WO2010098431A1 - Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article - Google Patents

Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article Download PDF

Info

Publication number
WO2010098431A1
WO2010098431A1 PCT/JP2010/053054 JP2010053054W WO2010098431A1 WO 2010098431 A1 WO2010098431 A1 WO 2010098431A1 JP 2010053054 W JP2010053054 W JP 2010053054W WO 2010098431 A1 WO2010098431 A1 WO 2010098431A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
type epoxy
composition
microcapsule
Prior art date
Application number
PCT/JP2010/053054
Other languages
French (fr)
Japanese (ja)
Other versions
WO2010098431A9 (en
Inventor
久尚 山本
義公 近藤
一之 相川
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to KR1020117019856A priority Critical patent/KR101310593B1/en
Priority to JP2011501662A priority patent/JP5534615B2/en
Priority to CN2010800098071A priority patent/CN102333808B/en
Publication of WO2010098431A1 publication Critical patent/WO2010098431A1/en
Publication of WO2010098431A9 publication Critical patent/WO2010098431A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to a novel epoxy resin curing agent, a one-part epoxy resin composition using the same, and the like.
  • Epoxy resins have excellent performance in terms of mechanical properties, electrical properties, thermal properties, chemical resistance, adhesiveness, etc., so that epoxy resins can be used in paints, insulating materials for electric and electronic materials, adhesives, etc. It is used for a wide range of applications.
  • an epoxy resin composition used for such applications a so-called two-component epoxy resin composition (or “two-component type”) in which two components of an epoxy resin and a curing agent are mixed and cured at the time of use. It may be described as “epoxy resin composition”).
  • the two-part epoxy resin composition can be cured well at room temperature, it is necessary to store the epoxy resin and the curing agent separately, and when using, it is necessary to mix both after weighing them Or Moreover, since the time which can be used after mixing an epoxy resin and a hardening
  • several one-component epoxy resin compositions (or may be described as “one-part epoxy resin compositions”) have been proposed. Examples of such a one-part epoxy resin composition include those in which a latent curing agent such as dicyandiamide, BF3-amine complex, amine salt, and modified imidazole compound is blended in an epoxy resin.
  • these one-part epoxy resin compositions tend to be poor in curability when they are excellent in storage stability (high temperature or long time is required for curing), and those that are excellent in curability It tends to be inferior in storage stability (requires storage at a low temperature of ⁇ 20 ° C.).
  • a one-component epoxy resin composition containing dicyandiamide can achieve storage stability of 6 months or more when stored at room temperature.
  • such a one-part epoxy resin composition may require a high curing temperature such as 170 ° C. or higher.
  • the curing temperature can be lowered to about 130 ° C.
  • anisotropic conductivity is used as a mounting method for fine circuit wiring of semiconductor chips.
  • Films are often used.
  • An anisotropic conductive film is a film in which conductive particles are dispersed in an adhesive film.
  • the anisotropic conductive film is sandwiched between a circuit to be connected and a semiconductor chip and is thermocompression-bonded at a predetermined temperature, pressure, and time.
  • a method for connecting a panel and a flexible circuit in a liquid crystal display, a plasma panel display, and an organic EL display panel a method of pressure bonding via an anisotropic conductive film has become mainstream.
  • anisotropic conductive films used for these those using an epoxy resin composition using a microcapsule type latent curing agent described in Patent Documents 3 to 4 as an adhesive and a curing agent are known.
  • an anisotropic conductive film that is excellent in the connection reliability of the crimped portion and the long-term storage stability of the anisotropic conductive film while achieving a low temperature and short time for the crimping temperature.
  • one-component epoxy resin compositions and anisotropic conductive materials used as one of connection materials.
  • the present invention has been made in view of the above points, and is a microcapsule-type epoxy resin curing agent, a masterbatch-type epoxy resin curing agent composition, and a one-component epoxy resin, which are excellent in low-temperature fast curing properties and storage stability. A composition and a processed product thereof are obtained. Another object of the present invention is to provide an anisotropic conductive film having high connection reliability even when connected at a low temperature.
  • the present inventors have formed, for example, a microcapsule type epoxy resin curing agent having a core containing an epoxy resin curing agent and a shell covering the core.
  • the knowledge that the above problem can be solved by synthesizing a core containing a curing agent for epoxy resin using a specific raw material and coating the core containing a curing agent for epoxy resin with a shell having a specific structure.
  • the present invention has been completed.
  • the present invention provides the following microcapsule type epoxy resin curing agent, masterbatch type epoxy resin curing agent composition, one-part epoxy resin composition, and a processed product using these curing agents or compositions.
  • a microcapsule-type epoxy resin curing agent having a core containing a curing agent for epoxy resin and a shell covering the core,
  • the epoxy resin curing agent contains, as a main component, an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound,
  • the total amine value of the curing agent for epoxy resin is 370 or more and 1000 or less
  • the epoxy resin curing agent has an average particle size of more than 0.3 ⁇ m and not more than 12 ⁇ m
  • the shell includes a bonding group (x) that absorbs infrared rays having a wave number of 1630 to 1680 cm ⁇ 1 , a bonding group (y) that absorbs infrared rays having a wave number of 1680 to 1725 cm ⁇ 1 , and wave
  • the epoxy resin (e1) includes an epoxy resin (EP1) having a rigid skeleton structure.
  • the rigid skeleton structure is a benzene structure, naphthalene structure, biphenyl structure, triphenyl structure, anthracene structure, dicyclopentadiene structure, norbornene structure, acenaphthylene structure, adamantane structure, fluorene structure, benzofuran structure, benzoxazine structure, indene Structure, indane structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide structure, oxadiazole structure, thiadiazole structure, benzooxadiazole structure, benzothiadiazole structure, carbazole structure, azomethine It is at least one structure selected from the group consisting of a structure, an oxazolidone structure, a triazine structure, an isocyanurate structure, a xanthene structure, and a chemical structural formula 1 [1] to Microcapsule type
  • the amine compound has one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group, and the amine adduct is primary, and / or The microcapsule type epoxy resin curing agent according to any one of [1] to [4], which has a secondary amino group.
  • the ratio (H2 / H1) of the peak height (H2) at 1655 cm ⁇ 1 to the peak height (H1) between 1050 and 1150 cm ⁇ 1 in the infrared absorption spectrum of the core is 1.0.
  • the epoxy resin (e1) A curing agent for a microcapsule type epoxy resin containing an epoxy resin (EP3) composed of a reaction product of the epoxy resin (EP1) and the epoxy resin (EP2) with an isocyanate compound, the basic structure of the epoxy resin (EP1)
  • the microcapsule type epoxy resin curing agent according to any one of claims 1 to 6, wherein the monomer molecular weight of the formula is from 90 to 1,000.
  • the epoxy resin (EP3) is an epoxy resin having at least one structure selected from the group consisting of an oxazolidone structure, a triazine structure, and an isocyanurate structure. Hardener for microcapsule type epoxy resin.
  • the epoxy resin (EP1) is contained in a proportion of 10% to 90% in 100% of the epoxy resin (e1).
  • the bonding groups (x), (y), and (z) possessed on at least the surface of the shell are a urea group, a burette group, and a urethane group, respectively, and the bonding group in the shell (S) (
  • the ratio (Cx / (Cx + Cy + Cz)) of the concentration (Cx) of x) to the total concentration (Cx + Cy + Cz) of the linking groups (x), (y), (z) is 0.50 or more and less than 0.75
  • the microcapsule-type epoxy resin curing agent according to any one of [1] to [17].
  • the water content of the core is 0.05 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the core component, and the content of the amine compound (B) contained in the core is The microcapsule type epoxy resin curing agent according to any one of [1] to [18], which is 0.001 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the core component.
  • the microcapsule-type epoxy resin curing agent according to any one of [1] to [20], wherein the total chlorine content of the core is 2500 ppm or less.
  • the shell contains any two or more reaction products of an isocyanate compound, an active hydrogen compound, an epoxy resin curing agent (h2), an epoxy resin (e2), and an amine compound (B) [ [1] The curing agent for microcapsule type epoxy resin according to any one of [21] to [21].
  • the microcapsule type epoxy resin curing agent according to [22] wherein the total chlorine content of the epoxy resin (e2) is 2500 ppm or less.
  • a microcapsule type epoxy resin curing agent according to any one of [1] to [24], an epoxy resin (e3), and a highly soluble epoxy resin (G),
  • the solubility parameter of the basic structure of the high-solubility epoxy resin (G) is 8.65 to 11.00, the molecular weight between crosslinks of the basic structure is 105 to 150, and the proportion of impure components of the diol terminal is basic. 0.01 to 20% by mass with respect to the structural component,
  • the microcapsule type epoxy resin curing agent and the epoxy resin (e3) are converted into 100: 10 to 100: 1000 as (microcapsule type epoxy resin curing agent) :( epoxy resin (e3)) (mass ratio).
  • Including the blending ratio of The epoxy resin (e3) and the highly soluble epoxy resin (G) are converted into 100: 0.1 to 100 as (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass ratio). : In a blending ratio of 1000, and A one-component epoxy resin composition characterized in that the total chlorine content is 2500 ppm or less. [30] A one-part epoxy resin composition comprising an epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) according to [25] to [28], A one-component epoxy resin composition in which the weight ratio of the epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) is 100: 10 to 100: 1000.
  • a one-part epoxy resin composition comprising a curing agent for epoxy resin (h3) and a curing agent composition for masterbatch type epoxy resin described in [25] to [28] (M1), wherein the epoxy resin -Pack epoxy resin composition having a weight ratio of 100: 10 to 10: 1000 of the curing agent (h3) for the master and the curing agent composition for the masterbatch type epoxy resin (M1).
  • a one-part epoxy resin composition comprising a cyclic borate ester compound (L) and the masterbatch type epoxy resin curing agent composition (M1) described in [25] to [28].
  • M1 masterbatch type epoxy resin curing agent composition
  • [33] The one-component epoxy resin composition according to [32], wherein the cyclic borate ester compound (L) is 2,2′-oxybis [5,5-dimethyl-1,3,2-dioxaborinane] .
