WO2010103234A1 - Système de commande d'aéronef à architecture modulaire intégrée - Google Patents

Système de commande d'aéronef à architecture modulaire intégrée Download PDF

Info

Publication number
WO2010103234A1
WO2010103234A1 PCT/FR2010/050406 FR2010050406W WO2010103234A1 WO 2010103234 A1 WO2010103234 A1 WO 2010103234A1 FR 2010050406 W FR2010050406 W FR 2010050406W WO 2010103234 A1 WO2010103234 A1 WO 2010103234A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
aircraft
control
computer
sensors
Prior art date
Application number
PCT/FR2010/050406
Other languages
English (en)
Inventor
Marc Fervel
Arnaud Lecanu
Antoine Maussion
Jean-Jacques Aubert
Original Assignee
Airbus Operations (Societe Par Actions Simplifiee)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations (Societe Par Actions Simplifiee) filed Critical Airbus Operations (Societe Par Actions Simplifiee)
Priority to CA2754091A priority Critical patent/CA2754091C/fr
Priority to US13/255,406 priority patent/US8600584B2/en
Priority to BRPI1009247A priority patent/BRPI1009247A2/pt
Priority to CN201080018052.1A priority patent/CN102414081B/zh
Publication of WO2010103234A1 publication Critical patent/WO2010103234A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention generally relates to aircraft control systems.
  • the control of an aircraft generally uses numerous control systems including: the primary flight control system which makes it possible to control the movement of the aircraft around its axes of roll, yaw and yaw; pitching, by acting on the ailerons, rudders, elevators, and the Trimble Horizontal Stabilizer (THS). It also controls the drag of the aircraft by acting on the airbrakes (spoilers); the secondary flight control system for controlling the wing arch and thus the lift, during the landing and take-off phases, by acting on the flaps and the leading edges of the wings (slats) also called beaks; the propulsion control system for controlling and reversing engine thrust; the landing gear braking control system; the wheel orientation control system; - the control system of the hydraulic circuits.
  • the primary flight control system which makes it possible to control the movement of the aircraft around its axes of roll, yaw and yaw; pitching, by acting on the ailerons, rudders, elevators, and the Trimble Horizontal Stabilizer
  • the primary flight control system is generally referred to simply as the flight control system. We will adopt this convention below for the purpose of simplifying the description.
  • the flight control system makes the link between the steering members (handle, rudder, etc.) and the aerodynamic control surfaces (fins, fins, elevators, etc.).
  • Modern airliners have electric flight control systems in which the mechanical actions on the steering members are converted into analog signals that are transmitted to actuators operating the control surfaces.
  • Fig. 1 schematically illustrates the architecture of a flight control system, 100, known from the state of the art.
  • a control member, 110 for example a lateral mini-stick, equipped with one or more sensors, 115, for example position sensors and / or angular sensors providing position information and / or steering to the flight control computer, 120.
  • the computer 120 determines, from the information received from the various control members 110, including here the self-pilot (not shown), and / or if necessary aircraft sensors 150 (accelerometer, gyrometer, inertial unit), the flight controls to be applied to the actuators 130.
  • These actuators are typically hydraulic cylinders controlled by servovalves or electric motors acting on the aerodynamic control surfaces of the aircraft , 140.
  • the actuators 130, on the one hand, and the aerodynamic control surfaces, 140, on the other hand, are equipped with sensors respectively denoted 135 and 145. These sensors inform the computer 120 on the positions and / or orientations of the moving parts. actuators as well as those of the control surfaces.
  • a sensor 135 may indicate the position in translation of a cylinder, a sensor 145, the orientation of a flap.
  • the computer 120 has both a control function and a monitoring function. It is connected to the actuators by first cables 133 for transmitting the analog control signals. It is also connected to the sensors 135 and 145 respectively equipping the actuators and the control surfaces themselves by second cables, 137, and third cables, 147.
  • a flight control system is generally composed of several independent computers, each computer having its own set of sensors and actuators and its own network of cables.
  • Fig. 2 schematically illustrates the architecture of an aircraft control system, 200. This includes the flight control system and a plurality of other control systems which have been given examples in introduction. For the sake of simplification, only two control systems SCi and SC2 have been represented here.
  • the various control systems are placed in the avionics bay (delimited in the diagram by a double dashed line) and interconnected by an avionics network, for example an AFDX (Avionics FuIl DupleX switched Ethernet) network. It is recalled that the AFDX network, specifically developed for the needs of aeronautics, is based on a switched Ethernet network. A detailed description of the characteristics of this network can be found in the document entitled "AFDX protocol tutorial" available on the website www. condoreng. corn as well as in the patent application FR-A-2832011 filed in the name of the applicant.
  • AFDX Alteronics FuIl DupleX switched Ethernet
  • the control system computer SC2 needs a measurement on a device E, carried out by a sensor belonging to the control system SCi
  • the computer 210i in charge of SCi transmits this measurement to the computer 2IO2 through the avionics network.
  • availability constraints for example, example failure of the computer 210i
  • latency transfer time via the computer 210i
  • This aircraft control system architecture has a number of disadvantages, including the multiplication of the number of sensors and related cables, which strike the mass balance of the aircraft.
  • the analog signals transmitted by the sensors can be affected by noise due to electromagnetic disturbances.
  • the object of the present invention is therefore to provide an aircraft control system overcoming the aforementioned drawbacks, namely a system which makes it possible to reduce the wiring between the avionics bay and the sensors / actuators, as well as to reduce the number of sensors without sacrificing the required level of safety.
  • the present invention is defined by an aircraft control system comprising a first control system, for controlling a first function of the aircraft, a second control system, separate from the first control system, for controlling a second function. of the aircraft, distinct from the first function, the first control system comprising at least a first computer, a first set of sensors and actuators, the first computer being adapted to receive measurements of said sensors and to controlling said actuators of said first set, the second control system comprising at least a second calculation module, a second set of sensors (32O2) and actuators, the second computer being adapted to receive measurements of said sensors and to control said actuators said second set.
  • the first and second computers as well as the sensors and actuators of the first and second sets are subscribed to the same AFDX network and the first and second sets have at least one common sensor.
  • said first and second computers each comprise a control channel and a monitoring channel, each channel consisting of software specific to the function performed by the computer, hosted by a generic computer, the specific software of the first channel being different from the specific software of the second way.
  • Said first control system is preferably a primary flight control system adapted to control the fins, the elevators, the fins and the airbrakes of the aircraft.
  • said second control system is a secondary flight control system adapted to control the nozzles and flaps of the aircraft.
  • the secondary flight control system advantageously comprises a plurality of sensors for measuring the respective output amplitudes of the flaps, the measurements provided by these sensors being transmitted to the AFDX network by means of electronic control modules of the primary flight control system, said electronic control modules being arranged close to and controlling the actuators of the airbrakes of the aircraft.
  • said second control system is a propulsion control system, adapted to control the respective speeds of the engines of the aircraft.
  • the second computer is advantageously adapted to receive, in manual mode, a thrust instruction of a manual thrust control member or, in automatic mode, of the first computer and to deduce from it an engine speed reference before transmitting it to an engine. control unit of an engine of the aircraft.
  • said second control system is a braking control system of the aircraft.
  • the braking system advantageously comprises a plurality of speed sensors and torque sensors mounted on the landing gear of the aircraft, the measurements provided by these sensors being acquired and formatted as AFDX messages by forward data concentrators. to be transmitted to the second computer via said network.
  • the speed measurements are further transmitted to the first computer by the data concentrators, via the AFDX network, said computer determining an order of exit of the airbrakes according to said speed and braking information provided, in manual mode by the brake pedals, and in automatic mode by an automatic braking unit.
  • said second control system is an orientation control system of at least the front wheel of the aircraft.
  • the first and second computers advantageously receive steering information provided by the rudder and / or control rods of the cockpit and, in manual mode, the second computer determines the steering angle of the wheel and the transmits, via said network, to a wheel orientation control unit, located close to it and, in automatic piloting mode, the first computer determines a control of the rudder, transmits it, via said network, the second computer, the second computer by deducing the steering angle and transmitting it to said wheel orientation control unit.
  • said second control system is a hydraulic control system of the aircraft, adapted to turn on and stop at least one electric pump mounted on a hydraulic circuit.
  • Said hydraulic control system then advantageously comprises at least one contactor subscribed to said network and adapted to turn on / off said pump, a pressure sensor mounted on the hydraulic circuit, the pressure measurements provided by said sensor being acquired and formatted in form.
  • AFDX messages through a data concentrator, then transmitted to the first and second computers via said network.
  • the invention finally relates to an aircraft, comprising an aircraft control system as defined above.
  • Fig. 1 schematically illustrates a flight control system known from the state of the art
  • Fig. 2 schematically illustrates the architecture of an aircraft control system known from the state of the art
  • Fig. 3 schematically represents the architecture of an aircraft control system according to one embodiment of the invention
  • FIG. 4 schematically illustrates the architecture of a primary flight control system which can be advantageously used in the system of FIG. 3;
  • Figs. 5A to 5D show schematically different arrangement variants of a sensor on an actuator;
  • Fig. 6 schematically represents an example of integration of a secondary flight control system in the system of FIG. 3
  • Fig. 7 schematically represents an example of integration of a propulsion control system in the system of FIG. 3;
  • Fig. 8 schematically represents an example of integration of a braking control system in the system of FIG. 3;
  • Fig. 9 schematically represents an example of integration of a wheel orientation control system in the system of FIG. 3;
  • Figs. 1A and 1B show schematically an example of integrating first and second variants of a hydraulic control system into the system of FIG. 3.
  • An aircraft control system is again considered comprising a plurality of elementary control systems, each elementary control system supporting a particular function of the aircraft.
  • these elementary control systems may be those already mentioned in the introduction.
  • FIG. 3 schematically shows the architecture of an aircraft control system according to one embodiment of the invention.
  • the basic control system SCi comprises at least one computer 31Oi as well as a plurality of sensors 32Oi and actuators 33Oi (only one of which is shown) all subscribers to the AFDX network, 340.
  • the elementary control system SC2 comprises at least one computer 31 ⁇ 2 and a plurality of sensors 32 ⁇ 2 and actuators 33 ⁇ 2 (only one is shown) also subscribing to the same network.
  • At least one sensor, designated 320 is common to both SC1 and SC2 elementary control systems.
  • the sensor 320 transmits its measurements to the computers 310i and 302 via the AFDX network, either by means of several virtual links of unicast type, or by means of at least one virtual link of the multicast type, VL (the second variant has been represented on Fig.3).
  • the flight control system plays a central role in the pooling of the sensors 320, that is to say each elementary control system can share one or more sensor (s) with the latter.
  • This central role is explained by the fact that the flight control system extends through the entire aircraft, has many connection points and many sensors distributed in the aircraft.
  • Fig. 4 represents an exemplary flight control system architecture that can be used in the aircraft control system according to the invention.
  • the AFDX network comprises a plurality of frame switches arranged at communication nodes of the aircraft.
  • two SW ⁇ SW 2 frame switches are installed in the avionics bay and support the left and right parts respectively of the device.
  • these switches are interconnected by an optical fiber link, OF, for electrically decoupling the two parts of the network.
  • OF optical fiber link
  • the micro-switches make it possible to locally process the frames coming from or destined for a cluster of terminals subscribed to the network. More specifically, a micro-switch has a first port generally connected to an AFDX switch and a plurality of second ports connected to the different subscriber terminals.
  • the microswitch acts as a repeater (hub), that is to say an incident frame on the first port is replicated to all the second ports. Subscriber terminals that receive it determine if they are recipients, and ignore it in the negative and the consider in the affirmative.
  • the microswitch scrutinizes in turn the second ports and empties their respective buffers on the first port, according to a type mechanism. Round robin, ensuring a fair sharing of bandwidth.
  • the latency on the uplink is higher in a microswitch than in a switch.
  • the distribution between switches and microswitches is a compromise between latency and complexity of the network.
  • a subscriber terminal will be connected to a local micro-switch, unless the latency constraints require a direct connection to a switch.
  • the architecture of the AFDX network will advantageously be chosen so that no more than one switch and one microswitch are passed from a computer to a subscriber terminal.
  • the AFDX network comprises eight micro switches ⁇ SW ⁇ , ..., ⁇ SW s , connected directly to SW commut SW 2 switches.
  • the microswitches ⁇ SW ⁇ , ⁇ SW 2 are located in the central zone of the device not far from the landing gear and the root of the wings.
  • the microswitches ⁇ SW 3 , ⁇ SW 4 and ⁇ SW 5 , ⁇ SW 6 are also located near the root, respectively to the left and right of the device.
  • the micro-switches ⁇ SW ⁇ , ⁇ SW % are located at the end of the fuselage, near the empennage of the device.
  • the microswitches ⁇ SW ⁇ , ⁇ SW 2 serve in particular aircraft sensors 420 (accelerometers, gyrometers, inertial unit) but also a set 422 of sensors shared with other control systems, such as the secondary flight control system, the braking control system of the landing gear, the hydraulic system.
  • the microswitches ⁇ SW 3 , ⁇ SW 4 and ⁇ SW 5 , ⁇ SW 6 serve, respectively on the left and right parts of the aircraft, the fins (denoted AILf and AIL j ) and the airbrakes (spoilers, denoted Sf * and S j and a set 423, 424 respectively, of sensors shared with other control systems, such as the secondary flight control system or the propulsion control system (left and right engines).
  • microswitches ⁇ SW ⁇ , ⁇ SW % serve the rear control surfaces, namely the rudders (RDRI f RDR 2 ), and the elevators namely the left and right elevators (ELf and EL j ) as well as the adjustable horizontal plane (THS ⁇ , THS 2 ) • These microswitches can also serve a 425 set of sensors shared with another control system.
  • the frame switches SW 1 and SW 2 are connected to the computers 411 and 412 as well as to the control elements 451 and 452 via data concentrators. More Specifically, the switch SW 1 receives on two separate ports, via the concentrators CR 1 and CR 2 , the information provided by the piloting and co-pilot steering members 451 and 452. Concentrators CR 1 and CR 2 multiplex the same information from 451 and 452 for cross-monitoring purposes. In a similar manner, the switch SW 2 receives on two separate ports, via the concentrators CR 3 and CR 4 , the information of these same drivers.
  • a set 421 of sensors shared with another control system for example the one controlling the orientation of the front wheels, can also be connected to the switches SW 19 SW 2 .
  • the computer 411 comprises two calculation modules, namely a control module, 411A, called COM module, and a monitoring module, 411B, said module MON.
  • the MON and COM modules are identical in structure and differ only in the way they are programmed (different algorithms).
  • a COM module can be reconfigured into module MON and vice versa.
  • the MON and COM modules are generic calculators, in practice Integrated Modular Avionics (IMA) cards mounted in a rack of the avionics bay, hosting application software specific.
  • IMA Integrated Modular Avionics
  • the 411A module and 411B respectively host the specific application software OL A, $ A, y A and CC B B ⁇ , ⁇ B with
  • the COM module transmits to the actuators control messages via the AFDX network (the actuators are equipped with terminals subscribing to the network) and receive information or confirmation messages from them.
  • the MON module also receives the information or confirmation messages from the actuators and checks the consistency between the command messages sent by the COM module and the information or confirmation messages which are returned to the latter by the various actuators.
  • the computer 411 In nominal mode, the computer 411 operates as master and the computer 412 as slave. In the event of failure of the computer 411, detected by an inconsistency between the COM and MON modules, the computer 412 takes over.
