれ示している。 Here, the timing sensor unit 11 will be described in more detail with reference to FIGS. FIG. 3 is a diagram illustrating an example of arrangement of timing sensors. In addition, (A) in the figure shows a perspective view of the conveyance path 110, and (B) in the figure shows a configuration example of each timing sensor.
 図3の(A)に示したように、硬貨100は、搬送ベルト120によって搬送路110の搬送面に押しつけられた状態で、搬送方向31へ搬送される。なお、図3の(A)においては、搬送路110の下面のみを示しており、上面の記載については省略している。 As shown in FIG. 3A, the coin 100 is transported in the transport direction 31 while being pressed against the transport surface of the transport path 110 by the transport belt 120. In FIG. 3A, only the lower surface of the conveyance path 110 is shown, and the description of the upper surface is omitted.
 ここで、搬送路110は、搬送面から直角に立ち上がった片寄せ側ガイド111および反片寄せ側ガイド112を有しており、硬貨100は、片寄せ側ガイド111に接するように搬送される。すなわち、搬送方向31は、片寄せ側ガイド111と平行となる。なお、上述したように、硬貨100は、片寄せ側ガイド111から多少離れて搬送される場合もある。 Here, the conveyance path 110 has a side-by-side guide 111 and a counter-side-side guide 112 that rise at a right angle from the conveyance surface, and the coin 100 is conveyed in contact with the side-by-side guide 111. That is, the transport direction 31 is parallel to the side-shift guide 111. Note that, as described above, the coin 100 may be transported somewhat away from the one-side guide 111.
 タイミングセンサ部11のセンサAおよびセンサBは、同図に示す軸32上に配置されている。ここで、軸32は、搬送方向31と平行な軸、すなわち、片寄せ側ガイド111と平行な軸である。また、センサBおよびセンサCは、同図に示す軸33上に配置されている。ここで、軸33は、軸32と直交する軸、すなわち、片寄せ側ガイド111と平行な軸である。 The sensor A and the sensor B of the timing sensor unit 11 are arranged on a shaft 32 shown in FIG. Here, the shaft 32 is an axis parallel to the transport direction 31, that is, an axis parallel to the one-side guide 111. Sensor B and sensor C are arranged on shaft 33 shown in the figure. Here, the shaft 33 is an axis orthogonal to the shaft 32, that is, an axis parallel to the one-side guide 111.
 なお、センサA、センサBおよびセンサCが設けられた位置よりも下流側には、硬貨識別センサ部12が設けられている。硬貨識別センサ部12は、搬送路110を包み込むように配置されており、搬送路110の下側および上側にコイルが設けられている。そして、搬送される硬貨100から各種情報を取得する。 In addition, the coin identification sensor part 12 is provided in the downstream from the position where the sensor A, the sensor B, and the sensor C are provided. The coin identification sensor unit 12 is disposed so as to wrap around the conveyance path 110, and coils are provided on the lower side and the upper side of the conveyance path 110. And various information is acquired from the coin 100 conveyed.
 次に、各タイミングセンサ(センサA、センサBおよびセンサC)の構成例について説明する。図3の(B)に示したように、各タイミングセンサ(センサA、センサBおよびセンサC)は、たとえば、搬送路110の下面34(搬送面)に設けられた発光センサ36aと、搬送路110の上面35に設けられた受光センサ36bとから構成される。 Next, a configuration example of each timing sensor (sensor A, sensor B, and sensor C) will be described. As shown in FIG. 3B, each timing sensor (sensor A, sensor B and sensor C) includes, for example, a light emitting sensor 36a provided on the lower surface 34 (transport surface) of the transport path 110, and a transport path. And a light receiving sensor 36b provided on the upper surface 35 of 110.
 そして、硬貨100が存在しない場合には、発光センサ36aが発した光37は受光センサ36bによって受光される。一方、硬貨100によって光37が遮られると受光センサ36bの出力が変化することになる。 When no coin 100 is present, the light 37 emitted from the light emitting sensor 36a is received by the light receiving sensor 36b. On the other hand, when the light 37 is blocked by the coin 100, the output of the light receiving sensor 36b changes.
 次に、タイミングセンサ部11の回路例について説明する。図4は、タイミングセンサ部11の回路例を示す図である。なお、同図のタイミングセンサA11aはセンサAに、タイミングセンサB11bはセンサBに、タイミングセンサC11cはセンサCに、それぞれ対応している。 Next, a circuit example of the timing sensor unit 11 will be described. FIG. 4 is a diagram illustrating a circuit example of the timing sensor unit 11. In the figure, the timing sensor A11a corresponds to the sensor A, the timing sensor B11b corresponds to the sensor B, and the timing sensor C11c corresponds to the sensor C.
 図4に示したように、タイミングセンサA11aからの出力は、コンパレータ11dによって2値化されたうえでパルスカウントA回路11hへ入力される。また、パルスカウントA回路11hには、測定パルス発生回路11gからサンプリング用パルスが入力されており、パルス数をカウントすることで検知物体の存在時間および非存在時間を得る。 As shown in FIG. 4, the output from the timing sensor A11a is binarized by the comparator 11d and then input to the pulse count A circuit 11h. The pulse count A circuit 11h receives a sampling pulse from the measurement pulse generation circuit 11g, and obtains the presence time and non-existence time of the detected object by counting the number of pulses.
 ここで、測定パルス発生回路11gによって発生されるサンプリング用パルスについては、たとえば、0.1mmの分解能を得たい場合には、0.05mm以下の搬送距離に対応するパルス幅をもったパルス列とすることが好ましい。なお、パルス幅の単位は時間であり、搬送距離の単位は長さであるので、かかるパルス幅は、所望する搬送距離単位(たとえば、0.05mm)を搬送速度で除することで得ることができる。なお、かかるパルス列は、計時用タイマに基づいて発生させることが好ましい。 Here, with respect to the sampling pulse generated by the measurement pulse generating circuit 11g, for example, when a resolution of 0.1 mm is desired, a pulse train having a pulse width corresponding to a transport distance of 0.05 mm or less is used. It is preferable. Since the unit of the pulse width is time and the unit of the transport distance is length, the pulse width can be obtained by dividing the desired transport distance unit (for example, 0.05 mm) by the transport speed. it can. Such a pulse train is preferably generated based on a timer for timekeeping.
