WO2010103750A1 - 無線送受信装置、無線基地局、無線端末および無線通信システム - Google Patents

無線送受信装置、無線基地局、無線端末および無線通信システム Download PDF

Info

Publication number
WO2010103750A1
WO2010103750A1 PCT/JP2010/001457 JP2010001457W WO2010103750A1 WO 2010103750 A1 WO2010103750 A1 WO 2010103750A1 JP 2010001457 W JP2010001457 W JP 2010001457W WO 2010103750 A1 WO2010103750 A1 WO 2010103750A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
terminal
lte
frequency
information
Prior art date
Application number
PCT/JP2010/001457
Other languages
English (en)
French (fr)
Inventor
石田千枝
青山高久
田村尚志
平野純
井戸大治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/255,369 priority Critical patent/US20110317654A1/en
Priority to JP2011503671A priority patent/JPWO2010103750A1/ja
Publication of WO2010103750A1 publication Critical patent/WO2010103750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the technical field of wireless communication, and more particularly to a wireless communication system compatible with LTE-Advanced (Long Term Evolution Advanced).
  • LTE-Advanced Long Term Evolution Advanced
  • the LTE-Advanced system is a next generation mobile communication system that has evolved from LTE (Long Term Evolution), and aims to provide improved mobile communication services.
  • LTE Long Term Evolution
  • FIG. 22 is a diagram for explaining an operation assumed at the start of the LTE-Advanced service.
  • LTE-Advanced dedicated carrier hereinafter referred to as “dedicated carrier”
  • LTE and LTE-Advanced shared carrier hereinafter referred to as “shared carrier”. Operation by is assumed.
  • the carrier means a frequency for transmitting a signal.
  • LTE-A terminal Both the LTE terminal and the LTE-Advanced terminal (hereinafter referred to as “LTE-A terminal”) are accessible to the shared carrier. Only the LTE-Advanced terminal in the connected state can access the dedicated carrier. An LTE-A terminal in an idle state cannot camp on a dedicated carrier. This is because if the LTE-A terminal in the idle state can camp on the dedicated carrier, broadcast information needs to be transmitted on the dedicated carrier. An LTE-A terminal in a connected state can access a shared carrier.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RRC Radio Resource Control
  • broadcast information for the LTE-A terminal is transmitted.
  • This broadcast information includes frequency priority information (hereinafter referred to as “priority information”) indicating carrier priority.
  • priority information frequency priority information
  • the priority is set so that the LTE-A terminal camps on the shared carrier.
  • carrier selection is performed according to the priority information indicated in the broadcast information, the LTE-A terminal is preferentially connected to the shared carrier, and the shared carriers are crowded.
  • an LTE-A terminal when an LTE-A terminal is connected to a base station of a shared carrier, the congestion of the shared carrier and the dedicated carrier is considered, and when the dedicated carrier is free, the LTE-A terminal Needs to be handed over to a dedicated carrier. That is, in order for the LTE-A terminal to connect to the dedicated carrier, it is necessary to perform both connection to the shared carrier and handover to the dedicated carrier.
  • the present invention has been made in view of the above background, and an object thereof is to provide a radio base station, a radio terminal, and a radio communication system capable of connecting an LTE-A terminal to an appropriate carrier.
  • the radio communication system of the present invention communicates only with LTE-Advanced terminals connected by a part of dedicated frequencies among a plurality of frequencies, and communicates with LTE terminals and LTE-Advanced terminals by the remaining shared frequencies And an LTE-Advanced terminal.
  • the radio base station sets each priority of the shared frequency for an LTE-Advanced terminal in an idle state, and sets each priority of the plurality of frequencies for an LTE-Advanced terminal in a connected state And a priority information generation unit that generates priority information indicating the set priority, a notification information generation unit that generates notification information including the priority information, and a transmission unit that transmits the notification information.
  • the LTE-Advanced terminal includes: a receiving unit that receives broadcast information; a priority determination unit that determines a priority of a frequency extracted from the broadcast information, the priority in an idle state and the priority in a connected state; A camping frequency selection unit that selects a frequency for camping when idle based on a priority in the idle state; a transmission frequency selection unit that selects a destination frequency of a RACH preamble based on a priority in the connected state; and A RACH preamble transmission unit that transmits the RACH preamble at the frequency selected by the frequency selection unit.
  • the LTE-Advanced terminal can camp on the shared frequency according to the priority of the idle state. And can camp on the dedicated frequency according to the priority of the connected state.
  • FIG. 1 is a diagram illustrating a signaling operation between a terminal and a base station according to the first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the base station according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the LTE-A terminal according to the first embodiment.
  • FIG. 4 is a flowchart showing the operation of the LTE-A terminal according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a priority information table for LTE-A terminals according to the second embodiment.
  • FIG. 6 is a diagram illustrating signaling operations between a terminal and a base station according to the second embodiment.
  • FIG. 7 is a diagram illustrating a configuration of a base station according to the second embodiment.
  • FIG. 1 is a diagram illustrating a signaling operation between a terminal and a base station according to the first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the base station according to the first embodiment.
  • FIG. 3 is a diagram
  • FIG. 8 is a diagram illustrating a configuration of the LTE-A terminal according to the second embodiment.
  • FIG. 9 is a flowchart illustrating the operation of the LTE-A terminal according to the second embodiment.
  • FIG. 10 is a diagram showing variations of the table indicating the priority information.
  • FIG. 11 is a diagram showing variations of the table indicating the priority information.
  • FIG. 12 is a diagram showing variations of a table indicating priority information
  • FIG. 13 is a diagram showing variations of the table indicating the priority information.
  • FIG. 14 is a diagram showing variations of a table indicating priority information.
  • FIG. 15 is a diagram showing variations of the table indicating the priority information.
  • FIG. 16 is a diagram illustrating an operation of signaling between a terminal and a base station according to the third embodiment.
  • FIG. 16 is a diagram illustrating an operation of signaling between a terminal and a base station according to the third embodiment.
  • FIG. 17 is a diagram illustrating a configuration of a base station according to the third embodiment.
  • FIG. 18 is a diagram illustrating a configuration of the LTE-A terminal according to the third embodiment.
  • FIG. 19 is a flowchart illustrating the operation of the LTE-A terminal according to the third embodiment.
  • FIG. 20 is a diagram illustrating a configuration of the LTE-A terminal according to the fourth embodiment.
  • FIG. 21 is a flowchart showing the operation of the LTE-A terminal according to the fourth embodiment.
  • FIG. 22 is a diagram for explaining an operation assumed at the start of the LTE-Advanced service.
  • priority information for LTE-A terminal 40 (hereinafter referred to as “idle terminal”) 40 in the idle state and LTE-A terminal (hereinafter referred to as “connected terminal”) in the connected state are used. ) Set priority information for 40 separately and include it in the broadcast information. This makes it possible to connect the LTE-A terminal 40 to the dedicated carrier only with the connection procedure.
  • FIG. 1 is a diagram showing a signaling operation between the base station 10 and the LTE-A terminal 40 according to the first embodiment of the present invention.
  • the LTE-A terminal 40 is camping on the shared carrier A when in the idle state (S10).
  • the LTE-A terminal 40 acquires priority information for idle terminals and priority information for connected terminals from the broadcast information transmitted from the base station 10 (S12).
  • the priority information is represented by a numerical value from 0 to 7 that can be expressed by 3 bits, and the larger the numerical value, the higher the priority.
  • the priority information may be common for each tracking area, for example.
  • the LTE-A terminal 40 selects, as a RACH preamble transmission destination carrier, an uplink carrier that is a pair of carriers whose highest priority is indicated in the priority information during RACH preamble transmission.
  • the LTE-A terminal 40 creates a RACH preamble message using the RACH related parameters for the selected carrier and transmits it to the base station 10 (S14).
  • S14 the base station 10
  • an uplink carrier that is a pair of dedicated carriers is selected as a RACH preamble transmission destination carrier, and the RACH preamble is transmitted.
  • the base station 10 processes the received RACH preamble and returns a RACH response (S16).
  • the LTE-A terminal 40 transmits a connection request to the base station 10 (S18), and the base station 10 transmits a connection setting to the LTE-A terminal 40 (S20).
  • the LTE-A terminal 40 transmits a connection completion for the connection setting (S22)
  • the LTE-A terminal 40 establishes a connection with the base station 10 in a dedicated carrier and enters a connected state (S24).
  • the base station 10 transmits RRC setting information to the LTE-A terminal 40 (S26), and the LTE-A terminal 40 that has received this transmits an RRC setting completion to the base station 10 (S28). Thereafter, data transmission / reception is performed between the LTE-A terminal 40 and the base station 10 (S30).
  • the base station 10 transmits an RRC connection release message to the LTE-A terminal 40 (S32)
  • the LTE-A terminal 40 disconnects from the base station 10 and returns from the connected state to the idle state (S34). If priority information for each LTE-A terminal 40 is included in the RRC connection release message, the priority information acquired by the broadcast information at the time of idle is overwritten. In the example shown in FIG. 1, since individual priority information is not instructed, the priority information instructed by the notification information is followed.
  • the LTE-A terminal 40 selects a high-priority frequency according to the priority information instructed by the broadcast information or the RRC connection release message from the base station 10 and camps on. In the example shown in FIG. 1, since the shared carrier A is indicated as a high priority frequency in the broadcast information, the LTE-A terminal 40 selects the shared carrier A and camps on. The LTE-A terminal 40 receives the broadcast information through the shared carrier A (S36).
  • FIG. 2 is a diagram illustrating a configuration of the base station 10 according to the first embodiment of the present invention.
  • the base station 10 includes a priority information generation unit 12, a broadcast information creation unit 20, a terminal individual information creation unit 22, a transmission unit 24, a reception unit 26, and a RACH processing unit 28.
  • the priority information generation unit 12 includes an LTE terminal priority setting unit 14 that sets priorities for LTE terminals, an idle terminal priority setting unit 16 that sets priorities for idle terminals, and a priority for connected terminals. Connected terminal priority setting unit 18, and outputs priority information indicating the priority for each terminal to broadcast information creation unit 20 and terminal individual information creation unit 22.
  • the notification information creation unit 20 creates notification information including priority information for each terminal input from the priority information generation unit 12 and outputs the notification information to the transmission unit 24.
  • the terminal individual information creation unit 22 creates terminal individual information including priority information for each terminal input from the priority information generation unit 12 and outputs the terminal individual information to the transmission unit 24.
  • the transmission unit 24 transmits the broadcast information input from the broadcast information creation unit 20 and the terminal individual information input from the terminal individual information creation unit 22 from the antenna 30.
  • the receiving unit 26 receives the RACH preamble message from the LTE-A terminal 40.
  • the RACH processing unit 28 processes the RACH preamble message input from the receiving unit 26.
  • FIG. 3 is a diagram illustrating a configuration of the LTE-A terminal 40 according to the first embodiment.
  • the LTE-A terminal 40 includes a reception unit 44, a transmission unit 46, a broadcast information acquisition unit 48, a terminal individual information acquisition unit 50, a priority information determination unit 52, a frequency selection unit 54, and a RACH preamble creation unit 56.
  • the receiving unit 44 receives broadcast information and terminal individual information transmitted from the base station 10.
  • the broadcast information acquisition unit 48 extracts priority information and RACH related information from the broadcast information input from the reception unit 44 and outputs the priority information and RACH related information to the priority information determination unit 52 and the RACH preamble creation unit 56, respectively.
  • the terminal individual information acquisition unit 50 extracts priority information from the terminal individual information input from the reception unit 44 and outputs the priority information to the priority information determination unit 52.
  • the priority information determination unit 52 determines the idle terminal priority information and the connected terminal priority information input from the broadcast information acquisition unit 48 and the terminal individual information acquisition unit 50, and sends the determination result to the frequency selection unit 54. Output.
  • the frequency selection unit 54 selects the frequency to camp in the idle state according to the determination result input from the priority information determination unit 52.
  • the frequency selection unit 54 selects a RACH preamble transmission destination frequency in the connected state, and outputs information on the selected frequency to the RACH preamble creation unit 56.
  • the RACH preamble creation unit 56 selects the RACH preamble parameter to be used from the RACH related information according to the frequency information of the RACH preamble transmission destination.
  • the frequency information of the RACH preamble transmission destination is input from the frequency selection unit 54
  • the RACH related information is input from the broadcast information acquisition unit 48.
  • the RACH preamble creation unit 56 creates a RACH preamble message using the RACH preamble parameters and outputs the RACH preamble message to the transmission unit 46.
  • the transmission unit 46 transmits the RACH preamble message input from the RACH preamble creation unit 56 from the antenna 42.
  • FIG. 4 is a flowchart showing the operation of the LTE-A terminal 40 according to the first embodiment.
  • the LTE-A terminal 40 receives broadcast information from the base station 10 (S40), and holds priority information for idle state and connected state (S42).
  • the LTE-A terminal 40 selects a carrier having a high priority as the RACH preamble transmission destination carrier in the priority information for the connected terminal (S44).
  • the RACH preamble parameter corresponding to the selected carrier is selected from the RACH related parameters acquired from the broadcast information (S46), and a RACH preamble message is created (S48).
  • the LTE-A terminal 40 transmits the created RACH preamble message toward the RACH preamble transmission destination carrier selected by the priority information (S50).
  • the LTE-A terminal transmits and receives data (S54).