  • the masterbatch type epoxy resin curing agent composition (M1) according to any one of [25] to [28] or the one-component epoxy resin according to any one of [29] to [34] A processed product using the composition.
  • [36] containing conductive particles (a), an epoxy resin (b) having one or more epoxy rings, an organic binder (c) made of a resin other than (b), and a microcapsule type epoxy resin curing agent (d)
  • the microcapsule type epoxy resin curing agent (d) is the microcapsule type epoxy resin curing agent according to any one of [1] to [24].
  • the epoxy equivalent contained in the anisotropic conductive film is EX
  • the total amine value of the core component of the microcapsule-type curing agent (d) contained in the anisotropic conductive film is set to
  • the value divided by the blending weight of the microcapsule type curing agent (d) contained in the directionally conductive film is HX
  • the value of (EX / HX) ⁇ 100, which is the ratio of epoxy equivalent to amine value is 1
  • the anisotropic conductive film according to [36] wherein 0.5 ⁇ (EX / HX) ⁇ 100 ⁇ 4.0.
  • a pasty composition comprising the composition according to any one of [25] to [34].
  • An adhesive containing the composition according to any one of [25] to [34].
  • a joining paste containing the composition according to any one of [25] to [34].
  • a bonding film containing the composition according to any one of [25] to [34].
  • a conductive material containing the composition according to any one of [25] to [34].
  • An anisotropic conductive material comprising the composition according to any one of [25] to [34].
  • An insulating material containing the composition according to any one of [25] to [34].
  • a sealing material containing the composition according to any one of [25] to [34].
  • a fuel cell separator material comprising the composition according to any one of [25] to [34].
  • An overcoat material for a flexible wiring board comprising the composition according to any one of [25] to [34].
  • microcapsule type epoxy resin curing agent of the present invention is excellent in storage stability and excellent in low-temperature fast curing properties. Moreover, even if it connects at low temperature, an anisotropic conductive film with high connection reliability can be provided.
  • microcapsule type epoxy resin curing agent The microcapsule type epoxy resin curing agent of the present embodiment has the following characteristics.
  • the epoxy resin curing agent contains, as a main component, an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound,
  • the total amine value of the curing agent for epoxy resin is 370 or more and 1000 or less
  • the epoxy resin curing agent has an average particle size of more than 0.3 ⁇ m and not more than 12 ⁇ m
  • the shell absorbs infrared rays having a wave number of 1630 to 1680 cm ⁇ 1 , absorbing groups (y) absorbing an infrared ray having a wave number of 1680 to 1725 cm ⁇ 1 , and infrared rays having a wave number of 1730 to 1755 cm ⁇ 1. At least on the surface. Each will be described in detail below.
  • the core in the present embodiment includes an amine adduct as a main component. And the said amine adduct is obtained by reaction of an epoxy resin (e1) and an amine compound.
  • the “main component” means that the total amount of the specific component accounts for 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass in the composition containing the specific component. % Means that it may be 100% by mass.
  • said epoxy resin (e1) a monoepoxy compound and a polyhydric epoxy compound are mentioned. A monoepoxy compound and a polyvalent epoxy compound can be used in combination, and a plurality of polyvalent epoxy compounds can be mixed.
  • the epoxy resin (e1) preferably contains an epoxy resin (EP1) having a rigid skeleton structure.
  • EP1 epoxy resin having a rigid skeleton structure.
  • a rigid skeleton structure is introduced, it is considered that the rigid skeleton is incorporated into the molecular chain and contributes to the direction of hindering movement when a cured product is formed.
  • a bulky substituent is incorporated into the side chain of the molecular chain, a structure having a high barrier to the internal rotation of the molecular chain, and a highly polar structure is introduced into the epoxy resin (e1).
  • the rigid skeleton structure that the epoxy resin (EP1) has include a benzene structure, a naphthalene structure, a biphenyl structure, a triphenyl structure, an anthracene structure, a dicyclopentadiene structure, a norbornene structure, an acenaphthylene structure, an adamantane structure, a fluorene structure, a benzofuran structure, Benzoxazine structure, indene structure, indane structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide structure, oxadiazole structure, thiadiazole structure, benzooxadiazole structure, benzothiadiazol
  • the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) having a rigid skeleton structure is preferably 90 or more and 1,000 or less. More preferably, it is preferably 90 or more and 500 or less. More preferably, it is 100 or more and 450 or less, Most preferably, it is 120 or more and 400 or less.
  • the monomer molecular weight of the basic structural formula of the rigid skeleton structure portion is within this range, it is possible to suppress the inhibition of the reactivity due to the obstacle due to the structure in the reaction between the amine adduct and the epoxy group.
  • the above-mentioned rigid skeleton structure is preferably a geometrically flat structure from the viewpoint of not inhibiting the reaction between the amine adduct and the epoxy group.
  • the geometrically planar structure is a structure that does not have a three-dimensional structure when expressed by a chemical structural formula.
  • the atoms forming the structure are preferably those composed of carbon and hydrogen.
  • a benzene structure, naphthalene structure, biphenyl structure, triphenyl structure, anthracene structure, acenaphthylene structure, fluorene structure, indene structure, and indane structure are preferable.
  • Particularly preferred are a benzene structure, a naphthalene structure, and a biphenyl structure.
  • glycidyl compounds such as 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, EPICLON HP-4032 and EXA manufactured by DIC -4750, Nippon Kayaku NC-7000, Nippon Steel Chemical Co., Ltd. ESN-165, and the like.
  • Examples of the compound having a biphenyl structure include glycidyl compounds such as 4,4′-biphenol and 3,3 ′, 5,5′-tetraalkyl-4,4′-biphenol.
  • Examples of those having an anthracene structure include 1,2-epoxyanthracene, 5,8-epoxy-1,3-methanoanthracene, 2-methyl-9,10-dihydro-9,10-epoxyanthracene, YX8800 manufactured by JER, etc. Is mentioned.
  • Examples of the compound having a dicyclopentadiene structure include EPICLON HP-7200 manufactured by DIC.
  • introducing epoxy resin (1) A method of introducing the structure by performing a modification reaction using a compound having the same structure with respect to a resin having an epoxy group, or a raw material thereof; (2) In the case where the structure is a compound having a hydroxy group, epichlorohydrin is used to glycidylate and introduce an epoxy group, thereby producing an epoxy resin having the structure; (3) A method of introducing an epoxy group by dehydrochlorination after reacting epichlorohydrin with a resin obtained by reacting a compound having the same structure with phenol with an acid catalyst; and so on.
  • glycidyl compound of 1,2-dihydroxybenzene glycidyl compound of 1,6-dihydroxynaphthalene, 3,3 ′, 5,5′-tetraalkyl-4 4,4'-biphenol glycidyl compounds and oxazolidone structure-containing epoxy resins are preferred.
  • the epoxy resin (e1) includes an epoxy resin (EP1) having a monomer molecular weight of 90 to 1000 in the basic structural formula, and an epoxy resin (EP3) composed of a reaction product of the epoxy resin (EP2) and an isocyanate compound. It is preferable. Furthermore, the monomer molecular weight is preferably 90 or more and 500 or less.
  • the basic structural formulas are chemical structural formula 1 shown in chemical formulas 1-1, 1-2, and 1-3, chemical formulas 2-1 and 2-2, and 2-3, and a model diagram of a rigid skeleton structure.
  • a structural formula with the smallest molecular weight is shown in which a glycidyl ether group is directly bonded to the bonding parts at both ends of the structural formulas shown in 3-1, 3-2 without an alkylene chain or an ester bond.
  • the monomer molecular weight is a structure having the smallest molecular weight, and indicates the molecular weight in a three-membered ring state without opening the epoxy groups at both ends.
  • the epoxy resin (EP1) is preferably a polyvalent epoxy compound in order to form a network crosslinking point, and the monomer molecular weight of the basic structural formula is used to increase the elastic modulus E ′ above the glass transition temperature (Tg).
  • Tg glass transition temperature
  • the epoxy resin (EP1) preferably has a molecular weight between crosslinking points of 90 or more and 500 or less. Further, it is preferably 90 or more and 300 or less, more preferably 100 or more and 270 or less, still more preferably 110 or more and 240 or less, and particularly preferably 120 or more and 200 or less.
  • the molecular weight between crosslinks is calculated by dividing the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) by the number of epoxy groups contained in the basic structural formula. Setting the molecular weight between crosslinks to 500 or less is preferable from the viewpoint of securing the glass transition temperature and the elastic modulus, which are physical properties of the cured product. On the other hand, setting the molecular weight between crosslinks to 90 or more is preferable from the viewpoint of preventing the cured product from becoming brittle. It is preferable that the said epoxy resin (EP1) is contained in the said epoxy resin (e1) 100% in the ratio of 10 mass% or more and 90 mass% or less. More preferably, they are 15 to 85 mass%, More preferably, they are 20 to 80 mass%.
  • the mass% of the epoxy resin (EP1) with respect to the entire epoxy resin (e1) is 10 mass% or more, the decrease in the elastic modulus of the cured product is suppressed, and further, the total amine value of the epoxy resin curing agent is improved.
  • the low temperature rapid curability exhibits the desired performance, and the cured product Tg is also improved.
  • the mass% of the epoxy resin (EP1) is 90 mass% or less, the decrease in the softening point of the epoxy resin curing agent mainly composed of the amine adduct is suppressed, and the productivity of the amine adduct and the microcapsule type are reduced. The productivity of the curing agent can be improved.
  • epoxy resin (EP3) is used so that the content of the epoxy resin (EP3) in the epoxy resin (EP1) in the epoxy resin (e1) is 90% by mass or less. ) are preferably mixed. This configuration facilitates raising the softening point of the epoxy resin curing agent, and is suitable for obtaining a desired average particle diameter when the epoxy resin curing agent of the present invention is cored.
  • the reason why the epoxy resin (EP3) is preferably contained in the epoxy resin (EP1) is as follows.
  • the temperature (Tg) is set to a desired temperature, and an excellent elastic modulus at a high temperature can be obtained.
  • this has an influence that the structure in the epoxy resin having a large epoxy equivalent mixed for increasing the softening point contributes to decreasing the molecular weight between the network crosslinking points of the cured product.
