WO2010101261A1 - Device for generating mixed fuel gas using ion activity - Google Patents

Device for generating mixed fuel gas using ion activity Download PDF

Info

Publication number
WO2010101261A1
WO2010101261A1 PCT/JP2010/053700 JP2010053700W WO2010101261A1 WO 2010101261 A1 WO2010101261 A1 WO 2010101261A1 JP 2010053700 W JP2010053700 W JP 2010053700W WO 2010101261 A1 WO2010101261 A1 WO 2010101261A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
electrolysis
ions
fuel gas
active gas
Prior art date
Application number
PCT/JP2010/053700
Other languages
French (fr)
Japanese (ja)
Inventor
伸雄 高山
正和 石井
信幸 宮森
哲実 川原
Original Assignee
株式会社ワールド エネテック
理建工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワールド エネテック, 理建工業株式会社 filed Critical 株式会社ワールド エネテック
Publication of WO2010101261A1 publication Critical patent/WO2010101261A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/10Pretreatment
    • F23K2300/103Mixing with other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/10Pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05001Control or safety devices in gaseous or liquid fuel supply lines

Definitions

  • the present invention relates to a hybrid fuel gas generator using ionic activity, and in particular, enables fuel materials such as gasoline and LPG to be efficiently burned in a combustion device.
  • the present invention has been made in consideration of the above points, and an object of the present invention is to propose a hybrid fuel gas generator based on ion activity that can stably activate fuel even under low temperature and low pressure.
  • a hybrid gas that supplies the combustion device 21 with a hybrid fuel gas W1 obtained by reacting an ionized active gas M11 (H 3 O + : OH ⁇ ) with a fuel raw material to be combusted obtained by reacting an ionized active gas M11 (H 3 O + : OH ⁇ ) with a fuel raw material to be combusted.
  • An electrolysis tank unit 11 that generates an ion synthesis liquid M1 containing dissociated (H 3 O + + OH ⁇ ) ions by electrolyzing an electrolysis stock solution 20, and an electrolysis tank By storing the ion synthesis solution M1 delivered from the unit 11 as the liquefied layer 32, (H 3 O + ) ions and (OH ⁇ ) from the ion synthesis solution M1 containing dissociated (H 3 O + + OH ⁇ ) ions are stored.
  • ionizing activators gas and ions are adsorbed (H 3 O +: OH - ) and the mixing tank 12 to vaporize, ionizing activators gas delivered from the mixing tank 12 (H3O : OH @ -) by reacting the fuel feedstock using ion activity function of the ionized inert gas receiving, providing a reactor tank section 13 for generating a hybrid fuel gas W1 supplied to the combustor 2.
  • the ion synthesis liquid (H 3 O + + OH ⁇ ) generated by the electrolysis treatment in the electrolysis tank part is vaporized by being adsorbed in the mixing tank part to be ionized active gas (H 3 O +).
  • FIG. 1 is a schematic block diagram showing a hybrid fuel gas generator using ion activity according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram showing a detailed configuration of the electrolysis tank unit 11 of FIG.
  • FIG. 3 is a schematic block diagram showing a detailed configuration of the mixing tank section 12 of FIG.
  • FIG. 4 is a schematic block diagram showing a detailed configuration of the reaction tank unit 13 of FIG.
  • FIG. 5 is a schematic diagram for explaining the ion transfer operation in the electrolysis tank unit 11 of FIG. 1.
  • FIG. 6 is a schematic diagram for explaining the ion transfer operation in the mixing vessel 12 of FIG.
  • FIG. 7 is a schematic diagram for explaining the ion transfer operation in the reaction vessel 13 of FIG.
  • FIG. 8 is a schematic diagram for explaining the ion transfer operation in the reaction tank section 13 of the second embodiment.
  • FIG. 9 is a schematic block diagram showing a hybrid fuel gas generator using ion activity according to another embodiment.
  • reference numeral 1 denotes a hybrid fuel gas generator using ion activity as a whole, and the generated hybrid fuel gas W1 is supplied to the combustion device 2 from the output port P1.
  • the hybrid fuel gas generator 1 includes an electrolysis tank unit 11, a mixing tank unit 12, and a reaction tank unit 13.
  • Electrolysis tank section As shown in FIG. 2, the electrolysis tank section 11 is placed in an electrolysis tank body 21 containing potassium hydroxide (KOH) having a concentration of 30% as a stock solution 20 for electrolysis.
  • KOH potassium hydroxide
  • each electrode of the laminated electrode plate layer 22 is “SUS316”, and when a voltage exceeding the critical voltage is applied between both surfaces, cations and anions are eluted in the electrolysis stock solution 20. By doing so, an electric field for electrolyzing the stock solution 20 for electrolysis is formed between adjacent electrodes.
  • the electrolysis action in the electrolysis tank main body 21 is further expressed with respect to the hydroxyl ion (OH ⁇ ) by the following formula: OH ⁇ ⁇ H + + O ⁇ (2)
  • hydrogen ions (H + ) and oxygen ions (O ⁇ ) are electrolyzed.
  • the following formula 4H + + 2O ⁇ ⁇ 2H 2 O (3) As shown in FIG.
  • the oxonium ion (H 3 O + ) and the hydroxyl ion (OH ⁇ ) are generated by further electrolysis.
  • various molecules are separated into a plurality of ions by electrolysis or form regular bonds, but in particular, hydroxyl ions (OH ⁇ 5), as shown in FIG.
  • the electrolytic solution circulating unit 26 includes a circulation pump 27, and the electrolytic solution M1 supplied from the electrolytic cell unit 11 is circulated through the pure water filter 28 from the output port P13 through the output valve V13. It pushes out to the input port P14 of the mixing tank part 12 as the decomposition liquid M2.
  • (3) Mixing tank part The mixing tank part 12 stores the supplied electrolysis solution M2 for circulation as a liquefied layer 32 in the lower layer part of the mixing tank main body 31, as shown in FIG.
  • the electrolyzed liquid containing the ion synthesis liquid (H 3 O + + OH ⁇ ) stored as the liquefied layer 32 is electrolyzed and returned from the stored electrolyzed liquid circulation port P15 of the mixing tank section 12 through the output valve V14.
  • the circulation pump 27 of the electrolytic solution circulation unit 26 supplies the electrolytic solution obtained from the electrolytic cell main body 21 of the electrolytic solution tank unit 11 to the output port P11-output valve V11-input valve V12 of the electrolytic solution circulation unit 26.
  • the valve V14 is circulated through a circulation input port P16 of the electrolysis tank unit 11 and a circulation loop of the electrolysis tank unit 11.
  • the liquid level of the liquid level 32A of the electrolytic solution M2 stored in the liquefied layer 32 of the mixing tank unit 12 is detected by the liquid level detector 33, and the liquid level detection signal S1 is the center of the hybrid fuel gas generator 1. It is transmitted to the control device unit 34.
  • the central control unit 34 provides the water supply valve V29 with a liquid level control signal S2 that sets the liquid level 32A of the liquefied layer 32 to a predetermined reference liquid level based on the liquid amount detection signal S1, thereby the liquefied layer 32.
  • the water supply valve V29 is opened and the pure water M5 is replenished to the temperature liquid level control input port P28 via the input valve V26 of the mixing tank section 12, thereby the liquefied layer 32.
  • the liquid level 32A is always kept at the reference liquid level.
  • a viewing window 33A is provided at the position of the liquid level 32A of the mixing tank section 12, so that the operator can visually check the liquid level of the liquid level 32A of the liquefied layer 32. .
  • the mixing tank unit 12 stores the electrolytic solution M2 pushed out from the electrolytic solution circulating unit 26 to form a liquefied layer 32 and an ion synthesis solution (H 3 O + + OH ⁇ constituting the liquefied layer 32). ) Is sent from the constant temperature control output port P25 to the input port P26 of the temperature adjustment unit 35 via the output valve V25, and the temperature-adjusted electrolysis solution obtained at the output port P27 is output. The temperature is returned to the temperature liquid level control input port P28 of the mixing vessel 12 through the valve V27 and the input valve V26.
  • the mixing tank unit 12 is provided with a temperature detector 36 for detecting the temperature of the electrolyzed liquid constituting the liquefied layer 32, and transmits the temperature detection signal S11 to the central controller unit 34 (FIG. 2). Based on the temperature detection signal S11, the central control unit 34 sends back to the temperature adjustment unit 35 a temperature control signal S12 that brings the electrolysis solution of the liquefied layer 32 to a predetermined reaction temperature.
  • the temperature is adjusted to a predetermined reaction temperature (for example, 20 to 22 [° C.]) set in the central control unit 34.
  • the mixing tank unit 12 maintains the temperature of the electrolyzed liquid stored in the liquefied layer 32 at a predetermined reaction temperature, whereby the electrolyzed liquid stored in the liquefied layer 32 is converted into the electrolyzed liquid stored in the liquefied layer 32 as shown in FIG.
  • Oxonium ions (H 3 O + ) and hydroxyl ions (OH) are generated from the ion synthesis solution (H 3 O + + OH ⁇ ) by causing an ion transfer effect on the contained ion synthesis solution (H 3 O + + OH ⁇ ).