  • the LTE-A terminal 40 determines whether or not individual terminal priority information is instructed therein (S58). When the individual terminal priority information is instructed (YES in S58), the LTE-A terminal 40 overwrites the held priority information with the instructed priority information (S60). When the LTE-A terminal 40 changes from the connected state to the idle state, the LTE-A terminal 40 selects a camping frequency according to the priority information (S62).
  • the wireless communication system according to the first embodiment has been described above.
  • priority information for idle terminals and connected terminals is set.
  • the LTE-A terminal 40 can be camped on the shared carrier during idle time, and the dedicated carrier can be selected and connected to the dedicated carrier during RACH preamble transmission.
  • the priority for the idle terminal of the shared carrier A is made higher than the priority for the idle terminal of the shared carrier B, and the LTE-A terminals 40 in the idle state are aggregated in the shared carrier A.
  • broadcast information and paging for the LTE-A terminal 40 can be transmitted only by the shared carrier A, and the signaling overhead in the entire shared carrier can be reduced.
  • the LTE-A terminal 40 selects a carrier with better reception quality.
  • priority information is given to a plurality of frequency bands (shared carriers A and B, dedicated carriers) included in one base station 10 has been described.
  • Priority information may be assigned to.
  • the same PCI Physical Cell Identity
  • the LTE-A terminal 40 can recognize the base station 10 that owns the carrier.
  • a flag may be given to another carrier managed by the base station 10 of the carrier camping on the LTE-A terminal 40. Thereby, it can show that it is a carrier by management of the same base station 10 as the base station 10 of the carrier which is camping.
  • the base station and the LTE-A terminal have a common table in which combinations of priority information for idle terminals and priority information for connected terminals are recorded.
  • the base station designates the idle terminal priority information and the connected terminal priority information by reference numbers defined in the common table. Thereby, the information amount of the priority information for the LTE-A terminal can be reduced.
  • FIG. 5 is a diagram showing an example of a priority information table for LTE-A terminals according to the second embodiment.
  • the table In the table, combinations of priority for idle terminals and priority for connected terminals are recorded. By reading the priority corresponding to the reference number from this table, the priority for the idle terminal and the priority for the connected terminal can be obtained.
  • This table may be set when the LTE-A terminal is manufactured or sold, or may be transmitted as broadcast information.
  • the priority for the idle state is the same as the priority for the connected state, and with reference numbers 5 to 7, the priority for the idle terminal is “0”.
  • the idle terminal does not select the carrier set with the reference numbers 5 to 7 as the camping destination.
  • a carrier with reference number “5” has a priority of “3” for a connected terminal, but a priority of “0” for an idle terminal.
  • FIG. 6 is a diagram illustrating the signaling operation of the base station 10a and the LTE-A terminal 40a according to the second embodiment.
  • the LTE-A terminal 40a is camping on the shared carrier A when in the idle state (S10).
  • the LTE-A terminal 40a acquires priority information from the base station 10a by broadcast information (S12).
  • the LTE-A terminal 40a selects, as a RACH preamble transmission destination carrier, an uplink carrier that is a pair of carriers whose highest priority is indicated by the priority information during RACH preamble transmission.
  • the LTE-A terminal 40a creates a RACH preamble message using the RACH related parameters for the selected carrier and transmits it to the base station 10a (S14).
  • the priority “4” is obtained by referring to the table (FIG. 5).
  • the shared carrier B has a reference number “2”, and thus the priority “3”.
  • the dedicated carrier has a priority “5” because the reference number is “7”. Since the priority of the dedicated carrier is the highest, the uplink carrier that is a pair of dedicated carriers is selected as the RACH preamble transmission destination carrier, and the RACH preamble is transmitted (S14). Thereafter, as in the first embodiment, a procedure for connection with the base station 10a is executed (S16 to S22).
  • the LTE-A terminal 40a When the RACH procedure and the connection setup procedure are successful, the LTE-A terminal 40a establishes a connection with the base station 10a in the dedicated carrier (S24), and after setting the RRC (S26, S28), transmits and receives data (S30). .
  • the LTE-A terminal 40a receives the RRC connection release message from the base station 10a (S32) and changes from the connected state to the idle state again (S34). At this time, if the terminal-specific priority information is included in the RRC connection release message, the priority information acquired by the broadcast information at the time of idle is overwritten.
  • the LTE-A terminal 40a extracts priority information for idle terminals from priority information instructed by the base station 10a by broadcast information or an RRC connection release message, selects a high priority frequency, and camps.
  • the shared carrier A has a reference number “3” and therefore has a priority “4”.
  • the shared carrier B has a reference number “2” and has a priority “3”. Since the priority of the shared carrier A is higher, the LTE-A terminal 40a selects the shared carrier A and camps.
  • FIG. 7 is a diagram illustrating a configuration of the base station 10a according to the second embodiment.
  • the base station 10 a includes a priority information generation unit 12, a broadcast information creation unit 20, a terminal individual information creation unit 22, a transmission unit 24, a reception unit 26, and a RACH processing unit 28.
  • the priority information generation unit 12 includes an LTE terminal priority setting unit 14 and an LTE-A terminal priority setting unit 32 that give priority information for LTE terminals.
  • the priority information generation unit 12 outputs priority information indicating the priority for each terminal to the broadcast information creation unit 20 and the terminal individual information creation unit 22.
  • a priority information table storage unit 34 is connected to the LTE-A terminal priority setting unit 32.
  • the priority information table storage unit 34 stores the table described with reference to FIG.
  • the LTE-A terminal priority setting unit 32 reads out the table from the priority information table storage unit 34, and selects the combination of priority for idle terminal and connected terminal stored in the table, so that LTE-A Priorities for the terminal 40a are set.
  • FIG. 8 is a diagram illustrating a configuration of the LTE-A terminal 40a according to the second embodiment.
  • the LTE-A terminal 40 a includes a reception unit 44, a transmission unit 46, a terminal individual information acquisition unit 50, a broadcast information acquisition unit 48, a priority information determination unit 52, a frequency selection unit 54, and a RACH preamble creation unit 56.
  • the receiving unit 44 receives broadcast information and terminal individual information.
  • the broadcast information acquisition unit 48 extracts priority information and RACH related information from the broadcast information input from the reception unit 44, and outputs the priority information and the RACH related information to the priority information determination unit 52 and the RACH preamble creation unit 56, respectively.
  • the terminal individual information acquisition unit 50 extracts priority information from the terminal individual information input from the reception unit 44 and outputs the priority information to the priority information determination unit 52.
  • the priority information determination unit 52 includes an LTE-A terminal priority information determination unit 58 and a priority information table storage unit 60.
  • the priority information table storage unit 60 stores the table described with reference to FIG.
  • the LTE-A terminal priority information determination unit 58 receives a reference number indicating the priority for the LTE-A terminal 40a from the broadcast information acquisition unit 48 and the terminal individual information acquisition unit 50.
  • the LTE-A terminal priority information determination unit 58 reads the idle terminal priority and the connected terminal priority corresponding to the input reference number from the table stored in the priority information table storage unit 60.
  • the priority information determination unit 52 outputs the idle terminal priority information and the connected terminal priority information to the frequency selection unit 54.
  • the frequency selection unit 54 selects the frequency to camp in the idle state according to the determination result input from the priority information determination unit 52. In the connected state, the frequency selection unit 54 selects a RACH preamble transmission destination frequency and outputs information on the selected frequency to the RACH preamble creation unit 56.
  • the RACH preamble creation unit 56 selects the RACH preamble parameter to be used from the RACH related information according to the RACH preamble transmission destination frequency information.
  • the RACH preamble transmission destination frequency information is input from the frequency selection unit 54, and the RACH related information is input from the broadcast information acquisition unit 48.
  • the RACH preamble creation unit 56 creates a RACH preamble message using the RACH preamble parameter and outputs the RACH preamble message to the transmission unit 46.
  • the transmission unit 46 transmits the RACH preamble message input from the RACH preamble creation unit 56 from the antenna 42.
  • FIG. 9 is a diagram illustrating an operation of the LTE-A terminal 40a according to the second embodiment.
  • the basic operation of the LTE-A terminal 40a of the second embodiment is the same as the operation of the LTE-A terminal 40 of the first embodiment.
  • the LTE-A terminal 40a receives broadcast information from the base station 10a (S40), and acquires priority information (S41).
  • the LTE-A terminal 40a extracts and holds priority information for idle state and connected state from the acquired priority information according to the table shown in FIG. 5 (S42).
  • frequency selection is performed as in the LTE-A terminal 40a of the first embodiment (S44 to S62).
  • the configuration and operation of the wireless communication system according to the second embodiment have been described above.
  • the wireless communication system instructs each priority information by using a table combining the priority information for idle terminals and the priority information for connected terminals.
  • the priority information for both the idle terminal and the connected terminal can be indicated by the same number of bits as the priority information for the idle terminal or the priority information for the connected terminal in the first embodiment, and the LTE-A terminal
  • the amount of priority information can be reduced.
  • priority information for idle terminals and connected terminals is indicated by the same number of bits (3 bits) as the priority information for idle terminals in the first embodiment. The number of bits may be further reduced.
  • the priority for the idle state is the same as the priority for the connected state, and with reference numbers 6 to 7, the priority for the idle terminal is “0”. .
  • the priority setting in the idle state can be given more freedom than the example shown in FIG.
  • the priority for the connected state set for the dedicated carrier as the priority for the connected state Is always combined with a lower priority than the maximum value (in this example, the priority “5” for the reference number 7).
  • Reference numbers 5 to 7 have a priority “0” for idle terminals.
  • the priority of a dedicated carrier can be set with the highest priority, and a priority with a degree of freedom can be set for a shared carrier.
  • the priority for the connected state is “2, 2, 3, 3, 4” with respect to the priority “1 to 5” for the idle state.
  • priorities for idle terminals are set at reference numbers 0 to 5 or 0 to 6
  • priorities of dedicated carriers are set as priorities for connected terminals. It may be a combination that always has a lower priority than the maximum value.
  • the priority “1 to 5” for the idle state is combined with a value different from the ascending order or the descending order as the priority for the connected state.
  • the number of combinations can be set as appropriate according to the operation of the system.
  • Reference numbers 5 to 7 have a priority “0” for idle terminals.
  • the priority for the connected terminal may be appropriately set at reference numbers 0 to 5 or 0 to 6.
  • the priority “1 to 5” for the idle state is combined with “5 to 1” as the priority for the connected state.
  • Reference numbers 5 to 7 have a priority “0” for idle terminals. Thereby, it is possible to separate the carrier that is prioritized in the idle state and the carrier that is prioritized in the connected state.
  • the priority for the connected terminal may be set reverse to the priority for the idle terminal at the reference numbers 0 to 5 or 0 to 6.
  • “0” is set as the priority of the dedicated carrier in the priority information for LTE terminals. Since the LTE terminal cannot originally access the dedicated carrier, it is not necessary to set the priority of the dedicated carrier. However, by setting the priority “0” in the priority information for the LTE terminal, the LTE-A Make the terminal recognize the dedicated carrier. Specifically, when the LTE-A terminal 40 selects a frequency for camping in the idle state, both the LTE terminal priority information and the LTE-A terminal priority information are referred to. Do not camp on a carrier whose priority is “0” in the priority information for LTE terminals. By using the priority information for the LTE terminal in this way, the LTE-A terminal 40 can discriminate the frequency priority at the time of idle and connected, so that the information amount of the priority information transmitted on the shared carrier is reduced. it can.
  • FIG. 16 is a diagram illustrating signaling operations of the base station 10b and the LTE-A terminal 40b according to the third embodiment.
  • the LTE-A terminal 40b is camping on the shared carrier A when in the idle state (S10).
  • the LTE-A terminal 40b acquires priority information for the LTE terminal and the LTE-A terminal based on the broadcast information from the base station 10b (S12).
  • the LTE-A terminal 40b selects, as a RACH preamble transmission destination carrier, an uplink carrier that is a pair of carriers whose highest priority is indicated in the priority information during RACH preamble transmission, and RACH related parameters for the selected carrier. Is used to create a RACH preamble message and transmit it to the base station 10b (S14).
  • the uplink carrier that is a pair of dedicated carriers is selected as the RACH preamble transmission destination carrier, and the RACH preamble is transmitted (S14). Thereafter, as in the first embodiment, a procedure for connection with the base station 10b is executed (S16 to S22). If the RACH procedure is successful, the terminal establishes a connection with the base station 10b in the dedicated carrier (S24), performs RRC settings (S24, S26), and transmits and receives data (S30).
  • the LTE-A terminal 40b receives the RRC connection release message from the base station 10b (S32), and changes from the connected state to the idle state again (S34). At this time, if the terminal-specific LTE-A terminal priority information is included in the RRC connection release message, the LTE-A terminal priority information acquired by the broadcast information at the time of idle is used as a new LTE-A terminal priority. Overwrite with degree information.
  • the LTE-A terminal 40b selects a high-priority frequency according to the priority information instructed by the broadcast information or the RRC connection release message from the base station 10b, and camps.
  • the dedicated carrier is instructed as a high priority frequency, but the priority of the dedicated carrier is “0” in the priority information for the LTE terminal. Accordingly, the LTE-A terminal 40b ignores the priority of the dedicated carrier in the LTE-A terminal priority information, selects the shared carrier A, and camps.
