WO2010102861A1 - Dye-polymers formulations - Google Patents

Dye-polymers formulations Download PDF

Info

Publication number
WO2010102861A1
WO2010102861A1 PCT/EP2010/051220 EP2010051220W WO2010102861A1 WO 2010102861 A1 WO2010102861 A1 WO 2010102861A1 EP 2010051220 W EP2010051220 W EP 2010051220W WO 2010102861 A1 WO2010102861 A1 WO 2010102861A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
detergent composition
composition according
monomer
polymer
Prior art date
Application number
PCT/EP2010/051220
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Wei Chen
Susan Barbara Joyce
Qingsheng Tao
Jinfang Wang
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to BRPI1013881-1A priority Critical patent/BRPI1013881B1/en
Priority to ES10703043T priority patent/ES2435470T3/en
Priority to CN2010800116262A priority patent/CN102348769A/en
Priority to EP10703043.9A priority patent/EP2406327B1/en
Publication of WO2010102861A1 publication Critical patent/WO2010102861A1/en
Priority to ZA2011/06050A priority patent/ZA201106050B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/101Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an anthracene dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/105Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a methine or polymethine dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/106Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an azo dye
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0052Dyeing with polymeric dyes

Definitions

  • the present invention relates to the delivery of dyes to fabrics .
  • WO2005/003274 discloses that shading dyes may be included in detergent formulations to enhance the whiteness of garments.
  • WO2006/055787 to Proctor and Gamble, describes reactive dyes attached to cellulose ether in laundry formulations.
  • the functional reactive group of the dye reacts with OH, SH or NH 2 groups of the polymer by an addition or substitution reaction producing a covalent bond.
  • the polymer must contain these groups for reaction to occur.
  • the reactive dyes used are negatively charged. The shading benefit is found predominately on cellulosic garments
  • WO2006/055843, WO2007/087252, WO2008/091524 and WO2008/100445 (all Milliken) describe dyes linked to polyether groups via an amine group pendant to an aromatic ring, for use in laundry formulations.
  • the shading benefit is found predominately on cellulosic garments.
  • WO2008/009579 discloses polymer chains with pendant cationic charged dyes for use in hair dyeing.
  • US 3926830 discloses dye indicators that are linked to polymers; dye indicators are charged. Use of the polymeric dye indicators are for colouring water.
  • EP 0128619 discloses use of insoluble styrene dye polymers.
  • WO 2005/068598 discloses Liquitint Violet CT for use in laundry. Liquitint Violet CT is only disclosed in WO 2005/068598 as a polymeric colourent and, from the examples, capable of shading cotton.
  • the dye-polymers of the present invention deposit to both cotton and polyester fabrics.
  • the present invention provides a detergent composition
  • a detergent composition comprising from 2 to 70 wt % of a surfactant together with from 0.0001 to 10 wt%, preferably 0.01 to 1 wt %, of a dye-polymer of molecular weight of at least 500, wherein the dye-polymer is obtainable by polymerisation of:
  • a dye monomer the dye monomer is an uncharged alkene covalently bound to a dye, the dye monomer having a molar extinction coefficient at a wavelength in the range 400 to 700nm of at least 1000 mol "1 L cm “1 , preferably greater than 4000 mol "1 L cm “1 , and (b) one or more further alkene comonomer (s) , the alkene monomer (s) having molar extinction coefficient at a wavelength in the range 400 to 700nm that is less than 100 mol "1 L cm “1 , preferably less than 10 mol "1 L cm “1 .
  • the dye-polymer is preferably obtained (formed) by polymerisation of integers (a) and (b) as detailed above.
  • the present invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the detergent composition as described herein is most preferably a granular detergent composition.
  • the dye monomer is an organic molecule which when dissolved in an organic solvent has a molar absorption extinction coefficient of 1000 mol "1 L cm “1 , preferably greater than 4000 mol "1 L cm “1 at a wavelength in the range 400-700nm, preferably 500-650nm, most preferably 540-600nm.
  • Molar absorption coefficients are preferably measured in an organic solvent, preferably propan-2-ol, using a 1, 5 or 10cm cell.
  • the dye monomer is uncharged in aqueous solution at a pH in the range from 7 to 11.
  • the dye monomer is devoid of polar solubilizing groups.
  • the dye monomer does not contain any sulphonic acid (S ⁇ 3 ⁇ ) , carboxylic acid (C ⁇ 2 ⁇ ) , or quaternary ammonium groups .
  • the dye is preferably selected from organic dyes selected from the following chromophore classes: anthraquinone, azo and methine, most preferably anthraquinone and mono-azo. Dyes are described in Industrial Dyes (K. Hunger ed, Wiley VCH 2003, ISBN 3-527-30426-6) .
  • the dye monomer is of the form:
  • Y is an organic bridging group covalently connecting a dye to the alkene moiety of the dye monomer and Ri is selected from: H; alkyl; aryl; halogen; ester; acid amide; and, CN.
  • Ri is a phenyl or benzyl group
  • the aromatic is not substituted by OH.
  • the most direct connection (Y) of an aromatic group of the dye to the alkene carbon carrying Ri is spaced by 1 to 8 atoms, most preferably 3 to 6; the atoms are preferably selected from: C; N; 0; and, S.
  • the alkene may also be directly connected to the dye and in this case Y is absent .
  • the organic bridging group (Y) is selected from: -CONR 4 -, -NR 4 CO-, -COOR 4 -, -NR 4 -, -0-, -S-, -SO 2 -, -SO 2 NR 4 -, - N(COR 4 )-, and -N(SO 2 R 4 )-, wherein R 4 is selected from H, C1-C6 branched or linear alkyl, phenyl and benzyl groups, wherein R 4 has 0 to 1 spacing units selected from: -0-; -S-; -SO 2 -; - C(O)O-; -OC(O)-; and an amine.
  • the organic bridging group is -CONR 4 -.
  • R 4 is selected: from H and Me.
  • the Y group is bound directly to a carbon atom of an aromatic ring of the dye.
  • Ri is preferably selected from: H; Me; Et; Pr; CO 2 C1-C4 branched and linear alkyl chains; phenyl; benzyl; CN; Cl; and, F. Most preferably Ri is H or Me.
  • a preferred dye-monomer is of the form:
  • Ar is an aromatic or heteroaromatic group and Z is selected from: H; CH 3 ; Cl; and, NHCOCH 3 and W is selected from H; CH 3 O; C 2 H 5 O; and, Cl.
  • Another preferred dye-monomer is of the form:
  • a and B ring are further substituted.
  • the dye is substituted at the 4, 5 or 8 position by at least one groups selected from NH 2 , NHAr, and NHR 5 , NR 5 R 6 . Most preferably when present OH and NO 2 groups are at 4, 5 or 8 position and no more than 2 NO 2 groups are present .
  • Suitable dyes may be prepared by acylation of an NH 2 of an anthraquinone disperse dye, preferably selected from: disperse blue 1; disperse blue 5; disperse blue 6; disperse blue 9; disperse blue 19; disperse blue 28; disperse blue 40; disperse blue 56; disperse blue 60; disperse blue 81; disperse violet 1; disperse violet 4 and, disperse violet 8
  • a further example of a suitable dye is disperse blue 7.
  • the dye monomer may be further substituted by uncharged organic groups having a total molecular weight of less than 400.
  • Preferred uncharged organic groups are selected from: NHCOCH 3 ; CH 3 ; C 2 H 5 ; CH 3 O; C 2 H 5 O; amine; Cl; F; Br; I; NO 2 ; CH 3 SO 2 ; and, CN.
  • Suitable and preferred dye monomers include:
  • dye monomers are: ALKENE COMONOMERS
  • the comonomer is preferably of the form:
  • R 2 and R3 are independently selected from: H, C1-C8 branched, cyclic and linear alkyl chains, C(O)OH,
  • CO2CI-CI8 branched and linear alkyl chains -C(O)N (C1-C18) 2; -C (O)N(C1-C18)H; -C(0)NH2; heteroaromatic, phenyl, benzyl, polyether, cyano, Cl and F.
  • C1-C18 is specified a preferred range is Cl to C4.
  • the R2 and R3 of the comonomer may be further substituted by charged and uncharged organic groups having a total molecular weight of less than 400.
  • Preferred uncharged organic groups are selected from: NHCOCH 3 , CH 3 , C 2 H 5 , OH, CH 3 O, C 2 H 5 O, amine, Cl, F, Br, I, NO 2 , CH 3 SO 2 , and CN.
  • the phenyl, benzyl and alkyl chains may be substituted by further organic groups selected from: OH; F; Cl; alkoxy (preferably OCH 3 ) , S0 3 ⁇ , COOH, amine, quaternary amine, acid amide and ester.
  • alkoxy preferably OCH 3
  • S0 3 ⁇ COOH
  • amine quaternary amine
  • acid amide and ester organic groups
  • Suitable co-monomers include. Preferred comonomer are indicated. hydrochloride
  • co-monomer Mixtures of co-monomer may be used. It is preferred that the >50wt%, more preferably >80wt%, of the co-monomers are selected from co-monomer that have a molecular weight of less than 300 and contains an amine, amide, OH, S ⁇ 3 ⁇ or COO ⁇ group. Most preferably the co-monomer contains an amine group .
  • the dye polymer is blue or violet in colour.
  • the dye polymer gives a blue or violet colour to the cloth with a hue angle of 250-345, more preferably 265 to 330, most preferably 270 to 300.