  • the ionized active gas input intermediate port P32 is provided at a higher level position than the ionized active gas input port P33 provided at a low position of the reaction tank section 13.
  • the adjusted pressure ionized active gas M12 is temporarily lowered from the high level position of the ionized active gas input intermediate port P32 to the low level position of the ionized active gas input port P33 and supplied to the reaction tank section 13.
  • the fuel raw material M13 made of gasoline as a combustion target is received by the fuel raw material input intermediate port P35 at the high level position via the output valve V35.
  • the fuel raw material M13 is taken in from a fuel raw material input port P36 provided in the lower part of the reaction tank section 13.
  • the regulated pressure ionized active gas introduced from the ionized active gas input port P33 passes through the fuel raw material 45 stored in the lower half of the reaction tank 13 using the negative pressure, the fuel By reacting with the raw material 45, a hybrid fuel gas 46 is generated on the liquid surface 47 of the fuel raw material 45.
  • the reaction tank unit 13 is provided with a viewing window 48 for an operator to visually check the liquid level of the liquid surface 47. As shown in FIG.
  • the reaction tank unit 13 has ions of oxonium ions (H 3 O + ) and hydroxyl ions (OH ⁇ ) that are ionized active gases with respect to gasoline (C 6 H 14 ) that is a fuel raw material.
  • a reaction that reversibly generates oxooptane (C 6 H 18 O 2 ) is caused by the transfer action.
  • This reaction is actively performed at a low pressure (0.1 [MPa]), and the pressure adjustment unit 42 adjusts the pressure.
  • the oxooptane (C 6 H 18 O 2 ) generated by the ion transfer operation in the reaction tank section 13 is output from the hybrid fuel output port P37 through the output valve V37 to the output port P1 of the hybrid fuel gas generator 1 by ion activity.
  • the water molecules (2H 2 O) are reversibly decomposed into oxonium ions (H 3 O + ) and hydroxyl ions (OH ⁇ ) in the electrolysis tank section 11 by the separation action by electrolysis.
  • An ion synthesis solution (H 3 O + + OH ⁇ ) is reversibly generated by the dissociative binding action by the electric attractive force of ions.
  • the electrolytic solution M1 containing (2H 2 O) is drawn from the output port P11 of the electrolytic tank unit 11 by the circulation pump 27 of the electrolytic solution circulating unit 26, and the input port P14 of the mixing tank unit 12 and the stored electrolytic solution. It is circulated through the circulation port P15 to the circulation input port P16 of the electrolysis tank section 11.
  • the amount of ion synthesis solution (H 3 O + + OH ⁇ ) contained in the electrolysis solution is determined from the electrolysis power supply 25 based on the electrolysis conditions of the electrolysis tank 11.
  • the resonance action is achieved.
  • the production amount of the ion synthesis solution (H 3 O + + OH ⁇ ) becomes remarkably large.
  • the ion synthesis liquid (H 3 O + + OH ⁇ ) contained in the electrolysis liquid M1 drawn from the electrolysis tank section 11 passes through the lower layer of the mixing tank section 12 and the electrolysis tank section 11.
  • the ion synthesis solution (H 3 O + + OH ⁇ ) is partly stored as a liquefied layer 32 in the lower layer portion of the mixing tank 12 due to the pushing pressure of the circulation pump 27.
  • the liquefying layer 32 of the mixing tank unit 12 stores an electrolysis solution containing an ion synthesis solution (H 3 O + + OH ⁇ ) in a stagnant state and also stores the stored ion synthesis solution (H 3 O + + OH ⁇ ). Is extracted from the constant temperature control output port P25, controlled to a predetermined reaction temperature in the temperature adjustment unit 35, and then subjected to ion synthesis stored in the liquefied layer 32 under a temperature adjustment operation to return to the temperature liquid level control input port P28.
  • the liquid (H 3 O + + OH ⁇ ) is subjected to an ion exchange action as shown in FIG.
  • the ion transfer function in the mixing tank 12 is to reversibly separate the ion synthesis solution (H 3 O + + OH ⁇ ) into oxonium ions (H 3 O + ) and hydroxyl ions (OH ⁇ ) and to perform the separation.
  • the ionized active gas (H 3 O + : OH ⁇ is obtained from the liquid surface 32A of the liquefied layer 32 by the mutual protection action. Vaporize as).
  • the ion transfer operation in the mixing tank unit 12 according to FIG. 6 is performed simultaneously and reversibly.
  • oxonium is provided depending on the temperature setting condition (20 to 22 [° C. in this embodiment) by the temperature adjusting unit 35.
  • the transition action to the ionized active gas (H 3 O + : OH ⁇ ), which is an adsorbed molecule of ions (H 3 O + ) and hydroxyl ions (OH ⁇ ) becomes remarkable.
  • the ionized active gas (H 3 O + : OH ⁇ ) vaporized from the liquefied layer 32 comes out to the vaporized layer 41 of the mixing tank unit 12.
  • the central control unit 34 determines the water supply valve based on the liquid level detection signal S 1 of the liquid level detector 33. By supplying the liquid level control signal S2 to V29, the pure water M5 is supplied to the mixing tank 12 through the temperature liquid level control input port P28, thereby controlling the liquid level 32A of the liquefied layer 32 to a predetermined constant value.
  • the concentration of the electrolysis stock solution (KOH) in the electrolysis tank unit 11 is kept constant.
  • the ionized active gas (H 3 O + : OH ⁇ ) filling the vaporized layer 41 is sent from the mixing tank unit 12 to the reaction tank unit 13 via the pressure adjusting unit 42 from the ionized active gas input port P33. It is.
  • the reaction tank unit 13 reacts the fed regulated pressure ionized active gas M12 with the fuel material M13 (gasoline (C 6 H 14 ) in this embodiment) fed from the fuel material input port P36.
  • the ion exchange effect shown in FIG. 7 is produced.
  • the reaction tank section 13 is activated by ionizing gasoline (C 6 H 14 ), which is a normal fuel raw material that is not activated by itself, by ionizing the oxonium ions (H 3 O + ) And an ionized active gas (H 3 O + : OH ⁇ ) composed of adsorbed molecules of hydroxyl ions (OH ⁇ ), under low pressure (maximum 0.1 MPa in this embodiment), By causing an active reaction, oxooptane (C 6 H 18 O 2 ) can be generated and supplied to the combustion device 2.
  • the oxo-optane (C 6 H 18 O 2 ) contains oxygen atoms (O 2 ) compared to gasoline (C 6 H 14 ), so that the combustion efficiency in the combustion device 2 is reduced to that of ordinary gasoline (C 6 H 14 ) and can be made much higher.
  • O 2 oxygen atoms
  • gasoline C 6 H 14
  • ionization activation function of the ionization active gas H 3 O + : OH ⁇
  • normal binding reaction is performed with gasoline (C 6 H 14 ) as a fuel raw material for burning oxygen.
  • FIG. 8 shows a second embodiment.
  • gasoline (C 6 H 14 ) is used as the fuel raw material M13, but in the case of FIG. Instead of this, LPG (C 3 H 8 ) is used as the fuel raw material M13 to be supplied to the reaction tank section 13.
  • reaction tank unit 13 reacts the ionized active gas (H 3 O + : OH ⁇ ) with LPG (C 3 H 8 ) to produce 1-N propanol (CH 3 —OH—) as the hybrid fuel gas W1.
  • (CH 2 -CH 2 ) is generated and sent from the hybrid fuel output port P37 to the combustion device 2 via the output valve V37.
  • ionized active gas H 3 O + : OH ⁇
  • H 3 O + : OH ⁇ ionized active gas
  • OH ⁇ hydroxyl ions
  • FIG. 9 shows a hybrid fuel gas generator 1X based on ion activity according to another embodiment.
  • FIG. 26X is inserted into the flow path of the electrolysis return liquid M3 from the mixing tank section 12 to the electrolysis tank section 11, so that the liquefied layer 32 of the liquefied layer 32 can be supplied from the stored electrolytic solution circulation port P15 (FIG. 3) of the mixing tank section 12.
  • the ion synthesis solution (H 3 O + + OH ⁇ ) is drawn out as a circulating solution and pushed out to the circulation input port P16 (FIG. 2) of the electrolysis tank section 11.
  • the mixing tank section 12 can be generated from the electrolysis tank section 11 through the liquefied layer 32 of the mixing tank section 12 and returning to the electrolysis tank section 11, as described above with reference to FIG.
  • the vaporization phenomenon of the ionized active gas (H 3 O + : OH ⁇ ) based on the mutual protection action can be generated from the ion synthesis solution (H 3 O + + OH ⁇ ) stored in the inside.
  • (KOH) is used as the electrolysis stock solution 20 of the electrolysis tank unit 11 has been described, but instead of this, an aqueous Li solution, (NaOH), citric acid An aqueous solution may be used.
  • the present invention is ionized active gas (+ H 3 O: OH - ) and available combustion device for combusting the fuel material to be reacted.

Abstract

To increase the combustion efficiency of a fuel in a combustion device. An ionized liquid (H3O++OH-) obtained by electrolysis in an electrolysis tank (11) is vaporized via adsorption in a mixing tank (12) to form an ionized active gas (H3O+:OH-). In a reaction tank (13), a fuel material (M13) is reacted by using the ionization activity function of the aforesaid ionized active gas (H3O+:OH-) to generate a mixed fuel gas (W1) comprising the fuel material (M13) and oxygen. Thus, a device (1) for generating a mixed fuel gas using ion activity, whereby the fuel material (M13) can be efficiently combusted in a combustion device (2), can be obtained.

