WO2010101264A1 - Method for producing polymer having sulfo group - Google Patents

Method for producing polymer having sulfo group Download PDF

Info

Publication number
WO2010101264A1
WO2010101264A1 PCT/JP2010/053708 JP2010053708W WO2010101264A1 WO 2010101264 A1 WO2010101264 A1 WO 2010101264A1 JP 2010053708 W JP2010053708 W JP 2010053708W WO 2010101264 A1 WO2010101264 A1 WO 2010101264A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
represented
aryloxy
Prior art date
Application number
PCT/JP2010/053708
Other languages
French (fr)
Japanese (ja)
Inventor
春木健二
日比野裕明
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010101264A1 publication Critical patent/WO2010101264A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/121Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from organic halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3444Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a polymer having a sulfo group.
  • WO2007 / 043274A1 and WO2007 / 102235A1 disclose polymers having a sulfo group (—SO 3 H) useful as a polymer electrolyte for a solid polymer fuel cell.
  • a polymer having a sulfo group is produced by reacting a corresponding sulfonic acid ester with lithium bromide, and reacting the obtained reaction product with an acid.
  • R 1 represents a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, and a cyano group.
  • the nitrogen-containing aromatic heterocyclic compound is a pyridine which may have an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a halogen atom.
  • each R 2 independently represents a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 20 carbon atoms.
  • an acyl group having 2 to 20 carbon atoms or a cyano group wherein the alkyl group, the alkoxy group, the aryl group, the aryloxy group and the acyl group are a fluorine atom, a cyano group, a carbon number of 1 It may have at least one group selected from the group consisting of an alkoxy group having 20 to 20, an aryl group having 6 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms, and two adjacent R 2 groups. May be bonded to form a ring, m represents 1 or 2, k represents an integer of 0 to 3.
  • R 1 represents the same meaning as in claim 1.
  • the production method according to ⁇ 5> comprising a structural unit represented by: ⁇ 7>
  • a polyarylene having a group represented by the formula (1) is represented by the formula (3): (In the formula, R 1 and R 2 each have the same meaning as defined in claim 6, and j represents an integer of 0 to 3.)
  • a polyarylene having a group represented by the formula (1) is further represented by the formula (4): (In the formula, a, b and c each independently represent 0 or 1, and n represents an integer of 3 or more.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a divalent group.
  • A2 having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms.
  • Y 1 and Y 2 each independently represent a single bond, —CO—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or a fluorene-9,9-diyl group.
  • Z 1 and Z 2 each independently represents —O— or —S—.
  • R 1 is composed of a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, and a cyano group.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2,2-dimethylpropyl group, Cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, 2-methylpentyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, Examples thereof include linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as heptadecyl group, octadecyl group, nonadecyl group and
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 3-phenanthryl group and 2-anthryl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2,2-dimethylpropoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include those having 6 to 20 carbon atoms such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 3-phenanthryloxy group, and 2-anthryloxy group. Examples include groups composed of an aryl group and an oxygen atom.
  • Examples of the acyl group having 2 to 20 carbon atoms include aliphatic or aromatic acyl groups having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Is mentioned.
  • the polymer used in the present invention has a group represented by the above formula (1).
  • polyarylene having a group represented by the formula (1) is preferable, and the following formula (2):
  • each R 2 independently represents a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 20 carbon atoms.
  • an acyl group having 2 to 20 carbon atoms or a cyano group wherein the alkyl group, the alkoxy group, the aryl group, the aryloxy group and the acyl group are a fluorine atom, a cyano group, a carbon number of 1 It may have at least one group selected from the group consisting of an alkoxy group having 20 to 20, an aryl group having 6 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms, and two adjacent R 2 groups.
  • m represents 1 or 2
  • k represents an integer of 0 to 3
  • R 1 represents the same meaning as described above.
  • the polyarylene containing the structural unit represented by is more preferable.
  • alkyl group having 1 to 20 carbon atoms represented by R 2 examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2,2 -Dimethylpropyl, cyclopentyl, hexyl, cyclohexyl, heptyl, 2-methylpentyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl And linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as a group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and icosyl group.
  • alkoxy group having 1 to 20 carbon atoms represented by R 2 examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2 , 2-dimethylpropoxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, 2-methylpentyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, undecyloxy group , Dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group, nonadecyloxy group, icosyloxy group,
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 3-phenanthryl group, and a 2-anthryl group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms represented by R 2 include the above carbon such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 3-phenanthryloxy group, 2-anthryloxy group and the like. Examples thereof include groups composed of an aryl group of several 6 to 20 and an oxygen atom.
  • Examples of the acyl group having 2 to 20 carbon atoms represented by R 2 include aliphatic groups having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Or an aromatic acyl group is mentioned.
  • Such an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms and an acyl group having 2 to 20 carbon atoms are fluorine atoms.
  • the alkoxy group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aryloxy group having 6 to 20 carbon atoms are the same as those described above.
  • two R 2 adjacent to each other at the bonding position may be bonded to form a ring.
  • k is 0, preferably j is 0.
  • the polyarylene containing the structural unit represented by the formula (2) usually has at least two continuous structural units.
  • the polyarylene containing the structural unit represented by the formula (3) usually has at least two continuous structural units.
  • Examples of the structural unit represented by the formula (2) include structural units represented by the following formulas (2a) to (2c).
  • Examples of the structural unit represented by the formula (3) include structural units represented by the following formulas (3a) to (3c).
  • the polyarylene containing the structural unit represented by the formula (2) or the structural unit represented by the formula (3) may contain other structural units or segments.
  • formula (4) In the formula, a, b and c each independently represent 0 or 1, and n represents an integer of 3 or more.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a divalent group.
  • the divalent aromatic group may have at least one group selected from the group consisting of the following (a2) to (e2).
  • A2 having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms
  • B2 having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms.
  • Y 1 and Y 2 each independently represent a single bond, —CO—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or a fluorene-9,9-diyl group.
  • Z 1 and Z 2 each independently represents —O— or —S—.
  • the segment shown by is mentioned.
  • the polyarylene comprising the structural unit represented by the formula (2) and the segment represented by the formula (4) is a polyarylene comprising only the structural unit represented by the formula (2) and the segment represented by the formula (4).
  • other than the structural unit represented by formula (2) and the segment represented by formula (4) May be included.
  • the polyarylene comprising the structural unit represented by the formula (3) and the segment represented by the formula (4) is a polyarylene comprising only the structural unit represented by the formula (3) and the segment represented by the formula (4).
  • n is usually in the range of 5 to 200.
  • n is preferably 5 or more.
  • the number average molecular weight of the segment shown by Formula (4) is 1500 or more.
  • 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenyl-1,1 Divalent monocyclic aromatic groups such as a '-diyl group; naphthalene-1,3-diyl group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene-1,6-diyl group , Divalent condensed aromatic groups such as naphthalene-1,7-diyl group, naphthalene-2,6-diyl group, naphthalene-2,7-diyl group, 9H-fluorene-2,7-diyl group; 2,5-diyl group, pyridine-2,6-diyl group, quinoxaline-2,6-diyl group, thiophene-2
  • a divalent monocyclic aromatic group and a divalent condensed aromatic group are preferable, and a 1,4-phenylene group, a naphthalene-1,4-diyl group, a naphthalene-1,5-diyl group, and a naphthalene-2 , 6-diyl group and naphthalene-2,7-diyl group are more preferred.
  • Such a divalent aromatic group may have at least one group selected from the group consisting of the above (a2) to (e2).
  • Examples of the acyl group are the same as those described above.
  • (A2) includes an unsubstituted alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted with one or more fluorine atoms such as a trifluoromethyl group, and a carbon number of 1 to
  • An alkyl group having 1 to 20 carbon atoms substituted with 20 alkoxy groups and an alkyl group having 1 to 20 carbon atoms substituted with a cyano group such as a cyanomethyl group are preferable.
  • (B2) is preferably an unsubstituted alkoxy group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms substituted with an alkoxy group having 1 to 20 carbon atoms such as a methoxymethoxy group.
  • (C2) is preferably an unsubstituted aryl group having 6 to 20 carbon atoms.
  • D2) is preferably an unsubstituted aryloxy group having 6 to 20 carbon atoms.
  • (E2) is preferably an unsubstituted acyl group having 2 to 20 carbon atoms and an acyl group having 2 to 20 carbon atoms substituted with an aryloxy group having 6 to 20 carbon atoms such as a phenoxybenzoyl group.
  • Examples of the segment represented by the formula (4) include segments represented by the following formulas (4a) to (4y). In the following formula, n represents the same meaning as described above.
  • the weight average molecular weight in terms of polystyrene of the segment represented by the formula (4) is usually 1,000 or more, preferably 1,500 or more.
  • Examples of the polyarylene containing the structural unit represented by the formula (2) or the structural unit represented by the formula (3) and the segment represented by the formula (4) include the structural units represented by the formulas (2a) to (2c). Any one of the structural units represented by the formulas (3a) to (3c) and the segments represented by the formulas (4a) to (4y) And polyarylene containing one segment. Specific examples include polyarylenes represented by the following (I) to (IV).
  • n represents the same meaning as described above, and p represents an integer of 2 or more.
  • the amount of the structural unit represented by the formula (3) is preferably 5% by weight or more and 95% by weight or less, and more preferably 30% by weight or more and 90% by weight or less.
  • the amount of the segment represented by formula (4) in the polyarylene comprising the structural unit represented by formula (2) or the structural unit represented by formula (3) and the segment represented by formula (4) is: 5 wt% or more and 95 wt% or less are preferable, and 10 wt% or more and 70 wt% or less are more preferable.
  • Such polyarylene can be produced, for example, according to the method described in JP-A-2007-284653.
  • These polyarylenes have a polystyrene-equivalent weight average molecular weight of usually 1,000 to 2,000,000.
  • the weight-average molecular weight in terms of polystyrene is preferably 2,000 to 1,000,000, more preferably 3,000 to 800,000. It is. Reaction of a polymer having a group represented by the above formula (1) with at least one hydrogen halide salt selected from the group consisting of a halogenated salt of a nitrogen-containing aromatic heterocyclic compound and a halogenated salt of an amino acid.
  • a polymer having a sulfo group (—SO 3 H) can be produced by reacting the obtained reaction product with an acid.
  • a reaction mixture containing a polymer having a group represented by the formula (1) obtained by a polymerization reaction may be used as it is, or a polymer having a group represented by the formula (1) is taken out from the reaction mixture and used. Also good.
  • Nitrogen-containing aromatic heterocyclic compounds are fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms.
  • Nitrogen-containing aromatic heterocyclic compounds include pyrrole, indole, isoindole, pyridine, alkyl groups having 1 to 4 carbon atoms such as pyridine having a halogen atom such as 4-chloropyridine, 2-methylpyridine and 4-methylpyridine.
  • pyridine having 4- to 4-carbonpyridine such as pyridine, quinoline, isoquinoline, pyrazine, quinoxaline, acridine, pyrimidine, pyrrolidine, piperidine, quinazoline, pyridazine, cinnoline and triazine.
  • pyridine having a halogen atom pyridine having an alkyl group having 1 to 4 carbon atoms and pyridine having an alkoxy group having 1 to 4 carbon atoms, more preferably pyridine.
  • the amino acid is selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. It may have at least one group. Examples of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aryloxy group having 6 to 20 carbon atoms are the same as those described above.
  • amino acids As amino acids, glycine, alanine, ⁇ -alanine, ⁇ -alanine, valine, leucine, isoleucine, N-methylglycine, N-methylalanine, N-methyl-3-aminopropanoic acid, N-methyl-4-aminobutyric acid , Serine, threonine, cysteine, methionine, proline, phenylalanine, tyrosine and tryptophan, and other neutral amino acids. Methylalanine, N-methyl-3-aminopropanoic acid and N-methyl-4-aminobutyric acid are preferred.
  • An amino acid hydrohalide may be generated in the reaction system. Hydrohalides include hydrochloride and hydrobromide.
  • the amount of the hydrogen halide used is usually 1 mol or more with respect to 1 mol of the group represented by the formula (1) in the polymer, and the upper limit is not limited, but preferably in the polymer The amount is 10 mol or less with respect to 1 mol of the group represented by the formula (1).
  • the reaction between the polymer having the group represented by the formula (1) and the hydrogen halide salt is usually carried out by mixing the polymer and the hydrogen halide salt in the presence of a solvent.
  • the solvent examples include a solvent capable of dissolving the polymer, specifically, an aromatic hydrocarbon solvent such as toluene and xylene; an ether solvent such as tetrahydrofuran and 1,4-dioxane; dimethyl sulfoxide, N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and hexamethylphosphoric triamide; halogenated hydrocarbon solvents such as dichloromethane and dichloroethane. Such a solvent may be used independently and may be used in mixture of 2 or more types.
  • an aromatic hydrocarbon solvent such as toluene and xylene
  • an ether solvent such as tetrahydrofuran and 1,4-dioxane
  • dimethyl sulfoxide N-methyl-
  • Examples include aprotic polar solvents such as 2-pyrrolidone, N, N-dimethylform
  • aprotic polar solvents are preferable, and dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide are more preferable.
  • the amount of the solvent used is usually 5 to 200 parts by weight, preferably 10 parts per 1 part by weight of the polymer. ⁇ 50 parts by weight.
  • the reaction temperature is usually 0 to 250 ° C., preferably 100 to 160 ° C.
  • the reaction time is usually 1 to 48 hours. The progress of the reaction can be confirmed by NMR, IR or the like.
  • a polymer having a sulfo group (—SO 3 H) can be obtained by reacting the obtained reaction product with an acid.
  • the reaction mixture containing the reaction product and the acid may be mixed, or the reaction product may be taken out from the reaction mixture, and the extracted reaction product and the acid may be mixed. Part or all of the reaction product may be precipitated in the reaction mixture.
  • the reaction product can be precipitated from the reaction mixture by mixing the reaction mixture with a solvent that does not dissolve or hardly dissolve the reaction product (hereinafter abbreviated as a poor solvent).
  • the amount of the poor solvent used is usually 0.1 to 10 parts by weight, preferably 0.1 to 3 parts by weight, with respect to 1 part by weight of the reaction mixture.
  • the temperature at which the poor solvent and the reaction mixture are mixed is usually from 0 to 100 ° C., preferably from 5 to 90 ° C.
  • the mixing time is usually 1 minute to 48 hours.
  • the acid include hydrochloric acid; sulfuric acid; carboxylic acid compounds such as formic acid and acetic acid; and sulfonic acid compounds such as methanesulfonic acid and benzenesulfonic acid. From the viewpoint of versatility, hydrochloric acid and sulfuric acid are preferable.
  • the amount of the acid used may be 1 equivalent or more with respect to the group represented by the formula (1) in the polymer, and is preferably 30 equivalents or less in consideration of the waste treatment load.
  • the reaction between the reaction product and the acid is usually carried out at 0 to 100 ° C., preferably 5 to 70 ° C., and the reaction time is usually 1 minute to 48 hours.
  • the polymer having the target sulfo group (—SO 3 H) can be taken out by filtering the reaction mixture.
  • the polymer having a sulfo group (—SO 3 H) thus obtained has an ion exchange capacity (measured by a titration method) of usually 0.5 to 6.5 meq / g.
  • a predetermined amount of the obtained polymer having a sulfo group is weighed, titrated with a standard solution of NaOH using a titrator (AT-510; manufactured by Kyoto Electronics Co., Ltd.), and ion exchange capacity from the neutralization point. (IEC1) was determined. 2.
  • the obtained polymer having a sulfo group was immersed in 18.9% hydrochloric acid for 30 minutes. Thereafter, the hydrochloric acid was changed and the polymer was immersed again. The polymer was washed with water. Washing was continued until the water obtained after washing was neutral.
  • the obtained solid was dried under reduced pressure at 80 ° C. for 12 hours to obtain the following formula:
  • the precipitated solid was filtered and washed with water.
  • the obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, washed with water, and further washed with methanol.
  • the solid was dried at 90 ° C. for 24 hours,
  • the structural unit represented by A polyarylene containing the segment represented by The conversion rate A into a sulfo group was 99.6%.
  • [Comparative Example 1] 5.00 g of polyarylene obtained in Production Example 1 was added to a mixed solution of 2.34 g of lithium bromide, 62.50 g of N-methyl-2-pyrrolidone and 0.21 g of water, and reacted at 120 ° C. for 10 hours. .
  • the obtained reaction solution was poured into 250 g of water, and the resulting mixture was stirred for 1 hour.
  • the precipitated solid was filtered and washed with water.
  • the obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, washed with water, and further washed with methanol.
  • the solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 1.
  • the conversion rate A into a sulfo group was 93.9%.
  • the nickel-containing solution was cooled to 50 ° C., and 36.00 g of di (2,2-dimethylpropyl) 4,4′-dichlorobiphenyl-2,2′-disulfonic acid was added and stirred for 10 minutes to prepare Solution A. .
  • 6.27 g of zinc powder and 351 mL of N, N-dimethylacetamide were mixed, and the resulting mixture was adjusted to 80 ° C.
  • a solution consisting of 0.17 g methanesulfonic acid and 11.45 g N, N-dimethylacetamide was added to the mixture. The resulting mixture was stirred at 80 ° C. for 2 hours and then cooled to 50 ° C. to prepare Solution B.
  • Solution A was poured into Solution B, and the resulting mixture was held at 50 ° C. for 1 hour and further at 60 ° C. for 3 hours to conduct a polymerization reaction, and the following formula
  • the structural unit represented by 969 g of a reaction mixture containing polyarylene containing a segment represented by The Mw of polyarylene was 312,000.
  • the obtained reaction mixture was added to 2221 g of 6 mol / L hydrochloric acid, and the precipitated solid was filtered, washed with water and then with methanol, and then dried to obtain 39.1 g of white polyarylene.
  • Example 2 1.00 g of polyarylene obtained in Production Example 2 was added to a mixed solution of 1.09 g of pyridine hydrochloride and 10.00 g of N-methyl-2-pyrrolidone, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours. The structural unit represented by The polyarylene containing the segment shown by this was obtained. The conversion rate A into a sulfo group was 85.6%.
  • Example 3 1.02 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.42 g of 4-chloropyridine hydrochloride and 10.15 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C.
  • Example 4 1.00 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.86 g of 2-methylpyridine hydrochloride and 10.21 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 55.4%.
  • Example 5 0.98 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.86 g of 4-methylpyridine hydrochloride and 10.35 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 58.9%.
  • Example 6 1.00 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 2.01 g of 4-methoxypyridine hydrochloride and 10.21 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 64.1%.
  • Example 7 5.00 g of polyarylene obtained in Production Example 1 was added to a mixed solution of 3.03 g of glycine hydrochloride, 62.50 g of N-methyl-2-pyrrolidone and 0.21 g of water, and reacted at 120 ° C. for 10 hours. .
  • the obtained reaction solution was poured into 250 g of water, and the resulting mixture was stirred for 1 hour.
  • the precipitated solid was filtered and washed with water.
  • the obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, and then washed with water and then with methanol.
  • the obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 1.
  • the conversion rate to the sulfo group was 100.0%.
  • a polymer having a sulfo group can be produced, and the conversion rate to the sulfo group is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A method for producing a polymer having sulfo group (-SO3H) characterized by comprising: reacting a polymer having a group represented by formula (1) [wherein R1 represents an alkyl group having 1 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms and a cyano group, or an aryl group having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms and a cyano group] with at least one hydrogen halide salt selected from the group consisting of a hydrogen halide salt of a nitrogen-containing aromatic heterocyclic compound and a hydrogen halide salt of an amino acid; and reacting the reaction product thus obtained with an acid.