  • the steering actuators are generally equipped with a control module, COM, and a monitoring module, MON, responsible for verifying whether the electrical commands transmitted to the actuator by the COM module are coherent with the commands transmitted by calculator modules.
  • the two modules COM and MON of a same terminal can be multiplexed to be connected to the same port of a microswitch or be connected to separate ports of the same microswitch or ports micro-switches the first option, however, to reduce network cabling.
  • the rudder actuators can also be provided with sensors subscribed to the network (for reasons of simplification, a single link has however been represented between a control surface and a microswitch).
  • the senor 520 is installed nearby, or even mounted directly on the actuator.
  • the actuator is operated by a hydraulic or electronic power control unit 530, also called PCU (Power Control Unit).
  • PCU Power Control Unit
  • the computer 510 simply transmits a position instruction to a remote control unit, 540, also called REU (Remote Electronic Unit), located near the actuator.
  • REU Remote Electronic Unit
  • This unit carries out locally the acquisition of the measurements of the sensor, the calculation of the servo control and its transmission to the actuator. It returns to the computer the current position of the actuator (or a measure of the effect on the actuated system, for example the position of a rudder).
  • the exchanges between the REU unit and the computer are done through the AFDX network, in other words the REU unit subscribes to the network, receives from the calculator the setpoint position and returns the actual position of the actuator (or a measure relating to the actuated system) as AFDX messages on the same link 560.
  • a Data Concentrator or RDC (Remote Data Concentrator), 570 provides the interface between the AFDX network, on the one hand, and the analog links 565 with the power control unit and the sensor, on the other hand.
  • the calculation of the control commands is carried out here by the computer 510 from the measurement returned by the sensor 520.
  • the position sensor is remote from the actuator.
  • the remote control unit 540 and the sensor are then not connected to the AFDX network by one and the same link.
  • the position instruction is transmitted by the computer 510 to the power control unit 530 via a first link, 561, and the actual position of the actuator and / or the measurement of the effect of the latter on the system is returned by the sensor 520 via a second link, 562, to the computer.
  • the sensor provides the position measurements in analog form and the data concentrator reformats them as AFDX messages.
  • the sensor is able to directly transmit its measurements in the form of AFDX messages on the network (it is called "intelligent sensor").
  • Fig. 6 shows an example of integration of a secondary flight control system in the system of FIG. 3.
  • the secondary flight control system controls the position of flaps and leading edges of the aircraft. If necessary, it advantageously comprises intelligent wing tip brakes or SWTB (Smart Wing Tip Brake) whose function will be specified later.
  • SWTB Smart Wing Tip Brake
  • the system includes a flap position and leading edge selection lever 650, common to the pilot and co-pilot. This lever makes it possible to select the desired camber of the wings by acting first on the leading edges and then on the flaps.
  • the lever 650 is equipped with sensors (two on the driver side and two on the co-pilot side) which transmit lever position information to the network, for example via data concentrators marked CRDC 1 to cRDC 4 . These hubs multiplex the analog signals received from the sensors
  • the concentrators CRDC 1 and cRDC 2 make it possible to cross-monitor the position of the selection lever, by means of the computers 611 and 612, respectively.
  • the position of the selection lever is transmitted to the computers 611 and 612 of the primary flight control system (identical to the computers 411 and 412 of FIG. 5) as well as computers 613 and 614 of the secondary flight control system.
  • the computers 613 and 614 like the computers 611 and 612 are of the generic type and each comprises a COM channel and a MON channel, each channel consisting of one or more specific software modules.
  • the computer 613 plays the role of master and directly transmits the commands to the actuators of the leading edges and flaps.
  • the computer 614 acts as a slave in this mode of operation but takes over from the master computer if the latter fails.
  • the secondary flight control system includes power control units (hydraulic or electrical) 631, 632, jointly actuating a set of transmission shafts common to both wings for deploying or retracting the leading edges. These two control units are respectively connected to the micro switches ⁇ SW ⁇ and ⁇ SW 2 of the network. Similarly, the secondary flight control system comprises power control units 633 and 634, jointly actuating a set of drive shaft shafts common to both wings to deploy or retract the high lift flaps. These two control units are respectively connected to microswitches ⁇ SW 3 and ⁇ SW 6 .
  • the position sensors of the leading edge actuators 621 and those of the shutter actuators 622 are also connected to the AFDX array.
  • the different mounting variants of Figs. 5A to 5D can be envisaged.
  • FCRM Light Control Remote Module
  • the measurements delivered by the sensors 623 are transmitted to the network, for example by means of the microswitches ⁇ SW ⁇ and ⁇ iSW 2.
  • the secondary flight control system operates as follows:
  • the position of the selection lever 650 is acquired separately by the concentrators CRDC 1 and CRDC 2 (and likewise by the concentrators cRDC ⁇ and CRDC A ,), installed near the control elements, and transmitted via the AFDX network to the computer 613 ( respectively 614).
  • the computer 613 determines an output set point of the leading edges and flaps according to the position of the lever and taking into account various flight parameters such as altitude, speed etc.
  • the deposit is transmitted via the network
  • the servocontrol to this setpoint value is carried out by the computer itself or, if the latency time through the network is too great, by remote control units at the level of the actuators.
  • the sensors 621, 622 refer to the computers, via the AFDX network, the respective positions of the actuators.
  • Wing end brakes may be provided at a rate of two per deployment shaft, two for the flap shafts and two for the leading edge shafts.
  • the brakes mounted on the leading edge deployment shafts are each connected to the two microswitches ⁇ SW ⁇ and ⁇ iSW 2 •
  • the brakes mounted on the flap deployment shafts are each connected to the two microswitches ⁇ SW ⁇ and ⁇ SW ⁇ .
  • the wing end brakes receive the positions of the actuators 623, 624 (rotation angles of the shafts) and compare them to the measurements made by their own sensors.
  • FIG. 7 shows an example of integration of a propulsion control system in the system of FIG. 3.
  • This system comprises a manual thrust control member, for example throttles (TL), located in the cockpit.
  • a manual thrust control member for example throttles (TL) located in the cockpit.
  • the propulsion control system also includes thrust calculators and possibly thrust reversers.
  • the system comprises engine computers 731, 732, called EEC ⁇ Engine Electronic Controller), or FADEC (FuIl Authority Digital Engine Control) and thrust reverser computers, 741, 742. II is note that these computers provide local servocontrol engines.
  • the computers of the system in question control the pitch of the propellers.
  • thrust reversal is performed by electrical or hydraulic means.
  • the position of the thrust control member is measured by sensors (not shown).
  • the position measurements of these sensors are transmitted to the data concentrators CRDC 1 to cRDC 4 which relay them in the form of AFDX messages to the computers
  • the computers 713 and 714 are of the generic type and each comprise a COM channel and a MON channel, each channel being constituted by at least one specific software module, PCS (Propulsion Control System).
  • PCS Propulsion Control System
  • the computer 713 determines the engine speed, B, to obtain the required thrust, depending on the thrust setpoint, A, provided by the manual thrust control member.
  • the engine speed setpoint is transmitted via the AFDX network to the engine control units and the thrust reverser computers.
  • the computer 711 determines thrust instructions, ⁇ , according to the positions of the throttles and the altitude, heading and speed specified to the autopilot via the unit.
  • Flight Control Unit FCU
  • certain external parameters temperature, pressure, flight phase, etc.
  • This thrust instruction is transmitted via the AFDX network to the computer 713 (PCS software module) which deduces the engine speed instructions, B.
  • the engine speed setpoint is transmitted via the AFDX network to the engine control units and the thrust reverser computers.
  • the engine computers 731, 732 ensure the operation of the motors at the set speed and refers to the computers 713, 714, via the AFDX network, information giving the real state of the engines.
  • the thrust reverser computers 741, 742 provide servocontrol of the inverter actuators and refer to the computers 713, 714 via the network.
  • AFDX information giving the real state of inverter actuators.
  • this information is processed by the computer 713 or 714 before being displayed in the cockpit.
  • the propulsion control system advantageously comprises an emergency escape route or ABU
  • Fig. 8 shows an example of integration of a braking control system in the control system of FIG. 3.
  • This system includes pilot and co-pilot brake pedals B 1 , B 2 , the Auto Brake Panel (ABP) and BCU 1 brake control units, BCU 2 (Braking Control Unit) located at level of the landing gear and acting on the brake cylinders.
  • ABSP Auto Brake Panel
  • BCU 1 brake control units BCU 2 (Braking Control Unit) located at level of the landing gear and acting on the brake cylinders.
  • BCU 2 Braking Control Unit
  • the positions of the brake pedals or the automatic braking instructions are acquired by the CRDC data concentrators 1 to cRDC 4 and transmitted as AFDX messages to the primary flight control ECUs 811 and 812 (identical to ECUs 411 and 412 in Fig. 4), specifically to applications in charge of automatic braking , PFCS (Primary Flight Control System), as well as computers 813 and 814 of the brake control system, more specifically to the specific software module BCS (Brake Control System).
  • the computer 811 determines from the set point O selected by the pilot on the automatic braking panel and other external parameters, the deceleration D to be applied.
  • the computer 813 determines the deceleration D from the positions of the brake pedals. The latter then determines, in manual or automatic mode, the reference braking torque C to be applied to the wheels and transmits it to the braking control units BCU 1 , BCU 2 in the form of AFDX messages.
  • the computers 813 and 814 are of the generic type and each comprises a COM channel and a MON channel, each channel being constituted by at least one specific software module, BCS.
  • BCS specific software module
  • the wheels of the landing gear are equipped with sensors for braking torque and wheel speed.
  • the actual braking torque C "as well as the These measured velocities are transmitted to the computers via RDC data concentrators that format the measurements as AFDX messages. More precisely, the speed V is transmitted to the computer 811 (and 812) as well as to the computer 813 (and 814) while the braking torque C "is transmitted only to the computer 813 (and 814). and the speed V can also be transmitted to the control units BCU 1 , BCU 2 to respectively provide the local control in braking torque and the anti-lock function of the wheels.
  • the computer 811 determines, starting from the speed V and, if necessary, other parameters, whether it must authorize or not the exit of the airbrakes. If so, the order of exit S of the airbrakes is transmitted, via the AFDX network, to the electronic control modules of the airbrakes, FCRM, that is to say those of the actuators of the control surfaces Sf and S j of FIG. . 4. Insofar as it is possible to guarantee a sufficiently low latency time in the network, it is conceivable to perform braking torque control not locally by the braking control units BCU 1 , BCU 2 but directly by the BCS specific software module.
  • Fig. 9 shows an example of integration of a wheel orientation control system in the control system of FIG. 3.
  • This system includes a lifter (common to both pilots), PL, and control rods (tillers), TL 1 , TL 2 , located in the cockpit, as well as wheel orientation control units, SCU 1 SCU 2 (Steering Control Unit) located on the front wheel and, depending on the type of aircraft, on the main landing gear.
  • SCU 1 SCU 2 units drive actuators and ensure their servocontrol around a given setpoint position.
  • the positions, denoted W, of the spreader and / or the control rods are acquired, as before, by means of the data concentrators CRDC 1 to cRDC 4 and transmitted as AFDX messages to the computers 911 and 912 of the flight control system.
  • primary identical to the computers 411 and 412 of Fig. 4
  • AF 1 S Automatic Flight System
  • computers 913 and 914 are of the generic type and each comprise a COM channel and a MON channel, each channel being constituted by at least one specific software module, SCS (Steering Control System).
  • SCS Steping Control System
  • the computer 913 is master and the computer 914 slave, the latter taking over in case of failure of the first.
  • the computer 913 determines from the positions W, the setpoint ST of wheel steering order and transmits it to the control units SCU 1 , SCU 2 , via the AFDX network. These units refer to the computers the actual angle of orientation of the wheel (s).
  • the computer 911 can determine, from the positions W, and as a function of the speed of the aircraft, the setpoint R of the steering order of the drift. This instruction is then transmitted, via the AFDX network, to the electronic control modules of the rudder, FCRM, of the primary flight system, that is to say those of the RDR ⁇ and RDR 2 actuators of FIG. 4.
  • the FCRMs in question refer to the 911 and 912 computers, the actual angle of orientation of the drift.
  • the module AF 1 S 911 computer determines from a number of parameters, including the angular difference between the axis of the aircraft and the axis of the track , the speed of the aircraft, an angular setpoint W which is transmitted via the AFDX network to the computer 913
  • the computer 913 determines from W ⁇ the setpoint ST of wheel steering order and transmits it as previously to the control units, SCU 1 , SCU 2 , via the AFDX network.
  • the AF 1 S module can also transmit a drift angle setpoint R to the FCRM electronic control modules, as before.
  • the instructions ST and R are calculated so that at low speed the action exerted on the wheels is preponderant compared to that on the rudder. Conversely, at high speed, the action exerted on the rudder is preponderant compared to that exerted on the wheels.
  • Fig. 10A shows an example of integration of a first hydraulic system variant in the control system of FIG. 3.
  • This system comprises a plurality of segregated hydraulic circuits, each being equipped with pumps and pressure sensors, as well as generic computers 1013, 1014.
  • Each of these computers comprises a COM channel and a MON channel, each channel being constituted by one or several software modules specific to the management of the hydraulic system, HMS (Hydraulic Management System).
  • HMS Hydrophilic Management System
  • the computers 1013 and 1014 each control a respective hydraulic circuit.
  • the other calculators / software modules 1011, 1012 may use the pressure measurements provided by the sensors of the hydraulic system.
  • the electric pumps P 1 , P 2 are respectively associated with power contactors PC 1 , PC 2 , which can turn them on or off.
  • These power contactors can be, for example, Solid State Power Controllers, or electromechanical contactors. These contactors are controlled by the HMS software module.
  • the pressure sensors 1020 are remote from the contactors of the electric pumps Pi, P 2 in the sense of the configuration illustrated in FIG. 5D.
  • sensor measurements are acquired, formatted as AFDX messages then transmitted to the computers 1013, 1014 by the data concentrators RDC 1 , RDC 2 .
  • FIG. 1Ob A second variant of the hydraulic control system is shown in FIG. 1Ob.
  • This variant differs from the first in that it comprises integrated electro-hydraulic blocks HPP 1 , HPP 2 (Hydraulic Power Package).
  • HPP 1 , HPP 2 Hydraulic Power Package
  • This variant corresponds to the sensor configuration of FIG. 5A.
  • Each integrated block consists of an electric pump, pressure sensors and electronic power control units EPC 1 , EPC 2 .
  • These electronic units are each capable of receiving, via the AFDX network, power up and shutdown commands, engine speed (or equivalent flow rate) commands from the pump, and to return the pressure information provided. by the sensors, to the HMS software modules of the computers 1013, 1014, as well as to the other software modules of the computers 1011, 1012.
  • the software modules hosted by the aforementioned computers can reside on one or more IMA cards and, conversely, an IMA card can host software modules relating to different control systems.
  • the present description has successively shown the integration and cooperation of the primary flight control system with the secondary flight control system, the propulsion control system, the brake control system, the wheel orientation control system. and the hydraulic control system. It will be understood that all or only some of these control systems can be integrated with the primary flight system. In the case where they are integrated with the latter, a person skilled in the art will understand that the complete system makes it possible to offer flight control laws, braking laws, etc., which are very effective insofar as these laws involve several systems of control. order operating in synergy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Regulating Braking Force (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Safety Devices In Control Systems (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un système de commande d'aéronef dans lequel plusieurs systèmes de commande élémentaires, correspondant à différentes fonctions de l'aéronef, peuvent partager un ou plusieurs capteurs grâce à un réseau AFDX commun. La transmission des commandes se fait au moyen de messages AFDX à destination des actionneurs abonnés au réseau. Les calculateurs des différents systèmes de commande élémentaires, installés dans la baie avionique, sont avantageusement réalisés sous forme de calculateurs génériques hébergeant des logiciels spécifiques à l'exécution de leurs fonctions respectives (architecture IMA).

