WO2010105487A1 - 长期演进系统中下行业务的接收方法与装置 - Google Patents

长期演进系统中下行业务的接收方法与装置 Download PDF

Info

Publication number
WO2010105487A1
WO2010105487A1 PCT/CN2009/076202 CN2009076202W WO2010105487A1 WO 2010105487 A1 WO2010105487 A1 WO 2010105487A1 CN 2009076202 W CN2009076202 W CN 2009076202W WO 2010105487 A1 WO2010105487 A1 WO 2010105487A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink service
station side
bearer
relay
service
Prior art date
Application number
PCT/CN2009/076202
Other languages
English (en)
French (fr)
Inventor
毛磊
马子江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to AU2009342312A priority Critical patent/AU2009342312B2/en
Priority to EP09841770.2A priority patent/EP2410786B1/en
Priority to BRPI0924843A priority patent/BRPI0924843A2/pt
Priority to US13/256,547 priority patent/US20120002595A1/en
Publication of WO2010105487A1 publication Critical patent/WO2010105487A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a service receiving technology for a user terminal, and more particularly to a method and a device for receiving a downlink service when there is a relay in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • an LTE enhanced network includes an evolved Node B (eNB, evolved Node B) and a relay station (RS, Relay Station), and the eNB provides the UE for the UE.
  • eNB evolved Node B
  • RS relay station
  • the service also performs data transmission and signaling interaction with several RSs under its control.
  • each RS communicates with both the eNB and the user equipment (UE, User Equipment) under the RS.
  • the eNB-to-RS link and the RS-to-UE link can use the same frequency resource, which is called in-band relay. It can also use different frequency resources, called out-of-band relay.
  • FIG. 2 is a schematic diagram of downlink data transmission when there is an intra-layout, as shown in FIG. 2, when the intra-band relay is transmitted, on one downlink, the eNB is controlled by the eNB in a certain/some subframe.
  • FIG. 3 is a schematic diagram of uplink data transmission when there is an intra-layout, as shown in FIG. 3, the same reason, when an RS receives uplink data from a UE it serves on a certain/some subframe, the RS is at this/ The uplink signals cannot be sent to the eNB at the same time on these subframes.
  • the network element RS needs to receive from its control network element such as eNB, GPRS gateway support node (GGSN, Gateway GPRS Support Node), general packet radio service (GPRS, General Packet) Radio Service), Radio Network Controller (RNC, Signal and data of the Radio Network Controller, ).
  • GGSN Gateway GPRS Support Node
  • GPRS General Packet
  • RNC Radio Network Controller
  • the control network element as an eNB as an example, in this/these subframes, the network element RS needs to receive data from its control network element eNB, and the RS cannot simultaneously send data to avoid interference caused by simultaneously transmitting and receiving data.
  • the cell under its control that is, the network element RS cannot transmit and receive data in one subframe at the same time.
  • the special subframes used for the information exchange between the RS and its control network element are called relay subframes, including the uplink relay subframe and the downlink relay subframe, where the uplink relay subframe is used for the RS to control the network.
  • the UE sends the response information, and the UE cannot send the uplink data to the RS.
  • the downlink relay subframe is used by the RS to receive data from its control network element, and the data in the subframe does not notify the UE to receive.
  • the RS and the subframe to which the serving UE performs information exchange is called a service subframe.
  • the RS sends a signal, and the UE performs reception.
  • the RS receives the UE. signal.
  • the channel conditions of user terminals located in different regions are different.
  • the user terminals located in the edge of the cell covered by the eNB and the RS jointly have poor channel conditions, and the user terminal cannot guarantee the received.
  • the data is correct and complete, and the eNB and the RS transmit the same service data at the same time or separately, which is equivalent to the network side diversity sending service data. If the user terminal can use this feature to separately receive the service data sent by the eNB and the RS, the user will be guaranteed.
  • the terminal receives the accuracy and integrity of the service data, and the communication quality of these user terminals is well guaranteed. However, current user terminals do not support this feature.
  • the main object of the present invention is to provide a receiving method and apparatus for downlink services in a long term evolution system, which can ensure the integrity of the service data received by the user terminal and improve the communication quality.
  • a method for receiving a downlink service in a long term evolution system includes:
  • the user terminal After receiving the downlink service configuration information of the network side, the user terminal acquires information about the bearer time slot of the same downlink service of the user terminal in the downlink service configuration information, and the bearer time slot of the relay station side;
  • the user terminal determines that the bearer slot on the base station side and the bearer slot on the relay station side are located Whether the channel quality of the bearer channel reaches a set threshold, and when the threshold value is not reached, the bearer time slot of the base station side and the bearer time slot of the relay station side are intercepted, and the base station side transmits the The downlink service and the downlink service sent by the relay station side are merged.
  • the method further includes:
  • the bearer time slot of the same downlink service of the user equipment on the base station side and the bearer time slot of the relay station side are located in carriers of the same frequency or different frequencies.
  • the downlink service configuration information further includes indication information of a relay mode used by the network side.
  • the user terminal determines that the relay mode used by the network side is the layer-one relay mode
  • the acquired downlink service of the base station side and the downlink service of the relay station side are combined at the physical layer.
  • the user terminal determines that the relay mode used by the network side is the layer two relay mode or the layer three relay mode
  • the obtained downlink service of the base station side and the downlink service of the relay station side are separately performed.
  • the physical layer and layer 2 are processed and then combined.
  • a method for receiving a downlink service in a long term evolution system includes:
  • the user terminal After receiving the downlink service configuration information of the network side, the user terminal acquires information about the bearer time slot of the same downlink service of the user terminal in the downlink service configuration information and the bearer time slot of the relay station side, and the interception station The bearer time slot on the base station side and the bearer time slot on the relay station side are obtained, and the downlink service on the base station side and the downlink service on the relay station side are acquired and combined.
  • the downlink service configuration information further includes indication information of a relay mode used by the network side.
  • the user terminal determines that the relay mode used by the network side is the layer-one relay mode
  • the acquired downlink service of the base station side and the downlink service of the relay station side are combined at the physical layer.
  • the user terminal determines that the relay mode used by the network side is a layer two relay mode or layer In the three-relay mode, the obtained downlink service on the base station side and the downlink service on the relay station side are respectively subjected to physical layer and layer 2 processing, and then combined.
  • a receiving device for a downlink service in a long term evolution system comprising:
  • a receiving unit configured to receive downlink service configuration information on the network side
  • a bearer information acquiring unit configured to acquire information of a bearer time slot of the same downlink service of the user terminal in the downlink service configuration information, and a bearer time slot of the relay station side;
  • a judging unit configured to determine whether the channel quality of the bearer slot on the base station side and the bearer channel where the bearer slot on the relay station side is located respectively reaches a set threshold, and triggers when the set threshold is not reached a service acquisition unit;
  • a first service acquiring unit configured to separately listen to a bearer time slot of the base station side and a bearer time slot of the relay station side, to acquire downlink service of the base station side and downlink service of the relay station side;
  • a merging unit configured to combine the acquired downlink service on the base station side and the downlink service on the relay station side.
  • the device further includes a second service acquiring unit,
  • the determining unit is further configured to: when it is determined that the channel quality of the bearer slot on the base station side and the bearer channel in the bearer channel where the bearer slot on the relay station is located reaches a set threshold, triggering the second service acquisition Unit
  • the second service acquiring unit is configured to directly listen to the bearer time slot corresponding to a bearer channel whose channel quality reaches a set threshold, and directly obtain the downlink service of the base station side and the downlink service of the relay station side.
  • the device further includes a determining unit, the determining unit is configured to determine a relay mode used by the network side;
  • the downlink service configuration information further includes indication information of a relay mode used by the network side;
  • the merging unit is configured to: the downlink service of the base station side and the downlink service of the relay station side acquired by the first service acquiring unit When the physical layer performs the merging, and the merging unit performs the physical layer and the layer 2 processing respectively on the downlink service of the base station side and the downlink service of the relay station side acquired by the first service acquiring unit Consolidate.
  • a receiving device for a downlink service in a long term evolution system comprising:
  • a receiving unit configured to receive downlink service configuration information on the network side
  • a bearer information acquiring unit configured to acquire information of a bearer time slot of the same downlink service of the user terminal in the downlink service configuration information, and a bearer time slot of the relay station side;
  • a service acquiring unit configured to separately listen to a bearer time slot of the base station side and a bearer time slot of the relay station side, to acquire downlink service of the base station side and downlink service of the relay station side; and a merging unit, which is configured The downlink service on the base station side and the downlink service on the relay station side that are acquired are merged.
  • the device further includes a determining unit, the determining unit is configured to determine a relay mode used by the network side;
  • the downlink service configuration information further includes indication information of a relay mode used by the network side;
  • the merging unit is configured to: the downlink service of the base station side acquired by the service acquiring unit and the downlink service of the relay station side are in physical When the layer is merged, the downlink service of the base station side and the downlink service of the relay station acquired by the service acquiring unit are respectively processed by the physical layer and the layer 2, and then combined.
  • the downlink service configuration information is notified to the user terminal, and the downlink service configuration information includes the bearer time slot on the base station side and the bearer time slot information on the relay station side, and the used relay.
  • the information such as the mode, in which the user terminal listens to the downlink service on the bearer time slot of the base station side and the bearer time slot on the relay station side, respectively, and combines the downlink services respectively detected, which is equivalent to performing the downlink service diversity.
  • Processing, receiving two copies of service data is better than data integrity of single-received service data, and is particularly suitable for co-covering with eNB and RS User terminal in the edge of the zone.
  • the invention improves the downlink service gain of the user terminal in the cell edge of the eNB and the RS, and ensures the communication quality of the terminal user.
  • FIG. 1 is a schematic structural diagram of an LTE enhanced network
  • Figure 2 is a schematic diagram of downlink data transmission when in-band relay
  • Figure 3 is a schematic diagram of uplink data transmission when there is an in-band relay