Description

スルホ基を有する重合体の製造方法Method for producing polymer having sulfo group
 本発明は、スルホ基を有する重合体の製造方法に関する。 The present invention relates to a method for producing a polymer having a sulfo group.
 WO2007/043274A1およびWO2007/102235A1には、固体高分子型燃料電池用の高分子電解質等として有用なスルホ基(−SOH)を有する重合体が開示されている。かかるスルホ基を有する重合体は、対応するスルホン酸エステルと臭化リチウムと反応させ、得られた反応生成物と酸とを反応させることによって製造されている。 WO2007 / 043274A1 and WO2007 / 102235A1 disclose polymers having a sulfo group (—SO 3 H) useful as a polymer electrolyte for a solid polymer fuel cell. Such a polymer having a sulfo group is produced by reacting a corresponding sulfonic acid ester with lithium bromide, and reacting the obtained reaction product with an acid.
 本発明は、
<1> 式(1)
Figure JPOXMLDOC01-appb-I000005
(式中、Rは、フッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基またはフッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基を表わす。)
で示される基を有する重合体と、含窒素芳香族複素環化合物のハロゲン化水素塩およびアミノ酸のハロゲン化水素塩からなる群から選ばれる少なくとも一つのハロゲン化水素塩とを反応させ、得られた反応生成物と酸とを反応させることを特徴とするスルホ基(−SOH)を有する重合体の製造方法;
<2> ハロゲン化水素塩が、塩酸塩または臭化水素酸塩である<1>に記載の製造方法;
<3> 含窒素芳香族複素環化合物が、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはハロゲン原子を有していてもよいピリジンである<1>または<2>に記載の製造方法;
<4> アミノ酸が、中性アミノ酸である<1>または<2>に記載の製造方法;
<5> 式(1)で示される基を有する重合体が、式(1)で示される基を有するポリアリーレンである<1>~<4>のいずれかに記載の製造方法;
<6> 式(1)で示される基を有するポリアリーレンが、式(2)
Figure JPOXMLDOC01-appb-I000006
(式中、Rはそれぞれ独立して、フッ素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基またはシアノ基を表わす。ここで、前記アルキル基、前記アルコキシ基、前記アリール基、前記アリールオキシ基および前記アシル基は、フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい。また、隣接する2つのRが結合して環を形成していてもよい。mは、1または2を表わし、kは、0~3の整数を表わす。Rは請求項1記載と同一の意味を表わす。)
で示される構造単位を含む<5>に記載の製造方法;
<7> 式(1)で示される基を有するポリアリーレンが、式(3)
Figure JPOXMLDOC01-appb-I000007
(式中、RおよびRはそれぞれ請求項6で定義したと同一の意味を表わし、jは、0~3の整数を表わす。)
で示される構造単位を含む<5>に記載の製造方法;
<8> 式(1)で示される基を有するポリアリーレンが、さらに、式(4)
Figure JPOXMLDOC01-appb-I000008
(式中、a、bおよびcはそれぞれ独立して、0または1を表わし、nは3以上の整数を表わす。Ar、Ar、ArおよびArはそれぞれ独立して、2価の芳香族基を表わす。ここで、2価の芳香族基は、
(a2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基;
(b2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルコキシ基;
(c2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~10のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基;
(d2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリールオキシ基;および、
(e2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数2~20のアシル基
からなる群から選ばれる少なくとも一つの基を有していてもよい。
およびYはそれぞれ独立して、単結合、−CO−、−SO−、−C(CH−、−C(CF−またはフルオレン−9,9−ジイル基を表わす。
およびZはそれぞれ独立して、−O−または−S−を表わす。)
で示されるセグメントを含む<6>または<7>に記載の製造方法;等を提供するものである。
The present invention
<1> Formula (1)
Figure JPOXMLDOC01-appb-I000005
(Wherein R 1 represents a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, and a cyano group. An alkyl group having 1 to 20 carbon atoms or a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 6 carbon atoms, which may have at least one group selected from the group consisting of This represents an aryl group having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of an aryloxy group having 20 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms and a cyano group.
Obtained by reacting a polymer having a group represented by the following formula with at least one hydrohalide salt selected from the group consisting of a hydrohalide salt of a nitrogen-containing aromatic heterocyclic compound and a hydrohalide salt of an amino acid. A process for producing a polymer having a sulfo group (—SO 3 H), which comprises reacting a reaction product with an acid;
<2> The production method according to <1>, wherein the hydrogen halide salt is hydrochloride or hydrobromide;
<3> The nitrogen-containing aromatic heterocyclic compound is a pyridine which may have an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a halogen atom. The manufacturing method as described;
<4> The production method according to <1> or <2>, wherein the amino acid is a neutral amino acid;
<5> The production method according to any one of <1> to <4>, wherein the polymer having a group represented by formula (1) is a polyarylene having a group represented by formula (1);
<6> A polyarylene having a group represented by the formula (1) is represented by the formula (2)
Figure JPOXMLDOC01-appb-I000006
(In the formula, each R 2 independently represents a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 20 carbon atoms. Group, an acyl group having 2 to 20 carbon atoms or a cyano group, wherein the alkyl group, the alkoxy group, the aryl group, the aryloxy group and the acyl group are a fluorine atom, a cyano group, a carbon number of 1 It may have at least one group selected from the group consisting of an alkoxy group having 20 to 20, an aryl group having 6 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms, and two adjacent R 2 groups. May be bonded to form a ring, m represents 1 or 2, k represents an integer of 0 to 3. R 1 represents the same meaning as in claim 1.)
The production method according to <5>, comprising a structural unit represented by:
<7> A polyarylene having a group represented by the formula (1) is represented by the formula (3):
Figure JPOXMLDOC01-appb-I000007
(In the formula, R 1 and R 2 each have the same meaning as defined in claim 6, and j represents an integer of 0 to 3.)
The production method according to <5>, comprising a structural unit represented by:
<8> A polyarylene having a group represented by the formula (1) is further represented by the formula (4):
Figure JPOXMLDOC01-appb-I000008
(In the formula, a, b and c each independently represent 0 or 1, and n represents an integer of 3 or more. Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a divalent group. Represents an aromatic group, where the divalent aromatic group is
(A2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms An optionally substituted alkyl group having 1 to 20 carbon atoms;
(B2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. An alkoxy group having 1 to 20 carbon atoms;
(C2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 10 carbon atoms An aryl group;
(D2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms An aryloxy group; and
(E2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms It may have at least one group selected from the group consisting of acyl groups having 2 to 20 carbon atoms.
Y 1 and Y 2 each independently represent a single bond, —CO—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or a fluorene-9,9-diyl group. Represent.
Z 1 and Z 2 each independently represents —O— or —S—. )
The manufacturing method as described in <6> or <7> containing the segment shown by these; etc. are provided.
 式(1)
Figure JPOXMLDOC01-appb-I000009
において、Rは、フッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基またはフッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基を表わす。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、2−メチルペンチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等の直鎖状、分枝鎖状もしくは環状の炭素数1~20のアルキル基が挙げられ、2,2−ジメチルプロピル基が好ましい。
 炭素数6~20のアリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、3−フェナントリル基および2−アントリル基が挙げられる。
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、2,2−ジメチルプロポキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、2−メチルペンチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、イコシルオキシ基等の直鎖状、分枝鎖状もしくは環状の炭素数1~20のアルコキシ基が挙げられる。
 炭素数6~20のアリールオキシ基としては、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、3−フェナントリルオキシ基、2−アントリルオキシ基等の前記炭素数6~20のアリール基と酸素原子とから構成される基が挙げられる。
 炭素数2~20のアシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の炭素数2~20の脂肪族もしくは芳香族アシル基が挙げられる。
 本発明に用いられる重合体は、上記式(1)で示される基を有する。中でも、式(1)で示される基を有するポリアリーレンが好ましく、下記式(2):
Figure JPOXMLDOC01-appb-I000010
(式中、Rはそれぞれ独立して、フッ素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基またはシアノ基を表わす。ここで、前記アルキル基、前記アルコキシ基、前記アリール基、前記アリールオキシ基および前記アシル基は、フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい。また、隣接する2つのRが結合して環を形成していてもよい。mは、1または2を表わし、kは、0~3の整数を表わす。Rは上記と同一の意味を表わす。)
で示される構造単位を有するポリアリーレンまたは式(3):
Figure JPOXMLDOC01-appb-I000011
(式中、RおよびRはそれぞれ上記と同一の意味を表わし、jは、0~3の整数を表わす。)
で示される構造単位を含むポリアリーレンがより好ましい。
 Rで示される炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、2−メチルペンチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等の直鎖状、分枝鎖状もしくは環状の炭素数1~20のアルキル基が挙げられる。
 Rで示される炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、2,2−ジメチルプロポキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、2−メチルペンチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、イコシルオキシ基等の直鎖状、分枝鎖状もしくは環状の炭素数1~20のアルコキシ基が挙げられる。
 Rで示される炭素数6~20のアリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、3−フェナントリル基および2−アントリル基等が挙げられる。
 Rで示される炭素数6~20のアリールオキシ基としては、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、3−フェナントリルオキシ基、2−アントリルオキシ基等の前記炭素数6~20のアリール基と酸素原子とから構成される基が挙げられる。
 Rで示される炭素数2~20のアシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の炭素数2~20の脂肪族もしくは芳香族アシル基が挙げられる。
 かかる炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基および炭素数2~20のアシル基は、フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基で置換されていてもよく、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基としては、前記したものと同様のものが挙げられる。また、結合位置が隣接する2つのRが結合して環を形成していてもよい。
 好ましくは、kは0であり、好ましくは、jは0である。
 式(2)で示される構造単位を含むポリアリーレンは、通常、該構造単位が少なくとも2個連続している。式(3)で示される構造単位を含むポリアリーレンは、通常、該構造単位が少なくとも2個連続している。
 式(2)で示される構造単位としては、下記式(2a)~(2c)で示される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000012
 式(3)で示される構造単位としては、下記式(3a)~(3c)で示される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000013
 式(2)で示される構造単位または式(3)で示される構造単位を含むポリアリーレンは、他の構造単位やセグメントを含んでいてもよい。
 セグメントとしては、式(4)
Figure JPOXMLDOC01-appb-I000014
(式中、a、bおよびcはそれぞれ独立して、0または1を表わし、nは3以上の整数を表わす。Ar、Ar、ArおよびArはそれぞれ独立して、2価の芳香族基を表わす。ここで、2価の芳香族基は、下記(a2)~(e2)からなる群から選ばれる少なくとも一つの基を有していてもよい。
(a2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基;
(b2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルコキシ基;
(c2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~10のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基;
(d2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリールオキシ基;および、
(e2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数2~20のアシル基。
およびYはそれぞれ独立して、単結合、−CO−、−SO−、−C(CH−、−C(CF−またはフルオレン−9,9−ジイル基を表わす。
およびZはそれぞれ独立して、−O−または−S−を表わす。)
で示されるセグメントが挙げられる。
 式(2)で示される構造単位と式(4)で示されるセグメントとを含むポリアリーレンは、式(2)で示される構造単位と式(4)で示されるセグメントのみからなるポリアリーレンであってもよいし、式(2)で示される構造単位と式(4)で示されるセグメントに加えて、式(2)で示される構造単位以外の構造単位や式(4)で示されるセグメント以外のセグメントを含んでいてもよい。
 式(3)で示される構造単位と式(4)で示されるセグメントとを含むポリアリーレンは、式(3)で示される構造単位と式(4)で示されるセグメントのみからなるポリアリーレンであってもよいし、式(3)で示される構造単位と式(4)で示されるセグメントに加えて、式(3)で示される構造単位以外の構造単位や式(4)で示されるセグメント以外のセグメントを含んでいてもよい。
 式(4)で示されるセグメントにおいて、nは、通常、5~200の範囲である。重合体の成膜性や膜強度、耐久性などの点で、nは5以上が好ましい。また、式(4)で示されるセグメントの数平均分子量が1500以上であることが好ましい。