 なお、タイミングセンサB11bからの出力は、コンパレータ11eを経てパルスカウントB回路11iへ入力され、タイミングセンサC11cからの出力は、コンパレータ11fを経てパルスカウントC回路11jへ入力される。そして、各センサによって取得された検知物体の存在時間および非存在時間は、制御部13へ渡される。 The output from the timing sensor B11b is input to the pulse count B circuit 11i via the comparator 11e, and the output from the timing sensor C11c is input to the pulse count C circuit 11j via the comparator 11f. The presence time and non-existence time of the detected object acquired by each sensor are passed to the control unit 13.
 図2の説明に戻り、制御部13について説明する。制御部13は、タイミングセンサ部11から受け取った信号に基づいて硬貨100の径を算出する処理を行うとともに、硬貨識別センサ部12から受け取った信号および算出された径に基づいて硬貨100の金種あるいは真偽を判別する処理を行う処理部である。 Returning to the description of FIG. 2, the control unit 13 will be described. The control unit 13 performs a process of calculating the diameter of the coin 100 based on the signal received from the timing sensor unit 11 and denomination of the coin 100 based on the signal received from the coin identification sensor unit 12 and the calculated diameter. Or it is a process part which performs the process which discriminate | determines true / false.
 時間差算出部13aは、タイミングセンサ部11からセンサAおよびセンサB(図1参照)の信号を受け取り、センサAによる硬貨100の検出タイミングと、センサBによる硬貨100の検出タイミングとの時間差を算出する処理を行う処理部である。また、時間差算出部13aは算出した時間差を搬送速度算出部13bへ渡す処理を併せて行う。なお、センサ信号から時間差を算出する処理の詳細については、図6を用いて後述する。 The time difference calculation unit 13a receives signals from the sensors A and B (see FIG. 1) from the timing sensor unit 11, and calculates a time difference between the detection timing of the coin 100 by the sensor A and the detection timing of the coin 100 by the sensor B. A processing unit that performs processing. The time difference calculation unit 13a also performs a process of passing the calculated time difference to the conveyance speed calculation unit 13b. Details of the process for calculating the time difference from the sensor signal will be described later with reference to FIG.
 搬送速度算出部13bは、時間差算出部13aから通知された時間差(センサAとセンサBとの検出タイミングの差)およびセンサ配置情報14bに基づき、搬送速度vを算出する処理を行う処理部である。具体的には、時間差算出部13aから通知された時間差をtdiffとし、図1に示したセンサAとセンサBとの距離をεとすると、搬送速度vは、式「v=ε/tdiff」とあらわされる。なお、搬送速度算出部13bは、算出した搬送速度vを切替部13cへ渡す処理を併せて行う。 The conveyance speed calculation unit 13b is a processing unit that performs a process of calculating the conveyance speed v based on the time difference (difference in detection timing between the sensor A and the sensor B) notified from the time difference calculation unit 13a and the sensor arrangement information 14b. . Specifically, when the time difference notified from the time difference calculation unit 13a is t diff and the distance between the sensor A and the sensor B shown in FIG. 1 is ε, the transport speed v is expressed by the equation “v = ε / t diff Is expressed. The conveyance speed calculation unit 13b also performs a process of passing the calculated conveyance speed v to the switching unit 13c.
 切替部13cは、搬送速度算出部13bから受け取った搬送速度と、記憶部14に記憶された標準搬送速度14aとを切り替える処理を行う処理部である。たとえば、切替部13cは図示しない入力部から利用者の切替指示を受け取り、指示内容に応じて搬送速度算出部13bから受け取った搬送速度および標準搬送速度14aのうちどちらを使用するかを切り替える。 The switching unit 13 c is a processing unit that performs a process of switching between the conveyance speed received from the conveyance speed calculation unit 13 b and the standard conveyance speed 14 a stored in the storage unit 14. For example, the switching unit 13c receives a user switching instruction from an input unit (not shown), and switches between the transport speed and the standard transport speed 14a received from the transport speed calculation unit 13b according to the content of the instruction.
 そして、切替部13cは、切替後の搬送速度を弦長算出部13eへ渡す。なお、切替部13cにおいて標準搬送速度14aを利用する旨の切替が行われた場合には、時間差算出部13aおよび搬送速度算出部13bの動作を休止させることとしてもよい。 Then, the switching unit 13c passes the switched transport speed to the chord length calculation unit 13e. Note that, when the switching unit 13c is switched to use the standard transport speed 14a, the operations of the time difference calculation unit 13a and the transport speed calculation unit 13b may be suspended.
 通過時間算出部13dは、タイミングセンサ部11からセンサBおよびセンサC(図1参照)の信号を受け取り、センサBが検出した硬貨100の通過時間およびセンサCが検出した硬貨100の通過時間を算出する処理を行う処理部である。 The passage time calculation unit 13d receives signals from the sensors B and C (see FIG. 1) from the timing sensor unit 11, and calculates the passage time of the coin 100 detected by the sensor B and the passage time of the coin 100 detected by the sensor C. It is a processing part which performs the process to perform.
 ここで、通過時間とは、各センサ(センサAまたはセンサB)が硬貨100を検出してから硬貨100を検出しなくなるまでの時間を指す。なお、通過時間算出部13dは、検出した各通過時間を弦長算出部13eへ渡す処理を併せて行う。 Here, the passing time indicates the time from when each sensor (sensor A or sensor B) detects the coin 100 until the coin 100 is no longer detected. The passage time calculation unit 13d also performs a process of passing each detected passage time to the chord length calculation unit 13e.
 弦長算出部13eは、切替算出部13eから受け取った搬送速度、通過時間算出部13dから受け取った各通過時間に基づき、図1に示した弦長Mおよび弦長Nを算出する処理を行う処理部である。ここで、搬送速度をv、センサBに係る通過時間をt、センサCに係る通過時間をtとすると、弦長Mは、式「M=v×t」とあらわさ、弦長Nは、式「N=v×t」とあわわされる。なお、弦長算出部13eは、算出した各弦長を径算出部13fへ渡す処理を併せて行う。 The chord length calculation unit 13e performs a process of calculating the chord length M and the chord length N illustrated in FIG. 1 based on the transport speed received from the switching calculation unit 13e and the passage times received from the passage time calculation unit 13d. Part. Here, when the conveyance speed is v, the passage time related to the sensor B is t m , and the passage time related to the sensor C is t n , the chord length M is expressed by the expression “M = v × t m ”, and the chord length N Is expressed as “N = v × t n ”. The chord length calculation unit 13e also performs a process of passing each calculated chord length to the diameter calculation unit 13f.