  • FIG. 4 is a flowchart of a method for receiving a downlink service in a long term evolution system according to the present invention
  • FIG. 5 is a flowchart of a method for receiving a downlink service in another long term evolution system according to the present invention
  • a schematic structural diagram of a receiving device of a downlink service in the system
  • Figure 7 is a block diagram showing the structure of a receiving apparatus for downlink services in another long term evolution system of the present invention.
  • the basic idea of the present invention is: after the network side downlink service is configured, the downlink service configuration information is notified to the user terminal, and the downlink service configuration information includes the bearer time slot of the base station side and the bearer time slot of the relay station side, and the used information.
  • the relay mode and other information such that the user terminal intercepts the downlink service on the bearer slot on the base station side and the bearer slot on the relay station side, and combines the downlink services respectively detected, which is equivalent to performing downlink
  • the diversity processing of the service, the receiving of the two service data is better than the data integrity of the single receiving service data, and is particularly suitable for the user terminal in the edge of the cell that the eNB and the RS jointly cover.
  • the invention improves the downlink service gain of the user terminal in the edge of the cell jointly covered by the eNB and the RS, and ensures the communication quality of the user terminal user.
  • Step 401 After receiving the downlink service configuration information of the network side, the user terminal acquires information about the bearer time slot of the same downlink service of the user terminal in the downlink service configuration information, and the bearer time slot of the relay station side.
  • the eNB is configured to perform the service configuration.
  • the eNB is the RS, the downlink frequency of the user equipment, the carrier frequency, the time slot or subframe carrying the downlink service, the modulation and coding mode, and the radio resource block.
  • the configuration is to notify the RS and the user terminal of the time slot of the base station side bearer service and the time slot of the relay station side bearer service, and the RS completes the configuration of the downlink service sent to the user terminal according to the service configuration information. Notifying the user terminal of the configuration information of the eNB may be completed by the eNB or by the RS.
  • the RS can directly forward the bearer subframe after receiving the downlink service, or re-instruct the service resource allocation indication according to the eNB. Forward the resource after it has been allocated.
  • the bearer time slot of the same downlink service of the same user terminal on the base station side and the bearer time slot of the relay station side may also be located in different frequency carriers, that is, when the relay station forwards the downlink service, the carrier used by the eNB may be different from the carrier used by the eNB.
  • the carrier of the relay station may be in the same subframe as the subframe number of the eNB carrying the service.
  • Step 402 The user terminal determines whether the channel quality of the bearer slot on the base station side and the bearer channel of the bearer slot on the relay station side respectively reach a set threshold, and when the threshold value is not reached, the step is performed. 403, otherwise step 404 is performed.
  • the user terminal determines whether the channel quality of the channel from the base station to the user terminal and the channel of the relay station to the user terminal reaches a set threshold, and the channel quality corresponding to the set threshold can satisfy the user terminal to separately listen to the channel.
  • the parameter indicating the quality of the channel includes parameters such as a signal-to-noise ratio, a signal-to-noise ratio, and a channel quality indicator.
  • the user terminal can obtain the corresponding channel quality parameter by measuring the downlink channel, and can also receive the channel quality parameter sent by the base station side. The quality of the channel can be determined by the parameters of the channel quality.
  • Step 403 The user terminal listens to the 7-carrier time slot on the base station side and the relay station side The time slot is obtained after the downlink service sent by the base station side and the downlink service sent by the relay station side are acquired.
  • the user terminal separately listens to the channel of the base station to the user terminal and the channel of the relay station to the user terminal, and combines the received downlink service signals. Specifically, when the relay station and the eNB use the same carrier to carry the downlink service, the downlink service configuration is performed.
  • the information further includes indication information of a relay mode used by the network side, and when the user terminal determines that the relay mode used by the network side is the layer-one relay mode, the acquired downlink service signal of the base station side and the relay station side Downstream traffic signals are combined at the physical layer.
  • the user terminal first receives the downlink service signal sent by the eNB in the bearer channel where the time slot of the downlink service is located, and then receives the same downlink service that is sent by the eNB in the bearer channel where the time slot of the downlink service carrying the downlink service is located.
  • the signal the user terminal combines the received downlink service signals at the physical layer, performs signal demodulation, and parses the downlink service.
  • the obtained downlink service signal of the base station side and the downlink service signal of the relay station side are respectively processed by the physical layer and the layer 2, and then combined. .
  • the relay station In the layer 2 or layer 3 relay mode, after receiving the downlink service subframe delivered by the eNB, the relay station does not directly forward the downlink service subframe, but is carried by different subframes, and then performs resource redistribution. The user equipment is forwarded to the user terminal.
  • the downlink service signal sent by the eNB cannot be directly merged. In this case, the downlink service sent by the received eNB and the relay station is required. After the signals are physically and layer 2 processed separately, they are combined to ensure that the downlink services before the merge are the same.
  • Step 404 The user terminal only listens to the 7-carrier time slot corresponding to a bearer channel whose channel quality reaches the set threshold.
  • the channel quality of the channel from the base station to the user terminal reaches a set threshold
  • only the channel of the base station to the user terminal is intercepted to acquire the downlink service; or the channel quality of the channel only from the relay station to the user terminal reaches the set threshold
  • only the channel of the relay station to the user terminal is intercepted to obtain the downlink service
  • only one channel is intercepted to obtain Downstream business.
  • FIG. 5 is a flowchart of a method for receiving a downlink service in another long term evolution system according to the present invention. As shown in FIG. 5, the method for receiving a downlink service in the long term evolution system of the present invention includes the following steps:
  • Step 501 After receiving downlink service configuration information on the network side, the user terminal acquires the next The information of the bearer slot on the base station side and the bearer slot on the relay station side of the same downlink service of the user terminal in the line service configuration information.
  • Step 501 The implementation of step 501 is exactly the same as that of step 401, and details are not described herein again.
  • Step 502 The user terminal listens to the 7-bit time slot of the base station side and the time-slot of the relay station side, and obtains the downlink service sent by the base station side and the downlink service sent by the relay station side, and then merges.
  • step 502 is exactly the same as that of step 403, and details are not described herein again.
  • the maximum difference between the receiving method of the downlink service shown in FIG. 5 and the receiving method of the downlink service shown in FIG. 4 is: the downlink service of the base station side and the downlink service of the relay station side are directly obtained regardless of the channel quality of the downlink channel. Consolidate.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the RS when the layer-relay technology is used, that is, the RS only forwards the downlink service sent by the eNB in the relay subframe in another subframe, and does not process the downlink service.
  • the downlink traffic carried in the frame is the same.
  • the eNB sends the downlink service to the RS through the air interface, and the omni-directional transmission is used, and the user terminal in the eNB of the eNB can receive the downlink service delivered by the eNB.
  • the RS also transmits the downlink service signal omnidirectionally.
  • the downlink service can be received in both subframes.
  • the essence of the present invention is to enable the user terminal to receive the downlink service twice.
  • the network side configures the transmission parameters corresponding to the service, and also configures the relay subframe time and the service subframe time of the service.
  • the UE is configured to notify the UE of the relay technology.
  • the layer-relay technology is equivalent to indicating that the configuration parameters used by the UE in the eNB and the RS service subframe time are the same.
  • the transmission parameters here include basic link information such as carrier frequency, subcarrier frequency band, and modulation coding mode.
  • the UE After receiving the configuration parameter, the UE obtains the downlink service by using the time-sharing manner; when receiving the service, the UE first receives the corresponding relay subframe according to the configuration information, and then the corresponding service subframe. Receive at the moment, and finally combine the two received signals at the physical layer. And, improve the performance of business reception.
  • the merging between the downlink services refer to the related description in the foregoing step 403, and details are not described herein again.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the RS performs corresponding processing on the downlink service sent by the eNB in the relay subframe, and then sends in another subframe or multiple dry subframes.
  • the downlink services in the two subframes are different; but because the essential downlink services are the same, the UE can still utilize the downlink services received at two times to improve the receiving performance.
  • the network side In order to implement the two-terminal reception, the network side notifies the relay technology used by the UE when configuring the downlink service, and simultaneously transmits the transmission subframe parameters corresponding to the downlink service at the relay subframe time and the service subframe time of the service. Both are configured to the UE.
  • the UE After receiving the configuration parameter, the UE can know that the downlink service uses the time-sharing mode, but uses the layer 2 or layer 3 relay technology, and the configuration parameters of the downlink service sent at two times are different; the UE receives In the downlink service, according to the configuration information corresponding to the relay subframe, the receiving is performed at the corresponding relay subframe time; and the configuration information corresponding to the service subframe is also received according to the configuration information corresponding to the service subframe;
  • the UE needs to process the downlink services at two times separately, and then process the received downlink services into the physical layer and layer 2 respectively and then combine them.
  • For the merge mode refer to the related description in the foregoing step 403.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the relay when the layer-relay technology is used, that is, the relay only forwards the downlink service sent by the eNB in the relay subframe in another subframe, and does not process the downlink service.
  • the downlink traffic carried in the frame is the same.
  • the eNB transmits the downlink service to the RS through the air interface, and uses the omnidirectional transmission.
  • the user terminal in the vicinity of the eNB can receive the downlink service signal sent by the eNB.
  • Relay also sends the downlink service signal omnidirectionally.
  • the downlink service can be received in both subframes.
  • the network side configures the downlink service, except for configuring the downlink.
  • the transmission parameter corresponding to the service, and the relay subframe time and the service subframe time of the downlink service are also configured to the UE; and the relay technology used by the UE is notified, which is equivalent to indicating that the configuration parameters used by the UE at the two moments are the same. of.
