WO2010104099A1 - Rotation control method for internal combustion engine and vehicle movement control device - Google Patents

Rotation control method for internal combustion engine and vehicle movement control device Download PDF

Info

Publication number
WO2010104099A1
WO2010104099A1 PCT/JP2010/053950 JP2010053950W WO2010104099A1 WO 2010104099 A1 WO2010104099 A1 WO 2010104099A1 JP 2010053950 W JP2010053950 W JP 2010053950W WO 2010104099 A1 WO2010104099 A1 WO 2010104099A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
rotation
engine
control device
Prior art date
Application number
PCT/JP2010/053950
Other languages
French (fr)
Japanese (ja)
Inventor
武 浅見
健太郎 伊藤
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Publication of WO2010104099A1 publication Critical patent/WO2010104099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Definitions

  • the present invention relates to rotation control of an internal combustion engine, and more particularly, to control of rotation fluctuation caused by electric load fluctuation, improvement of operation reliability, and the like.
  • the present invention has been made in view of the above circumstances, and can suppress the fluctuation of the rotation speed of the internal combustion engine due to the occurrence of a periodic electric load and can obtain a stable and reliable rotation.
  • a rotation control method and a vehicle operation control device are provided.
  • a rotation control method for an internal combustion engine in a vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine based on an operating state of the internal combustion engine.
  • the internal combustion engine is in a predetermined low rotation state and in a predetermined low load state;
  • the coefficient that can change the rotation of the internal combustion engine is corrected according to the rotation fluctuation of the internal combustion engine, thereby
  • a rotation control method for an internal combustion engine that can suppress fluctuations in the rotation of the internal combustion engine caused by an electrical load.
  • a vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine by an electronic control unit based on the operating state of the internal combustion engine,
  • the electronic control unit is Determining whether the internal combustion engine is in a predetermined low rotation state and a predetermined low load state, and a periodic electric load is generated;
  • a predetermined coefficient that can change the rotation of the internal combustion engine is determined according to the rotation fluctuation of the internal combustion engine.
  • a vehicle operation control device that is configured to be able to correct and suppress rotational fluctuations of an internal combustion engine caused by the periodic electrical load.
  • the fuel injection amount is adjusted by performing coefficient correction in the engine rotation control according to the occurrence of the periodic electric load, so that the engine speed resulting from the occurrence of the periodic electric load is adjusted. Fluctuations can be suppressed, and the engine rotation can be obtained with high stability and reliability.
  • FIG. 1 shows a change characteristic example schematically showing changes in engine rotation speed and fuel injection amount with respect to a periodic electric load in a vehicle using the vehicle operation control apparatus shown in FIG. 1, together with similar change characteristic examples of a conventional apparatus.
  • FIG. 3A is a schematic change characteristic diagram of the engine speed
  • FIG. 3B is a schematic change characteristic diagram of the fuel injection amount.
  • the vehicle operation control apparatus includes an electronic control unit 101, and by executing a program in the electronic control unit 101, the fuel injection amount, injection timing, and the like in the fuel injection apparatus 102 are controlled.
  • the engine 103 can be brought into a desired driving state. In FIG. 1, only the main part related to the operation control of the engine 103 is shown in order to simplify the illustration and facilitate understanding, and the other components of the vehicle operation control device are not shown. It is supposed to be.
  • the electronic control unit 101 includes a microcomputer (not shown) and a storage element (not shown) such as RAM and ROM, an interface circuit (not shown), and the like.
  • the electronic control unit 101 includes a rotation sensor 1 that outputs a rotation signal corresponding to the number of rotations of the engine 103 and an accelerator (not shown) that is required for vehicle operation control as described above.
  • various signals necessary for the operation control of the engine 103 are input and used for various processes of the operation control of the engine 103.
  • the electronic control unit 101 is supplied with power from the vehicle battery 3 via the ignition switch 11. Further, the vehicle battery 3 supplies power to the turn-hazard drive device 51. That is, the turn-hazard drive device 51 is configured by using the turn-hazard lamp 14, the lighting drive circuit 15 of the turn-hazard lamp 14, the turn switch 12 and the hazard switch 13 as main electrical components. ing. A power supply voltage from the vehicle battery 3 is supplied to the lighting drive circuit 15 via the turn switch 12 or the hazard switch 13. When the turn switch 12 or the hazard switch 13 is in a closed state (ON), the turn hazard lamp 14 is driven by the lighting drive circuit 15 so as to be lit as a turn lamp or a hazard lamp. It has become.
  • FIG. 2 is a subroutine flowchart showing the procedure of the rotation control process of the internal combustion engine executed by the electronic control unit 101. The process procedure will be described below with reference to FIG.
  • processing by the electronic control unit 101 it is first determined whether or not the engine rotation state is in a low rotation and low load state (see step S102 in FIG. 2).
  • the specific criterion for determining whether or not the low-rotation / low-load state is present varies depending on the scale of the individual vehicle, and is not limited to a specific criterion. This is determined from the viewpoint of whether or not a state that causes fluctuations in engine speed and fuel injection amount when fluctuations occur. For example, it is preferable to determine whether or not the engine is in the low speed rotation state. Further, it is preferable to determine whether or not the fuel injection amount is lower than a predetermined amount as a determination as to whether or not the vehicle is in a low load state.