Description

SYSTEME DE COMMANDE D'AERONEF A ARCHITECTURE MODULAIRE
INTÉGRÉE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne de manière générale les systèmes de commande d'aéronef.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Le contrôle d'un aéronef fait généralement appel à de nombreux systèmes de commande dont notamment : le système de commande de vol primaire qui permet de contrôler le mouvement de l'aéronef autour de ses axes de roulis (roll) , lacet (yaw) et tangage (pitch) , en agissant sur les ailerons, les gouvernes de direction (rudder) , les gouvernes de profondeur (elevators) ainsi que le plan horizontal réglable (Trimmable Horizontal Stabilizer : THS) . Il contrôle également la traînée de l'aéronef en agissant sur les aérofreins (spoilers) ; le système de commande de vol secondaire permettant de contrôler la cambrure des ailes et donc la portance, lors des phases d'atterrissage et de décollage, en agissant sur les volets (flaps) et les bords d'attaque des ailes (slats) encore appelés becs ; le système de commande de propulsion permettant de contrôler ainsi que d' inverser la poussée des moteurs ; le système de commande de freinage du train d'atterrissage ; le système de commande d' orientation des roues ; - le système de commande des circuits hydrauliques .
Le système de commande de vol primaire est généralement dénommé simplement système de commande de vol. Nous adopterons ci-après cette convention dans un but de simplification de la description.
Le système de commande de vol fait le lien entre les organes de pilotage (manche, palonnier, etc.) et les gouvernes aérodynamiques (ailerons, dérives, gouvernes de profondeur etc.) . Les avions de ligne modernes possèdent des systèmes de commande de vol de type électrique dans lesquels les actions mécaniques sur les organes de pilotage sont converties en des signaux analogiques qui sont transmis à des actionneurs manœuvrant les gouvernes.
La Fig. 1 illustre de manière schématique l'architecture d'un système de commande de vol, 100, connu de l'état de la technique. On a représenté un organe de pilotage, 110, par exemple un mini-manche latéral, équipé d'un ou de plusieurs capteurs, 115, par exemple des capteurs de position et/ou des capteurs angulaires fournissant des informations de position et/ou d'orientation au calculateur de commande de vol, 120. Le calculateur 120 détermine, à partir des informations reçues des différents organes de pilotage 110, incluant ici l'auto-pilote (non représenté), et/ou le cas échéant de capteurs avion 150 (accéléromètre, gyromètre, centrale inertielle) , les commandes de vol à appliquer aux actionneurs 130. Ces actionneurs sont typiquement des vérins hydrauliques commandés par des servovalves ou des moteurs électriques agissant sur les gouvernes aérodynamiques de l'aéronef, 140. Les actionneurs 130, d'une part, et les gouvernes aérodynamiques, 140, d'autre part, sont équipés de capteurs notés respectivement 135 et 145. Ces capteurs renseignent le calculateur 120 sur les positions et/ou orientations des éléments mobiles des actionneurs ainsi que sur celles des gouvernes. Par exemple, un capteur 135 pourra indiquer la position en translation d'un vérin, un capteur 145, l'orientation d'un volet. Le calculateur 120 possède à la fois une fonction de commande et une fonction de surveillance. Il est relié aux actionneurs par des premiers câbles 133 destinés à transmettre les signaux analogiques de commande. Il est également relié aux capteurs 135 et 145 équipant respectivement les actionneurs et les gouvernes elles-mêmes par des seconds câbles, 137, et des troisièmes câbles, 147. Il peut ainsi à tout moment surveiller l'état des actionneurs et vérifier que les commandes ont bien été exécutées. En réalité, un système de commande de vol est généralement composé de plusieurs calculateurs indépendants, chaque calculateur disposant de son propre ensemble de capteurs et d' actionneurs et de son propre réseau de câbles. La Fig. 2 illustre schématiquement l'architecture d'un système de commande d'aéronef, 200. Celui-ci comprend le système de commande de vol ainsi qu'une pluralité d'autres systèmes de commande dont on a donné des exemples en introduction. Par souci de simplification, seuls deux systèmes de commandes SCi et SC2 ont été ici représentés.
Chaque système de commande SCn, n=l,2 comprend au moins un calculateur dédié 21On traitant les signaux reçus d'un ou plusieurs capteur (s), 22On, et transmettant des commandes à un ou plusieurs actionneur (s) , 23On, via une pluralité de câbles.
Les différents systèmes de commande sont placés dans la baie avionique (délimitée sur le schéma par un trait double discontinu) et reliés entre eux grâce à un réseau avionique, par exemple un réseau AFDX (Avionics FuIl DupleX switched Ethernet) . On rappelle que le réseau AFDX, spécifiquement développé pour les besoins de l'aéronautique, est basé sur un réseau Ethernet commuté. On pourra trouver une description détaillée des caractéristiques de ce réseau dans le document intitulé « AFDX protocol tutorial » disponible sur le site www . condoreng . corn ainsi que dans la demande de brevet FR-A-2832011 déposée au nom de la demanderesse. Lorsque le calculateur du système de commande SC2 a besoin d'une mesure sur un équipement E, effectuée par un capteur appartenant au système de commande SCi, le calculateur 210i en charge de SCi transmet cette mesure au calculateur 2IO2 à travers le réseau avionique. Toutefois, il est quelquefois nécessaire, pour satisfaire à des contraintes de disponibilité (par exemple panne du calculateur 210i) ou de latence (temps de transfert via le calculateur 210i) , de dupliquer le capteur sur l'équipement E. Autrement dit, on prévoit alors un second capteur 22Û2 sur l'équipement E, directement relié au calculateur SC2.
Cette architecture de système de commande d' aéronef présente un certain nombre d' inconvénients dont la multiplication du nombre de capteurs et de câbles afférents, ce qui grève le bilan de masse de l'aéronef. En outre, les signaux analogiques transmis par les capteurs peuvent être affectés par un bruit dû aux perturbations électromagnétiques.
L'objet de la présente invention est par conséquent de proposer un système de commande d' aéronef remédiant aux inconvénients précités, à savoir un système qui permette de réduire le câblage entre la baie avionique et les capteurs/actionneurs, ainsi que de réduire le nombre de capteurs sur les équipements, sans sacrifier pour autant le niveau de sûreté exigé.
EXPOSÉ DE L'INVENTION
La présente invention est définie par un système de commande d' aéronef comprenant un premier système de commande, destiné à contrôler une première fonction de l'aéronef, un second système de commande, distinct du premier système de commande, destiné à contrôler une seconde fonction de l'aéronef, distincte de la première fonction, le premier système de commande comprenant au moins un premier calculateur, un premier ensemble de capteurs et d' actionneurs, le premier calculateur étant adapté à recevoir des mesures desdits capteurs et à commander lesdits actionneurs dudit premier ensemble, le second système de commande comprenant au moins un second module de calcul, un second ensemble de capteurs (32O2) et d' actionneurs, le second calculateur étant adapté à recevoir des mesures desdits capteurs et à commander lesdits actionneurs dudit second ensemble. Les premier et second calculateurs ainsi que les capteurs et actionneurs des premier et second ensembles sont abonnés à un même réseau AFDX et les premier et second ensembles possèdent au moins un capteur commun.
Avantageusement, lesdits premier et second calculateurs comprennent chacun une voie de commande et une voie de surveillance, chaque voie étant constituée de logiciels spécifiques à la fonction remplie par le calculateur, hébergés par un calculateur générique, les logiciels spécifiques de la première voie étant différents des logiciels spécifiques de la seconde voie .
Ledit premier système de commande est de préférence un système de commande de vol primaire adapté à contrôler les ailerons, les gouvernes de profondeur, les dérives ainsi que les aérofreins de 1' aéronef .
Selon un premier mode de réalisation, ledit second système de commande est un système de commande de vol secondaire adapté à contrôler les becs ainsi que les volets de l'aéronef.
Le système de commande de vol secondaire comprend avantageusement une pluralité de capteurs pour mesurer les amplitudes de sortie respectives des volets, les mesures fournies par ces capteurs étant transmises au réseau AFDX au moyen de modules de contrôle électronique du système de commande de vol primaire, lesdits modules de contrôle électronique étant disposés à proximité et contrôlant les actionneurs des aérofreins de l'aéronef.
Selon un second mode de réalisation, ledit second système de commande est un système de commande de propulsion, adapté à contrôler les régimes respectifs des moteurs de l'aéronef. Le second calculateur est avantageusement adapté à recevoir, en mode manuel, une consigne de poussée d'un organe de commande manuelle de poussée ou, en mode automatique, du premier calculateur et à en déduire une consigne de régime moteur avant de la transmettre à une unité de contrôle d'un moteur de l'aéronef.
Selon un troisième mode de réalisation, ledit second système de commande est un système de commande de freinage de l'aéronef.
Le système de freinage comprend avantageusement une pluralité de capteurs de vitesse et de capteurs de couple montés sur le train d'atterrissage de l'aéronef, les mesures fournies par ces capteurs étant acquises et formatées sous forme de messages AFDX par des concentrateurs de données avant d'être transmises au second calculateur via ledit réseau.
De préférence, les mesures de vitesse sont transmises en outre au premier calculateur par les concentrateurs de données, via le réseau AFDX, ledit calculateur déterminant un ordre de sortie des aérofreins en fonction de ladite vitesse et d'informations de freinage fournies, en mode manuel par les pédales de frein, et en mode automatique par une unité de freinage automatique.
Selon un quatrième mode de réalisation, ledit second système de commande est un système de commande d'orientation d'au moins la roue avant de l'aéronef.
Dans ce cas, les premier et second calculateurs reçoivent avantageusement des informations de braquage fournies par le palonnier et/ou des barres de commande du poste de pilotage et, en mode manuel, le second calculateur détermine l'angle de braquage de la roue et la transmet, via ledit réseau, à une unité de contrôle d'orientation de la roue, située à proximité de celle- ci et, en mode de pilotage automatique, le premier calculateur détermine une commande de la gouverne de direction, la transmet, via ledit réseau, au second calculateur, le second calculateur en déduisant l'angle de braquage et le transmettant à ladite unité de contrôle d'orientation de la roue. Selon un cinquième mode de réalisation, ledit second système de commande est un système de commande hydraulique de l'aéronef, adapté à mettre sous tension et à arrêter au moins une pompe électrique montée sur un circuit hydraulique. Ledit système de commande hydraulique comprend alors avantageusement au moins un contacteur abonné audit réseau et adapté à mettre sous tension/arrêter ladite pompe, un capteur de pression monté sur le circuit hydraulique, les mesures de pressions fournies par ledit capteur étant acquises et formatées sous forme de messages AFDX par un concentrateur de données, puis transmises au premier et au second calculateurs via ledit réseau.