 径算出部13fは、弦長算出部13eから受け取った各弦長(弦長Mおよび弦長N)およびセンサ配置情報14bに基づき、硬貨の半径rを算出する処理を行う処理部である。ここで、径算出部13fが行う径算出処理の詳細な内容について図5~図7を用いて説明しておく。 The diameter calculation unit 13f is a processing unit that performs a process of calculating the radius r of the coin based on each string length (string length M and string length N) received from the string length calculation unit 13e and the sensor arrangement information 14b. Here, the detailed contents of the diameter calculating process performed by the diameter calculating unit 13f will be described with reference to FIGS.
 図5は、2つのタイミングセンサ(センサBおよびセンサC)を使用した場合における径算出処理を説明するための図である。なお、同図の(A)には、硬貨100、センサBおよびセンサCの位置関係を示しており、同図の(B)には、センサBおよびセンサCによって検出される信号を示している。また、硬貨100は、X軸と平行な搬送方向31へ搬送されるものとする。 FIG. 5 is a diagram for explaining a diameter calculation process when two timing sensors (sensor B and sensor C) are used. In addition, (A) of the figure shows the positional relationship between the coin 100, the sensor B, and the sensor C, and (B) of the figure shows the signals detected by the sensor B and the sensor C. . Moreover, the coin 100 shall be conveyed by the conveyance direction 31 parallel to a X-axis.
 図5の(A)に示したように、X軸からセンサBまでの距離をγ、X軸からセンサCまでの距離をβとする。なお、γおよびβは、センサ配置情報14bに含まれるものとする。また、硬貨100について、半径をr、中心点をo、センサBによって検出される弦の一端をm、他端をm、センサCによって検出される弦の一端をn、他端をnとする。そして、中心点oからX軸へ引いた垂線と、線分mとの交点をp、線分nとの交点をqとする。 As shown in FIG. 5A, the distance from the X axis to the sensor B is γ, and the distance from the X axis to the sensor C is β. Note that γ and β are included in the sensor arrangement information 14b. For the coin 100, the radius is r, the center point is o, one end of the string detected by the sensor B is m 1 , the other end is m 2 , one end of the string detected by the sensor C is n 1 , and the other end is and n 2. Then, the intersection of the perpendicular drawn from the center point o to the X axis and the line segment m 1 m 2 is p, and the intersection of the line segment n 1 n 2 is q.
 また、線分mpおよび線分mpの長さをmとし、線分nqおよび線分nqの長さをqとする。この場合、図1に示した弦長Mは式「M=2×m」と、弦長Nは式「N=2×n」と、それぞれあらわされる。そして、計算の便宜上、硬貨100とX軸との距離をgとする。なお、gは、未知の値であるが、最終的には、消去されることになる。また、gの値は、センサBおよびセンサCが硬貨100を検出している期間において一定であると仮定する。 In addition, the length of the line segment m 1 p and the line segment m 2 p is m, and the length of the line segment n 1 q and the line segment n 2 q is q. In this case, the chord length M shown in FIG. 1 is represented by an expression “M = 2 × m”, and the chord length N is represented by an expression “N = 2 × n”. For convenience of calculation, let g be the distance between the coin 100 and the X axis. Note that g is an unknown value, but will eventually be erased. Further, it is assumed that the value of g is constant during a period in which the sensor B and the sensor C are detecting the coin 100.
 ここで、三角形ompについてピタゴラスの定理(三平方の定理)を適用すると、
Figure JPOXMLDOC01-appb-M000001
式(1)が得られる。ここで、mについては、センサBによって検出される通過時間をtとし、標準搬送速度14aをvstatとすると、式「m=(vstat×t)/2」とあらわされる。
Here, applying the Pythagorean theorem (three square theorem) to the triangle om 2 p,
Figure JPOXMLDOC01-appb-M000001
Equation (1) is obtained. Here, with respect to m, when the passing time detected by the sensor B is t m and the standard transport speed 14a is v stat , the expression is “m = (v stat × t m ) / 2”.
 また、三角形onpについて同じくピタゴラスの定理を適用すると、
Figure JPOXMLDOC01-appb-M000002
式(2)が得られる。ここで、nについては、センサCによって検出される通過時間をtとし、標準搬送速度14aをvstatとすると、式「n=(vstat×t)/2」とあらわされる。
Similarly, applying the Pythagorean theorem to the triangle on 2 p,
Figure JPOXMLDOC01-appb-M000002
Equation (2) is obtained. Here, n is represented by the expression “n = (v stat × t n ) / 2” where the passing time detected by the sensor C is t n and the standard transport speed 14a is v stat .
 そして、式(1)および式(2)から未知の変数であるgを消去し、
Figure JPOXMLDOC01-appb-M000003
式(3)のようにaを定義すると、半径rは、
Figure JPOXMLDOC01-appb-M000004
式(4)であらわされる。なお、式(4)中の「sqrt」は、平方根をあらわしている。
And g which is an unknown variable is deleted from Formula (1) and Formula (2),
Figure JPOXMLDOC01-appb-M000003
If a is defined as in Equation (3), the radius r is
Figure JPOXMLDOC01-appb-M000004
It is expressed by equation (4). Note that “sqrt” in Expression (4) represents a square root.
 ここで、式(3)の右辺に含まれるm、n、βおよびγは、既知の値である。そして、式(4)の右辺に含まれるa、mおよびγについても既知の値である。したがって、式(4)を用いることで、半径rを算出することができる。 Here, m, n, β and γ included in the right side of Expression (3) are known values. And a, m, and γ included in the right side of Expression (4) are also known values. Therefore, the radius r can be calculated by using the equation (4).
