WO2010101153A1 - A-site ordered perovskite-type oxide - Google Patents

A-site ordered perovskite-type oxide Download PDF

Info

Publication number
WO2010101153A1
WO2010101153A1 PCT/JP2010/053350 JP2010053350W WO2010101153A1 WO 2010101153 A1 WO2010101153 A1 WO 2010101153A1 JP 2010053350 W JP2010053350 W JP 2010053350W WO 2010101153 A1 WO2010101153 A1 WO 2010101153A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
perovskite oxide
perovskite
site
present
Prior art date
Application number
PCT/JP2010/053350
Other languages
French (fr)
Japanese (ja)
Inventor
有文 龍
島川 祐一
直顕 林
高志 齊藤
東 正樹
重利 村中
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2011502764A priority Critical patent/JPWO2010101153A1/en
Publication of WO2010101153A1 publication Critical patent/WO2010101153A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention relates to a novel A-site ordered perovskite oxide.
  • Optical parts, precision parts, composite / stacked parts, etc. that constitute various devices are required not to thermally expand during use.
  • Patent Document 1 discloses La 0.95 Sr 0.05 Fe 0.80 Co 0.20 O 3 , LaFe 0.75 Co as a raw material powder constituting an air electrode of a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • Perovskite oxides such as 0.20 Ni 0.05 O 3 have been reported ([Table 1] in Patent Document 1).
  • Patent Document 2 reports a lanthanum chromite oxide such as La 0.8 Sr 0.2 CrO 3 as a bonding material used for electrically bonding SOFC structural members to each other (Patent Document 2). 2 [Table 2] etc.).
  • Patent Document 3 reports a lead zirconate titanate (PZT) piezoelectric film doped with Nb as a piezoelectric body having a ferroelectric layer (Example 1 of Patent Document 3).
  • PZT lead zirconate titanate
  • Patent Documents 1 to 3 are suppressed in thermal expansion to some extent, in consideration of the recent increase in density and capacity of optical components and the like, further thermal expansion is possible. Prevention or suppression is required.
  • the main object of the present invention is to provide a metal oxide material whose volume decreases in a practical temperature range.
  • the present invention relates to the following perovskite oxide and a method for producing the same.
  • General formula (1) A'A 3 B 4 O 12 (1) (In the formula, A ′ and A are elements occupying the A site of the perovskite oxide, and A ′ is La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K represent at least one metal element selected from the group consisting of Cu, Mn, Fe and Ni, and A represents at least one transition selected from the group consisting of Cu, Mn, Fe and Ni Represents a metal element, and B is an element occupying the B site of the perovskite oxide, and is selected from the group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr, and Ru Indicates at least one transition metal element.) Perovskite oxide represented by 2.
  • a ′ represents at least one metal element selected from the group consisting of La, Bi and Y, A represents at least one transition metal element of Cu and Mn, and B represents Fe.
  • the perovskite oxide according to item 1. 3.
  • Item 3 The perovskite oxide according to Item 1 or 2 used as a thermal expansion buffer material. 4).
  • 3. The perovskite oxide according to item 1 or 2, wherein a mixture of the oxide of A ′, the oxide of A and the oxide of B is heat-treated under conditions of a pressure of 6 GPa or more and a temperature of 800 ° C. or more. Manufacturing method.
  • the perovskite oxide of the present invention has a structure in which 1/4 of the A site of the perovskite structure is occupied by the metal element A ′ and 3/4 of the transition metal element A is occupied.
  • This is an oxide in which the sites are ordered (A-site ordered perovskite oxide).
  • the perovskite oxide of the present invention since the A site is ordered in this manner, in a practical temperature range (about 25 to 450 ° C. (298 to 723 K)) such as a temperature during use of various devices. Volume decreases. That is, the perovskite oxide of the present invention undergoes thermal shrinkage (negative thermal expansion occurs) in the temperature range. For example, in the case of a perovskite oxide (LaCu 3 Fe 4 O 12 ) in which A ′ is La, A is Cu, and B is Fe in the general formula (1), as shown in FIG. ) Volume decreases dramatically in the vicinity.
  • a magnetic transition and an insulator-metal transition occur in the temperature range. This is because charge transfer occurs between the A site and the B site in the temperature range.
  • the temperature of the LaCu 3 Fe 4 O 12 is increased, the LaCu 3 Fe 4 O 12 changes from antiferromagnetic to paramagnetic at around 120 ° C. (393 K) as shown in FIG.
  • the transition from the insulator to the metal occurs around the same temperature. Therefore, the perovskite oxide of the present invention can suitably control the increase / decrease in volume by an external magnetic field or current.
  • the perovskite oxide of the present invention can be used as a constituent material for parts for various devices to produce parts or the like in which thermal expansion is prevented or suppressed.
  • the conventional metal oxide material undergoes anisotropic volume fluctuation
  • the perovskite oxide of the present invention undergoes isotropic volume fluctuation (said thermal shrinkage). Therefore, the parts made of the perovskite oxide of the present invention can be position-controlled with high accuracy on various devices.
  • the perovskite oxide of the present invention has the general formula (1) A'A 3 B 4 O 12 (1) (In the formula, A ′ and A are elements occupying the A site of the perovskite oxide, and A ′ is La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K represent at least one metal element selected from the group consisting of Cu, Mn, Fe and Ni, and A represents at least one transition selected from the group consisting of Cu, Mn, Fe and Ni Represents a metal element, and B is an element occupying the B site of the perovskite oxide, and is selected from the group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr, and Ru Indicates at least one transition metal element.) It is represented by
  • At least one metal element selected from the group consisting of La, Bi and Y is particularly preferable, and La is more preferable.
  • A is particularly preferably at least one transition metal element of Cu and Mn, and more preferably Cu.
  • B is particularly preferably Fe.
  • LaCu 3 Fe 4 O 12 , BiCu 3 Fe 4 O 12 and (La, Ca) Cu 3 Fe 4 O 12 are particularly preferable, and LaCu 3 Fe 4 O 12 is more preferable.
  • the shape, size, and the like of the perovskite oxide of the present invention are not particularly limited, and may be set as appropriate according to the target component, but are preferably in the form of particles from the standpoint of ease of processing of the component.
  • the average particle size is preferably about 1 to 1000 ⁇ m.
  • a known method may be adopted as a method for measuring the average particle diameter. For example, transmission electron microscopy may be used.
  • the crystal structure of the perovskite oxide of the present invention can be confirmed by, for example, X-ray diffraction method, Mossbauer spectroscopy or the like.
  • each constituent element is in a special ionic state.
  • the special ionic state of Cu 3+ in the A site occurs at room temperature.
  • Fe 3+ at the B site becomes Fe 3.75+ ions in a highly oxidized state called an abnormally high valence, and at the same time Cu 3+ at the A site becomes Cu 2+. Changes to ions.
  • the antiferromagnetic state at room temperature changes to paramagnetic from a temperature above 393 K (120 ° C.) as the ionic state changes. Moreover, what is in an insulator state at room temperature changes to a metal state in which current flows at a temperature above 393 K (120 ° C.).