L' invention concerne enfin un aéronef, comprenant un système de commande d'aéronef tel que défini ci- dessus .
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de modes de réalisation préférentiels de l'invention faits en référence aux figures jointes parmi lesquelles :
La Fig. 1 illustre schématiquement un système de commande de vol connu de l'état de la technique ;
La Fig. 2 illustre schématiquement l'architecture d'un système de commande d'aéronef connu de l'état de la technique ;
La Fig. 3 représente schématiquement l'architecture d'un système de commande d'aéronef selon un mode de réalisation de l'invention ;
La Fig. 4 représente schématiquement l'architecture d'un système de commande de vol primaire pouvant être avantageusement utilisé dans le système de la Fig. 3 ; Les Figs . 5A à 5D représentent schématiquement différentes variantes d'agencement d'un capteur sur un actionneur ;
La Fig. 6 représente schématiquement un exemple d'intégration d'un système de commande de vol secondaire dans le système de la Fig. 3 ; La Fig. 7 représente schématiquement un exemple d'intégration d'un système de commande de propulsion dans le système de la Fig. 3 ;
La Fig. 8 représente schématiquement un exemple d'intégration d'un système de commande de freinage dans le système de la Fig. 3 ;
La Fig. 9 représente schématiquement un exemple d'intégration d'un système de commande d'orientation des roues dans le système de la Fig. 3 ; Les Figs . 1OA et 1OB représentent schématiquement un exemple d'intégration d'une première et d'une seconde variantes d'un système de commande hydraulique dans le système de la Fig. 3.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On considère à nouveau un système de commande d'aéronef comprenant une pluralité de systèmes de commande élémentaires, chaque système de commande élémentaire prenant en charge une fonction particulière de l'aéronef. Par exemple, ces systèmes de commande élémentaires pourront être ceux déjà mentionnés en introduction .
L'idée à la base de l'invention est d'étendre le réseau AFDX, reliant classiquement les calculateurs de la baie avionique, à l'ensemble du système de commande de vol, les calculateur (s) , capteurs et actionneurs de ce système étant alors abonnés à ce réseau. Ainsi, deux systèmes de commande élémentaires quelconques, reliés au même réseau AFDX, peuvent partager un ou plusieurs capteurs. La Fig. 3 représente de manière schématique l'architecture d'un système de commande d'aéronef selon un mode de réalisation de l'invention. Dans un but de simplification et non de limitation, seuls deux systèmes de commande élémentaires SCi et SC2 ont été représentés. Le système de commande élémentaire SCi comprend au moins un calculateur 31Oi ainsi qu'une pluralité de capteurs 32Oi et d'actionneurs 33Oi (dont un seul est représenté) tous abonnés au réseau AFDX, 340. De la même façon, le système de commande élémentaire SC2 comprend au moins un calculateur 31Û2 ainsi qu'une pluralité de capteurs 32Û2 et d'actionneurs 33Û2 (dont un seul est représenté) également abonnés à ce même réseau. Au moins un capteur, désigné par 320, est commun aux deux systèmes de commande élémentaires SCi et SC2. Le capteur 320 transmet ses mesures aux calculateurs 310i et 31Û2 via le réseau AFDX, soit au moyen de plusieurs liens virtuels de type unicast, soit au moyen d'au moins un lien virtuel de type multicast, VL (la seconde variante a été représentée sur la Fig.3) .
On comprendra ainsi que l'on évite la multiplication des capteurs et donc le déploiement de nombreux câbles de connexion avec les calculateurs de la baie avionique.
Avantageusement, le système de commande de vol joue un rôle central dans la mise en commun des capteurs 320, autrement dit chaque système de commande élémentaire peut partager un ou plusieurs capteur (s) avec ce dernier. Ce rôle central s'explique par le fait que le système de commande de vol s'étend à travers tout l'aéronef, dispose de nombreux points de connexion ainsi que de nombreux capteurs répartis dans l'aéronef.
La Fig. 4 représente un exemple d'architecture de système de commande de vol pouvant être utilisé dans le système de commande d'aéronef selon l'invention.
Le réseau AFDX comprend une pluralité de commutateurs de trames disposés en des nœuds de communication de l'aéronef. Dans le cas illustré, deux commutateurs de trames SW^SW2 sont installés dans la baie avionique et prennent en charge respectivement la partie gauche et la partie droite de l'appareil. Avantageusement, ces commutateurs sont reliés entre eux grâce à une liaison en fibre optique, OF, permettant de découpler électriquement les deux parties du réseau. Afin de réduire le nombre et la longueur des liaisons, on peut avantageusement prévoir des équipements de commutation de trames dénommés microcommutateurs. Les micro-commutateurs permettent de traiter localement les trames en provenance ou à destination d'une grappe de terminaux abonnés au réseau. Plus précisément, un micro-commutateur possède un premier port généralement relié à un commutateur AFDX et une pluralité de seconds ports reliés aux différents terminaux abonnés. Sur la liaison descendante, c'est-à-dire pour des trames reçues par le premier port à destination d'un abonné, le microcommutateur joue le rôle de répéteur (hub) , c'est-à- dire qu'une trame incidente sur le premier port est répliquée sur tous les seconds ports. Les terminaux abonnés qui la reçoivent déterminent s'ils sont destinataires, et l'ignorent dans la négative et la prennent en considération dans l'affirmative. En revanche sur la liaison montante, c'est-à-dire pour des trames émises par les différents terminaux abonnés, le micro-commutateur scrute tour à tour les seconds ports et vide leurs tampons respectifs sur le premier port, selon un mécanisme de type « round robin », assurant ainsi un partage équitable de la bande passante.
Du fait de la scrutation, le temps de latence sur la voie montante est plus élevé dans un micro- commutateur que dans un commutateur. La distribution entre commutateurs et micro-commutateurs relève d'un compromis entre latence et complexité du réseau. De manière générale, un terminal abonné sera connecté à un micro-commutateur local, sauf si les contraintes de temps de latence imposent une connexion directe à un commutateur. L'architecture du réseau AFDX sera avantageusement choisie de manière à ce que l'on ne traverse pas plus d'un commutateur et d'un microcommutateur en passant d'un calculateur à un terminal abonné.
Dans l'exemple illustré, le réseau AFDX comprend huit micro-commutateurs μSWι,...,μSWs , reliés directement aux commutateurs SW^SW2.
Les micro-commutateurs μSWι,μSW2 sont situés dans la zone centrale de l'appareil non loin du train d'atterrissage et de l'emplanture des ailes. Les microcommutateurs μSW3,μSW4 et μSW5,μSW6 sont également situés près de l'emplanture, respectivement à gauche et à droite de l'appareil. Enfin, les micro-commutateurs μSWη,μSW% sont situés en queue de fuselage, près de l'empennage de l'appareil.
Les micro-commutateurs μSWγ,μSW2 desservent notamment des capteurs avion 420 (accéléromètres, gyromètres, centrale inertielle) mais également un ensemble 422 de capteurs partagés avec d'autres systèmes de commande, tels que le système de commande de vol secondaire, le système de contrôle de freinage du train d'atterrissage, le système hydraulique. Les micro-commutateurs μSW3,μSW4 et μSW5,μSW6 desservent, respectivement sur les parties gauche et droite de l'aéronef, les ailerons (notés AILf et AILj ) et les aérofreins (spoilers, notés Sf* et Sj ) ainsi qu'un ensemble 423, respectivement 424, de capteurs partagés avec d'autres systèmes de commande, tels que le système de commande de vol secondaire ou le système de commande de propulsion (moteurs gauche et droit) . Enfin, les micro-commutateurs μSWη,μSW% desservent les gouvernes arrière, à savoir les gouvernes de direction (RDRIfRDR2), et les gouvernes de profondeur à savoir les élévateurs gauche et droit (ELf et ELj ) ainsi que le plan horizontal réglable (THSγ , THS2) • Ces microcommutateurs peuvent également desservir un ensemble 425 de capteurs partagés avec un autre système de commande.
Aux commutateurs de trames SW1,SW2 sont reliés, outre les micro-commutateurs précités, les calculateurs 411 et 412, ainsi que les organes de pilotage 451 et 452, via des concentrateurs de données. Plus précisément, le commutateur SW1 reçoit sur deux ports distincts, via les concentrateurs CR1 et CR2 , les informations fournies par les organes de pilotage 451 et 452 du pilote et du copilote. Les concentrateurs CR1 et CR2 multiplexent les mêmes informations issues de 451 et 452 à des fins de surveillance croisée. De manière similaire, le commutateur SW2 reçoit sur deux ports distincts, via les concentrateurs CR3 et CR4 , les informations de ces mêmes organes de pilotage. Le cas échéant, si les organes de pilotages fournissent les informations sous forme analogique, ces concentrateurs peuvent les convertir sous forme numérique puis formater ces données numériques sous forme de messages AFDX. Un ensemble 421 de capteurs partagés avec un autre système de commande, par exemple celui contrôlant l'orientation des roues avant, peut être également relié aux commutateurs SW19SW2.
Le calculateur 411 comprend deux modules de calcul, à savoir un module de commande, 411A, dit module COM, et un module de surveillance, 411B, dit module MON. Les modules MON et COM sont de structure identique et ne diffèrent que par la manière dont ils sont programmés (algorithmes différents) . Un module COM peut être reconfiguré en module MON et réciproquement. Les modules MON et COM sont des calculateurs génériques, en pratique des cartes IMA (Integrated Modular Avionics) montées dans un rack de la baie avionique, hébergeant des logiciels d'application spécifiques. Dans le cas présent, les module 411A et 411B hébergent respectivement les logiciels d'application spécifiques OLA,$A,yA et CCBBB avec
^B ≠ aA r $B ≠ $A , yB ≠yA . Le module COM transmet aux actionneurs des messages de commande via le réseau AFDX (les actionneurs sont équipés de terminaux abonnés au réseau) et reçoivent des messages d' information ou de confirmation de la part de ces derniers. Le module MON reçoit également les messages d' information ou de confirmation des actionneurs et vérifie la cohérence entre les messages de commande envoyés par le module COM et les messages d' information ou de confirmation qui sont retournés à cette dernière par les différents actionneurs.
En mode nominal, le calculateur 411 fonctionne en tant que maître et le calculateur 412 en tant qu'esclave. En cas de défaillance du calculateur 411, détectée par une incohérence entre les modules COM et MON, le calculateur 412 prend la relève.
Les actionneurs de gouverne sont généralement équipés d'un module de commande, COM, et d'un module de surveillance, MON, chargé de vérifier si les ordres électriques transmis à l'actionneur par le module COM sont bien cohérents avec les commandes transmises par les modules des calculateurs. Les deux modules COM et MON d'un même terminal peuvent être multiplexes pour être reliés au même port d'un micro-commutateur ou bien être reliés à des ports distincts d'un même microcommutateur ou à des ports de micro-commutateurs distincts, la première option permettant cependant de réduire le câblage du réseau. Les actionneurs de gouverne peuvent être aussi pourvus de capteurs abonnés au réseau (pour des raisons de simplification, une seule liaison a été cependant représentée entre une gouverne et un micro-commutateur) .