  • an epoxy resin (EP3) composed of a reaction product of an epoxy resin (EP2) and an isocyanate compound with the epoxy resin (EP1) in the epoxy resin (e1)
  • An amine adduct serving as a cured product having a high elastic modulus can be obtained.
  • the bond structure of the reaction product of the epoxy resin (EP2) and the isocyanate compound expresses a glass transition temperature (Tg) higher than the theoretical with respect to the molecular weight between the crosslinks. It is done. Further, it is not particularly limited as long as it has the bond structure, but from the viewpoint of obtaining a high glass transition temperature, an oxazolidone structure, a triazine structure, an isocyanurate structure, and the like are more preferable. Two or more types may be mixed.
  • the epoxy resin (EP3) which consists of a reaction material of the epoxy resin (EP2) and isocyanate compound of this embodiment
  • an epoxy resin (EP2) and an isocyanate compound are used as needed.
  • a catalyst it can be obtained, for example, by reacting at a temperature of 50 to 250 ° C. for 0.1 to 24 hours.
  • a solvent may or may not be used.
  • the ratio of the number of moles of the isocyanate compound to the number of equivalents of epoxy groups of the epoxy resin (EP2) is 1: 0.01 to 1:50, more preferably 1: 0.02 to 1:30, still more preferably 1: It is in the range of 0.05 to 1:20.
  • the catalyst for reacting the isocyanate group of the isocyanate compound with the epoxy resin (EP2) is not particularly limited, but a catalyst that selectively generates an oxazolidone structure in the reaction between the epoxy resin (EP2) and the isocyanate compound. Preferably there is.
  • the catalyst for selectively generating such an oxazolidone structure is not particularly limited, and examples thereof include lithium compounds such as lithium chloride and butoxylithium, complex salts such as boron trifluoride; tetramethylammonium chloride, tetramethylammonium bromide, Quaternary ammonium salts such as tetramethylammonium iodide and tetrabutylammonium bromide; Tertiary amines such as dimethylaminoethanol, triethylamine, tributylamine, benzyldimethylamine and N-methylmorpholine; Phosphines such as triphenylphosphine; Allyltri Phenylphosphonium bromide, diallyldiphenylphosphonium bromide, ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, tetrabutyl Phosphonium compounds such as sul
  • the amount of the oxazolidone structure-forming catalyst is not particularly limited, and is usually used in the range of about 5 ppm to 2% by mass with respect to the total amount of the epoxy resin (EP2) and isocyanate compound as raw materials, preferably 10 ppm. It is used in the range of ⁇ 1% by mass, more preferably 20 to 5,000 ppm, and still more preferably 20 to 1,000 ppm.
  • the solvent used in the reaction of the isocyanate group of the isocyanate compound and the epoxy resin (EP2) include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha; acetone, methyl ethyl ketone, methyl isobutyl ketone.
  • Ketones such as ethyl acetate, acetic acid-n-butyl, esters such as propylene glycol monomethyl ethyl ether acetate; alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve, and butyl carbitol; One kind can be used alone or two or more kinds can be used in combination.
  • epoxy resin a polyvalent epoxy compound is suitable.
  • Bisphenol-type epoxy resin obtained by glycidylation of bisphenols; 4,4′-biphenol, 3,3 ′, 5,5′-tetraalkyl-4,4′-biphenol, dihydroxynaphthalene, 9,9-bis (4-hydroxy Epoxy resin obtained by glycidylation of other dihydric phenols such as phenyl) fluorene; 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxy) Phenyl) -1-methylethyl) phenyl) ethylidene) epoxy resin obtained by glycidylation of trisphenol such as bisphenol; tetrakisphenol such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane is glycidylated Epoxy resins; phenol novolacs, cresol novolacs, bisphenol A novolaks, brominated phenol novolacs, novolac epoxy resin
  • the same resin as the epoxy resin (EP1) can also be used.
  • the epoxy resin (EP2) a glycidyl type epoxy resin is preferable from the viewpoint of further improving the storage stability of the epoxy resin composition and from the viewpoint of productivity of the amine adduct (productivity is overwhelmingly high).
  • an epoxy resin obtained by glycidylating bisphenol A is preferable from the viewpoint of further improving the adhesiveness and heat resistance of the cured product.
  • aliphatic diisocyanate aliphatic diisocyanate
  • alicyclic diisocyanate aromatic diisocyanate
  • aliphatic triisocyanate polyisocyanate etc.
  • examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate.
  • Examples of the alicyclic diisocyanate include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis (isocyanatomethyl) -cyclohexane, 1,3- And bis (2-isocyanatopropyl-2-yl) -cyclohexane.
  • Examples of the aromatic diisocyanate include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylene diisocyanate, 1,5-naphthalene diisocyanate, and the like.
  • Examples of the aliphatic triisocyanate include 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-triisocyanate methylhexane, and 2,6-diisocyanato. Examples include hexanoic acid-2-isocyanatoethyl and 2,6-diisocyanatohexanoic acid-1-methyl-2-isocyanatoethyl. Furthermore, examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate and polyisocyanate derived from the diisocyanate compound.
  • polyisocyanate derived from the diisocyanate examples include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, and carbodiimide type polyisocyanate.
  • isocyanate compound tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and naphthalene diisocyanate are preferable from the viewpoint of further improving the physical properties of the cured product and from the viewpoint of productivity of amine adduct (productivity is primarily high).
  • the epoxy resin (EP3) is preferably contained in 100% of the epoxy resin (e1) at a ratio of 10% by mass to 90% by mass. More preferably, they are 15 mass% or more and 75 mass% or less, More preferably, they are 20% or more and 60% or less.
  • the mass% of the epoxy resin (EP3) with respect to the whole epoxy resin (e1) is 10 mass% or more, the physical properties of the cured product can be prevented from being deteriorated, and further, the softening point of the core can be prevented from being lowered. Therefore, it is easy to control the average particle size of the core mainly composed of the curing agent for use, and the storage stability can be further improved.
  • the mass% of the epoxy resin (EP3) is 90% by mass or less, the low-temperature rapid curability of the resulting epoxy resin curing agent mainly composed of the amine adduct can be improved. Furthermore, the productivity of amine adducts is also improved.
  • the epoxy equivalent of the epoxy resin (EP3) is preferably more than 300 and 1000 or less. More preferably, it is 320 or more and 750 or less, More preferably, it is 340 or more and 600 or less. When the epoxy equivalent of the epoxy resin (EP3) is 300 or less, the softening point of the core is lowered, and it becomes difficult to control the average particle diameter of the core.
  • the softening point of the epoxy resin (EP3) is preferably 50 ° C. or higher and 100 ° C. or lower. More preferably, it is 55 degreeC or more and 95 degrees C or less, More preferably, it is 60 degreeC or more and 90 degrees C or less.
  • the softening point of the epoxy resin (EP3) is 50 ° C. or higher, it is easy to suppress the decrease in the softening point of the core and control the average particle diameter of the core.
  • the number average molecular weight of the epoxy resin (EP3) is preferably 500 or more and 3000 or less. More preferably, it is 600 or more and 2800 or less, and still more preferably 800 or more and 2500 or less.
  • the number average molecular weight is calculated from the molecular weight determined in terms of polystyrene using a gel permeation chromatography (hereinafter referred to as GPC) method.
  • the epoxy resin (e1) may contain not only the epoxy resin (EP1) and the epoxy resin (EP3) but also the epoxy resin (EP2) used when the epoxy resin (EP3) is synthesized. .
  • the content of the epoxy resin (EP2) is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and even more preferably 1% by mass to 20% by mass. is there.
  • the epoxy resin (EP2) is 30% by mass or less, the glass transition temperature (Tg) of the cured product can be prevented from decreasing. Moreover, a high elastic modulus can be exhibited at a temperature higher than the glass transition temperature (Tg). By being 0.1 mass% or more, a decrease in amine adduct productivity can be suppressed. Moreover, it can be produced at an industrial cost.
  • the total amount of chlorine contained in the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is preferably from the viewpoint of obtaining an epoxy resin composition having a balance between curability and storage stability. Is 2500 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less, and even more preferably 1000 ppm or less.
  • the total amount of chlorine contained in the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is mainly composed of an amine adduct obtained from the reaction of the epoxy resin (e1) and an amine compound. From the viewpoint of facilitating the control of the shell forming reaction for coating the particles having the epoxy resin curing agent as a core, preferably 0.01 ppm or more, more preferably 0.1 ppm or more, still more preferably 0.2 ppm or more, Even more preferably, it is 0.5 ppm or more.
  • the “total chlorine amount” in the present embodiment is the total amount of organic chlorine and inorganic chlorine contained in the compound or composition, and is a mass-based value for the compound or composition.
  • the total chlorine amount contained in the said epoxy resin (EP1), an epoxy resin (EP2), and an epoxy resin (EP3) is measured with the following method. First, xylene is used to extract an epoxy resin from the epoxy resin composition (washing and filtration are repeated until the epoxy resin is used up).
  • a filtrate is depressurizingly distilled at 100 degrees C or less, and the epoxy resin as a measuring object is obtained.
  • 1-10 g of the obtained epoxy resin sample is precisely weighed so that the titer is 3-7 ml, and dissolved in 25 ml of ethylene glycol monobutyl ether.
  • 25 ml of a 1N KOH propylene glycol solution is added and boiled for 20 minutes.
  • the boiled epoxy resin solution is titrated with an aqueous silver nitrate solution.
  • the total chlorine amount is obtained by calculation using the titration amount.
  • chlorine contained in the 1,2-chlorohydrin group out of all chlorine is generally called hydrolyzable chlorine.
  • the amount of hydrolyzable chlorine contained in the epoxy resin (e1) is preferably 50 ppm or less from the viewpoint of ensuring both excellent curability and storage stability and ensuring excellent electrical properties of the resulting cured product. More preferably, it is 20 ppm or less, More preferably, it is 10 ppm or less, As a minimum, Preferably it is 0.01 ppm or more, Preferably it is 0.05 ppm or more.
  • the amount of hydrolyzable chlorine is measured by the following method. First, an epoxy resin as a measurement object is obtained in the same manner as the measurement of the total chlorine amount. 3 g of the obtained epoxy resin sample is dissolved in 50 ml of toluene.