  • the perovskite oxide of the present invention can be used as a material for parts constituting various devices.
  • the perovskite oxide of the present invention has no problem of thermal expansion during use, highly integrated and high power electronics components (for example, integrated circuits), precision optical components (for example, mirrors, lenses, etc.), It can be suitably used as a constituent material for precision machine parts (for example, machine tool parts).
  • precision machine parts for example, machine tool parts.
  • it can be suitably used as a material for a pickup device such as a DVD that requires submicron size position control.
  • the perovskite type oxide and a material exhibiting a thermal expansion action are mixed and sintered, so that the volume change with temperature is substantially zero.
  • the perovskite oxide of the present invention can also be used as a thermal expansion buffer material. What is necessary is just to adjust suitably the mixture ratio of the said perovskite type oxide and the said material according to the thermal expansion coefficient etc. of this material. Further, the perovskite oxides may be used alone or in combination of two or more.
  • the thermal expansion coefficient of various components can be adjusted with high accuracy. For example, there is a problem that a composite / stack component used in a high temperature and temperature history environment is peeled off between members due to a difference in thermal expansion coefficient of each member. According to the perovskite oxide of the present invention, since the coefficient of thermal expansion of various components can be adjusted with high accuracy, the above problem can be suitably avoided. Therefore, the perovskite oxide of the present invention is also useful as a material in, for example, a fuel cell stack member, an electronic substrate and the like.
  • the perovskite oxide of the present invention is, for example, mixed with an A ′ oxide, an A oxide and a B oxide, and then heat-treated (fired) under high temperature and high pressure. Can be manufactured.
  • the mixing ratio of the oxide of A ′, the oxide of A, and the oxide of B is not particularly limited, and a perovskite oxide represented by the general formula (1) (A′A 3 B 4 O 12 ) is obtained. What is necessary is just to set suitably.
  • the perovskite oxide of the present invention is used by using La 2 O 3 , CuO and Fe 2 O 3 in a molar ratio of 1: 6: 4. An oxide is suitably obtained.
  • the heat treatment can be performed according to a known method. For example, after filling a platinum capsule with a mixture of an oxide of A ′, an oxide of A and an oxide of B, the obtained capsule is pressurized and heated using a known apparatus.
  • known devices include a cubic anvil type high pressure generator.
  • the pressure when heat-treating the mixture of A ′ oxide, A oxide and B oxide is preferably about 6 GPa or more, more preferably about 10 to 15 GPa.
  • the heat treatment temperature is preferably about 800 ° C. or higher, and more preferably about 1000 to 1200 ° C.
  • the perovskite oxide of the present invention is suitably obtained by performing the heat treatment at a pressure of about 10 GPa or more and a temperature of 1000 ° C. or more.
  • the heat treatment time may be appropriately adjusted according to the heat treatment conditions such as the heat treatment temperature so that the raw materials sufficiently react, but is usually about 30 minutes to 2 hours.
  • the mixture Prior to the heat treatment, the mixture may contain known additives.
  • known additives include oxidizing agents such as KClO 4 .
  • the perovskite type oxide of the present invention is thermally contracted in a practical temperature range (about 25 to 450 ° C. (about 298 to 723 K)) such as the temperature when using various devices because the A site is ordered. To do.
  • the perovskite oxide of the present invention can be suitably controlled in volume increase / decrease by an external magnetic field or current.
  • the volume change occurs isotropically.
  • the perovskite oxide of the present invention exhibiting such characteristics can be suitably used as a constituent material for highly integrated / high output electronics parts, precision optical parts, precision machine parts and the like.
  • the perovskite oxide of the present invention as a thermal expansion buffer material, it is possible to manufacture highly integrated and high output electronic components that have substantially no volume change due to temperature.
  • FIG. 1 shows a crystal structure (cubic crystal structure, space group: Im-3) of an A-site ordered perovskite oxide.
  • FIG. 2 shows a change in volume of the perovskite oxide obtained in Example 1 due to heat.
  • FIG. 3 is a graph showing the magnetic transition and insulator-metal transition of the perovskite oxide obtained in Example 1 due to heat.
  • FIG. 4 is a schematic diagram of the cubic anvil type high-pressure generator used in Examples 1 and 2.
  • FIG. 5 shows the X-ray diffraction spectrum of LaCu 3 Fe 4 O 12 obtained in Example 1.
  • 6 shows the X-ray diffraction spectrum of BiCu 3 Fe 4 O 12 obtained in Example 2.
  • Example 1 A perovskite oxide of LaCu 3 Fe 4 O 12 was produced.
  • the obtained capsules were heated for about 1 hour under conditions of a pressure of 10 GPa and a temperature of 1400 K using a cubic anvil type high pressure generator as shown in FIG.
  • the perovskite oxide of LaCu 3 Fe 4 O 12 was obtained by the above method.
  • Example 2 A perovskite oxide of BiCu 3 Fe 4 O 12 was produced.
  • the obtained capsules were heated for about 1 hour under conditions of a pressure of 10 GPa and a temperature of 1300 K using a cubic anvil type high pressure generator as shown in FIG.
  • Test example 1 The volume change rate due to heat of the perovskite oxide obtained in Example 1 and Example 2 was confirmed.
  • FIG. 2 shows the volume change of the perovskite oxide obtained in Example 1 due to heat.
  • the volume change rate of the perovskite oxide of Example 1 when the heating temperature was 393 K was determined by the following formula. ⁇ (Volume when the heating temperature is 423K ⁇ Volume when the heating temperature is 373K) / Volume when the heating temperature is 373K ⁇ ⁇ 100 (%)
  • the volume change rate of the perovskite oxide of Example 2 when the heating temperature was 450 K was obtained by the following formula. ⁇ (Volume when the heating temperature is 473K ⁇ Volume when the heating temperature is 423K) / Volume when the heating temperature is 423K ⁇ ⁇ 100 (%) The results are shown in Table 1.
  • Test example 2 The perovskite oxide obtained in Example 1 was confirmed to have a magnetic transition due to heat and an insulator-metal transition.
  • the magnetic transition was confirmed using a magnetometer (“MPMS” manufactured by Quantum Design).
  • MPMS magnetometer
  • PPMS physical property measuring apparatus manufactured by Quantum Design Co., Ltd.
  • FIG. 3 shows a graph showing the magnetic transition and the insulator-metal transition of the perovskite oxide obtained in Example 1 due to heat.
  • the perovskite oxide of Example 1 undergoes a magnetic transition from antiferromagnetism to paramagnetism at the temperature at which the volume decreased in Test Example 1 above, and further from the insulator. It can be seen that the transition to metal occurs. From these results, it can be seen that the perovskite oxide of the present invention can control the increase or decrease in volume by an external magnetic field or current.