 また、図5の(B)に示したように、センサBおよびセンサCからの信号は、同図に示した時間軸(T)について変動する。ここで、センサBからの信号の立ち上がりは点mに、立ち下がりは点mに、それぞれ対応しており、通過時間tは、立ち上がりから立ち下がりまでの時間となる。また、センサCからの信号の立ち上がりは点nに、立ち下がりは点nに、それぞれ対応しており、通過時間tは、立ち上がりから立ち下がりまでの時間となる。 Further, as shown in FIG. 5B, the signals from the sensors B and C fluctuate with respect to the time axis (T) shown in the figure. Here, the rise of the signal from the sensor B corresponds to the point m 1 , and the fall corresponds to the point m 2 , and the passing time t m is the time from the rise to the fall. The rising edge of the signal from the sensor C corresponds to the point n 1 and the falling edge corresponds to the point n 2 , and the passing time t n is the time from the rising edge to the falling edge.
 なお、既に説明したように、図5の(B)に示したtを用いてmが算出され、図5の(B)に示したtを用いてnが算出される。また、図5の(B)に示したtは、図4に示した測定パルス発生回路11gによって適宜リセットされるものとする。たとえば、かかるリセットのタイミングとしては、センサBに対して硬貨100が突入したタイミングとすることができる。 As already described, m is calculated using t m shown in FIG. 5B, and n is calculated using t n shown in FIG. 5B. Further, t 0 shown in FIG. 5B is appropriately reset by the measurement pulse generating circuit 11g shown in FIG. For example, the reset timing may be the timing when the coin 100 enters the sensor B.
 次に、3つのタイミングセンサ(センサA、センサBおよびセンサC)を使用した場合における径算出処理について図6を用いて説明する。図6は、3つのタイミングセンサ(センサA、センサBおよびセンサC)を使用した場合における径算出処理を説明するための図である。なお、図6において図5と同一の要素には同一の符号を付し、かかる要素についての説明を省略することとする。 Next, a diameter calculation process when three timing sensors (sensor A, sensor B, and sensor C) are used will be described with reference to FIG. FIG. 6 is a diagram for explaining a diameter calculation process when three timing sensors (sensor A, sensor B, and sensor C) are used. In FIG. 6, the same elements as those in FIG. 5 are denoted by the same reference numerals, and description of these elements is omitted.
 なお、同図の(A)には、硬貨100、センサA、センサBおよびセンサCの位置関係を示しており、同図の(B)には、センサAおよびセンサBによって検出される信号を示している。また、硬貨100は、X軸と平行な搬送方向31へ搬送されるものとする。 Note that (A) in the figure shows the positional relationship between the coin 100, sensor A, sensor B, and sensor C, and (B) in the figure shows the signals detected by the sensor A and sensor B. Show. Moreover, the coin 100 shall be conveyed by the conveyance direction 31 parallel to a X-axis.
 図6の(A)に示したように、3つのタイミングセンサを使用する場合は、センサAをさらに備える点のみが、図5の(A)に示した場合と異なる。センサAは、X軸からの距離がセンサBと同一のγであり、センサBの位置をX軸に沿って距離εだけ上流側へ平行移動した位置に設けられる。なお、εは、センサ配置情報14bに含まれるものとする。 As shown in FIG. 6A, when three timing sensors are used, only the point that the sensor A is further provided is different from the case shown in FIG. The sensor A is provided at a position where the distance from the X-axis is the same γ as that of the sensor B, and the position of the sensor B is translated upstream by a distance ε along the X-axis. Note that ε is included in the sensor arrangement information 14b.
 そして、3つのタイミングセンサを使用する場合には、上記した式(1)に含まれるmおよび式(2)に含まれるnの算出手順が、図5の説明とは異なる。すなわち、図5の説明で用いた標準搬送速度14a(vstat)の代わりに、図6の(B)に示したtdiffに基づいて動的に算出した搬送速度vを用いてmおよびnを算出する。 When three timing sensors are used, the calculation procedure of m included in the above equation (1) and n included in the equation (2) is different from the description of FIG. That is, instead of the standard transport speed 14a (v stat ) used in the description of FIG. 5, m and n are set using the transport speed v dynamically calculated based on t diff shown in FIG. calculate.
 具体的には、図6の(B)に示したように、センサAの信号と、センサBの信号との時間差をtdiffとする。この場合、搬送速度vは、式「v=ε/tdiff」で算出することができる。そして、図5の場合と同様に、センサBによって検出される通過時間をtとすると、mは式「m=(v×t)/2」で、センサCによって検出される通過時間をtとすると、nは式「n=(v×t)/2」で、それぞれあらわされる。 Specifically, as shown in FIG. 6B, the time difference between the sensor A signal and the sensor B signal is set to t diff . In this case, the conveyance speed v can be calculated by the equation “v = ε / t diff ”. Similarly to the case of FIG. 5, when the passing time detected by the sensor B is t m , m is an expression “m = (v × t m ) / 2”, and the passing time detected by the sensor C is Assuming t n , n is represented by the expression “n = (v × t n ) / 2”.
 このように、図6の(A)に示したセンサA、センサBおよびセンサCを用いることとすれば、搬送速度に変動がある場合であっても、最新の搬送速度を算出することができるので、半径rの算出精度をさらに高めることが可能となる。 As described above, if the sensors A, B, and C shown in FIG. 6A are used, the latest transport speed can be calculated even when the transport speed varies. Therefore, it is possible to further increase the calculation accuracy of the radius r.
 なお、図6の(A)では、センサAをセンサBの上流側に設ける場合について示したが、X軸からの距離がセンサBと同一のγであれば、センサBの下流側に設けることとしてもよい。また、センサAを、X軸からの距離がセンサCと同一のβとなるように、センサCの上流側または下流側に設けることとしてもよい。 6A shows the case where the sensor A is provided on the upstream side of the sensor B. However, if the distance from the X axis is the same γ as the sensor B, the sensor A is provided on the downstream side of the sensor B. It is good. Further, the sensor A may be provided on the upstream side or the downstream side of the sensor C so that the distance from the X axis is the same β as the sensor C.
 ところで、図5および図6では、センサBとX軸との距離γ、センサCとX軸との距離βを用いて硬貨100の半径rを算出する場合について示したが、センサBとセンサCとの距離hを用いて半径rを算出することとしてもよい。 5 and 6 show the case where the radius r of the coin 100 is calculated using the distance γ between the sensor B and the X axis and the distance β between the sensor C and the X axis. Alternatively, the radius r may be calculated using the distance h.