  • the UE After receiving the configuration parameters of the downlink service, the UE can know that the downlink service uses the time-sharing mode. When receiving the service, the UE first receives the corresponding relay subframe according to the configuration information. If the quality of the received signal is good, the UE can autonomously determine that the signal transmitted by the service subframe is no longer received when the demodulation of the signal of the subframe can meet the requirements of the QoS (Quality of Service), thereby saving the user terminal. The power consumption and simplify the processing of the user terminal.
  • the signal quality can be determined by parameters such as signal-to-noise ratio, signal-to-noise ratio, and channel quality indicator. For example, the corresponding channel quality threshold can be set.
  • the downlink channel quality of the eNB When the downlink channel quality of the eNB is higher than the channel quality corresponding to the threshold, it can be determined to receive only.
  • the downlink service sent by the eNB This embodiment is suitable for UEs located near the eNB, and the channel quality of the downlink channel between the RS and the UE does not reach the set threshold.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the relay when the layer-relay technology is used, that is, the relay only forwards the downlink service sent by the eNB in the relay subframe in another subframe, and does not process the downlink service.
  • the downlink traffic carried in the frame is the same.
  • the eNB transmits the downlink service to the RS through the air interface, and uses the omnidirectional transmission.
  • the user terminal in the vicinity of the eNB can receive the downlink service signal sent by the eNB.
  • Relay also sends the downlink service signal omnidirectionally.
  • the downlink service can be received in both subframes.
  • the network side configures the downlink service, in addition to the transmission parameter corresponding to the downlink service, and configures the relay subframe time and the service subframe time of the downlink service to the UE;
  • the Relay technology used by the UE is equivalent to indicating that the configuration parameters used by the UE at the two moments are the same.
  • the UE After receiving the configuration parameter, the UE can know that the downlink service uses the time-sharing mode;
  • the UE When receiving the downlink service, the UE first receives the corresponding relay subframe time according to the configuration information. If the quality of the received signal is not good, and the quality of the signal sent by the received service sub-frame is good, the UE can autonomously determine that the signal transmitted by the relay sub-frame is no longer received, so as to save power consumption of the terminal and simplify the terminal.
  • Signal quality can be determined by parameters such as signal-to-noise ratio, signal to interference and noise ratio, and channel quality indication. For example, if the corresponding channel quality threshold is set, and the downlink channel quality of the RS is higher than the channel quality corresponding to the threshold, it is determined that only the downlink service sent by the RS is received.
  • This embodiment is suitable for a UE located near the Relay, and the channel quality of the downlink channel between the eNB and the UE does not reach a set threshold.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the relay when the layer-relay technology is used, that is, the relay only forwards the downlink service sent by the eNB in the relay subframe in another subframe, and does not process the downlink service.
  • the downlink traffic carried in the frame is the same.
  • the eNB transmits the downlink service to the RS through the air interface, and uses the omnidirectional transmission.
  • the user terminal in the vicinity of the eNB can receive the downlink service signal sent by the eNB.
  • Relay also sends the downlink service signal omnidirectionally.
  • the downlink service can be received in both subframes.
  • the network side configures the downlink service, in addition to the transmission parameter corresponding to the downlink service, and configures the relay subframe time and the service subframe time of the downlink service to the UE;
  • the Relay technology used by the UE is equivalent to indicating that the configuration parameters used by the UE at the two moments are the same.
  • the UE may know that the downlink service is in a time-sharing manner; when receiving the downlink service, the UE receives the corresponding relay subframe time and the service subframe time according to the configuration information, and the UE Compare the signal quality received by the two links;
  • the UE may determine to receive the signal sent by one of the links to save power consumption of the terminal and simplify the processing of the terminal.
  • the UE may combine the signals sent by the two links to improve the receiving quality of the service.
  • the UE may combine the received signals sent by the two links to further improve the receiving quality of the service; or may only receive the satisfaction signal.
  • the quality required link can also guarantee the QoS requirements of the service.
  • the signal quality can be determined by parameters such as signal-to-noise ratio, signal-to-noise ratio, and channel quality indication.
  • the corresponding channel quality threshold can be set.
  • the downlink channel quality of the RS is higher than the channel quality corresponding to the threshold, it can be determined to receive only.
  • the downlink service sent by the RS is applicable to the in-band relay scenario, that is, the frequency used by the eNB to the RS transmission link is the same as the frequency of the RS to the UE.
  • the frequency used by the eNB to the RS transmission link is different from the frequency of the RS to the UE.
  • the two links can be transmitted simultaneously or time-divisionally.
  • the network side can configure the configuration information of the relay link and the service link that carries the downlink service to the UE, where the frequency of the two links is included, and the relay technology used by the UE is notified.
  • the downlink service can be received on both links, that is, the same downlink service is received in different frequency bands respectively, and the received downlink service is received.
  • the corresponding downlink traffic signals are dechannelized, they are combined.
  • the layers-relay technology if the layer-relay technology is used, the signals received by the UE on the two links use the same configuration, and the UE can combine the two signals at the physical layer; if layer 3 is used; In the relay technology, the signals received by the UE on the two links use different configurations, and the UE needs to process the two signals with different parameters, and then merge at layer 3.
  • FIG. 6 is a schematic structural diagram of a receiving apparatus of a downlink service in a long term evolution system according to the present invention.
  • the receiving apparatus of the downlink service in the long term evolution system of the present invention includes a receiving unit 60, a bearer information acquiring unit 61, and a judgment.
  • the bearer information acquiring unit 61 is configured to acquire information about a bearer slot of the same downlink service of the user terminal in the downlink service configuration information, and a bearer slot of the relay station side.
  • the determining unit 62 is configured to determine whether the channel quality of the bearer slot on the base station side and the bearer channel where the bearer slot on the relay station side meets the set threshold respectively, and triggers the first when the set threshold is not reached.
  • the first service acquiring unit 63 is configured to separately listen to the bearer time slot of the base station side and the bearer time slot of the relay station side, and obtain the downlink service of the base station side and the downlink service of the relay station side.
  • the merging unit 64 is configured to combine the acquired downlink traffic on the base station side and the downlink traffic on the relay station side.
  • the receiving apparatus for the downlink service in the long term evolution system of the present invention includes The second service obtaining unit 65 is configured to determine, by the determining unit 62, that the channel quality of the bearer slot on the base station side and the bearer channel where the bearer slot on the relay station side is located reaches a set threshold, and only detects The bearer time slot corresponding to a bearer channel whose channel quality reaches a set threshold is directly obtained, and the downlink service is directly obtained.
  • the receiving apparatus of the downlink service in the long-term evolution system of the present invention further includes a determining unit 66, configured to determine a relay mode used by the network side, and the downlink service configuration information further includes a trunk used by the network side.
  • the merging unit 64 uses the downlink service of the base station side and the downlink of the relay station acquired by the first service acquiring unit 63.
  • the merging unit 64 obtains the base station side acquired by the first service acquiring unit 63.
  • the downlink service and the downlink service on the relay station side are respectively processed by the physical layer and the layer 2, and then combined.
  • the receiving device of the downlink service in the long-term evolution system of the present invention may not include the determining unit 66; when the user terminal performs the combined processing of the received downlink service, it is not necessary A second service acquisition unit 65 is included.
  • the receiving device of the downlink service in the long-term evolution system of the present invention is designed for the receiving method of the downlink service in the long-term evolution system shown in FIG. 4, and the implementation functions of the processing units shown in FIG. 6 can refer to FIG. 4 and the first to sixth embodiments. Understand the relevant description.
  • the functions of the various processing units shown in Figure 6 can be implemented by a program running on the processor or by a specific logic circuit.
  • FIG. 7 is a schematic structural diagram of a receiving apparatus of a downlink service in another long-term evolution system according to the present invention.
  • the receiving apparatus of the downlink service in the long-term evolution system of the present invention includes a receiving unit 70, a bearer information acquiring unit 71, The service obtaining unit 72 and the merging unit 73 are configured to receive downlink service configuration information on the network side.
  • the bearer information acquiring unit 71 is configured to obtain information of a bearer slot of the same downlink service of the user terminal in the downlink service configuration information, and a bearer slot of the relay station side.
  • the service obtaining unit 72 is configured to listen to the bearer time slot of the base station side and the bearer time slot of the relay station side, and obtain the downlink service of the base station side and the downlink service of the relay station side.
  • the merging unit 73 is configured to combine the acquired downlink service on the base station side and the downlink service on the relay station side.
  • the receiving apparatus for the downlink service in the long term evolution system of the present invention further includes The determining unit 74 is configured to determine the relay mode used by the network side; the downlink service configuration information further includes indication information of the relay mode used by the network side, and the determining unit 74 determines that the relay mode used by the network side is layer 1
  • the merging unit 73 combines the downlink service of the base station side and the downlink service of the relay station acquired by the service acquiring unit 72 at the physical layer; the determining unit 74 determines that the relay mode used by the network side is the layer 2
  • the merging unit 73 combines the downlink service of the base station side and the downlink service of the relay station acquired by the service acquiring unit 72 with the physical layer and the layer 2, respectively, and then combines them.
  • the determining unit 74 may not be included in the receiving apparatus of the downlink service in the long term evolution system of the present invention.
  • the receiving device of the downlink service in the long-term evolution system of the present invention is designed for the receiving method of the downlink service in the long-term evolution system shown in FIG. 5.
  • the implementation functions of the processing units shown in FIG. 7 can refer to FIG. 5 and the first to sixth embodiments. Understand the relevant description.
  • the functions of the various processing units shown in Figure 7 can be implemented by a program running on the processor or by a specific logic circuit.
  • the present invention improves that the eNB and the RS jointly cover the downlink service gain of the user terminal in the cell edge, and the communication quality of the terminal user is ensured.