  • FIG. 17 is a diagram illustrating a configuration of the base station 10b according to the third embodiment of the present invention.
  • the base station 10b includes a priority information generation unit 12, a broadcast information creation unit 20, a terminal individual information creation unit 22, a transmission unit 24, a reception unit 26, and a RACH processing unit 28.
  • the priority information generating unit 12 includes an LTE terminal priority setting unit 14 that assigns priority information for LTE terminals, and an LTE-A terminal priority setting unit 36 that assigns priority information for LTE-A terminals 40b. And outputs priority information for each terminal to the broadcast information creation unit 20 and the terminal individual information creation unit 22.
  • the notification information creation unit 20 creates notification information including priority information for each terminal output from the priority information generation unit 12 and outputs the notification information to the transmission unit 24.
  • the terminal individual information creation unit 22 creates terminal individual information including priority information for each terminal input from the priority information generation unit 12 and outputs the terminal individual information to the transmission unit 24.
  • the transmission unit 24 transmits from the antenna 30 the broadcast information input from the broadcast information creation unit 20 and the terminal individual information input from the terminal individual information creation unit 22.
  • the receiving unit 26 receives the RACH preamble message from the LTE-A terminal 40b.
  • the RACH processing unit 28 processes the RACH preamble message input from the receiving unit 26.
  • FIG. 18 is a diagram illustrating a configuration of the LTE-A terminal 40b according to the third embodiment.
  • the LTE-A terminal 40 b includes a reception unit 44, a transmission unit 46, a broadcast information acquisition unit 48, a terminal individual information acquisition unit 50, a priority information determination unit 52, a frequency selection unit 54, and a RACH preamble creation unit 56.
  • the receiving unit 44 receives broadcast information and terminal individual information.
  • the broadcast information acquisition unit 48 extracts priority information and RACH related information from the broadcast information input from the reception unit 44, and outputs the priority information and the RACH related information to the priority information determination unit 52 and the RACH preamble creation unit 56, respectively.
  • the terminal individual information acquisition unit 50 extracts priority information from the terminal individual information input from the reception unit 44 and outputs the priority information to the priority information determination unit 52.
  • the priority information determination unit 52 includes an LTE terminal priority information acquisition unit 62, an LTE-A terminal priority information acquisition unit 64, an idle terminal priority information determination unit 66, and a connected terminal priority information determination unit 68. Have.
  • the LTE terminal priority information acquisition unit 62 acquires the priority information for the LTE terminal input from the broadcast information acquisition unit 48 and outputs the priority information to the idle terminal priority information determination unit 52.
  • the LTE terminal priority information acquisition unit 62 acquires the priority information for the LTE-A terminal 40b input from the broadcast information acquisition unit 48 and the terminal individual information acquisition unit 50, and the idle terminal priority information determination unit 66 And output to the connected terminal priority information determination unit 68.
  • Priority information for LTE terminals is input to the priority information determination unit 66 for idle terminals from the priority information acquisition unit 62 for LTE terminals.
  • the idle terminal priority information determination unit 66 selects the carrier having the priority “0” in the LTE terminal priority information from the LTE-A terminal priority information acquisition unit 64. -Delete from the priority information for the A terminal 40b, determine the frequency priority for the idle terminal, and output the determination result to the frequency selection unit 54.
  • the connected terminal priority information determination unit 68 receives priority information for the LTE-A terminal 40b from the LTE-A terminal priority information acquisition unit 64.
  • the connected terminal priority information determining unit 68 determines the frequency priority for the connected terminal based on the priority information for the LTE-A terminal 40 b and outputs the determination result to the frequency selecting unit 54.
  • the frequency selection unit 54 selects the frequency to camp in the idle state according to the determination result input from the priority information determination unit 52. In the connected state, the frequency selection unit 54 selects a RACH preamble transmission destination frequency and outputs information on the selected frequency to the RACH preamble creation unit 56.
  • the RACH preamble creation unit 56 selects the RACH preamble parameter to be used from the RACH related information according to the RACH preamble transmission destination frequency information.
  • the RACH preamble transmission destination frequency information is input from the frequency selection unit 54, and the RACH related information is input from the broadcast information acquisition unit 48.
  • the RACH preamble creation unit 56 creates a RACH preamble message using the RACH preamble parameters and outputs the RACH preamble message to the transmission unit 46.
  • the transmission unit 46 transmits the RACH preamble message input from the RACH preamble creation unit 56 from the antenna 42.
  • FIG. 19 is a diagram illustrating an operation of the LTE-A terminal 40b according to the third embodiment.
  • the LTE-A terminal 40b receives the broadcast information from the base station 10b (S40), and holds priority information for LTE terminals and LTE-A terminals (S43).
  • the LTE-A terminal 40b selects a carrier having a high frequency priority as a RACH preamble transmission destination carrier in the connected state priority information during RACH preamble transmission (S44).
  • the LTE-A terminal 40b selects the RACH preamble parameter corresponding to the selected carrier from the RACH related parameters acquired in the broadcast information (S46), and creates a RACH preamble message (S48).
  • the created RACH preamble message is transmitted to the RACH preamble transmission destination carrier selected by the priority information (S50).
  • the LTE-A terminal 40b transmits and receives data (S54).
  • the LTE-A terminal 40b determines whether or not priority information for each terminal is instructed therein (S58). When the priority information for each terminal is instructed (YES in S58), the LTE-A terminal 40b overwrites the retained priority information for LTE-A terminal with the new priority information (S60). .
  • the LTE-A terminal 40b When the LTE-A terminal 40b changes from the connected state to the idle state, the LTE-A terminal 40b deletes, from the LTE-A terminal priority information, the carrier having the priority “0” in the LTE terminal priority information. (S61), the frequency to camp is selected according to the priority information (S62).
  • the priority of the dedicated carrier is indicated as “0” in the priority information for the LTE terminal.
  • the LTE-A terminal 40b can determine the frequency priority at the time of idle and connected by using the priority information for the LTE terminal, thereby reducing the information amount of the priority information transmitted on the shared carrier. .
  • the priority information is used for weighting at the time of selecting a RACH preamble parameter transmitted by the RACH transmission carrier and broadcast information. If the LTE-A terminal 40 always selects a carrier with a high priority, there is a problem that RACH preamble transmission of the LTE-A terminal 40 is concentrated on a specific carrier. By weighting the selection of the RACH transmission carrier, concentration of RACH preamble transmission to a specific carrier can be avoided.
  • the base station used in the fourth embodiment is the same as the base station 10a shown in FIG. Also, the signaling operation of the LTE-A terminal 40c and the base station 10a of the fourth embodiment is the same as the operation shown in FIG.
  • FIG. 20 is a diagram illustrating a configuration of the LTE-A terminal 40c according to the fourth embodiment.
  • the LTE-A terminal 40 c includes a reception unit 44, a transmission unit 46, a broadcast information acquisition unit 48, a terminal individual information acquisition unit 50, a priority information determination unit 52, a frequency selection unit 54, and a RACH preamble creation unit 56.
  • the receiving unit 44 receives broadcast information and terminal individual information transmitted from the base station 10a.
  • the broadcast information acquisition unit 48 extracts priority information and RACH related information from the broadcast information input from the reception unit 44, and outputs the priority information and the RACH related information to the priority information determination unit 52 and the RACH preamble creation unit 56, respectively.
  • the terminal individual information acquisition unit 50 extracts priority information from the terminal individual information input from the reception unit 44 and outputs the priority information to the priority information determination unit 52.
  • the priority information determination unit 52 acquires priority information for the LTE-A terminal 40c input from the broadcast information acquisition unit 48 and the terminal individual information acquisition unit 50.
  • the priority information determination unit 52 extracts the idle terminal priority and the connected terminal priority corresponding to the priority information from the table stored in the priority information table storage unit 60.
  • the priority information determination unit 52 outputs the idle terminal priority and the connected terminal priority to the frequency selection unit 54.
  • the frequency selection unit 54 includes a camp frequency selection unit 70 and a RACH preamble transmission frequency selection unit 72.
  • the camping frequency selection unit 70 selects a frequency for camping in the idle state according to the determination result input from the priority information determination unit 52.
  • the RACH preamble transmission frequency selection unit 72 selects a frequency for transmitting the RACH preamble according to the determination result input from the priority information determination unit 52 when changing from the idle state to the connected state.
  • the RACH preamble transmission frequency selection unit 72 outputs information on the selected RACH preamble transmission destination frequency to the RACH preamble creation unit 56.
  • the RACH preamble creation unit 56 selects a RACH preamble parameter to be used from the RACH related information input from the broadcast information acquisition unit 48 according to the RACH preamble transmission destination frequency information input from the RACH preamble transmission frequency selection unit 54.
  • information on the RACH preamble transmission destination frequency is input from the RACH preamble transmission frequency selection unit 54
  • RACH related information is input from the broadcast information acquisition unit 48.
  • the RACH preamble creation unit 56 creates a RACH preamble message using the RACH preamble parameter and outputs the RACH preamble message to the transmission unit 46.
  • the transmission unit 46 transmits the RACH preamble message input from the RACH preamble creation unit 56 from the antenna 42.
  • the reception quality of each carrier may be taken into consideration based on the priority information for the connected terminal. For example, the reception quality of the carrier with priority “5” is compared with the reception quality of the carrier with “4”. If it exceeds the predetermined value, the carrier with the priority “4” is selected as the RACH preamble transmission destination.
  • the default value for determining the reception quality is a known value of the LTE-A terminal 40c, or a value notified from the base station 10a or notified individually to the LTE-A terminal 40c.
  • the first transmission selects the carrier with the highest priority, but if it fails, the carrier with the highest priority is compared with the carrier with the next highest priority. Based on the difference, there is a method for determining whether to transmit the RACH preamble again to the highest priority carrier or to transmit the RACH preamble to the next highest priority carrier. For example, when the priority of the carrier with the highest priority is “5” and the priority of the carrier with the next highest priority is “4”, RACH preamble transmission to the carrier with the priority “5” is performed. When it fails, the RACH preamble is transmitted to the carrier with the next priority “4”.
  • the frequency priority value for the probability calculation for selecting the value of the RACH preamble assigned to each carrier. For example, it is assumed that there is a frequency A having a priority “5”, a frequency B having a priority “4”, and a frequency C having a priority “2”.
  • the probability that the RACH preamble assigned to each carrier is selected may be calculated as frequency A is 5 / (5 + 4 + 2), frequency B is 4 / (5 + 4 + 2), and frequency C is 2 / (5 + 4 + 2).
  • the transmission destination of the RACH preamble is the frequency A.
  • FIG. 21 is a diagram showing an operation of the LTE-A terminal 40c in the fourth embodiment.
  • the selection of the RACH preamble transmission destination carrier is performed in consideration of the reception quality of each carrier.
  • the LTE-A terminal 40c receives broadcast information from the base station 10a (S40) and acquires priority information (SS41).
  • the LTE-A terminal 40c extracts and holds priority information for idle state and connected state from the acquired priority information according to the table of FIG. 5 (S42).
  • the LTE-A terminal 40c selects the carrier having the highest frequency priority in the connected state priority information during RACH preamble transmission (S44). When the reception quality of the selected carrier exceeds the predetermined value (YES in S64), the LTE-A terminal 40c determines that carrier as the RACH preamble transmission destination carrier (S66).
  • the LTE-A terminal 40c selects the carrier with the next highest frequency priority (S74) and determines the reception quality. If the reception quality of the selected carrier exceeds the predetermined value (YES in S64), the LTE-A terminal 40c creates a RACH preamble parameter corresponding to the carrier selected as the RACH preamble transmission destination. Specifically, the LTE-A terminal 40c selects from the RACH related parameters acquired by the broadcast information (S66), and creates a RACH preamble message (S68). The LTE-A terminal 40c transmits the created RACH preamble message toward the RACH preamble transmission destination carrier selected by the priority information and the reception quality (S70). If the RACH procedure is successful (YES in S72), the LTE-A terminal 40c establishes a connection with the base station 10a in the selected carrier (S76), and transmits and receives data (S78).
  • the LTE-A terminal 40c selects the next highest priority carrier from the connected state priority information (S74), and whether the reception quality exceeds a predetermined value. Whether or not is determined (S64), and the same processing as described above is performed.
  • S74 the next carrier is selected when the RACH procedure fails once. However, when the RACH procedure fails a plurality of times, the next carrier may be selected.
  • the configuration and operation of the wireless communication system according to the fourth embodiment have been described above.
  • concentration of RACH preamble transmission to a specific carrier can be avoided by using priority information for weighting selection of RACH transmission carrier and RACH preamble parameter.
  • the RACH related parameters used for generating the RACH preamble message may be common among the carriers under the management of the base station 10.
  • the present invention has the priority of the frequency for each of the connected state and the idle state as the priority information, so that the LTE-Advanced terminal can camp on to an appropriate frequency, and the wireless communication corresponding to LTE-Advanced It is useful as a system.