 また、図5および図6では、センサBおよびセンサCをX軸と直交する同一の直交軸上に配置した場合について示したが、センサBおよびセンサCを同一の直交軸上に配置しないこととしてもよい。そこで、以下では、径算出処理の変形例について図7を用いて説明する。 5 and 6 show the case where the sensor B and the sensor C are arranged on the same orthogonal axis orthogonal to the X axis, but the sensor B and the sensor C are not arranged on the same orthogonal axis. Also good. Therefore, in the following, a modified example of the diameter calculation process will be described with reference to FIG.
 図7は、径算出処理の変形例を示す図である。なお、図7において図5あるいは図6と同一の要素には同一の符号を付し、かかる要素についての説明を省略することとする。図7の(A)に示したように、センサBとセンサCとの距離をhとする。なお、距離hは、センサ配置情報14bに含まれるものとする。 FIG. 7 is a diagram showing a modification of the diameter calculation process. In FIG. 7, the same elements as those in FIG. 5 or FIG. 6 are denoted by the same reference numerals, and description of such elements is omitted. As shown in FIG. 7A, the distance between the sensor B and the sensor C is h. The distance h is included in the sensor arrangement information 14b.
 ここで、線分opの長さを仮にsとおき、三角形ompについてピタゴラスの定理(三平方の定理)を適用すると、
Figure JPOXMLDOC01-appb-M000005
式(5)が得られる。ここで、mについては、センサBによって検出される通過時間をtとし、標準搬送速度14aをvstatとすると、式「m=(vstat×t)/2」とあらわされる。
Here, assuming that the length of the line segment op is s and applying the Pythagorean theorem (three squares theorem) to the triangle om 2 p,
Figure JPOXMLDOC01-appb-M000005
Equation (5) is obtained. Here, with respect to m, when the passing time detected by the sensor B is t m and the standard transport speed 14a is v stat , the expression is “m = (v stat × t m ) / 2”.
 また、三角形onqについて同じくピタゴラスの定理を適用すると、
Figure JPOXMLDOC01-appb-M000006
式(6)が得られる。ここで、nについては、センサCによって検出される通過時間をtとし、標準搬送速度14aをvstatとすると、式「n=(vstat×t)/2」とあらわされる。
Similarly, applying the Pythagorean theorem to the triangle on 2 q
Figure JPOXMLDOC01-appb-M000006
Equation (6) is obtained. Here, n is represented by the expression “n = (v stat × t n ) / 2” where the passing time detected by the sensor C is t n and the standard transport speed 14a is v stat .
 そして、式(5)および式(6)から半径rを消去すると、未知の変数であるsは、
Figure JPOXMLDOC01-appb-M000007
式(7)であらわされる。
Then, if the radius r is eliminated from the equations (5) and (6), the unknown variable s becomes
Figure JPOXMLDOC01-appb-M000007
It is expressed by equation (7).
 つづいて、式(5)のsに、式(7)の右辺を代入することで、未知の変数であるsを消去すると、半径rは、
Figure JPOXMLDOC01-appb-M000008
式(8)であらわされる。ここで、式(8)の右辺に含まれるm、nおよびhは、既知の値であるので、半径rを算出することができる。
Subsequently, by substituting the right side of Equation (7) into s in Equation (5), s, which is an unknown variable, is deleted, and the radius r becomes
Figure JPOXMLDOC01-appb-M000008
It is expressed by equation (8). Here, m, n, and h included in the right side of Expression (8) are known values, so that the radius r can be calculated.
 なお、図7の(A)では、センサBおよびセンサCをX軸と直交する同一軸上に配置した場合について示したが、センサBおよびセンサCを同一軸上に配置する必要はない。たとえば、図7の(B)に示したように、センサBをセンサAの位置においた場合、すなわち、センサBの代わりにセンサAを用いた場合について説明すると、センサAとセンサCとの距離のY軸成分をhとすれば、式(8)を用いて半径rを算出することができる。 7A shows the case where the sensor B and the sensor C are arranged on the same axis orthogonal to the X axis, it is not necessary to arrange the sensor B and the sensor C on the same axis. For example, as shown in FIG. 7B, the case where the sensor B is placed at the position of the sensor A, that is, the case where the sensor A is used instead of the sensor B will be described. The distance between the sensor A and the sensor C If the Y-axis component of h is h, the radius r can be calculated using equation (8).
 そして、この場合、図6の(A)に示した場合と同様に、センサAとセンサCとの距離のX軸成分をεとすれば、搬送速度vは、式「v=ε/tdiff」で算出することができるので、センサAによって検出される通過時間をtとすると、mは式「m=(v×t)/2」で、センサCによって検出される通過時間をtとすると、nは式「n=(v×t)/2」で、それぞれあらわされる。 In this case, as in the case shown in FIG. 6A, if the X-axis component of the distance between the sensor A and the sensor C is ε, the transport speed v can be expressed by the equation “v = ε / t diff Therefore, when the passing time detected by the sensor A is t m , m is an expression “m = (v × t m ) / 2”, and the passing time detected by the sensor C is t Assuming n , n is represented by the expression “n = (v × t n ) / 2”.
 このように、センサBとセンサCとを結んだ線がY軸と非平行となるように、センサBおよびセンサCを配置することとすれば、2個のタイミングセンサのみを用いつつ、動的な搬送速度vに基づいて半径rを算出することができる。 As described above, if the sensor B and the sensor C are arranged so that the line connecting the sensor B and the sensor C is not parallel to the Y axis, only two timing sensors are used, The radius r can be calculated based on the correct transport speed v.
 図2の説明に戻り、硬貨判別装置10についての説明をつづける。判別部13gは、径算出部13fから受け取った硬貨100の半径、硬貨識別センサ部12から受け取った信号および閾値情報14cに基づき、硬貨100の最終的な判別を行う処理部である。 Returning to the description of FIG. 2, the description of the coin discriminating apparatus 10 will be continued. The determination unit 13g is a processing unit that finally determines the coin 100 based on the radius of the coin 100 received from the diameter calculation unit 13f, the signal received from the coin identification sensor unit 12, and the threshold information 14c.