Description

长期演进系统中下行业务的接收方法与装置 技术领域
本发明涉及一种用户终端的业务接收技术, 尤其涉及一种长期演进 ( LTE, Long Term Evolution ) 系统中存在中继时的下行业务的接收方法与装 置。
背景技术
第三代合作伙伴计划 (3GPP, 3rd Generation Partnership Project )启动了 LTE研究的工作组, 研究和设计第三代移动通信技术演进的 3G的下一代网 络。 目前, 为了提高小区边界的覆盖增益, 实现补盲效应, 在 3GPP中 LTE 增强技术( LTE-Advanced ) 中引入了中继 (Relay )技术。 图 1为 LTE增强 网络的组成结构示意图, 如图 1 所示, LTE增强网络中包括演进的节点 B ( eNB, evolved Node B ) 以及中继站(RS, Relay Station ) , eNB既为本小 区的 UE提供服务, 也与其控制下的若干个 RS进行数据传输和信令交互。 同 样的, 每个 RS 既和该 eNB 通讯, 也为该 RS 下的用户终端 (UE, User Equipment )提供服务。 eNB到 RS的链路与 RS到 UE的链路可以使用相同的 频率资源,称之为带内 Relay;也可以使用不同的频率资源,称之为带外 Relay。 图 2带内 Relay时下行链路数据发送示意图,如图 2所示,数据带内 Relay发 送时, 在一个下行链路上, 在某个 /某些子帧上该 eNB为其控制下的某个 RS 发送数据时, 该 RS在这个 /这些子帧上只能接收来自 eNB的数据, 不能同时 在此下行链路向该 RS所服务的 UE发送信号, 否则就会产生较强的干扰。 图 3带内 Relay时上行链路数据发送示意图, 如图 3所示, 同样的道理, 当一个 RS在某个 /某些子帧上接收来自其服务的 UE的上行数据时, RS在这个 /这些 子帧上不能同时向 eNB发送上行信号。
在下行链路的某个 /某些子帧上, 网元 RS 需要接收来自其控制网元如 eNB, GPRS网关支持结点( GGSN, Gateway GPRS Support Node ) 、 通用分 组无线服务(GPRS, General Packet Radio Service), 无线网络控制器(RNC, Radio Network Controller, ) 的信号和数据。 以控制网元为 eNB为例, 在这 个 /这些子帧上, 网元 RS因为需接收来自其控制网元 eNB的数据, 为了避免 同时发送和接收数据而导致的干扰, RS 不能同时发送数据到其控制下的小 区, 也就是说网元 RS不能同时在一个子帧上发送和接收数据。 这些用于 RS 和其控制网元进行信息交互的特殊子帧称为中继子帧 ( Relay subframe ) , 包 括上行中继子帧和下行中继子帧, 其中, 上行中继子帧用于 RS 向其控制网 元发送响应信息, 此时 UE不能向 RS发送上行数据; 下行中继子帧用于 RS 接收来自其控制网元的数据, 该子帧中的数据并不通知 UE进行接收。
除了中继子帧外, RS与到其服务 UE进行信息交互的子帧称为业务子帧, 对于下行业务子帧, RS发送信号, UE进行接收; 对于上行业务子帧, RS接 收 UE发送过来的信号。
由于通信条件的复杂与多变性, 位于不同地域的用户终端的信道条件不 尽相同, 特别是位于 eNB与 RS共同覆盖小区边缘中的用户终端, 信道条件 比较差, 用户终端并不能保证所接收到的数据正确和完整, 而 eNB及 RS会 同时或者分别发送相同的业务数据, 相当于网络侧分集发送业务数据, 如果 用户终端能利用这一特性分别接收 eNB与 RS发送的业务数据, 将保证用户 终端接收业务数据的准确性和完整性,很好地保证这些用户终端的通信质量。 但目前的用户终端并不支持这一功能。
发明内容
有鉴于此, 本发明的主要目的在于提供一种长期演进系统中下行业务的 接收方法与装置, 能保证用户终端接收业务数据的完整性, 提升其通信质量。
为达到上述目的, 本发明的技术方案是这样实现的:
一种长期演进系统中下行业务的接收方法, 包括:
接收到网络侧的下行业务配置信息后, 用户终端获取所述下行业务配置 信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中继站侧的承 载时隙的信息; 以及
用户终端判断所述基站侧的承载时隙及所述中继站侧的承载时隙所在的 承载信道的信道质量是否分别达到设定阔值, 均达不到设定阔值时, 侦听所 述基站侧的承载时隙和所述中继站侧的承载时隙, 获取所述基站侧发送的下 行业务及所述中继站侧发送的下行业务后进行合并。
优选地, 所述方法还包括:
所述用户终端确定所述基站侧的承载时隙及所述中继站侧的承载时隙所 在的承载信道中至少一条承载信道的信道质量达到设定阔值, 仅侦听信道质 量达到设定阔值的一条承载信道对应的承载时隙。
优选地, 所述用户终端的同一下行业务在基站侧的承载时隙和中继站侧 的承载时隙位于同频或不同频的载波中。
优选地, 所述下行业务配置信息中还包括网络侧所使用中继方式的指示 信息。
优选地, 所述用户终端确定网络侧所使用中继方式为层一中继方式时, 将所获取的所述基站侧的下行业务及所述中继站侧下行业务在物理层进行合 并。
优选地, 所述用户终端确定网络侧所使用中继方式为层二中继方式或层 三中继方式时, 将所获取的所述基站侧的下行业务及所述中继站侧的下行业 务分别进行物理层、 层二处理后再进行合并。
一种长期演进系统中下行业务的接收方法, 包括:
接收到网络侧的下行业务配置信息后, 用户终端获取所述下行业务配置 信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中继站侧的承 载时隙的信息, 侦听所述基站侧的承载时隙和所述中继站侧的承载时隙, 获 取所述基站侧的下行业务及所述中继站侧下行业务后进行合并。
优选地, 所述下行业务配置信息中还包括网络侧所使用中继方式的指示 信息。
优选地, 所述用户终端确定网络侧所使用中继方式为层一中继方式时, 将所获取的所述基站侧的下行业务及所述中继站侧下行业务在物理层进行合 并。
优选地, 所述用户终端确定网络侧所使用中继方式为层二中继方式或层 三中继方式时, 将所获取的所述基站侧的下行业务及所述中继站侧的下行业 务分别进行物理层、 层二处理后再进行合并。
一种长期演进系统中下行业务的接收装置, 包括:
接收单元, 其设置成接收网络侧的下行业务配置信息;
承载信息获取单元, 其设置成获取所述下行业务配置信息中的用户终端 的同一下行业务在基站侧的承载时隙和中继站侧的承载时隙的信息;
判断单元, 其设置成判断所述基站侧的承载时隙及所述中继站侧的承载 时隙所在的承载信道的信道质量是否分别达到设定阔值, 均达不到设定阔值 时触发第一业务获取单元;
第一业务获取单元, 其设置成分别侦听所述基站侧的承载时隙和所述中 继站侧的承载时隙, 获取所述基站侧的下行业务及所述中继站侧下行业务; 以及
合并单元, 其设置成将所获取的所述基站侧的下行业务及所述中继站侧 下行业务进行合并。
优选地, 所述装置还包括第二业务获取单元,
所述判断单元还设置成判断所述基站侧的承载时隙及所述中继站侧的承 载时隙所在的承载信道中的至少一条承载信道的信道质量达到设定阔值时, 触发第二业务获取单元;
所述第二业务获取单元设置成仅侦听信道质量达到设定阔值的一条承载 信道对应的承载时隙, 直接获取所述基站侧的下行业务及所述中继站侧的下 行业务。
优选地, 所述装置还包括确定单元, 所述确定单元设置成确定网络侧所 使用的中继方式; 其中,
所述下行业务配置信息中还包括网络侧所使用中继方式的指示信息; 所述合并单元是设置成: 第一业务获取单元所获取的所述基站侧的下行业务及所述中继站侧下行业务 在物理层进行合并; 以及 方式时, 所述合并单元将所述第一业务获取单元所获取的所述基站侧的下行 业务及所述中继站侧的下行业务分别进行物理层、 层二处理后再进行合并。
一种长期演进系统中下行业务的接收装置, 包括:
接收单元, 其设置成接收网络侧的下行业务配置信息;
承载信息获取单元, 其设置成获取所述下行业务配置信息中的用户终端 的同一下行业务在基站侧的承载时隙和中继站侧的承载时隙的信息;
业务获取单元, 其设置成分别侦听所述基站侧的承载时隙和所述中继站 侧的承载时隙, 获取所述基站侧的下行业务及所述中继站侧下行业务; 以及 合并单元, 其设置成将所获取的所述基站侧的下行业务及所述中继站侧 下行业务进行合并。
优选地, 所述装置还包括确定单元, 所述确定单元设置成确定网络侧所 使用中继方式; 其中,
所述下行业务配置信息中还包括网络侧所使用中继方式的指示信息; 所述合并单元是设置成: 业务获取单元所获取的所述基站侧的下行业务及所述中继站侧下行业务在物 理层进行合并; 以及 方式时, 将所述业务获取单元所获取的所述基站侧的下行业务及所述中继站 侧的下行业务分别进行物理层、 层二处理后再进行合并。
本发明中, 网络侧下行业务配置完毕后, 将下行业务配置信息通知给用 户终端, 下行业务配置信息中包括基站侧的承载时隙和中继站侧的承载时隙 的信息, 以及所使用的中继方式等信息, 这样, 用户终端在基站侧的承载时 隙和中继站侧的承载时隙分别侦听下行业务, 并将分别侦听到的下行业务进 行合并, 这样, 相当于进行了下行业务的分集处理, 接收两份业务数据比单 次接收业务数据的数据完整性更佳, 特别适合于处于 eNB与 RS共同覆盖小 区边缘中的用户终端。 本发明提高了 eNB与 RS共同覆盖小区边缘中的用户 终端下行业务增益, 保证了终端用户的通信质量。
附图概述
图 1为 LTE增强网络的组成结构示意图;
图 2带内 Relay时下行链路数据发送示意图;
图 3带内 Relay时上行链路数据发送示意图;
图 4为本发明一种长期演进系统中下行业务的接收方法的流程图; 图 5为本发明另一种长期演进系统中下行业务的接收方法的流程图; 图 6为本发明一种长期演进系统中下行业务的接收装置的组成结构示意 图;