Abstract

 無線通信システムは、専用周波数によってコネクテッド状態のLTE-A端末とのみ通信し、共用周波数によってLTE端末およびLTE-A端末と通信する無線基地局と、LTE-A端末とを有する。無線基地局は、アイドル状態にあるLTE-A端末向けに共用周波数のそれぞれの優先度を設定すると共に、コネクテッド状態にあるLTE-A端末向けに複数の周波数のそれぞれの優先度を設定し、設定した優先度を示す優先度情報を生成する優先度情報生成部と、優先度情報を含んだ報知情報を作成する報知情報作成部と、報知情報を送信する送信部とを備える。LTE-A端末は、無線基地局から送信される報知情報を受信し、報知情報に含まれる優先度情報に基づいてアイドル時にキャンプする周波数と、RACHプリアンブルを送信する周波数を選択する。これにより、LTE-A端末を適切なキャリアに接続することができる。

Description

無線送受信装置、無線基地局、無線端末および無線通信システム 関連する出願
 本出願では、2009年3月13日に日本国に出願された特許出願番号2009-060803の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本発明は、無線通信の技術分野に関し、特に、LTE-Advanced(Long Term Evolution Advanced)に対応した無線通信システムに関する。
 LTE-Advancedシステムは、LTE(Long Term Evolution)から進化した次世代移動通信システムであり、より向上した移動通信サービスの提供を目標とする。
 図22は、LTE-Advancedのサービス開始時において想定される運用を説明するための図である。サービス開始時には、LTE-AdvancedとLTEとの互換性を考慮し、LTE-Advanced専用のキャリア(以下、「専用キャリア」という)とLTEとLTE-Advanced共用のキャリア(以下、「共用キャリア」という)による運用が想定される。なお、キャリアとは、信号を伝搬する周波数を意味する。
 共用キャリアには、LTE端末とLTE-Advanced端末(以下、「LTE-A端末」という)の両方がアクセス可能である。専用キャリアには、コネクテッド状態にあるLTE-Advanced端末のみがアクセス可能である。アイドル状態にあるLTE-A端末は、専用キャリアにはキャンプオンできない。アイドル状態にあるLTE-A端末が専用キャリアにキャンプオン可能とすると、専用キャリアにおいて報知情報を送信する必要が生じるためである。コネクテッド状態にあるLTE-A端末が、共用キャリアにアクセスすることは可能である。
特表2008-523711号公報
 共用キャリアにおいては、LTE-A端末向けの報知情報が送信されている。この報知情報には、キャリアの優先度を示す周波数優先度情報(以下、「優先度情報」という)が含まれている。上述した理由から、優先度は、LTE-A端末が共用キャリアにキャンプするように設定されている。報知情報に示される優先度情報に従ってキャリア選択を行うと、LTE-A端末は、共用キャリアに優先して接続することになり、共用キャリアが混んでしまう。
 これを解決するためには、共用キャリアの基地局にLTE-A端末が接続してきた場合、共用キャリアと専用キャリアの混み具合を考慮し、専用キャリアが空いている場合には、LTE-A端末を専用キャリアにハンドオーバさせる処理を行う必要がある。すなわち、LTE-A端末が専用キャリアに接続するためには、共用キャリアへの接続と専用キャリアへのハンドオーバの両方を行う必要がある。
 本発明は、上記背景に鑑みてなされたものであり、LTE-A端末を適切なキャリアに接続することができる無線基地局、無線端末および無線通信システムを提供することを目的とする。
 本発明の無線通信システムは、複数の周波数のうちの一部の専用周波数によってコネクテッド状態のLTE-Advanced端末とのみ通信し、残りの共用周波数によってLTE端末およびLTE-Advanced端末と通信する無線基地局と、LTE-Advanced端末とを有する。前記無線基地局は、アイドル状態にあるLTE-Advanced端末向けに前記共用周波数のそれぞれの優先度を設定すると共に、コネクテッド状態にあるLTE-Advanced端末向けに前記複数の周波数のそれぞれの優先度を設定し、設定した優先度を示す優先度情報を生成する優先度情報生成部と、前記優先度情報を含んだ報知情報を作成する報知情報作成部と、前記報知情報を送信する送信部とを備える。前記LTE-Advanced端末は、報知情報を受信する受信部と、前記報知情報から抽出した周波数の優先度であって、アイドル状態における優先度とコネクテッド状態における優先度とを判定する優先度判定部と、前記アイドル状態における優先度に基づいてアイドル時にキャンプする周波数を選択するキャンプ周波数選択部と、前記コネクテッド状態における優先度に基づいてRACHプリアンブルの送信先周波数を選択する送信周波数選択部と、前記送信周波数選択部にて選択した周波数にてRACHプリアンブルを送信するRACHプリアンブル送信部とを備える。
 本発明によれば、優先度情報は、コネクテッド状態とアイドル状態のそれぞれについての周波数の優先度の情報を含んでいるので、アイドル状態の優先度によってLTE-Advanced端末を共用周波数にキャンプオンさせることができると共に、コネクテッド状態の優先度によって専用周波数にキャンプオンさせることができる。
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。
図1は、第1の実施の形態に係る端末と基地局のシグナリングの動作を示す図 図2は、第1の実施の形態に係る基地局の構成を示す図 図3は、第1の実施の形態のLTE-A端末の構成を示す図 図4は、第1の実施の形態のLTE-A端末の動作を示すフローチャート 図5は、第2の実施の形態に係るLTE-A端末用の優先度情報のテーブルの例を示す図 図6は、第2の実施の形態に係る端末と基地局のシグナリングの動作を示す図 図7は、第2の実施の形態に係る基地局の構成を示す図 図8は、第2の実施の形態のLTE-A端末の構成を示す図 図9は、第2の実施の形態のLTE-A端末の動作を示すフローチャート 図10は、優先度情報を示すテーブルのバリエーションを示す図 図11は、優先度情報を示すテーブルのバリエーションを示す図 図12は、優先度情報を示すテーブルのバリエーションを示す図 図13は、優先度情報を示すテーブルのバリエーションを示す図 図14は、優先度情報を示すテーブルのバリエーションを示す図 図15は、優先度情報を示すテーブルのバリエーションを示す図 図16は、第3の実施の形態に係る端末と基地局のシグナリングの動作を示す図 図17は、第3の実施の形態に係る基地局の構成を示す図 図18は、第3の実施の形態のLTE-A端末の構成を示す図 図19は、第3の実施の形態のLTE-A端末の動作を示すフローチャート 図20は、第4の実施の形態のLTE-A端末の構成を示す図 図21は、第4の実施の形態のLTE-A端末の動作を示すフローチャート 図22は、LTE-Advancedのサービス開始時において想定される運用を説明するための図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一機能を有する構成には、同一符号を付し、重複する説明は省略する。以下に説明する実施の形態は本発明の単なる例であり、本発明が様々な態様に変形することができる。従って、以下に開示する特定の構成および機能は、請求の範囲を限定するものではない。なお、以下の実施の形態では、図22に示す共用キャリア及び専用キャリアのキャリア構成を前提とする。
(第1の実施の形態)
 第1の実施の形態では、アイドル状態にあるLTE-A端末(以下、「アイドル端末」という)40のための優先度情報と、コネクテッド状態にあるLTE-A端末(以下、「コネクテッド端末」という)40のための優先度情報とを別個に設定し、報知情報に含める。これによって、接続プロシジャのみでLTE-A端末40を専用キャリアに接続することを可能にする。
 図1は、本発明の第1の実施の形態に係る基地局10とLTE-A端末40とのシグナリングの動作を示す図である。図1に示す例では、LTE-A端末40は、アイドル状態の時に(S10)、共用キャリアAにキャンプしている。LTE-A端末40は、基地局10から送信される報知情報から、アイドル端末用の優先度情報及びコネクテッド端末用の優先度情報を取得する(S12)。優先度情報は、3ビットで表現可能な0~7の数値によって表され、数値が大きいほど優先度が大きいことを示す。なお、優先度情報は、例えばトラッキングエリア単位で共通としてもよい。
 LTE-A端末40は、RACHプリアンブル送信時に、優先度情報で最も高い優先度が示されたキャリアのペアとなるアップリンクキャリアをRACHプリアンブル送信先キャリアとして選択する。LTE-A端末40は、選択したキャリア用のRACH関連パラメータを用いてRACHプリアンブルメッセージを作成し、基地局10に送信する(S14)。図1では、専用キャリアの優先度が最も高いので、専用キャリアのペアとなるアップリンクキャリアを、RACHプリアンブル送信先キャリアとして選択し、RACHプリアンブルを送信する。
 基地局10は、受信したRACHプリアンブルを処理して、RACHレスポンスを返信する(S16)。RACHプロシジャが成功すると、LTE-A端末40は、基地局10に接続要求を送信し(S18)、これに対して基地局10はLTE-A端末40に接続設定を送信する(S20)。LTE-A端末40が接続設定に対する接続完了を送信すると(S22)、LTE-A端末40は専用キャリアにおいて基地局10とのコネクションを確立し、コネクテッド状態となる(S24)。
 続いて、基地局10は、LTE-A端末40にRRC設定情報を送信し(S26)、これを受信したLTE-A端末40はRRC設定完了を基地局10に送信する(S28)。その後、LTE-A端末40と基地局10との間でデータの送受信が行われる(S30)。基地局10がLTE-A端末40にRRC接続解放メッセージを送信すると(S32)、LTE-A端末40は基地局10との接続を切断し、コネクテッド状態からアイドル状態に戻る(S34)。RRC接続解放メッセージにLTE-A端末40個別の優先度情報が含まれていれば、アイドル時に報知情報によって取得した優先度情報を上書きする。なお、図1に示す例では、個別の優先度情報は指示されていないので、報知情報で指示された優先度情報に従う。
 LTE-A端末40は、基地局10から報知情報またはRRC接続解放メッセージによって指示された優先度情報に従って、優先度の高い周波数を選択し、キャンプオンする。図1に示す例では、報知情報で共用キャリアAが優先度の高い周波数として指示されているので、LTE-A端末40は共用キャリアAを選択し、キャンプオンする。LTE-A端末40は、共用キャリアAを通じて、報知情報を受信する(S36)。
 図2は、本発明の第1の実施の形態に係る基地局10の構成を示す図である。基地局10は、優先度情報生成部12、報知情報作成部20、端末個別情報作成部22、送信部24、受信部26、RACH処理部28を有する。
 優先度情報生成部12は、LTE端末向けの優先度を設定するLTE端末用優先度設定部14、アイドル端末向けの優先度を設定するアイドル端末用優先度設定部16、コネクテッド端末向けの優先度を設定するコネクテッド端末用優先度設定部18を有し、各端末向けの優先度を示す優先度情報を、報知情報作成部20及び端末個別情報作成部22に出力する。
 報知情報作成部20は、優先度情報生成部12から入力された各端末向けの優先度情報を含む報知情報を作成し、送信部24に出力する。端末個別情報作成部22は、優先度情報生成部12から入力された各端末向けの優先度情報を含む端末個別情報を作成し、送信部24に出力する。