Description

イオン活性による混成燃料ガス発生装置Ion activated hybrid fuel gas generator
 本発明はイオン活性による混成燃料ガス発生装置に関し、特にガソリン、LPGなどの燃料原料を燃焼装置において効率よく燃焼させ得るようにしたものである。 The present invention relates to a hybrid fuel gas generator using ionic activity, and in particular, enables fuel materials such as gasoline and LPG to be efficiently burned in a combustion device.
 燃料原料を効率よく燃焼させる手法として、酸素と水素を1:2の比率で含む混合ガスでなるいわゆる酸水素炎ガスを燃料に混合する手法が提案されている(特許文献1参照)。 As a technique for efficiently burning fuel raw materials, a technique for mixing so-called oxyhydrogen flame gas, which is a mixed gas containing oxygen and hydrogen in a ratio of 1: 2, has been proposed (see Patent Document 1).
特開2005−320416公報JP 2005-320416 A
 この酸水素炎ガスを用いる燃料燃焼手法は、燃焼装置における燃料の燃焼状態を安定に制御することが難しく、燃料原料に混成燃料ガスを混成させて燃焼装置において燃焼させる際に、特に高温高圧条件を必要とせず、しかも物理的、化学的安定性ができるだけ高い混成燃料ガスを発生できることが望まれる。
 本発明は以上の点を考慮してなされたもので、低温低圧力の下でも安定に燃料を活性化できるようなイオン活性による混成燃料ガス発生装置を提案しようとするものである。
 かかる課題を解決するため本発明においては、燃焼させるべき燃料原料に対してイオン化活性ガスM11(H:OH)を反応させてなる混成燃料ガスW1を燃焼装置21に供給する混成ガス発生装置1であって、電気分解用原液20を電気分解することにより、解離結合した(H+OH)イオンを含むイオン合成液M1を生成する電気分解槽部11と、電気分解槽部11から送出されるイオン合成液M1を液化層32として貯留することにより、解離結合した(H+OH)イオンを含むイオン合成液M1から(H)イオンと(OH)イオンとが吸着してなるイオン化活性ガス(H:OH)を気化させる混合槽部12と、混合槽部12から送出されるイオン化活性ガス(H3O+:OH−)を受けて当該イオン化活性ガスのイオン化活性機能を利用して燃料原料を反応させることにより、燃焼装置2に供給する混成燃料ガスW1を生成する反応槽部13とを設ける。
 本発明によれば、電気分解槽部における電気分解処理によって生成したイオン合成液(H+OH)を、混合槽部において吸着作用させることにより気化させてイオン化活性ガス(H:OH)を生成し、当該イオン化活性ガス(H:OH)のイオン活性作用を利用して反応槽部において燃料原料を反応させることによって酸素を含む混成燃料ガスを生成させるようにしたことにより、燃焼装置において安定かつ効率良く燃料を燃焼させることができるイオン活性による混成燃料ガス発生装置を実現し得る。
In the fuel combustion method using this oxyhydrogen flame gas, it is difficult to stably control the combustion state of the fuel in the combustion apparatus, and particularly when the mixed fuel gas is mixed with the fuel raw material and combusted in the combustion apparatus, the condition is particularly high temperature and high pressure. Therefore, it is desirable to be able to generate a hybrid fuel gas that has the highest possible physical and chemical stability.
The present invention has been made in consideration of the above points, and an object of the present invention is to propose a hybrid fuel gas generator based on ion activity that can stably activate fuel even under low temperature and low pressure.
In order to solve this problem, in the present invention, a hybrid gas that supplies the combustion device 21 with a hybrid fuel gas W1 obtained by reacting an ionized active gas M11 (H 3 O + : OH ) with a fuel raw material to be combusted. An electrolysis tank unit 11 that generates an ion synthesis liquid M1 containing dissociated (H 3 O + + OH ) ions by electrolyzing an electrolysis stock solution 20, and an electrolysis tank By storing the ion synthesis solution M1 delivered from the unit 11 as the liquefied layer 32, (H 3 O + ) ions and (OH ) from the ion synthesis solution M1 containing dissociated (H 3 O + + OH ) ions are stored. ) ionizing activators gas and ions are adsorbed (H 3 O +: OH - ) and the mixing tank 12 to vaporize, ionizing activators gas delivered from the mixing tank 12 (H3O : OH @ -) by reacting the fuel feedstock using ion activity function of the ionized inert gas receiving, providing a reactor tank section 13 for generating a hybrid fuel gas W1 supplied to the combustor 2.
According to the present invention, the ion synthesis liquid (H 3 O + + OH ) generated by the electrolysis treatment in the electrolysis tank part is vaporized by being adsorbed in the mixing tank part to be ionized active gas (H 3 O +). : OH ), and the fuel raw material is reacted in the reaction tank section using the ion activation action of the ionized active gas (H 3 O + : OH ), thereby generating a hybrid fuel gas containing oxygen. By doing so, it is possible to realize a hybrid fuel gas generating device based on ion activity that can stably and efficiently burn fuel in the combustion device.
 図1は、本発明の実施の形態によるイオン活性による混成燃料ガス発生装置を示す略線的ブロック図である。
 図2は、図1の電気分解槽部11の詳細構成を示す略線的ブロック図である。
 図3は、図1の混合槽部12の詳細構成を示す略線的ブロック図である。
 図4は、図1の反応槽部13の詳細構成を示す略線的ブロック図である。
 図5は、図1の電気分解槽部11におけるイオンの授受作用の説明に供する略線図である。
 図6は、図1の混合槽部12におけるイオンの授受作用の説明に供する略線図である。
 図7は、図1の反応槽部13におけるイオンの授受作用の説明に供する略線図である。
 図8は、第2の実施の形態の反応槽部13におけるイオンの授受作用の説明に供する略線図である。
 図9は、他の実施の形態によるイオン活性による混成燃料ガス発生装置を示す略線的ブロック図である。
FIG. 1 is a schematic block diagram showing a hybrid fuel gas generator using ion activity according to an embodiment of the present invention.
FIG. 2 is a schematic block diagram showing a detailed configuration of the electrolysis tank unit 11 of FIG.
FIG. 3 is a schematic block diagram showing a detailed configuration of the mixing tank section 12 of FIG.
FIG. 4 is a schematic block diagram showing a detailed configuration of the reaction tank unit 13 of FIG.
FIG. 5 is a schematic diagram for explaining the ion transfer operation in the electrolysis tank unit 11 of FIG. 1.
FIG. 6 is a schematic diagram for explaining the ion transfer operation in the mixing vessel 12 of FIG.
FIG. 7 is a schematic diagram for explaining the ion transfer operation in the reaction vessel 13 of FIG.
FIG. 8 is a schematic diagram for explaining the ion transfer operation in the reaction tank section 13 of the second embodiment.
FIG. 9 is a schematic block diagram showing a hybrid fuel gas generator using ion activity according to another embodiment.
 以下図面について、本発明の一実施の形態を詳述する。
(1)全体構成
 図1において、1は全体としてイオン活性による混成燃料ガス発生装置を示し、発生した混成燃料ガスW1を出力ポートP1から燃焼装置2に供給する。
 混成燃料ガス発生装置1は、電気分解槽部11と、混合槽部12と、反応槽部13とを有する。
(2)電気分解槽部
 電気分解槽部11は、図2に示すように、電気分解用原液20として濃度が30[%]の水酸化カリウム(KOH)を入れた電気分解槽本体21内に設けられた積層された複数例えば111枚の電極板層22の両端から導出された陽極端子24A及び陰極端子24Bに対して電気分解用電源25を接続することにより、電気分解用原液20を、次式
 KOH → K+OH               ……(1)
によって、多量のカリウムイオン(K)と水酸基イオン(OH)とを生成する。
 この実施の形態の場合、積層された電極板層22の各電極は「SUS316」でなり、両面間に臨界電圧を越える電圧が印加されたとき電気分解用原液20に陽イオン及び陰イオンが溶出することにより、隣合う電極間に電気分解用原液20を電気分解する電界を形成する。
 電気分解槽本体21内の電気分解作用は、さらに水酸基イオン(OH)について、次式
 OH → H+O−−               ……(2)
のように水素イオン(H)と酸素イオン(O−−)とに電気分解をする。
 かかる電気分解槽本体21における電気分解状態において、これと同時に次式
 4H+2O−− →2HO             ……(3)
のように、4個の水素イオン(4H)と、2個の酸素イオン(2O−−)とが正規結合することにより水の分子(2HO)が生成されたり、当該水の分子(2HO)が次式
 2HO=H+OH              ……(4)
のように、さらに電気分解されてオキソニウムイオン(H)と水酸基イオン(OH)とが生成するような作用も生ずる。
 このように、電気分解槽部11の電気分解槽本体21の内部では、いろいろな分子が電気分解により複数のイオンに分離したり、正規結合をしたりしているが、特に水酸基イオン(OH)について見れば、図5に示すように、各分子間のイオンの授受作用によって、2個の水の分子(2HO)が電気分解によりオキソニウムイオン(H)と水酸基イオン(OH)とに分離すると共に、両者が解離結合状態(H+OH)で共存するような作用をする。
 これらの作用は一般的には可逆的に行われるが、電気分解槽本体21に対する電気分解用電源25からの電源として、電圧200[V]、かつ電流75[A]を選定することにより、上記(4)式によるオキソニウムイオン(H)と水酸基イオン(OH)の解離結合状態への進行が最も顕著に生ずる(これを共振状態という)。
 かくして電気分解槽部11が共振条件を維持している状態において、カリウムイオン(K)、水の分子(2HO)と共に、オキソニウムイオン(H)と水酸基イオン(OH)とを解離結合してなるイオン合成液(H+OH)を含む電気分解液M1が電気分解槽部11に設けられた出力ポートP11から出力バルブV11を介して外部に送出され、これが電気分解液循環部26の入力ポートP12に対して入力バルブV12を介して供給される。
 電気分解液循環部26は循環ポンプ27を有し、電気分解槽部11から供給される電気分解液M1を純水用フィルタ28を介して出力ポートP13から出力バルブV13を介して循環用の電気分解液M2として混合槽部12の入力ポートP14に押し出す。
(3)混合槽部
 混合槽部12は、図3に示すように、供給された循環用の電気分解液M2を混合槽本体31の下層部分に液化層32として貯留する。
 かくして液化層32として貯留されたイオン合成液(H+OH)を含む電気分解液は、混合槽部12の貯留電気分解液循環ポートP15から、出力バルブV14を介して電気分解返送液M3として電気分解槽部11の循環入力ポートP16に送り返される。
 かくして電気分解液循環部26の循環ポンプ27は、電気分解槽部11の電気分解槽本体21から得た電気分解液を、出力ポートP11−出力バルブV11−電気分解液循環部26の入力バルブV12−入力ポートP12−循環ポンプ27−純水用フィルタ28−出力ポートP13−出力バルブV13−混合槽部12の入力ポートP14−混合槽部12の液化層32−貯留電気分解液循環ポートP15−出力バルブV14−電気分解槽部11の循環入力ポートP16−電気分解槽部11の循環ループを通って循環させる。
 混合槽部12の液化層32に貯留された電気分解液M2の液面32Aの液位レベルは、液量検出器33によって検出され、当該液量検出信号S1が混成燃料ガス発生装置1の中央制御装置部34に送信される。
 中央制御装置部34は、この液量検出信号S1に基づいて液化層32の液面32Aを所定の基準液位にするような液位制御信号S2を給水バルブV29に与えることにより、液化層32の液面32Aが基準液位より低下したとき、給水バルブV29を開いて純水M5を混合槽部12の入力バルブV26を介して温度液位制御入力ポートP28に補充することにより、液化層32の液面32Aを常に基準液位に保持させるようになされている。
 この実施の形態の場合、混合槽部12の液面32Aの位置には、のぞき窓33Aが設けられ、これによりオペレータが液化層32の液面32Aの液位を目視確認できるようになされている。
 混合槽部12は、電気分解液循環部26から押し出されて来る電気分解液M2を貯留して液化層32を形成すると共に、当該液化層32を構成するイオン合成液(H+OH)を含む電気分解液について、これを恒温制御出力ポートP25から出力バルブV25を介して温度調整部35の入力ポートP26に送ると共に、その出力ポートP27に得られる温度調整された電気分解液を出力バルブV27及び入力バルブV26を介して混合槽部12の温度液位制御入力ポートP28に戻すようになされている。
 混合槽部12には液化層32を構成する電気分解液の温度を検出する温度検出器36が設けられ、その温度検出信号S11を中央制御装置部34(図2)に送信する。
 中央制御装置部34は、当該温度検出信号S11に基づいて、液化層32の電気分解液を所定の反応温度にするような温度制御信号S12を温度調整部35に送り返し、これにより温度調整部35が中央制御装置部34において設定された所定反応温度(例えば20~22[℃])に温度を調整する。
 かくして混合槽部12は、液化層32に貯留された電気分解液について、その温度を所定の反応温度に維持し、これにより図6に示すように、液化層32に貯留された電気分解液に含まれるイオン合成液(H+OH)についてイオンの授受作用を生じさせることにより、イオン合成液(H+OH)からオキソニウムイオン(H)と水酸基イオン(OH)とが分離した状態と、当該分離したオキソニウムイオン(H)と水酸基イオン(OH)とがイオン電荷によって吸着した吸着分子でなるイオン化活性ガス(H3O+:OH−)になる状態とを、共存させるような条件を作る。
 かくして混合槽部12は液化層32内においてイオン化活性ガス(H:OH)が生成すると、これが気化状態になることにより液化層32内において気泡となって液面32Aから気化層41に飛び出す。
 かくして気化層41には、オキソニウムイオン(H)と、水酸基イオン(OH)とが吸着したイオン化活性ガス(H:OH)が生成されて行く状態が得られ(相互保護作用によって)、これがイオン化活性ガスM11としてイオン化活性ガス出力ポートP31から出力バルブV31を介して圧力調整部42に送出される。
 圧力調整部42は、気化層41内にイオン化活性ガス(H:OH)が生成されると、これを直ちに引き出すと共に、当該イオン化活性ガスM11の圧力を反応槽部13の反応最適値に調整して調整圧力イオン化活性ガスM12として、反応槽部13のイオン化活性ガス入力中間ポートP32(図4)に与える。
 この実施の形態の場合、気化層41内のイオン化活性ガス(H:OH)の濃度が高くなると、相互保護作用ができなくなって、イオン化活性ガス(H:OH)の成分が縮爆して水の成分(2HO)に戻る現象が生ずる結果になる。
(4)反応槽部
 図4において、イオン化活性ガス入力中間ポートP32は反応槽部13の低い位置に設けられたイオン化活性ガス入力ポートP33より高いレベル位置に設けられ、これにより圧力調整部42からの調整圧力イオン化活性ガスM12をイオン化活性ガス入力中間ポートP32の高いレベル位置から一旦イオン化活性ガス入力ポートP33の低いレベル位置に下げて反応槽部13に供給する。