图 7为本发明另一种长期演进系统中下行业务的接收装置的组成结构示 意图。
本发明的较佳实施方式
本发明的基本思想是: 网络侧下行业务配置完毕后, 将下行业务配置信 息通知给用户终端, 下行业务配置信息中包括基站侧的承载时隙和中继站侧 的承载时隙的信息, 以及所使用的中继方式等信息, 这样, 用户终端在基站 侧的承载时隙和中继站侧的承载时隙分别侦听下行业务, 并将分别侦听到的 下行业务进行合并, 这样, 相当于进行了下行业务的分集处理, 接收两份业 务数据比单次接收业务数据的数据完整性更佳, 特别适合于处于 eNB与 RS 共同覆盖小区边缘中的用户终端。 本发明提高了 eNB与 RS共同覆盖小区边 缘中的用户终端下行业务增益, 保证了用户终端用户的通信质量。 为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并参 照附图, 对本发明进一步详细说明。
图 4为本发明一种长期演进系统中下行业务的接收方法的流程图, 如图 4所示, 本发明长期演进系统中下行业务的接收方法包括以下步骤: 步骤 401 : 接收到网络侧的下行业务配置信息后, 用户终端获取所述下 行业务配置信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中 继站侧的承载时隙的信息。
在设置有中继站的 LTE 系统中, 完成业务配置工作的是 eNB, eNB为 RS、 用户终端的下行业务进行载波频率、 承载下行业务的时隙或子帧、 调制 编码方式、 无线资源块等链路的配置, 并将基站侧承载业务的时隙和中继站 侧承载业务的时隙通知 RS及用户终端, RS根据业务配置信息完成自身发往 用户终端的下行业务的配置。通知用户终端 eNB的配置信息 ,可由 eNB完成, 或者由 RS完成。
在 eNB与 RS发送下行业务时使用相同的载波时, RS承载发往同一个用 户终端的同一下行业务时, 可以在接收到下行业务的承载子帧后直接转发, 或者按 eNB业务资源分配指示重新进行资源分配后再进行转发。
同一个用户终端的同一下行业务在基站侧的承载时隙和中继站侧的承载 时隙也可以位于不同频的载波中, 也就是说, 中继站转发下行业务时, 可以 使用与 eNB所使用的载波不同的载波, 此时, 中继站 载业务的时隙可以与 eNB承载业务的时隙位于子帧号相同的子帧中。
步骤 402: 用户终端判断所述基站侧的承载时隙及所述中继站侧的承载 时隙所在的承载信道的信道质量是否分别达到设定阔值, 均达不到设定阔值 时, 执行步骤 403 , 否则执行步骤 404。
用户终端判断基站到该用户终端的信道以及中继站到该用户终端的信道 的信道质量是否达到设定阔值, 所述设定阔值对应的信道质量能满足用户终 端单独侦听该信道即可获取到较好的下行业务信号。 标示信道质量的参数包 括信噪比、 信干噪比以及信道质量指示等参数, 用户终端通过测量下行信道 可获取到相应的信道质量的参数,也可以接收基站侧下发的信道质量的参数, 通过信道质量的参数即可确定信道质量的优劣。 当基站到该用户终端的信道 以及中继站到该用户终端的信道的信道质量都达不到设定阔值时, 意味着当 前用户终端无论侦听哪一条信道都不能获得较好的下行业务信号, 此时, 将 分别侦听两条信道。
步骤 403: 用户终端侦听所述基站侧的 7 载时隙和所述中继站侧的 载 时隙, 获取所述基站侧发送的下行业务及所述中继站侧发送的下行业务后进 行合并。
用户终端分别侦听基站到用户终端的信道以及中继站到用户终端的信 道, 并将所接收到的下行业务信号进行合并, 具体的, 在中继站与 eNB使用 相同的载波承载下行业务时, 下行业务配置信息中还包括网络侧所使用中继 方式的指示信息, 用户终端确定网络侧所使用中继方式为层一中继方式时, 将所获取的所述基站侧的下行业务信号及所述中继站侧下行业务信号在物理 层即进行合并。 用户终端首先在承载下行业务的时隙所在的承载信道中接收 eNB下发的下行业务信号, 然后再在中继站承载下行业务的时隙所在的承载 信道中接收到与 eNB下发的相同的下行业务信号, 用户终端对接收到的下行 业务信号在物理层进行合并, 再进行信号解调, 并解析出下行业务。
用户终端确定网络侧所使用中继方式为层二或层三中继方式时, 将所获 取的基站侧的下行业务信号及中继站侧的下行业务信号分别进行物理层、 层 二处理后再进行合并。 由于层二或层三中继方式中, 中继站接收到 eNB下发 的下行业务子帧后, 并非直接转发该下行业务子帧, 而是分由不同的子帧来 承载, 进行资源再分配后再转发给用户终端, 此时, 接收到中继站下发的下 行业务子帧后, 并不能直接与 eNB下发的下行业务信号进行合并, 此时需将 所接收到的 eNB及中继站下发的下行业务信号分别进行物理层、层二处理后 , 再进行合并, 才能保证合并之前的下行业务是相同的。
步骤 404: 用户终端仅侦听信道质量达到设定阔值的一条承载信道对应 的 7 载时隙。 当确定仅基站到用户终端的信道的信道质量达到设定阔值时, 仅侦听基 站到用户终端的信道来获取下行业务; 或者确定仅中继站到用户终端的信道 的信道质量达到设定阔值时, 仅侦听中继站到用户终端的信道来获取下行业 务; 当确定基站到用户终端的信道、 中继站到用户终端的信道的信道质量均 达到设定阔值时, 仅侦听其中一个信道来获取下行业务。
图 5为本发明另一种长期演进系统中下行业务的接收方法的流程图, 如 图 5所示, 本发明长期演进系统中下行业务的接收方法包括以下步骤:
步骤 501 : 接收到网络侧的下行业务配置信息后, 用户终端获取所述下 行业务配置信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中 继站侧的承载时隙的信息。
步骤 501的实现方式与步骤 401的实现方式完全相同, 这里不再赘述。 步骤 502: 用户终端侦听所述基站侧的 7 载时隙和所述中继站侧的 载 时隙, 获取所述基站侧发送的下行业务及所述中继站侧发送的下行业务后进 行合并。
步骤 502的实现方式与步骤 403的实现方式完全相同, 这里不再赘述。 图 5所示的下行业务的接收方法与图 4所示的下行业务的接收方法的最大区 别是: 不论下行信道的信道质量如何, 直接将所获取的基站侧的下行业务及 中继站侧下行业务后进行合并。
以下通过示例, 进一步阐明本发明的技术方案。
实施例一:
在 LTE系统中, 当使用层一 Relay技术时, 也就是 RS只是将 eNB在中 继子帧中发送过来的下行业务在另一个子帧进行转发, 并不对下行业务进行 处理, 此时在这两个子帧中承载的下行业务是一样的。
在中继子帧时刻 eNB通过空口发送下行业务给 RS, 并且会使用全向发 射, eNB覆盖下小区中的用户终端能接收到 eNB下发的下行业务。 而在业务 子帧时刻, RS也是将下行业务信号全向发送。 对于用户终端来说, 在两个子 帧都可以收到该下行业务。
本发明的实质是为了实现用户终端两次接收下行业务, 网络侧在配置下 行业务时, 除了配置该业务对应的传输参数, 而且还将承载该业务的中继子 帧时刻和业务子帧时刻都配置给 UE; 并通知 UE所使用的 Relay技术, 本实 施例中, 层一 Relay技术相当于指示 UE在 eNB、 RS两个业务子帧时刻所用 的配置参数是一样的。 这里的传输参数包括载波频率、 子载波频段、 调制编 码方式等基本的链路信息。
UE收到配置参数后, 就获取了该下行业务是使用分时发送方式; UE在 接收该业务时, 根据配置信息, 先在相应的中继子帧时刻进行接收, 随后又 在相应的业务子帧时刻进行接收, 最后将两次接收到的信号在物理层进行合 并, 提高了业务接收性能。 下行业务之间的合并可参见前述步骤 403中的相 关描述, 这里不再赘述。
实施例二:
在 LTE系统中, 当使用层二或层三 Relay技术时, 也就是 RS对 eNB在 中继子帧中发送过来的下行业务进行相应的处理后, 再在另一个子帧或多干 子帧中发送给 UE。此时这两个子帧中的下行业务是不一样的; 但由于本质的 下行业务是相同的, UE还是可以利用两个时刻接收到的下行业务,提高接收 性能。
为了实现终端两次接收, 网络侧在配置该下行业务时, 通知 UE使用的 Relay技术, 同时将承载该业务的中继子帧时刻和业务子帧时刻、 两个时刻承 载该下行业务对应的传输参数都配置给 UE。
UE收到该配置参数后,就可以知道该下行业务是使用分时发送方式,但 所用的是层二或层三 relay技术, 两个时刻发送的下行业务的配置参数是不同 的; UE在接收该下行业务时, 根据中继子帧对应的配置信息, 在相应的中继 子帧时刻进行接收; 同时才艮据业务子帧对应的配置信息, 在相应的业务子帧 时刻也进行接收;
由于两个使用了层二或层三 Relay技术, UE需要对两个时刻的下行业务 分别进行处理, 再将两次接收到的下行业务分别进行物理层、 层二的处理后 再进行合并。 合并方式可参见前述步骤 403中相关描述。
实施例三:
在 LTE系统中, 当使用层一 Relay技术时, 也就是 Relay只是将 eNB在 中继子帧中发送过来的下行业务在另一个子帧进行转发, 并不对下行业务进 行处理, 此时在这两个子帧中承载的下行业务是一样的。
在中继子帧时刻 eNB是通过空口发送下行业务给 RS的, 并且会使用全 向发射,此时 eNB附近的用户终端能接收到 eNB发送的下行业务信号。 而在 业务子帧时刻, Relay也将该下行业务信号全向发送。 对于用户终端来说, 可 在两个子帧都收到该下行业务。
为了实现终端两次接收, 网络侧在配置该下行业务时, 除了配置该下行 业务对应的传输参数, 而且还将承载该下行业务的中继子帧时刻和业务子帧 时刻都配置给 UE; 并通知 UE使用的 Relay技术, 相当于指示 UE这两个时 刻所用的配置参数是一样的。