Abstract

Disclosed is a metal oxide material of which the volume is decreased in a practically effective temperature range. Specifically disclosed is a perovskite-type oxide represented by general formula (1). A'A3B4O12 (1) (In the formula, A' and A are elements occupying the A-site in a perovskite-type oxide, wherein A' represents at least one metal element selected from a group consisting of La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K, and A represents at least one transition metal element selected from a group consisting of Cu, Mn, Fe and Ni; and B is an element occupying the B-site in a perovskite-type oxide and represents at least one transition metal element selected from a group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr and Ru.)

Description

Aサイト秩序型ペロブスカイト酸化物A-site ordered perovskite oxide
 本発明は、新規Aサイト秩序型ペロブスカイト酸化物に関する。 The present invention relates to a novel A-site ordered perovskite oxide.
 各種デバイスを構成する光学部品、精密部品、複合・スタック部品等は、使用時において熱膨張しないことが求められている。 Optical parts, precision parts, composite / stacked parts, etc. that constitute various devices are required not to thermally expand during use.
 そのため、前記構成部材の材料として、従来より、熱膨張が抑制された金属酸化物材料が注目されている。特に、近年における光学部品等の高密度大容量化に伴い、熱膨張がより一層抑制された金属酸化物材料が求められている。 Therefore, conventionally, a metal oxide material in which thermal expansion is suppressed has attracted attention as a material of the constituent member. In particular, with the recent increase in density and capacity of optical components and the like, there has been a demand for metal oxide materials in which thermal expansion is further suppressed.
 例えば、特許文献1には、固体電解質型燃料電池(SOFC)の空気極を構成する原料粉末として、La0.95Sr0.05Fe0.80Co0.20、LaFe0.75Co0.20Ni0.05等のペロブスカイト型酸化物が報告されている(特許文献1の[表1]等)。 For example, Patent Document 1 discloses La 0.95 Sr 0.05 Fe 0.80 Co 0.20 O 3 , LaFe 0.75 Co as a raw material powder constituting an air electrode of a solid oxide fuel cell (SOFC). Perovskite oxides such as 0.20 Ni 0.05 O 3 have been reported ([Table 1] in Patent Document 1).
 特許文献2には、SOFCの構造部材同士を電気的に接合する場合に用いられる接合材料として、La0.8Sr0.2CrO等のランタンクロマイト系酸化物が報告されている(特許文献2の[表2]等)。 Patent Document 2 reports a lanthanum chromite oxide such as La 0.8 Sr 0.2 CrO 3 as a bonding material used for electrically bonding SOFC structural members to each other (Patent Document 2). 2 [Table 2] etc.).
 特許文献3には、強誘電体層を有する圧電体として、Nbがドープされたチタン酸ジルコン酸鉛(PZT)圧電体膜が報告されている(特許文献3の実施例1等)。 Patent Document 3 reports a lead zirconate titanate (PZT) piezoelectric film doped with Nb as a piezoelectric body having a ferroelectric layer (Example 1 of Patent Document 3).
 しかしながら、特許文献1~3において具体的に報告されている金属酸化物材料は、熱膨張がある程度抑制されているものの、近年における光学部品等の高密度大容量化を考慮した場合、さらなる熱膨張の防止又は抑制が求められる。 However, although the metal oxide materials specifically reported in Patent Documents 1 to 3 are suppressed in thermal expansion to some extent, in consideration of the recent increase in density and capacity of optical components and the like, further thermal expansion is possible. Prevention or suppression is required.
特開2008-305669号公報JP 2008-305669 A 特開2008-207188号公報JP 2008-207188 A 特開2008-306164号公報JP 2008-306164 A
 本発明は、実用的な温度領域で体積が減少する金属酸化物材料を提供することを主な目的とする。 The main object of the present invention is to provide a metal oxide material whose volume decreases in a practical temperature range.
 本発明者は、鋭意研究を重ねた結果、特定のペロブスカイト型酸化物が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of extensive research, the present inventor has found that a specific perovskite oxide can achieve the above object, and has completed the present invention.
 即ち、本発明は、下記のペロブスカイト型酸化物及びその製造方法に係る。
1. 一般式(1)
A’A12   (1)
(式中、A’及びAはペロブスカイト型酸化物のAサイトを占める元素であって、A’はLa、Bi、Y、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Sr、Ba、Pb、Na及びKからなる群から選ばれる少なくとも一種の金属元素を示し、AはCu、Mn、Fe及びNiからなる群から選ばれる少なくとも一種の遷移金属元素を示し、Bはペロブスカイト型酸化物のBサイトを占める元素であって、Fe、Ti、V、Cr、Cu、Mn、Co、Ni、Ge、Sn、Zr及びRuからなる群から選ばれる少なくとも一種の遷移金属元素を示す。)
で表されるペロブスカイト型酸化物。
2. 一般式(1)中、A’はLa、Bi及びYからなる群から選ばれる少なくとも一種の金属元素を示し、AはCu及びMnの少なくとも一種の遷移金属元素を示し、BはFeを示す、上記項1に記載のペロブスカイト型酸化物。
3. 熱膨張緩衝材として用いる上記項1又は2に記載のペロブスカイト型酸化物。
4. A’の酸化物、Aの酸化物及びBの酸化物の混合物を、圧力6GPa以上及び温度800℃以上の条件下で熱処理することを特徴とする上記項1又は2に記載のペロブスカイト型酸化物の製造方法。
That is, the present invention relates to the following perovskite oxide and a method for producing the same.
1. General formula (1)
A'A 3 B 4 O 12 (1)
(In the formula, A ′ and A are elements occupying the A site of the perovskite oxide, and A ′ is La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K represent at least one metal element selected from the group consisting of Cu, Mn, Fe and Ni, and A represents at least one transition selected from the group consisting of Cu, Mn, Fe and Ni Represents a metal element, and B is an element occupying the B site of the perovskite oxide, and is selected from the group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr, and Ru Indicates at least one transition metal element.)
Perovskite oxide represented by
2. In general formula (1), A ′ represents at least one metal element selected from the group consisting of La, Bi and Y, A represents at least one transition metal element of Cu and Mn, and B represents Fe. 2. The perovskite oxide according to item 1.
3. Item 3. The perovskite oxide according to Item 1 or 2 used as a thermal expansion buffer material.
4). 3. The perovskite oxide according to item 1 or 2, wherein a mixture of the oxide of A ′, the oxide of A and the oxide of B is heat-treated under conditions of a pressure of 6 GPa or more and a temperature of 800 ° C. or more. Manufacturing method.
 本発明のペロブスカイト型酸化物は、図1に示すように、ペロブスカイト構造のAサイトの1/4を上記金属元素A’が占有し、3/4を上記遷移金属元素Aが占有することによりAサイトが秩序化された酸化物(Aサイト秩序型ペロブスカイト酸化物)である。 As shown in FIG. 1, the perovskite oxide of the present invention has a structure in which 1/4 of the A site of the perovskite structure is occupied by the metal element A ′ and 3/4 of the transition metal element A is occupied. This is an oxide in which the sites are ordered (A-site ordered perovskite oxide).
 本発明のペロブスカイト型酸化物は、このようにAサイトが秩序化されていることにより、各種デバイスの使用時の温度等の実用的な温度領域(25~450℃(298~723K)程度)において体積が減少する。すなわち、本発明のペロブスカイト型酸化物は、前記温度領域で熱収縮する(負の熱膨張が起こる)。例えば、一般式(1)中の上記A’がLa、AがCu、BがFeであるペロブスカイト型酸化物(LaCuFe12)の場合、図2に示すように、120℃(393K)付近で体積が劇的に減少する。 In the perovskite oxide of the present invention, since the A site is ordered in this manner, in a practical temperature range (about 25 to 450 ° C. (298 to 723 K)) such as a temperature during use of various devices. Volume decreases. That is, the perovskite oxide of the present invention undergoes thermal shrinkage (negative thermal expansion occurs) in the temperature range. For example, in the case of a perovskite oxide (LaCu 3 Fe 4 O 12 ) in which A ′ is La, A is Cu, and B is Fe in the general formula (1), as shown in FIG. ) Volume decreases dramatically in the vicinity.