On a représenté en Figs. 5A à 5D les différentes variantes d'agencement d'un actionneur et d'un capteur associé.
Selon les première et seconde variantes illustrées respectivement en Fig. 5A et Fig. 5B, le capteur 520 est installé à proximité, voire directement monté sur l' actionneur . L' actionneur est opéré par une unité de contrôle de puissance hydraulique ou électronique, 530, encore dénommée PCU (Power Control Unit) .
Dans la première variante représentée en Fig. 5A, le calculateur 510 transmet simplement une consigne de position à une unité de contrôle déportée, 540, encore dénommée REU (Remote Electronic Unit) , située à proximité de l' actionneur . Cette unité réalise localement l'acquisition des mesures du capteur, le calcul de la commande d'asservissement et sa transmission à l' actionneur . Elle renvoie au calculateur la position courante de l' actionneur (ou une mesure de l'effet sur le système actionné, par exemple la position d'une gouverne) . Les échanges entre l'unité REU et le calculateur se font à travers le réseau AFDX, autrement dit l'unité REU, abonnée au réseau, reçoit du calculateur la position de consigne et renvoie la position réelle de l'actionneur (ou une mesure relative au système actionné) sous la forme de messages AFDX sur une même liaison 560.
Dans la seconde variante, un concentrateur de données ou RDC (Remote Data Concentrator) , 570, réalise l'interface entre le réseau AFDX, d'une part, et les liaisons analogiques 565 avec l'unité de contrôle de puissance et le capteur, d'autre part. Le calcul des commandes d'asservissement est effectué ici par le calculateur 510 à partir de la mesure renvoyée par le capteur 520.
Selon les troisième et quatrième variantes, représentées respectivement en Figs . 5C et 5D, le capteur de position est distant de l'actionneur. L'unité de contrôle déportée 540 et le capteur ne sont alors pas reliés au réseau AFDX par une seule et même liaison. La consigne de position est transmise par le calculateur 510 à l'unité de contrôle de puissance 530 via une première liaison, 561, et la position réelle de l'actionneur et/ou la mesure de l'effet de ce dernier sur le système est renvoyée par le capteur 520 via une seconde liaison, 562, au calculateur. Dans la quatrième variante, le capteur fournit les mesures de position sous forme analogique et le concentrateur de données les reformate sous forme de messages AFDX. Dans la troisième variante, le capteur est capable de transmettre directement ses mesures sous forme de messages AFDX sur le réseau (on parle alors de « capteur intelligent ») . La Fig. 6 représente un exemple d'intégration d'un système de commande de vol secondaire dans le système de la Fig. 3.
Dans l'exemple illustré, le système de commande de vol secondaire contrôle la position des volets et des bords d'attaque de l'aéronef. Le cas échéant, il comprend avantageusement des freins intelligents d'extrémité d'aile ou SWTB (Smart Wing Tip Brake) dont la fonction sera précisée plus loin. Le système comporte un levier de sélection des positions des volets et des bords d'attaque, 650, commun aux pilote et copilote. Ce levier permet de sélectionner la cambrure souhaitée des ailes en agissant d'abord sur les bords d'attaque puis sur les volets.
Le levier 650 est équipé de capteurs (deux du côté pilote et deux du côté copilote) qui transmettent des informations de position du levier sur le réseau, par exemple via des concentrateurs de données notés CRDC1 à cRDC4. Ces concentrateurs assurent le multiplexage des signaux analogiques reçus des capteurs
(avec des signaux analogiques issus d'autres capteurs) ainsi que leur conversion en messages AFDX. Les concentrateurs CRDC1 et cRDC2 , d'une part, et les concentrateurs cRDC3 et cRDC4 , d'autre part, permettent d'effectuer une surveillance croisée de la position du levier de sélection, au moyen des calculateurs 611 et 612, respectivement.
La position du levier de sélection est transmise aux calculateurs 611 et 612 du système de commande de vol primaire (identiques aux calculateurs 411 et 412 de la Fig. 5) ainsi qu'aux calculateurs 613 et 614 du système de commande de vol secondaire. Les calculateurs 613 et 614 comme les calculateurs 611 et 612 sont de type générique et comporte chacun une voie COM et une voie MON, chaque voie étant constituée par un ou plusieurs modules logiciel spécifique (s) . En mode nominal, le calculateur 613 joue le rôle de maître et transmet directement les commandes aux actionneurs des bords d'attaque et des volets. Le calculateur 614 joue le rôle d'esclave dans ce mode de fonctionnement mais prend la relève du calculateur maître si ce dernier est défaillant .
Le système de commande de vol secondaire comprend des unités de contrôle de puissance (hydraulique ou électrique) 631, 632, actionnant conjointement un ensemble Sl d'arbres de transmission commun aux deux ailes pour déployer ou rétracter les bords d'attaque. Ces deux unités de contrôle sont reliées respectivement aux micro-commutateurs \λSWγ et μSW2 du réseau. De manière similaire, le système de commande de vol secondaire comprend des unités de contrôle de puissance 633 et 634, actionnant conjointement un ensemble Fl d'arbres de transmission commun aux deux ailes pour déployer ou rétracter les volets hypersustentateurs . Ces deux unités de contrôle sont reliées respectivement aux micro-commutateurs μSW3 et μSW6.
Les capteurs de position des actionneurs de bords d'attaque, 621, et ceux des actionneurs de volet, 622, sont également reliés au réseau AFDX. Les différentes variantes de montage des Figs . 5A à 5D peuvent être envisagées .
Les capteurs de position des bords d'attaque,
623, et ceux des volets, 624, fournissent les amplitudes de sortie respectives de ces éléments. Les mesures délivrées par les capteurs 624 sont avantageusement acquises par des modules de contrôle électronique des aérofreins ou FCRM (Flight Control Remote Module) , appartenant au système de commande de vol primaire et répartis dans les ailes. Ces modules FCRM , désignés par 641 et 642 jouent alors le rôle de concentrateurs de données pour le compte des capteurs
624. De la sorte, les ressources matérielles disponibles du système de commande de vol primaire sont utilisées par le système de commande de vol secondaire. Les mesures délivrées par les capteurs 623 sont transmises au réseau, par exemple au moyen des microcommutateurs μSW\ et \iSW2
Le système de commande de vol secondaire fonctionne comme suit :
La position du levier de sélection 650 est acquise séparément par les concentrateurs CRDC1 et CRDC2 (et de même par les concentrateurs cRDC^ et CRDCA,) , installés près des organes de pilotage, et transmise via le réseau AFDX au calculateur 613 (respectivement 614) . Le calculateur 613 détermine une consigne de sortie des bords d'attaque et des volets en fonction de la position du levier et en prenant en compte différents paramètres de vol tels qu'altitude, vitesse etc. La consigne est transmise via le réseau
AFDX aux unités de contrôle de puissance entraînant la rotation des arbres de déploiement des bords d' attaque et des volets. Selon la variante envisagée, l'asservissement à cette valeur de consigne est réalisé par le calculateur lui-même ou bien, si le temps de latence à travers le réseau est trop important, par des unités de contrôle déportées au niveau des actionneurs.
Les capteurs 621, 622 renvoient aux calculateurs, via le réseau AFDX, les positions respectives des actionneurs .
Des freins d'extrémité d'aile (non représentés), peuvent être prévus à raison de deux par arbre de déploiement, soit deux pour les arbres des volets et deux pour les arbres des bords d'attaque. Les freins montés sur les arbres de déploiement des bords d'attaque sont reliés chacun aux deux microcommutateurs μSW\ et \iSW2 • De manière similaire, les freins montés sur les arbres de déploiement des volets sont reliés chacun aux deux micro-commutateurs μSW^ et μSWβ . Les freins d'extrémité d'aile reçoivent les positions des actionneurs 623, 624 (angles de rotation des arbres) et les comparent aux mesures effectuées par leurs propres capteurs. En cas d'incohérence ou si l'écart entre ces mesures est trop important, la rotation de l'arbre de déploiement peut être stoppée afin d'éviter une asymétrie de portance et des contraintes mécaniques excessives voire une casse de cet arbre. La Fig. 7 représente un exemple d'intégration d'un système de commande de propulsion dans le système de la Fig. 3.
Ce système comprend un organe de commande manuelle de poussée, par exemple les manettes des gaz (Thrust Levers) à raison d'une par moteur, notées TL, situées dans le cockpit.
Le système de commande de propulsion comprend également des calculateurs de poussée et éventuellement d'inversion de poussée. Dans l'exemple illustré, le système comprend les calculateurs moteur 731, 732, dénommés EEC {Engine Electronic Controller) , ou encore FADEC (FuIl Authority Digital Engine Control) ainsi que les calculateurs d'inverseur de poussée, 741, 742. II est à noter que ces calculateurs assurent localement l'asservissement des moteurs. Dans le cas d'un avion à hélices, les calculateurs du système en question contrôlent les pas des hélices. De manière générale, l'inversion de poussée est réalisée par des moyens électriques ou hydrauliques.
La position de l'organe de commande de poussée est mesurée par des capteurs (non représentés) . Les mesures de position de ces capteurs sont transmises aux concentrateurs de données CRDC1 à cRDC4 qui les relaient sous forme de messages AFDX aux calculateurs
711 et 712 du système de commande de vol primaire
(identiques aux calculateurs 411 et 412 de la Fig. 4), plus particulièrement au module logiciel en charge du pilotage automatique, AF1S (Automatic Flight System) , ainsi qu'aux calculateurs 713 et 714 du système de commande de propulsion. Les calculateurs 713 et 714 sont de type générique et comportent chacun une voie COM et une voie MON, chaque voie étant constituée par au moins un module logiciel spécifique, PCS (Propulsion Control System) . En mode nominal, selon le même principe qu'exposé plus haut, le calculateur 713 est maître et le calculateur 714 est esclave, ce dernier prenant la relève en cas de défaillance du premier.
En mode manuel, le calculateur 713 détermine le régime moteur, B , permettant d'obtenir la poussée requise, en fonction de la consigne de poussée, A , fournie par l'organe de commande manuelle de poussée. La consigne de régime moteur est transmise, via le réseau AFDX, aux calculateurs moteur et aux calculateurs d'inverseur de poussée.
En mode automatique, le calculateur 711 et plus précisément le module logiciel en charge du pilote automatique, détermine des consignes de poussée, Α, en fonction des positions des manettes des gaz et des altitude, cap et vitesse spécifiés au pilote automatique via l'unité de commande de vol ou FCU (Flight Control Unit) , ainsi que de certains paramètres extérieurs (température, pression, phase de vol etc.) . Cette consigne de poussée est transmise, via le réseau AFDX au calculateur 713 (module logiciel PCS) qui en déduit les consignes de régime moteur, B . Comme en mode manuel, la consigne de régime moteur est transmise, via le réseau AFDX, aux calculateurs moteur et aux calculateurs d'inverseur de poussée. Les calculateurs moteur 731, 732 assurent le fonctionnement des moteurs au régime de consigne et renvoie aux calculateurs 713, 714, via le réseau AFDX, des informations donnant l'état réel des moteurs.