UE收到下行业务的配置参数后,就可以知道该下行业务是使用分时发送 方式; UE在接收该业务时, 根据配置信息, 先在相应的中继子帧时刻进行接 收。 如果接收信号质量很好, 根据该子帧的信号进行解调就能满足业务服务 质量( QoS, Quality of Service )要求时, UE可以自主确定不再接收业务子帧 发送的信号, 以节省用户终端的耗电并简化用户终端的处理。 信号质量可以 通过信噪比、 信干噪比以及信道质量指示等参数确定, 例如可设置相应的信 道质量阔值, eNB的下行信道质量高于阔值对应的信道质量时, 即可确定只 接收该 eNB发送来的下行业务。 本实施例适合于位于 eNB附近的 UE, RS 到 UE之间的下行信道的信道质量达不到设定阔值。
实施例四:
在 LTE系统中, 当使用层一 Relay技术时, 也就是 Relay只是将 eNB在 中继子帧中发送过来的下行业务在另一个子帧进行转发, 并不对下行业务进 行处理, 此时在这两个子帧中承载的下行业务是一样的。
在中继子帧时刻 eNB是通过空口发送下行业务给 RS的, 并且会使用全 向发射,此时 eNB附近的用户终端能接收到 eNB发送的下行业务信号。 而在 业务子帧时刻, Relay也将该下行业务信号全向发送。 对于用户终端来说, 可 在两个子帧都收到该下行业务。
为了实现终端两次接收, 网络侧在配置该下行业务时, 除了配置该下行 业务对应的传输参数, 而且还将承载该下行业务的中继子帧时刻和业务子帧 时刻都配置给 UE; 并通知 UE使用的 Relay技术, 相当于指示 UE这两个时 刻所用的配置参数是一样的。
UE 收到该配置参数后, 就可以知道该下行业务是使用分时发送方式;
UE在接收该下行业务时,根据配置信息,先在相应的中继子帧时刻进行接收。 如果接收信号质量不好, 而接收到的业务子帧发送的信号质量很好时, UE可 以自主确定不再接收中继子帧发送的信号, 以节省终端的耗电并简化终端的 出来。 信号质量可以通过信噪比、 信干噪比以及信道质量指示等参数确定, 例如可设置相应的信道质量阔值, RS的下行信道质量高于阔值对应的信道质 量时, 即可确定只接收该 RS发送来的下行业务。 本实施例适合于位于 Relay 附近的 UE, eNB到 UE之间的下行信道的信道质量达不到设定阔值。
实施例五:
在 LTE系统中, 当使用层一 Relay技术时, 也就是 Relay只是将 eNB在 中继子帧中发送过来的下行业务在另一个子帧进行转发, 并不对下行业务进 行处理, 此时在这两个子帧中承载的下行业务是一样的。
在中继子帧时刻 eNB是通过空口发送下行业务给 RS的, 并且会使用全 向发射,此时 eNB附近的用户终端能接收到 eNB发送的下行业务信号。 而在 业务子帧时刻, Relay也将该下行业务信号全向发送。 对于用户终端来说, 可 在两个子帧都收到该下行业务。
为了实现终端两次接收, 网络侧在配置该下行业务时, 除了配置该下行 业务对应的传输参数, 而且还将承载该下行业务的中继子帧时刻和业务子帧 时刻都配置给 UE; 并通知 UE使用的 Relay技术, 相当于指示 UE这两个时 刻所用的配置参数是一样的。
UE 收到该配置参数后, 就可以知道该下行业务是使用分时发送方式; UE在接收该下行业务时,根据配置信息, 分别在相应的中继子帧时刻和业务 子帧时刻进行接收, UE对两个链路接收的信号质量进行比较;
如果两条链路信号质量都满足要求, UE可以自主确定接收其中一条链路 发送的信号, 以节省终端的耗电并简化终端的处理;
如果两条链路信号质量都不满足要求, UE可以将接收到的两条链路发送 的信号进行合并, 以提高该业务的接收质量;
如果两条链路中, 只有一条链路的信号质量满足要求, UE可以将接收到 的两条链路发送的信号进行合并, 以进一步提高该业务的接收质量; 也可以 只接收所述满足信号质量要求的链路, 同样是可以保证业务的 QoS要求的。
信号质量可以通过信噪比、 信干噪比以及信道质量指示等参数确定, 例 如可设置相应的信道质量阔值, RS的下行信道质量高于阔值对应的信道质量 时, 即可确定只接收该 RS发送来的下行业务。 上述五个实施例适用于带内 Relay场景, 也就是 eNB到 RS的传输链路 使用的频率和 RS到 UE的频率相同, 此时两端链路只能时分发送下行业务。
实施例六:
在 LTE系统中, 当使用带外 Relay技术时, eNB到 RS的传输链路使用 的频率和 RS到 UE的频率不相同, 此时两条链路可以同时传输, 也可时分传 输。
网络侧在配置下行业务时, 可以将承载该下行业务的中继链路和业务链 路的配置信息都配置给 UE, 其中包含了两条链路所在的频率, 并通知 UE使 用的 Relay技术。
对于用户终端来说, 如果具备同时接收不同频段的下行业务的能力, 可 以在两条链路上都进行接收该下行业务, 也就是分别在不同的频带上接收相 同的下行业务, 对接收到的相应下行业务信号进行解信道处理之后, 再进行 合并。 同实施例一和二, 如果使用了层一 Relay技术, 那么 UE在两条链路上 接收的信号使用的是相同的配置, UE可以将两路信号在物理层进行合并; 如 果使用了层三 Relay技术 , UE在两条链路上接收的信号使用的是不同的配置, UE需要将两路信号分别用不同的参数进行处理, 之后在层三进行合并。
图 6为本发明一种长期演进系统中下行业务的接收装置的组成结构示意 图, 如图 6所示, 本发明长期演进系统中下行业务的接收装置包括接收单元 60、 承载信息获取单元 61、 判断单元 62、 第一业务获取单元 63和合并单元 64, 其中, 接收单元 60用于接收网络侧的下行业务配置信息。 承载信息获取 单元 61 用于获取所述下行业务配置信息中的所述用户终端的同一下行业务 在基站侧的承载时隙和中继站侧的承载时隙的信息。判断单元 62用于判断所 述基站侧的承载时隙及所述中继站侧的承载时隙所在的承载信道的信道质量 是否分别达到设定阔值, 均达不到设定阔值时触发第一业务获取单元 63。 第 一业务获取单元 63 用于分别侦听所述基站侧的承载时隙和所述中继站侧的 承载时隙, 获取所述基站侧的下行业务及所述中继站侧下行业务。 合并单元 64 用于将所获取的所述基站侧的下行业务及所述中继站侧下行业务进行合 并。
如图 6所示, 本发明长期演进系统中下行业务的接收装置包括还包括第 二业务获取单元 65 , 用于在判断单元 62确定所述基站侧的承载时隙及所述 中继站侧的承载时隙所在的承载信道中至少一条承载信道的信道质量达到设 定阔值, 仅侦听信道质量达到设定阔值的一条承载信道对应的承载时隙, 直 接获取所述下行业务。
如图 6所示, 本发明长期演进系统中下行业务的接收装置包括还包括确 定单元 66, 用于确定网络侧所使用中继方式; 所述下行业务配置信息中还包 括网络侧所使用中继方式的指示信息 ,确定单元 66确定网络侧所使用中继方 式为层一中继方式时, 合并单元 64将第一业务获取单元 63所获取的所述基 站侧的下行业务及所述中继站侧下行业务在物理层进行合并;确定单元 66确 定网络侧所使用中继方式为层二中继方式或层三中继方式时,合并单元 64将 第一业务获取单元 63 所获取的所述基站侧的下行业务及所述中继站侧的下 行业务分别进行物理层、 层二处理后再进行合并。
本领域技术人员应当理解, 在网络侧所使用的 Relay技术唯一时, 本发 明长期演进系统中下行业务的接收装置中可以不包括确定单元 66; 用户终端 均对所接收下行业务合并处理时, 不必包括第二业务获取单元 65。 本发明长 期演进系统中下行业务的接收装置为图 4所示的长期演进系统中下行业务的 接收方法而设计的, 图 6所示的各处理单元的实现功能可参照图 4及实施例 一至六的相关描述而理解。 图 6所示的各处理单元的功能可通过运行于处理 器上的程序而实现, 也可通过具体的逻辑电路而实现。
图 7为本发明另一种长期演进系统中下行业务的接收装置的组成结构示 意图, 如图 7所示, 本发明长期演进系统中下行业务的接收装置包括接收单 元 70、 承载信息获取单元 71、 业务获取单元 72和合并单元 73 , 其中, 接收 单元 70用于接收网络侧的下行业务配置信息。 承载信息获取单元 71用于获 取所述下行业务配置信息中的所述用户终端的同一下行业务在基站侧的承载 时隙和中继站侧的承载时隙的信息。业务获取单元 72用于侦听所述基站侧的 承载时隙和所述中继站侧的承载时隙, 获取所述基站侧的下行业务及所述中 继站侧下行业务。合并单元 73用于将所获取的所述基站侧的下行业务及所述 中继站侧下行业务进行合并。
如图 7所示, 本发明长期演进系统中下行业务的接收装置包括还包括确 定单元 74, 用于确定网络侧所使用中继方式; 所述下行业务配置信息中还包 括网络侧所使用中继方式的指示信息 ,确定单元 74确定网络侧所使用中继方 式为层一中继方式时, 合并单元 73将业务获取单元 72所获取的所述基站侧 的下行业务及所述中继站侧下行业务在物理层进行合并;确定单元 74确定网 络侧所使用中继方式为层二中继方式或层三中继方式时,合并单元 73将业务 获取单元 72 所获取的所述基站侧的下行业务及所述中继站侧的下行业务分 别进行物理层、 层二处理后再进行合并。
本领域技术人员应当理解, 在网络侧所使用的 Relay技术唯一时, 本发 明长期演进系统中下行业务的接收装置中可以不包括确定单元 74。 本发明长 期演进系统中下行业务的接收装置为图 5所示的长期演进系统中下行业务的 接收方法而设计的, 图 7所示的各处理单元的实现功能可参照图 5及实施例 一至六的相关描述而理解。 图 7所示的各处理单元的功能可通过运行于处理 器上的程序而实现, 也可通过具体的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。
工业实用性
与现有技术相比, 本发明提高了 eNB与 RS共同覆盖小区边缘中的用户 终端下行业务增益, 保证了终端用户的通信质量。