 送信部24は、報知情報作成部20から入力された報知情報、および端末個別情報作成部22から入力された端末個別情報をアンテナ30から送信する。受信部26は、LTE-A端末40からのRACHプリアンブルメッセージを受信する。RACH処理部28は、受信部26から入力されたRACHプリアンブルメッセージを処理する。
 図3は、第1の実施の形態のLTE-A端末40の構成を示す図である。LTE-A端末40は、受信部44、送信部46、報知情報取得部48、端末個別情報取得部50、優先度情報判定部52、周波数選択部54、RACHプリアンブル作成部56を有する。
 受信部44は、基地局10から送信される報知情報及び端末個別情報を受信する。報知情報取得部48は、受信部44から入力された報知情報から優先度情報及びRACH関連情報を抽出し、それぞれ、優先度情報判定部52、RACHプリアンブル作成部56へ出力する。端末個別情報取得部50は、受信部44から入力された端末個別情報から優先度情報を抽出し、優先度情報判定部52に出力する。
 優先度情報判定部52は、報知情報取得部48及び端末個別情報取得部50から入力されたアイドル端末用優先度情報とコネクテッド端末用優先度情報を判定して、判定結果を周波数選択部54に出力する。
 周波数選択部54は、優先度情報判定部52から入力された判定結果に従って、アイドル状態の時はキャンプする周波数を選択する。周波数選択部54は、コネクテッド状態の時はRACHプリアンブル送信先の周波数を選択し、選択した周波数の情報をRACHプリアンブル作成部56に出力する。
 RACHプリアンブル作成部56は、RACHプリアンブル送信先の周波数の情報に従って、RACH関連情報から使用するRACHプリアンブルパラメータを選択する。ここで、RACHプリアンブル送信先の周波数の情報は周波数選択部54から入力され、RACH関連情報は報知情報取得部48から入力される。RACHプリアンブル作成部56は、RACHプリアンブルパラメータを用いてRACHプリアンブルメッセージを作成して、送信部46に出力する。送信部46は、RACHプリアンブル作成部56から入力されたRACHプリアンブルメッセージをアンテナ42から送信する。
 図4は、第1の実施の形態のLTE-A端末40の動作を示すフローチャートである。LTE-A端末40は、基地局10から報知情報を受信し(S40)、アイドル状態用及びコネクテッド状態用の優先度情報を保持する(S42)。
 LTE-A端末40は、RACHプリアンブル送信時に、コネクテッド端末用優先度情報の中で、優先度の高いキャリアをRACHプリアンブル送信先キャリアとして選択する(S44)。選択したキャリアに対応するRACHプリアンブルパラメータを、報知情報から取得したRACH関連パラメータの中から選択し(S46)、RACHプリアンブルメッセージを作成する(S48)。LTE-A端末40は、作成したRACHプリアンブルメッセージを、優先度情報によって選択したRACHプリアンブル送信先キャリアに向けて送信する(S50)。基地局10とコネクションを確立したら(S52)、LTE-A端末は、データの送受信を行う(S54)。
 LTE-A端末40は、基地局10からコネクション解放メッセージを受信したら(S56でYES)、その中に端末個別の優先度情報が指示されているかどうかを判定する(S58)。端末個別の優先度情報が指示されている場合は(S58でYES)、LTE-A端末40は、保持している優先度情報を指示された優先度情報によって上書きする(S60)。LTE-A端末40は、コネクテッド状態からアイドル状態になる時に、優先度情報に従って、キャンプする周波数を選択する(S62)。以上、第1の実施の形態の無線通信システムについて説明した。
 第1の実施の形態では、アイドル端末用及びコネクテッド端末用の優先度情報をそれぞれ設定する。これにより、アイドル時にLTE-A端末40を共用キャリアにキャンプオンさせると共に、RACHプリアンブル送信時に専用キャリアを選択可能にし、専用キャリアに接続させることができる。
 図1に示すように、共用キャリアAのアイドル端末用優先度を共用キャリアBのアイドル端末用優先度より高くし、アイドル状態のLTE-A端末40を共用キャリアAに集約する。これにより、LTE-A端末40用の報知情報、ページングを共用キャリアAのみで送信することが可能になり、共用キャリア全体におけるシグナリングオーバヘッドを削減できる。
 上記した実施の形態では、LTE端末用、アイドル端末用、コネクテッド端末用の周波数優先度が異なる例を挙げているが、周波数優先度を同じにしてもよい。この場合には、LTE-A端末40は、受信品質の良い方のキャリアを選択する。
 上記した実施の形態では、一の基地局10が有する複数の周波数帯(共用キャリアA,B、専用キャリア)に優先度情報を付与する例について説明したが、別の基地局が有する複数の周波数に優先度情報を付与してもよい。この場合、同一の基地局10が管理しているキャリアには、例えば同一のPCI(Physical Cell Identity)を付与してもよい。これにより、LTE-A端末40は、キャリアを所有する基地局10を認識できる。また、PCIを付与する方法のほかに、LTE-A端末40がキャンプしているキャリアの基地局10が管理している他のキャリアにフラグを付与してもよい。これにより、キャンプしているキャリアの基地局10と同じ基地局10の管理によるキャリアであることを示すことができる。
(第2の実施の形態)
 第2の実施の形態では、基地局とLTE-A端末は、アイドル端末用優先度情報とコネクテッド端末用優先度情報との組み合わせを記録した共通のテーブルを有している。基地局は、この共通のテーブルに規定された参照番号によって、アイドル端末用優先度情報とコネクテッド端末用優先度情報を指定する。これによって、LTE-A端末用の優先度情報の情報量を削減できる。
 図5は、第2の実施の形態に係るLTE-A端末用の優先度情報のテーブルの例を示す図である。テーブルは、アイドル端末用優先度とコネクテッド端末用優先度の組み合わせが記録されている。このテーブルから、参照番号に対応する優先度を読み出すことにより、アイドル端末用優先度とコネクテッド端末用優先度を求めることができる。このテーブルは、LTE-A端末の製造時あるいは販売時に設定しておいてもよいし、報知情報として送信してもよい。
 図5において、参照番号0~4では、アイドル状態用の優先度とコネクテッド状態用の優先度が同じであり、参照番号5~7ではアイドル端末用の優先度が「0」である。アイドル端末は、参照番号5~7が設定されたキャリアをキャンプ先として選択しない。図5において、例えば参照番号「5」が設定されたキャリアは、コネクテッド端末にとって優先度は「3」となるが、アイドル端末にとって優先度は「0」となる。
 図6は、第2の実施の形態に係る基地局10aとLTE-A端末40aのシグナリングの動作を示す図である。LTE-A端末40aはアイドル状態の時に(S10)、共用キャリアAにキャンプしている。LTE-A端末40aは、基地局10aから報知情報によって優先度情報を取得する(S12)。
 LTE-A端末40aは、RACHプリアンブル送信時に、優先度情報によって最も高い優先度が示されたキャリアのペアとなるアップリンクキャリアをRACHプリアンブル送信先キャリアとして選択する。LTE-A端末40aは、選択したキャリア用のRACH関連パラメータを用いてRACHプリアンブルメッセージを作成し、基地局10aに送信する(S14)。
 図6に示す例では、共用キャリアAは参照番号が「3」なのでテーブル(図5)を参照すると優先度「4」、同様に共用キャリアBは参照番号が「2」なので優先度「3」、専用キャリアは参照番号が「7」なので優先度「5」である。専用キャリアの優先度が最も高いので、専用キャリアのペアとなるアップリンクキャリアを、RACHプリアンブル送信先キャリアとして選択し、RACHプリアンブルを送信する(S14)。以下は、第1の実施の形態と同様に、基地局10aとの接続のプロシジャを実行する(S16~S22)。RACHプロシジャおよび接続設定プロシジャが成功すると、LTE-A端末40aは専用キャリアにおいて基地局10aとコネクションを確立し(S24)、RRCの設定を経て(S26,S28)、データの送受信を行う(S30)。
 LTE-A端末40aは、基地局10aからのRRC接続解放メッセージを受け(S32)、コネクテッド状態から再びアイドル状態となる(S34)。この時、RRC接続解放メッセージに端末個別の優先度情報が含まれていれば、アイドル時に報知情報によって取得した優先度情報を上書きする。
 LTE-A端末40aは、報知情報またはRRC接続解放メッセージによって、基地局10aから指示された優先度情報から、アイドル端末用優先度情報を抽出し、優先度の高い周波数を選択してキャンプする。図6に示す例では、共用キャリアAは参照番号が「3」なので優先度「4」、同様に共用キャリアBは参照番号が「2」なので優先度「3」である。共用キャリアAの優先度の方が高いので、LTE-A端末40aは、共用キャリアAを選択し、キャンプする。
 図7は、第2の実施の形態に係る基地局10aの構成を示す図である。基地局10aは、優先度情報生成部12、報知情報作成部20、端末個別情報作成部22、送信部24、受信部26、RACH処理部28を有する。
 優先度情報生成部12は、LTE端末向けの優先度情報を付与するLTE端末用優先度設定部14、LTE-A端末用優先度設定部32を有する。優先度情報生成部12は、各端末向けの優先度を示す優先度情報を、報知情報作成部20及び端末個別情報作成部22に出力する。LTE-A端末用優先度設定部32には、優先度情報テーブル記憶部34が接続されている。優先度情報テーブル記憶部34には、図5で説明したテーブルが記憶されている。LTE-A端末用優先度設定部32は、優先度情報テーブル記憶部34からテーブルを読み出し、テーブルに記憶されたアイドル端末用、コネクテッド端末用の優先度の組み合わせを選択することにより、LTE-A端末40a向けの優先度を設定する。
 図8は、第2の実施の形態に係るLTE-A端末40aの構成を示す図である。LTE-A端末40aは、受信部44、送信部46、端末個別情報取得部50、報知情報取得部48、優先度情報判定部52、周波数選択部54、RACHプリアンブル作成部56を有する。
 受信部44は、報知情報及び端末個別情報を受信する。報知情報取得部48は、受信部44から入力された報知情報から、優先度情報及びRACH関連情報を抽出し、それぞれ優先度情報判定部52、RACHプリアンブル作成部56へ出力する。端末個別情報取得部50は、受信部44から入力された端末個別情報から優先度情報を抽出し、優先度情報判定部52に出力する。
 優先度情報判定部52は、LTE-A端末用優先度情報判定部58、優先度情報テーブル記憶部60を有している。優先度情報テーブル記憶部60には、図5で説明したテーブルが記憶されている。LTE-A端末用優先度情報判定部58には、報知情報取得部48及び端末個別情報取得部50からLTE-A端末40a向けの優先度を示す参照番号が入力される。LTE-A端末用優先度情報判定部58は、入力された参照番号に対応するアイドル端末用優先度とコネクテッド端末用優先度を、優先度情報テーブル記憶部60に記憶されたテーブルから読み出す。優先度情報判定部52は、アイドル端末用優先度情報およびコネクテッド端末用優先度情報を周波数選択部54に出力する。
 周波数選択部54は、優先度情報判定部52から入力された判定結果に従って、アイドル状態の時はキャンプする周波数を選択する。コネクテッド状態の時は、周波数選択部54は、RACHプリアンブル送信先周波数を選択し、選択した周波数の情報をRACHプリアンブル作成部56に出力する。
 RACHプリアンブル作成部56は、RACHプリアンブル送信先周波数の情報に従って、RACH関連情報の中から、使用するRACHプリアンブルパラメータを選択する。ここで、RACHプリアンブル送信先周波数の情報は周波数選択部54から入力され、RACH関連情報は報知情報取得部48から入力される。RACHプリアンブル作成部56は、RACHプリアンブルパラメータを用いて、RACHプリアンブルメッセージを作成して、送信部46に出力する。送信部46は、RACHプリアンブル作成部56から入力されたRACHプリアンブルメッセージをアンテナ42から送信する。