 式(4)におけるAr、Ar、ArおよびArにおける2価の芳香族基としては、1,3−フェニレン基、1,4−フェニレン基、4,4’−ビフェニル−1,1’−ジイル基等の2価の単環状芳香族基;ナフタレン−1,3−ジイル基、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−1,6−ジイル基、ナフタレン−1,7−ジイル基、ナフタレン−2,6−ジイル基、ナフタレン−2,7−ジイル基、9H−フルオレン−2,7−ジイル基等の2価の縮合芳香族基;ピリジン−2,5−ジイル基、ピリジン−2,6−ジイル基、キノキサリン−2,6−ジイル基、チオフェン−2,5−ジイル基、2,2’−ビチオフェン−5,5’−ジイル基、ピロール−2,5−ジイル基、2,2’−ビピリジン−5,5’−ジイル基、ピリミジン−2,5−ジイル基、キノリン−5,8−ジイル基、キノリン−2,6−ジイル基、イソキノリン−1,4−ジイル基、イソキノリン−5,8−ジイル基、2,1,3−ベンゾチアジアゾール−4,7−ジイル基、ベンゾイミダゾール−4,7−ジイル基、キノキサリン−5,8−ジイル基、キノキサリン−2,6−ジイル基等の2価の複素芳香族基;等が挙げられる。なかでも、2価の単環状芳香族基および2価の縮合芳香族基が好ましく、1,4−フェニレン基、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−2,6−ジイル基およびナフタレン−2,7−ジイル基がより好ましい。
 かかる2価の芳香族基は、上記(a2)~(e2)からなる群から選ばれる少なくとも一つの基を有していてもよい。
 (a2)~(e2)における炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数1~20のアルキル基および炭素数2~20のアシル基としては、前記したものと同様のものが挙げられる。
 (a2)としては、炭素数1~20の無置換アルキル基、トリフルオロメチル基等の1以上のフッ素原子で置換された炭素数1~20のアルキル基、メトキシメチル基等の炭素数1~20のアルコキシ基で置換された炭素数1~20のアルキル基、および、シアノメチル基等のシアノ基で置換された炭素数1~20のアルキル基が好ましい。
 (b2)としては、炭素数1~20の無置換アルコキシ基、メトキシメトキシ基等の炭素数1~20のアルコキシ基で置換された炭素数1~20のアルコキシ基が好ましい。
 (c2)としては、炭素数6~20の無置換アリール基が好ましい。
 (d2)としては、炭素数6~20の無置換アリールオキシ基が好ましい。
 (e2)としては、炭素数2~20の無置換アシル基、および、フェノキシベンゾイル基等の炭素数6~20のアリールオキシ基で置換された炭素数2~20のアシル基が好ましい。
 式(4)で示されるセグメントとしては、下記式(4a)~(4y)に示すセグメントが挙げられる。なお、下記式中、nは上記と同一の意味を表わす。かかる式(4)で示されるセグメントのポリスチレン換算の重量平均分子量は、通常1,000以上であり、好ましくは1,500以上である。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 式(2)で示される構造単位または式(3)で示される構造単位と式(4)で示されるセグメントとを含むポリアリーレンとしては、前記式(2a)~(2c)で示される構造単位のうちのいずれか一つの構造単位または式(3a)~(3c)で示される構造単位のうちのいずれか一つの構造単位と前記式(4a)~(4y)で示されるセグメントのうちのいずれか一つのセグメントとを含むポリアリーレンが挙げられる。具体的には、下記(I)~(IV)で示されるポリアリーレンが挙げられる。ここで、下記式中、nは前記と同一の意味を表わし、pは2以上の整数を表わす。
Figure JPOXMLDOC01-appb-I000019
 式(2)で示される構造単位(2)または式(3)で示される構造単位と式(4)で示されるセグメントとを含むポリアリーレン中の式(2)で示される構造単位(2)または式(3)で示される構造単位の量は、5重量%以上、95重量%以下が好ましく、30重量%以上、90重量%以下がより好ましい。式(2)で示される構造単位(2)または式(3)で示される構造単位と式(4)で示されるセグメントとを含むポリアリーレン中の式(4)で示されるセグメントの量は、5重量%以上、95重量%以下が好ましく、10重量%以上、70重量%以下がより好ましい。
 かかるポリアリーレンは、例えば、特開2007−284653号公報に記載の方法に準じて製造できる。
 これらポリアリーレンのポリスチレン換算の重量平均分子量は、通常1,000~2,000,000である。これらポリアリーレンを固体高分子型燃料電池用の高分子電解質として用いる場合の好ましいポリスチレン換算の重量平均分子量は、2,000~1,000,000であり、より好ましくは3,000~800,000である。
 上記式(1)で示される基を有する重合体と、含窒素芳香族複素環化合物のハロゲン化水素塩およびアミノ酸のハロゲン化水素塩からなる群から選ばれる少なくとも一つのハロゲン化水素塩とを反応させ、得られた反応生成物と酸とを反応させることにより、スルホ基(−SOH)を有する重合体を製造することができる。
 重合反応により得られる式(1)で示される基を有する重合体を含む反応混合物をそのまま用いてもよいし、該反応混合物から式(1)で示される基を有する重合体を取り出して用いてもよい。
 含窒素芳香族複素環化合物は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの置換基で置換されていてもよい。炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基としては、前記したものと同様のものが挙げられる。
 含窒素芳香族複素環化合物としては、ピロール、インドール、イソインドール、ピリジン、4−クロロピリジン等のハロゲン原子を有するピリジン、2−メチルピリジン、4−メチルピリジン等の炭素数1~4のアルキル基を有するピリジン、4−メトキシピリジン等の炭素数1~4のアルコキシ基を有するピリジン、キノリン、イソキノリン、ピラジン、キノキサリン、アクリジン、ピリミジン、ピロリジン、ピペリジン、キナゾリン、ピリダジン、シンノリンおよびトリアジンが挙げられ、好ましくはピリジン、ハロゲン原子を有するピリジン、炭素数1~4のアルキル基を有するピリジンおよび炭素数1~4のアルコキシ基を有するピリジンが好ましく、ピリジンがより好ましい。
 アミノ酸は、フッ原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい。炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基としては、前記したものと同様のものが挙げられる。
 アミノ酸としては、グリシン、アラニン、β−アラニン、γ−アラニン、バリン、ロイシン、イソロイシン、N−メチルグリシン、N−メチルアラニン、N−メチル−3−アミノプロパン酸、N−メチル−4−アミノ酪酸、セリン、トレオニン、システイン、メチオニン、プロリン、フェニルアラニン、チロシンおよびトリプトファン等の中性アミノ酸が挙げられ、グリシン、アラニン、β−アラニン、γ−アラニン、バリン、ロイシン、イソロイシン、N−メチルグリシン、N−メチルアラニン、N−メチル−3−アミノプロパン酸およびN−メチル−4−アミノ酪酸が好ましい。
 アミノ酸のハロゲン化水素酸塩を、反応系中で発生させてもよい。
 ハロゲン化水素塩としては、塩酸塩および臭化水素酸塩が挙げられる。
 式(1)で示される基を有する重合体とアミノ酸のハロゲン化水素塩とを反応させることが好ましい。
 ハロゲン化水素塩の使用量は、重合体中の式(1)で示される基1モルに対して、通常1モル以上であればよく、その上限は限定されないが、好ましくは、重合体中の式(1)で示される基1モルに対して、10モル以下である。
 式(1)で示される基を有する重合体とハロゲン化水素塩との反応は、通常、溶媒の存在下に、該重合体とハロゲン化水素塩とを混合することにより実施される。溶媒としては、重合体を溶解し得る溶媒が挙げられ、具体的には、トルエン、キシレン等の芳香族炭化水素溶媒;テトラヒドロフラン、1,4−ジオキサン等のエーテル溶媒;ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒;ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒等が挙げられる。かかる溶媒は、単独で用いてもよいし、2種以上を混合して用いてもよい。なかでも、非プロトン性極性溶媒が好ましく、ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドがより好ましい。
 溶媒の使用量が少ないと反応混合物の性状が悪くなりやすく、多すぎると後処理時の操作性が悪くなりやすいため、重合体1重量部に対して、通常5~200重量部、好ましくは10~50重量部である。
 反応温度は、通常0~250℃、好ましくは100~160℃である。反応時間は、通常1~48時間である。
 反応の進行は、NMR、IR等により確認することができる。
 反応終了後、得られた反応生成物と酸とを反応させることにより、スルホ基(−SOH)を有する重合体を得ることができる。
 反応生成物を含む反応混合物と酸とを混合してもよいし、反応混合物から反応生成物を取り出し、取り出した反応生成物と酸とを混合してもよい。反応混合物中に反応生成物の一部または全部が析出していてもよい。反応生成物は、反応生成物を溶解しないもしくは溶解し難い溶媒(以下、貧溶媒と略記する。)と反応混合物とを混合することにより、反応混合物から析出させることができる。かかる貧溶媒の使用量は、反応混合物1重量部に対して、通常0.1~10重量部、好ましくは0.1~3重量部である。貧溶媒としては、水およびメタノールが好ましい。貧溶媒と反応混合物とを混合する温度は、通常0~100℃であり、好ましくは5~90℃である。混合時間は、通常1分~48時間である。
 酸としては、塩酸;硫酸;ギ酸、酢酸等のカルボン酸化合物;およびメタンスルホン酸、ベンゼンスルホン酸等のスルホン酸化合物が挙げられ、汎用性の点で、塩酸および硫酸が好ましい。
 酸の使用量は、重合体中の式(1)で示される基に対して、1当量以上であればよく、廃棄物の処理負荷を考慮すると、好ましくは30当量以下である。
 反応生成物と酸との反応は、通常0~100℃、好ましくは5~70℃で実施され、反応時間は、通常1分~48時間である。
 反応終了後、反応混合物を濾過することにより、目的とするスルホ基(−SOH)を有する重合体を取り出すことができる。かくして得られるスルホ基(−SOH)を有する重合体のイオン交換容量(滴定法により測定)は、通常0.5~6.5meq/gである。
Formula (1)
Figure JPOXMLDOC01-appb-I000009
R 1 is composed of a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, and a cyano group. An alkyl group having 1 to 20 carbon atoms or a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 6 to 20 carbon atoms, which may have at least one group selected from the group And an aryl group having 6 to 20 carbon atoms, which may have at least one group selected from the group consisting of an aryloxy group, an acyl group having 2 to 20 carbon atoms and a cyano group.
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2,2-dimethylpropyl group, Cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, 2-methylpentyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, Examples thereof include linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as heptadecyl group, octadecyl group, nonadecyl group and icosyl group, and 2,2-dimethylpropyl group is preferred.
Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 3-phenanthryl group and 2-anthryl group.
Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2,2-dimethylpropoxy group. Group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, 2-methylpentyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, 1 linear, branched or cyclic carbon such as tridecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, icosyloxy ~ 20 alkoxy groups And the like.
Examples of the aryloxy group having 6 to 20 carbon atoms include those having 6 to 20 carbon atoms such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 3-phenanthryloxy group, and 2-anthryloxy group. Examples include groups composed of an aryl group and an oxygen atom.
Examples of the acyl group having 2 to 20 carbon atoms include aliphatic or aromatic acyl groups having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Is mentioned.
The polymer used in the present invention has a group represented by the above formula (1). Among these, polyarylene having a group represented by the formula (1) is preferable, and the following formula (2):
Figure JPOXMLDOC01-appb-I000010
(In the formula, each R 2 independently represents a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 20 carbon atoms. Group, an acyl group having 2 to 20 carbon atoms or a cyano group, wherein the alkyl group, the alkoxy group, the aryl group, the aryloxy group and the acyl group are a fluorine atom, a cyano group, a carbon number of 1 It may have at least one group selected from the group consisting of an alkoxy group having 20 to 20, an aryl group having 6 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms, and two adjacent R 2 groups. May be bonded to form a ring, m represents 1 or 2, k represents an integer of 0 to 3, and R 1 represents the same meaning as described above.)
Or a polyarylene having the structural unit represented by formula (3):
Figure JPOXMLDOC01-appb-I000011
(Wherein R 1 and R 2 each represent the same meaning as described above, and j represents an integer of 0 to 3)
The polyarylene containing the structural unit represented by is more preferable.
Examples of the alkyl group having 1 to 20 carbon atoms represented by R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2,2 -Dimethylpropyl, cyclopentyl, hexyl, cyclohexyl, heptyl, 2-methylpentyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl And linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms such as a group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and icosyl group.
Examples of the alkoxy group having 1 to 20 carbon atoms represented by R 2 include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2 , 2-dimethylpropoxy group, cyclopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, 2-methylpentyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, undecyloxy group , Dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group, nonadecyloxy group, icosyloxy group, etc. 1-20 carbon ring An alkoxy group.
Examples of the aryl group having 6 to 20 carbon atoms represented by R 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 3-phenanthryl group, and a 2-anthryl group.
Examples of the aryloxy group having 6 to 20 carbon atoms represented by R 2 include the above carbon such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 3-phenanthryloxy group, 2-anthryloxy group and the like. Examples thereof include groups composed of an aryl group of several 6 to 20 and an oxygen atom.
Examples of the acyl group having 2 to 20 carbon atoms represented by R 2 include aliphatic groups having 2 to 20 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group. Or an aromatic acyl group is mentioned.
Such an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms and an acyl group having 2 to 20 carbon atoms are fluorine atoms. , A cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms, which may be substituted with at least one group Examples of the alkoxy group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aryloxy group having 6 to 20 carbon atoms are the same as those described above. Further, two R 2 adjacent to each other at the bonding position may be bonded to form a ring.
Preferably k is 0, preferably j is 0.
The polyarylene containing the structural unit represented by the formula (2) usually has at least two continuous structural units. The polyarylene containing the structural unit represented by the formula (3) usually has at least two continuous structural units.
Examples of the structural unit represented by the formula (2) include structural units represented by the following formulas (2a) to (2c).
Figure JPOXMLDOC01-appb-I000012
Examples of the structural unit represented by the formula (3) include structural units represented by the following formulas (3a) to (3c).
Figure JPOXMLDOC01-appb-I000013
The polyarylene containing the structural unit represented by the formula (2) or the structural unit represented by the formula (3) may contain other structural units or segments.