 また、本発明のペロブスカイト型酸化物は、前記温度領域において、磁気転移及び絶縁体-金属転移が起こる。これは、前記温度領域においてAサイト-Bサイト間で電荷移動が起こるためである。例えば、前記LaCuFe12の温度を上昇させた場合、図3に示すように、120℃(393K)付近で、前記LaCuFe12は反強磁性から常磁性へと転移し、さらに、同温度付近で、絶縁体から金属へと転移する。従って、本発明のペロブスカイト型酸化物は、外部磁場や電流によって体積の増減を好適に制御できる。 In the perovskite oxide of the present invention, a magnetic transition and an insulator-metal transition occur in the temperature range. This is because charge transfer occurs between the A site and the B site in the temperature range. For example, when the temperature of the LaCu 3 Fe 4 O 12 is increased, the LaCu 3 Fe 4 O 12 changes from antiferromagnetic to paramagnetic at around 120 ° C. (393 K) as shown in FIG. Furthermore, the transition from the insulator to the metal occurs around the same temperature. Therefore, the perovskite oxide of the present invention can suitably control the increase / decrease in volume by an external magnetic field or current.
 本発明のペロブスカイト型酸化物は、各種デバイス用の部品等の構成材料として用いることにより、熱膨張が防止又は抑制された部品等を製造できる。 The perovskite oxide of the present invention can be used as a constituent material for parts for various devices to produce parts or the like in which thermal expansion is prevented or suppressed.
 しかも、従来の金属酸化物材料は、体積の変動が異方的に起こるのに対し、本発明のペロブスカイト型酸化物は、体積の変動(前記熱収縮)が等方的に起こる。そのため、本発明のペロブスカイト型酸化物を材料とした部品は、各種デバイス上で高精度での位置制御が可能になる。 In addition, the conventional metal oxide material undergoes anisotropic volume fluctuation, whereas the perovskite oxide of the present invention undergoes isotropic volume fluctuation (said thermal shrinkage). Therefore, the parts made of the perovskite oxide of the present invention can be position-controlled with high accuracy on various devices.
 Aサイト秩序型ペロブスカイト酸化物
本発明のペロブスカイト型酸化物は、一般式(1)
A’A12   (1)
(式中、A’及びAはペロブスカイト型酸化物のAサイトを占める元素であって、A’はLa、Bi、Y、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Sr、Ba、Pb、Na及びKからなる群から選ばれる少なくとも一種の金属元素を示し、AはCu、Mn、Fe及びNiからなる群から選ばれる少なくとも一種の遷移金属元素を示し、Bはペロブスカイト型酸化物のBサイトを占める元素であって、Fe、Ti、V、Cr、Cu、Mn、Co、Ni、Ge、Sn、Zr及びRuからなる群から選ばれる少なくとも一種の遷移金属元素を示す。)
で表される。
A-site ordered perovskite oxide The perovskite oxide of the present invention has the general formula (1)
A'A 3 B 4 O 12 (1)
(In the formula, A ′ and A are elements occupying the A site of the perovskite oxide, and A ′ is La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K represent at least one metal element selected from the group consisting of Cu, Mn, Fe and Ni, and A represents at least one transition selected from the group consisting of Cu, Mn, Fe and Ni Represents a metal element, and B is an element occupying the B site of the perovskite oxide, and is selected from the group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr, and Ru Indicates at least one transition metal element.)
It is represented by
 A’としては、特に、La、Bi及びYからなる群から選ばれる少なくとも一種の金属元素が好ましく、Laがより好ましい。 As A ′, at least one metal element selected from the group consisting of La, Bi and Y is particularly preferable, and La is more preferable.
 Aとしては、特に、Cu及びMnの少なくとも一種の遷移金属元素が好ましく、Cuがより好ましい。 A is particularly preferably at least one transition metal element of Cu and Mn, and more preferably Cu.
 Bとしては、特に、Feが好ましい。 B is particularly preferably Fe.
 本発明のペロブスカイト型酸化物としては、特に、LaCuFe12、BiCuFe12及び(La、Ca)CuFe12が好ましく、LaCuFe12がより好ましい。 As the perovskite oxide of the present invention, LaCu 3 Fe 4 O 12 , BiCu 3 Fe 4 O 12 and (La, Ca) Cu 3 Fe 4 O 12 are particularly preferable, and LaCu 3 Fe 4 O 12 is more preferable.
 本発明のペロブスカイト型酸化物の形状、大きさ等は特に限定されず、目的の部品等に応じて適宜設定すればよいが、部品の加工容易性等の観点から粒子状であることが好ましい。前記ペロブスカイト型酸化物が粒子状である場合、平均粒径は、1~1000μm程度が好ましい。平均粒径の測定方法には、公知の方法を採用すればよい。例えば、透過型電子顕微鏡法等が挙げられる。 The shape, size, and the like of the perovskite oxide of the present invention are not particularly limited, and may be set as appropriate according to the target component, but are preferably in the form of particles from the standpoint of ease of processing of the component. When the perovskite oxide is in the form of particles, the average particle size is preferably about 1 to 1000 μm. A known method may be adopted as a method for measuring the average particle diameter. For example, transmission electron microscopy may be used.
 本発明のペロブスカイト型酸化物の結晶構造は、例えば、X線回折法、メスバウアー分光法等によって確認できる。 The crystal structure of the perovskite oxide of the present invention can be confirmed by, for example, X-ray diffraction method, Mossbauer spectroscopy or the like.
 本発明のペロブスカイト型酸化物は、構成する各元素が特殊なイオン状態にある。例えば、LaCuFe12を例にとると、室温下でLa3+Cu3+ Fe3+ 2- 12となり、AサイトでCu3+という特殊なイオン状態が生じている。さらに、393K(120℃)より上の温度では、BサイトのFe3+が異常高原子価と称される高い酸化状態のFe3.75+イオンになるのと同時に、AサイトのCu3+がCu2+イオンへと変化する。 In the perovskite oxide of the present invention, each constituent element is in a special ionic state. For example, taking the LaCu 3 Fe 4 O 12 as an example, and La 3+ Cu 3+ 3 Fe 3+ 4 O 2- 12 , and the special ionic state of Cu 3+ in the A site occurs at room temperature. Furthermore, at temperatures above 393 K (120 ° C.), Fe 3+ at the B site becomes Fe 3.75+ ions in a highly oxidized state called an abnormally high valence, and at the same time Cu 3+ at the A site becomes Cu 2+. Changes to ions.
  本発明のペロブスカイト型酸化物は、前記イオン状態の変化に伴い、室温下で反強磁性状態であるものが393K(120℃)より上の温度ではから常磁性へと変化する。また、室温下で絶縁体状態であるものが、393K(120℃)より上の温度では電流が流れる金属状態へと変化する。 In the perovskite oxide of the present invention, the antiferromagnetic state at room temperature changes to paramagnetic from a temperature above 393 K (120 ° C.) as the ionic state changes. Moreover, what is in an insulator state at room temperature changes to a metal state in which current flows at a temperature above 393 K (120 ° C.).
 本発明のペロブスカイト型酸化物は、各種デバイスを構成する部品の材料として使用できる。特に、本発明のペロブスカイト型酸化物は、使用時における熱膨張の問題がないので、高集積・高出力のエレクトロニクス部品(例えば、集積回路等)、精密光学部品(例えば、ミラー、レンズ等)、精密機械部品(例えば、工作機械部品等)等の構成材料として好適に使用できる。例えば、サブミクロンサイズの位置制御を必要とするDVD等のピックアップ装置の材料として好適に用いることができる。 The perovskite oxide of the present invention can be used as a material for parts constituting various devices. In particular, since the perovskite oxide of the present invention has no problem of thermal expansion during use, highly integrated and high power electronics components (for example, integrated circuits), precision optical components (for example, mirrors, lenses, etc.), It can be suitably used as a constituent material for precision machine parts (for example, machine tool parts). For example, it can be suitably used as a material for a pickup device such as a DVD that requires submicron size position control.