 図9は、第2の実施の形態のLTE-A端末40aの動作を示す図である。第2の実施の形態のLTE-A端末40aの基本的な動作は、第1の実施の形態のLTE-A端末40の動作と同じである。LTE-A端末40aは、基地局10aから報知情報を受信し(S40)、優先度情報を取得する(S41)。LTE-A端末40aは、取得した優先度情報から、図5に示すテーブルに従って、アイドル状態用及びコネクテッド状態用の優先度情報を抽出し、保持する(S42)。以下は、第1の実施の形態のLTE-A端末40aと同様に、周波数選択を行う(S44~S62)。以上、第2の実施の形態の無線通信システムの構成および動作について説明した。
 第2の実施の形態の無線通信システムは、アイドル端末用優先度情報と、コネクテッド端末用優先度情報を組み合わせたテーブルを利用して、それぞれの優先度情報を指示する。これにより、第1の実施の形態におけるアイドル端末用優先度情報あるいはコネクテッド端末用優先度情報と同じビット数でアイドル端末用とコネクテッド端末用両方の優先度情報を示すことができ、LTE-A端末用優先度情報の情報量を削減できる。なお、本実施の形態では、第1の実施の形態におけるアイドル端末用優先度情報と同じビット数(3ビット)により、アイドル端末用とコネクテッド端末用の優先度情報を示す例について説明したが、ビット数をさらに少なくしてもよい。
 上記した実施の形態において、コネクテッド端末を共用キャリアに接続させたい場合は、端末個別の優先度情報で指示してもよい。
 上記した実施の形態では、優先度情報を示すテーブルの一例を挙げたが、優先度情報を示すテーブルは上記した実施の形態に限定されるものではなく、様々なバリエーションが考えられる。図10~図15に、優先度情報を示すテーブルのバリエーションを示す。
 図10に示すテーブルは、参照番号0~5では、アイドル状態用の優先度とコネクテッド状態用の優先度が同じであり、参照番号6~7ではアイドル端末用の優先度が「0」である。この例は、図5に示す例より、アイドル状態における優先度の設定に自由度を持たせることができる。
 図11に示すテーブルは、参照番号0~6では、アイドル状態用の優先度とコネクテッド状態用の優先度が同じであり、参照番号7ではアイドル端末用の優先度が「0」である。この例は、図10に示す例よりさらに、アイドル状態における優先度の設定に自由度を持たせることができる。
 図12に示すテーブルは、参照番号0~4では、アイドル状態用の優先度「1~5」に対し、コネクテッド状態用の優先度として一律に「1」が組み合わせられている。参照番号5~7は、アイドル端末用の優先度が「0」である。この例では、コネクテッド端末用の優先度を変えずに、アイドル端末用の優先度だけを変えることが可能である。この例では、コネクテッド用の優先度を一律に「1」としているが、コネクテッド用の優先度を一律に「2」「3」等としてもよい。また、図10、図11に示す例のように、参照番号0~5、あるいは0~6においてアイドル端末用の優先度を設定し、これに対するコネクテッド端末用の優先度を一律としてもよい。
 図13に示すテーブルは、参照番号0~4では、アイドル状態用の優先度「1~5」に対し、コネクテッド状態用の優先度として、専用キャリアに対して設定されるコネクテッド状態用の優先度の最大値(この例では、参照番号7に対する優先度「5」)より、常に低い優先度が組み合わせられている。参照番号5~7は、アイドル端末用の優先度が「0」である。この例では、コネクテッド端末用には、専用キャリアの優先度を一番高く設定した上で、共用キャリアに対しては自由度を持った優先度の設定が可能である。この例では、アイドル状態用の優先度「1~5」に対して、コネクテッド状態用の優先度を「2,2,3,3,4」としている。また、図10、図11に示す例のように、参照番号0~5、あるいは0~6においてアイドル端末用の優先度を設定し、これに対するコネクテッド端末用の優先度として、専用キャリアの優先度の最大値よりも常に低い優先度となる組み合わせとしてもよい。
 図14に示すテーブルは、参照番号0~4では、アイドル状態用の優先度「1~5」に対して、コネクテッド状態用の優先度として昇順または降順とは異なる値が組み合わせられている。いくつを組み合わせるかは、システムの運用によって適宜設定することができる。参照番号5~7は、アイドル端末用の優先度が「0」である。図10、図11に示す例のように、参照番号0~5、あるいは0~6においてコネクテッド端末用の優先度を適宜に設定してもよい。
 図15に示すテーブルでは、参照番号0~4では、アイドル状態用の優先度「1~5」に対し、コネクテッド状態用の優先度として「5~1」が組み合わせられている。参照番号5~7は、アイドル端末用の優先度が「0」である。これにより、アイドル状態のときに優先されるキャリアとコネクテッド状態のときに優先されるキャリアを分けることができる。図10、図11に示す例のように、参照番号0~5、あるいは0~6においてコネクテッド端末用の優先度をアイドル端末用の優先度を逆に設定してもよい。
(第3の実施の形態)
 第3の実施の形態では、LTE端末用の優先度情報において専用キャリアの優先度として「0」を設定する。LTE端末は、もともと専用キャリアにアクセスすることはできないので、専用キャリアの優先度を設定する必要はないが、LTE端末用の優先度情報に優先度「0」を設定することにより、LTE-A端末に対して専用キャリアを認識させる。具体的には、LTE-A端末40がアイドル状態においてキャンプする周波数を選択する時に、LTE端末用優先度情報とLTE-A端末用優先度情報の両方を参照する。LTE端末用の優先度情報で優先度が「0」であるキャリアにキャンプオンしないようにする。このようにLTE端末用の優先度情報を利用することにより、LTE-A端末40は、アイドル時とコネクテッド時の周波数優先度を判別できるので、共用キャリアで送信する優先度情報の情報量を削減できる。
 図16は、第3の実施の形態に係る基地局10bとLTE-A端末40bのシグナリングの動作を示す図である。LTE-A端末40bはアイドル状態の時に共用キャリアAにキャンプしている(S10)。LTE-A端末40bは、基地局10bからの報知情報によってLTE端末用及びLTE-A端末用の優先度情報を取得する(S12)。
 LTE-A端末40bは、RACHプリアンブル送信時に、優先度情報で最も高い優先度が示されたキャリアのペアとなるアップリンクキャリアをRACHプリアンブル送信先キャリアとして選択し、選択したキャリア用のRACH関連パラメータを用いてRACHプリアンブルメッセージを作成し、基地局10bに送信する(S14)。
 図16に示す例では、専用キャリアが最も優先度が高いので、専用キャリアのペアとなるアップリンクキャリアを、RACHプリアンブル送信先キャリアとして選択し、RACHプリアンブルを送信する(S14)。以下は、第1の実施の形態と同様に、基地局10bとの接続のプロシジャを実行する(S16~S22)。RACHプロシジャが成功すると、端末は専用キャリアにおいて基地局10bとコネクションを確立し(S24)、RRCの設定を経て(S24,S26)、データの送受信を行う(S30)。
 LTE-A端末40bは、基地局10bからのRRC接続解放メッセージを受信し(S32)、コネクテッド状態から再びアイドル状態となる(S34)。この時、RRC接続解放メッセージに端末個別のLTE-A端末用優先度情報が含まれていれば、アイドル時に報知情報によって取得したLTE-A端末用優先度情報を新たなLTE-A端末用優先度情報によって上書きする。
 LTE-A端末40bは、基地局10bから報知情報またはRRC接続解放メッセージによって指示された優先度情報に従って、優先度の高い周波数を選択し、キャンプする。図16に示す例では、専用キャリアが優先度の高い周波数として指示されているが、LTE端末用の優先度情報の中で、専用キャリアの優先度が「0」となっている。従って、LTE-A端末40bは、LTE-A端末用優先度情報の中の専用キャリアの優先度を無視し、共用キャリアAを選択し、キャンプする。
 図17は、本発明の第3の実施の形態に係る基地局10bの構成を示す図である。基地局10bは、優先度情報生成部12、報知情報作成部20、端末個別情報作成部22、送信部24、受信部26、RACH処理部28を有する。
 優先度情報生成部12は、LTE端末向けの優先度情報を付与するLTE端末用優先度設定部14、LTE-A端末40b向けの優先度情報を付与するLTE-A端末用優先度設定部36を有し、各端末向けの優先度情報を、報知情報作成部20及び端末個別情報作成部22に出力する。
 報知情報作成部20は、優先度情報生成部12から出力された各端末向けの優先度情報を含む報知情報を作成し、送信部24に出力する。端末個別情報作成部22は、優先度情報生成部12から入力された各端末向けの優先度情報を含む端末個別情報を作成し、送信部24に出力する。送信部24は、報知情報作成部20から入力された報知情報、及び端末個別情報作成部22から入力された端末個別情報をアンテナ30から送信する。
 受信部26は、LTE-A端末40bからのRACHプリアンブルメッセージを受信する。RACH処理部28は、受信部26から入力されたRACHプリアンブルメッセージを処理する。
 図18は、第3の実施の形態に係るLTE-A端末40bの構成を示す図である。LTE-A端末40bは、受信部44、送信部46、報知情報取得部48、端末個別情報取得部50、優先度情報判定部52、周波数選択部54、RACHプリアンブル作成部56を有する。
 受信部44は、報知情報及び端末個別情報を受信する。報知情報取得部48は、受信部44から入力された報知情報から、優先度情報及びRACH関連情報を抽出し、それぞれ優先度情報判定部52、RACHプリアンブル作成部56へ出力する。
 端末個別情報取得部50は、受信部44から入力された端末個別情報から、優先度情報を抽出し、優先度情報判定部52に出力する。優先度情報判定部52は、LTE端末用優先度情報取得部62、LTE-A端末用優先度情報取得部64、アイドル端末用優先度情報判定部66、コネクテッド端末用優先度情報判定部68を有する。
 LTE端末用優先度情報取得部62は、報知情報取得部48から入力されたLTE端末向けの優先度情報を取得し、アイドル端末用優先度情報判定部52に出力する。LTE端末用優先度情報取得部62は、報知情報取得部48及び端末個別情報取得部50から入力されたLTE-A端末40b向けの優先度情報を取得し、アイドル端末用優先度情報判定部66及びコネクテッド端末用優先度情報判定部68に出力する。
 アイドル端末用優先度情報判定部66には、LTE端末用優先度情報取得部62からLTE端末向けの優先度情報が入力される。アイドル端末用優先度情報判定部66は、LTE端末向けの優先度情報の中で、優先度「0」が示されたキャリアを、LTE-A端末用優先度情報取得部64から入力されたLTE-A端末40b向けの優先度情報の中から削除して、アイドル端末用の周波数優先度を判定し、判定結果を周波数選択部54に出力する。コネクテッド端末用優先度情報判定部68には、LTE-A端末用優先度情報取得部64からLTE-A端末40b向けの優先度情報が入力される。コネクテッド端末用優先度情報判定部68は、LTE-A端末40b向けの優先度情報をもとに、コネクテッド端末用の周波数優先度を判定して、判定結果を周波数選択部54に出力する。
 周波数選択部54は、優先度情報判定部52から入力された判定結果に従って、アイドル状態の時はキャンプする周波数を選択する。コネクテッド状態の時は、周波数選択部54は、RACHプリアンブル送信先周波数を選択し、選択した周波数の情報をRACHプリアンブル作成部56に出力する。