  • the total amine value of the curing agent for epoxy resin mainly composed of an amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is 370 or more and 1000 or less, and thus it is excellent in low temperature fast curing property and stored.
  • a microcapsule type epoxy resin curing agent having excellent stability can be obtained.
  • Examples of the amine compound include amine compounds having one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group.
  • Examples of amine compounds having one or more primary amino groups in an aliphatic hydrocarbon group include methylamine, ethylamine, propylamine, butylamine, ethylenediamine, 1,2-propanediamine, tetramethyleneamine, 1,5 -Diaminopentane, hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2,2,4-triethylhexamethyldiamine, 1,2-diaminopropane, bicyclo [2.2.1] heptane-2,5 -Diylbis (methylamine), bicyclo [2.2.1] heptane-2,6-diylbis (methylamine) and the like.
  • Examples of the amine compound having one or more primary amino groups and one or more secondary amino groups in an aliphatic hydrocarbon group include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine. It is done.
  • Examples of the amine compound having one or more primary amino groups and one or more tertiary amino groups in the aliphatic hydrocarbon group include tris (2-aminoethyl) amine.
  • Examples of amine compounds having one or more primary and / or secondary amino groups in an alicyclic hydrocarbon group include cyclohexylamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, aminoethylpiperazine, And diethylaminopropylamine.
  • Examples of amine compounds having one or more secondary amino groups in an aliphatic or alicyclic hydrocarbon group include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dimethanolamine, Examples include diethanolamine, dipropanolamine, dicyclohexylamine, and piperazine.
  • Examples of amine compounds having one or more primary amines and one or more secondary amino groups in an alicyclic hydrocarbon group include N, N′-bis (2-aminoethyl) -piperazine, N -[(2-aminoethyl) 2-aminoethyl] piperazine and the like. These can be used alone or in combination of two or more.
  • amine compounds have one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group
  • the alicyclic hydrocarbon group has one or more primary amino groups and one or more secondary amino groups.
  • an amine compound having Among them diethylenetriamine, triethylenetetramine, tetraethylenepentamine, tris (2-aminoethyl) amine, N, N′-bis (2-aminoethyl) -piperazine, N-[(2-aminoethyl) 2-aminoethyl Piperazine is particularly preferred.
  • the amine adduct obtained by reaction of the said epoxy resin (e1) and an amine compound has a primary and / or secondary amino group.
  • the content of primary and secondary amino groups conforms to JIS K-7245 "Plastics-Amine curing agents for epoxy resins-Determination of nitrogen content of primary, secondary and tertiary amino groups" Can be obtained.
  • the core containing an epoxy resin curing agent mainly composed of an amine adduct in the present invention has an amino group bonded to an aliphatic hydrocarbon group and has a temperature of 1050 to 1150 cm ⁇ 1 derived from CN stretching vibration.
  • the ratio (H2 / H1) of the peak height (H2) of 1655 cm ⁇ 1 to the peak height (H1) is between 1.0 and less than 3.0.
  • infrared absorption can be measured using an infrared spectrophotometer, but it is particularly preferable to use a Fourier transform infrared spectrophotometer (hereinafter referred to as FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • a ratio (H2 / H1) of 1.0 or more is preferable from the viewpoint of obtaining low-temperature rapid curability.
  • the ratio (H2 / H1) is less than 3.0, the shell covering the core containing the epoxy resin curing agent is efficiently performed on the surface of the core, and the quality and density of the formed film are increased.
  • the core containing the epoxy resin curing agent of the present invention is not only economical to obtain particles of a desired particle size, but also from the viewpoint of obtaining an epoxy resin composition having excellent low-temperature curability and high storage stability.
  • the softening point is preferably 50 ° C. or higher and 90 ° C. or lower, more preferably 55 ° C. or higher and 85 ° C. or lower, and further preferably 60 ° C. or higher and 80 ° C. or lower.
  • the softening point of the core is 50 ° C. or higher, it becomes easy to control the average particle diameter of the core.
  • the softening point of the core is 90 ° C.
  • the core containing the curing agent for epoxy resin of the present invention has a 120 ° C. melt viscosity of 30 Pa ⁇ s or less.
  • the pressure is preferably 25 Pa ⁇ s or less, more preferably 15 Pa ⁇ s or less.
  • the 120 ° C. melt viscosity is preferably 0.1 mPa ⁇ s or more.
  • the epoxy resin curing agent mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) with an amine compound is 0.1% at a temperature of, for example, 50 to 250 ° C. in the presence of a solvent as necessary. It can be obtained by reacting the epoxy resin (e1) with an amine compound for ⁇ 24 hours.
  • the amine adduct is obtained by the reaction of the epoxy resin (e1) and the amine compound as described above.
  • the compounding ratio (equivalent ratio) in the reaction of the epoxy resin (e1) and the amine compound is: As the number of moles (equivalent) of the amine compound itself with respect to the number of moles of the epoxy group of the epoxy resin (e1), 0.05 to 5 equivalents of the epoxy group of the epoxy resin (e1) per equivalent of the amine compound, preferably 0.2 The ratio is ⁇ 3 equivalents, more preferably 0.5 to 2 equivalents. In this case, the reaction is carried out without solvent or in a solvent. The equivalent ratio of 0.05 to 5 equivalents is preferable from the viewpoint of effectively controlling the total amine value of the resulting epoxy resin curing agent.
  • the low-temperature fast curability of the resulting epoxy resin curing agent is an index capable of obtaining desired performance, the total amine value of the epoxy resin curing agent, and infrared absorption
  • the spectral height ratio (H2 / H1), softening point, and melt viscosity can be set within desired ranges.
  • setting the equivalent ratio to 0.05 equivalents or more is advantageous from the viewpoint of economically recovering the unreacted amine compound.
  • recovery process of an unreacted amine compound is useful also when adjusting the content of the amine compound contained in the said hardening
  • Examples of the solvent used as necessary when the epoxy resin (e1) is reacted with the amine compound include hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, mineral spirit, naphtha, acetone, With ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate, n-butyl acetate and propylene glycol monomethyl ether acetate, alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve and butyl carbitol, water, etc. Yes, these can be used alone or in combination of two or more.
  • hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, mineral spirit, naphtha, acetone
  • ketones such as methyl ethyl
  • the solid content concentration after removing the solvent is in the range of 1 wt% to 80 wt%, and the total amine value of the curing agent for epoxy resin that can be reacted, and infrared absorption It is also suitable for bringing the spectral height ratio (H2 / H1), softening point, and melt viscosity within the desired ranges, and can be industrially produced.
  • the core of the microcapsule type epoxy resin curing agent in the present invention is formed using a core containing an epoxy resin curing agent mainly composed of an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound as a starting material.
  • the epoxy resin curing agent starts with particles having an average particle size defined by a median diameter of more than 0.3 ⁇ m and not more than 12 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m, more preferably 1.5 ⁇ m to 5 ⁇ m. Formed as a material. When the particle size is 12 ⁇ m or less, a more uniform cured product can be obtained.
  • a method for precisely controlling pulverization of a bulk epoxy resin curing agent, coarse pulverization and fine pulverization as pulverization, and obtaining a desired range by a precise classification device And a method for controlling conditions of an apparatus for spray-drying the dissolved epoxy resin curing agent.
  • a ball mill, an attritor, a bead mill, a jet mill or the like can be used as necessary, but an impact pulverizer is often used.
  • the impact pulverizer used here include jet mills such as a swirl type powder collision type jet mill and a powder collision type counter jet mill.
  • a jet mill is an apparatus that makes solid materials collide with each other by a high-speed jet flow using air or the like as a medium.
  • a precise control method for pulverization includes controlling the temperature, humidity, pulverization amount per unit time, and the like.
  • a precise classification method of the pulverized product in order to obtain a granular material of a predetermined size by classification after pulverization, a method of classification using a sieve (for example, a standard sieve such as 325 mesh or 250 mesh) or a classifier, There is a method of performing classification by wind power according to the specific gravity of the particles.
  • a classifier that can be used for the purpose of removing such fine particles a dry classifier is generally superior to a wet classifier.
  • the spray drying device include a normal spray drying device.
  • the mixing machine used for the purpose of mixing such powders is a container rotating type that rotates the container body containing the powder to be mixed, and mechanical stirring and air flow stirring without rotating the container body containing the powder.
  • Examples include a container-fixing mold that performs mixing, and a composite mold that rotates a container containing powder and performs mixing using other external force.
  • the “average particle diameter” means an average particle diameter defined by a median diameter. More specifically, it refers to the Stokes diameter measured by a laser diffraction / light scattering method using HORIBA LA-920 (HORIBA, Ltd., particle size distribution meter HORIBA LA-920).
  • the shape of the curing agent for epoxy resin is not particularly limited, and may be any of spherical, granular, powder, and amorphous. Among these, from the viewpoint of reducing the viscosity of the one-component epoxy resin composition, the shape is preferably spherical.
  • the term “spherical” includes not only true spheres but also shapes having rounded irregular corners.
  • the epoxy resin curing agent contains the amine adduct as a main component.
  • the curing agent for epoxy resin may contain a curing agent other than the amine adduct.
  • the amine compound one or two or more of the amine compounds mentioned as examples of the raw material for the amine adduct can be mixed and used. Moreover, the amount of such an amine compound is 0.001 part by mass or more and 3 parts by mass or less, preferably 0.01 parts by mass with respect to 100 parts by mass of the core made of the epoxy resin curing agent containing the amine adduct as a main component. It is not less than 2.5 parts by mass and more preferably not less than 0.05 parts by mass and not more than 1.5 parts by mass.
  • the ratio 0.001 part by mass or more it is not only preferable for developing low-temperature fast curability, but also in the shell formation reaction, a dense shell can be formed, storage stability, solvent resistance There is a merit that a high-capacity microcapsule type epoxy resin curing agent can be obtained.
  • the content is 3 parts by mass or less, the shell formation reaction can be controlled more stably.
  • the epoxy resin curing agent comprising the amine adduct of the present invention as a main component is indispensable for realizing low-temperature fast curing properties, but has the property of easily adsorbing and retaining moisture. Therefore, the moisture content contained in the epoxy resin curing agent requires strict management.