  • the predetermined amount of the fuel injection amount described above should be determined according to the size of each vehicle, that is, mainly the size of the engine 103, and is not limited to a specific value.
  • fuel injection control based on a general processing procedure is executed in the electronic control unit 101 as a matter of course.
  • the actual fuel injection amount calculated based on the energization time of a fuel injection valve (not shown) is calculated based on the engine speed, the accelerator opening, and the like.
  • Fuel injection control is performed so as to achieve the target fuel injection amount.
  • step 102 the fuel injection amount used for determining whether or not the vehicle is in a low load state is not specifically calculated or calculated for this series of processing, but is separately executed in the electronic control unit 101. It is sufficient to flow the fuel injection amount calculated and calculated in the fuel injection control process.
  • step S102 If it is determined in step S102 that the engine rotation state is in the low rotation and low load state (in the case of YES), the process proceeds to step S104 described below, while the engine rotation state is in the low rotation and low load state. If it is determined that this is not the case (NO), it is determined that the following processing is not in a state to be executed, a series of processing is terminated, and the process returns to a main routine (not shown).
  • step S104 it is determined whether or not a periodic fluctuation of the electric load has occurred. Specifically, it is determined whether or not the turn hazard lamp 14 is blinking.
  • Whether or not such a periodic electrical load has occurred is determined by the periodic voltage fluctuation of the vehicle battery 3 or the periodic current fluctuation that coincides with the blinking cycle of the turn hazard lamp 14 that has been clarified in advance. It is preferable to make a determination based on the presence or absence.
  • step S104 when it is determined in step S104 that the periodic electric load fluctuates (in the case of YES), the process proceeds to step S106 described below, while the periodic electric load is changed.
  • step S106 When it is determined that no change has occurred (in the case of NO), a series of processes are terminated and the process returns to a main routine (not shown), assuming that the following process is not executed.
  • step S106 gain correction in engine rotation control is performed. That is, the gain correction in the engine rotation control is for suppressing the rotation fluctuation by compensating for the decrease in the engine rotation from the viewpoint of suppressing the engine speed fluctuation caused by the occurrence of the periodic electric load fluctuation.
  • FIG. 3A is a characteristic diagram schematically showing how the engine speed fluctuates with respect to periodic electric load fluctuations, where the horizontal axis represents time and the vertical axis represents engine speed and periodic electricity. Each indicates whether or not a load is generated.
  • a square wave represented by a two-dot chain line represents a periodic electrical load, for example, whether or not the turn hazard lamp 14 is lit, and the square wave portion represents the periodic electrical load. This represents a state where is occurring.
  • a dotted characteristic line shows an example of fluctuations in engine speed in the conventional apparatus.
  • FIG. 3B is a characteristic diagram schematically showing how the fuel injection amount fluctuates with respect to periodic electric load fluctuations, where the horizontal axis represents time and the vertical axis represents the fuel injection amount. It has become a thing.
  • the engine speed fluctuates.
  • the drop in the engine speed increases near the period when the periodic electric load fluctuation stops (FIG. 3). Accordingly, it can be confirmed that the increase in the fuel injection amount becomes large in the vicinity of that point (see the dotted characteristic line in FIG. 3B).
  • the reason why the engine speed fluctuates due to the occurrence of periodic electric load fluctuations is that the occurrence of periodic electric load fluctuations causes fluctuations in the voltage and current of the vehicle battery 3, for example, a fuel injection valve ( This is thought to be due to the influence of the drive current and energization time (not shown) and the change of the fuel injection amount.
  • the gain correction of the engine speed is corrected so that the change amount of the fuel injection amount is increased as compared with the conventional case in accordance with the engine speed fluctuation.
  • the engine speed fluctuation is slightly smaller than that in the conventional case (see the dotted characteristic line in FIG. 3A) (see FIG. 3).
  • the engine speed gain correction is more specifically performed so that the calculated value of the target fuel injection amount in the fuel injection control increases in accordance with the occurrence of the periodic electric load. This is performed by correcting an appropriate coefficient in the calculation calculation process.
  • the coefficients that can be used for the above-described gain correction are different, and thus cannot be limited to a specific one here. It is preferable to select a coefficient that can be used for such correction, and to set a suitable magnitude of correction based on simulations and experiments.
  • step S106 After the processing of step S106 by the electronic control unit 101 is performed as described above, the series of processing ends, and the processing by the electronic control unit 101 temporarily returns to a main routine (not shown).
  • the influence of the periodically generated electric load on the rotation of the internal combustion engine can be suppressed, and the present invention can be applied to an internal combustion engine in which suppression of rotational fluctuation is desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The variation of the number of revolutions of an internal combustion engine, which is caused by the periodical occurrence of an electrical load, is suppressed. When a control device judges that the rotation of an engine reaches a predetermined low value, and the load of the engine reaches a predetermined low value (S102), if the control device judges that an electrical load, such as the blinking of a turn hazard lamp occurs periodically (S104), a coefficient by which the rotation of the engine can be changed is corrected in accordance with the variation of rotation of the engine (S106), so that the variation of rotation of the engine, which is caused by the periodical occurrence of an electrical load, can be suppressed.