As a segment, formula (4)
Figure JPOXMLDOC01-appb-I000014
(In the formula, a, b and c each independently represent 0 or 1, and n represents an integer of 3 or more. Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a divalent group. In this case, the divalent aromatic group may have at least one group selected from the group consisting of the following (a2) to (e2).
(A2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms An optionally substituted alkyl group having 1 to 20 carbon atoms;
(B2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. An alkoxy group having 1 to 20 carbon atoms;
(C2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 10 carbon atoms An aryl group;
(D2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms An aryloxy group; and
(E2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms Or an acyl group having 2 to 20 carbon atoms.
Y 1 and Y 2 each independently represent a single bond, —CO—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or a fluorene-9,9-diyl group. Represent.
Z 1 and Z 2 each independently represents —O— or —S—. )
The segment shown by is mentioned.
The polyarylene comprising the structural unit represented by the formula (2) and the segment represented by the formula (4) is a polyarylene comprising only the structural unit represented by the formula (2) and the segment represented by the formula (4). In addition to the structural unit represented by formula (2) and the segment represented by formula (4), other than the structural unit represented by formula (2) and the segment represented by formula (4) May be included.
The polyarylene comprising the structural unit represented by the formula (3) and the segment represented by the formula (4) is a polyarylene comprising only the structural unit represented by the formula (3) and the segment represented by the formula (4). In addition to the structural unit represented by Formula (3) and the segment represented by Formula (4), other than the structural unit represented by Formula (3) and the segment represented by Formula (4) May be included.
In the segment represented by the formula (4), n is usually in the range of 5 to 200. In view of the film formability, film strength, durability, etc. of the polymer, n is preferably 5 or more. Moreover, it is preferable that the number average molecular weight of the segment shown by Formula (4) is 1500 or more.
As the divalent aromatic group in Ar 2 , Ar 3 , Ar 4 and Ar 5 in the formula (4), 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenyl-1,1 Divalent monocyclic aromatic groups such as a '-diyl group; naphthalene-1,3-diyl group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene-1,6-diyl group , Divalent condensed aromatic groups such as naphthalene-1,7-diyl group, naphthalene-2,6-diyl group, naphthalene-2,7-diyl group, 9H-fluorene-2,7-diyl group; 2,5-diyl group, pyridine-2,6-diyl group, quinoxaline-2,6-diyl group, thiophene-2,5-diyl group, 2,2'-bithiophene-5,5'-diyl group, pyrrole -2,5-diyl group, 2,2'-bipyridy -5,5'-diyl group, pyrimidine-2,5-diyl group, quinoline-5,8-diyl group, quinoline-2,6-diyl group, isoquinoline-1,4-diyl group, isoquinoline-5,8 2 such as -diyl group, 2,1,3-benzothiadiazole-4,7-diyl group, benzimidazole-4,7-diyl group, quinoxaline-5,8-diyl group, quinoxaline-2,6-diyl group Valent heteroaromatic group; and the like. Among these, a divalent monocyclic aromatic group and a divalent condensed aromatic group are preferable, and a 1,4-phenylene group, a naphthalene-1,4-diyl group, a naphthalene-1,5-diyl group, and a naphthalene-2 , 6-diyl group and naphthalene-2,7-diyl group are more preferred.
Such a divalent aromatic group may have at least one group selected from the group consisting of the above (a2) to (e2).
An alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, and 2 to 20 carbon atoms in (a2) to (e2) Examples of the acyl group are the same as those described above.
(A2) includes an unsubstituted alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted with one or more fluorine atoms such as a trifluoromethyl group, and a carbon number of 1 to An alkyl group having 1 to 20 carbon atoms substituted with 20 alkoxy groups and an alkyl group having 1 to 20 carbon atoms substituted with a cyano group such as a cyanomethyl group are preferable.
(B2) is preferably an unsubstituted alkoxy group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms substituted with an alkoxy group having 1 to 20 carbon atoms such as a methoxymethoxy group.
(C2) is preferably an unsubstituted aryl group having 6 to 20 carbon atoms.
(D2) is preferably an unsubstituted aryloxy group having 6 to 20 carbon atoms.
(E2) is preferably an unsubstituted acyl group having 2 to 20 carbon atoms and an acyl group having 2 to 20 carbon atoms substituted with an aryloxy group having 6 to 20 carbon atoms such as a phenoxybenzoyl group.
Examples of the segment represented by the formula (4) include segments represented by the following formulas (4a) to (4y). In the following formula, n represents the same meaning as described above. The weight average molecular weight in terms of polystyrene of the segment represented by the formula (4) is usually 1,000 or more, preferably 1,500 or more.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Examples of the polyarylene containing the structural unit represented by the formula (2) or the structural unit represented by the formula (3) and the segment represented by the formula (4) include the structural units represented by the formulas (2a) to (2c). Any one of the structural units represented by the formulas (3a) to (3c) and the segments represented by the formulas (4a) to (4y) And polyarylene containing one segment. Specific examples include polyarylenes represented by the following (I) to (IV). Here, in the following formula, n represents the same meaning as described above, and p represents an integer of 2 or more.
Figure JPOXMLDOC01-appb-I000019
Structural unit (2) represented by the formula (2) in the polyarylene comprising the structural unit represented by the formula (2) or the structural unit represented by the formula (3) and the segment represented by the formula (4) Alternatively, the amount of the structural unit represented by the formula (3) is preferably 5% by weight or more and 95% by weight or less, and more preferably 30% by weight or more and 90% by weight or less. The amount of the segment represented by formula (4) in the polyarylene comprising the structural unit represented by formula (2) or the structural unit represented by formula (3) and the segment represented by formula (4) is: 5 wt% or more and 95 wt% or less are preferable, and 10 wt% or more and 70 wt% or less are more preferable.
Such polyarylene can be produced, for example, according to the method described in JP-A-2007-284653.
These polyarylenes have a polystyrene-equivalent weight average molecular weight of usually 1,000 to 2,000,000. When these polyarylenes are used as polymer electrolytes for polymer electrolyte fuel cells, the weight-average molecular weight in terms of polystyrene is preferably 2,000 to 1,000,000, more preferably 3,000 to 800,000. It is.
Reaction of a polymer having a group represented by the above formula (1) with at least one hydrogen halide salt selected from the group consisting of a halogenated salt of a nitrogen-containing aromatic heterocyclic compound and a halogenated salt of an amino acid. Then, a polymer having a sulfo group (—SO 3 H) can be produced by reacting the obtained reaction product with an acid.
A reaction mixture containing a polymer having a group represented by the formula (1) obtained by a polymerization reaction may be used as it is, or a polymer having a group represented by the formula (1) is taken out from the reaction mixture and used. Also good.
Nitrogen-containing aromatic heterocyclic compounds are fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms. And may be substituted with at least one substituent selected from the group consisting of aryloxy groups having 6 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aryloxy group having 6 to 20 carbon atoms are the same as those described above.
Nitrogen-containing aromatic heterocyclic compounds include pyrrole, indole, isoindole, pyridine, alkyl groups having 1 to 4 carbon atoms such as pyridine having a halogen atom such as 4-chloropyridine, 2-methylpyridine and 4-methylpyridine. And pyridine having 4- to 4-carbonpyridine such as pyridine, quinoline, isoquinoline, pyrazine, quinoxaline, acridine, pyrimidine, pyrrolidine, piperidine, quinazoline, pyridazine, cinnoline and triazine. Is preferably pyridine, pyridine having a halogen atom, pyridine having an alkyl group having 1 to 4 carbon atoms and pyridine having an alkoxy group having 1 to 4 carbon atoms, more preferably pyridine.
The amino acid is selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. It may have at least one group. Examples of the alkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aryloxy group having 6 to 20 carbon atoms are the same as those described above.
As amino acids, glycine, alanine, β-alanine, γ-alanine, valine, leucine, isoleucine, N-methylglycine, N-methylalanine, N-methyl-3-aminopropanoic acid, N-methyl-4-aminobutyric acid , Serine, threonine, cysteine, methionine, proline, phenylalanine, tyrosine and tryptophan, and other neutral amino acids. Methylalanine, N-methyl-3-aminopropanoic acid and N-methyl-4-aminobutyric acid are preferred.
An amino acid hydrohalide may be generated in the reaction system.
Hydrohalides include hydrochloride and hydrobromide.
It is preferable to react a polymer having a group represented by the formula (1) with an amino acid hydrogen halide salt.
The amount of the hydrogen halide used is usually 1 mol or more with respect to 1 mol of the group represented by the formula (1) in the polymer, and the upper limit is not limited, but preferably in the polymer The amount is 10 mol or less with respect to 1 mol of the group represented by the formula (1).
The reaction between the polymer having the group represented by the formula (1) and the hydrogen halide salt is usually carried out by mixing the polymer and the hydrogen halide salt in the presence of a solvent. Examples of the solvent include a solvent capable of dissolving the polymer, specifically, an aromatic hydrocarbon solvent such as toluene and xylene; an ether solvent such as tetrahydrofuran and 1,4-dioxane; dimethyl sulfoxide, N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and hexamethylphosphoric triamide; halogenated hydrocarbon solvents such as dichloromethane and dichloroethane. Such a solvent may be used independently and may be used in mixture of 2 or more types. Of these, aprotic polar solvents are preferable, and dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide are more preferable.