 RACHプリアンブル作成部56は、RACHプリアンブル送信先周波数の情報に従って、RACH関連情報の中から、使用するRACHプリアンブルパラメータを選択する。ここで、RACHプリアンブル送信先周波数の情報は周波数選択部54から入力され、RACH関連情報は報知情報取得部48から入力される。RACHプリアンブル作成部56は、RACHプリアンブルパラメータを用いてRACHプリアンブルメッセージを作成して、送信部46に出力する。送信部46は、RACHプリアンブル作成部56から入力されたRACHプリアンブルメッセージをアンテナ42から送信する。
 図19は、第3の実施の形態のLTE-A端末40bの動作を示す図である。LTE-A端末40bは、基地局10bから報知情報を受信し(S40)、LTE端末用及びLTE-A端末用の優先度情報を保持する(S43)。
 LTE-A端末40bは、RACHプリアンブル送信時に、コネクテッド状態用優先度情報の中で、周波数優先度の高いキャリアをRACHプリアンブル送信先キャリアとして選択する(S44)。LTE-A端末40bは、選択したキャリアに対応するRACHプリアンブルパラメータを、報知情報で取得したRACH関連パラメータから選択し(S46)、RACHプリアンブルメッセージを作成する(S48)。作成したRACHプリアンブルメッセージを、優先度情報によって選択したRACHプリアンブル送信先キャリアに向けて送信する(S50)。基地局10bとコネクションを確立したら(S52)、LTE-A端末40bは、データの送受信を行う(S54)。
 LTE-A端末40bは、基地局10bからコネクション解放メッセージを受信したら(S56でYES)、その中に端末個別の優先度情報が指示されているかどうかを判定する(S58)。LTE-A端末40bは、端末個別の優先度情報が指示されている場合は(S58でYES)、保持しているLTE-A端末用優先度情報を新たな優先度情報によって上書きする(S60)。
 LTE-A端末40bは、コネクテッド状態からアイドル状態になる時に、LTE端末用優先度情報の中で、優先度「0」が示されているキャリアを、LTE-A端末用優先度情報から削除し(S61)、その優先度情報に従って、キャンプする周波数を選択する(S62)。以上、第3の実施の形態の無線通信システムの構成および動作について説明した。
 第3の実施の形態では、LTE端末用の優先度情報の中で、専用キャリアの優先度を「0」として示す。これにより、LTE-A端末40bは、LTE端末用の優先度情報を利用して、アイドル時とコネクテッド時の周波数優先度を判別できるので、共用キャリアで送信する優先度情報の情報量を削減できる。
(第4の実施の形態)
 第4の実施の形態では、優先度情報を、RACH送信キャリア及び報知情報で送られるRACHプリアンブルパラメータの選択時の重み付けに利用する。LTE-A端末40が必ず優先度の高いキャリアを選択してしまうと、LTE-A端末40のRACHプリアンブル送信が特定キャリアに集中してしまうという問題が起こる。RACH送信キャリアの選択に重み付けを行うことで、特定キャリアへのRACHプリアンブル送信集中を回避することができる。
 第4の実施の形態で用いられる基地局は、図7に示す基地局10aと同じである。また、第4の実施の形態のLTE-A端末40cと基地局10aのシグナリングの動作は、図6に示す動作と同じである。
 図20は、第4の実施の形態のLTE-A端末40cの構成を示す図である。LTE-A端末40cは、受信部44、送信部46、報知情報取得部48、端末個別情報取得部50、優先度情報判定部52、周波数選択部54、RACHプリアンブル作成部56を有する。
 受信部44は、基地局10aから送信される報知情報及び端末個別情報を受信する。報知情報取得部48は、受信部44から入力された報知情報から、優先度情報及びRACH関連情報を抽出し、それぞれ優先度情報判定部52、RACHプリアンブル作成部56へ出力する。
 端末個別情報取得部50は、受信部44から入力された端末個別情報から、優先度情報を抽出し、優先度情報判定部52に出力する。優先度情報判定部52は、報知情報取得部48及び端末個別情報取得部50から入力されたLTE-A端末40c向けの優先度情報を取得する。優先度情報判定部52は、優先度情報に対応するアイドル端末用優先度とコネクテッド端末用優先度を、優先度情報テーブル記憶部60に記憶されたテーブルから抽出する。優先度情報判定部52は、アイドル端末用優先度およびコネクテッド端末用優先度を周波数選択部54に出力する。
 周波数選択部54は、キャンプ周波数選択部70とRACHプリアンブル送信周波数選択部72を有する。キャンプ周波数選択部70は、優先度情報判定部52から入力された判定結果に従って、アイドル状態の時にキャンプする周波数を選択する。RACHプリアンブル送信周波数選択部72は、優先度情報判定部52から入力された判定結果に従って、アイドル状態からコネクテッド状態になる時に、RACHプリアンブルを送信する周波数を選択する。RACHプリアンブル送信周波数選択部72は、選択したRACHプリアンブル送信先周波数の情報を、RACHプリアンブル作成部56に出力する。
 RACHプリアンブル作成部56は、RACHプリアンブル送信周波数選択部54から入力されたRACHプリアンブル送信先周波数の情報に従って、報知情報取得部48から入力されたRACH関連情報から、使用するRACHプリアンブルパラメータを選択する。ここで、RACHプリアンブル送信先周波数の情報はRACHプリアンブル送信周波数選択部54から入力され、RACH関連情報は報知情報取得部48から入力される。RACHプリアンブル作成部56は、RACHプリアンブルパラメータを用いて、RACHプリアンブルメッセージを作成して、送信部46に出力する。送信部46は、RACHプリアンブル作成部56から入力されたRACHプリアンブルメッセージをアンテナ42から送信する。
 RACHプリアンブルを送信する周波数の選択方法としては、コネクテッド端末用の優先度情報をもとに、各キャリアの受信品質を考慮して行ってもよい。例えば、優先度が「5」のキャリアと「4」のキャリアの受信品質を比較して、優先度「5」のキャリアがある既定値を下回っており、「4」のキャリアの受信品質がある既定値を上回っていれば、優先度「4」のキャリアをRACHプリアンブル送信先として選択する。この時、受信品質を判定する既定値は、LTE-A端末40cが有する既知の値、もしくは、基地局10aより報知あるいはLTE-A端末40c個別に通知される値とする。
 別の周波数選択方法としては、例えば、一回目の送信は最も優先度の高いキャリアを選択するが、失敗した場合には、一番優先度の高いキャリアと次に優先度の高いキャリアを比較して、その差に基づいて、一番優先度の高いキャリアに再びRACHプリアンブルを送信するか、次に優先度の高いキャリアにRACHプリアンブルを送信するかを決定する方法がある。例えば、一番優先度の高いキャリアの優先度が「5」であり、次に優先度の高いキャリアの優先度が「4」の場合は、優先度「5」のキャリアへのRACHプリアンブル送信が失敗した時は、次に優先度「4」のキャリアにRACHプリアンブルを送信する。一番優先度の高いキャリアの優先度が「5」であり、次に優先度の高いキャリアの優先度が「5」の場合は、優先度「5」のキャリアへのRACHプリアンブル送信が失敗した時は、再度同じキャリアにRACHプリアンブルを送信する。
 別の周波数選択方法としては、周波数優先度の値を、各キャリアに割り当てられたRACHプリアンブルの値を選択する確率計算に用いる方法がある。例えば、優先度「5」の周波数A、優先度「4」の周波数B、優先度「2」の周波数Cがあるとする。各キャリアに割り当てられたRACHプリアンブルが選択される確率を、周波数Aが5/(5+4+2)、周波数Bが4/(5+4+2)、周波数Cが2/(5+4+2)と計算してもよい。この時、周波数Aに割り当てられたRACHプリアンブルが選択された場合、RACHプリアンブルの送信先は周波数Aとなる。
 図21は、第4の実施の形態におけるLTE-A端末40cの動作を示す図である。ここで、RACHプリアンブル送信先キャリアの選択は、各キャリアの受信品質を考慮して行うものとする。
 LTE-A端末40cは、基地局10aから報知情報を受信し(S40)、優先度情報を取得する(SS41)。LTE-A端末40cは、取得した優先度情報から、図5のテーブルに従って、アイドル状態用及びコネクテッド状態用の優先度情報を抽出し、保持する(S42)。
 LTE-A端末40cは、RACHプリアンブル送信時に、コネクテッド状態用優先度情報の中で、周波数優先度の最も高いキャリアを選択する(S44)。選択したキャリアの受信品質が既定値を超えている場合は(S64でYES)、LTE-A端末40cは、そのキャリアをRACHプリアンブル送信先キャリアとして決定する(S66)。
 選択したキャリアの受信品質が既定値を下回っている場合は(S64でNO)、LTE-A端末40cは、次に周波数優先度の高いキャリアを選択し(S74)、受信品質の判定を行う。選択したキャリアの受信品質が既定値を上回っている場合は(S64でYES)、LTE-A端末40cは、RACHプリアンブル送信先として選択したキャリアに対応するRACHプリアンブルパラメータを作成する。具体的には、LTE-A端末40cは、報知情報で取得したRACH関連パラメータから選択し(S66)、RACHプリアンブルメッセージを作成する(S68)。LTE-A端末40cは、作成したRACHプリアンブルメッセージを、優先度情報と受信品質によって選択したRACHプリアンブル送信先キャリアに向けて送信する(S70)。ここで、RACHプロシジャが成功すれば(S72でYES)、LTE-A端末40cは選択したキャリアにおいて基地局10aとコネクションを確立し(S76)、データの送受信を行う(S78)。
 RACHプロシジャが失敗したら(S72でNO)、LTE-A端末40cはコネクテッド状態用優先度情報の中から、次に優先度の高いキャリアを選択し(S74)、受信品質が既定値を超えているかどうかの判定を行い(S64)、以下、上記と同様の処理を行う。ここでは、RACHプロシジャが1回失敗したら、次のキャリアを選択する例について説明しているが、複数回RACHプロシジャが失敗した場合に、次のキャリアを選択してもよい。以上、第4の実施の形態の無線通信システムの構成および動作について説明した。
 第4の実施の形態によれば、優先度情報を、RACH送信キャリア及びRACHプリアンブルパラメータの選択の重み付けに利用することで、特定キャリアへのRACHプリアンブル送信集中を回避することができる。
 なお、上記した実施の形態において、RACHプリアンブルメッセージ作成に用いるRACH関連パラメータは、基地局10の管理下にある各キャリア間で共通であってもよい。
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能であり、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。
 本発明は、優先度情報としてコネクテッド状態とアイドル状態のそれぞれについての周波数の優先度を有することにより、LTE-Advanced端末を適切な周波数にキャンプオンさせることができ、LTE-Advancedに対応した無線通信システム等として有用である。
10 基地局
12 優先度情報生成部
14 LTE端末用優先度設定部
16 アイドル端末用優先度設定部
18 コネクテッド端末用優先度設定部
20 報知情報作成部
22 端末個別情報作成部
24 送信部
26 受信部
28 RACH処理部
30 アンテナ
32 LTE-A端末用優先度設定部
34 優先度情報テーブル記憶部
36 LTE-A端末用優先度設定部
40 LTE-A端末
42 アンテナ
44 受信部
46 送信部
48 報知情報取得部
50 端末個別情報取得部
52 優先度情報判定部
54 周波数選択部
56 RACHプリアンブル作成部
58 LTE-A端末用優先度情報判定部
60 優先度情報テーブル記憶部
62 LTE端末用優先度情報取得部
64 LTE-A端末用優先度情報取得部
66 アイドル端末用優先度情報判定部
68 コネクテッド端末用優先度情報判定部
70 キャンプ周波数選択部
72 RACHプリアンブル送信周波数選択部