 ここで、閾値情報14cには、硬貨100の金種ごとに各信号値についての判定枠が含まれている。たとえば、硬貨100の半径または直径について、許容される下限値および上限値の組が、金種ごとに含まれている。 Here, the threshold information 14c includes a determination frame for each signal value for each denomination of the coin 100. For example, a set of allowable lower limit value and upper limit value for the radius or diameter of the coin 100 is included for each denomination.
 判別部13gは、径算出部13fから受け取った半径、硬貨識別センサ部12から受け取った材質に関する信号値、厚みに関する信号値などについて、閾値情報14cを適用していくことで、硬貨100の金種や真偽を判別する。 The determination unit 13g applies the threshold information 14c to the radius received from the diameter calculation unit 13f, the signal value related to the material received from the coin identification sensor unit 12, the signal value related to the thickness, and the like, thereby denomination of the coin 100. And whether it is true or false.
 記憶部14は、ハードディスクドライブや不揮発性メモリといった記憶デバイスで構成される記憶部であり、標準搬送速度14a、センサ配置情報14bおよび閾値情報14cを記憶する。 The storage unit 14 is a storage unit configured by a storage device such as a hard disk drive or a non-volatile memory, and stores a standard transport speed 14a, sensor arrangement information 14b, and threshold information 14c.
 標準搬送速度14aは、図示しない搬送機構が、硬貨100がタイミングセンサ部11を通過する際の標準的な搬送速度であり、あらかじめ静的な値が格納されている。また、センサ配置情報14bは、センサA、センサBあるいはセンサCのXY座標軸における絶対位置あるいは相対位置を定義した情報である。なお、閾値情報14cについては、既に説明したので、ここでの説明を省略する。 The standard transport speed 14a is a standard transport speed when the transport mechanism (not shown) passes the coin 100 through the timing sensor unit 11, and a static value is stored in advance. The sensor arrangement information 14b is information defining an absolute position or a relative position of the sensor A, sensor B, or sensor C on the XY coordinate axes. Since the threshold information 14c has already been described, the description thereof is omitted here.
 次に、硬貨判別装置10が実行する処理手順について図8を用いて説明する。図8は、硬貨判別装置10が実行する処理手順を示すフローチャートである。なお、同図では、1個の硬貨100についての処理手順を示しており、実際には、図8に示したフローチャートが連続して実行される。 Next, a processing procedure executed by the coin discriminating apparatus 10 will be described with reference to FIG. FIG. 8 is a flowchart showing a processing procedure executed by the coin discriminating apparatus 10. In the figure, the processing procedure for one coin 100 is shown, and in actuality, the flowchart shown in FIG. 8 is continuously executed.
 硬貨判別装置10は、測定カウンタをリセットし(ステップS101)、各センサ(センサA、センサBおよびセンサC)においてON/OFFの時間測定が完了したか否かを判定する(ステップS102)。 The coin discriminating apparatus 10 resets the measurement counter (step S101), and determines whether or not the ON / OFF time measurement is completed in each sensor (sensor A, sensor B, and sensor C) (step S102).
 そして、すべてのセンサ(センサA、センサBおよびセンサC)において時間測定が完了した場合には(ステップS102,Yes)、搬送速度算出部13bは、搬送速度v(v=ε/tdiff)を算出する(ステップS103)。なお、ステップS102の判定条件を満たさなかった場合には(ステップS102,No)、ステップS102の処理を繰り返す。 When the time measurement is completed in all sensors (sensor A, sensor B, and sensor C) (step S102, Yes), the conveyance speed calculation unit 13b sets the conveyance speed v (v = ε / t diff ). Calculate (step S103). If the determination condition in step S102 is not satisfied (No in step S102), the process in step S102 is repeated.
 つづいて、弦長算出部13eは、半弦m(m=(v×t)/2)および半弦n(n=(v×t)/2)を算出し(ステップS104)、径算出部13fは、式(4)または式(8)に基づいて半径rを算出する(ステップS105)。 Subsequently, the chord length calculation unit 13e calculates a half chord m (m = (v × t m ) / 2) and a half chord n (n = (v × t n ) / 2) (step S104), and the diameter. The calculating unit 13f calculates the radius r based on the formula (4) or the formula (8) (step S105).
 そして、判別部13gは、最初の閾値情報14cをセットする(ステップS106)。つづいて、半径rが閾値情報14cの条件に合致するか否かを判定し(ステップS107)、合致した場合には(ステップS107,Yes)、閾値情報14cに対応する金種フラグをONにする(ステップS108)。一方、ステップS107の判定条件を満たさなかった場合には(ステップS107,No)、閾値情報14cに対応する金種フラグをOFFにする(ステップS109)。 And the discrimination | determination part 13g sets the first threshold value information 14c (step S106). Subsequently, it is determined whether or not the radius r matches the condition of the threshold information 14c (step S107). If the radius r matches (step S107, Yes), the denomination flag corresponding to the threshold information 14c is turned ON. (Step S108). On the other hand, when the determination condition of step S107 is not satisfied (step S107, No), the denomination flag corresponding to the threshold information 14c is turned OFF (step S109).
 つづいて、未判定の閾値情報14cがあるか否かを判定し(ステップS110)、未判定の閾値情報14cがある場合には(ステップS110,Yes)、次の閾値情報14cをセットしたうえで(ステップS111)、ステップS107以降の処理を繰り返す。一方、ステップS110の判定条件を満たさなかった場合には(ステップS110,No)、処理を終了する。 Subsequently, it is determined whether there is undetermined threshold information 14c (step S110). If there is undetermined threshold information 14c (step S110, Yes), the next threshold information 14c is set. (Step S111), the processing after Step S107 is repeated. On the other hand, when the determination condition of step S110 is not satisfied (step S110, No), the process ends.
 上述してきたように、本実施例では、タイミングセンサ部が、硬貨の表面または裏面が接する搬送面において搬送方向と非平行な直線上に設けられ円形物体の有無を検出する第1のセンサおよび第2のセンサを用いて硬貨を検出し、通過時間算出部が、第1のセンサが硬貨を検出してからこの硬貨を検出しなくなるまでの時間である第1の通過時間と、第2のセンサが硬貨を検出してからこの硬貨を検出しなくなるまでの時間である第2の通過時間とを算出することとした。 As described above, in this embodiment, the timing sensor unit is provided on a straight line that is not parallel to the transport direction on the transport surface that contacts the front or back surface of the coin, A coin is detected using the second sensor, and a first passage time, which is a time from when the first sensor detects a coin until the passage time calculation unit stops detecting the coin, and a second sensor The second passage time, which is the time from when a coin is detected until it is no longer detected, is calculated.