If the amount of the solvent used is small, the properties of the reaction mixture are likely to deteriorate, and if it is too large, the operability during post-treatment is likely to deteriorate. Therefore, the amount is usually 5 to 200 parts by weight, preferably 10 parts per 1 part by weight of the polymer. ~ 50 parts by weight.
The reaction temperature is usually 0 to 250 ° C., preferably 100 to 160 ° C. The reaction time is usually 1 to 48 hours.
The progress of the reaction can be confirmed by NMR, IR or the like.
After completion of the reaction, a polymer having a sulfo group (—SO 3 H) can be obtained by reacting the obtained reaction product with an acid.
The reaction mixture containing the reaction product and the acid may be mixed, or the reaction product may be taken out from the reaction mixture, and the extracted reaction product and the acid may be mixed. Part or all of the reaction product may be precipitated in the reaction mixture. The reaction product can be precipitated from the reaction mixture by mixing the reaction mixture with a solvent that does not dissolve or hardly dissolve the reaction product (hereinafter abbreviated as a poor solvent). The amount of the poor solvent used is usually 0.1 to 10 parts by weight, preferably 0.1 to 3 parts by weight, with respect to 1 part by weight of the reaction mixture. As the poor solvent, water and methanol are preferable. The temperature at which the poor solvent and the reaction mixture are mixed is usually from 0 to 100 ° C., preferably from 5 to 90 ° C. The mixing time is usually 1 minute to 48 hours.
Examples of the acid include hydrochloric acid; sulfuric acid; carboxylic acid compounds such as formic acid and acetic acid; and sulfonic acid compounds such as methanesulfonic acid and benzenesulfonic acid. From the viewpoint of versatility, hydrochloric acid and sulfuric acid are preferable.
The amount of the acid used may be 1 equivalent or more with respect to the group represented by the formula (1) in the polymer, and is preferably 30 equivalents or less in consideration of the waste treatment load.
The reaction between the reaction product and the acid is usually carried out at 0 to 100 ° C., preferably 5 to 70 ° C., and the reaction time is usually 1 minute to 48 hours.
After completion of the reaction, the polymer having the target sulfo group (—SO 3 H) can be taken out by filtering the reaction mixture. The polymer having a sulfo group (—SO 3 H) thus obtained has an ion exchange capacity (measured by a titration method) of usually 0.5 to 6.5 meq / g.
 以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。得られたスルホ基を有する重合体を、ゲル浸透クロマトグラフィー(以下、GPCと略記する。)により分析し(分析条件は下記のとおり)、分析結果からポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を算出した。
<分析条件>
 GPC測定装置:CTO−10A(株式会社島津製作所製)
 カラム:TSK−GEL(東ソー株式会社製)
 カラム温度:40℃
 移動相:臭化リチウム含有N,N−ジメチルホルムアミド(臭化リチウム濃度:10mmol/dm
 流量:0.5mL/分
 検出波長:300nm
<スルホ基への変換率Aの算出>
 得られたスルホ基を有する重合体のイオン交換容量を以下に記載の2つの方法により求め、得られたイオン交換容量をもとに、スルホ基への変換率Aを算出した。
1.所定量の得られたスルホ基を有する重合体を量り取り、滴定装置(AT−510;株式会社京都電子製)を使用して、NaOHの標準溶液で滴定を行い、中和点からイオン交換容量(IEC1)を求めた。
2.得られたスルホ基を有する重合体を18.9%塩酸に30分浸漬した。その後、塩酸を交換して、再度重合体を浸漬させた。重合体を水で洗浄した。洗浄後に得られる水が中性を示すまで洗浄を続けた。洗浄後の重合体を乾燥させた後、所定量を量り取り、滴定装置(AT−510;株式会社京都電子製)を使用して、NaOHの標準溶液で滴定を行い、中和点からイオン交換容量(IEC2)を求めた。
スルホ基への変換率A(%)=IEC1÷IEC2
なお、アミノ酸のハロゲン化水素塩を用いた場合のスルホ基への変換率Aは以下の式により算出した(式中、Xはアミノ酸の分子量である。)。
スルホ基への変換率A(%)=
[IEC1−1000×(IEC2÷IEC1−1)÷(X−1)]÷IEC1
[製造例1]
 内部の気体を窒素ガスで置換した反応容器に、無水塩化ニッケル10.97gとジメチルスルホキシド140gとを仕込んだ。得られた混合物を、内温70℃に昇温し、1時間攪拌した。これを50℃に冷却した後、2,2’−ビピリジン14.54gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
 内部の気体を窒素ガスで置換した反応容器に、下記式
Figure JPOXMLDOC01-appb-I000020
で示されるスミカエクセルPES 5200P(住友化学株式会社製;Mw=63,000、Mn=30,000:上記分析条件で測定)4.94gとジメチルスルホキシド120gとを仕込んだ。得られた混合物を50℃に昇温し、1時間攪拌した。得られた溶液に、2,5−ジクロロベンゼンスルホン酸(2,2−ジメチルプロピル)10.00gと亜鉛粉末8.30gを加え、得られた混合物を30分撹拌した。得られた混合溶液に前記ニッケル含有溶液を注ぎ込み、得られた混合物を75℃に昇温して2時間重合反応を行うことで、黒色の溶液309gを得た。
 反応容器に、室温で水620gを加え、さらに、上記で得た溶液を注ぎ込み、2時間攪拌した後、析出した固体を濾別した。
 反応容器に、室温で水210gと得られた固体を加え、得られた混合溶液に、35%亜硝酸ナトリウム水溶液5.0gを加え30分撹拌した。ついで、60%硝酸水93gを1時間かけて滴下した。得られた混合溶液を1時間室温で攪拌した。析出した固体を濾過し、水で洗浄し、さらにメタノールで洗浄した。得られた固体を80℃で12時間減圧乾燥して、下記式
Figure JPOXMLDOC01-appb-I000021
で示される構造単位と下記式
Figure JPOXMLDOC01-appb-I000022
で示されるセグメントとを含むポリアリーレン12.3gを灰白色固体として得た。
得られたポリアリーレンのMwは227,000であった。
[実施例1]
 製造例1で得られたポリアリーレン5.00gを、ピリジン塩酸塩3.14gとN−メチル−2−ピロリドン62.50gと水0.21gの混合溶液に加え、120℃で10時間反応させた。得られた反応溶液を、水250g中に注ぎ込み、得られた混合物を1時間撹拌した。析出した固体を濾過し、水で洗浄した。得られた固体を5%塩酸250gに1時間浸漬した後、水で洗浄し、さらにメタノールで洗浄した。固体を90℃で24時間乾燥し、下記式
Figure JPOXMLDOC01-appb-I000023
で示される構造単位と下記式
Figure JPOXMLDOC01-appb-I000024
で示されるセグメントを含むポリアリーレンを得た。
 スルホ基への変換率Aは、99.6%であった。
[比較例1]
 製造例1で得られたポリアリーレン5.00gを、臭化リチウム2.34g、N−メチル−2−ピロリドン62.50gと水0.21gの混合溶液に加え、120℃で10時間反応させた。得られた反応溶液を、水250g中に注ぎ込み、得られた混合物を1時間撹拌した。析出した固体を濾過し、水で洗浄した。得られた固体を5%塩酸250gに1時間浸漬した後、水で洗浄し、さらにメタノールで洗浄した。固体を90℃で24時間乾燥し、実施例1と同様のポリアリーレンを得た。
 スルホ基への変換率Aは、93.9%であった。
[製造例2]
 冷却装置を備えたガラス製反応容器に、窒素雰囲気下で、臭化ニッケル2.86g、2,2’−ビピリジン3.07g、下記式
Figure JPOXMLDOC01-appb-I000025
で示されるスミカエクセルPES 3600P(住友化学株式会社製;Mw=40,000、Mn=24,000:上記分析条件で測定)20.63gおよびN,N−ジメチルアセトアミド594mLを室温で加えた。得られた混合物を65℃に昇温し、ニッケル含有溶液を調製した。ニッケル含有溶液を50℃に冷却し、4,4’−ジクロロビフェニル−2,2’−ジスルホン酸ジ(2,2−ジメチルプロピル)36.00gを加え、10分撹拌し、溶液Aを調製した。
 亜鉛粉末6.27gとN,N−ジメチルアセトアミド351mLとを混合し、得られた混合物を80℃に調整した。メタンスルホン酸0.17gとN,N−ジメチルアセトアミド11.45gからなる溶液を、該混合物に加えた。得られた混合物を80℃で2時間撹拌した後、50℃に冷却し、溶液Bを調製した。
 溶液Aを溶液Bに注ぎ込み、得られた混合物を50℃で1時間、さらに、60℃で3時間保持して、重合反応を行い、下記式
Figure JPOXMLDOC01-appb-I000026
で示される構造単位と下記式
Figure JPOXMLDOC01-appb-I000027
で示されるセグメントとを含むポリアリーレンを含む反応混合物969gを得た。ポリアリーレンのMwは312,000であった。
 得られた反応混合物を6mol/L塩酸2221g中に加え、析出した固体を濾過し、水、次いでメタノールで洗浄した後、乾燥させ、白色のポリアリーレン39.1gを得た。
[実施例2]
 製造例2で得られたポリアリーレン1.00gを、ピリジン塩酸塩1.09gとN−メチル−2−ピロリドン10.00gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、下記式
Figure JPOXMLDOC01-appb-I000028
で示される構造単位と下記式
Figure JPOXMLDOC01-appb-I000029
で示されるセグメントとを含むポリアリーレンを得た。スルホ基への変換率Aは、85.6%であった。
[比較例2]
 製造例2で得られたポリアリーレン1.00gを、臭化リチウム0.82gとN−メチル−2−ピロリドン10.00gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、46.2%であった。
[製造例3]
 冷却装置を備えたガラス製反応容器に、窒素雰囲気下で、臭化ニッケル1.68g、2,2’−ビピリジン1.80g、製造例2で用いたと同じスミカエクセルPES 3600P20.63gおよびN,N−ジメチルアセトアミド449mLを室温で加え、65℃に昇温してニッケル含有溶液を調製した。ニッケル含有溶液を50℃に冷却し、4,4’−ジクロロビフェニル−2,2’−ジスルホン酸ジ(2,2−ジメチルプロピル)36.00gおよびN,N−ジメチルアセトアミド10mLを加え、10分撹拌し、溶液Aを調製した。
 亜鉛粉末6.27gとN,N−ジメチルアセトアミド294mLとを混合し、得られた混合物を80℃に調整した。メタンスルホン酸0.17gとN,N−ジメチルアセトアミド11.45gとからなる溶液を、該混合物に加えた。得られた混合物を80℃で2時間撹拌し、50℃に冷却し、溶液Bを調製した。
 溶液Aを溶液Bに注ぎ込み、得られた混合物を50℃で1時間、さらに60℃で2時間保持して、重合反応を行い、製造例2と同様のポリアリーレンを含む反応混合物786gを得た。ポリアリーレンのMwは168,000であった。
 得られた反応混合物を6mol/L塩酸2221g中に加え、析出した固体を濾過し、水、次いでメタノールで洗浄した後、乾燥させ、白色のポリアリーレン39.0gを得た。
[実施例3]
 製造例3で得られたポリアリーレン1.02gを、4−クロロピリジン塩酸塩1.42gとN,N−ジメチルアセトアミド10.15gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、62.0%であった。
[実施例4]
 製造例3で得られたポリアリーレン1.00gを、2−メチルピリジン塩酸塩1.86gとN,N−ジメチルアセトアミド10.21gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、55.4%であった。
[実施例5]
 製造例3で得られたポリアリーレン0.98gを、4−メチルピリジン塩酸塩1.86gとN,N−ジメチルアセトアミド10.35gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た.スルホ基への変換率Aは、58.9%であった。
[実施例6]
 製造例3で得られたポリアリーレン1.00gを、4−メトキシピリジン塩酸塩2.01gとN,N−ジメチルアセトアミド10.21gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、64.1%であった。
[比較例3]
 製造例3で得られたポリアリーレン1.03gを、臭化リチウム0.82gとN,N−ジメチルアセトアミド10.31gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、39.7%であった。
[比較例4]
 製造例3で得られたポリアリーレン1.01gを、ジメチルアミン塩酸塩0.77gとN,N−ジメチルアセトアミド10.21gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、38.5%であった。
[比較例5]
 製造例3で得られたポリアリーレン1.03gを、テトラメチルアンモニウムクロリド1.04gとN,N−ジメチルアセトアミド10.45gの混合溶液に加え、120℃で8時間反応させた。得られた反応溶液を、1.1%塩酸30g中に加え、析出した固体を濾過し、水で洗浄した。得られた固体を90℃で24時間乾燥し、実施例2と同様のポリアリーレンを得た。スルホ基への変換率Aは、21.9%であった。
[実施例7]
 製造例1で得られたポリアリーレン5.00gを、グリシン塩酸塩3.03gとN−メチル−2−ピロリドン62.50gと水0.21gの混合溶液に加え、120℃で10時間反応させた。得られた反応溶液を、水250g中に注ぎ込み、得られた混合物を1時間撹拌した。析出した固体を濾過し、水で洗浄した。得られた固体を5%塩酸250gに1時間浸漬した後、水、次いでメタノールで洗浄した。得られた固体を90℃で24時間乾燥し、実施例1と同様のポリアリーレンを得た。スルホ基への変換率は、100.0%であった。
[実施例8]
 製造例1で得られたポリアリーレン5.00gを、4−メチルアミノ酪酸塩酸塩4.13gとN−メチル−2−ピロリドン62.50gと水0.21gの混合溶液に加え、120℃で10時間反応させた。得られた反応溶液を、水250g中に注ぎ込んだ。得られた混合物を1時間撹拌した。析出した固体を濾過し、水で洗浄した。得られた固体を5%塩酸250gに1時間浸漬した後、水、ついでメタノールで洗浄し、90℃で24時間乾燥し、実施例1と同様のポリアリーレンを得た。スルホ基への変換率は、98.3%であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. The obtained polymer having a sulfo group was analyzed by gel permeation chromatography (hereinafter abbreviated as GPC) (analysis conditions are as follows), and the weight average molecular weight (Mw) and number in terms of polystyrene were determined from the analysis results. The average molecular weight (Mn) was calculated.
<Analysis conditions>
GPC measuring device: CTO-10A (manufactured by Shimadzu Corporation)
Column: TSK-GEL (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Mobile phase: N, N-dimethylformamide containing lithium bromide (lithium bromide concentration: 10 mmol / dm 3 )
Flow rate: 0.5 mL / min Detection wavelength: 300 nm
<Calculation of conversion rate A to sulfo group>
The ion exchange capacity of the obtained polymer having a sulfo group was determined by the following two methods, and the conversion rate A into the sulfo group was calculated based on the obtained ion exchange capacity.
1. A predetermined amount of the obtained polymer having a sulfo group is weighed, titrated with a standard solution of NaOH using a titrator (AT-510; manufactured by Kyoto Electronics Co., Ltd.), and ion exchange capacity from the neutralization point. (IEC1) was determined.
2. The obtained polymer having a sulfo group was immersed in 18.9% hydrochloric acid for 30 minutes. Thereafter, the hydrochloric acid was changed and the polymer was immersed again. The polymer was washed with water. Washing was continued until the water obtained after washing was neutral. After the washed polymer is dried, a predetermined amount is weighed out, titrated with a standard solution of NaOH using a titrator (AT-510; manufactured by Kyoto Electronics Co., Ltd.), and ion exchange from the neutral point. The capacity (IEC2) was determined.
Conversion rate to sulfo group A (%) = IEC1 ÷ IEC2
The conversion rate A into a sulfo group in the case of using a hydrogen halide salt of an amino acid was calculated by the following formula (where X is the molecular weight of the amino acid).
Conversion rate to sulfo group A (%) =