  • an epoxy resin curing agent having an average particle diameter defined by a median diameter mainly composed of an amine adduct obtained by a reaction between an epoxy resin (e1) and an amine compound is more than 0.3 ⁇ m and not more than 12 ⁇ m.
  • the amount of water contained in the epoxy resin curing agent is 100 parts by mass of the epoxy resin curing agent mainly composed of the amine adduct.
  • the amount of water contained in the epoxy resin curing agent is 100 parts by mass of the epoxy resin curing agent mainly composed of the amine adduct.
  • a microcapsule type epoxy resin curing agent and / or a masterbatch type epoxy resin curing agent composition and / or an epoxy resin composition having excellent low-temperature rapid curing properties can be obtained.
  • the core of the microcapsule type epoxy resin curing agent that can be obtained by covering the particles with the core of the epoxy resin curing agent mainly composed of amine adducts as well as maintaining a stable quality state.
  • the surface of the resin is efficiently coated, and the quality and denseness of the film that is formed make the amine compound contained in the epoxy resin curing agent more efficient.
  • Play action includes the capsule film formation reaction, as a result, excellent storage stability and solvent resistance, and can be obtained film quality excellent in curability.
  • the amount of water contained in the epoxy resin curing agent is 3 parts by mass or less, when the particle powder of the epoxy resin curing agent is produced, stored, and stored, aggregation of particles is suppressed, and the epoxy resin curing agent It becomes easy to manufacture and manage the particle powder with stable quality.
  • the epoxy of the shell which consists of a reaction product of any 2 types or more of an isocyanate compound, an active hydrogen compound, the hardening
  • Stable quality microcapsule type epoxy resin curing agent and / or masterbatch type epoxy resin curing agent composition can be obtained by suppressing aggregation phenomenon of particle powder even when forming on the surface of resin curing agent. Obtainable.
  • a method for setting the amount of water contained in the core composed of the curing agent for epoxy resin mainly composed of the amine adduct of the present invention to be in a specific range there are several methods.
  • a method for obtaining a desired moisture content, a curing agent for epoxy resin having a desired average particle size, and a constant temperature and constant temperature are obtained.
  • a method of adjusting the moisture content to a desired range by keeping it in a wet state for a certain period of time, drying the starting particles of the epoxy resin curing agent in a vacuum, removing the moisture, and then changing the moisture to a sealed state The method of suppressing this etc. is mentioned.
  • the water content contained in the core composed of the epoxy resin curing agent mainly composed of the amine amine adduct of the present invention can be used without any problem if it is a normal method for determining the water content.
  • the curing agent for epoxy resin mainly composed of the amine adduct of the present invention may contain a curing agent other than the amine adduct and the amine compound.
  • the curing agent other than the amine adduct and the amine compound include one or two or more compounds selected from the group consisting of a carboxylic acid compound, a sulfonic acid compound, an isocyanate compound, a urea compound, and an imidazole compound, and A reaction product with the epoxy resin (e1) or amine compound described as a raw material of the amine adduct; Acid anhydride curing agents such as phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic acid; Phenolic curing agents such as phenol novolak, cresol novolak, bisphenol A novolak; Mercaptan curing agents such as propylene glycol-modified polymercaptan, trimethylolpropan
  • carboxylic acid compound examples include succinic acid, adipic acid, sebacic acid, phthalic acid, and dimer acid.
  • sulfonic acid compound examples include ethanesulfonic acid and p-toluenesulfonic acid.
  • isocyanate compound aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, aliphatic triisocyanate, polyisocyanate etc. are mentioned, for example.
  • Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate.
  • Examples of the alicyclic diisocyanate include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis (isocyanatomethyl) -cyclohexane, 1,3- And bis (2-isocyanatopropyl-2-yl) -cyclohexane.
  • aromatic diisocyanate examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylene diisocyanate, 1,5-naphthalene diisocyanate, and the like.
  • aliphatic triisocyanate examples include 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-triisocyanate methylhexane, and 2,6-diisocyanato.
  • Examples include hexanoic acid-2-isocyanatoethyl and 2,6-diisocyanatohexanoic acid-1-methyl-2-isocyanatoethyl.
  • examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate and polyisocyanate derived from the diisocyanate compound.
  • examples of the polyisocyanate derived from the diisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, and carbodiimide type polyisocyanate.
  • Examples of the urea compound include urea, methylurea, dimethylurea, ethylurea, t-butylurea and the like.
  • Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-aminoethyl-2-methylimidazole.
  • the total amount of chlorine contained in the core containing the epoxy resin curing agent mainly composed of the amine adduct of the present invention a microcapsule type epoxy resin curing agent having a high balance between storage stability and low temperature rapid curing property is used. From the viewpoint of obtaining, it is preferably 2500 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less, and even more preferably 1000 ppm or less.
  • the total amount of chlorine contained in the core is preferably 0.01 ppm or more, more preferably 0.1 ppm or more, still more preferably 0.2 ppm or more, and even more preferably 0, from the viewpoint of facilitating the control of the shell formation reaction. .5 ppm or more. When the total chlorine content is 0.5 ppm or more and 1000 ppm or less, a shell-forming reaction is efficiently performed on the surface of the curing agent, and a shell having storage stability excellent in resistance to a solvent can be obtained.
  • the weight average molecular weight of the amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is 150 or more and less than 20000. Preferably they are 300 or more and 8000 or less, More preferably, they are 350 or more and 2500 or less.
  • the weight average molecular weight is calculated from the molecular weight determined in terms of polyethylene oxide using a gel permeation chromatography (hereinafter referred to as GPC) method.
  • GPC gel permeation chromatography
  • the weight average molecular weight is greater than 150, a core capable of microencapsulation with excellent storage stability can be obtained.
  • the weight average molecular weight is less than 20000, the low-temperature rapid curability of the microcapsule type epoxy resin curing agent is further improved.
  • the microcapsule-type epoxy resin curing agent in the present embodiment has, as a core, an epoxy resin curing agent mainly composed of an amine adduct obtained by a reaction between the epoxy resin (e1) and the amine compound as described above. And a shell covering the core.
  • the shell is a reaction product obtained by using two or more selected from the group consisting of an isocyanate compound, an active hydrogen compound, a curing agent for epoxy resin (h2), an epoxy resin (e2), and an amine compound (B) as a raw material. It is preferable to include an object.
  • an isocyanate compound the isocyanate compound demonstrated as a raw material of hardening
  • the active hydrogen compound include water, a compound having at least one primary amino group and / or a secondary amino group, a compound having at least one hydroxyl group, and the like.
  • aliphatic amines examples include alkylamines such as methylamine, ethylamine, propylamine, butylamine, and dibutylamine, and alkylenediamines such as ethylenediamine, propylenediamine, butylenediamine, and hexamethylenediamine; Polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine; Polyoxyalkylene polyamines such as polyoxypropylenediamine and polyoxyethylenediamine; Etc.
  • alkylamines such as methylamine, ethylamine, propylamine, butylamine, and dibutylamine
  • alkylenediamines such as ethylenediamine, propylenediamine, butylenediamine, and hexamethylenediamine
  • Polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine
  • alicyclic amine examples include cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, and isophoronediamine.
  • Aromatic amines include aniline, toluidine, benzylamine, naphthylamine, diaminodiphenylmethane, diaminodiphenylsulfone, and the like.
  • examples of the compound having at least one hydroxyl group examples include alcohol compounds and phenol compounds.
  • alcohol compounds include methyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, dodecyl alcohol, stearyl alcohol, and eicosyl.
  • Monoalcohols such as alcohol, allyl alcohol, crotyl alcohol, propargyl alcohol, cyclopentanol, cyclohexanol, benzyl alcohol, cinnamyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monobutyl;
  • Polyhydric alcohols such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-butanediol, 1,4-butanediol, hydrogenated bisphenol A, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol; Two or more secondary hydroxyl groups obtained in a molecule by reaction between a compound having at least one epoxy group and a compound having at least one hydroxyl group, carboxyl group, primary or secondary amino group, or mercapto group Polyhydric alcohols such as compounds having: Etc.
  • These alcohol compounds may be any of primary, secondary, or tertiary alcohols.
  • the phenol compound include monophenols such as carboxylic acid, cresol, xylenol, carvacrol, motile, and naphthol, and polyhydric phenols such as catechol, resorcin, hydroquinone, bisphenol A, bisphenol F, pyrogallol, and phloroglucin.
  • polyhydric alcohols, polyhydric phenols and the like are preferable from the viewpoints of latency and solvent resistance, and polyhydric alcohols are particularly preferable.
  • the epoxy resin curing agent (h2) is the same as or different from the epoxy resin curing agent mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) and the amine compound. However, they are preferably the same.
  • an epoxy resin (e2) a polyvalent epoxy compound can be preferably used among the epoxy resins mentioned by the epoxy resin (e1) and the epoxy resin (EP2) mentioned above.
  • the epoxy resin (e2) may be the same as or different from the epoxy resin (e1), the epoxy resin (EP2), and the epoxy resin (e3) described later.
  • the epoxy resin (e2) a plurality of types can be used in combination.
  • the epoxy resin usually has an impure end in which chlorine is bonded in the molecule, but such an end impairs the electrical characteristics of the cured product. Therefore, the total amount of chlorine contained in the epoxy resin (e2) is preferably 2500 ppm or less, more preferably 1500 ppm or less, and still more preferably 1000 ppm or less.
  • the amine compound (B) As the amine compound (B), the amine compound mentioned as an example of the raw material for the amine adduct and the amine compound described as a raw material for the curing agent other than the amine adduct, which may be contained in the curing agent for epoxy resin An imidazole compound can be used. These can be used 1 type or in mixture of 2 or more types.
  • reaction conditions for using as a raw material two or more selected from the group consisting of the isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) as described above
  • the reaction time is usually 10 minutes to 12 hours in the temperature range of ⁇ 10 ° C. to 150 ° C.
  • the blending ratio when using an isocyanate compound and an active hydrogen compound is preferably 1: 0.1 to 1: 1000 as (isocyanate group in the isocyanate compound) :( active hydrogen in the active hydrogen compound) (equivalent ratio). Range.