Claims

权 利 要 求 书
1、 一种长期演进系统中下行业务的接收方法, 其包括:
接收到网络侧的下行业务配置信息后, 用户终端获取所述下行业务配置 信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中继站侧的承 载时隙的信息; 以及
所述用户终端判断所述基站侧的承载时隙及所述中继站侧的承载时隙所 在的承载信道的信道质量是否分别达到设定阔值, 均达不到设定阔值时, 侦 听所述基站侧的承载时隙和所述中继站侧的承载时隙, 获取所述基站侧发送 的下行业务及所述中继站侧发送的下行业务后进行合并。
2、 根据权利要求 1所述的方法, 其还包括:
所述用户终端判断所述基站侧的承载时隙及所述中继站侧的承载时隙所 在的承载信道中的至少一条承载信道的信道质量达到设定阔值, 仅侦听信道 质量达到设定阔值的一条承载信道对应的承载时隙。
3、 根据权利要求 1所述的方法, 其中, 所述用户终端的同一下行业务在 基站侧的承载时隙和中继站侧的承载时隙位于同频或不同频的载波中。
4、 根据权利要求 1或 3所述的方法, 其中, 所述下行业务配置信息中还 包括网络侧所使用中继方式的指示信息。
5、 根据权利要求 4所述的方法, 其中, 对所述基站侧发送的下行业务及 所述中继站侧发送的下行业务进行合并的步骤包括:
所述用户终端确定网络侧所使用中继方式为层一中继方式时, 将所获取 的所述基站侧的下行业务及所述中继站侧下行业务在物理层进行合并。
6、 根据权利要求 4所述的方法, 其中, 对所述基站侧发送的下行业务及 所述中继站侧发送的下行业务进行合并的步骤包括: 所述用户终端确定网络 侧所使用中继方式为层二中继方式或层三中继方式时, 将所获取的所述基站 侧的下行业务及所述中继站侧的下行业务分别进行物理层、 层二处理后再进 行合并。
7、 一种长期演进系统中下行业务的接收方法, 其包括: 接收到网络侧的下行业务配置信息后, 用户终端获取所述下行业务配置 信息中的所述用户终端的同一下行业务在基站侧的承载时隙和中继站侧的承 载时隙的信息, 侦听所述基站侧的承载时隙和所述中继站侧的承载时隙, 获 取所述基站侧的下行业务及所述中继站侧下行业务后进行合并。
8、 根据权利要求 7所述的方法, 其中, 所述下行业务配置信息中还包括 网络侧所使用中继方式的指示信息。
9、根据权利要求 8所述的方法, 对所述基站侧发送的下行业务及所述中 继站侧发送的下行业务进行合并的步骤包括:
所述用户终端确定网络侧所使用中继方式为层一中继方式时, 将所获取 的所述基站侧的下行业务及所述中继站侧下行业务在物理层进行合并。
10、 根据权利要求 8所述的方法, 其中, 对所述基站侧发送的下行业务 及所述中继站侧发送的下行业务进行合并的步骤包括: 所述用户终端确定网 络侧所使用中继方式为层二中继方式或层三中继方式时, 将所获取的所述基 站侧的下行业务及所述中继站侧的下行业务分别进行物理层、 层二处理后再 进行合并。
11、 一种长期演进系统中下行业务的接收装置, 其包括:
接收单元, 其设置成接收网络侧的下行业务配置信息;
承载信息获取单元, 其设置成获取所述下行业务配置信息中的用户终端 的同一下行业务在基站侧的承载时隙和中继站侧的承载时隙的信息;
判断单元, 其设置成判断所述基站侧的承载时隙及所述中继站侧的承载 时隙所在的承载信道的信道质量是否分别达到设定阔值, 均达不到设定阔值 时触发第一业务获取单元;
第一业务获取单元, 其设置成分别侦听所述基站侧的承载时隙和所述中 继站侧的承载时隙,获取所述基站侧的下行业务及所述中继站侧的下行业务; 以及
合并单元, 其设置成将所获取的所述基站侧的下行业务及所述中继站侧 下行业务进行合并。
12、 根据权利要求 11所述的装置, 其中, 所述装置还包括第二业务获取 单元,
所述判断单元还设置成判断所述基站侧的承载时隙及所述中继站侧的承 载时隙所在的承载信道中的至少一条承载信道的信道质量达到设定阔值时, 触发所述第二业务获取单元;
所述第二业务获取单元设置成仅侦听信道质量达到设定阔值的一条承载 信道对应的承载时隙, 直接获取所述基站侧的下行业务及所述中继站侧的下 行业务。
13、 根据权利要求 11或 12所述的装置, 其还包括确定单元, 所述确定 单元设置成确定网络侧所使用的中继方式; 其中,
所述下行业务配置信息中还包括网络侧所使用中继方式的指示信息; 所述合并单元是设置成:
第一业务获取单元所获取的所述基站侧的下行业务及所述中继站侧下行业务 在物理层进行合并; 以及
方式时, 将所述第一业务获取单元所获取的所述基站侧的下行业务及所述中 继站侧的下行业务分别进行物理层、 层二处理后再进行合并。
14、 一种长期演进系统中下行业务的接收装置, 其包括:
接收单元, 其设置成接收网络侧的下行业务配置信息;
承载信息获取单元, 其设置成获取所述下行业务配置信息中的用户终端 的同一下行业务在基站侧的承载时隙和中继站侧的承载时隙的信息;
业务获取单元, 其设置成分别侦听所述基站侧的承载时隙和所述中继站 侧的承载时隙, 获取所述基站侧的下行业务及所述中继站侧下行业务; 以及 合并单元, 其设置成将所获取的所述基站侧的下行业务及所述中继站侧 下行业务进行合并。
15、 根据权利要求 14所述的装置, 其还包括确定单元, 所述确定单元设 置成确定网络侧所使用的中继方式; 其中, 所述下行业务配置信息中还包括网络侧所使用中继方式的指示信息; 所述合并单元是设置成: 业务获取单元所获取的所述基站侧的下行业务及所述中继站侧下行业务在物 理层进行合并; 以及 方式时, 将所述业务获取单元所获取的所述基站侧的下行业务及所述中继站 侧的下行业务分别进行物理层、 层二处理后再进行合并。
PCT/CN2009/076202 2009-03-18 2009-12-29 长期演进系统中下行业务的接收方法与装置 WO2010105487A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2009342312A AU2009342312B2 (en) 2009-03-18 2009-12-29 Receiving method and device for downlink service in long term evolution system
EP09841770.2A EP2410786B1 (en) 2009-03-18 2009-12-29 Receiving method and device for downlink service in long term evolution system
BRPI0924843A BRPI0924843A2 (pt) 2009-03-18 2009-12-29 método de recepção e dispositivo para serviço de downlink em sistema de evolução de longo prazo
US13/256,547 US20120002595A1 (en) 2009-03-18 2009-12-29 Receiving method and device for downlink service in long term evolution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910080084.3 2009-03-18
CN200910080084.3A CN101841861B (zh) 2009-03-18 2009-03-18 长期演进系统中下行业务的接收方法与装置