[IEC1-1000 × (IEC2 ÷ IEC1-1) ÷ (X−1)] ÷ IEC1
[Production Example 1]
In a reaction vessel in which the internal gas was replaced with nitrogen gas, 10.97 g of anhydrous nickel chloride and 140 g of dimethyl sulfoxide were charged. The resulting mixture was heated to an internal temperature of 70 ° C. and stirred for 1 hour. After cooling this to 50 ° C., 14.54 g of 2,2′-bipyridine was added and stirred at the same temperature for 10 minutes to prepare a nickel-containing solution.
In a reaction vessel in which the internal gas is replaced with nitrogen gas,
Figure JPOXMLDOC01-appb-I000020
Sumika Excel PES 5200P (manufactured by Sumitomo Chemical Co., Ltd .; Mw = 63,000, Mn = 30,000: measured under the above analysis conditions) and 4.94 g of dimethyl sulfoxide were charged. The resulting mixture was heated to 50 ° C. and stirred for 1 hour. To the obtained solution, 10.00 g of 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl) and 8.30 g of zinc powder were added, and the resulting mixture was stirred for 30 minutes. The nickel-containing solution was poured into the obtained mixed solution, and the obtained mixture was heated to 75 ° C. and subjected to a polymerization reaction for 2 hours to obtain 309 g of a black solution.
620 g of water was added to the reaction vessel at room temperature, and the solution obtained above was further poured into the reaction vessel. After stirring for 2 hours, the precipitated solid was separated by filtration.
To the reaction vessel, 210 g of water and the obtained solid were added at room temperature, and 5.0 g of 35% aqueous sodium nitrite solution was added to the obtained mixed solution and stirred for 30 minutes. Then, 93 g of 60% nitric acid solution was added dropwise over 1 hour. The resulting mixed solution was stirred for 1 hour at room temperature. The precipitated solid was filtered, washed with water, and further washed with methanol. The obtained solid was dried under reduced pressure at 80 ° C. for 12 hours to obtain the following formula:
Figure JPOXMLDOC01-appb-I000021
The structural unit represented by
Figure JPOXMLDOC01-appb-I000022
As a result, 12.3 g of polyarylene containing a segment represented by the formula (1) was obtained as an off-white solid.
Mw of the obtained polyarylene was 227,000.
[Example 1]
5.00 g of polyarylene obtained in Production Example 1 was added to a mixed solution of 3.14 g of pyridine hydrochloride, 62.50 g of N-methyl-2-pyrrolidone and 0.21 g of water, and reacted at 120 ° C. for 10 hours. . The obtained reaction solution was poured into 250 g of water, and the resulting mixture was stirred for 1 hour. The precipitated solid was filtered and washed with water. The obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, washed with water, and further washed with methanol. The solid was dried at 90 ° C. for 24 hours,
Figure JPOXMLDOC01-appb-I000023
The structural unit represented by
Figure JPOXMLDOC01-appb-I000024
A polyarylene containing the segment represented by
The conversion rate A into a sulfo group was 99.6%.
[Comparative Example 1]
5.00 g of polyarylene obtained in Production Example 1 was added to a mixed solution of 2.34 g of lithium bromide, 62.50 g of N-methyl-2-pyrrolidone and 0.21 g of water, and reacted at 120 ° C. for 10 hours. . The obtained reaction solution was poured into 250 g of water, and the resulting mixture was stirred for 1 hour. The precipitated solid was filtered and washed with water. The obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, washed with water, and further washed with methanol. The solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 1.
The conversion rate A into a sulfo group was 93.9%.
[Production Example 2]
In a glass reaction vessel equipped with a cooling device, under a nitrogen atmosphere, 2.86 g of nickel bromide, 3.07 g of 2,2′-bipyridine,
Figure JPOXMLDOC01-appb-I000025
Sumika Excel PES 3600P (manufactured by Sumitomo Chemical Co., Ltd .; Mw = 40,000, Mn = 24,000: measured under the above analysis conditions) and 20.59 g of N, N-dimethylacetamide were added at room temperature. The obtained mixture was heated to 65 ° C. to prepare a nickel-containing solution. The nickel-containing solution was cooled to 50 ° C., and 36.00 g of di (2,2-dimethylpropyl) 4,4′-dichlorobiphenyl-2,2′-disulfonic acid was added and stirred for 10 minutes to prepare Solution A. .
6.27 g of zinc powder and 351 mL of N, N-dimethylacetamide were mixed, and the resulting mixture was adjusted to 80 ° C. A solution consisting of 0.17 g methanesulfonic acid and 11.45 g N, N-dimethylacetamide was added to the mixture. The resulting mixture was stirred at 80 ° C. for 2 hours and then cooled to 50 ° C. to prepare Solution B.
Solution A was poured into Solution B, and the resulting mixture was held at 50 ° C. for 1 hour and further at 60 ° C. for 3 hours to conduct a polymerization reaction, and the following formula
Figure JPOXMLDOC01-appb-I000026
The structural unit represented by
Figure JPOXMLDOC01-appb-I000027
969 g of a reaction mixture containing polyarylene containing a segment represented by The Mw of polyarylene was 312,000.
The obtained reaction mixture was added to 2221 g of 6 mol / L hydrochloric acid, and the precipitated solid was filtered, washed with water and then with methanol, and then dried to obtain 39.1 g of white polyarylene.
[Example 2]
1.00 g of polyarylene obtained in Production Example 2 was added to a mixed solution of 1.09 g of pyridine hydrochloride and 10.00 g of N-methyl-2-pyrrolidone, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours.
Figure JPOXMLDOC01-appb-I000028
The structural unit represented by
Figure JPOXMLDOC01-appb-I000029
The polyarylene containing the segment shown by this was obtained. The conversion rate A into a sulfo group was 85.6%.
[Comparative Example 2]
1.00 g of polyarylene obtained in Production Example 2 was added to a mixed solution of 0.82 g of lithium bromide and 10.00 g of N-methyl-2-pyrrolidone, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 46.2%.
[Production Example 3]
In a glass reaction vessel equipped with a cooling device, under a nitrogen atmosphere, nickel bromide 1.68 g, 2,2′-bipyridine 1.80 g, Sumika Excel PES 3600P 20.63 g and N, N as used in Production Example 2 -449 mL of dimethylacetamide was added at room temperature, and it heated up at 65 degreeC, and prepared the nickel containing solution. The nickel-containing solution is cooled to 50 ° C., and 36.00 g of 4,4′-dichlorobiphenyl-2,2′-disulfonic acid di (2,2-dimethylpropyl) and 10 mL of N, N-dimethylacetamide are added for 10 minutes. Stir to prepare solution A.
6.27 g of zinc powder and 294 mL of N, N-dimethylacetamide were mixed, and the resulting mixture was adjusted to 80 ° C. A solution consisting of 0.17 g of methanesulfonic acid and 11.45 g of N, N-dimethylacetamide was added to the mixture. The resulting mixture was stirred at 80 ° C. for 2 hours and cooled to 50 ° C. to prepare Solution B.
Solution A was poured into Solution B, and the resulting mixture was held at 50 ° C. for 1 hour and further at 60 ° C. for 2 hours to conduct a polymerization reaction to obtain 786 g of a reaction mixture containing the same polyarylene as in Production Example 2. . The Mw of polyarylene was 168,000.
The obtained reaction mixture was added to 2221 g of 6 mol / L hydrochloric acid, and the precipitated solid was filtered, washed with water and then with methanol, and then dried to obtain 39.0 g of white polyarylene.
[Example 3]
1.02 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.42 g of 4-chloropyridine hydrochloride and 10.15 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 62.0%.
[Example 4]
1.00 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.86 g of 2-methylpyridine hydrochloride and 10.21 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 55.4%.
[Example 5]
0.98 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.86 g of 4-methylpyridine hydrochloride and 10.35 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 58.9%.
[Example 6]
1.00 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 2.01 g of 4-methoxypyridine hydrochloride and 10.21 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 64.1%.
[Comparative Example 3]
1.03 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 0.82 g of lithium bromide and 10.31 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 39.7%.
[Comparative Example 4]
1.01 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 0.77 g of dimethylamine hydrochloride and 10.21 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 38.5%.
[Comparative Example 5]
1.03 g of polyarylene obtained in Production Example 3 was added to a mixed solution of 1.04 g of tetramethylammonium chloride and 10.45 g of N, N-dimethylacetamide, and reacted at 120 ° C. for 8 hours. The resulting reaction solution was added to 30 g of 1.1% hydrochloric acid, and the precipitated solid was filtered and washed with water. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 2. The conversion rate A into a sulfo group was 21.9%.
[Example 7]
5.00 g of polyarylene obtained in Production Example 1 was added to a mixed solution of 3.03 g of glycine hydrochloride, 62.50 g of N-methyl-2-pyrrolidone and 0.21 g of water, and reacted at 120 ° C. for 10 hours. . The obtained reaction solution was poured into 250 g of water, and the resulting mixture was stirred for 1 hour. The precipitated solid was filtered and washed with water. The obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, and then washed with water and then with methanol. The obtained solid was dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 1. The conversion rate to the sulfo group was 100.0%.
[Example 8]
5.00 g of the polyarylene obtained in Production Example 1 is added to a mixed solution of 4.13 g of 4-methylaminobutyric acid hydrochloride, 62.50 g of N-methyl-2-pyrrolidone, and 0.21 g of water. Reacted for hours. The obtained reaction solution was poured into 250 g of water. The resulting mixture was stirred for 1 hour. The precipitated solid was filtered and washed with water. The obtained solid was immersed in 250 g of 5% hydrochloric acid for 1 hour, washed with water and then with methanol, and dried at 90 ° C. for 24 hours to obtain the same polyarylene as in Example 1. The conversion rate to the sulfo group was 98.3%.
 本発明によれば、スルホ基を有する重合体を製造することができ、スルホ基への変換率も高い。 According to the present invention, a polymer having a sulfo group can be produced, and the conversion rate to the sulfo group is high.