Les calculateurs d'inverseur de poussée 741, 742 assurent l'asservissement des actionneurs d'inverseurs et renvoie aux calculateurs 713, 714, via le réseau
AFDX, des informations donnant l'état réel des actionneurs d'inverseur.
Le cas échéant, ces informations sont traitées par le calculateur 713 ou 714 avant d'être affichées dans le poste de pilotage.
Enfin, le système de commande de propulsion comprend avantageusement une voie de secours ou ABU
(Analogue Back-Up) , réalisée par des lignes analogiques reliant directement les manettes des gaz aux calculateurs moteur.
La Fig. 8 représente un exemple d'intégration d'un système de commande de freinage dans le système de commande de la Fig. 3. Ce système comprend des pédales de freins B1, B2 des pilote et copilote, le panneau de freinage automatique ABP (Auto Brake Panel) et des unités de contrôle de freinage BCU1 , BCU2 (Braking Control Unit), situées au niveau du train d'atterrissage et agissant sur les vérins des freins. Il est à noter que les unités de contrôle de freinage assurent localement l'asservissement en couple de freinage et l' antiblocage des roues.
Les positions des pédales de frein ou les consignes de freinage automatique (par exemple freinage faible, moyen ou fort) sont acquises par les concentrateurs de données CRDC1 à cRDC4 et transmises sous formes de messages AFDX aux calculateurs 811 et 812 du système de commande de vol primaire (identiques aux calculateurs 411 et 412 de la Fig. 4), plus précisément aux applications en charge du freinage automatique, PFCS (Primary Flight Control System) , ainsi qu'aux calculateurs 813 et 814 du système de commande de freinage, plus précisément au module logiciel spécifique BCS (Brake Control System) . En mode automatique, le calculateur 811 détermine à partir de la consigne O sélectionnée par le pilote sur le panneau de freinage automatique et d' autres paramètres extérieurs, la décélération D à appliquer. En mode manuel (non représenté), le calculateur 813 détermine la décélération D à partir des positions des pédales de freins. Celui-ci détermine ensuite, en mode manuel ou automatique, le couple de freinage de consigne C à appliquer aux roues et le transmet aux unités de contrôle de freinage BCU1 , BCU2 sous la forme de messages AFDX.
Les calculateurs 813 et 814 sont de type générique et comporte chacun une voie COM et une voie MON, chaque voie étant constituée par au moins un module logiciel spécifique, BCS. En mode nominal, selon le même principe qu'exposé plus haut, le calculateur 813 est maître et le calculateur 814 est esclave, ce dernier prenant la relève en cas de défaillance du premier.
Les roues du train d'atterrissage sont équipées de capteurs de couple de freinage et de vitesse des roues. Le couple de freinage réel C" ainsi que la vitesse V ainsi mesurés sont transmis aux calculateurs via des concentrateurs de données RDC qui formatent les mesures sous forme de messages AFDX. Plus précisément, la vitesse V est transmise au calculateur 811 (et 812) ainsi qu'au calculateur 813 (et 814) alors que le couple de freinage C" est transmis seulement au calculateur 813 (et 814) . Le couple de freinage C" et la vitesse V peuvent également être transmis aux unités de contrôle BCU1 , BCU2 pour assurer respectivement l'asservissement local en couple de freinage et la fonction d' antiblocage des roues.
Le calculateur 811 détermine, à partir de la vitesse V et, le cas échéant, d'autres paramètres, s'il doit autoriser ou non la sortie des aérofreins. Dans l'affirmative, l'ordre de sortie S des aérofreins est transmis, via le réseau AFDX, aux modules de contrôle électronique des aérofreins, FCRM , c'est-à- dire ceux des actionneurs des gouvernes Sf et Sj de la Fig. 4. Dans la mesure où l'on peut garantir un temps de latence suffisamment faible dans le réseau, il est envisageable de réaliser l'asservissement en couple de freinage non pas localement par les unités de contrôle de freinage BCU1 , BCU2 mais directement par le module logiciel spécifique BCS .
La Fig. 9 représente un exemple d'intégration d'un système de commande d'orientation des roues dans le système de commande de la Fig. 3. Ce système comprend un palonnier (commun aux deux pilotes), PL, et des barres de commande (tillers) , TL1 , TL2 , situés dans le poste de pilotage, ainsi que des unités de contrôle de l'orientation des roues, SCU1 SCU2 (Steering Control Unit) situées sur la roulette avant et, selon le type d'aéronef, sur le train d'atterrissage principal. Ces unités SCU1 SCU2 pilotent des actionneurs et assurent leur asservissement autour d'une position de consigne donnée. Les positions, notées W , du palonnier et/ou des barres de commande sont acquises, comme précédemment, au moyen des concentrateurs de données CRDC1 à cRDC4 et transmises sous formes de messages AFDX aux calculateurs 911 et 912 du système de commande de vol primaire (identiques aux calculateurs 411 et 412 de la Fig. 4), plus particulièrement au module logiciel en charge du pilotage automatique, AF1S (Automatic Flight System), ainsi qu'aux calculateurs 913 et 914 du système de commande d'orientation des roues. Les calculateurs 913 et 914 sont de type générique et comportent chacun une voie COM et une voie MON, chaque voie étant constituée par au moins un module logiciel spécifique, SCS (Steering Control System) . En mode nominal, le calculateur 913 est maître et le calculateur 914 esclave, ce dernier prenant la relève en cas de défaillance du premier.
En mode manuel, le calculateur 913 (ou 914) détermine à partir des positions W , la consigne ST d' ordre de braquage des roues et la transmet aux unités de contrôle SCU1, SCU2, via le réseau AFDX. Ces unités renvoient aux calculateurs l'angle réel d'orientation de la/des roue (s) . Parallèlement, le calculateur 911 (ou 912) peut déterminer, à partir des positions W , et en fonction de la vitesse de l'avion, la consigne R d'ordre de braquage de la dérive. Cette consigne est alors transmise, via le réseau AFDX, aux modules de contrôle électronique de la gouverne de direction, FCRM , du système de vol primaire, c'est-à-dire à ceux des actionneurs RDRγ et RDR2 de la Fig. 4. Les modules FCRM en question renvoient aux calculateurs 911 et 912, l'angle réel d'orientation de la dérive.
En mode d'atterrissage automatique, le module AF1S du calculateur 911 (ou 912) détermine à partir d'un certain nombre de paramètres, notamment l'écart angulaire entre l'axe de l'avion et l'axe de la piste, la vitesse de l'avion, une consigne angulaire W qui est transmise, via le réseau AFDX au calculateur 913
(ou 914) . Le calculateur 913 (ou 914) détermine à partir de W\ la consigne ST d'ordre de braquage de roues et la transmet comme précédemment aux unités de contrôle, SCU1, SCU2, via le réseau AFDX. En outre, le module AF1S peut également transmettre une consigne R d'angle de dérive aux modules de contrôle électronique FCRM , comme précédemment. Les consignes ST et R sont calculées de manière à ce qu'à basse vitesse l'action exercée sur les roues soit prépondérante par rapport à celle sur la gouverne de direction. A l'inverse, à grande vitesse, l'action exercée sur la gouverne de direction est prépondérante par rapport à celle exercée sur les roues. La Fig. 10A représente un exemple d'intégration d'une première variante de système hydraulique dans le système de commande de la Fig. 3.
Ce système comprend une pluralité de circuits hydrauliques ségrégués, chacun étant équipé de pompes et de capteurs de pression, ainsi que des calculateurs génériques 1013, 1014. Chacun de ces calculateurs comporte une voie COM et une voie MON, chaque voie étant constituée par un ou plusieurs modules logiciel spécifique (s) à la gestion du système hydraulique, HMS (Hydraulic Management System) . Les calculateurs 1013 et 1014 contrôlent chacun un circuit hydraulique respectif .
On a également représenté sur la Fig. 10, les autres calculateurs/modules logiciels 1011, 1012 susceptibles d'utiliser les mesures de pression fournies par les capteurs du système hydraulique.
Les pompes électriques P1 , P2 sont respectivement associées à des contacteurs de puissance PC1, PC2, qui permettent de les mettre sous tension ou de les arrêter. Ces contacteurs de puissance peuvent être, par exemple, des contacteurs à semi-conducteurs (Solid State Power Controller) , ou des contacteurs électromécaniques. Ces contacteurs sont pilotés par le module logiciel HMS .
Dans la variante représentée, les capteurs de pression 1020 sont distants des contacteurs des pompes électriques Pi , P2 au sens de la configuration illustrée en Fig. 5D. Autrement dit, les mesures des capteurs sont acquises, formatées sous forme de messages AFDX puis transmises aux calculateurs 1013, 1014 par les concentrateurs de données RDC1 , RDC2.
Une seconde variante du système de commande hydraulique est représentée en Fig. 1OB. Cette variante diffère de la première en ce qu'elle comprend des blocs électro-hydrauliques intégrés HPP1 , HPP2 (Hydraulic Power Package) . Cette variante correspond à la configuration de capteurs de la Fig. 5A. Chaque bloc intégré comprend une pompe électrique, des capteurs de pression et des unité électroniques de contrôle de puissance EPC1 , EPC2. Ces unités électroniques sont chacune capables de recevoir, via le réseau AFDX, des ordres de mise sous tension et d'arrêt, des consignes de vitesse du moteur (ou de manière équivalente de débit) de la pompe et de renvoyer les informations de pression fournies par les capteurs, aux modules logiciel HMS des calculateurs 1013, 1014, ainsi qu'aux autres modules logiciel des calculateurs 1011, 1012. On comprendra que d'autres variantes du système de commande hydraulique pourront être alternativement envisagées, par exemple en utilisant les configurations de capteurs illustrées en Figs . 5B et 5D, sans pour autant sortir du cadre de la présente invention. II a été fait référence dans la description à des calculateurs génériques 411-412, 611-614, 711-714, 811- 814, 911-914, 1011-1014. L'homme du métier comprendra que ces calculateurs peuvent être réalisés au moyen d'une ou plusieurs cartes IMA. Les calculateurs appartenant à des systèmes de commande distincts peuvent être des machines virtuelles et donc partager tout ou partie d'une pluralité de cartes IMA.
De même, les modules logiciel hébergés par les calculateurs précités peuvent résider sur une ou plusieurs cartes IMA et, réciproquement, une carte IMA peut héberger des modules logiciels relatifs à différents systèmes de commande.
La présente description a successivement montré l'intégration et coopération du système de commande de vol primaire avec le système de commande de vol secondaire, le système de commande de propulsion, le système de commande de freinage, le système de commande d' orientation des roues et le système de commande hydraulique. On comprendra que tous ces systèmes de commande ou seulement certains d'entre eux pourront être intégrés avec le système de vol primaire. Dans le cas où ils sont intégrés avec ce dernier, l'homme du métier comprendra que le système complet permet d'offrir des lois de commande de vol, de freinage etc., très efficaces dans la mesure où ces lois font intervenir plusieurs systèmes de commande opérant en synergie .