  • the cloth used to determine the hue angle is white bleached non-mercerised woven cotton sheeting.
  • the polymer is made by co-polymerisation of the dye monomer with suitable unsaturated organic co-monomers.
  • the polymer contains 0.1 to 30 Molar% dye monomers units, preferably 2 to 15 Molar%.
  • the monomers within the polymer may be arranged in any suitable manner. For example as Alternating copolymers possess regularly alternating monomer residues; Periodic copolymers have monomer residue types arranged in a repeating sequence; Random copolymers have a random sequence of monomer residue types; Statistical copolymers have monomer residues arranged according to a known statistical rule; Block copolymers have two or more homopolymer subunits linked by covalent bonds.
  • the polymer should have a molecular weight 500 and greater, preferably 2000 and greater, preferably 5000 and greater. In this context the molecular weight is the number average molecular weight. This is the ordinary arithmetic mean of the molecular weights of the individual macromolecules . It is determined by measuring the molecular weight of j polymer molecules, summing the weights, and dividing by j. Molecular weights are determined by Gel Permeations Chromatography.
  • the polymer is of the form:
  • X Y-Dye
  • a is greater than b (a>b) . More preferably the ratio a:b is from 99.9:0.1 to 70:30.
  • the dye-polymer has a number average molecular weight in the range from 500 to 500000, preferably from 1000 to 100000, more preferably 5000 to 50000.
  • the polymer dye may be added to the slurry to be spray dried or preferably added via post-dosed granules.
  • the polymer dye powder obtained from the polymer dye synthesis is mixed with a Na2SO4 or NaCl or pre-prepared granular base or full detergent formulation to give a 0.1 to 20 polymer dye wt% mixture. This dry mix is then mixed into the granular formulation.
  • the polymer dye powder is preferably formed by drying a liquid slurry or solution of the dye, for example by vacuum drying, freeze drying, drying in drum dryers, Spin Flash ® (Anhydro) , but most preferably by spray drying.
  • the polymer dye powder may be ground before, during or after the making of the slurry. This grinding is preferably accomplished in mills, such as for example ball, swing, bead or sand mills, or in kneaders .
  • the polymer dye powder preferably contains 20 to 100 wt% of the dye.
  • the polymer dye powder has an average particle size, APS, from 0.1 to 300 microns, preferably 10 to 100 microns. Preferably this is as measured by a laser diffraction particle size analyser, preferably a Malvern HP with 100 mm lens.
  • the composition comprises between 2 to 70 wt percent of a surfactant, most preferably 10 to 30 wt %.
  • a surfactant most preferably 10 to 30 wt %.
  • the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon ' s Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser
  • surfactants used are saturated.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are Ce to C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic Cs to Cis primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cis alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl Cio to Ci 5 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the preferred anionic detergent compounds are sodium Cu to Ci 5 alkyl benzene sulphonates and sodium C 12 to Cis alkyl sulphates.
  • surfactants such as those described in EP-A-328 177 (Unilever), which shows resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides .
  • Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever) .
  • surfactant system that is a mixture of an alkali metal salt of a C16 to Cis primary alcohol sulphate together with a C12 to Ci 5 primary alcohol 3 to 7 EO ethoxylate.
  • the nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt % of the surfactant system.
  • Anionic surfactants can be present for example in amounts in the range from about 5% to about 40 wt % of the surfactant system.
  • the surfactant may be a cationic such that the formulation is a fabric conditioner .
  • the present invention When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
  • the quaternary ammonium compound has the following formula:
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from C12 to C22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from Ci to C 4 alkyl chains and X ⁇ is a compatible anion.
  • the ratio of cationic to nonionic surfactant is from 1:100 to 50:50, more preferably 1:50 to 20:50.
  • the cationic compound may be present from 1.5 wt % to 50 wt % of the total weight of the composition.
  • the cationic compound may be present from 2 wt % to 25 wt %, a more preferred composition range is from 5 wt % to 20 wt %.
  • the softening material is preferably present in an amount of from 2 to 60% by weight of the total composition, more preferably from 2 to 40%, most preferably from 3 to 30% by weight.
  • the composition optionally comprises a silicone.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials,
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra- acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach- stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula:
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • the preferred sodium aluminosilicates contain 1.5-3.5 Si ⁇ 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • ⁇ phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst) .
  • the laundry detergent formulation is a non- phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • the composition preferably comprises a fluorescent agent (optical brightener) .
  • fluorescent agents are well known and many such fluorescent agents are available commercially.
  • these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3- sulfophenyl) -2H-napthol [1, 2-d] triazole, disodium 4,4'- bis ⁇ [ (4-anilino-6- (N methyl-N-2 hydroxyethyl) amino 1,3,5- triazin-2-yl) ] amino ⁇ stilbene-2-2 ' disulfonate, disodium 4 , 4 ' -bis ⁇ [ (4-anilino-6-morpholino-l , 3, 5-triazin-2-yl) ] amino ⁇ stilbene-2-2' disulfonate, and disodium 4, 4 '-bis (2- sulfostyryl) biphenyl .
  • the aqueous solution used in the method has a fluorescer present.
  • a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/1 to 0.1 g/1, preferably 0.001 to 0.02 g/1.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2) : 80 [1955]) .
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol .
  • Perfume and top note may be used to cue the whiteness benefit of the invention.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. It is preferred that the laundry treatment composition does not contain hypochlorite bleach.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid. It is preferred that the laundry treatment composition does not contain hypochlorite bleach.
  • the composition may comprise one or more polymers.
  • polymers are carboxymethylcellulose, poly (ethylene glycol) , poly (vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition for example poly (vinylpyrrolidone) , poly (vinylpyridine-N-oxide) , and poly (vinylimidazole) , are preferably absent from the formulation .
  • the laundry treatment composition may contain an enzyme.
  • Preferred enzymes are disclosed in WO 2007/087243 and WO
  • DAQ 4-Diaminoanthraquinone
  • the dye monomer was prepared by the reaction of DAQ (1,4- Diaminoaquinone) and Ac (acryloyl chloride) in the presence of sodium dicarbonate.
  • a mixture of 150ml anhydrous THF, Ig 1,4- Diaminoaquinone
  • Ac acryloyl chloride
  • UV-Vis spectra of the dye polymers of example 2 were recorded in demineralised water at lg/L dye polymer. The results are given in the table below.
  • Knitted white polyester (microfiber) and white woven non- mercerised cotton fabrics were used together in 4g/L of a detergent which contained 15% Linear Alkyl benzene sulfonate (LAS) surfactant, 30% Na 2 CO 3 , 40% NaCl, remainder minors included calcite and fluorescer and moisture. Washes were conducted in 6° French Hard water at room temperature with a liquor to cloth ratio of 30:1, for 30 minutes. Following the wash the cloths were rinsed twice in water, dried, their reflectance spectrum measured on a reflectometer and the colour expressed as CIE L a b values. The washes were then repeated until 4 washes had been accomplished. The experiment was repeated with the addition of the dye polymers of example 3.
  • LAS Linear Alkyl benzene sulfonate
  • the dye polymers were dosed at 0.125wt% on formulation. Before and after the 1 st , 2 nd and 4 th wash the CIE L*a*b* values of the fabrics were recorded using a reflectometer (UV-excluded) . The deposition of the dye-polymers to the fabrics was expressed as the ⁇ b value such that
  • the dye-polymers deposit to both cotton and polyester.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention provides a laundry treatment composition comprising from 2 to 70 wt % of a surfactant and from 0.0001 to 10 wt% of a dye-polymer of molecular weight of at least 500, wherein the dye-polymer is obtainable by polymerisation of : (a) a dye monomer, which is an uncharged alkene covalently bound to a dye, (b) one or more further alkene comonomer(s). A domestic method of treating a textile is also claimed.