Claims (8)

  1.  式(1)
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは、フッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基またはフッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基およびシアノ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基を表わす。)
    で示される基を有する重合体と、含窒素芳香族複素環化合物のハロゲン化水素塩およびアミノ酸のハロゲン化水素塩からなる群から選ばれる少なくとも一つのハロゲン化水素塩とを反応させ、得られた反応生成物と酸とを反応させることを特徴とするスルホ基(−SOH)を有する重合体の製造方法。
    Formula (1)
    Figure JPOXMLDOC01-appb-I000001
    (Wherein R 1 represents a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, and a cyano group. An alkyl group having 1 to 20 carbon atoms or a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 6 carbon atoms, which may have at least one group selected from the group consisting of This represents an aryl group having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of an aryloxy group having 20 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms and a cyano group.
    Obtained by reacting a polymer having a group represented by the following formula with at least one hydrohalide salt selected from the group consisting of a hydrohalide salt of a nitrogen-containing aromatic heterocyclic compound and a hydrohalide salt of an amino acid. A method for producing a polymer having a sulfo group (—SO 3 H), comprising reacting a reaction product with an acid.
  2.  ハロゲン化水素塩が、塩酸塩または臭化水素酸塩である請求項1に記載の製造方法。 The production method according to claim 1, wherein the hydrohalide salt is hydrochloride or hydrobromide.
  3.  含窒素芳香族複素環化合物が、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはハロゲン原子を有していてもよいピリジンである請求項1に記載の製造方法。 The production method according to claim 1, wherein the nitrogen-containing aromatic heterocyclic compound is a pyridine which may have an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or a halogen atom.
  4.  アミノ酸が、中性アミノ酸である請求項1に記載の製造方法。 The method according to claim 1, wherein the amino acid is a neutral amino acid.
  5.  式(1)で示される基を有する重合体が、式(1)で示される基を有するポリアリーレンである請求項1に記載の製造方法。 The production method according to claim 1, wherein the polymer having a group represented by the formula (1) is a polyarylene having a group represented by the formula (1).
  6.  式(1)で示される基を有するポリアリーレンが、式(2)
    Figure JPOXMLDOC01-appb-I000002
    (式中、Rはそれぞれ独立して、フッ素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基またはシアノ基を表わす。ここで、前記アルキル基、前記アルコキシ基、前記アリール基、前記アリールオキシ基および前記アシル基は、フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい。また、隣接する2つのRが結合して環を形成していてもよい。mは、1または2を表わし、kは、0~3の整数を表わす。Rは請求項1記載と同一の意味を表わす。)
    で示される構造単位を含む請求項5に記載の製造方法。
    A polyarylene having a group represented by the formula (1) is represented by the formula (2)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, each R 2 independently represents a fluorine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 20 carbon atoms. Group, an acyl group having 2 to 20 carbon atoms or a cyano group, wherein the alkyl group, the alkoxy group, the aryl group, the aryloxy group and the acyl group are a fluorine atom, a cyano group, a carbon number of 1 It may have at least one group selected from the group consisting of an alkoxy group having 20 to 20, an aryl group having 6 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms, and two adjacent R 2 groups. May be bonded to form a ring, m represents 1 or 2, k represents an integer of 0 to 3. R 1 represents the same meaning as in claim 1.)
    The manufacturing method of Claim 5 containing the structural unit shown by these.
  7.  式(1)で示される基を有するポリアリーレンが、式(3)
    Figure JPOXMLDOC01-appb-I000003
    (式中、RおよびRはそれぞれ請求項6で定義したと同一の意味を表わし、jは、0~3の整数を表わす。)
    で示される構造単位を含むことを特徴とする請求項5に記載の製造方法。
    A polyarylene having a group represented by the formula (1) is represented by the formula (3):
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, R 1 and R 2 each have the same meaning as defined in claim 6, and j represents an integer of 0 to 3.)
    The manufacturing method of Claim 5 characterized by including the structural unit shown by these.
  8.  式(1)で示される基を有するポリアリーレンが、さらに、式(4)
    Figure JPOXMLDOC01-appb-I000004
    (式中、a、bおよびcはそれぞれ独立して、0または1を表わし、nは3以上の整数を表わす。Ar、Ar、ArおよびArはそれぞれ独立して、2価の芳香族基を表わす。ここで、2価の芳香族基は、
    (a2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルキル基;
    (b2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数1~20のアルコキシ基;
    (c2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~10のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリール基;
    (d2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数6~20のアリールオキシ基;および、
    (e2)フッ素原子、シアノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基および炭素数6~20のアリールオキシ基からなる群から選ばれる少なくとも一つの基を有していてもよい炭素数2~20のアシル基
    からなる群から選ばれる少なくとも一つの基を有していてもよい。
    およびYはそれぞれ独立して、単結合、−CO−、−SO−、−C(CH−、−C(CF−またはフルオレン−9,9−ジイル基を表わす。
    およびZはそれぞれ独立して、−O−または−S−を表わす。)
    で示されるセグメントを含む請求項6または7に記載の製造方法。
    A polyarylene having a group represented by the formula (1) is further represented by the formula (4):
    Figure JPOXMLDOC01-appb-I000004
    (In the formula, a, b and c each independently represent 0 or 1, and n represents an integer of 3 or more. Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a divalent group. Represents an aromatic group, where the divalent aromatic group is
    (A2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms An optionally substituted alkyl group having 1 to 20 carbon atoms;
    (B2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. An alkoxy group having 1 to 20 carbon atoms;
    (C2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 10 carbon atoms An aryl group;
    (D2) having 6 to 20 carbon atoms which may have at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms and an aryloxy group having 6 to 20 carbon atoms An aryloxy group; and
    (E2) having at least one group selected from the group consisting of a fluorine atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms It may have at least one group selected from the group consisting of acyl groups having 2 to 20 carbon atoms.
    Y 1 and Y 2 each independently represent a single bond, —CO—, —SO 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or a fluorene-9,9-diyl group. Represent.
    Z 1 and Z 2 each independently represents —O— or —S—. )
    The manufacturing method of Claim 6 or 7 containing the segment shown by these.
PCT/JP2010/053708 2009-03-02 2010-03-01 Method for producing polymer having sulfo group WO2010101264A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009047633 2009-03-02
JP2009-047633 2009-03-02
JP2009-050284 2009-03-04
JP2009050284 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010101264A1 true WO2010101264A1 (en) 2010-09-10