Claims (14)

  1.  複数の周波数のうちの一部の専用周波数によってコネクテッド状態のLTE-Advanced端末とのみ通信し、残りの共用周波数によってLTE端末およびLTE-Advanced端末と通信する無線送受信装置であって、
     コネクテッド状態にあるLTE-Advanced端末向けに前記複数の周波数のそれぞれの優先度を設定すると共に、アイドル状態にあるLTE-Advanced端末向けに前記共用周波数のそれぞれの優先度を設定し、設定した優先度を示す優先度情報を生成する優先度情報生成部と、
     前記優先度情報を含む報知情報を作成する報知情報作成部と、
     前記報知情報を送信する送信部と、
     を備える無線送受信装置。
  2.  前記優先度情報を含む端末個別情報を作成する端末個別情報作成部を備え、
     前記送信部は、前記端末個別情報を送信する請求項1に記載の無線送受信装置。
  3.  アイドル状態にあるLTE-Advanced端末向けの優先度とコネクテッド状態にあるLTE-Advanced端末向けの優先度の組み合わせを参照番号に関連付けて記憶したテーブルを有し、
     前記優先度情報生成部は、前記複数の周波数のそれぞれについて前記テーブルに記憶された組み合わせの中からアイドル状態とコネクテッド状態における優先度の組み合わせを選択し、その組み合わせにかかる参照番号を当該周波数の優先度として設定する請求項1または2に記載の無線送受信装置。
  4.  前記優先度情報生成部は、
     LTE-A端末向けに前記複数の周波数のそれぞれの優先度を設定するLTE-A端末用優先度設定部と、
     LTE端末向けに前記共用周波数のそれぞれの優先度を設定するLTE端末用優先度設定部と、を有し、
     前記LTE-A端末用優先度設定部は、コネクテッド状態にあるLTE-A端末向けに各周波数の優先度を設定し、
     前記LTE端末用優先度設定部は、前記専用周波数に対して選択不可を示す優先度を設定する請求項1または2に記載の無線送受信装置。
  5.  請求項1~4のいずれかに記載の無線送受信装置を有する無線基地局。
  6.  複数の周波数によって通信可能な無線送受信装置であって、
     報知情報を受信する受信部と、
     前記報知情報から抽出した周波数の優先度であって、アイドル状態における優先度とコネクテッド状態における優先度とを判定する優先度判定部と、
     前記アイドル状態における優先度に基づいてアイドル時にキャンプする周波数を選択するキャンプ周波数選択部と、
     前記コネクテッド状態における優先度に基づいてRACHプリアンブルの送信先周波数を選択する送信周波数選択部と、
     前記送信周波数選択部にて選択した周波数にてRACHプリアンブルを送信するRACHプリアンブル送信部と、
     を備える無線送受信装置。
  7.  前記受信部は、基地局より送信される端末個別情報を受信し、
     前記優先度判定部は、前記端末個別情報から抽出した周波数の優先度情報を判定する請求項6に記載の無線送受信装置。
  8.  アイドル状態における優先度とコネクテッド状態における優先度の組み合わせを参照番号に関連付けて記憶したテーブルを有し、
     前記報知情報には、前記参照番号が優先度情報として含まれており、
     前記優先度判定部は、前記参照番号に対応するアイドル状態とコネクテッド状態のそれぞれの優先度を前記テーブルから読み出す請求項6または7に記載の無線送受信装置。
  9.  前記報知情報には、LTE-Advanced端末用の優先度とLTE端末の優先度とが含まれており、前記LTE端末の優先度において前記専用周波数に対して選択不可を示す優先度が設定され、
     前記優先度判定部は、前記LTE-Advanced端末用の優先度に基づいてコネクテッド状態における優先度を判定し、前記LTE端末用の選択不可を示す優先度から前記専用周波数を特定し、前記LTE-Advanced端末用の優先度から前記専用周波数を除いてアイドル状態における優先度を判定する請求項6または7に記載の無線送受信装置。
  10.  前記RACHプリアンブル送信部におけるRACHプリアンブルの送信に失敗した場合に、前記送信周波数選択部は、前記優先度に基づいてRACHプリアンブルを送信する送信先周波数を再度選択する請求項6~9のいずれかに記載の無線送受信装置。
  11.  請求項6~10のいずれかに記載の無線送受信装置を備える無線端末。
  12.  複数の周波数のうちの一部の専用周波数によってコネクテッド状態のLTE-Advanced端末とのみ通信し、残りの共用周波数によってLTE端末およびLTE-Advanced端末と通信する無線基地局と、LTE-Advanced端末とを有する無線通信システムであって、
     前記無線基地局は、
     アイドル状態にあるLTE-Advanced端末向けに前記共用周波数のそれぞれの優先度を設定すると共に、コネクテッド状態にあるLTE-Advanced端末向けに前記複数の周波数のそれぞれの優先度を設定し、設定した優先度を示す優先度情報を生成する優先度情報生成部と、
     前記優先度情報を含んだ報知情報を作成する報知情報作成部と、
     前記報知情報を送信する送信部と、
     を備え、
     前記LTE-Advanced端末は、
     報知情報を受信する受信部と、
     前記報知情報から抽出した周波数の優先度であって、アイドル状態における優先度とコネクテッド状態における優先度とを判定する優先度判定部と、
     前記アイドル状態における優先度に基づいてアイドル時にキャンプする周波数を選択するキャンプ周波数選択部と、
     前記コネクテッド状態における優先度に基づいてRACHプリアンブルの送信先周波数を選択する送信周波数選択部と、
     前記送信周波数選択部にて選択した周波数にてRACHプリアンブルを送信するRACHプリアンブル送信部と、
     を備える無線通信システム。
  13.  複数の周波数のうちの一部の専用周波数によってコネクテッド状態のLTE-Advanced端末とのみ通信し、残りの共用周波数によってLTE端末およびLTE-Advanced端末と通信する無線送受信装置による優先度通知方法であって、
     前記無線送受信装置が、コネクテッド状態にあるLTE-Advanced端末向けに前記複数の周波数のそれぞれの優先度を設定すると共に、アイドル状態にあるLTE-Advanced端末向けに前記共用周波数のそれぞれの優先度を設定し、設定した優先度を示す優先度情報を生成するステップと、
     前記無線送受信装置が、前記優先度情報を含む報知情報を作成するステップと、
     前記無線送受信装置が、前記報知情報を送信するステップと、
     を備える優先度通知方法。
  14.  複数の周波数によって通信可能なLTE-Advanced端末による周波数選択方法であって、
     前記LTE-Advanced端末が報知情報を受信するステップと、
     前記LTE-Advanced端末が、前記報知情報から抽出した周波数の優先度であって、アイドル状態における優先度とコネクテッド状態における優先度とを判定するステップと、
     前記LTE-Advanced端末が、前記アイドル状態における優先度に基づいてアイドル時にキャンプする周波数を選択するステップと、
     前記LTE-Advanced端末が、前記コネクテッド状態における優先度に基づいてRACHプリアンブルの送信先周波数を選択するステップと、
     前記LTE-Advanced端末が、選択した周波数にてRACHプリアンブルを送信するステップと、
     を備える周波数選択方法。
PCT/JP2010/001457 2009-03-13 2010-03-03 無線送受信装置、無線基地局、無線端末および無線通信システム WO2010103750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/255,369 US20110317654A1 (en) 2009-03-13 2010-03-03 Wireless transceiver, wireless base station, wireless terminal, and wireless communication system
JP2011503671A JPWO2010103750A1 (ja) 2009-03-13 2010-03-03 無線送受信装置、無線基地局、無線端末および無線通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060803 2009-03-13
JP2009060803 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010103750A1 true WO2010103750A1 (ja) 2010-09-16

Family

ID=42728048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001457 WO2010103750A1 (ja) 2009-03-13 2010-03-03 無線送受信装置、無線基地局、無線端末および無線通信システム

Country Status (3)

Country Link
US (1) US20110317654A1 (ja)
JP (1) JPWO2010103750A1 (ja)
WO (1) WO2010103750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518850A (ja) * 2016-03-30 2018-07-12 ベイジン シャオミ モバイル ソフトウェア カンパニーリミテッド セル再選択過程において隣接セルを検出する方法及び装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106749A1 (en) * 2012-10-12 2014-04-17 Nokia Siemens Networks Oy Method, apparatus, computer program product, computer readable medium and system for cell reselection
CN104969485A (zh) * 2013-02-14 2015-10-07 诺基亚通信公司 协作多点通信中的天线选择
US10117244B2 (en) * 2013-02-28 2018-10-30 Nokia Solutions And Networks Oy Uplink carrier selection for reduced bandwidth machine type communication devices
EP3820229A4 (en) * 2018-07-26 2021-07-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR RESOURCE CONFIGURATION, TERMINAL DEVICE AND NETWORK DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129588A (ja) * 2005-11-04 2007-05-24 Ntt Docomo Inc キャリア方法通知方法、周辺セル測定方法、基地局装置および移動局装置
WO2009025241A1 (ja) * 2007-08-17 2009-02-26 Ntt Docomo, Inc. ユーザ装置及び無線通信システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034578A1 (en) * 2004-09-29 2006-04-06 Nortel Networks Limited Method and system for capacity and coverage enhancement in wireless networks with relays
US20100113041A1 (en) * 2008-10-31 2010-05-06 Maik Bienas Method of signalling system information, method of receiving system information, radio base station and radio communication terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129588A (ja) * 2005-11-04 2007-05-24 Ntt Docomo Inc キャリア方法通知方法、周辺セル測定方法、基地局装置および移動局装置
WO2009025241A1 (ja) * 2007-08-17 2009-02-26 Ntt Docomo, Inc. ユーザ装置及び無線通信システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518850A (ja) * 2016-03-30 2018-07-12 ベイジン シャオミ モバイル ソフトウェア カンパニーリミテッド セル再選択過程において隣接セルを検出する方法及び装置
US10051535B2 (en) 2016-03-30 2018-08-14 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for detecting neighboring cell in cell reselection process

Also Published As

Publication number Publication date
US20110317654A1 (en) 2011-12-29
JPWO2010103750A1 (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
US8825047B2 (en) Searching and reporting public land mobile networks (PLMNs) in a mobile telecommunications system
CN112996084B (zh) 用于lc-mtc通信ue的小区选择和重选方法及用户设备
US20180249387A1 (en) Method for Transmitting System Information, Base Station, Terminal, and System
US9883428B2 (en) Wireless terminals, base stations, communication systems, communication methods, and integrated circuits
US9848455B2 (en) User terminal, processor, and base station
US9888511B2 (en) Mobile communication system, base station, user terminal and processor
JP5595326B2 (ja) システム情報の受信をハンドリングする方法および関連する通信装置
WO2011024646A1 (ja) 無線通信システム、無線通信装置および無線通信方法
CN110710130A (zh) 通信装置、通信方法以及程序
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
CN106664647B (zh) 终端装置、基站装置、通信系统、通信方法以及集成电路
US10070420B2 (en) Mobile communication system and user terminal
WO2022027166A1 (en) Cell configuration schemes in wireless communications
WO2010103750A1 (ja) 無線送受信装置、無線基地局、無線端末および無線通信システム
CN115462129A (zh) 针对目标网络切片的目标网络切片信息
EP2725867B1 (en) Method of handling frequency de-prioritization
CN114731667A (zh) 终端装置、基站设备和通信方法
US20220167379A1 (en) Data transmission method, network device and user equipment
EP3477999B1 (en) Network access method, access device and terminal device
US11272460B2 (en) Communication device and method for indicating a preference based on the device power consumption or on performance of carriers
US20220124520A1 (en) Method used by ue to preconfigure source for small data transmission in inactive state and ue using the same
CN106664698B (zh) 终端装置、集成电路以及通信方法
CN115699655A (zh) 一种bwp配置方法及装置、终端设备、网络设备
US20200022184A1 (en) Random access method and apparatus, device, and storage medium
WO2023153360A1 (ja) セル再選択方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503671

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750509

Country of ref document: EP

Kind code of ref document: A1