 本発明のペロブスカイト型酸化物を用いて各種部品を製造する際、該ペロブスカイト型酸化物と熱膨張作用を示す材料とを混合し、焼結させることにより、温度による体積変化が実質ゼロである部品を製造することが可能になる。すなわち、本発明のペロブスカイト型酸化物は、熱膨張緩衝材としても使用できる。前記ペロブスカイト型酸化物と前記材料との配合割合は、該材料の熱膨張率等に応じて適宜調整すればよい。また、前記ペロブスカイト型酸化物は一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 When manufacturing various parts using the perovskite type oxide of the present invention, the perovskite type oxide and a material exhibiting a thermal expansion action are mixed and sintered, so that the volume change with temperature is substantially zero. Can be manufactured. That is, the perovskite oxide of the present invention can also be used as a thermal expansion buffer material. What is necessary is just to adjust suitably the mixture ratio of the said perovskite type oxide and the said material according to the thermal expansion coefficient etc. of this material. Further, the perovskite oxides may be used alone or in combination of two or more.
 本発明のペロブスカイト型酸化物を熱膨張緩衝材として用いることにより、各種部品の熱膨張率を高精度で調節することができる。例えば、高温、温度履歴環境下で用いる複合・スタック部品は、各部材の熱膨張率の違いによって各部材間で剥離してしまうという問題がある。本発明のペロブスカイト型酸化物によれば、各種部品の熱膨張率を高精度で調節できるため、前記問題を好適に回避できる。従って、本発明のペロブスカイト型酸化物は、例えば、燃料電池用スタック部材、エレクトロニクス基板等における材料としても有用である。 By using the perovskite oxide of the present invention as a thermal expansion buffer material, the thermal expansion coefficient of various components can be adjusted with high accuracy. For example, there is a problem that a composite / stack component used in a high temperature and temperature history environment is peeled off between members due to a difference in thermal expansion coefficient of each member. According to the perovskite oxide of the present invention, since the coefficient of thermal expansion of various components can be adjusted with high accuracy, the above problem can be suitably avoided. Therefore, the perovskite oxide of the present invention is also useful as a material in, for example, a fuel cell stack member, an electronic substrate and the like.
 Aサイト秩序型ペロブスカイト酸化物の製造方法
 本発明のペロブスカイト型酸化物は、例えば、A’の酸化物、Aの酸化物及びBの酸化物を混合後、高温高圧下で、熱処理(焼成)することにより製造できる。
Method for Producing A-Site Ordered Perovskite Oxide The perovskite oxide of the present invention is, for example, mixed with an A ′ oxide, an A oxide and a B oxide, and then heat-treated (fired) under high temperature and high pressure. Can be manufactured.
 A’の酸化物、Aの酸化物及びBの酸化物の配合割合は、特に限定されず、一般式(1)(A’A12)で示されるペロブスカイト型酸化物が得られるよう適宜設定すればよい。例えば、LaCuFe12のペロブスカイト型酸化物を製造する場合、La、CuO及びFeをモル比で1:6:4の割合で用いることにより、本発明のペロブスカイト型酸化物が好適に得られる。 The mixing ratio of the oxide of A ′, the oxide of A, and the oxide of B is not particularly limited, and a perovskite oxide represented by the general formula (1) (A′A 3 B 4 O 12 ) is obtained. What is necessary is just to set suitably. For example, when producing a perovskite oxide of LaCu 3 Fe 4 O 12 , the perovskite oxide of the present invention is used by using La 2 O 3 , CuO and Fe 2 O 3 in a molar ratio of 1: 6: 4. An oxide is suitably obtained.
 前記熱処理は、公知の方法に従って行うことができる。例えば、白金カプセルに、A’の酸化物、Aの酸化物及びBの酸化物の混合物を充填後、得られたカプセルを公知の装置を用いて加圧及び加熱する方法が挙げられる。公知の装置としては、例えば、立方体アンビル型高圧発生装置等が挙げられる。 The heat treatment can be performed according to a known method. For example, after filling a platinum capsule with a mixture of an oxide of A ′, an oxide of A and an oxide of B, the obtained capsule is pressurized and heated using a known apparatus. Examples of known devices include a cubic anvil type high pressure generator.
 A’の酸化物、Aの酸化物及びBの酸化物の混合物を熱処理する際の圧力は、6GPa程度以上が好ましく、10~15GPa程度がより好ましい。 The pressure when heat-treating the mixture of A ′ oxide, A oxide and B oxide is preferably about 6 GPa or more, more preferably about 10 to 15 GPa.
 熱処理温度は、800℃以上程度が好ましく、1000~1200℃程度がより好ましい。 The heat treatment temperature is preferably about 800 ° C. or higher, and more preferably about 1000 to 1200 ° C.
 特に、前記熱処理が、10GPa程度以上の圧力及び1000℃以上の温度で行われることにより、本発明のペロブスカイト型酸化物が好適に得られる。 In particular, the perovskite oxide of the present invention is suitably obtained by performing the heat treatment at a pressure of about 10 GPa or more and a temperature of 1000 ° C. or more.
 熱処理時間は、原料が十分に反応するよう熱処理温度等の熱処理条件に応じて適宜調整すればよいが、通常30分~2時間程度である。 The heat treatment time may be appropriately adjusted according to the heat treatment conditions such as the heat treatment temperature so that the raw materials sufficiently react, but is usually about 30 minutes to 2 hours.
 前記熱処理に先だって、前記混合物には公知の添加剤を含有させてもよい。公知の添加剤としては、例えばKClO等の酸化剤が挙げられる。 Prior to the heat treatment, the mixture may contain known additives. Examples of known additives include oxidizing agents such as KClO 4 .
 本発明のペロブスカイト型酸化物は、Aサイトが秩序化されていることにより、各種デバイスの使用時の温度等の実用的な温度領域(25~450℃程度(298~723K程度))で熱収縮する。また、本発明のペロブスカイト型酸化物は、外部磁場や電流によって体積の増減を好適に制御できる。 The perovskite type oxide of the present invention is thermally contracted in a practical temperature range (about 25 to 450 ° C. (about 298 to 723 K)) such as the temperature when using various devices because the A site is ordered. To do. The perovskite oxide of the present invention can be suitably controlled in volume increase / decrease by an external magnetic field or current.
 さらに、本発明のペロブスカイト型酸化物は、体積の変動(前記熱収縮)が等方的に起こる。 Furthermore, in the perovskite oxide of the present invention, the volume change (the heat shrinkage) occurs isotropically.
 このような特性を示す本発明のペロブスカイト型酸化物は、高集積・高出力のエレクトロニクス部品、精密光学部品、精密機械部品等の構成材料として好適に使用できる。例えば、本発明のペロブスカイト型酸化物を熱膨張緩衝材として用いることにより、温度による体積変化が実質ゼロである高集積・高出力エレクトロニクス部品等を製造できる。また、高温、温度履歴環境下で用いた場合に各部材間での剥離が防止又は抑制された、複合・スタック部品を製造できる。 The perovskite oxide of the present invention exhibiting such characteristics can be suitably used as a constituent material for highly integrated / high output electronics parts, precision optical parts, precision machine parts and the like. For example, by using the perovskite oxide of the present invention as a thermal expansion buffer material, it is possible to manufacture highly integrated and high output electronic components that have substantially no volume change due to temperature. Moreover, when used in a high temperature and temperature history environment, it is possible to manufacture a composite / stacked component in which separation between members is prevented or suppressed.