  • the blending ratio in the case of using the epoxy resin curing agent (h2) and the epoxy resin (e2) is preferably 1 as (the epoxy resin curing agent (h2)) :( epoxy resin (e2)) (mass ratio). : 0.001 to 1: 1000, more preferably 1: 0.01 to 1: 100.
  • the above reaction can be carried out in a dispersion medium if necessary. Examples of the dispersion medium include a solvent, a plasticizer, and resins.
  • the solvent examples include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; Esters such as ethyl acetate, n-butyl acetate, propylene glycol monomethyl ethyl acetate; Alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve, butyl carbitol; Water etc. are mentioned.
  • hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone
  • Esters such as ethyl acetate, n-butyl acetate, propylene
  • plasticizer examples include phthalic acid diester plasticizers such as dibutyl phthalate and di (2-ethylhexyl) phthalate; Aliphatic dibasic acid ester plasticizers such as di (2-ethylhexyl) adipate; Phosphate triester plasticizers such as tricresyl phosphate; Glycol ester plasticizers such as polyethylene glycol esters; Etc.
  • the resins include silicone resins, epoxy resins, phenol resins and the like.
  • the reaction between the epoxy resin (e2) and the epoxy resin curing agent (h2) is usually in the temperature range of ⁇ 10 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 1 to 168 hours, preferably 2 hours to It is carried out with a reaction time of 72 hours.
  • a solvent, a plasticizer, etc. are preferably used as a dispersion medium.
  • any of the aforementioned isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) may be used in a reaction of two or more.
  • Solvents that can be used and those listed as examples of plasticizers can be used.
  • a ratio which the above reaction products occupy in the said shell it is 1 mass% or more normally, Preferably it is 50 mass% or more, and 100 mass% may be sufficient.
  • the following method can be employed.
  • (B) Disperse particles of a curing agent for an epoxy resin mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) and an amine compound in a dispersion medium, and add a material that forms a shell to the dispersion medium. And depositing on the epoxy resin curing agent particles.
  • (C) The material of the shell forming material is added to the dispersion medium, and the surface of the epoxy resin curing agent particle mainly composed of an amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is reacted.
  • the methods (b) and (c) are preferable because the reaction and the coating can be performed simultaneously.
  • a solvent, a plasticizer, resin, etc. are mentioned.
  • the solvent, plasticizer, and resin are selected from the group consisting of the isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) described above.
  • species or more as a raw material can be used.
  • it is preferable to use an epoxy resin as a dispersion medium because a masterbatch type epoxy resin curing agent composition can be obtained simultaneously with shell formation.
  • the shell formation reaction is usually carried out in the temperature range of ⁇ 10 ° C.
  • the starting material is a curing agent for epoxy resin whose core is an amine adduct obtained by the reaction between the epoxy resin (e1) and an amine compound.
  • the epoxy resin curing agent is formed starting from particles having an average particle size defined by a median diameter of more than 0.3 ⁇ m and 12 ⁇ m or less
  • the shell includes a bonding group (x) that absorbs infrared light having a wave number of 1630 to 1680 cm ⁇ 1 , a bonding group (y) that absorbs infrared light having a wave number of 1680 to 1725 cm ⁇ 1 , and a bond that absorbs infrared light having a wave number of 1730 to 1755 cm ⁇ 1. It has a group (z) at least on the surface.
  • the bonding groups (x) urea linkages can be mentioned as particularly useful.
  • the linking groups (y) buret bonds can be mentioned as particularly useful.
  • bonding groups (z) a particularly useful one is a urethane bond.
  • the fact that the bonding groups (x), (y) and (z) have at least the surface of the core of the microcapsule type epoxy resin curing agent formed using the epoxy resin curing agent as a starting material is a microscopic FT-IR. Can be measured.
  • the shell has an infrared wave number 1630 ⁇ 1680 cm-binding group that absorbs infrared -1 (x) and the binding group that absorbs infrared wave number 1680 ⁇ 1725cm -1 (y) and a wavenumber of 1730 ⁇ 1755 cm -1
  • the bonding group (z) that absorbs has a concentration in the range of 1 to 1000 meq / kg, 1 to 1000 meq / kg, and 1 to 200 meq / kg, respectively.
  • the concentration referred to here is a value for the microcapsule type epoxy resin curing agent.
  • concentration of the bonding group (x) is 1 meq / kg or more, it is advantageous to obtain a capsule type curing agent having high resistance against mechanical shearing force. Moreover, when it is 1000 meq / kg or less, it is advantageous to obtain high curability.
  • a more preferable concentration range of the linking group (x) is 10 to 300 meq / kg.
  • concentration of the bonding group (y) is 1 meq / kg or more, it is advantageous to obtain a capsule-type curing agent having high resistance against mechanical shearing force.
  • concentration of the bonding group (y) is 10 to 200 meq / kg.
  • concentration of the bonding group (z) is 1 meq / kg or more, it is advantageous to form a shell having high resistance against mechanical shearing force. Moreover, when it is 200 meq / kg or less, it is advantageous to obtain high curability.
  • concentration range of the linking group (z) is 5 to 100 meq / kg.
  • the bonding groups (x), (y), and (z) of the shell are a urea group, a burette group, and a urethane group, respectively, and the concentration (Cx) of the bonding group (x) and the bonding group (x),
  • the ratio (Cx / (Cx + Cy + Cz)) to the total concentration (Cx + Cy + Cz) of (y) and (z) is 0.50 or more and less than 0.75.
  • a concentration ratio of 0.50 or more is preferable from the viewpoint of solvent resistance of the microcapsule type epoxy resin curing agent.
  • the concentration ratio of 0.75 or less suppresses the fusion / aggregation of the microcapsule type epoxy resin curing agents in the shell formation reaction, and manages the microcapsule type epoxy resin curing agent with stable quality. It is preferable from the point of being easy to do.
  • the quantification of the concentration of the linking group (x), the linking group (y) and the linking group (z), and the quantification of the concentration ratio of the linking group can be quantified by the method shown below.
  • Model compound (3) having a linking group (z) having an absorption band of 1730 to 1755 cm ⁇ 1 but having no linking groups (x) and (y) Prepare. Then, a mixture obtained by accurately weighing and mixing each of the standard substance and the model compounds (1), (2), and (3) at an arbitrary ratio is pulverized with KBr powder and FT is used using a tablet molding machine. / Prepare a calibration sample tablet for IR measurement.
  • the area ratio of the absorption band of 1630 to 1680 cm ⁇ 1 of the model compound (1) is obtained relative to the area of the absorption band of 2240 to 2260 cm ⁇ 1 of the tetramethyl succinonitrile as the standard substance. That is, the vertical axis represents the mass ratio in the calibration sample, which is a mixture of the model compound (1) and the standard substance, and the horizontal axis represents the area of the absorption band of 1630 to 1680 cm ⁇ 1 in the model compound (1) and the tetramethyl of the standard substance.
  • a calibration curve is prepared by linear regression of the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions.
  • a calibration curve is created by linearly regressing the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions from the respective measured values.
  • the model compounds (1), (2) and (3) and the tetramethyl succinic acid nitrile which is the standard substance were all made of Tokyo Chemical Reagent Grade.
  • the microcapsule type epoxy resin curing agent is vacuum-dried at 40 ° C. to determine its weight. Further, the capsule membrane separated from the microcapsule type epoxy resin curing agent is vacuum dried at 40 ° C., and the weight of the capsule membrane obtained from the microcapsule type epoxy resin curing agent is measured. The capsule membrane is separated from the microcapsule-type epoxy resin curing agent by using a methanol-based hardener for the microcapsule-type epoxy resin, washing and filtering until the epoxy resin curing agent disappears, and a temperature of 50 ° C. or lower. To completely remove methanol and dry.
  • a method for controlling the temperature and / or time of the device In particular, it is to control the amount of an isocyanate compound used to generate a urea bond or a burette bond, or a compound having one or more hydroxyl groups in one molecule used to generate a urethane bond.
  • a bonding group for a height (H1) between 1050 and 1150 cm ⁇ 1 derived from CN stretching vibration presumed to be caused by a urea group, a burette group and a urethane group ( x)
  • the peak height (H3) ratio (H3 / H1) of 1630 to 1680 cm ⁇ 1 is 0.3 or more and less than 1.2.
  • a ratio (H3 / H1) of less than 1.2 is preferable from the viewpoint of obtaining low-temperature rapid curability.
  • the shell covering the core containing the epoxy resin curing agent mainly composed of the amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound Not only is it suitable for forming a dense film sufficient to exhibit storage stability and solvent resistance, but also when a microcapsule-type epoxy resin curing agent is added to the epoxy resin composition, it has a large particle size. The generation of secondary particles can be prevented, and a very excellent microcapsule type epoxy resin curing agent can be realized.
  • the total thickness of the existence region of the bonding group (x), the bonding group (y), and the bonding group (z) included in the shell is preferably 5 to 1000 nm in average layer thickness. Storage stability can be obtained at 5 nm or more, and practical curability can be obtained at 1000 nm or less.
  • the thickness of a layer here can be measured with a transmission electron microscope.
  • a particularly preferable total thickness of the bonding groups is 10 to 100 nm as an average layer thickness.
  • the masterbatch type epoxy resin curing agent composition (M1) of the present embodiment comprises an epoxy resin (e3) and the above-described microcapsule type epoxy resin curing agent (epoxy resin (e3): (microcapsule type). (Epoxy resin curing agent))) (mass ratio) in a mixing ratio of 100: 10 to 100: 1000.
  • the masterbatch type epoxy resin curing agent composition (M1) of the present invention is preferably in the form of a paste that is liquid at room temperature or has a viscosity at 25 ° C. of 50 mPa ⁇ s to 10 million mPa ⁇ s.
  • epoxy resin (e3) the epoxy resin mentioned by the epoxy resin (e1) and epoxy resin (EP2) mentioned above, Among these, a polyvalent epoxy compound can be used preferably. These can be used in combination.
  • epoxy resins obtained by glycidylation of polyhydric phenols are preferable, and bisphenol-type epoxy resins are particularly preferable from the viewpoints of adhesiveness and heat resistance of the obtained cured product.
  • glycidylated products of bisphenol A and glycidylated products of bisphenol F are preferable.