 また、径算出部が、第1のセンサと第2のセンサとの距離を搬送面において搬送方向と直交する直交軸へ射影した直交距離、算出された第1の通過時間、第2の通過時間および所定の搬送速度に基づいて硬貨の直径を算出するように硬貨判別装置を構成した。したがって、規則的に配置した安価なタイミングセンサを用いて硬貨の径を算出することによって、装置コストを低減しつつ、硬貨の径の検出精度を向上させることができる。 In addition, the diameter calculation unit projects the distance between the first sensor and the second sensor onto the orthogonal axis orthogonal to the conveyance direction on the conveyance surface, the calculated first passage time, and the second passage time. The coin discriminating apparatus is configured to calculate the diameter of the coin based on a predetermined conveyance speed. Therefore, by calculating the diameter of the coin using an inexpensive timing sensor arranged regularly, the accuracy of detecting the diameter of the coin can be improved while reducing the apparatus cost.
 以上のように、本発明に係る径検出装置および径検出方法は、円形物体の直径あるいは半径を、低コストかつ高精度に算出したい場合に有用であり、特に、硬貨判別装置など硬貨の径を金種判別要素として使用する装置への適用に適している。 As described above, the diameter detection device and the diameter detection method according to the present invention are useful when it is desired to calculate the diameter or radius of a circular object with low cost and high accuracy. It is suitable for application to devices used as denomination discrimination elements.

Claims (7)

  1.  搬送される円形物体の径を検出する径検出装置であって、
     円形物体の表面または裏面が接する搬送面において搬送方向と非平行な直線上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出する検出手段と、
     前記第1のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第1の通過時間と、前記第2のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第2の通過時間とを算出する通過時間算出手段と、
     前記第1のセンサと前記第2のセンサとの距離を前記搬送面において前記搬送方向と直交する直交軸へ射影した直交距離、前記通過時間算出手段によって算出された前記第1の通過時間、前記第2の通過時間および所定の搬送速度に基づいて円形物体の径を算出する径算出手段と
     を備えたことを特徴とする径検出装置。
    A diameter detection device for detecting the diameter of a circular object to be conveyed,
    Detection means for detecting the presence or absence of a circular object using a first sensor and a second sensor provided on a straight line that is not parallel to the conveyance direction on a conveyance surface that contacts the front surface or the back surface of the circular object;
    A first passing time, which is a time from when the first sensor detects a circular object until it stops detecting the circular object, and a detection of the circular object after the second sensor detects a circular object Passing time calculating means for calculating a second passing time which is a time until it stops,
    An orthogonal distance obtained by projecting a distance between the first sensor and the second sensor onto an orthogonal axis orthogonal to the conveyance direction on the conveyance surface, the first passage time calculated by the passage time calculation unit, A diameter detecting device comprising: a diameter calculating means for calculating a diameter of a circular object based on a second passage time and a predetermined transport speed.
  2.  前記検出手段は、
     同一の前記直交軸上に設けられた前記第1のセンサおよび前記第2のセンサを用いて円形物体の有無を検出することを特徴とする請求項1に記載の径検出装置。
    The detection means includes
    The diameter detection apparatus according to claim 1, wherein the presence / absence of a circular object is detected using the first sensor and the second sensor provided on the same orthogonal axis.
  3.  前記検出手段は、
     前記第1のセンサまたは前記第2のセンサの位置から前記搬送方向と平行に移動した位置に設けられた第3のセンサをさらに用いて円形物体の有無を検出し、
     前記径算出手段は、
     前記第3のセンサと、前記第1のセンサまたは前記第2のセンサとの検出タイミングのずれに基づいて前記搬送速度を算出したうえで、当該搬送速度に基づいて円形物体の径を算出することを特徴とする請求項2に記載の径検出装置。
    The detection means includes
    The presence or absence of a circular object is further detected using a third sensor provided at a position moved parallel to the transport direction from the position of the first sensor or the second sensor,
    The diameter calculating means includes
    After calculating the conveyance speed based on a detection timing shift between the third sensor and the first sensor or the second sensor, the diameter of the circular object is calculated based on the conveyance speed. The diameter detection device according to claim 2.
  4.  前記検出手段は、
     異なる前記直交軸上にそれぞれ設けられた前記第1のセンサおよび前記第2のセンサを用いて円形物体の有無を検出し、
     前記径算出手段は、
     前記第1のセンサと前記第2のセンサとの検出タイミングのずれに基づいて前記搬送速度を算出したうえで、当該搬送速度に基づいて円形物体の径を算出することを特徴とする請求項1に記載の径検出装置。
    The detection means includes
    Detecting the presence or absence of a circular object using the first sensor and the second sensor respectively provided on different orthogonal axes;
    The diameter calculating means includes
    2. The diameter of a circular object is calculated based on the transport speed after calculating the transport speed based on a difference in detection timing between the first sensor and the second sensor. The diameter detection device according to 1.
  5.  前記径算出手段は、
     前記第1の通過時間と前記搬送速度とを乗算することで前記第1のセンサの位置を通過する円形物体の第1の弦長を算出するとともに、前記第2の通過時間と前記搬送速度とを乗算することで前記第2のセンサの位置を通過する円形物体の第2の弦長を算出したうえで、前記第1の弦長、前記第2の弦長および前記直交距離に基づいて円形物体の径を算出することを特徴とする請求項1に記載の径検出装置。
    The diameter calculating means includes
    The first chord length of the circular object passing through the position of the first sensor is calculated by multiplying the first passage time and the conveyance speed, and the second passage time and the conveyance speed are calculated. And calculating a second chord length of the circular object passing through the position of the second sensor, and then rounding based on the first chord length, the second chord length, and the orthogonal distance. The diameter detection apparatus according to claim 1, wherein the diameter of the object is calculated.
  6.  前記円形物体は、
     硬貨であって、
     前記検出手段の前記第1のセンサまたは前記第2のセンサは、
     前記硬貨の穴部が通過する位置に設けられたことを特徴とする請求項1に記載の径検出装置。
    The circular object is
    Coins,
    The first sensor or the second sensor of the detection means is:
    The diameter detection device according to claim 1, wherein the diameter detection device is provided at a position through which the hole of the coin passes.