Description

DYE-POLYMERS FORMULATIONS
FIELD OF INVENTION
The present invention relates to the delivery of dyes to fabrics .
BACKGROUND OF THE INVENTION
WO2005/003274, to Unilever, discloses that shading dyes may be included in detergent formulations to enhance the whiteness of garments.
WO2006/055787, to Proctor and Gamble, describes reactive dyes attached to cellulose ether in laundry formulations. The functional reactive group of the dye reacts with OH, SH or NH2 groups of the polymer by an addition or substitution reaction producing a covalent bond. The polymer must contain these groups for reaction to occur. The reactive dyes used are negatively charged. The shading benefit is found predominately on cellulosic garments
WO2006/055843, WO2007/087252, WO2008/091524 and WO2008/100445 (all Milliken) describe dyes linked to polyether groups via an amine group pendant to an aromatic ring, for use in laundry formulations. The shading benefit is found predominately on cellulosic garments.
WO2008/009579 (Ciba) discloses polymer chains with pendant cationic charged dyes for use in hair dyeing. US 3926830 discloses dye indicators that are linked to polymers; dye indicators are charged. Use of the polymeric dye indicators are for colouring water.
EP 0128619 discloses use of insoluble styrene dye polymers.
WO 2005/068598 discloses Liquitint Violet CT for use in laundry. Liquitint Violet CT is only disclosed in WO 2005/068598 as a polymeric colourent and, from the examples, capable of shading cotton.
It would be desirable to have a polymer dye that deposit to both cotton and polyester fabrics, found in domestic wash loads .
SUMMARY OF THE INVENTION
The dye-polymers of the present invention deposit to both cotton and polyester fabrics.
In one aspect the present invention provides a detergent composition comprising from 2 to 70 wt % of a surfactant together with from 0.0001 to 10 wt%, preferably 0.01 to 1 wt %, of a dye-polymer of molecular weight of at least 500, wherein the dye-polymer is obtainable by polymerisation of:
(a) a dye monomer, the dye monomer is an uncharged alkene covalently bound to a dye, the dye monomer having a molar extinction coefficient at a wavelength in the range 400 to 700nm of at least 1000 mol"1 L cm"1, preferably greater than 4000 mol"1 L cm"1, and (b) one or more further alkene comonomer (s) , the alkene monomer (s) having molar extinction coefficient at a wavelength in the range 400 to 700nm that is less than 100 mol"1 L cm"1, preferably less than 10 mol"1 L cm"1.
The dye-polymer is preferably obtained (formed) by polymerisation of integers (a) and (b) as detailed above.
In another aspect the present invention provides a domestic method of treating a textile, the method comprising the steps of:
(i) treating a textile with an aqueous solution of the dye-polymer, the aqueous solution comprising from 10 ppb to 100 ppm of the dye-polymer; and, from 0.0 g/L to 3 g/L, preferably 0.3 to 2 g/L, of a surfactant; (ii) optionally rinsing; and, (iii) drying the textile.
The detergent composition as described herein is most preferably a granular detergent composition.
DYE MONOMER
The dye monomer is an organic molecule which when dissolved in an organic solvent has a molar absorption extinction coefficient of 1000 mol"1 L cm"1, preferably greater than 4000 mol"1 L cm"1 at a wavelength in the range 400-700nm, preferably 500-650nm, most preferably 540-600nm. -A-
Molar absorption coefficients are preferably measured in an organic solvent, preferably propan-2-ol, using a 1, 5 or 10cm cell.
The dye monomer is uncharged in aqueous solution at a pH in the range from 7 to 11. The dye monomer is devoid of polar solubilizing groups. In particular the dye monomer does not contain any sulphonic acid (Sθ3~) , carboxylic acid (Cθ2~) , or quaternary ammonium groups .
The dye is preferably selected from organic dyes selected from the following chromophore classes: anthraquinone, azo and methine, most preferably anthraquinone and mono-azo. Dyes are described in Industrial Dyes (K. Hunger ed, Wiley VCH 2003, ISBN 3-527-30426-6) .
Preferably, the dye monomer is of the form:
H2C=(^
Y—Dye, wherein Y is an organic bridging group covalently connecting a dye to the alkene moiety of the dye monomer and Ri is selected from: H; alkyl; aryl; halogen; ester; acid amide; and, CN.
When Ri is a phenyl or benzyl group, the aromatic is not substituted by OH.
Preferably, the most direct connection (Y) of an aromatic group of the dye to the alkene carbon carrying Ri is spaced by 1 to 8 atoms, most preferably 3 to 6; the atoms are preferably selected from: C; N; 0; and, S. The alkene may also be directly connected to the dye and in this case Y is absent .
Preferably, the organic bridging group (Y) is selected from: -CONR4-, -NR4CO-, -COOR4-, -NR4-, -0-, -S-, -SO2-, -SO2NR4-, - N(COR4)-, and -N(SO2R4)-, wherein R4 is selected from H, C1-C6 branched or linear alkyl, phenyl and benzyl groups, wherein R4 has 0 to 1 spacing units selected from: -0-; -S-; -SO2-; - C(O)O-; -OC(O)-; and an amine. Most preferably, the organic bridging group is -CONR4-. Most preferably, wherein R4 is selected: from H and Me. Preferably, the Y group is bound directly to a carbon atom of an aromatic ring of the dye.
Ri is preferably selected from: H; Me; Et; Pr; CO2C1-C4 branched and linear alkyl chains; phenyl; benzyl; CN; Cl; and, F. Most preferably Ri is H or Me.
A preferred dye-monomer is of the form:
Figure imgf000006_0001
wherein Ar is an aromatic or heteroaromatic group and Z is selected from: H; CH3; Cl; and, NHCOCH3 and W is selected from H; CH3O; C2H5O; and, Cl.
Another preferred dye-monomer is of the form:
Figure imgf000007_0001
wherein the A and B ring are further substituted. Preferred groups include NH2, NHAr, NHR5, NR5R6, OH, Cl, Br, CN, OAr, NO2, SO2OAr, CH3 and NHCOC(Rl)=CH2, wherein R5 and R6 are independently selected from C1-C8 branched, cyclic or linear alkyl which may be substituted by OH, OMe, Cl or CN.
Most preferably the dye is substituted at the 4, 5 or 8 position by at least one groups selected from NH2, NHAr, and NHR5, NR5R6. Most preferably when present OH and NO2 groups are at 4, 5 or 8 position and no more than 2 NO2 groups are present .
Suitable dyes may be prepared by acylation of an NH2 of an anthraquinone disperse dye, preferably selected from: disperse blue 1; disperse blue 5; disperse blue 6; disperse blue 9; disperse blue 19; disperse blue 28; disperse blue 40; disperse blue 56; disperse blue 60; disperse blue 81; disperse violet 1; disperse violet 4 and, disperse violet 8
A further example of a suitable dye is disperse blue 7. The dye monomer may be further substituted by uncharged organic groups having a total molecular weight of less than 400. Preferred uncharged organic groups are selected from: NHCOCH3; CH3; C2H5; CH3O; C2H5O; amine; Cl; F; Br; I; NO2; CH3SO2; and, CN.
Synthesis of a variety of dye monomers is discussed in US4943617 (BASF), US5055602 (Bausch and Lomb) WO2005/021663 (Eastman), US5362812 (3M) .
Suitable and preferred dye monomers include:
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000009_0002
and,
Figure imgf000009_0003
Further examples of dye monomers are:
Figure imgf000009_0004
ALKENE COMONOMERS
The comonomer is preferably of the form:
Figure imgf000010_0001
wherein R2 and R3 are independently selected from: H, C1-C8 branched, cyclic and linear alkyl chains, C(O)OH,
CO2CI-CI8 branched and linear alkyl chains, -C(O)N (C1-C18) 2; -C (O)N(C1-C18)H; -C(0)NH2; heteroaromatic, phenyl, benzyl, polyether, cyano, Cl and F. Where C1-C18 is specified a preferred range is Cl to C4.
The R2 and R3 of the comonomer may be further substituted by charged and uncharged organic groups having a total molecular weight of less than 400. Preferred uncharged organic groups are selected from: NHCOCH3, CH3, C2H5, OH, CH3O, C2H5O, amine, Cl, F, Br, I, NO2, CH3SO2, and CN.
The phenyl, benzyl and alkyl chains may be substituted by further organic groups selected from: OH; F; Cl; alkoxy (preferably OCH3) , S03 ~, COOH, amine, quaternary amine, acid amide and ester. When phenyl or benzyl groups are present, the aromatic is not substituted by OH.
Examples of suitable co-monomers include. Preferred comonomer are indicated.
Figure imgf000011_0001
Figure imgf000012_0001
hydrochloride
1 -sulfonate
Figure imgf000013_0001
Figure imgf000014_0001
Mixtures of co-monomer may be used. It is preferred that the >50wt%, more preferably >80wt%, of the co-monomers are selected from co-monomer that have a molecular weight of less than 300 and contains an amine, amide, OH, Sθ3~ or COO~ group. Most preferably the co-monomer contains an amine group .
DYE POLYMER
Preferably, the dye polymer is blue or violet in colour. Preferably the dye polymer gives a blue or violet colour to the cloth with a hue angle of 250-345, more preferably 265 to 330, most preferably 270 to 300. The cloth used to determine the hue angle is white bleached non-mercerised woven cotton sheeting.
The polymer is made by co-polymerisation of the dye monomer with suitable unsaturated organic co-monomers.
Preferably the polymer contains 0.1 to 30 Molar% dye monomers units, preferably 2 to 15 Molar%.
The monomers within the polymer may be arranged in any suitable manner. For example as Alternating copolymers possess regularly alternating monomer residues; Periodic copolymers have monomer residue types arranged in a repeating sequence; Random copolymers have a random sequence of monomer residue types; Statistical copolymers have monomer residues arranged according to a known statistical rule; Block copolymers have two or more homopolymer subunits linked by covalent bonds. The polymer should have a molecular weight 500 and greater, preferably 2000 and greater, preferably 5000 and greater. In this context the molecular weight is the number average molecular weight. This is the ordinary arithmetic mean of the molecular weights of the individual macromolecules . It is determined by measuring the molecular weight of j polymer molecules, summing the weights, and dividing by j. Molecular weights are determined by Gel Permeations Chromatography.
It is preferred that the dye-polymer is soluble in surfactant solution. Specifically that at lg/L sodium dodecyl sulfate aqueous solution at pH=7 the dye polymer has a solubility of greater than lmg/L, preferably greater than 10mg/L. Water solubility is enhanced by the presence of hydroxy, amino and charged groups in the polymer, preferably anionic charged groups.