 反応槽部13には調整圧力イオン化活性ガスM12の供給の仕方と同様に、燃焼対象であるガソリンでなる燃料原料M13を出力バルブV35を介して高いレベル位置にある燃料原料入力中間ポートP35に受けると共に、当該燃料原料M13を反応槽部13の下部に設けられた燃料原料入力ポートP36から取り込む。
 これにより、イオン化活性ガス入力ポートP33から導入された調整圧力イオン化活性ガスが、反応槽部13の下半部に貯留された燃料原料45内を、負圧を利用して通過する間に、燃料原料45と反応して混成燃料ガス46が燃料原料45の液面47上に生成される。
 反応槽部13には、オペレータが液面47の液位レベルを目視確認するためののぞき窓48が設けられている。
 反応槽部13は、図7に示すように、燃料原料であるガソリン(C14)に対してイオン化活性ガスのオキソニウムイオン(H)と水酸基イオン(OH)とのイオン授受作用によってオキソオプタン(C18)を可逆的に生成するような反応を生じさせる。
 この反応は低い圧力(0.1[MPa])において活発に行われ、この圧力の調整を圧力調整部42によって行う。
 かくして反応槽部13におけるイオンの授受作用によって生成されたオキソオプタン(C18)は、混成燃料出力ポートP37から出力バルブV37を介してイオン活性による混成燃料ガス発生装置1の出力ポートP1から混成燃料ガスW1として燃焼装置2に送出される。
(5)混成燃料ガス生成動作
 以上の構成において、電気分解槽部11に電気分解用原液20として入れられた水酸化カリウム(KOH)は、電気分解用電源25から陽極端子24A及び陰極端子24Bに与えられる電圧・電流の作用によって、(1)式~(4)式に示すように、水酸基イオン(OH)が電気分解作用を受けることにより、図5に示すように、2個の水の分子(2HO)を正規結合作用により生成する。
 この水の分子(2HO)は、電気分解槽部11において、電気分解による分離作用によって可逆的にオキソニウムイオン(H)及び水酸基イオン(OH)に分解される共に、各イオンの電気的な吸引力による解離結合作用によって可逆的にイオン合成液(H+OH)を生成する。
 これらの正規結合作用、分離作用及び解離結合作用は、同時並行的に生ずるもので、かくしてカリウムイオン(K)、オキソニウムイオン(H)、水酸基イオン(OH)及び水の分子(2HO)を含む電気分解液M1が電気分解槽部11の出力ポートP11から電気分解液循環部26の循環ポンプ27によって引き出されて、混合槽部12の入力ポートP14及び貯留電気分解液循環ポートP15を通って電気分解槽部11の循環入力ポートP16に循環される。
 この電気分解液の循環動作において、電気分解液に含まれるイオン合成液(H+OH)の生成量は、電気分解槽部11の電気分解条件に基づいて、電気分解用電源25から陽極端子24A及び陰極端子24B間に印加される直流電流・電圧が所定の共振値(この実施の形態の場合、印加電圧200[V]、かつ印加電流75[A])のとき、共振作用が生じて、当該イオン合成液(H+OH)の生成量が顕著に多量になる。
 このようにして電気分解槽部11から引き出された電気分解液M1に含まれるイオン合成液(H+OH)は、混合槽部12の下層部を通って電気分解槽部11との間で循環されるが、循環ポンプ27の押し込み圧力によって、イオン合成液(H+OH)は循環液の一部が混合槽部12の下層部分に液化層32として貯留される。
 当該混合槽部12の液化層32は、イオン合成液(H+OH)を含む電気分解液を停滞状態に貯留すると共に、当該貯留されたイオン合成液(H+OH)を恒温制御出力ポートP25から引き出して温度調整部35において所定の反応温度に制御した後、温度液位制御入力ポートP28に戻すような温度調整動作の下で、液化層32に貯留されたイオン合成液(H+OH)について図6に示すようなイオンの授受作用を行わせる。
 この混合槽部12におけるイオンの授受作用は、イオン合成液(H+OH)を可逆的にオキソニウムイオン(H)と水酸基イオン(OH)に分離させると共に、当該分離されたオキソニウムイオン(H)と水酸基イオン(OH)とが吸着作用によって一体化したとき相互保護作用によって液化層32の液面32Aからイオン化活性ガス(H:OH)として気化させる。
 この図6による混合槽部12におけるイオンの授受作用は、同時かつ可逆的に行われるが、温度調整部35による温度設定条件(この実施の形態の場合、20~22[℃])によってオキソニウムイオン(H)と水酸基イオン(OH)との吸着分子であるイオン化活性ガス(H:OH)への遷移作用が顕著になる。
 かくして混合槽部12の気化層41には、液化層32から気化したイオン化活性ガス(H:OH)が出て来る。
 このとき液化層32から気化層41に気化した分のイオン合成液(H+OH)は電気分解槽部11及び混合槽部12間を循環する電気分解液から消費されることにより、電気分解槽部11内の電気分解用原液である水酸化カリウム(KOH)の濃度が高くなるが、このとき中央制御装置部34は液量検出器33の液量検出信号S1に基づいて給水バルブV29に液位制御信号S2を与えることにより純水M5を温度液位制御入力ポートP28を介して混合槽部12に給水することにより、液化層32の液面32Aを所定の一定値に制御すると共に、当該液化層32内のイオン合成液(H+OH)を電気分解槽部11に循環させることにより、電気分解槽部11内の電気分解原液(KOH)の濃度を一定値に制御する。
 このようにして、気化層41に充満するイオン化活性ガス(H:OH)は、混合槽部12から圧力調整部42を介して反応槽部13にイオン化活性ガス入力ポートP33から送り込まれる。
 反応槽部13は当該送り込まれた調整圧力イオン化活性ガスM12を、燃料原料入力ポートP36から送り込まれる燃料原料M13(この実施の形態の場合、ガソリン(C14))とを反応させることにより、図7に示すイオン授受作用を生じさせる。
 この結果反応槽部13は、それ自体は活性化されてない通常の燃料原料であるガソリン(C14)に対して、イオン化されることにより活性化されたオキソニウムイオン(H)と水酸基イオン(OH)の吸着分子でなるイオン化活性ガス(H:OH)を反応させることにより、低圧力下(この実施の形態の場合最大0.1MPa)の下で、活発な反応を生じさせることにより、オキソオプタン(C18)を生成でき、これを燃焼装置2に供給することができる。
 当該オキソオプタン(C18)は、ガソリン(C14)と比較して酸素原子(O)を含んでいることにより、燃焼装置2における燃焼効率を通常のガソリン(C14)と比較して格段的に高くすることができる。
 以上の構成によれば、イオン化活性ガス(H:OH)のイオン化活性機能を利用して、酸素を燃焼させるべき燃料原料としてのガソリン(C14)に正規結合反応させることにより、効率良く燃焼できるイオン活性による混成燃料ガスを得ることができる。
 かくするにつき、イオン化活性ガス(H:OH)を燃料としてのガソリン(C14)に反応させるための反応条件を低温・低圧に安定化し得る。
(6)第2の実施の形態
 図8は第2の実施の形態を示すもので、図7の場合は、燃料原料M13としてガソリン(C14)を用いたが、図8の場合は、これに代え、反応槽部13に供給する燃料原料M13としてLPG(C)を用いる。
 この場合、反応槽部13は、イオン化活性ガス(H:OH)をLPG(C)と反応させて、混成燃料ガスW1として、1−Nプロパノール(CH—OH−CH−CH)を生成して、混成燃料出力ポートP37から出力バルブV37を介して燃焼装置2に送出する。
 図8の構成によれば、イオン化されたオキソニウムイオン(H)と水酸基イオン(OH)との吸着分子でなるイオン化活性ガス(H:OH)をLPG(C)と反応させるようにしたことにより、イオン化活性ガス(H:OH)がイオン活性化されていることにより、本来の燃料原料であるLPG(C)と比較して酸素元素を含んだ構成になっていることにより、当該混成燃料ガスである1−Nプロパノール(CH—OH−CH−CH)を燃焼装置2において燃焼させる際の燃焼効率を一段と高めることができる。
 かくして、イオン化活性ガス(H:OH)のイオン化活性機能を利用して酸素を燃焼させるべき燃料としてのLPG(C)に正規結合反応させることにより、効率良く燃焼する混成燃料を得ることができる。
 かくするにつき、イオン化活性ガス(H:OH)を燃料としてのLPG(C)に反応させるための反応条件を低温・低圧に安定化し得る。
(7)他の実施の形態
(7−1) 上述の実施の形態においては、燃焼させるべき燃料原料として、ガソリン(C14)及びLPG(C)を用いた場合について述べたが、燃料としてはこれに限らずエタノール、メタノールなどの炭化水素を含んだものを用いても良い。
(7−2) 図9は他の実施の形態のイオン活性による混成燃料ガス発生装置1Xを示すもので、図1との対応部分に同一符号を付して示すように、電気分解液循環部26Xを、混合槽部12から電気分解槽部11への電気分解返送液M3の流路に挿入し、これにより混合槽部12の貯留電気分解液循環ポートP15(図3)から液化層32のイオン合成液(H+OH)を循環液として引き出して電気分解槽部11の循環入力ポートP16(図2)に押し出す。
 このようにしても、電気分解槽部11から混合槽部12の液化層32を通って電気分解槽部11に戻る循環流を生成できることにより、図1について上述したと同様に、混合槽部12内に貯留するイオン合成液(H+OH)から相互保護作用に基づくイオン化活性ガス(H:OH)の気化現象を生じさせることができる。
(7−3) 上述の実施の形態においては、電気分解槽部11の電気分解用原液20として(KOH)を用いた場合について述べたが、これに代え、Li水溶液、(NaOH)、クエン酸水溶液を用いても良い。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
(1) Overall Configuration In FIG. 1, reference numeral 1 denotes a hybrid fuel gas generator using ion activity as a whole, and the generated hybrid fuel gas W1 is supplied to the combustion device 2 from the output port P1.
The hybrid fuel gas generator 1 includes an electrolysis tank unit 11, a mixing tank unit 12, and a reaction tank unit 13.
(2) Electrolysis tank section As shown in FIG. 2, the electrolysis tank section 11 is placed in an electrolysis tank body 21 containing potassium hydroxide (KOH) having a concentration of 30% as a stock solution 20 for electrolysis. By connecting an electrolysis power source 25 to the anode terminal 24A and the cathode terminal 24B derived from both ends of a plurality of, for example, 111 electrode plate layers 22 that are provided, Formula KOH → K + + OH (1)
Produces a large amount of potassium ions (K + ) and hydroxyl ions (OH ).
In the case of this embodiment, each electrode of the laminated electrode plate layer 22 is “SUS316”, and when a voltage exceeding the critical voltage is applied between both surfaces, cations and anions are eluted in the electrolysis stock solution 20. By doing so, an electric field for electrolyzing the stock solution 20 for electrolysis is formed between adjacent electrodes.
The electrolysis action in the electrolysis tank main body 21 is further expressed with respect to the hydroxyl ion (OH ) by the following formula: OH → H + + O −− (2)
Thus, hydrogen ions (H + ) and oxygen ions (O −− ) are electrolyzed.
In the electrolysis state in the electrolysis tank body 21, the following formula 4H + + 2O −− → 2H 2 O (3)
As shown in FIG. 4, water molecules (2H 2 O) are generated by normal bonding of four hydrogen ions (4H + ) and two oxygen ions (2O −− ), or the water molecules ( 2H 2 O) is represented by the following formula 2H 2 O = H 3 O + + OH (4)
As described above, there is also an effect that the oxonium ion (H 3 O + ) and the hydroxyl ion (OH ) are generated by further electrolysis.
Thus, in the inside of the electrolysis tank body 21 of the electrolysis tank section 11, various molecules are separated into a plurality of ions by electrolysis or form regular bonds, but in particular, hydroxyl ions (OH 5), as shown in FIG. 5, two water molecules (2H 2 O) are electrolyzed to generate oxonium ions (H 3 O + ) and hydroxyl ions ( OH ) and the coexistence of both in a dissociated bond state (H 3 O + + OH ).
These operations are generally performed reversibly. However, by selecting a voltage of 200 [V] and a current of 75 [A] as a power source from the electrolysis power source 25 for the electrolysis tank body 21, the above-described operation is performed. The progression of the oxonium ion (H 3 O + ) and the hydroxyl ion (OH ) to the dissociative bond state according to the formula (4) occurs most remarkably (this is called a resonance state).
Thus, in a state where the electrolysis tank unit 11 maintains the resonance condition, the oxonium ion (H 3 O + ) and the hydroxyl ion (OH ) together with the potassium ion (K + ) and the water molecule (2H 2 O). An electrolysis solution M1 containing an ion synthesis solution (H 3 O + + OH ) formed by dissociating and is sent from the output port P11 provided in the electrolysis tank section 11 to the outside through the output valve V11. It is supplied to the input port P12 of the electrolyzed liquid circulation unit 26 through the input valve V12.
The electrolytic solution circulating unit 26 includes a circulation pump 27, and the electrolytic solution M1 supplied from the electrolytic cell unit 11 is circulated through the pure water filter 28 from the output port P13 through the output valve V13. It pushes out to the input port P14 of the mixing tank part 12 as the decomposition liquid M2.
(3) Mixing tank part The mixing tank part 12 stores the supplied electrolysis solution M2 for circulation as a liquefied layer 32 in the lower layer part of the mixing tank main body 31, as shown in FIG.
Thus, the electrolyzed liquid containing the ion synthesis liquid (H 3 O + + OH ) stored as the liquefied layer 32 is electrolyzed and returned from the stored electrolyzed liquid circulation port P15 of the mixing tank section 12 through the output valve V14. M3 is sent back to the circulation input port P16 of the electrolysis tank section 11.
Thus, the circulation pump 27 of the electrolytic solution circulation unit 26 supplies the electrolytic solution obtained from the electrolytic cell main body 21 of the electrolytic solution tank unit 11 to the output port P11-output valve V11-input valve V12 of the electrolytic solution circulation unit 26. -Input port P12-Circulation pump 27-Filter 28 for pure water-Output port P13-Output valve V13-Input port P14 of the mixing tank section 12-Liquefied layer 32 of the mixing tank section 12-Retained electrolyzed liquid circulation port P15-Output The valve V14 is circulated through a circulation input port P16 of the electrolysis tank unit 11 and a circulation loop of the electrolysis tank unit 11.