Claims

REVENDICATIONS
1. Système de commande d'aéronef (300) comprenant un premier système de commande (SCi) t destiné à contrôler une première fonction de l'aéronef, un second système de commande (SC2) , distinct du premier système de commande, destiné à contrôler une seconde fonction de l'aéronef, distincte de la première fonction, le premier système de commande comprenant au moins un premier calculateur (310i) , un premier ensemble de capteurs (320i) et d'actionneurs (330i) , le premier calculateur étant adapté à recevoir des mesures desdits capteurs et à commander lesdits actionneurs dudit premier ensemble, le second système de commande (SC2) comprenant au moins un second module de calcul (31O2) , un second ensemble de capteurs (32O2) et d'actionneurs
(33O2) , le second calculateur étant adapté à recevoir des mesures desdits capteurs et à commander lesdits actionneurs dudit second ensemble, caractérisé en ce que les premier et second calculateurs ainsi que les capteurs et actionneurs des premier et second ensembles sont abonnés à un même réseau AFDX (340) et que les premier et second ensembles possèdent au moins un capteur commun (320) .
2. Système de commande d'aéronef selon la revendication 1, caractérisé en ce que les premier et second calculateurs comprennent chacun une voie de commande (COM) et une voie de surveillance (MON) , chaque voie étant constituée de logiciels spécifiques à la fonction remplie par le calculateur, hébergés par un calculateur générique, les logiciels spécifiques de la première voie étant différents des logiciels spécifiques de la seconde voie.
3. Système de commande d'aéronef selon la revendication 1 ou 2, caractérisé en ce que ledit premier système de commande est un système de commande de vol primaire adapté à contrôler les ailerons, les gouvernes de profondeur, les dérives ainsi que les aérofreins de l'aéronef.
4. Système de commande d'aéronef selon la revendication 3, caractérisé en ce que ledit second système de commande est un système de commande de vol secondaire adapté à contrôler les becs ainsi que les volets de l'aéronef.
5. Système de commande d'aéronef selon la revendication 4, caractérisé en ce que le système de commande de vol secondaire comprend une pluralité de capteurs (624) pour mesurer les amplitudes de sortie respectives des volets, les mesures fournies par ces capteurs étant transmises au réseau AFDX au moyen de modules de contrôle électronique (641, 642) du système de commande de vol primaire, lesdits modules de contrôle électronique étant disposés à proximité et contrôlant les actionneurs des aérofreins de l'aéronef.
6. Système de commande d'aéronef selon la revendication 3, caractérisé en ce que ledit second système de commande est un système de commande de propulsion, adapté à contrôler les régimes respectifs des moteurs de l'aéronef.
7. Système de commande d'aéronef selon la revendication 6, caractérisé en ce que le second calculateur (713, 714) est adapté à recevoir, en mode manuel, une consigne de poussée (A,Α) d'un organe de commande manuelle de poussée (TL) ou, en mode automatique, du premier calculateur (711, 712) et à en déduire une consigne de régime moteur (B) avant de la transmettre à une unité de contrôle (731, 732, 741, 742) d'un moteur de l'aéronef.
8. Système de commande d'aéronef selon la revendication 4, caractérisé en ce que ledit second système de commande est un système de commande de freinage de l'aéronef.
9. Système de commande d'aéronef selon la revendication 8, caractérisé en ce que le système de freinage comprend une pluralité de capteurs de vitesse et de capteurs de couple montés sur le train d'atterrissage de l'aéronef, les mesures fournies par ces capteurs étant acquises et formatées sous forme de messages AFDX par des concentrateurs de données ( RDCγ , RDC2) avant d'être transmises au second calculateur (813) via ledit réseau.
10. Système de commande d'aéronef selon la revendication 9, caractérisé en ce que les mesures de vitesse sont transmises en outre au premier calculateur (811) par les concentrateurs de données, via le réseau AFDX, ledit calculateur déterminant un ordre (S) de sortie des aérofreins en fonction de ladite vitesse et d'informations de freinage (O) fournies, en mode manuel par les pédales de frein, et en mode automatique par une unité de freinage automatique (ABP) .
11. Système de commande d'aéronef selon la revendication 4, caractérisé en ce que ledit second système de commande est un système de commande d'orientation d'au moins la roue avant de l'aéronef.
12. Système de commande d'aéronef selon la revendication 11, caractérisé en ce que les premier et second calculateurs (911, 913) reçoivent des informations de braquage (W) fournies par le palonnier et/ou des barres de commande du poste de pilotage et, qu'en mode manuel, le second calculateur détermine l'angle de braquage de la roue et la transmet, via ledit réseau, à une unité de contrôle d'orientation de la roue (SCU), située à proximité de celle-ci et, qu'en mode de pilotage automatique, le premier calculateur détermine une commande de la gouverne de direction (W), la transmet, via ledit réseau, au second calculateur, le second calculateur en déduisant l'angle de braquage et le transmettant à ladite unité de contrôle d'orientation de la roue.
13. Système de commande d'aéronef selon la revendication 4, caractérisé en ce que ledit second système de commande est un système de commande hydraulique de l'aéronef, adapté à mettre sous tension et à arrêter au moins une pompe électrique montée sur un circuit hydraulique.
14. Système de commande d'aéronef selon la revendication 13, caractérisé en ce que ledit système de commande hydraulique comprend au moins un contacteur (PC1, PC2) abonné audit réseau et adapté à mettre sous tension/arrêter ladite pompe, un capteur de pression (1020) monté sur le circuit hydraulique, les mesures de pressions fournies par ledit capteur étant acquises et formatées sous forme de messages AFDX par un concentrateur de données (RDCγ,RDC2), puis transmises au premier et au second calculateurs via ledit réseau.
15. Aéronef, caractérisé en ce qu'il comprend un système de commande d'aéronef selon l'une des revendications précédentes.
PCT/FR2010/050406 2009-03-11 2010-03-10 Système de commande d'aéronef à architecture modulaire intégrée WO2010103234A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2754091A CA2754091C (fr) 2009-03-11 2010-03-10 Systeme de commande d'aeronef a architecture modulaire integree
US13/255,406 US8600584B2 (en) 2009-03-11 2010-03-10 Aircraft control system with integrated modular architecture
BRPI1009247A BRPI1009247A2 (pt) 2009-03-11 2010-03-10 sistema de comando de aeronave, e, aeronave
CN201080018052.1A CN102414081B (zh) 2009-03-11 2010-03-10 模块集成式架构的飞行器控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951528A FR2943037B1 (fr) 2009-03-11 2009-03-11 Systeme de commande d'aeronef a architecture modulaire integre.
FR0951528 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010103234A1 true WO2010103234A1 (fr) 2010-09-16

Family

ID=41226735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050406 WO2010103234A1 (fr) 2009-03-11 2010-03-10 Système de commande d'aéronef à architecture modulaire intégrée

Country Status (6)

Country Link
US (1) US8600584B2 (fr)
CN (1) CN102414081B (fr)
BR (1) BRPI1009247A2 (fr)
CA (1) CA2754091C (fr)
FR (1) FR2943037B1 (fr)
WO (1) WO2010103234A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292969A1 (en) * 2009-05-18 2010-11-18 Airbus Operations (Societe Par Actions Simplifiee) Method for optimisation of an avionics platform
DE102011115318A1 (de) 2011-10-07 2013-04-11 Liebherr-Aerospace Lindenberg Gmbh Flugsteuerungssystem
EP2604515A1 (fr) 2011-12-12 2013-06-19 Airbus Operations GmbH Procédé et système de contrôle d'un dispositif de portance élevée ou d'une surface de commande de vol, et avion ou engin spatial comprenant un tel système