  • the total chlorine content contained in the epoxy resin (e3) is preferably 2500 ppm or less, More preferably, it is 1500 ppm or less, More preferably, it is 1000 ppm or less.
  • the total chlorine amount contained in the entire masterbatch type epoxy resin curing agent composition (M1) is also preferably 2500 ppm or less.
  • the proportion of the diol terminal impurity component of the epoxy resin (e3) in the basic structural component of the epoxy resin (e3) is preferably 0.001 to 30% by mass, more preferably 0.01 to 25% by mass. More preferably, the content is 0.1 to 20% by mass, still more preferably 0.5 to 18% by mass, and still more preferably 1.2 to 15% by mass.
  • the diol terminal impure component refers to an epoxy resin having a structure in which one or both terminal epoxy groups are ring-opened to form 1,2-glycol.
  • the ratio which the diol terminal impure component of an epoxy resin (e3) occupies in the basic structural component of an epoxy resin (e3) shall be 30 mass% or less is bridge
  • curing agent is bridge
  • the introduction of a polar group having a high degree of molecular freedom into the cross-linked structure causes various performance degradations of the cured product.
  • the density of the shell (S) covering the epoxy resin curing agent (H) is reduced, which causes a decrease in storage stability and solvent resistance.
  • hardenability of an epoxy resin composition can be improved by setting it as 0.001 mass% or more.
  • the ratio which the diol terminal impure component of the said epoxy resin (e3) accounts in the basic structural component of an epoxy resin (e3) is the value obtained by the method as described in the term of an Example.
  • the masterbatch type epoxy resin curing agent composition (M1) of the present invention As a method for producing the masterbatch type epoxy resin curing agent composition (M1) of the present invention, a method of dispersing the microcapsule type epoxy resin curing agent in the epoxy resin (e3) using three rolls, In the epoxy resin (e3), a shell (S) is formed on the surface of the epoxy resin curing agent (H) to obtain a microcapsule type epoxy resin curing agent, and at the same time, a masterbatch type epoxy resin curing agent.
  • the method etc. which obtain a composition (M1) are mentioned. The latter is preferable because of high productivity.
  • the masterbatch type epoxy resin curing agent composition (M1) of the present invention can be further diluted with an epoxy resin to form a one-part epoxy resin composition.
  • a microcapsule type epoxy resin curing agent, an epoxy resin (e3), and a highly soluble epoxy resin (G) are included.
  • the solubility parameter of the basic structure of the high-solubility epoxy resin (G) is 8.65 to 11.00, the molecular weight between crosslinks of the basic structure is 105 to 150, and the proportion of impure components of the diol terminal is basic.
  • the microcapsule type epoxy resin curing agent and the epoxy resin (e3) are converted into 100: 10 to 100: 1000 as (microcapsule type epoxy resin curing agent) :( epoxy resin (e3)) (mass ratio).
  • Including the blending ratio of The epoxy resin (e3) and the highly soluble epoxy resin (G) are converted into 100: 0.1 to 100 as (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass ratio).
  • a one-component epoxy resin composition having a total chlorine content of 2500 ppm or less is preferred.
  • Such a one-component epoxy resin composition has not only excellent quick curability but also particularly excellent characteristics such as suppression of uneven curing of the cured product and improvement of glass transition temperature (Tg).
  • solubility parameter of the basic structure refers to the parameter shown in Table 1 below for the structure in which the epoxy group of the basic structure of the highly soluble epoxy resin (G) is not cleaved. ) Is a value calculated by substituting in ().
  • the highly soluble epoxy resin (G) having a solubility parameter of the basic structure of 8.65 to 11.00 used in the present embodiment for example, 1,2-dihydroxybenzene, 1,3 -Dihydroxybenzene, 1,4-dihydroxybenzene, 3-methyl-1,2-dihydroxybenzene, 4-methyl-1,2-dihydroxybenzene, 2-methyl-1,3-dihydroxybenzene, 4-methyl-1, 3-dihydroxybenzene, 2-methyl-1,4-dihydroxybenzene, 3-ethyl-1,2-dihydroxybenzene, 4-ethyl-1,2-dihydroxybenzene, 2-ethyl-1,3-dihydroxybenzene, 4 -Ethyl-1,3-dihydroxybenzene, 2-ethyl-1,4-dihydroxybenzene, 3-propi -1,2-dihydroxybenzene, 4-propyl-1,2-dihydroxybenzene, 2-propyl-1,3-dihydroxybenzene, 4-propyl-1
  • the molecular weight between crosslinks of the basic structure is 105 to 150, preferably 107 to 145, more preferably 108 to 140, and still more preferably 109 to 130. Setting the molecular weight between crosslinks to 150 or less is preferable from the viewpoint of securing the heat resistance of the cured product and the viewpoint of securing the adhesive force between the adherends by reducing the curing shrinkage during curing. On the other hand, setting the molecular weight between crosslinks to 105 or more is preferable from the viewpoint of preventing the cured product from becoming brittle.
  • the molecular weight between crosslinks is calculated by dividing the monomer molecular weight of the basic structural formula of the highly soluble epoxy resin by the number of epoxy groups contained in the basic structural formula. Further, in the highly soluble epoxy resin (G), the proportion of the diol terminal impurity component is 0.01 to 20% by mass, preferably 0.01 to 15% by mass, more preferably 0%, based on the basic structural component. 1 to 10% by mass, more preferably 0.2 to 8% by mass. By controlling the abundance ratio to 20% by mass or less, a decrease in the crosslinking density in the cured product formed from the epoxy resin and the curing agent is suppressed, and a polar group having a high degree of molecular freedom is introduced into the crosslinked structure.
  • curing agent for epoxy resins (H) is prevented, and the fall of storage stability and solvent resistance is suppressed.
  • the proportion of the diol terminal impurity component is calculated by the method described in the Examples section.
  • the compounding ratio of the epoxy resin (e3) mentioned above and the said highly soluble epoxy resin (G) is (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass The ratio is usually 100: 0.1 to 100: 1000, preferably 100: 10 to 100: 500, more preferably 100: 15 to 100: 350, and still more preferably 100: 20 to 100: 300. Setting the blending amount of the high-solubility epoxy resin (G) to 100 parts by mass of the epoxy resin (e3) to 0.1 parts by mass or more is preferable from the viewpoint of sufficiently exhibiting low-temperature fast curing properties and storage stability. is there.
  • the one-part epoxy resin composition of the present invention includes the epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition of the present invention, and the weight ratio thereof is 100: 10 to 100: 1000. It is characterized by.
  • an epoxy resin (e4) the polyvalent epoxy compound can be preferably used among the epoxy resins mentioned by the epoxy resin (e1) and the epoxy resin (EP2) mentioned above. These can be used in combination.
  • curing agent composition (M1) can be utilized.
  • the hardening agent composition for masterbatch type epoxy resins (M1) of this invention can also add the hardening
  • a curing agent for epoxy resin (h3) from the viewpoint of adhesive strength, Tg, blendability, etc., an acid anhydride curing agent, a phenol curing agent, a hydrazide curing agent, a guanidine curing agent, a thiol
  • At least one epoxy resin curing agent selected from a system curing agent, an imidazole curing agent, and an imidazoline curing agent is preferable.
  • Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-chlorophthalic anhydride, and 4-chlorophthalic anhydride.
  • phenolic curing agent examples include phenol novolak, cresol novolak, and bisphenol A novolak.
  • hydrazide curing agent examples include succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide terephthalic acid hydrazide, p-oxybenzoic acid hydrazide, salicylic acid hydrazide, phenylaminopropionic acid hydrazide, and maleic acid dihydrazide. It is done.
  • Examples of the guanidine curing agent include dicyandiamide, methylguanidine, ethylguanidine, propylguanidine, butylguanidine, dimethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine, toluylguanidine and the like.
  • Examples of the thiol curing agent include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris ( ⁇ -thiopropionate), pentaerythritol tetrakis.
  • thiol compounds obtained by esterification reaction of mercapto organic acid, 1,4-butanedithiol, 1,6- Hexanedithiol, alkyl polythiol compounds such as 1,10-decanedithiol, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound with hydrogen sulfide, Thiol compounds having terminal thiol group obtained by the reaction of Richioru and epoxy compounds.
  • imidazole curing agent examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-aminoethyl-2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3-butoxy
  • imidazole compounds such as propyl) -2-methylimidazole and 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4-methylimidazole
  • the reaction of 2-methylimidazole with bisphenol A type epoxy resin Product, 2-ethyl-4-methylimidazole Called imidazole of the amine adduct such as the reaction product of bisphenol A type epoxy resins include those obtained by further microencapsulated amine
  • imidazoline-based curing agent examples include 1- (2-hydroxy-3-phenoxypropyl) -2-phenylimidazoline, 1- (2-hydroxy-3-butoxypropyl) -2-methylimidazoline, 2-methylimidazoline, 2,4-dimethylimidazoline, 2-ethylimidazoline, 2-ethyl-4-methylimidazoline, 2-benzylimidazoline, 2-phenylimidazoline, 2- (o-tolyl) -imidazoline, tetramethylene-bis-imidazoline, 1, 1,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,3,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,1,3-trimethyl-1,4-tetramethylene -Bis-4-methylimidazoline, 1,3,3-trimethyl-1,4-the Ramethylene-bis-4-methylimidazoline, 1,2-phenylene-bis-imidazoline, 1,2-
  • curing agent composition for masterbatch type epoxy resins is the hardening
  • the weight ratio is 100: 10 to 10: 1000.
  • the above-mentioned masterbatch type epoxy resin curing agent composition (M1) may contain a cyclic borate ester compound to form a one-component epoxy resin composition.
  • the cyclic borate ester compound can improve the storage stability of the one-component epoxy resin composition.
  • the cyclic borate compound means a compound in which boron is contained in a cyclic structure.
  • a cyclic borate ester compound 2,2′-oxybis [5,5-dimethyl-1,3,2-dioxaborinane] is particularly preferable.
  • the proportion of the cyclic borate ester compound in the one-component epoxy resin composition is usually 0.001 to 10% by mass.