The liquid level of the liquid level 32A of the electrolytic solution M2 stored in the liquefied layer 32 of the mixing tank unit 12 is detected by the liquid level detector 33, and the liquid level detection signal S1 is the center of the hybrid fuel gas generator 1. It is transmitted to the control device unit 34.
The central control unit 34 provides the water supply valve V29 with a liquid level control signal S2 that sets the liquid level 32A of the liquefied layer 32 to a predetermined reference liquid level based on the liquid amount detection signal S1, thereby the liquefied layer 32. When the liquid level 32A falls below the reference liquid level, the water supply valve V29 is opened and the pure water M5 is replenished to the temperature liquid level control input port P28 via the input valve V26 of the mixing tank section 12, thereby the liquefied layer 32. The liquid level 32A is always kept at the reference liquid level.
In the case of this embodiment, a viewing window 33A is provided at the position of the liquid level 32A of the mixing tank section 12, so that the operator can visually check the liquid level of the liquid level 32A of the liquefied layer 32. .
The mixing tank unit 12 stores the electrolytic solution M2 pushed out from the electrolytic solution circulating unit 26 to form a liquefied layer 32 and an ion synthesis solution (H 3 O + + OH constituting the liquefied layer 32). ) Is sent from the constant temperature control output port P25 to the input port P26 of the temperature adjustment unit 35 via the output valve V25, and the temperature-adjusted electrolysis solution obtained at the output port P27 is output. The temperature is returned to the temperature liquid level control input port P28 of the mixing vessel 12 through the valve V27 and the input valve V26.
The mixing tank unit 12 is provided with a temperature detector 36 for detecting the temperature of the electrolyzed liquid constituting the liquefied layer 32, and transmits the temperature detection signal S11 to the central controller unit 34 (FIG. 2).
Based on the temperature detection signal S11, the central control unit 34 sends back to the temperature adjustment unit 35 a temperature control signal S12 that brings the electrolysis solution of the liquefied layer 32 to a predetermined reaction temperature. The temperature is adjusted to a predetermined reaction temperature (for example, 20 to 22 [° C.]) set in the central control unit 34.
Thus, the mixing tank unit 12 maintains the temperature of the electrolyzed liquid stored in the liquefied layer 32 at a predetermined reaction temperature, whereby the electrolyzed liquid stored in the liquefied layer 32 is converted into the electrolyzed liquid stored in the liquefied layer 32 as shown in FIG. Oxonium ions (H 3 O + ) and hydroxyl ions (OH) are generated from the ion synthesis solution (H 3 O + + OH ) by causing an ion transfer effect on the contained ion synthesis solution (H 3 O + + OH ). - )), And the ionized active gas (H3O +: OH-) composed of adsorbed molecules in which the separated oxonium ions (H 3 O + ) and hydroxyl ions (OH ) are adsorbed by ionic charges. Create conditions that allow state to coexist.
Thus, when the ionized active gas (H 3 O + : OH ) is generated in the liquefied layer 32, the mixing tank unit 12 becomes a gas bubble in the liquefied layer 32 due to the generation of the ionized active gas (H 3 O + : OH ). Jump out to the.
Thus, a state in which the ionized active gas (H 3 O + : OH ) in which the oxonium ions (H 3 O + ) and the hydroxyl ions (OH ) are adsorbed is generated is obtained in the vaporized layer 41 ( This is sent as an ionized active gas M11 from the ionized active gas output port P31 to the pressure adjusting unit 42 via the output valve V31.
When the ionized active gas (H 3 O + : OH ) is generated in the vaporized layer 41, the pressure adjusting unit 42 immediately draws it and optimizes the pressure of the ionized active gas M 11 in the reaction tank unit 13. It adjusts to a value and gives to the ionization active gas input intermediate port P32 (FIG. 4) of the reaction tank part 13 as adjustment pressure ionization active gas M12.
In the case of this embodiment, when the concentration of the ionized active gas (H 3 O + : OH ) in the vaporization layer 41 increases, the mutual protection action cannot be performed, and the ionized active gas (H 3 O + : OH ) As a result, a phenomenon occurs in which the component of 縮 contracts and returns to the component of water (2H 2 O).
(4) Reaction tank section In FIG. 4, the ionized active gas input intermediate port P32 is provided at a higher level position than the ionized active gas input port P33 provided at a low position of the reaction tank section 13. The adjusted pressure ionized active gas M12 is temporarily lowered from the high level position of the ionized active gas input intermediate port P32 to the low level position of the ionized active gas input port P33 and supplied to the reaction tank section 13.
Similar to the method of supplying the regulated pressure ionized active gas M12 to the reaction tank unit 13, the fuel raw material M13 made of gasoline as a combustion target is received by the fuel raw material input intermediate port P35 at the high level position via the output valve V35. At the same time, the fuel raw material M13 is taken in from a fuel raw material input port P36 provided in the lower part of the reaction tank section 13.
As a result, while the regulated pressure ionized active gas introduced from the ionized active gas input port P33 passes through the fuel raw material 45 stored in the lower half of the reaction tank 13 using the negative pressure, the fuel By reacting with the raw material 45, a hybrid fuel gas 46 is generated on the liquid surface 47 of the fuel raw material 45.
The reaction tank unit 13 is provided with a viewing window 48 for an operator to visually check the liquid level of the liquid surface 47.
As shown in FIG. 7, the reaction tank unit 13 has ions of oxonium ions (H 3 O + ) and hydroxyl ions (OH ) that are ionized active gases with respect to gasoline (C 6 H 14 ) that is a fuel raw material. A reaction that reversibly generates oxooptane (C 6 H 18 O 2 ) is caused by the transfer action.
This reaction is actively performed at a low pressure (0.1 [MPa]), and the pressure adjustment unit 42 adjusts the pressure.
Thus, the oxooptane (C 6 H 18 O 2 ) generated by the ion transfer operation in the reaction tank section 13 is output from the hybrid fuel output port P37 through the output valve V37 to the output port P1 of the hybrid fuel gas generator 1 by ion activity. To the combustion device 2 as a hybrid fuel gas W1.
(5) Hybrid fuel gas generation operation In the above configuration, potassium hydroxide (KOH) put in the electrolysis tank 11 as the electrolysis stock solution 20 is supplied from the electrolysis power source 25 to the anode terminal 24A and the cathode terminal 24B. By the action of the applied voltage / current, as shown in the formulas (1) to (4), the hydroxyl ion (OH ) undergoes an electrolysis action, so that as shown in FIG. A molecule (2H 2 O) is generated by normal binding action.
The water molecules (2H 2 O) are reversibly decomposed into oxonium ions (H 3 O + ) and hydroxyl ions (OH ) in the electrolysis tank section 11 by the separation action by electrolysis. An ion synthesis solution (H 3 O + + OH ) is reversibly generated by the dissociative binding action by the electric attractive force of ions.
These normal binding action, separation action and dissociative binding action occur simultaneously and thus molecules of potassium ion (K + ), oxonium ion (H 3 O + ), hydroxyl ion (OH ) and water. The electrolytic solution M1 containing (2H 2 O) is drawn from the output port P11 of the electrolytic tank unit 11 by the circulation pump 27 of the electrolytic solution circulating unit 26, and the input port P14 of the mixing tank unit 12 and the stored electrolytic solution. It is circulated through the circulation port P15 to the circulation input port P16 of the electrolysis tank section 11.
In the circulation operation of the electrolysis solution, the amount of ion synthesis solution (H 3 O + + OH ) contained in the electrolysis solution is determined from the electrolysis power supply 25 based on the electrolysis conditions of the electrolysis tank 11. When the direct current / voltage applied between the anode terminal 24A and the cathode terminal 24B has a predetermined resonance value (in this embodiment, the applied voltage is 200 [V] and the applied current is 75 [A]), the resonance action is achieved. As a result, the production amount of the ion synthesis solution (H 3 O + + OH ) becomes remarkably large.