Description

内燃機関の回転制御方法及び車両動作制御装置Internal combustion engine rotation control method and vehicle operation control device
 本発明は、内燃機関の回転制御に係り、特に、電気負荷変動に起因する回転変動の抑圧、動作の信頼性の向上等を図ったものに関する。 The present invention relates to rotation control of an internal combustion engine, and more particularly, to control of rotation fluctuation caused by electric load fluctuation, improvement of operation reliability, and the like.
 従来、この種の回路としては、例えば、通常アイドル状態とアイドルアップ状態間の移行の際の急激な回転速度の変化を抑制し、乗員に対するショックの抑圧を図ったもの等が提案されている(例えば、特許文献1等参照)。
 例えば、特許文献1に開示された装置においては、エアコンスイッチがオフからオンとされた場合、エアコンの始動に伴う負荷変動分に相当する見込み補正量が算出される。そして、回転制御における制御量に対して、その見込み補正量の補正を一気に施し、次いで、時間の経過と共に補正量を徐々に増すようにして、急激な回転速度の変化を抑制する構成となっている。
Conventionally, as this type of circuit, for example, a circuit that suppresses a sudden change in rotational speed at the time of transition between an idle state and an idle-up state and suppresses a shock to an occupant has been proposed ( For example, see Patent Document 1).
For example, in the apparatus disclosed in Patent Document 1, when an air conditioner switch is turned on from off, a prospective correction amount corresponding to a load fluctuation accompanying the start of the air conditioner is calculated. Then, the expected correction amount is corrected at once for the control amount in the rotation control, and then the correction amount is gradually increased with the passage of time to suppress a sudden change in the rotation speed. Yes.
 ところで、エンジンが比較的小型の場合、上述したようなエアコンの動作時以外、例えば、周期的な電気負荷が変動する際に、エンジン負荷全体に占めるそのような電気負荷の割合が大型のエンジンに比して高いため、連動して回転変動を生ずることがあり、その対策が求められている。
特開平6-129292号公報
By the way, when the engine is relatively small, the ratio of such an electric load to the entire engine load is larger than that when the air conditioner is operating as described above, for example, when the periodic electric load fluctuates. Since this is relatively high, rotational fluctuations may occur in conjunction with each other, and countermeasures are required.
JP-A-6-129292
 本発明は、上記実状に鑑みてなされたもので、周期的な電気負荷の発生に起因する内燃機関の回転数の変動を抑圧し、安定性、信頼性の高い回転を得ることのできる内燃機関の回転制御方法及び車両動作制御装置を提供するものである。 The present invention has been made in view of the above circumstances, and can suppress the fluctuation of the rotation speed of the internal combustion engine due to the occurrence of a periodic electric load and can obtain a stable and reliable rotation. A rotation control method and a vehicle operation control device are provided.
 本発明の第1の形態によれば、内燃機関の運転状態に基づいて前記内燃機関の回転制御が可能に構成されてなる車両動作制御装置における内燃機関の回転制御方法であって、
 前記内燃機関が所定の低回転状態にあり、且つ、所定の低負荷状態にあって、
 周期的な電気負荷が生じている場合に、前記内燃機関の回転制御において、前記内燃機関の回転を変化させ得る係数を、前記内燃機関の回転変動に応じて補正することによって、前記周期的な電気的負荷に起因する内燃機関の回転変動を抑圧可能としてなる内燃機関の回転制御方法が提供される。
 本発明の第2の形態によれば、内燃機関の運転状態に基づいて電子制御ユニットにより前記内燃機関の回転制御が可能に構成されてなる車両動作制御装置であって、
 前記電子制御ユニットは、
  前記内燃機関が所定の低回転状態、且つ、所定の低負荷状態にあって、周期的な電気負荷が発生しているか否かを判定し、
 周期的な電気負荷が発生していると判定された場合に、前記内燃機関の回転制御において、予め定められた前記内燃機関の回転を変化させ得る係数を、前記内燃機関の回転変動に応じて補正し、前記周期的な電気的負荷に起因する内燃機関の回転変動を抑圧可能に構成されてなる車両動作制御装置が提供される。
According to a first aspect of the present invention, there is provided a rotation control method for an internal combustion engine in a vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine based on an operating state of the internal combustion engine.
The internal combustion engine is in a predetermined low rotation state and in a predetermined low load state;
In the rotation control of the internal combustion engine, when the periodic electrical load is generated, the coefficient that can change the rotation of the internal combustion engine is corrected according to the rotation fluctuation of the internal combustion engine, thereby Provided is a rotation control method for an internal combustion engine that can suppress fluctuations in the rotation of the internal combustion engine caused by an electrical load.
According to a second aspect of the present invention, there is provided a vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine by an electronic control unit based on the operating state of the internal combustion engine,
The electronic control unit is
Determining whether the internal combustion engine is in a predetermined low rotation state and a predetermined low load state, and a periodic electric load is generated;
In the rotation control of the internal combustion engine, when it is determined that a periodic electrical load is generated, a predetermined coefficient that can change the rotation of the internal combustion engine is determined according to the rotation fluctuation of the internal combustion engine. There is provided a vehicle operation control device that is configured to be able to correct and suppress rotational fluctuations of an internal combustion engine caused by the periodic electrical load.
 本発明によれば、周期的電気負荷の発生に応じて、エンジン回転制御における係数補正を行うことで、燃料噴射量を調節するようにしたので、周期的電気負荷の発生に起因するエンジン回転数の変動を抑圧することができ、安定性、信頼性の高いエンジン回転を得ることのできるという効果を奏するものである。 According to the present invention, the fuel injection amount is adjusted by performing coefficient correction in the engine rotation control according to the occurrence of the periodic electric load, so that the engine speed resulting from the occurrence of the periodic electric load is adjusted. Fluctuations can be suppressed, and the engine rotation can be obtained with high stability and reliability.