Preferably the polymer is of the form:
Figure imgf000015_0001
wherein X = Y-Dye , Preferably, a is greater than b (a>b) . More preferably the ratio a:b is from 99.9:0.1 to 70:30.
It is preferred that the dye-polymer has a number average molecular weight in the range from 500 to 500000, preferably from 1000 to 100000, more preferably 5000 to 50000.
For addition to a granular formulation the polymer dye may be added to the slurry to be spray dried or preferably added via post-dosed granules.
In a preferred embodiment the polymer dye powder obtained from the polymer dye synthesis is mixed with a Na2SO4 or NaCl or pre-prepared granular base or full detergent formulation to give a 0.1 to 20 polymer dye wt% mixture. This dry mix is then mixed into the granular formulation. The polymer dye powder is preferably formed by drying a liquid slurry or solution of the dye, for example by vacuum drying, freeze drying, drying in drum dryers, Spin Flash ® (Anhydro) , but most preferably by spray drying. The polymer dye powder may be ground before, during or after the making of the slurry. This grinding is preferably accomplished in mills, such as for example ball, swing, bead or sand mills, or in kneaders .
Other ingredients such as dispersants or alkali metal salts may be added to the liquid slurry. The polymer dye powder preferably contains 20 to 100 wt% of the dye.
Preferably, the polymer dye powder has an average particle size, APS, from 0.1 to 300 microns, preferably 10 to 100 microns. Preferably this is as measured by a laser diffraction particle size analyser, preferably a Malvern HP with 100 mm lens.
SURFACTANT
The composition comprises between 2 to 70 wt percent of a surfactant, most preferably 10 to 30 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon ' s Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser
Verlag, 1981. Preferably the surfactants used are saturated.
Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are Ce to C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic Cs to Cis primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cis alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl Cio to Ci5 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium Cu to Ci5 alkyl benzene sulphonates and sodium C12 to Cis alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which shows resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides .
Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever) . Especially preferred is surfactant system that is a mixture of an alkali metal salt of a C16 to Cis primary alcohol sulphate together with a C12 to Ci5 primary alcohol 3 to 7 EO ethoxylate.
The nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt % of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5% to about 40 wt % of the surfactant system. In another aspect which is also preferred the surfactant may be a cationic such that the formulation is a fabric conditioner .
CATIONIC COMPOUND
When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
Most preferred are quaternary ammonium compounds.
It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
It is preferred if the quaternary ammonium compound has the following formula:
R2
I +
R1—N-R3 X I R4 in which R1 is a C12 to C22 alkyl or alkenyl chain; R2, R3 and R4 are independently selected from Ci to C4 alkyl chains and X~ is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from C12 to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci to C4 alkyl chains and X~ is a compatible anion. A detergent composition according to claim 1 in which the ratio of (ii) cationic material to (iv) anionic surfactant is at least 2:1.
Other suitable quaternary ammonium compounds are disclosed in EP 0 239 910 (Proctor and Gamble) .
It is preferred if the ratio of cationic to nonionic surfactant is from 1:100 to 50:50, more preferably 1:50 to 20:50.
The cationic compound may be present from 1.5 wt % to 50 wt % of the total weight of the composition. Preferably the cationic compound may be present from 2 wt % to 25 wt %, a more preferred composition range is from 5 wt % to 20 wt %.
The softening material is preferably present in an amount of from 2 to 60% by weight of the total composition, more preferably from 2 to 40%, most preferably from 3 to 30% by weight.
The composition optionally comprises a silicone.
BUILDERS OR COMPLEXING AGENTS
Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials,
3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra- acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P) , zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-O, 384, 070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach- stabilising agents by virtue of their ability to complex metal ions.
Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:
0.8-1.5 M2O. Al2O3. 0.8-6 SiO2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 Siθ2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term λphosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst) .
Preferably the laundry detergent formulation is a non- phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
FLUORESCENT AGENT
The composition preferably comprises a fluorescent agent (optical brightener) . Fluorescent agents are well known and many such fluorescent agents are available commercially.
Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3- sulfophenyl) -2H-napthol [1, 2-d] triazole, disodium 4,4'- bis { [ (4-anilino-6- (N methyl-N-2 hydroxyethyl) amino 1,3,5- triazin-2-yl) ] amino } stilbene-2-2 ' disulfonate, disodium 4 , 4 ' -bis { [ (4-anilino-6-morpholino-l , 3, 5-triazin-2-yl) ] amino } stilbene-2-2' disulfonate, and disodium 4, 4 '-bis (2- sulfostyryl) biphenyl .
It is preferred that the aqueous solution used in the method has a fluorescer present. When a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/1 to 0.1 g/1, preferably 0.001 to 0.02 g/1.
PERFUME
Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2) : 80 [1955]) . Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol .
Perfume and top note may be used to cue the whiteness benefit of the invention.
It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. It is preferred that the laundry treatment composition does not contain hypochlorite bleach.
POLYMERS
The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly (ethylene glycol) , poly (vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers. Polymers present to prevent dye deposition, for example poly (vinylpyrrolidone) , poly (vinylpyridine-N-oxide) , and poly (vinylimidazole) , are preferably absent from the formulation .
ENZYMES
The laundry treatment composition may contain an enzyme.
Preferred enzymes are disclosed in WO 2007/087243 and WO
2007/087257.
Examples
Example 1 Synthesis of dye monomer
Reaction scheme:
Figure imgf000025_0001
1 , 4-Diaminoanthraquinone (DAQ) was purchased from Aldrich, (90% technical grade) and used as supplied.
The dye monomer was prepared by the reaction of DAQ (1,4- Diaminoaquinone) and Ac (acryloyl chloride) in the presence of sodium dicarbonate. A mixture of 150ml anhydrous THF, Ig
DAQ and 0.6g sodium dicarbonate was charged into 250ml three-necked round bottom flask equipped with a condenser, a dropping funnel, and a magnetic stirring bar. The flask was then maintained at R. T. while 0.38g Ac dissolved in 5ml anhydrous THF was added from the dropping funnel for 3h. The reaction mixture was stirred at 25 0C for another 2Oh. The reaction mixture was filtered to remove the insoluble solids occurred during the reaction process 2Oh later, the clear solution was dried by using rotary evaporation pressure reduced meter, then violet powder was obtained and washed with water for three times, the powder was completely dried under vacuum at 60 0C for 24h. The structure of DAQ-AC was confirmed using NMR and showed that the reaction had gone to greater than 88% completion. Consequently greater than 88% of the anthraquinones contained one NHCOCH=CH2 groups.
Example 2 Synthesis of dye containing polymers
Reaction Scheme:
Figure imgf000026_0001
A solution of 3g dimethyl amino ethyl methacrylate (DMAEMA) , 0.03g DAQ-Ac and 0.06g AIBN in 10ml toluene was charged into a dry N2 gas purged two-necked tube with a condenser and a magnetic stirring bar. The tube was sealed and placed in a regulated thermostat bath at 65 0C for 24hours. The solution was precipitated in five-fold excess of petroleum ether for three times after the reaction, followed by drying under vacuum at 40 0C for 24h. The composition of the co-polymers was regulated via the control of the primary usages of dye monomer and functional monomer. In the experiments, the amounts of dye monomer added were 1 wt %, 2 wt %, 5 wt % and 10 wt % respectively.
Example 3 UV-VIS of dye polymers
The UV-Vis spectra of the dye polymers of example 2 were recorded in demineralised water at lg/L dye polymer. The results are given in the table below.
Figure imgf000027_0001
Example 4 : Dye deposition experiments
Knitted white polyester (microfiber) and white woven non- mercerised cotton fabrics were used together in 4g/L of a detergent which contained 15% Linear Alkyl benzene sulfonate (LAS) surfactant, 30% Na2CO3, 40% NaCl, remainder minors included calcite and fluorescer and moisture. Washes were conducted in 6° French Hard water at room temperature with a liquor to cloth ratio of 30:1, for 30 minutes. Following the wash the cloths were rinsed twice in water, dried, their reflectance spectrum measured on a reflectometer and the colour expressed as CIE L a b values. The washes were then repeated until 4 washes had been accomplished. The experiment was repeated with the addition of the dye polymers of example 3. The dye polymers were dosed at 0.125wt% on formulation. Before and after the 1st, 2nd and 4th wash the CIE L*a*b* values of the fabrics were recorded using a reflectometer (UV-excluded) . The deposition of the dye-polymers to the fabrics was expressed as the Δb value such that
Δb = b (control) -b (dye polymer)
+ve values indicate a blueing of the fabric, due to dye- polymer deposition.
Figure imgf000028_0001
The dye-polymers deposit to both cotton and polyester.
An added advantage is that the dye-polymer also facilitates soil removal and alter fabric feel.
Example 5 : Dye deposition experiments
The experiment of example 4 was repeated using the following polymers:
Figure imgf000028_0002
Figure imgf000029_0001
The results are shown in the table below:
Figure imgf000029_0002