図1は、Aサイト秩序型ペロブスカイト型酸化物の結晶構造(立方晶結晶構造、空間群:Im-3)を示す。FIG. 1 shows a crystal structure (cubic crystal structure, space group: Im-3) of an A-site ordered perovskite oxide. 図2は、実施例1で得られたペロブスカイト型酸化物の熱による体積変化を示す。FIG. 2 shows a change in volume of the perovskite oxide obtained in Example 1 due to heat. 図3は、実施例1で得られたペロブスカイト型酸化物の熱による磁気転移及び絶縁体-金属転移を示すグラフである。FIG. 3 is a graph showing the magnetic transition and insulator-metal transition of the perovskite oxide obtained in Example 1 due to heat. 図4は、実施例1及び2で用いた立方体アンビル型高圧発生装置の模式図を示す。FIG. 4 is a schematic diagram of the cubic anvil type high-pressure generator used in Examples 1 and 2. 図5は、実施例1で得られたLaCuFe12のX線回折スペクトルを示す。FIG. 5 shows the X-ray diffraction spectrum of LaCu 3 Fe 4 O 12 obtained in Example 1. 図6は、実施例2で得られたBiCuFe12のX線回折スペクトルを示す。6 shows the X-ray diffraction spectrum of BiCu 3 Fe 4 O 12 obtained in Example 2. FIG.
以下に実施例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
 実施例1
 LaCuFe12のペロブスカイト型酸化物を製造した。
Example 1
A perovskite oxide of LaCu 3 Fe 4 O 12 was produced.
 まず、市販のLa、CuO及びFeをモル比で1:6:4の割合で混合した後、KClOを添加し、混合物を得た。なお、KClOは、前記混合物中における含有量が20重量%となるように添加した。 First, commercially available La 2 O 3 , CuO and Fe 2 O 3 were mixed at a molar ratio of 1: 6: 4, and then KClO 4 was added to obtain a mixture. KClO 4 was added so that the content in the mixture was 20% by weight.
 得られた混合物を白金カプセルに充填後、得られたカプセルを図4に示すような立方体アンビル型高圧発生装置を用いて、圧力10GPa、温度1400Kの条件下、約1時間加熱した。 After filling the obtained mixture into platinum capsules, the obtained capsules were heated for about 1 hour under conditions of a pressure of 10 GPa and a temperature of 1400 K using a cubic anvil type high pressure generator as shown in FIG.
 加熱後、希酸を用いてKCl及び少量の未反応原料を除去した。 After heating, KCl and a small amount of unreacted raw material were removed using dilute acid.
 以上の方法により、LaCuFe12のペロブスカイト型酸化物を得た。 The perovskite oxide of LaCu 3 Fe 4 O 12 was obtained by the above method.
 得られたLaCuFe12のX線回折スペクトルを図5に示す。 The X-ray diffraction spectrum of the obtained LaCu 3 Fe 4 O 12 is shown in FIG.
 実施例2
 BiCuFe12のペロブスカイト型酸化物を製造した。
Example 2
A perovskite oxide of BiCu 3 Fe 4 O 12 was produced.
 まず、市販のBi、CuO及びFeをモル比で1:6:4の割合で混合した後、KClOを添加し、混合物を得た。なお、KClOは、前記混合物中における含有量が20重量%となるように添加した。 First, commercially available Bi 2 O 3 , CuO and Fe 2 O 3 were mixed at a molar ratio of 1: 6: 4, and then KClO 4 was added to obtain a mixture. KClO 4 was added so that the content in the mixture was 20% by weight.
 得られた混合物を白金カプセルに充填後、得られたカプセルを図4に示すような立方体アンビル型高圧発生装置を用いて、圧力10GPa、温度1300Kの条件下、約1時間加熱した。 After filling the obtained mixture into platinum capsules, the obtained capsules were heated for about 1 hour under conditions of a pressure of 10 GPa and a temperature of 1300 K using a cubic anvil type high pressure generator as shown in FIG.
 加熱後、希酸を用いてKCl及び少量の未反応原料を除去した。 After heating, KCl and a small amount of unreacted raw material were removed using dilute acid.
 以上の方法により、BiCuFe12のペロブスカイト型酸化物を得た。 By the above method, a perovskite oxide of BiCu 3 Fe 4 O 12 was obtained.
 得られたBiCuFe12のX線回折スペクトルを図6に示す。 The X-ray diffraction spectrum of the obtained BiCu 3 Fe 4 O 12 is shown in FIG.
 試験例1
 実施例1及び実施例2で得られたペロブスカイト型酸化物の熱による体積変化率を確認した。
Test example 1
The volume change rate due to heat of the perovskite oxide obtained in Example 1 and Example 2 was confirmed.
 具体的には、X線回折装置(リガク社製RINT2500)を用いて、実施例1及び実施例2で得られたペロブスカイト型酸化物の温度を除々に上げながら、各温度下での結晶の格子定数を測定し体積を計算した。 Specifically, using an X-ray diffractometer (RINT2500 manufactured by Rigaku Corporation), while gradually raising the temperature of the perovskite oxide obtained in Example 1 and Example 2, the crystal lattice at each temperature The constant was measured and the volume was calculated.
 実施例1で得られたペロブスカイト型酸化物の熱による体積変化を図2に示す。 FIG. 2 shows the volume change of the perovskite oxide obtained in Example 1 due to heat.
 加熱温度が393Kのときの実施例1のペロブスカイト型酸化物の体積変化率を下記式により求めた。
{(加熱温度が423Kのときの体積-加熱温度が373Kときの体積)/加熱温度が373Kときの体積}×100(%)
The volume change rate of the perovskite oxide of Example 1 when the heating temperature was 393 K was determined by the following formula.
{(Volume when the heating temperature is 423K−Volume when the heating temperature is 373K) / Volume when the heating temperature is 373K} × 100 (%)
 また、加熱温度が450Kのときの実施例2のペロブスカイト型酸化物の体積変化率を下記式により求めた。
{(加熱温度が473Kのときの体積-加熱温度が423Kときの体積)/加熱温度が423Kときの体積}×100(%)
 結果を表1に示す。
Further, the volume change rate of the perovskite oxide of Example 2 when the heating temperature was 450 K was obtained by the following formula.
{(Volume when the heating temperature is 473K−Volume when the heating temperature is 423K) / Volume when the heating temperature is 423K} × 100 (%)
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1及び実施例2で得られたペロブスカイト型酸化物は、120℃(393K)、177℃(450K)という実用的な温度で加熱された際、体積が減少することがわかる。 As is clear from Table 1, the perovskite oxides obtained in Examples 1 and 2 decreased in volume when heated at practical temperatures of 120 ° C. (393 K) and 177 ° C. (450 K). I understand that
 試験例2
 実施例1で得られたペロブスカイト型酸化物の熱による磁気転移及び絶縁体-金属転移を確認した。
Test example 2
The perovskite oxide obtained in Example 1 was confirmed to have a magnetic transition due to heat and an insulator-metal transition.
 磁気転移については、磁力計(クウォンタムデザイン社製「MPMS」)を用いて確認した。また、絶縁体-金属転移については、物理特性測定装置(クウォンタムデザイン社製「PPMS」)を用いて確認した。 The magnetic transition was confirmed using a magnetometer (“MPMS” manufactured by Quantum Design). The insulator-metal transition was confirmed by using a physical property measuring apparatus (“PPMS” manufactured by Quantum Design Co., Ltd.).
 実施例1で得られたペロブスカイト型酸化物の熱による磁気転移及び絶縁体-金属転移を示すグラフを図3に示す。 FIG. 3 shows a graph showing the magnetic transition and the insulator-metal transition of the perovskite oxide obtained in Example 1 due to heat.
 図3から明らかなように、実施例1のペロブスカイト型酸化物は、上記試験例1で体積が減少した温度を境に、反強磁性から常磁性への磁気転移が起こり、さらに、絶縁体から金属への転移が起こることがわかる。かかる結果から、本発明のペロブスカイト型酸化物は、外部磁場や電流によって体積の増減を制御できることがわかる。 As is clear from FIG. 3, the perovskite oxide of Example 1 undergoes a magnetic transition from antiferromagnetism to paramagnetism at the temperature at which the volume decreased in Test Example 1 above, and further from the insulator. It can be seen that the transition to metal occurs. From these results, it can be seen that the perovskite oxide of the present invention can control the increase or decrease in volume by an external magnetic field or current.