本発明の実施の形態における内燃機関の回転制御方法が適用される車両動作制御装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the vehicle operation control apparatus with which the rotation control method of the internal combustion engine in embodiment of this invention is applied. 図1に示された車両動作制御装置を構成する電子制御ユニットによって実行される内燃機関の回転制御処理の手順を示すサブルーチンフローチャートである。2 is a subroutine flowchart showing a procedure of a rotation control process of an internal combustion engine executed by an electronic control unit constituting the vehicle operation control device shown in FIG. 図1に示された車両動作制御装置を用いた車両における周期的電気負荷に対するエジン回転数及び燃料噴射量の変動の様子を概略的に示す変化特性例を従来装置の同様な変化特性例と共に示した概略変化特性線図であって、図3(A)は、エンジン回転数の概略変化特性線図、図3(B)は、燃料噴射量の概略変化特性線図である。FIG. 1 shows a change characteristic example schematically showing changes in engine rotation speed and fuel injection amount with respect to a periodic electric load in a vehicle using the vehicle operation control apparatus shown in FIG. 1, together with similar change characteristic examples of a conventional apparatus. FIG. 3A is a schematic change characteristic diagram of the engine speed, and FIG. 3B is a schematic change characteristic diagram of the fuel injection amount.
12…ターンスイッチ
13…ハザードスイッチ
14…ターンハザードランプ
51…ターンハザード駆動装置
101…電子制御ユニット
102…燃料噴射装置
103…エンジン
DESCRIPTION OF SYMBOLS 12 ... Turn switch 13 ... Hazard switch 14 ... Turn hazard lamp 51 ... Turn hazard drive device 101 ... Electronic control unit 102 ... Fuel injection device 103 ... Engine
 以下、本発明の実施の形態について、図1乃至図3を参照しつつ説明する。
 なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 最初に、本発明の実施の形態における内燃機関の回転制御方法が適用される車両動作制御装置の構成例について、図1を参照しつつ説明する。
 本発明の実施の形態における車両動作制御装置は、電子制御ユニット101を有し、この電子制御ユニット101におけるプログラムの実行により、燃料噴射装置102における燃料噴射量、噴射タイミング等が制御され、内燃機関としてのエンジン103を所望の駆動状態とすることができるようになっている。
 なお、この図1においては、図示を簡潔にして、理解を容易とするため、エンジン103の動作制御に関する主要部のみを表しており、車両動作制御装置の他の構成部分については図示を省略したものとしている。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
First, a configuration example of a vehicle operation control device to which a rotation control method for an internal combustion engine in an embodiment of the present invention is applied will be described with reference to FIG.
The vehicle operation control apparatus according to the embodiment of the present invention includes an electronic control unit 101, and by executing a program in the electronic control unit 101, the fuel injection amount, injection timing, and the like in the fuel injection apparatus 102 are controlled. The engine 103 can be brought into a desired driving state.
In FIG. 1, only the main part related to the operation control of the engine 103 is shown in order to simplify the illustration and facilitate understanding, and the other components of the vehicle operation control device are not shown. It is supposed to be.
 電子制御ユニット101は、マイクロコンピュータ(図示せず)を中心に、RAMやROM等の記憶素子(図示せず)やインターフェイス回路等(図示せず)を具備して構成されたものである。かかる電子制御ユニット101には、上述のような車両の動作制御に必要とされる、エンジン103の回転数に応じた回転信号を出力する回転センサ1、アクセル(図示せず)の踏み込み量に応じたアクセル開度信号を出力するアクセル開度センサ2を始め、エンジン103の動作制御に必要な種々の信号が入力され、エンジン103の動作制御の種々の処理に供されるようになっている。 The electronic control unit 101 includes a microcomputer (not shown) and a storage element (not shown) such as RAM and ROM, an interface circuit (not shown), and the like. The electronic control unit 101 includes a rotation sensor 1 that outputs a rotation signal corresponding to the number of rotations of the engine 103 and an accelerator (not shown) that is required for vehicle operation control as described above. In addition to the accelerator opening sensor 2 that outputs the accelerator opening signal, various signals necessary for the operation control of the engine 103 are input and used for various processes of the operation control of the engine 103.
 この電子制御ユニット101は、イグニッションスイッチ11を介して車両バッテリ3の電源供給を受けるようになっている。
 また、この車両バッテリ3からは、ターン・ハザード駆動装置51への電源供給が行われるようになっている。
 すなわち、ターン・ハザード駆動装置51は、ターン・ハザードランプ14と、このターン・ハザードランプ14の点灯駆動回路15と、ターンスイッチ12及びハザードスイッチ13を主たる電気的構成要素として構成されたものとなっている。
 点灯駆動回路15には、ターンスイッチ12、又は、ハザードスイッチ13を介して車両バッテリ3からの電源電圧が供給されるようになっている。そして、ターンスイッチ12、又は、ハザードスイッチ13が閉成状態(ON)とされると、ターン・ハザードランプ14が、ターンランプ、又は、ハザードランプとして点灯するよう点灯駆動回路15によって駆動されるようになっている。
The electronic control unit 101 is supplied with power from the vehicle battery 3 via the ignition switch 11.
Further, the vehicle battery 3 supplies power to the turn-hazard drive device 51.
That is, the turn-hazard drive device 51 is configured by using the turn-hazard lamp 14, the lighting drive circuit 15 of the turn-hazard lamp 14, the turn switch 12 and the hazard switch 13 as main electrical components. ing.
A power supply voltage from the vehicle battery 3 is supplied to the lighting drive circuit 15 via the turn switch 12 or the hazard switch 13. When the turn switch 12 or the hazard switch 13 is in a closed state (ON), the turn hazard lamp 14 is driven by the lighting drive circuit 15 so as to be lit as a turn lamp or a hazard lamp. It has become.
 図2には、電子制御ユニット101で実行される内燃機関の回転制御処理の手順を示すサブルーチンフローチャートが示されており、以下、同図を参照しつつ、その処理手順について説明する。
 電子制御ユニット101による処理が開始されると、最初に、エンジン回転状態が低回転低負荷状態にあるか否かの判定が行われる(図2のステップS102参照)。