  7.  搬送される円形物体の径を検出する径検出方法であって、
     円形物体の表面または裏面が接する搬送面搬送面において搬送方向と非平行な直線上に設けられた第1のセンサおよび第2のセンサを用いて円形物体の有無を検出する検出工程と、
     前記第1のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第1の通過時間と、前記第2のセンサが円形物体を検出してから当該円形物体を検出しなくなるまでの時間である第2の通過時間とを算出する通過時間算出工程と、
     前記第1のセンサと前記第2のセンサとの距離を前記搬送面において前記搬送方向と直交する直交軸へ射影した直交距離、前記通過時間算出工程によって算出された前記第1の通過時間、前記第2の通過時間および所定の搬送速度に基づいて円形物体の径を算出する径算出工程と
     を含んだことを特徴とする径検出方法。
    A diameter detection method for detecting a diameter of a circular object to be conveyed,
    A detection step of detecting the presence or absence of a circular object using a first sensor and a second sensor provided on a straight line that is not parallel to the transport direction on a transport surface transport surface that is in contact with the front surface or the back surface of the circular object;
    A first passing time, which is a time from when the first sensor detects a circular object until it stops detecting the circular object, and a detection of the circular object after the second sensor detects a circular object A transit time calculating step for calculating a second transit time that is a time until it stops,
    An orthogonal distance obtained by projecting a distance between the first sensor and the second sensor onto an orthogonal axis orthogonal to the conveying direction on the conveying surface, the first passing time calculated by the passing time calculating step, And a diameter calculating step of calculating a diameter of the circular object based on the second passage time and a predetermined transport speed.
PCT/JP2009/055071 2009-03-16 2009-03-16 Diameter detecting device and diameter detecting method WO2010106622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055071 WO2010106622A1 (en) 2009-03-16 2009-03-16 Diameter detecting device and diameter detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055071 WO2010106622A1 (en) 2009-03-16 2009-03-16 Diameter detecting device and diameter detecting method

Publications (1)

Publication Number Publication Date
WO2010106622A1 true WO2010106622A1 (en) 2010-09-23

Family

ID=42739293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055071 WO2010106622A1 (en) 2009-03-16 2009-03-16 Diameter detecting device and diameter detecting method

Country Status (1)

Country Link
WO (1) WO2010106622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013778A (en) * 2020-09-11 2020-12-01 焦作大学 Online detection system and method for processing precision of cylinder sleeve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492396A (en) * 1977-12-29 1979-07-21 Daiwa Seiko Co Coin extinguishing method and apparatus
JPS59182303A (en) * 1983-02-10 1984-10-17 ソシエテ・アノニム・メセレ Method of optically measuring size of discoid body
JPS61275611A (en) * 1985-05-31 1986-12-05 Universal:Kk Measuring instrument for coin diameter
JPS6246976U (en) * 1985-09-11 1987-03-23
JPS63188776U (en) * 1987-05-22 1988-12-05
JPH0432709A (en) * 1990-05-30 1992-02-04 Odawara Kiki:Kk Method and instrument for measuring external diameter of coin
JPH0464006A (en) * 1990-07-03 1992-02-28 Glory Ltd Discriminating apparatus for diameter of circular object
JPH08315209A (en) * 1995-05-23 1996-11-29 Fuji Electric Co Ltd Coin discriminating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492396A (en) * 1977-12-29 1979-07-21 Daiwa Seiko Co Coin extinguishing method and apparatus
JPS59182303A (en) * 1983-02-10 1984-10-17 ソシエテ・アノニム・メセレ Method of optically measuring size of discoid body
JPS61275611A (en) * 1985-05-31 1986-12-05 Universal:Kk Measuring instrument for coin diameter
JPS6246976U (en) * 1985-09-11 1987-03-23
JPS63188776U (en) * 1987-05-22 1988-12-05
JPH0432709A (en) * 1990-05-30 1992-02-04 Odawara Kiki:Kk Method and instrument for measuring external diameter of coin
JPH0464006A (en) * 1990-07-03 1992-02-28 Glory Ltd Discriminating apparatus for diameter of circular object
JPH08315209A (en) * 1995-05-23 1996-11-29 Fuji Electric Co Ltd Coin discriminating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013778A (en) * 2020-09-11 2020-12-01 焦作大学 Online detection system and method for processing precision of cylinder sleeve
CN112013778B (en) * 2020-09-11 2021-10-08 焦作大学 Online detection system and method for processing precision of cylinder sleeve

Similar Documents

Publication Publication Date Title
EP0143188A1 (en) Method of and device for detecting displacement of paper sheets
WO2001033204A1 (en) System and method for counting parts in multiple fields of view using machine vision
JPH0427595B2 (en)
JP2011161436A (en) System, apparatus, and method for object edge detection
JPH0649536B2 (en) 2 feeding detection device
EP0881604A1 (en) Bank apparatus with skew detection
WO2010106622A1 (en) Diameter detecting device and diameter detecting method
JP7190135B2 (en) Paper sheet identification device and paper sheet identification method
JP6478437B1 (en) Conveyance state judgment device
CA2788216C (en) Coin processing machine with dual sets of coin sensors
JP5198884B2 (en) Card reader
JP2009207645A (en) Token detection device
JP6376145B2 (en) Squareness measuring method and perpendicularity measuring apparatus for thick steel plate
JP2012093874A (en) Bill identification device
KR100576202B1 (en) Method for detecting medium using coordinate calculation
EP3692332B1 (en) Determining object attributes using photoelectric sensors
JP2012053774A (en) Bill identification device
JPH04137090A (en) Coin discrimination and counting device
JP2504618B2 (en) Coin discriminating and counting device
JP4972486B2 (en) Curl measuring device, curl measuring method, and image forming apparatus
JPH0831154B2 (en) Coin discriminating and counting device
JP2005241361A (en) Profile measuring method and profile measuring system for slab shape object to be measured
JPH0831157B2 (en) Paper leaf discriminating device
JP6115379B2 (en) Coin processing equipment
JPH02268210A (en) Method for measuring width and length of slab

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09841828

Country of ref document: EP

Kind code of ref document: A1