Claims

We claim:
1. A detergent composition comprising from 2 to 70 wt % of a surfactant together with from 0.0001 to 10 wt% of a dye- polymer of molecular weight of at least 500, wherein the dye-polymer is obtainable by polymerisation of:
(a) a dye monomer, the dye monomer an uncharged alkene covalently bound to a dye, the dye monomer having a molar extinction coefficient at a wavelength in the range 400 to 700nm of at least 1000 mol"1 L cm"1, and
(b) one or more further alkene comonomer (s) , the alkene monomer (s) having molar extinction coefficient at a wavelength in the range 400 to 700nm that is less than 100 mol'1 L cm"1, wherein the dye polymer at lg/L sodium dodecyl sulfate aqueous solution at pH=7 has a solubility of greater than lmg/L.
2. A detergent composition according to claim 1, wherein the dye monomer is of the form:
H2C=(^ Y—Dye, wherein Y is an organic bridging group covalently connecting a dye to the alkene moiety of the dye monomer and Ri is selected from: H; alkyl; aryl; halogen; ester; acid amide; and, CN.
3. A detergent composition according to claim 2, wherein the organic bridging group is selected from: -CONR4-; -NR4CO- ; -COOR4- ,--NR4-; -O- ; -S-; -SO2-; -SO2NR4-; -N(COR4)-; and - N(SO2R4)-; wherein R4 is selected from: H; C1-C6 branched or linear alkyl; phenyl and benzyl groups; wherein R4 has 0 to
1 spacing units selected from: -O- ; -S-; -SO2-; -C(O)O-; - OC(O)-; and an amine.
4. A detergent composition according to claim 2, wherein the organic bridging group is -CONR4-.
5. A detergent composition according to any one of claims 3 or 4, wherein R4 is selected: from: H and Me.
6. A detergent composition according to any one of claims
2 to 5, wherein the Y group is bound directly to a carbon atom of an aromatic ring of the dye.
7. A detergent composition according to any one of the preceding claims, wherein the dye is an organic dye selected from the following chromophore classes: anthraquinone; azo; and, methine.
8. A detergent composition according to claim 7, wherein the organic dye is selected from the following chromophore classes: anthraquinone; and, mono-azo.
9. A detergent composition according to any one of claims 2 to 8, wherein R1 is selected from: H; Me; Et; Pr; CO2C1-C4 branched and linear alkyl chains; phenyl; benzyl; CN; Cl; and, F.
10. A detergent composition according to claim 9, wherein Ri is selected from: H; and, Me.
11. A detergent composition according to any one of the preceding claims, wherein the dye-monomer is selected from:
Figure imgf000032_0001
wherein Ar is an aromatic or heteroaromatic group and Z is selected from: H; Me; Cl; and, NHCOCH3; and W is selected from: H; CH3O; C2H5O; and, Cl.
12. A detergent composition according to claim 2 to 10, wherein the dye-monomer is selected from:
Figure imgf000032_0002
13. A detergent composition according to claim 12, wherein the A and B ring are further substituted by one or more groups selected from: NH2; NHAr; NHR5; NR5R6; OH; Cl; Br, CN, OAr; NO2; SO2OAr; Me; and, NHCOC(Rl)=CH2, wherein R5 and R6 are independently selected from C1-C8 branched, cyclic or linear alkyl which may be substituted by OH, OMe, Cl or CN.
14. A detergent composition according to claim 13, wherein the A and B ring are further substituted at the 4, 5 or 8 position by at least one group selected from NH2, NHAr, and NHR5, NR5R6.
15. A detergent composition according to any one of the preceding claims, wherein the comonomer is selected from:
Figure imgf000033_0001
wherein R2 and R3 are independently selected from: H, C1-C8 branched, cyclic and linear alkyl chains, C(O)OH, CO2C1-C18 branched and linear alkyl chains, -C(O)N (Cl-C18)2; -C (O)N(C1-C18)H; -C(0)NH2; heteroaromatic, phenyl, benzyl, polyether, cyano, Cl and F.
16. A detergent composition according to any one of claims 1 to 14, wherein greater than 80wt%, of the co-monomers are selected from co-monomer that have a molecular weight of less than 300 and contain an amine.
17. A detergent composition according to claim 15, wherein R2 and R3 of the comonomer is further substituted by groups selected from: charged; and, uncharged organic, the further groups having a total molecular weight of less than 400.
18. A detergent composition according to claim 2, wherein the dye-monomer is selected from:
Figure imgf000034_0001
Figure imgf000034_0002
and,
Figure imgf000035_0001
19. A detergent composition according to any one of the preceding claims, wherein detergent composition comprises a fluorescent agent.
20. A domestic method of treating a textile, the method comprising the steps of:
(i) treating a textile with an aqueous solution of the dye-polymer as defined in any one of claims 1 to 18, the aqueous solution comprising from 10 ppb to 100 ppm of the dye-polymer; and, from 0.0 g/L to 3 g/L of a surfactant;
(ii) optionally rinsing; and,
(iii) drying the textile.
21. A domestic method of treating a textile according to claim 20, wherein the aqueous solution comprises from 0.3 to 2 g/L of a surfactant.
PCT/EP2010/051220 2009-03-12 2010-02-02 Dye-polymers formulations WO2010102861A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1013881-1A BRPI1013881B1 (en) 2009-03-12 2010-02-02 DETERGENT COMPOSITION, AND, HOUSEHOLD FABRIC TREATMENT METHOD
ES10703043T ES2435470T3 (en) 2009-03-12 2010-02-02 Dye polymer formulations
CN2010800116262A CN102348769A (en) 2009-03-12 2010-02-02 Dye-polymers formulations
EP10703043.9A EP2406327B1 (en) 2009-03-12 2010-02-02 Dye-polymers formulations
ZA2011/06050A ZA201106050B (en) 2009-03-12 2011-08-17 Dye-polymers formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09155034.3 2009-03-12
EP09155034 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010102861A1 true WO2010102861A1 (en) 2010-09-16

Family

ID=40929625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051220 WO2010102861A1 (en) 2009-03-12 2010-02-02 Dye-polymers formulations

Country Status (9)