FIG. 2 is a subroutine flowchart showing the procedure of the rotation control process of the internal combustion engine executed by the electronic control unit 101. The process procedure will be described below with reference to FIG.
When processing by the electronic control unit 101 is started, it is first determined whether or not the engine rotation state is in a low rotation and low load state (see step S102 in FIG. 2).
 ここで、低回転低負荷状態か否かの具体的な判断基準は、個々の車両の規模などによって異なり、特定の基準に限定されるものでは無いが、後述するような周期的な電気負荷の変動が生じた際に、エンジン回転数や燃料噴射量の変動を来す状態を招くか否かという観点から定められるものである。例えば、低回転状態か否かの判定としては、アイドル回転状態にあるか否かを判定するのが好適である。また、低負荷状態にあるか否かの判定としては、燃料噴射量が所定量を下回るか否かを判定するのが好適である。なお、上述の燃料噴射量の所定量は、個々の車両の大きさ、すなわち、主としてエンジン103の大きさ等に応じて定められるべきもので、特定の値に限定されるものではない。 Here, the specific criterion for determining whether or not the low-rotation / low-load state is present varies depending on the scale of the individual vehicle, and is not limited to a specific criterion. This is determined from the viewpoint of whether or not a state that causes fluctuations in engine speed and fuel injection amount when fluctuations occur. For example, it is preferable to determine whether or not the engine is in the low speed rotation state. Further, it is preferable to determine whether or not the fuel injection amount is lower than a predetermined amount as a determination as to whether or not the vehicle is in a low load state. The predetermined amount of the fuel injection amount described above should be determined according to the size of each vehicle, that is, mainly the size of the engine 103, and is not limited to a specific value.
 ここで、本発明の実施の形態における車両においては、前提として、当然の事ながら、一般的な処理手順に基づく燃料噴射制御が電子制御ユニット101において実行されているものとする。
 一般に、燃料噴射制御においては、例えば、燃料噴射弁(図示せず)の通電時間などを基に算出された実際の燃料噴射量が、エンジン回転数やアクセル開度等を基に演算算出された目標燃料噴射量となるように燃料噴射制御が行われるものとなっている。
Here, in the vehicle according to the embodiment of the present invention, it is assumed that fuel injection control based on a general processing procedure is executed in the electronic control unit 101 as a matter of course.
In general, in the fuel injection control, for example, the actual fuel injection amount calculated based on the energization time of a fuel injection valve (not shown) is calculated based on the engine speed, the accelerator opening, and the like. Fuel injection control is performed so as to achieve the target fuel injection amount.
 したがって、ステップ102において、低負荷状態であるか否かの判断に用いられる燃料噴射量は、この一連の処理のために特別に演算算出等されるものではなく、電子制御ユニット101において別途実行される燃料噴射制御処理において演算算出された燃料噴射量を流量することで足りるものである。 Therefore, in step 102, the fuel injection amount used for determining whether or not the vehicle is in a low load state is not specifically calculated or calculated for this series of processing, but is separately executed in the electronic control unit 101. It is sufficient to flow the fuel injection amount calculated and calculated in the fuel injection control process.
 しかして、ステップS102においてエンジン回転状態が低回転低負荷状態にあると判定された場合(YESの場合)には、次述するステップS104の処理へ進む一方、エンジン回転状態が低回転低負荷状態ではないと判定された場合(NOの場合)には、以下の処理を実行する状態にはないとして、一連の処理が終了され、図示されないメインルーチンへ一旦戻ることとなる。
 ステップS104においては、周期的な電気負荷の変動が生じているか否かが判定される。すなわち、具体的には、ターン・ハザードランプ14の点滅があるか否かが判定されることとなる。
If it is determined in step S102 that the engine rotation state is in the low rotation and low load state (in the case of YES), the process proceeds to step S104 described below, while the engine rotation state is in the low rotation and low load state. If it is determined that this is not the case (NO), it is determined that the following processing is not in a state to be executed, a series of processing is terminated, and the process returns to a main routine (not shown).
In step S104, it is determined whether or not a periodic fluctuation of the electric load has occurred. Specifically, it is determined whether or not the turn hazard lamp 14 is blinking.
 このような周期的電気負荷が発生しているか否かは、予め明らかになっているターン・ハザードランプ14の点滅周期と一致する車両バッテリ3の周期的な電圧変動、又は、周期的な電流変動の有無によって判定するのが好適である。 Whether or not such a periodic electrical load has occurred is determined by the periodic voltage fluctuation of the vehicle battery 3 or the periodic current fluctuation that coincides with the blinking cycle of the turn hazard lamp 14 that has been clarified in advance. It is preferable to make a determination based on the presence or absence.
 上述のようにしてステップS104において、周期的な電気負荷の変動が生じていると判定された場合(YESの場合)には、次述するステップS106の処理へ進む一方、周期的な電気負荷の変動は生じていないと判定された場合(NOの場合)には、以下の処理を実行する状態に無いとして、一連の処理は終了され、図示されないメインルーチンへ一旦戻ることとなる。 As described above, when it is determined in step S104 that the periodic electric load fluctuates (in the case of YES), the process proceeds to step S106 described below, while the periodic electric load is changed. When it is determined that no change has occurred (in the case of NO), a series of processes are terminated and the process returns to a main routine (not shown), assuming that the following process is not executed.
 ステップS106においては、エンジン回転制御におけるゲイン補正が行われることとなる。
 すなわち、エンジン回転制御におけるゲイン補正は、周期的電気負荷変動の発生によって生ずるエンジン回転数変動を抑圧する観点から、エンジン回転の減少を補償することで、回転変動を抑圧するためのものである。
In step S106, gain correction in engine rotation control is performed.
That is, the gain correction in the engine rotation control is for suppressing the rotation fluctuation by compensating for the decrease in the engine rotation from the viewpoint of suppressing the engine speed fluctuation caused by the occurrence of the periodic electric load fluctuation.