In this way, the ion synthesis liquid (H 3 O + + OH ) contained in the electrolysis liquid M1 drawn from the electrolysis tank section 11 passes through the lower layer of the mixing tank section 12 and the electrolysis tank section 11. The ion synthesis solution (H 3 O + + OH ) is partly stored as a liquefied layer 32 in the lower layer portion of the mixing tank 12 due to the pushing pressure of the circulation pump 27.
The liquefying layer 32 of the mixing tank unit 12 stores an electrolysis solution containing an ion synthesis solution (H 3 O + + OH ) in a stagnant state and also stores the stored ion synthesis solution (H 3 O + + OH ). Is extracted from the constant temperature control output port P25, controlled to a predetermined reaction temperature in the temperature adjustment unit 35, and then subjected to ion synthesis stored in the liquefied layer 32 under a temperature adjustment operation to return to the temperature liquid level control input port P28. The liquid (H 3 O + + OH ) is subjected to an ion exchange action as shown in FIG.
The ion transfer function in the mixing tank 12 is to reversibly separate the ion synthesis solution (H 3 O + + OH ) into oxonium ions (H 3 O + ) and hydroxyl ions (OH ) and to perform the separation. When the formed oxonium ions (H 3 O + ) and hydroxyl ions (OH ) are integrated by the adsorption action, the ionized active gas (H 3 O + : OH − is obtained from the liquid surface 32A of the liquefied layer 32 by the mutual protection action. Vaporize as).
The ion transfer operation in the mixing tank unit 12 according to FIG. 6 is performed simultaneously and reversibly. However, depending on the temperature setting condition (20 to 22 [° C. in this embodiment) by the temperature adjusting unit 35, oxonium is provided. The transition action to the ionized active gas (H 3 O + : OH ), which is an adsorbed molecule of ions (H 3 O + ) and hydroxyl ions (OH ), becomes remarkable.
Thus, the ionized active gas (H 3 O + : OH ) vaporized from the liquefied layer 32 comes out to the vaporized layer 41 of the mixing tank unit 12.
At this time, the ion synthesis liquid (H 3 O + + OH ) vaporized from the liquefied layer 32 to the vaporized layer 41 is consumed from the electrolyzed liquid circulating between the electrolyzed tank part 11 and the mixing tank part 12, The concentration of potassium hydroxide (KOH), which is an electrolysis stock solution in the electrolysis tank unit 11, increases. At this time, the central control unit 34 determines the water supply valve based on the liquid level detection signal S 1 of the liquid level detector 33. By supplying the liquid level control signal S2 to V29, the pure water M5 is supplied to the mixing tank 12 through the temperature liquid level control input port P28, thereby controlling the liquid level 32A of the liquefied layer 32 to a predetermined constant value. At the same time, by circulating the ion synthesis solution (H 3 O + + OH ) in the liquefied layer 32 to the electrolysis tank unit 11, the concentration of the electrolysis stock solution (KOH) in the electrolysis tank unit 11 is kept constant. Control
In this way, the ionized active gas (H 3 O + : OH ) filling the vaporized layer 41 is sent from the mixing tank unit 12 to the reaction tank unit 13 via the pressure adjusting unit 42 from the ionized active gas input port P33. It is.
The reaction tank unit 13 reacts the fed regulated pressure ionized active gas M12 with the fuel material M13 (gasoline (C 6 H 14 ) in this embodiment) fed from the fuel material input port P36. The ion exchange effect shown in FIG. 7 is produced.
As a result, the reaction tank section 13 is activated by ionizing gasoline (C 6 H 14 ), which is a normal fuel raw material that is not activated by itself, by ionizing the oxonium ions (H 3 O + ) And an ionized active gas (H 3 O + : OH ) composed of adsorbed molecules of hydroxyl ions (OH ), under low pressure (maximum 0.1 MPa in this embodiment), By causing an active reaction, oxooptane (C 6 H 18 O 2 ) can be generated and supplied to the combustion device 2.
The oxo-optane (C 6 H 18 O 2 ) contains oxygen atoms (O 2 ) compared to gasoline (C 6 H 14 ), so that the combustion efficiency in the combustion device 2 is reduced to that of ordinary gasoline (C 6 H 14 ) and can be made much higher.
According to the above configuration, by using the ionization activation function of the ionization active gas (H 3 O + : OH ), normal binding reaction is performed with gasoline (C 6 H 14 ) as a fuel raw material for burning oxygen. Thus, it is possible to obtain a hybrid fuel gas by ion activity that can be burned efficiently.
Accordingly, the reaction conditions for reacting the ionized active gas (H 3 O + : OH ) with gasoline (C 6 H 14 ) as a fuel can be stabilized at a low temperature and a low pressure.
(6) Second Embodiment FIG. 8 shows a second embodiment. In the case of FIG. 7, gasoline (C 6 H 14 ) is used as the fuel raw material M13, but in the case of FIG. Instead of this, LPG (C 3 H 8 ) is used as the fuel raw material M13 to be supplied to the reaction tank section 13.
In this case, the reaction tank unit 13 reacts the ionized active gas (H 3 O + : OH ) with LPG (C 3 H 8 ) to produce 1-N propanol (CH 3 —OH—) as the hybrid fuel gas W1. (CH 2 -CH 2 ) is generated and sent from the hybrid fuel output port P37 to the combustion device 2 via the output valve V37.
According to the configuration of FIG. 8, ionized active gas (H 3 O + : OH ) composed of adsorbed molecules of ionized oxonium ions (H 3 O + ) and hydroxyl ions (OH ) is converted into LPG (C 3 By reacting with H 8 ), the ionized active gas (H 3 O + : OH ) is ion-activated, and compared with LPG (C 3 H 8 ), which is the original fuel material. Therefore, the combustion efficiency when the combustion apparatus 2 burns 1-Npropanol (CH 3 —OH—CH 2 —CH 2 ), which is the hybrid fuel gas, is further increased. be able to.
Thus, by using the ionization active function of the ionized active gas (H 3 O + : OH ), a normal bond reaction with LPG (C 3 H 8 ) as a fuel to be burned with oxygen makes it possible to efficiently burn the hybrid. Fuel can be obtained.
Accordingly, the reaction conditions for reacting the ionized active gas (H 3 O + : OH ) with LPG (C 3 H 8 ) as a fuel can be stabilized at a low temperature and a low pressure.
(7) Other Embodiments (7-1) In the above-described embodiment, the case where gasoline (C 6 H 14 ) and LPG (C 3 H 8 ) are used as the fuel raw material to be combusted has been described. However, the fuel is not limited to this, and fuel containing hydrocarbons such as ethanol and methanol may be used.
(7-2) FIG. 9 shows a hybrid fuel gas generator 1X based on ion activity according to another embodiment. As shown in FIG. 26X is inserted into the flow path of the electrolysis return liquid M3 from the mixing tank section 12 to the electrolysis tank section 11, so that the liquefied layer 32 of the liquefied layer 32 can be supplied from the stored electrolytic solution circulation port P15 (FIG. 3) of the mixing tank section 12. The ion synthesis solution (H 3 O + + OH ) is drawn out as a circulating solution and pushed out to the circulation input port P16 (FIG. 2) of the electrolysis tank section 11.
Even in this case, the mixing tank section 12 can be generated from the electrolysis tank section 11 through the liquefied layer 32 of the mixing tank section 12 and returning to the electrolysis tank section 11, as described above with reference to FIG. The vaporization phenomenon of the ionized active gas (H 3 O + : OH ) based on the mutual protection action can be generated from the ion synthesis solution (H 3 O + + OH ) stored in the inside.
(7-3) In the above-described embodiment, the case where (KOH) is used as the electrolysis stock solution 20 of the electrolysis tank unit 11 has been described, but instead of this, an aqueous Li solution, (NaOH), citric acid An aqueous solution may be used.
 本発明はイオン化活性ガス(H:OH)と反応する燃料原料を燃焼させる燃焼装置に利用できる。 The present invention is ionized active gas (+ H 3 O: OH - ) and available combustion device for combusting the fuel material to be reacted.
 1、1X……イオン活性による混成燃料ガス発生装置、2……燃焼装置、11……電気分解槽部、12……混合槽部、13……反応槽部、20……電気分解用原液、21……電気分解槽本体、22……電極板層、24A、24B……陽極、陰極端子、25……電気分解用電源、26、26X……電気分解液循環部、27……循環ポンプ、28……純水用フィルタ、31……混合槽本体、32……液化層、33……液量検出器、34……中央制御装置部、35……温度調整部、36……温度検出器、41……気化層、42……圧力調整部 DESCRIPTION OF SYMBOLS 1, 1X ... Hybrid fuel gas generator by ion activity, 2 ... Combustion device, 11 ... Electrolysis tank part, 12 ... Mixing tank part, 13 ... Reaction tank part, 20 ... Electrolysis stock solution, 21... Electrolysis tank body, 22... Electrode plate layer, 24 A, 24 B... Anode, cathode terminal, 25. Power source for electrolysis, 26 and 26 X. 28 …… Pure water filter, 31 …… Mixing tank body, 32 …… Liquefaction layer, 33 …… Liquid quantity detector, 34 …… Central control unit, 35 …… Temperature adjustment unit, 36 …… Temperature detector , 41 ... vaporization layer, 42 ... pressure adjustment part