Country Link
EP (1) EP2406327B1 (en)
CN (1) CN102348769A (en)
AR (1) AR075726A1 (en)
BR (1) BRPI1013881B1 (en)
CL (1) CL2011002240A1 (en)
ES (1) ES2435470T3 (en)
MY (1) MY154041A (en)
WO (1) WO2010102861A1 (en)
ZA (1) ZA201106050B (en)

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149484A3 (en) * 2009-06-26 2011-09-09 Unilever Plc Oral care compositions comprising a dye polymer
WO2011134809A1 (en) 2010-04-26 2011-11-03 Novozymes A/S Enzyme granules
EP2514791A1 (en) * 2009-12-17 2012-10-24 Menicon Co., Ltd. Anthraquinone pigment, ocular lens material using same, ocular lens material manufacturing method, and ocular lens
WO2012159778A1 (en) 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition
WO2012163871A1 (en) * 2011-06-01 2012-12-06 Unilever Plc Liquid detergent composition containing dye polymer
WO2012175401A2 (en) 2011-06-20 2012-12-27 Novozymes A/S Particulate composition
WO2012175708A2 (en) 2011-06-24 2012-12-27 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2013001087A2 (en) 2011-06-30 2013-01-03 Novozymes A/S Method for screening alpha-amylases
WO2013007594A1 (en) 2011-07-12 2013-01-17 Novozymes A/S Storage-stable enzyme granules
WO2013011071A1 (en) 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
WO2013041689A1 (en) 2011-09-22 2013-03-28 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013092635A1 (en) 2011-12-20 2013-06-27 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013110766A1 (en) 2012-01-26 2013-08-01 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2013120948A1 (en) 2012-02-17 2013-08-22 Novozymes A/S Subtilisin variants and polynucleotides encoding same
WO2013131964A1 (en) 2012-03-07 2013-09-12 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
WO2013167581A1 (en) 2012-05-07 2013-11-14 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2013189972A2 (en) 2012-06-20 2013-12-27 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2014089386A1 (en) 2012-12-06 2014-06-12 The Procter & Gamble Company Soluble pouch comprising hueing dye
WO2014096259A1 (en) 2012-12-21 2014-06-26 Novozymes A/S Polypeptides having protease activiy and polynucleotides encoding same
CN104114646A (en) * 2011-12-23 2014-10-22 通用电气公司 High-density fluorescent dye clusters
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2014207224A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2015001017A2 (en) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides having anti-redeposition effect and polynucleotides encoding same
EP2832853A1 (en) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Detergent composition comprising protease variants
WO2015049370A1 (en) 2013-10-03 2015-04-09 Novozymes A/S Detergent composition and use of detergent composition
EP2899260A1 (en) 2014-01-22 2015-07-29 Unilever PLC Process to manufacture a liquid detergent formulation
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
WO2015134737A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
WO2015150457A1 (en) 2014-04-01 2015-10-08 Novozymes A/S Polypeptides having alpha amylase activity
WO2015189371A1 (en) 2014-06-12 2015-12-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016079305A1 (en) 2014-11-20 2016-05-26 Novozymes A/S Alicyclobacillus variants and polynucleotides encoding same
WO2016188693A1 (en) 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2016192905A1 (en) 2015-06-02 2016-12-08 Unilever Plc Laundry detergent composition
EP3106508A1 (en) 2015-06-18 2016-12-21 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2017055205A1 (en) 2015-10-01 2017-04-06 Unilever Plc Powder laundry detergent composition
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
WO2017140391A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017140392A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017198438A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017198574A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017207762A1 (en) 2016-06-03 2017-12-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2018011276A1 (en) 2016-07-13 2018-01-18 The Procter & Gamble Company Bacillus cibi dnase variants and uses thereof
WO2018060139A1 (en) 2016-09-27 2018-04-05 Unilever Plc Domestic laundering method
EP3309249A1 (en) 2013-07-29 2018-04-18 Novozymes A/S Protease variants and polynucleotides encoding same
WO2018072979A1 (en) 2016-10-18 2018-04-26 Unilever Plc Whitening composition
US20180119059A1 (en) * 2016-11-01 2018-05-03 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085372A1 (en) * 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
EP3321360A2 (en) 2013-01-03 2018-05-16 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
WO2019008036A1 (en) 2017-07-07 2019-01-10 Unilever Plc Whitening composition
EP3453757A1 (en) 2013-12-20 2019-03-13 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2019084349A1 (en) 2017-10-27 2019-05-02 The Procter & Gamble Company Detergent compositions comprising polypeptide variants
WO2019081721A1 (en) 2017-10-27 2019-05-02 Novozymes A/S Dnase variants
WO2019105675A1 (en) 2017-11-30 2019-06-06 Unilever Plc Detergent composition comprising protease
WO2019162136A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Detergent solid composition comprising aminopolycarboxylate and organic acid
WO2019192813A1 (en) 2018-04-03 2019-10-10 Unilever N.V. Dye granule
WO2019201793A1 (en) 2018-04-17 2019-10-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric.
WO2019219531A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition
WO2019219302A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
WO2020016097A1 (en) 2018-07-17 2020-01-23 Unilever Plc Use of a rhamnolipid in a surfactant system
EP3608403A2 (en) 2014-12-15 2020-02-12 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
EP3611260A1 (en) 2013-07-29 2020-02-19 Novozymes A/S Protease variants and polynucleotides encoding same
US10590275B2 (en) 2016-11-01 2020-03-17 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2020058024A1 (en) 2018-09-17 2020-03-26 Unilever Plc Detergent composition
WO2020104157A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104159A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104158A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104155A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104156A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
EP3690037A1 (en) 2014-12-04 2020-08-05 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2020188095A1 (en) 2019-03-21 2020-09-24 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2020207944A1 (en) 2019-04-10 2020-10-15 Novozymes A/S Polypeptide variants
EP3739029A1 (en) 2014-07-04 2020-11-18 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3750978A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Laundry detergent composition
EP3750979A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Use of laundry detergent composition
WO2020259948A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259949A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259947A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
WO2020260040A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260038A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2021032818A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2021037895A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Detergent composition
WO2021043764A1 (en) 2019-09-02 2021-03-11 Unilever Global Ip Limited Detergent composition
WO2021053127A1 (en) 2019-09-19 2021-03-25 Novozymes A/S Detergent composition
WO2021064068A1 (en) 2019-10-03 2021-04-08 Novozymes A/S Polypeptides comprising at least two carbohydrate binding domains
WO2021069516A1 (en) 2019-10-07 2021-04-15 Unilever Ip Holdings B.V. Detergent composition
EP3872175A1 (en) 2015-06-18 2021-09-01 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878960A1 (en) 2014-07-04 2021-09-15 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2021185870A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021185956A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
EP3892708A1 (en) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Cleaning compositions comprising dispersin variants
WO2021249927A1 (en) 2020-06-08 2021-12-16 Unilever Ip Holdings B.V. Method of improving protease activity
WO2022023250A1 (en) 2020-07-27 2022-02-03 Unilever Ip Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
WO2022042989A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042977A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043138A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022043045A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022074037A2 (en) 2020-10-07 2022-04-14 Novozymes A/S Alpha-amylase variants
WO2022128786A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Use and cleaning composition
WO2022128781A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Cleaning composition
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
WO2022268728A1 (en) 2021-06-24 2022-12-29 Unilever Ip Holdings B.V. Unit dose cleaning composition
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
WO2023067074A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
WO2023144071A1 (en) 2022-01-28 2023-08-03 Unilever Ip Holdings B.V. Laundry composition
WO2024131880A2 (en) 2022-12-23 2024-06-27 Novozymes A/S Detergent composition comprising catalase and amylase