 ここで、周期的電気負荷変動に対するエンジン回転数の変動及び燃料噴射量の変動の関係について、図3を参照しつつ説明する。
 まず、図3(A)は、周期的電気負荷変動に対するエンジン回転数の変動の様子を概略的に表した特性線図であり、横軸は時間を、縦軸はエンジン回転数と周期的電気負荷の発生の有無を、それぞれ表すものとなっている。
Here, the relationship between the fluctuation of the engine speed and the fluctuation of the fuel injection amount with respect to the periodic electric load fluctuation will be described with reference to FIG.
First, FIG. 3A is a characteristic diagram schematically showing how the engine speed fluctuates with respect to periodic electric load fluctuations, where the horizontal axis represents time and the vertical axis represents engine speed and periodic electricity. Each indicates whether or not a load is generated.
 図3(A)において、二点鎖線で表された方形波は、周期的電気負荷、例えば、ターン・ハザードランプ14の点灯の有無を表したものであり、方形波の部分が周期的電気負荷が発生している状態を表している。
 また、同図において、点線の特性線は、従来装置におけるエンジン回転数の変動の例を示すものである。
In FIG. 3A, a square wave represented by a two-dot chain line represents a periodic electrical load, for example, whether or not the turn hazard lamp 14 is lit, and the square wave portion represents the periodic electrical load. This represents a state where is occurring.
In the figure, a dotted characteristic line shows an example of fluctuations in engine speed in the conventional apparatus.
 一方、図3(B)は、周期的電気負荷変動に対する燃料噴射量の変動の様子を概略的に表した特性線図であり、横軸は時間を、縦軸は燃料噴射量を、それぞれ表すものとなっている。
 図3によれば、従来装置においては、周期的電気負荷変動が生ずると、エンジン回転の変動が生じ、特に、周期的電気負荷変動が停止する付近でエンジン回転数の落ち込みが大きくなり(図3(A)の点線の特性線参照)、それに伴い、その時点近傍で燃料噴射量の増加が大となることが確認できる(図3(B)の点線の特性線参照)。
On the other hand, FIG. 3B is a characteristic diagram schematically showing how the fuel injection amount fluctuates with respect to periodic electric load fluctuations, where the horizontal axis represents time and the vertical axis represents the fuel injection amount. It has become a thing.
According to FIG. 3, in the conventional apparatus, when a periodic electric load fluctuation occurs, the engine speed fluctuates. In particular, the drop in the engine speed increases near the period when the periodic electric load fluctuation stops (FIG. 3). Accordingly, it can be confirmed that the increase in the fuel injection amount becomes large in the vicinity of that point (see the dotted characteristic line in FIG. 3B).
 なお、周期的電気負荷変動の発生によってエンジン回転数の変動が生ずる原因としては、周期的電気負荷変動の発生が車両バッテリ3の電圧、電流の変動を招き、それが、例えば、燃料噴射弁(図示せず)の駆動電流、通電時間に影響を与え、燃料噴射量の変化を招くことに一因があると考えられる。 The reason why the engine speed fluctuates due to the occurrence of periodic electric load fluctuations is that the occurrence of periodic electric load fluctuations causes fluctuations in the voltage and current of the vehicle battery 3, for example, a fuel injection valve ( This is thought to be due to the influence of the drive current and energization time (not shown) and the change of the fuel injection amount.
 これに対して、本発明の実施の形態においては、エンジン回転数のゲイン補正によって、エンジン回転数変動に対応して燃料噴射量の変化量が従来に比して増大するよう補正がなされることで(図3(B)の実線の特性線参照)、エンジン回転数変動は、従来(図3(A)において点線の特性線参照)に比して、僅かなものとなっている(図3(A)において実線の特性線参照)。
 なお、本発明の実施の形態において、エンジン回転数のゲイン補正は、より具体的には、燃料噴射制御における目標燃料噴射量の演算算出値が、周期的電気負荷の発生に応じて増加するよう、演算算出過程における適宜な係数を補正することによって行われるものである。なお、個々の車両によって目標燃料噴射量の演算処理において、上述のゲイン補正に用いることが可能な係数は異なるので、ここで特定のものに限定することはできないが、個々の車両において、上述のような補正に用いることができる係数を選択し、シミュレーションや実験等に基づいて、好適な補正の大きさ等を設定するのが好適である。
On the other hand, in the embodiment of the present invention, the gain correction of the engine speed is corrected so that the change amount of the fuel injection amount is increased as compared with the conventional case in accordance with the engine speed fluctuation. (See the solid characteristic line in FIG. 3B), the engine speed fluctuation is slightly smaller than that in the conventional case (see the dotted characteristic line in FIG. 3A) (see FIG. 3). (See (A) for a solid characteristic line).
In the embodiment of the present invention, the engine speed gain correction is more specifically performed so that the calculated value of the target fuel injection amount in the fuel injection control increases in accordance with the occurrence of the periodic electric load. This is performed by correcting an appropriate coefficient in the calculation calculation process. In addition, in the calculation processing of the target fuel injection amount for each vehicle, the coefficients that can be used for the above-described gain correction are different, and thus cannot be limited to a specific one here. It is preferable to select a coefficient that can be used for such correction, and to set a suitable magnitude of correction based on simulations and experiments.
 上述のようにして電子制御ユニット101によるステップS106の処理が行われた後は、一連の処理が終了し、電子制御ユニット101による処理は、図示されないメインルーチンへ一旦戻ることとなる。 After the processing of step S106 by the electronic control unit 101 is performed as described above, the series of processing ends, and the processing by the electronic control unit 101 temporarily returns to a main routine (not shown).
 周期的に発生する電気負荷の内燃機関の回転への影響を抑圧可能としており、回転変動の抑圧が所望される内燃機関に適用できる。 The influence of the periodically generated electric load on the rotation of the internal combustion engine can be suppressed, and the present invention can be applied to an internal combustion engine in which suppression of rotational fluctuation is desired.