Claims (5)

  1.  燃焼させるべき燃料に対してイオン化活性ガスを反応させてなる混成燃料ガスを燃焼装置に供給するイオン活性による混成燃料ガス発生装置であって、
     電気分解用原液を電気分解することにより、解離結合した(H+OH)イオンを含むイオン合成液を生成する電気分解槽部と、
     上記電気分解槽部から送出される上記イオン合成液を液化層として貯留することにより、解離結合した(H+OH)イオンを含む上記イオン合成液から(H)イオンと(OH)イオンとが吸着してなるイオン化活性ガス(H:OH)を気化させる混合槽部と、
     上記混合槽部から送出される上記イオン化活性ガス(H:OH)を受けて当該イオン化活性ガスのイオン化活性機能を利用して燃料と反応させることにより、上記燃焼装置に供給する混成燃料ガスを生成する反応槽部
     とを具えることを特徴とするイオン活性による混成燃料ガス発生装置。
    A hybrid fuel gas generator by ionic activity for supplying a hybrid fuel gas obtained by reacting an ionized active gas to a fuel to be burned to a combustion device,
    An electrolysis tank unit that generates an ion synthesis solution containing dissociated (H 3 O + + OH ) ions by electrolyzing the stock solution for electrolysis;
    By storing the ion synthesis solution delivered from the electrolysis tank section as a liquefied layer, (H 3 O + ) ions (from the ion synthesis solution containing dissociated (H 3 O + + OH ) ions) and ( A mixing vessel for vaporizing an ionized active gas (H 3 O + : OH ) formed by adsorption of OH ) ions;
    A hybrid supplied to the combustion device by receiving the ionized active gas (H 3 O + : OH ) delivered from the mixing tank unit and reacting with the fuel using the ionization active function of the ionized active gas. A hybrid fuel gas generator using ionic activity, comprising: a reaction tank that generates fuel gas.
  2.  上記電気分解槽部において生成された上記イオン合成液を、循環ポンプを用いて、上記混合槽部を通って上記電気分解槽部に循環させる電気分解液循環部を有する
     ことを特徴とする請求項1に記載のイオン活性による混成燃料ガス発生装置。
    The electrolysis solution circulation part which circulates the ion synthesis liquid generated in the electrolysis tank part through the mixing tank part to the electrolysis tank part using a circulation pump. 2. A hybrid fuel gas generator using ionic activity according to 1.
  3.  上記混合槽部に液化層として貯留された上記イオン合成液の温度を、上記イオン合成液の(H+OH)イオンからイオン化活性ガス(H:OH)に気化させる所定温度に維持する温度調整部を有する
     ことを特徴とする請求項1に記載のイオン活性による混成燃料ガス発生装置。
    The temperature of the ion synthesis solution stored as a liquefied layer in the mixing vessel is vaporized from (H 3 O + + OH ) ions of the ion synthesis solution to ionized active gas (H 3 O + : OH ). The hybrid fuel gas generator using ion activity according to claim 1, further comprising a temperature adjusting unit that maintains the temperature.
  4.  上記混合槽部において生成された上記イオン化活性ガス(H:OH)の圧力を、上記反応槽部において当該イオン化活性ガス(H:OH)が上記燃料と反応する圧力に調整する圧力調整部を有する
     ことを特徴とする請求項1に記載のイオン活性による混成燃料ガス発生装置。
    The pressure of the ionized active gas (H 3 O + : OH ) generated in the mixing tank part is the pressure at which the ionized active gas (H 3 O + : OH ) reacts with the fuel in the reaction tank part. The hybrid fuel gas generator using ion activity according to claim 1, further comprising: a pressure adjusting unit that adjusts to
  5.  燃焼させるべき燃料に対してイオン化活性ガスを反応させてなる混成燃料ガスを燃焼装置に供給するイオン活性による混成燃料ガス発生方法であって、
     電気分解槽部において、電気分解用原液を電気分解することにより、解離結合した(H+OH)イオンを含むイオン合成液を生成するステップと、
     混合槽部において、上記電気分解槽部から送出される上記イオン合成液を液化層として貯留することにより、解離結合した(H+OH)イオンを含む上記イオン合成液から(H)イオンと(OH)イオンとが吸着してなるイオン化活性ガス(H:OH)を気化させるステップと、
     上記混合槽部から送出される上記イオン化活性ガス(H:OH)を反応槽部に受けて当該イオン化活性ガスのイオン化活性機能を利用して燃料原料と反応させることにより、上記燃焼装置に供給する混成燃料ガスを生成するステップと
     を具えることを特徴とするイオン活性による混成燃料ガス発生方法。
    A hybrid fuel gas generation method based on ion activity that supplies a hybrid fuel gas obtained by reacting an ionized active gas to a fuel to be burned to a combustion device,
    Generating an ion synthesis solution containing dissociated (H 3 O + + OH ) ions by electrolyzing the stock solution for electrolysis in the electrolysis tank unit;
    In the mixing tank part, by storing the ion synthesis liquid delivered from the electrolysis tank part as a liquefied layer, the ion synthesis liquid containing (H 3 O + + OH ) ions that have been dissociated and bonded (H 3 O A step of vaporizing an ionized active gas (H 3 O + : OH ) formed by adsorbing ( + ) ions and (OH ) ions;
    The combustion is performed by receiving the ionized active gas (H 3 O + : OH ) delivered from the mixing tank unit in a reaction tank unit and reacting with the fuel raw material using the ionization active function of the ionized active gas. Generating a hybrid fuel gas to be supplied to the apparatus. A method for generating a hybrid fuel gas by ion activity.
PCT/JP2010/053700 2009-03-02 2010-03-01 Device for generating mixed fuel gas using ion activity WO2010101261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009048173A JP5315092B2 (en) 2009-03-02 2009-03-02 Ion activated hybrid fuel gas generator
JP2009-048173 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010101261A1 true WO2010101261A1 (en) 2010-09-10