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959835B1 (fr) * 2010-05-10 2012-06-15 Airbus Operations Sas Systeme de commande de vol et aeronef le comportant
FR2962619B1 (fr) * 2010-07-09 2013-01-18 Thales Sa Dispositif d'acces a des donnees a bord d'un aeronef
GB201021545D0 (en) * 2010-12-21 2011-02-02 Airbus Operations Ltd A method of monitoring aircraft brake performance and apparatus for performing such a method
US8817622B1 (en) * 2012-06-26 2014-08-26 Rockwell Collins, Inc. Data network with aggregate flow monitoring
US8964555B1 (en) 2012-06-26 2015-02-24 Rockwell Collins, Inc. Data network with constrained switch transmission rates
US8976043B2 (en) * 2012-08-20 2015-03-10 Textron Innovations, Inc. Illuminated sidestick controller, such as an illuminated sidestick controller for use in aircraft
ES2587109T3 (es) 2012-11-06 2016-10-20 Airbus Defence And Space Sa Método y sistema de control de frenado
FR2999152B1 (fr) * 2012-12-12 2016-07-22 Airbus Operations Sas Systeme de commande d'aeronef a voies fusionnees
FR3013468B1 (fr) * 2013-11-15 2017-04-28 European Aeronautic Defence & Space Co Eads France Equipement d'entree/sortie pour meuble electronique et meuble comprenant un tel equipement
FR3013880B1 (fr) 2013-11-26 2017-03-31 Airbus Operations Sas Systeme avionique, notamment un systeme de gestion de vol d'un aeronef
WO2015089637A1 (fr) * 2013-12-19 2015-06-25 Thales Canada Inc. Procédé et système pour la gestion d'une pluralité de fonctions critiques dans un aéronef
DE102014220781A1 (de) * 2014-10-14 2016-04-14 Robert Bosch Gmbh Ausfallsichere E/E-Architektur für automatisiertes Fahren
FR3028498B1 (fr) * 2014-11-14 2018-06-01 Airbus Operations Dispositif pour la commande d'un regime de poussee d'au moins un moteur d'aeronef.
GB2532773A (en) 2014-11-27 2016-06-01 Airbus Operations Sas Improvements in or relating to avionics networks
US9838436B2 (en) * 2015-03-30 2017-12-05 Gulfstream Aerospace Corporation Aircraft data networks
US10293923B2 (en) * 2015-10-06 2019-05-21 Goodrich Corporation Robustness and availability of aircraft acceleration evaluation
US10202088B2 (en) 2016-01-15 2019-02-12 Hamilton Sundstrand Corporation Combined remote sensing, processing, and solid state power control system
US10196131B2 (en) * 2016-02-16 2019-02-05 The Boeing Company Hydraulic system and method for an aircraft flight control system
AU2017221357B2 (en) * 2016-02-16 2019-05-23 Apple Inc. Enhance communication of network traffic
FR3055418B1 (fr) * 2016-08-24 2018-09-14 Safran Aircraft Engines Procede de test integre du fonctionnement electrique de l'inversion de poussee d'un turboreacteur d'un aeronef, et systeme associe
US10155583B2 (en) * 2016-10-14 2018-12-18 Goodrich Corporation Aircraft control system architecture
RU2630030C1 (ru) * 2016-10-28 2017-09-05 Публичное акционерное общество "Авиационная холдинговая компания "Сухой" Многофункциональный одноместный самолет с комплексной системой управления
RU2646379C1 (ru) * 2016-12-22 2018-03-02 Акционерное общество "Ульяновское конструкторское бюро приборостроения" (АО "УКБП") Устройство сбора данных
US10556675B2 (en) 2017-01-17 2020-02-11 Goodrich Corporation System and method for autobraking with course trajectory adjustment
FR3064979B1 (fr) * 2017-04-07 2019-04-05 Airbus Operations (S.A.S.) Systeme de commande de vol d'un aeronef
EP3684693A1 (fr) 2017-09-19 2020-07-29 Sikorsky Aircraft Corporation Dispositifs et systèmes de commande d'aéronef portables
DE102018111338A1 (de) * 2018-05-11 2019-11-14 Liebherr-Aerospace Lindenberg Gmbh System zum Steuern, Regeln und/oder Überwachen eines Luftfahrzeugs
US11099936B2 (en) * 2018-09-11 2021-08-24 Embraer S.A. Aircraft integrated multi system electronic architecture
FR3090530B1 (fr) * 2018-12-20 2021-04-23 Commissariat Energie Atomique Architecture électronique pour système embarqué
FR3093993B1 (fr) * 2019-03-21 2021-02-26 Safran Aircraft Engines Procédé de contrôle du freinage des roues d’un avion et contrôleur de freinage de roues associé
GB2585065A (en) * 2019-06-27 2020-12-30 Airbus Operations Ltd Controlling movement of landing gear or landing gear bay doors
CN111862686A (zh) * 2020-06-04 2020-10-30 中国人民解放军国防科技大学 一种飞行器运动状态测量与数据处理系统
US11682535B2 (en) 2021-03-12 2023-06-20 Essex Industries, Inc. Rocker switch
EP4309200A1 (fr) 2021-03-15 2024-01-24 Essex Industries, Inc. Commutateur à cinq positions
FR3128198A1 (fr) * 2021-10-20 2023-04-21 Zipair Procédé de pilotage d’un groupe de poussée pour dispositif de propulsion
US11846953B2 (en) * 2022-03-01 2023-12-19 Electra Aero, Inc. System and method for controlling differential thrust of a blown lift aircraft
EP4362428A1 (fr) 2022-10-28 2024-05-01 Airbus Operations GmbH Grille de capteur partagée et procédé de partage de grille de capteur

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518345A1 (fr) * 1991-06-14 1992-12-16 Fuji Jukogyo Kabushiki Kaisha Système de commande hydraulique pour avion
US5613652A (en) * 1994-10-21 1997-03-25 Safe Flight Instrument Corporation Aircraft auto throttle system
WO2002006910A2 (fr) * 2000-07-14 2002-01-24 Honeywell International Inc. Procede pour assurer l'augmentation des commandes dans un canal de commande a l'interieur d'un vehicule
EP1353247A2 (fr) * 2002-04-10 2003-10-15 Airbus France Système et procédé de contrôle de plusieurs actionneurs
US20050065669A1 (en) * 2003-08-12 2005-03-24 Airbus France Aircraft equipment control system
US20060293805A1 (en) * 2005-06-27 2006-12-28 Messier-Bugatti Distributed architecture for a system for managing aircraft landing gear
US20070145180A1 (en) * 2005-12-27 2007-06-28 Honeywell International, Inc. Distributed flight control surface actuation system
FR2901379A1 (fr) * 2006-05-19 2007-11-23 Airbus France Sas Procede et dispositif de consolidation par synchronisation logicielle dans les calculateurs des commandes de vol
FR2920623A1 (fr) * 2007-09-03 2009-03-06 Airbus France Sa Dispositif de commutation de trames pour reseau afdx.

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133268A1 (de) * 1991-10-08 1993-04-15 Bosch Gmbh Robert Vorrichtung zur steuerung der antriebsleistung eines fahrzeuges
US5797564A (en) * 1995-05-15 1998-08-25 The Boeing Company System for backdrive of flight deck controls during autopilot operation
US6171055B1 (en) * 1998-04-03 2001-01-09 Aurora Flight Sciences Corporation Single lever power controller for manned and unmanned aircraft
US7011498B2 (en) * 1998-04-03 2006-03-14 Athena Technologies, Inc. Optimization method for power generation systems
DE19919504B4 (de) * 1999-04-29 2005-10-20 Mtu Aero Engines Gmbh Triebwerksregler, Triebwerk und Verfahren zum Regeln eines Triebwerks
FR2832011B1 (fr) 2001-11-05 2005-05-20 Airbus France Reseau de communication de type ethernet full duplex commute et procede de mise en oeuvre de celui-ci
DE10243713B4 (de) * 2002-09-20 2006-10-05 Daimlerchrysler Ag Redundante Steuergeräteanordnung
US7188007B2 (en) * 2003-12-24 2007-03-06 The Boeing Company Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information
US7460029B2 (en) * 2003-12-24 2008-12-02 The Boeing Company Systems and methods for presenting and obtaining flight control information
US8784107B2 (en) * 2005-03-14 2014-07-22 Cubic Corporation Flight training system
US8019489B2 (en) * 2006-12-20 2011-09-13 The Boeing Company Methods and systems for displaying messages from a plurality of sources
FR2927308B1 (fr) 2008-02-08 2010-10-22 Airbus France Systeme distribue de commande de vol.
FR2940787A1 (fr) 2009-01-08 2010-07-09 Airbus France Systeme de commandes de vol plus electrique a bord d'un aeronef
FR2940786B1 (fr) 2009-01-08 2012-10-19 Airbus France Systeme de commandes de vol pour un avion
US8275494B1 (en) * 2009-12-31 2012-09-25 Michael Roth System, apparatus and method for controlling an aircraft
FR2955309B1 (fr) 2010-01-18 2013-05-10 Airbus Operations Sas Systeme de commande de vol pour un aeronef
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system
FR2959835B1 (fr) * 2010-05-10 2012-06-15 Airbus Operations Sas Systeme de commande de vol et aeronef le comportant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518345A1 (fr) * 1991-06-14 1992-12-16 Fuji Jukogyo Kabushiki Kaisha Système de commande hydraulique pour avion
US5613652A (en) * 1994-10-21 1997-03-25 Safe Flight Instrument Corporation Aircraft auto throttle system
WO2002006910A2 (fr) * 2000-07-14 2002-01-24 Honeywell International Inc. Procede pour assurer l'augmentation des commandes dans un canal de commande a l'interieur d'un vehicule
EP1353247A2 (fr) * 2002-04-10 2003-10-15 Airbus France Système et procédé de contrôle de plusieurs actionneurs
US20050065669A1 (en) * 2003-08-12 2005-03-24 Airbus France Aircraft equipment control system
US20060293805A1 (en) * 2005-06-27 2006-12-28 Messier-Bugatti Distributed architecture for a system for managing aircraft landing gear
US20070145180A1 (en) * 2005-12-27 2007-06-28 Honeywell International, Inc. Distributed flight control surface actuation system
FR2901379A1 (fr) * 2006-05-19 2007-11-23 Airbus France Sas Procede et dispositif de consolidation par synchronisation logicielle dans les calculateurs des commandes de vol
FR2920623A1 (fr) * 2007-09-03 2009-03-06 Airbus France Sa Dispositif de commutation de trames pour reseau afdx.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292969A1 (en) * 2009-05-18 2010-11-18 Airbus Operations (Societe Par Actions Simplifiee) Method for optimisation of an avionics platform
US8423331B2 (en) * 2009-05-18 2013-04-16 Airbus Operations Sas Method for optimisation of an avionics platform
DE102011115318A1 (de) 2011-10-07 2013-04-11 Liebherr-Aerospace Lindenberg Gmbh Flugsteuerungssystem
DE102011115318B4 (de) * 2011-10-07 2016-01-14 Liebherr-Aerospace Lindenberg Gmbh Flugsteuerungssystem
EP2604515A1 (fr) 2011-12-12 2013-06-19 Airbus Operations GmbH Procédé et système de contrôle d'un dispositif de portance élevée ou d'une surface de commande de vol, et avion ou engin spatial comprenant un tel système
US8903569B2 (en) 2011-12-12 2014-12-02 Airbus Operations Gmbh Method for controlling a high-lift device or a flight control surface, system and aircraft or spacecraft

Also Published As

Publication number Publication date
CN102414081A (zh) 2012-04-11
FR2943037A1 (fr) 2010-09-17
CA2754091A1 (fr) 2010-09-16
FR2943037B1 (fr) 2012-09-21
CN102414081B (zh) 2015-04-08
CA2754091C (fr) 2017-01-03
US8600584B2 (en) 2013-12-03
BRPI1009247A2 (pt) 2016-03-15
US20120109424A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
CA2754091C (fr) Systeme de commande d'aeronef a architecture modulaire integree
CA2754031C (fr) Systeme distribue de commande de vol implemente selon une architecture avionique modulaire integree
CA2055089C (fr) Systeme pour la commande integree en profondeur et en poussee d'un aeronef
CA2550797C (fr) Architecture distribuee de systeme de gestion d'atterrisseurs d'aeronef
EP0296951B1 (fr) Système pour la commande d'un aéronef en roulis et en lacet
EP0152714B1 (fr) Système de commandes de vol pour aéronef
EP1547918B1 (fr) Architecture de système de freinage comportant deux calculateurs et résistant à une panne double, et procédé de gestion associe
EP3361344B1 (fr) Système et procédé de pilotage automatique d'un aéronef, et aéronef
EP2502825A1 (fr) Pilotage de secours par vérin série pour chaine de commande de vol manuelle d'aéronef et Procédé
EP3309061B1 (fr) Organe de commande electrique, aeronef a voilure tournante et procede
FR2945028A1 (fr) Systeme de freinage pour aeronef
FR2899562A1 (fr) Dispositif de commandes de vol d'un giravion
EP3882129B1 (fr) Procédé de commande d'hélices d'un hélicoptère hybride et hélicoptère hybride
CA2297567C (fr) Systeme pour la commande en lacet d'un aeronef
EP0628897B1 (fr) Dispositif de pilotage automatique pour aérodynes
EP0465352B1 (fr) Système pour la commande intégrée en profondeur et en poussée d'un aéronef
WO2022171958A1 (fr) Aeronef vtol a quatre rotors en croix et procede de gestion d'atterrissage d'urgence associe
FR3103786A1 (fr) Giravion hybride comportant au moins une hélice propulsive ou tractive et procédé de pilotage associé.
EP4063261B1 (fr) Systeme de commande pour commander au moins une helice d'un giravion hybride, giravion hybride et procede de commande associe
WO2023111484A1 (fr) Système de transmission de commande à un servo actionneur hydraulique
EP4294723A1 (fr) Aéronef sans équipage fiabilisé et procédé de pilotage d'un tel aéronef sans équipage
FR3123320A1 (fr) Aéronef ayant au moins une hélice et une voilure tournante munie de deux rotors portés par deux demi ailes
WO2024069080A1 (fr) Système de transmission de commande à une pluralité de servo-actionneurs hydrauliques
FR3136745A1 (fr) Aeronef a decollage et atterrissage verticaux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018052.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2754091

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13255406

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10714936

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009247

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110908