Publications (1)

Publication Number Publication Date
WO2010105487A1 true WO2010105487A1 (zh) 2010-09-23

Family

ID=42739162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076202 WO2010105487A1 (zh) 2009-03-18 2009-12-29 长期演进系统中下行业务的接收方法与装置

Country Status (6)

Country Link
US (1) US20120002595A1 (zh)
EP (1) EP2410786B1 (zh)
CN (1) CN101841861B (zh)
AU (1) AU2009342312B2 (zh)
BR (1) BRPI0924843A2 (zh)
WO (1) WO2010105487A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891415B2 (en) * 2012-10-04 2014-11-18 Harris Corporation Wireless communications system including single channel retransmission and related methods
CN106034102B (zh) * 2015-03-16 2019-04-12 苏州简约纳电子有限公司 一种lte终端接收增益的调整方法
US11153186B2 (en) * 2020-01-28 2021-10-19 Dell Products, L.P. Adaptive network selection
CN116889030A (zh) * 2021-04-01 2023-10-13 Oppo广东移动通信有限公司 一种中继方式确定方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030802A (zh) * 2007-02-05 2007-09-05 北京邮电大学 一种支撑多媒体广播业务的无线多跳中继组网方法
WO2008040931A1 (en) * 2006-10-02 2008-04-10 Fujitsu Limited Multihop system using chase combining harq detection
US20080159253A1 (en) * 2006-12-29 2008-07-03 Motorola, Inc. Method to increase link quality in multihop system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400856B2 (en) * 2003-09-03 2008-07-15 Motorola, Inc. Method and apparatus for relay facilitated communications
JP4292419B2 (ja) * 2005-07-25 2009-07-08 ソニー株式会社 モニタ端末
JP4824401B2 (ja) * 2005-12-28 2011-11-30 株式会社エヌ・ティ・ティ・ドコモ 移動局装置および基地局装置並びに無線チャネル状況の通知方法
EP2547028A3 (en) * 2006-07-28 2013-04-10 Apple Inc. Space-time block code communications with co-operative relays
KR100799580B1 (ko) * 2006-09-29 2008-01-30 한국전자통신연구원 Mimo 통신시스템에서의 안테나 및 노드 선택 장치 및그 방법
WO2008082347A1 (en) * 2006-12-20 2008-07-10 Telefonaktiebolaget Lm Ericsson (Publ) A method and arrangements for an event triggered drx cycle adjustment
GB2445777B (en) * 2007-01-10 2009-04-22 Samsung Electronics Co Ltd Wireless communication system
WO2008136830A1 (en) * 2007-05-07 2008-11-13 Lucent Technologies Inc. Method of relaying soft information for cooperative diversity in a wireless communication system
US20100022184A1 (en) * 2008-07-22 2010-01-28 Sharp Laboratories Of America, Inc. Systems and methods for selective relaying in wireless networks
US8040904B2 (en) * 2008-12-17 2011-10-18 Research In Motion Limited System and method for autonomous combining
US20100189038A1 (en) * 2009-01-23 2010-07-29 Runhua Chen Circuit and method for mapping data symbols and reference signals for coordinated multi-point systems
KR101729548B1 (ko) * 2009-03-06 2017-05-02 엘지전자 주식회사 CoMP 기법이 적용된 무선 통신 시스템에서 채널 품질 정보 송신 방법 및 이를 위한 장치
US8274951B2 (en) * 2009-03-17 2012-09-25 Samsung Electronics Co., Ltd. System and method for dynamic cell selection and resource mapping for CoMP joint transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040931A1 (en) * 2006-10-02 2008-04-10 Fujitsu Limited Multihop system using chase combining harq detection
US20080159253A1 (en) * 2006-12-29 2008-07-03 Motorola, Inc. Method to increase link quality in multihop system
CN101030802A (zh) * 2007-02-05 2007-09-05 北京邮电大学 一种支撑多媒体广播业务的无线多跳中继组网方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410786A4 *

Also Published As

Publication number Publication date
CN101841861B (zh) 2014-03-12
AU2009342312B2 (en) 2013-11-14
AU2009342312A1 (en) 2011-11-03
BRPI0924843A2 (pt) 2016-02-23
US20120002595A1 (en) 2012-01-05
EP2410786A4 (en) 2014-10-22
CN101841861A (zh) 2010-09-22
EP2410786A1 (en) 2012-01-25
EP2410786B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
CN113412669B (zh) 用于配置随机接入传输的技术
JP6407894B2 (ja) 休止セルにアクセスするための方法および装置
JP6591388B2 (ja) 休止セルのためのアクティベーションプロシージャ
US10038993B2 (en) Method for supporting device-to-device communication in a cellular network, and apparatus for same
EP3010301B1 (en) Method and apparatus for improving resource control in a wireless communication system
CN110249669B (zh) 发送上行链路的方法和设备
CN109804679A (zh) 在无线通信系统中由终端执行的侧链路同步信号发送方法以及使用该方法的终端
WO2013187643A1 (ko) 단말 간 직접 통신을 지원하는 무선 통신 시스템에서 페이징을 수행하는 방법 및 이를 위한 d2d 단말
CN103858467B (zh) 协作多点测量方法、基站与用户设备
WO2019098903A1 (en) Methods, apparatus and systems relating to data radio bearer inactivity
CN115516924A (zh) 用于无线通信系统中侧行链路通信的不连续接收
EP3639382A1 (en) Radio network node, wireless device and methods performed therein
CN115336315A (zh) 交叉链路干扰测量配置
WO2010105487A1 (zh) 长期演进系统中下行业务的接收方法与装置
CN116491220A (zh) 基于l2中继中的早期测量的中继选择
US11882584B2 (en) Interference identification in C-V2X communication
CN116134882A (zh) 测量报告定时调整
US20240129768A1 (en) Communication apparatus, master node, and communication control method
US20240129769A1 (en) Communication apparatus and communication control method
US20160183320A1 (en) Base station and user terminal
US20240064492A1 (en) Unicast message and multicast message multiplexing
WO2023095804A1 (ja) 通信システム
WO2023050445A1 (en) Minimization of drive time for wireless communication including sidelink
EP4106368A1 (en) Communication system, communication terminal, and network
KR20230128467A (ko) L2 릴레이 이동성을 위한 순방향 핸드오버 절차들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009841770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13256547

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009342312

Country of ref document: AU

Date of ref document: 20091229

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924843

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924843

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110916