Family

ID=42709813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053700 WO2010101261A1 (en) 2009-03-02 2010-03-01 Device for generating mixed fuel gas using ion activity

Country Status (2)

Country Link
JP (1) JP5315092B2 (en)
WO (1) WO2010101261A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465915A1 (en) * 2010-12-20 2012-06-20 Impara Finanz AG Combustible gas composition
CN104312648A (en) * 2014-09-04 2015-01-28 朱光华 Fuel gas with high calorific value, preparation method thereof and equipment for carrying out the preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112906A (en) * 1977-03-14 1978-10-02 Ai Fuoiaaman Aanorudo Fuel compositions and apparatus for generating gaseous fuel
JPS54111502A (en) * 1978-02-20 1979-08-31 Inoue Japax Res Inc Gas evolution by electrolysis of water
JPH1077488A (en) * 1996-08-30 1998-03-24 Top Energ Syst:Kk Apparatus for gas energy by electrolysis of water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112906A (en) * 1977-03-14 1978-10-02 Ai Fuoiaaman Aanorudo Fuel compositions and apparatus for generating gaseous fuel
JPS54111502A (en) * 1978-02-20 1979-08-31 Inoue Japax Res Inc Gas evolution by electrolysis of water
JPH1077488A (en) * 1996-08-30 1998-03-24 Top Energ Syst:Kk Apparatus for gas energy by electrolysis of water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465915A1 (en) * 2010-12-20 2012-06-20 Impara Finanz AG Combustible gas composition
WO2012084119A1 (en) * 2010-12-20 2012-06-28 Impara Finanz Ag Combustible gas composition
EA026312B1 (en) * 2010-12-20 2017-03-31 Нарва Текнолоджиз Аг Combustible gas composition
US9708555B2 (en) 2010-12-20 2017-07-18 Narwa Technologies Ag Combustible gas composition
CN104312648A (en) * 2014-09-04 2015-01-28 朱光华 Fuel gas with high calorific value, preparation method thereof and equipment for carrying out the preparation method
CN104312648B (en) * 2014-09-04 2016-08-31 北京洁能创新能源科技有限公司 A kind of high heating value combustion gas and preparation method thereof and facilities and equipments

Also Published As

Publication number Publication date
JP2010203649A (en) 2010-09-16
JP5315092B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US4628010A (en) Fuel cell with storable gas generator
KR20100094344A (en) Fuel cell system
JP4491653B2 (en) Fuel cell system and power generation method thereof
KR102230130B1 (en) Co-electrolysis system and co- electrolysis method using the same
JP2007523443A (en) Fuel cells for hydrogen production, power generation, and co-production
CN108604695B (en) Energy storage with engine REP
US20220056597A1 (en) Electrochemical apparatus and hydrogen generation method
JP2013258004A (en) High-temperature fuel cell system
JPH03111587A (en) Electrolytic bath for reduction of carbon dioxide
JP2006140103A (en) Operation control method of fuel cell, and system for it
JPH11228101A (en) Hydrogen/oxygen production process and application process of hydrogen
WO2004046408B1 (en) Electrochemical reformer and fuel cell system
JP5315092B2 (en) Ion activated hybrid fuel gas generator
US11335930B2 (en) Fuel cell system and method for operating the same
CN101816090B (en) Fuel cell apparatus
US20180006317A1 (en) Fuel cell system and method for operating the same
JP6061892B2 (en) Fuel cell power generation system
US20230352702A1 (en) Hydrogen Generation Using a Fuel Cell System with an Rep
JP2020132934A (en) Hydrogen boosting system
EP3378972A2 (en) Electric power storage system and electric power storage and supply system
JP2020186460A (en) Electrolyte film-electrode joint body, electrochemical device using the same, and hydrogen generation system using them
JP2009117120A (en) Method of operating hydrogen and power generation system
KR20130008192A (en) Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)
JP2020015932A (en) Hydrogen generation system and method for operating the same
JP2007200809A (en) Fuel-cell power generation system and power generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748854

Country of ref document: EP

Kind code of ref document: A1