Claims (4)

  1. 内燃機関の運転状態に基づいて前記内燃機関の回転制御が可能に構成されてなる車両動作制御装置における内燃機関の回転制御方法であって、
     前記内燃機関が所定の低回転状態にあり、且つ、所定の低負荷状態にあって、
     周期的な電気負荷が生じている場合に、前記内燃機関の回転制御において、前記内燃機関の回転を変化させ得る係数を、前記内燃機関の回転変動に応じて補正することによって、前記周期的な電気的負荷に起因する内燃機関の回転変動を抑圧可能としたことを特徴とする内燃機関の回転制御方法。
    A method for controlling the rotation of an internal combustion engine in a vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine based on an operating state of the internal combustion engine,
    The internal combustion engine is in a predetermined low rotation state and in a predetermined low load state;
    In the rotation control of the internal combustion engine, when the periodic electrical load is generated, the coefficient that can change the rotation of the internal combustion engine is corrected according to the rotation fluctuation of the internal combustion engine, thereby A rotation control method for an internal combustion engine, characterized in that the rotation fluctuation of the internal combustion engine caused by an electrical load can be suppressed.
  2. 内燃機関の回転制御における係数の補正は、
      内燃機関へ対する燃料噴射量を変化させ得る係数を、周期的電気負荷の発生に応じて補正することを特徴とする請求項2記載の内燃機関の回転制御方法。
    The correction of the coefficient in the rotation control of the internal combustion engine is
    3. The rotation control method for an internal combustion engine according to claim 2, wherein a coefficient capable of changing a fuel injection amount to the internal combustion engine is corrected according to generation of a periodic electric load.
  3. 内燃機関の運転状態に基づいて電子制御ユニットにより前記内燃機関の回転制御が可能に構成されてなる車両動作制御装置であって、
     前記電子制御ユニットは、
      前記内燃機関が所定の低回転状態、且つ、所定の低負荷状態にあって、周期的な電気負荷が発生しているか否かを判定し、
     周期的な電気負荷が発生していると判定された場合に、前記内燃機関の回転制御において、予め定められた前記内燃機関の回転を変化させ得る係数を、前記内燃機関の回転変動に応じて補正し、前記周期的な電気的負荷に起因する内燃機関の回転変動を抑圧可能に構成されてなることを特徴とする車両動作制御装置。
    A vehicle operation control device configured to be capable of controlling the rotation of the internal combustion engine by an electronic control unit based on the operating state of the internal combustion engine,
    The electronic control unit is
    Determining whether the internal combustion engine is in a predetermined low rotation state and a predetermined low load state, and a periodic electric load is generated;
    In the rotation control of the internal combustion engine, when it is determined that a periodic electrical load is generated, a predetermined coefficient that can change the rotation of the internal combustion engine is determined according to the rotation fluctuation of the internal combustion engine. A vehicle operation control device that is configured to correct and suppress rotational fluctuations of the internal combustion engine caused by the periodic electrical load.
  4. 電子制御ユニットは、
     内燃機関の回転制御における係数の補正として、予め定められた前記内燃機関へ対する燃料噴射量を変化させ得る係数を、周期的電気負荷の発生に応じて補正するよう構成されてなることを特徴とする請求項3記載の車両動作制御装置。
    Electronic control unit
    As a correction of the coefficient in the rotation control of the internal combustion engine, a predetermined coefficient that can change the fuel injection amount to the internal combustion engine is corrected according to the generation of the periodic electric load. The vehicle operation control device according to claim 3.
PCT/JP2010/053950 2009-03-12 2010-03-10 Rotation control method for internal combustion engine and vehicle movement control device WO2010104099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009059711A JP2012102606A (en) 2009-03-12 2009-03-12 Engine rotation control method and vehicle operation control device
JP2009-059711 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010104099A1 true WO2010104099A1 (en) 2010-09-16