Family

ID=42709816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053708 WO2010101264A1 (en) 2009-03-02 2010-03-01 Method for producing polymer having sulfo group

Country Status (1)

Country Link
WO (1) WO2010101264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138065A (en) * 2005-11-21 2007-06-07 Jsr Corp Method for producing sulfonic acid group-containing polymer
JP2007270118A (en) * 2006-03-07 2007-10-18 Sumitomo Chemical Co Ltd Polyarylene and method for producing the same
JP2007284653A (en) * 2005-10-13 2007-11-01 Sumitomo Chemical Co Ltd Polyarylene and method for producing the same
JP2009079214A (en) * 2007-09-04 2009-04-16 Sumitomo Chemical Co Ltd Process of producing polymer having sulfo group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284653A (en) * 2005-10-13 2007-11-01 Sumitomo Chemical Co Ltd Polyarylene and method for producing the same
JP2007138065A (en) * 2005-11-21 2007-06-07 Jsr Corp Method for producing sulfonic acid group-containing polymer
JP2007270118A (en) * 2006-03-07 2007-10-18 Sumitomo Chemical Co Ltd Polyarylene and method for producing the same
JP2009079214A (en) * 2007-09-04 2009-04-16 Sumitomo Chemical Co Ltd Process of producing polymer having sulfo group

Similar Documents

Publication Publication Date Title
CA2615494C (en) Nitrogen-containing aromatic compounds, and production process, polymers and proton conductive membranes of the compounds
EP1935916B1 (en) Polyarylene and process for producing the same
JP5040226B2 (en) Polyarylene and production method thereof
JP5470675B2 (en) Polyarylene and production method thereof
JP6506777B2 (en) Hydroxide-stable ionene
CN102186901A (en) Polymer, polymer electrolyte and use of same
EP1995265B1 (en) Polyarylene and process for producing the same
KR20100021468A (en) Novel aromatic compound, and polyarylene copolymer having nitrogen-containing heterocyclic ring containing sulfonic acid group in side chain
JP2013221086A (en) Polyarylene and method for producing the same
WO2007125931A1 (en) Aromatic compound having fluorene skeleton and polyarylene having sulfonic acid group
US20090326188A1 (en) Method for producing polyarylene
JP5417863B2 (en) Polyarylene copolymer and solid polymer electrolyte
CN101591436B (en) Polybenzimidazole containing diazanaphthalene terphenyl structure and preparation method thereof
WO2010101264A1 (en) Method for producing polymer having sulfo group
JP2008285661A (en) Method for manufacturing sulfonic acid group-bearing polymer
JP2010229403A (en) Method for producing polymer having sulfo group
JP2009167408A (en) Method for producing conjugated aromatic compound
JP2009275219A (en) Method for producing polyarylene
JP2010229404A (en) Method for producing polymer having sulfo group
JP2009079214A (en) Process of producing polymer having sulfo group
JP2011042745A (en) Method for producing purified polyarylene
Danyliv et al. Aromatic ionic monomer bearing perfluorosulfonate moiety and its polycondensation toward high performance superacid ionomers
JP2008179661A (en) Manufacturing method of polyarylene
JP2008201810A (en) Method for producing polyarylene
US8299202B2 (en) Phenol compounds and (co)polymers thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748857

Country of ref document: EP

Kind code of ref document: A1