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1523820A (en) * 1966-05-24 1968-05-03 Dainichiseika Color Chem New coloring polymers and raw materials for the preparation of dyes
US3926830A (en) 1970-11-25 1975-12-16 Dainichiswika Color & Chemical Detergent composition having polymer bonded indicator
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
EP0128619A2 (en) 1983-06-09 1984-12-19 Unilever N.V. Coloured bleaching compositions
EP0239910A2 (en) 1986-04-02 1987-10-07 The Procter & Gamble Company Biodegradable fabric softeners
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0346995A2 (en) 1988-06-13 1989-12-20 Unilever N.V. Liquid detergents
US4943617A (en) 1986-09-19 1990-07-24 Basf Aktiengesellschaft Liquid crystalline copolymer
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
US5055602A (en) 1989-05-02 1991-10-08 Bausch & Lomb Incorporated Polymerizable dye
US5362812A (en) 1993-04-23 1994-11-08 Minnesota Mining And Manufacturing Company Reactive polymeric dyes
WO2005003274A1 (en) 2003-06-18 2005-01-13 Unilever Plc Laundry treatment compositions
WO2005021663A1 (en) 2003-08-25 2005-03-10 Eastman Chemical Company Ethylenically-unsaturated blue anthraquinone dyes
WO2005068596A1 (en) * 2004-01-06 2005-07-28 Colgate-Palmolive Company Laundry detergent composition containing a violet colorant
WO2005068598A1 (en) 2003-12-18 2005-07-28 Ecolab Inc. Methods and compositions for the removal of starch
WO2006055843A2 (en) 2004-11-18 2006-05-26 Milliken & Company Alkoxylated triphenylmethane dyes
WO2006055787A1 (en) 2004-11-19 2006-05-26 The Procter & Gamble Company Whiteness perception compositions
WO2007087252A1 (en) 2006-01-23 2007-08-02 Milliken & Company Laundry care compositions with thiazolium dye
WO2007087257A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2007087243A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Detergent compositions
WO2008009579A1 (en) 2006-07-18 2008-01-24 Ciba Holding Inc. Polymeric hair dyes
WO2008091524A1 (en) 2007-01-19 2008-07-31 Milliken & Company Novel whitening agents for cellulosic substrates
WO2008100445A2 (en) 2007-02-09 2008-08-21 Milliken & Company Unsubstituted and polymeric leuco colorants for coloring consumer products

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1523820A (en) * 1966-05-24 1968-05-03 Dainichiseika Color Chem New coloring polymers and raw materials for the preparation of dyes
US3926830A (en) 1970-11-25 1975-12-16 Dainichiswika Color & Chemical Detergent composition having polymer bonded indicator
EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
EP0128619A2 (en) 1983-06-09 1984-12-19 Unilever N.V. Coloured bleaching compositions
EP0239910A2 (en) 1986-04-02 1987-10-07 The Procter & Gamble Company Biodegradable fabric softeners
US4943617A (en) 1986-09-19 1990-07-24 Basf Aktiengesellschaft Liquid crystalline copolymer
EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
EP0346995A2 (en) 1988-06-13 1989-12-20 Unilever N.V. Liquid detergents
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
US5055602A (en) 1989-05-02 1991-10-08 Bausch & Lomb Incorporated Polymerizable dye
US5362812A (en) 1993-04-23 1994-11-08 Minnesota Mining And Manufacturing Company Reactive polymeric dyes
WO2005003274A1 (en) 2003-06-18 2005-01-13 Unilever Plc Laundry treatment compositions
WO2005021663A1 (en) 2003-08-25 2005-03-10 Eastman Chemical Company Ethylenically-unsaturated blue anthraquinone dyes
WO2005068598A1 (en) 2003-12-18 2005-07-28 Ecolab Inc. Methods and compositions for the removal of starch
WO2005068596A1 (en) * 2004-01-06 2005-07-28 Colgate-Palmolive Company Laundry detergent composition containing a violet colorant
WO2006055843A2 (en) 2004-11-18 2006-05-26 Milliken & Company Alkoxylated triphenylmethane dyes
WO2006055787A1 (en) 2004-11-19 2006-05-26 The Procter & Gamble Company Whiteness perception compositions
WO2007087252A1 (en) 2006-01-23 2007-08-02 Milliken & Company Laundry care compositions with thiazolium dye
WO2007087257A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
WO2007087243A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Detergent compositions
WO2008009579A1 (en) 2006-07-18 2008-01-24 Ciba Holding Inc. Polymeric hair dyes
WO2008091524A1 (en) 2007-01-19 2008-07-31 Milliken & Company Novel whitening agents for cellulosic substrates
WO2008100445A2 (en) 2007-02-09 2008-08-21 Milliken & Company Unsubstituted and polymeric leuco colorants for coloring consumer products

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"CTFA", 1992, CFTA PUBLICATIONS
"Industrial Dyes", 2003, WILEY VCH
"McCutcheon's Emulsifiers and Detergents", MANUFACTURING CONFECTIONERS COMPANY
"OPD", 1993, SCHNELL PUBLISHING CO., article "Chemicals Buyers Directory"
ASQUITH R S ET AL: "SELF-COLOURED POLYMERS BASED ON ANTHRAQUINONE RESIDUES", JOURNAL OF THE SOCIETY OF DYERS AND COLOURISTS, SOCIETY OF DYERS AND COLOURISTS. BRADFORD, GB, vol. 93, 1 April 1977 (1977-04-01), pages 114 - 125, XP009048725, ISSN: 0037-9859 *
H. STACHE: "Tenside-Taschenbuch", 1981, CARL HAUSER VERLAG
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
SCHWARTZ; PERRY: "Surface Active Agents", vol. 1, 1994, INTERSCIENCE