Claims (4)

  1. 一般式(1)
    A’A12   (1)
    (式中、A’及びAはペロブスカイト型酸化物のAサイトを占める元素であって、A’はLa、Bi、Y、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Sr、Ba、Pb、Na及びKからなる群から選ばれる少なくとも一種の金属元素を示し、AはCu、Mn、Fe及びNiからなる群から選ばれる少なくとも一種の遷移金属元素を示し、Bはペロブスカイト型酸化物のBサイトを占める元素であって、Fe、Ti、V、Cr、Cu、Mn、Co、Ni、Ge、Sn、Zr及びRuからなる群から選ばれる少なくとも一種の遷移金属元素を示す。)
    で表されるペロブスカイト型酸化物。
    General formula (1)
    A'A 3 B 4 O 12 (1)
    (In the formula, A ′ and A are elements occupying the A site of the perovskite oxide, and A ′ is La, Bi, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Ba, Pb, Na and K represent at least one metal element selected from the group consisting of Cu, Mn, Fe and Ni, and A represents at least one transition selected from the group consisting of Cu, Mn, Fe and Ni Represents a metal element, and B is an element occupying the B site of the perovskite oxide, and is selected from the group consisting of Fe, Ti, V, Cr, Cu, Mn, Co, Ni, Ge, Sn, Zr, and Ru Indicates at least one transition metal element.)
    Perovskite oxide represented by
  2. 一般式(1)中、A’はLa、Bi及びYからなる群から選ばれる少なくとも一種の金属元素を示し、AはCu及びMnの少なくとも一種の遷移金属元素を示し、BはFeを示す、請求項1に記載のペロブスカイト型酸化物。 In general formula (1), A ′ represents at least one metal element selected from the group consisting of La, Bi and Y, A represents at least one transition metal element of Cu and Mn, and B represents Fe. The perovskite oxide according to claim 1.
  3. 熱膨張緩衝材として用いる請求項1又は2に記載のペロブスカイト型酸化物。 The perovskite oxide according to claim 1 or 2, which is used as a thermal expansion buffer material.
  4. A’の酸化物、Aの酸化物及びBの酸化物の混合物を、圧力6GPa以上及び温度800℃以上の条件下で熱処理することを特徴とする請求項1又は2に記載のペロブスカイト型酸化物の製造方法。 The perovskite oxide according to claim 1 or 2, wherein a mixture of the oxide of A ', the oxide of A and the oxide of B is heat-treated under conditions of a pressure of 6 GPa or more and a temperature of 800 ° C or more. Manufacturing method.
PCT/JP2010/053350 2009-03-04 2010-03-02 A-site ordered perovskite-type oxide WO2010101153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502764A JPWO2010101153A1 (en) 2009-03-04 2010-03-02 A-site ordered perovskite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-050505 2009-03-04
JP2009050505 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010101153A1 true WO2010101153A1 (en) 2010-09-10

Family

ID=42709709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053350 WO2010101153A1 (en) 2009-03-04 2010-03-02 A-site ordered perovskite-type oxide

Country Status (2)