Family

ID=42728388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053950 WO2010104099A1 (en) 2009-03-12 2010-03-10 Rotation control method for internal combustion engine and vehicle movement control device

Country Status (2)

Country Link
JP (1) JP2012102606A (en)
WO (1) WO2010104099A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544519A (en) * 1991-08-20 1993-02-23 Nippondenso Co Ltd Rotational change prevention device of internal combustion engine
JP2859530B2 (en) * 1993-12-17 1999-02-17 三菱電機株式会社 Engine idle speed control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544519A (en) * 1991-08-20 1993-02-23 Nippondenso Co Ltd Rotational change prevention device of internal combustion engine
JP2859530B2 (en) * 1993-12-17 1999-02-17 三菱電機株式会社 Engine idle speed control device

Also Published As

Publication number Publication date
JP2012102606A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US9593636B2 (en) Throttle learning control apparatus
JPH05292678A (en) Electronic controller unit for vehicle
JP5106632B2 (en) Engine control device
JP2007198170A (en) Fuel injection quantity learning control method
JP5504124B2 (en) Engine control device
WO2010104099A1 (en) Rotation control method for internal combustion engine and vehicle movement control device
JP2007032387A (en) Power generation control apparatus for internal combustion engine
JP5523566B2 (en) Starter motor control and method for starter
US9869289B2 (en) Ignition timing control device and ignition timing control system
US20130307492A1 (en) Vehicular power generation system and power generation control method for the same
JP2007325361A (en) Controller for alternating-current generators
JP4442614B2 (en) Glow plug abnormality diagnosis device
JP2010223188A (en) Idle rotation control method and vehicle operation control device
JP4363228B2 (en) Ignition control device for internal combustion engine
JP4702227B2 (en) In-vehicle engine idle speed control device
KR101405745B1 (en) Engine Torque Control Method in Vehicle
JP5134571B2 (en) Actuator drive controller
JP6804557B2 (en) Engine drive system
JP2015021417A (en) Control device and control method
KR101683235B1 (en) Method for controlling for rising engine-generating
JP6321497B2 (en) Ignition timing control device and ignition timing control system
KR101744995B1 (en) Start control system using motor/alternator, and control method of the same
JP6095428B2 (en) Control device
JP2014054965A (en) Vehicle, device and method for charge control of vehicle
JP4781454B2 (en) Internal combustion engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10750852

Country of ref document: EP

Kind code of ref document: A1