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149484A3 (en) * 2009-06-26 2011-09-09 Unilever Plc Oral care compositions comprising a dye polymer
US9138600B2 (en) 2009-06-26 2015-09-22 Conopco, Inc. Oral care compositions comprising a polymeric dye
EP2514791A4 (en) * 2009-12-17 2013-08-21 Menicon Co Ltd Anthraquinone pigment, ocular lens material using same, ocular lens material manufacturing method, and ocular lens
EP2514791A1 (en) * 2009-12-17 2012-10-24 Menicon Co., Ltd. Anthraquinone pigment, ocular lens material using same, ocular lens material manufacturing method, and ocular lens
WO2011134809A1 (en) 2010-04-26 2011-11-03 Novozymes A/S Enzyme granules
EP2840134A1 (en) 2010-04-26 2015-02-25 Novozymes A/S Enzyme granules
WO2012159778A1 (en) 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition
WO2012163871A1 (en) * 2011-06-01 2012-12-06 Unilever Plc Liquid detergent composition containing dye polymer
EP3354792A1 (en) 2011-06-01 2018-08-01 Unilever PLC, a company registered in England and Wales under company no. 41424 of Liquid detergent composition containing dye polymer
EP4134424A1 (en) 2011-06-01 2023-02-15 Unilever IP Holdings B.V. Liquid detergent composition containing dye polymer
WO2012175401A2 (en) 2011-06-20 2012-12-27 Novozymes A/S Particulate composition
WO2012175708A2 (en) 2011-06-24 2012-12-27 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
EP3543333A2 (en) 2011-06-30 2019-09-25 Novozymes A/S Method for screening alpha-amylases
EP4026901A2 (en) 2011-06-30 2022-07-13 Novozymes A/S Method for screening alpha-amylases
WO2013001087A2 (en) 2011-06-30 2013-01-03 Novozymes A/S Method for screening alpha-amylases
WO2013007594A1 (en) 2011-07-12 2013-01-17 Novozymes A/S Storage-stable enzyme granules
WO2013011071A1 (en) 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
WO2013041689A1 (en) 2011-09-22 2013-03-28 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013092635A1 (en) 2011-12-20 2013-06-27 Novozymes A/S Subtilase variants and polynucleotides encoding same
CN104114646A (en) * 2011-12-23 2014-10-22 通用电气公司 High-density fluorescent dye clusters
WO2013110766A1 (en) 2012-01-26 2013-08-01 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2013120948A1 (en) 2012-02-17 2013-08-22 Novozymes A/S Subtilisin variants and polynucleotides encoding same
WO2013131964A1 (en) 2012-03-07 2013-09-12 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
WO2013167581A1 (en) 2012-05-07 2013-11-14 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2013189972A2 (en) 2012-06-20 2013-12-27 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2014089386A1 (en) 2012-12-06 2014-06-12 The Procter & Gamble Company Soluble pouch comprising hueing dye
WO2014096259A1 (en) 2012-12-21 2014-06-26 Novozymes A/S Polypeptides having protease activiy and polynucleotides encoding same
EP3321360A2 (en) 2013-01-03 2018-05-16 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2014207224A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2015001017A2 (en) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides having anti-redeposition effect and polynucleotides encoding same
EP3611260A1 (en) 2013-07-29 2020-02-19 Novozymes A/S Protease variants and polynucleotides encoding same
EP3309249A1 (en) 2013-07-29 2018-04-18 Novozymes A/S Protease variants and polynucleotides encoding same
EP2832853A1 (en) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Detergent composition comprising protease variants
EP3339436A1 (en) 2013-07-29 2018-06-27 Henkel AG & Co. KGaA Detergent composition comprising protease variants
EP3613853A1 (en) 2013-07-29 2020-02-26 Novozymes A/S Protease variants and polynucleotides encoding same
WO2015049370A1 (en) 2013-10-03 2015-04-09 Novozymes A/S Detergent composition and use of detergent composition
EP3453757A1 (en) 2013-12-20 2019-03-13 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015110444A1 (en) 2014-01-22 2015-07-30 Unilever Plc Process to manufacture a liquid detergent formulation
EP2899260A1 (en) 2014-01-22 2015-07-29 Unilever PLC Process to manufacture a liquid detergent formulation
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
WO2015134737A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
WO2015150457A1 (en) 2014-04-01 2015-10-08 Novozymes A/S Polypeptides having alpha amylase activity
WO2015189371A1 (en) 2014-06-12 2015-12-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3739029A1 (en) 2014-07-04 2020-11-18 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878960A1 (en) 2014-07-04 2021-09-15 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2016079305A1 (en) 2014-11-20 2016-05-26 Novozymes A/S Alicyclobacillus variants and polynucleotides encoding same
EP3690037A1 (en) 2014-12-04 2020-08-05 Novozymes A/S Subtilase variants and polynucleotides encoding same
US10760036B2 (en) 2014-12-15 2020-09-01 Henkel Ag & Co. Kgaa Detergent composition comprising subtilase variants
EP3608403A2 (en) 2014-12-15 2020-02-12 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2016188693A1 (en) 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2016192905A1 (en) 2015-06-02 2016-12-08 Unilever Plc Laundry detergent composition
EP3872175A1 (en) 2015-06-18 2021-09-01 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP4071244A1 (en) 2015-06-18 2022-10-12 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3106508A1 (en) 2015-06-18 2016-12-21 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2017055205A1 (en) 2015-10-01 2017-04-06 Unilever Plc Powder laundry detergent composition
EP4324919A2 (en) 2015-10-14 2024-02-21 Novozymes A/S Polypeptide variants
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
WO2017140392A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017140391A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017198438A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017198574A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017207762A1 (en) 2016-06-03 2017-12-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2018011276A1 (en) 2016-07-13 2018-01-18 The Procter & Gamble Company Bacillus cibi dnase variants and uses thereof
EP3950941A2 (en) 2016-07-13 2022-02-09 Novozymes A/S Dnase polypeptide variants
WO2018011277A1 (en) 2016-07-13 2018-01-18 Novozymes A/S Bacillus cibi dnase variants
WO2018060139A1 (en) 2016-09-27 2018-04-05 Unilever Plc Domestic laundering method
WO2018072979A1 (en) 2016-10-18 2018-04-26 Unilever Plc Whitening composition
CN110494503A (en) * 2016-11-01 2019-11-22 美利肯公司 Procrypsis polymer as the blueing agent in laundry care composition
US20180119059A1 (en) * 2016-11-01 2018-05-03 The Procter & Gamble Company Leuco polymers as bluing agents in laundry care compositions
WO2018085372A1 (en) * 2016-11-01 2018-05-11 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
JP7009474B2 (en) 2016-11-01 2022-01-25 ミリケン・アンド・カンパニー Roy copolymer as a bluish agent in laundry care compositions
JP2019534359A (en) * 2016-11-01 2019-11-28 ミリケン・アンド・カンパニーMilliken & Company Roy copolymer as a bluing agent in laundry care compositions
US10711139B2 (en) 2016-11-01 2020-07-14 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
US10590275B2 (en) 2016-11-01 2020-03-17 Milliken & Company Leuco polymers as bluing agents in laundry care compositions
WO2019008036A1 (en) 2017-07-07 2019-01-10 Unilever Plc Whitening composition
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
WO2019081724A1 (en) 2017-10-27 2019-05-02 Novozymes A/S Dnase variants
WO2019081721A1 (en) 2017-10-27 2019-05-02 Novozymes A/S Dnase variants
WO2019084349A1 (en) 2017-10-27 2019-05-02 The Procter & Gamble Company Detergent compositions comprising polypeptide variants
WO2019105675A1 (en) 2017-11-30 2019-06-06 Unilever Plc Detergent composition comprising protease
WO2019162137A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Water-soluble film comprising aminopolycarboxylate
WO2019162136A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Detergent solid composition comprising aminopolycarboxylate and organic acid
WO2019162132A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Detergent solid composition comprising aminopolycarboxylate and inorganic acid.
WO2019162134A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Solid compositions comprising aminopolycarboxylate
WO2019162135A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Process of preparing a solid composition comprising aminopolycarboxylate
WO2019162133A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Shaped detergent product composition comprising aminopolycarboxylate
WO2019162138A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Solid compositions comprising aminopolycarboxylate
WO2019162130A1 (en) 2018-02-23 2019-08-29 Unilever N.V. Shaped detergent product comprising aminopolycarboxylate
WO2019192813A1 (en) 2018-04-03 2019-10-10 Unilever N.V. Dye granule
WO2019201793A1 (en) 2018-04-17 2019-10-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric.
WO2019219531A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition
WO2019219302A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
WO2020016097A1 (en) 2018-07-17 2020-01-23 Unilever Plc Use of a rhamnolipid in a surfactant system
WO2020058024A1 (en) 2018-09-17 2020-03-26 Unilever Plc Detergent composition
WO2020104156A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104155A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104158A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104159A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104157A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020188095A1 (en) 2019-03-21 2020-09-24 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2020207944A1 (en) 2019-04-10 2020-10-15 Novozymes A/S Polypeptide variants
EP3750978A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Laundry detergent composition
EP3750979A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Use of laundry detergent composition
WO2020260038A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260040A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259948A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259949A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259947A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
WO2021032833A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
WO2021032817A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
WO2021032815A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. An embossed detergent solid
WO2021032818A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
WO2021032834A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
WO2021032816A1 (en) 2019-08-21 2021-02-25 Unilever Ip Holdings B.V. Detergent solid composition
WO2021037895A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Detergent composition
WO2021043764A1 (en) 2019-09-02 2021-03-11 Unilever Global Ip Limited Detergent composition
WO2021053127A1 (en) 2019-09-19 2021-03-25 Novozymes A/S Detergent composition
WO2021064068A1 (en) 2019-10-03 2021-04-08 Novozymes A/S Polypeptides comprising at least two carbohydrate binding domains
WO2021069516A1 (en) 2019-10-07 2021-04-15 Unilever Ip Holdings B.V. Detergent composition
WO2021185870A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021185956A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
EP3892708A1 (en) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Cleaning compositions comprising dispersin variants
WO2021249927A1 (en) 2020-06-08 2021-12-16 Unilever Ip Holdings B.V. Method of improving protease activity
WO2022023250A1 (en) 2020-07-27 2022-02-03 Unilever Ip Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
WO2022043045A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043138A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022042977A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042989A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022074037A2 (en) 2020-10-07 2022-04-14 Novozymes A/S Alpha-amylase variants
WO2022128786A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Use and cleaning composition
WO2022128781A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Cleaning composition
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
WO2022268657A1 (en) 2021-06-24 2022-12-29 Unilever Ip Holdings B.V. Unit dose cleaning composition
WO2022268728A1 (en) 2021-06-24 2022-12-29 Unilever Ip Holdings B.V. Unit dose cleaning composition
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
WO2023067074A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
WO2023067073A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
WO2023067075A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
WO2023144071A1 (en) 2022-01-28 2023-08-03 Unilever Ip Holdings B.V. Laundry composition
WO2024131880A2 (en) 2022-12-23 2024-06-27 Novozymes A/S Detergent composition comprising catalase and amylase

Also Published As

Publication number Publication date
BRPI1013881B1 (en) 2023-10-17
MY154041A (en) 2015-04-30
BRPI1013881A2 (en) 2016-12-20
ES2435470T3 (en) 2013-12-19
CL2011002240A1 (en) 2012-06-22
EP2406327A1 (en) 2012-01-18
CN102348769A (en) 2012-02-08
AR075726A1 (en) 2011-04-20
EP2406327B1 (en) 2013-08-14
ZA201106050B (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP2406327B1 (en) Dye-polymers formulations
EP2443220B1 (en) Detergent composition comprising anionic dye polymer
EP2300589B1 (en) Shading composition
EP2440645B1 (en) Cationic dye polymers
EP2403931B1 (en) Dye radical initiators
EP2382299B1 (en) Incorporation of dye into granular laundry composition
EP2354214B2 (en) Surfactant ratio in dye formulations
WO2009112296A1 (en) Laundry treatment compositions
EP2331669B1 (en) Cationic pyridine and pyridazine dyes
EP2334777B1 (en) Elastane substantive dyes
EP3775121B1 (en) Dye granule
EP2721135B1 (en) Incorporation of dye into granular laundry composition
EP2331670B1 (en) Cationic isothiazolium dyes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011626.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703043

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010703043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011002240

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013881

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1013881

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 020110094631 DE 12/09/2011 E COMPROVE, CASO NECESSARIO, QUE TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENP Entry into the national phase

Ref document number: PI1013881

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110912