Country Link
JP (1) JPWO2010101153A1 (en)
WO (1) WO2010101153A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030293A1 (en) * 2012-08-21 2014-02-27 国立大学法人東京工業大学 Negative thermal expansion material
JP2015070003A (en) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 Photoelectric conversion element and manufacturing method of the same
JP2015221749A (en) * 2010-08-12 2015-12-10 キヤノン株式会社 Thermal expansion restraining member and anti-thermal expansion member
US20160131530A1 (en) * 2014-11-10 2016-05-12 Seiko Epson Corporation Pyroelectric body, pyroelectric element, production method for pyroelectric element, thermoelectric conversion element, production method for thermoelectric conversion element, thermal photodetector, production method for thermal photodetector, and electronic apparatus
JP2017048071A (en) * 2015-08-31 2017-03-09 国立大学法人東京工業大学 Negative thermal expandable material, and complex
WO2017138643A1 (en) * 2016-02-12 2017-08-17 国立大学法人名古屋大学 Ruthenium oxide and method for producing ruthenium oxide
US10124558B2 (en) 2010-08-12 2018-11-13 Kyoto University Thermal expansion suppressing member and anti-thermally-expansive member
US10167562B2 (en) 2015-06-01 2019-01-01 Osaka Prefecture University Public Corporation Perovskite oxide catalyst for oxygen evolution reactions
WO2019042033A1 (en) * 2017-08-30 2019-03-07 京东方科技集团股份有限公司 Negative thermal expansion material, negative thermal expansion thin film and preparation method therefor
CN110902725A (en) * 2019-11-11 2020-03-24 北京科技大学 Fluxing agent synthesis method of metastable-phase rare earth copper-iron-based perovskite oxide
CN111302801A (en) * 2018-12-11 2020-06-19 中国科学院宁波材料技术与工程研究所 Up-conversion luminescent ceramic and preparation method thereof
JP2021031584A (en) * 2019-08-23 2021-03-01 国立大学法人京都大学 Caloric material and cooling device including the same
JP2021082598A (en) * 2021-02-18 2021-05-27 国立研究開発法人産業技術総合研究所 Conductive material, conductive ceramics, conductive paste, conductive material film, production method of composite oxide, production method of conductive paste, and production method of conductive material film
CN113398909A (en) * 2021-06-08 2021-09-17 中国科学院物理研究所 Perovskite material and preparation method and application thereof
WO2023163057A1 (en) * 2022-02-25 2023-08-31 日本化学工業株式会社 Negative thermal expansion material and composite material
JP7408721B2 (en) 2022-02-25 2024-01-05 日本化学工業株式会社 Negative thermal expansion materials and composite materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAICHIRO MIZUMAKI ET AL.: "Jikien Nishokusei ni yoru A-site Kisokugata Perovskite Sankabutsu A (A=Ca, Bi ) Cu3M (M=Fe, Mn) 4012 no Jikiteki Ketsugo no Kettei", vol. 63, no. 2, 25 August 2008 (2008-08-25) *
Y.SHIMAKAWA: "A-Site-Ordered Perovskites with Intriguing Physical Properties", INORGANIC CHEMISTRY, vol. 47, no. 19, 6 October 2008 (2008-10-06), pages 8562 - 8570 *
Y.W.LONG ET AL.: "Intersite Charge Transfer in A-Site-Ordered LaCu3Fe4012 Perovskite", vol. 64, no. 1, 3 March 2009 (2009-03-03) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221749A (en) * 2010-08-12 2015-12-10 キヤノン株式会社 Thermal expansion restraining member and anti-thermal expansion member
US10124558B2 (en) 2010-08-12 2018-11-13 Kyoto University Thermal expansion suppressing member and anti-thermally-expansive member
JPWO2014030293A1 (en) * 2012-08-21 2016-07-28 国立大学法人東京工業大学 Negative thermal expansion material
WO2014030293A1 (en) * 2012-08-21 2014-02-27 国立大学法人東京工業大学 Negative thermal expansion material
JP2015070003A (en) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 Photoelectric conversion element and manufacturing method of the same
US20160131530A1 (en) * 2014-11-10 2016-05-12 Seiko Epson Corporation Pyroelectric body, pyroelectric element, production method for pyroelectric element, thermoelectric conversion element, production method for thermoelectric conversion element, thermal photodetector, production method for thermal photodetector, and electronic apparatus
US10167562B2 (en) 2015-06-01 2019-01-01 Osaka Prefecture University Public Corporation Perovskite oxide catalyst for oxygen evolution reactions
JP2017048071A (en) * 2015-08-31 2017-03-09 国立大学法人東京工業大学 Negative thermal expandable material, and complex
US10676371B2 (en) 2016-02-12 2020-06-09 National University Corporation Nagoya University Ruthenium oxide having a negative thermal expansion coefficient, and useable as a thermal expansion inhibitor
WO2017138643A1 (en) * 2016-02-12 2017-08-17 国立大学法人名古屋大学 Ruthenium oxide and method for producing ruthenium oxide
JPWO2017138643A1 (en) * 2016-02-12 2018-12-06 国立大学法人名古屋大学 Ruthenium oxide and method for producing ruthenium oxide
WO2019042033A1 (en) * 2017-08-30 2019-03-07 京东方科技集团股份有限公司 Negative thermal expansion material, negative thermal expansion thin film and preparation method therefor
US11396454B2 (en) 2017-08-30 2022-07-26 Ordos Yuansheng Optoelectronics Co., Ltd. Negative thermal expansion material, negative thermal expansion film and preparation method thereof
CN111302801A (en) * 2018-12-11 2020-06-19 中国科学院宁波材料技术与工程研究所 Up-conversion luminescent ceramic and preparation method thereof
CN111302801B (en) * 2018-12-11 2022-06-28 中国科学院宁波材料技术与工程研究所 Up-conversion luminescent ceramic and preparation method thereof
JP2021031584A (en) * 2019-08-23 2021-03-01 国立大学法人京都大学 Caloric material and cooling device including the same
CN110902725A (en) * 2019-11-11 2020-03-24 北京科技大学 Fluxing agent synthesis method of metastable-phase rare earth copper-iron-based perovskite oxide
JP2021082598A (en) * 2021-02-18 2021-05-27 国立研究開発法人産業技術総合研究所 Conductive material, conductive ceramics, conductive paste, conductive material film, production method of composite oxide, production method of conductive paste, and production method of conductive material film
JP7039075B2 (en) 2021-02-18 2022-03-22 国立研究開発法人産業技術総合研究所 Conductive material, conductive ceramics, conductive paste, conductive material film, composite oxide manufacturing method, conductive paste manufacturing method and conductive material film manufacturing method
CN113398909A (en) * 2021-06-08 2021-09-17 中国科学院物理研究所 Perovskite material and preparation method and application thereof
CN113398909B (en) * 2021-06-08 2022-05-24 中国科学院物理研究所 Perovskite material and preparation method and application thereof
WO2023163057A1 (en) * 2022-02-25 2023-08-31 日本化学工業株式会社 Negative thermal expansion material and composite material
JP7408721B2 (en) 2022-02-25 2024-01-05 日本化学工業株式会社 Negative thermal expansion materials and composite materials

Also Published As

Publication number Publication date
JPWO2010101153A1 (en) 2012-09-10

Similar Documents

Publication Publication Date Title
WO2010101153A1 (en) A-site ordered perovskite-type oxide
Chen et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
Kong et al. Preparation of Bi4Ti3O12 ceramics via a high-energy ball milling process
JP5214373B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
Balaraman et al. Inorganic dielectric materials for energy storage applications: a review
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
Meng et al. Simultaneously achieving ultrahigh energy density and power density in PbZrO3-based antiferroelectric ceramics with field-induced multistage phase transition
Perumal et al. Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions
Kong et al. Preparation of PMN–PT ceramics via a high-energy ball milling process
EP2006927B1 (en) Piezoelectric material
JP2002255644A (en) Ceramic material and piezoelectric element using the same
Luo et al. Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO 3-based antiferroelectric ceramics
JP2005047745A (en) Piezoelectric ceramic
JP2014172799A (en) Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
Prasatkhetragarn et al. Dielectric and ferroelectric properties of modified-BaTiO3 lead-free ceramics prepared by solid solution method
JP2007001840A (en) Dielectric ceramic and its manufacturing method
JP2015222780A (en) Piezoelectric ceramic, method for manufacturing the same, and piezoelectric material device
Wang et al. Defect controlling of BaTiO3@ NiO double hysteresis loop ceramics with enhanced energy storage capability and stability
Miyaura et al. Controlled 90 domain wall motion in BaTiO 3 piezoelectric ceramics modified with acceptor ions localized near grain boundaries
JP5490890B2 (en) Ceramic material and method for producing the ceramic material
Sinha et al. Dielectric and piezoelectric properties of PbTi 0.8− x Se0. 2Sm x O3 nanoceramics prepared by high energy ball milling
Arora et al. Evaluation of dielectric, energy storage and multiferroic properties of PrFeO3-PbTiO3 solid solutions
Naz et al. High Strain Response and Dielectric Properties of Bi1/2 (Na0. 78K0. 22) 1/2TiO3 Ceramics Doped with (Fe1/2Nb1/2) 4+
CN106565239A (en) Low-sintering temperature power type piezoelectric ceramic material and preparation method thereof
Bafandeh et al. Enhanced electric field induced strain in complex-ion Ga 3+ and Ta 5+-doped 0.93 BNT-0.07 BT piezoceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748748

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011502764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748748

Country of ref document: EP

Kind code of ref document: A1