  • curing agent composition for masterbatch type epoxy resins (M1) The method mentioned as an example of the manufacturing method of the above-mentioned masterbatch type epoxy resin hardening
  • the masterbatch type epoxy resin curing agent composition (M1) of the present invention includes, for example, an extender, a reinforcing material, a filler, a pigment, conductive fine particles, an organic solvent, a reactive diluent, a non-reactive diluent, and a resin. , Crystalline alcohols, coupling agents, and the like.
  • the filler include coal tar, glass fiber, asbestos fiber, boron fiber, carbon fiber, cellulose, polyethylene powder, polypropylene powder, quartz powder, mineral silicate, mica, asbestos powder, and slate powder.
  • Examples of the pigment include kaolin, aluminum oxide trihydrate, aluminum hydroxide, chalk powder, gypsum, calcium carbonate, antimony trioxide, penton, silica, aerosol, lithopone, barite, and titanium dioxide.
  • Examples of the conductive fine particles include carbon black, graphite, carbon nanotube, fullerene, iron oxide, gold, silver, aluminum powder, iron powder, nickel, copper, zinc, chromium, solder, nano-sized metal crystal, intermetallic compound, etc. Can be mentioned. Any of these can be used effectively depending on the application.
  • organic solvent examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate and the like.
  • reactive diluents include butyl glycidyl ether, N, N′-glycidyl-o-toluidine, phenyl glycidyl ether, styrene oxide, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol diester. Examples thereof include glycidyl ether.
  • non-reactive diluents include dioctyl phthalate, dibutyl phthalate, dioctyl adipate, and petroleum solvents.
  • the resins include polyester resins, polyurethane resins, acrylic resins, polyether resins, melamine resins, urethane-modified epoxy resins, rubber-modified epoxy resins, alkyd-modified epoxy resins, and other modified epoxy resins.
  • the crystalline alcohol include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, pentaerythritol, sorbitol, sucrose, and trimethylolpropane.
  • Anisotropic conductive film The anisotropic conductive film containing the microcapsule-type epoxy resin curing agent of the present application has improved adhesive strength and conduction reliability in low-temperature and short-time pressure bonding.
  • the epoxy resin (e1) contains an epoxy resin (EP1) having a rigid skeleton structure.
  • the conductive particles (a) in the present invention are solder particles, nickel particles, particles having a metal surface coated with another metal, for example, styrene resin, urethane resin, melamine resin, epoxy resin, acrylic resin. Further, particles obtained by coating resin particles such as phenol resin and styrene-butadiene resin with a conductive thin film such as gold, nickel, silver, copper, and solder are used.
  • the particle size of the conductive particles (a) in the present invention is preferably 0.1 to 20 ⁇ m. If the particle size is too small, the connection is likely to be unstable due to the variation in the surface roughness of the terminals, which is not preferable.
  • the blending amount of the conductive particles is preferably within a range that allows electrical connection in the crimping direction while ensuring insulation between adjacent terminals.
  • the range of 0.03 to 20 vol% is preferable with respect to the total of the epoxy resin (b) and (c) organic binder, and more preferably 0.1 to 10 vol%.
  • the blending amount of the conductive particles is 20 vol% or less, the insulation between adjacent terminals becomes good.
  • Epoxy resin having one or more epoxy rings As the epoxy resin (b) having one or more epoxy rings in the present invention, various known compounds can be used. A polyvalent epoxy compound is preferred because the adhesive strength of the anisotropic conductive film can be increased. More preferably, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned. In addition, the anisotropic conductive film of the present invention has a varnish-like composition in which the above components (a), (b), (c), and (d) are uniformly and mixed in an appropriate solvent. Make it.
  • the total epoxy equivalent of the epoxy resin (e3) and the epoxy resin (b) contained in the masterbatch type epoxy resin curing agent composition is EX
  • the microcapsule type epoxy resin is used.
  • Curing agent (d) and / or curing agent (d) for microcapsule type epoxy resin in curing agent composition (M1) for masterbatch type epoxy resin, and / or microcapsule in one-component epoxy resin composition The value obtained by dividing the total amine value of the epoxy resin curing agent forming the core of the epoxy resin curing agent (d) by the blending weight of the microcapsule curing agent (d) in the varnish-like composition as HX
  • the value of (EX / HX) ⁇ 100, which is the ratio of the epoxy amount to the amine amount, is 1.5 ⁇ (EX / HX) ⁇ 100 ⁇ 4.0.
  • Organic binder made of resin other than (b) in the present invention includes additives such as silane coupling agents, acrylic resins, phenoxy resins, polyester resins, urethane resins.
  • additives such as silane coupling agents, acrylic resins, phenoxy resins, polyester resins, urethane resins.
  • Acrylic rubber, SBR, NBR, polyvinyl butyral and the like are preferable.
  • the microcapsule type curing agent (d) in the present invention has the I.S. Although a microcapsule type epoxy resin curing agent is used, when producing an anisotropic conductive film, conductive particles (a), an epoxy resin (b), an organic binder (c), and a microcapsule type epoxy resin curing agent. In order to blend (d) at a desired weight ratio, a masterbatch type epoxy resin curing agent composition (M1) containing a microcapsule type epoxy resin curing agent or a one-component epoxy resin composition is used. In addition, the microcapsule type epoxy resin curing agent (d) is uniformly dispersed, and industrially advantageous without impairing the curing unevenness due to the generation of aggregates during blending and the appearance of the anisotropic conductive film. Can be manufactured.
  • the anisotropic conductive film in the present invention is produced by the following method.
  • the epoxy resin of component (b) and the phenoxy resin of component (c) are dissolved in a mixed solvent of ethyl acetate and toluene to obtain a varnish that is a raw material for the anisotropic conductive film.
  • the master batch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) and the conductive particles of the component (a) are added to the varnish and mixed uniformly to obtain a one-component epoxy.
  • a resin composition was obtained.
  • the resulting one-pack epoxy resin composition is applied onto a polyethylene terephthalate film, and ethyl acetate and toluene are removed by drying by blowing hot air at the required temperature and time. A film can be obtained.
  • the masterbatch type epoxy resin curing agent composition and one-part epoxy resin composition of the present embodiment can have a paste-like or film-like form other than the anisotropic conductive film, and can be used in any application ( It can be used for processed products.
  • conductive materials in addition to adhesives and / or bonding pastes and bonding films, conductive materials, anisotropic conductive materials, insulating materials, sealing materials, coating materials, coating compositions, prepregs, thermal conductive materials, separator materials It is useful as an overcoat material for flexible wiring boards.
  • the adhesive and / or bonding paste and bonding film are useful for liquid adhesives, film adhesives, die bonding materials and the like, for example.
  • a method for producing a film adhesive for example, there are methods described in JP-A-62-141083 and JP-A-05-295329.
  • a solution is prepared by dissolving, mixing, and dispersing solid epoxy resin, liquid epoxy resin, and solid urethane resin in toluene so as to be 50% by mass.
  • a varnish is prepared by adding and dispersing 30% by mass of the curing agent composition for masterbatch type epoxy resin (M1) of the present embodiment to the obtained solution.
  • the varnish solution is applied to a polyethylene terephthalate substrate for peeling having a thickness of 50 ⁇ m so that the toluene in the varnish solution has a thickness of 30 ⁇ m after drying.
  • the conductive material examples include a conductive film and a conductive paste.
  • the anisotropic conductive material there is an anisotropic conductive paste in addition to the anisotropic conductive film.
  • As a manufacturing method thereof for example, there is a method described in Japanese Patent Application Laid-Open No. 2000-21236. More specifically, for example, solder particles, nickel particles, nano-sized metal crystals, particles having a metal surface coated with another metal, copper and silver, which are conductive materials used in the anisotropic conductive film described above.
  • Particles obtained by coating resin particles such as inclined particles, styrene resin, urethane resin, melamine resin, epoxy resin, acrylic resin, phenol resin, styrene-butadiene resin with a conductive thin film such as gold, nickel, silver, copper, solder, etc. Or the like are made into spherical fine particles of about 1 to 20 ⁇ m and mixed and dispersed in a solid epoxy resin or a liquid epoxy resin with three rolls, etc. to obtain an anisotropic conductive paste.
  • the insulating material include an insulating adhesive film and an insulating adhesive paste.
  • an insulating filler is blended into a masterbatch type epoxy resin curing agent composition (M1) or a one-part epoxy resin composition to provide insulation.
  • An adhesive paste can be obtained.
  • the sealing material include a solid sealing material, a liquid sealing material, and a film-like sealing material.
  • the liquid sealing material is useful as an underfill material, a potting material, a dam material, or the like.
  • a method for manufacturing the sealing material for example, there are methods described in JP-A-5-43661 and JP-A-2002-226675.
  • a bisphenol A type epoxy resin, an acid anhydride as a curing agent, methylhexahydrophthalic anhydride as a curing agent, and spherical fused silica powder were added and mixed uniformly to obtain the present invention.
  • the encapsulant can be obtained by adding the masterbatch type epoxy resin curing agent composition (M1) and mixing them uniformly.
  • the coating material include an electronic material coating material, an overcoat material for a printed wiring board cover, and a resin composition for interlayer insulation of a printed board.
  • a method for producing a coating material for example, there are various methods described in JP-B-4-6116, JP-A-7-304931, JP-A-8-64960, and JP-A-2003-246838. . More specifically, silica or the like is selected from the filler, and as a filler, phenoxy resin, rubber-modified epoxy resin, etc. are blended in addition to bisphenol A type epoxy resin, and further, curing for the masterbatch type epoxy resin of this embodiment
  • the agent composition is blended, and a 50% solution is prepared with methyl ethyl ketone (hereinafter referred to as MEK). After coating this on a polyimide film with a thickness of 50 ⁇ m, the coating material is obtained by drying MEK.
  • the film thus coated and the copper foil are stacked and laminated at 60 to 150 ° C.
  • the laminate is heat-cured at 180 to 200 ° C. to obtain a laminated plate whose layers are coated with the epoxy resin composition.
  • Examples of the method for producing the coating composition include the methods described in JP-A Nos. 11-323247 and 2005-113103. More specifically, titanium dioxide, talc, and the like are blended into bisphenol A type epoxy resin, and a 1: 1 mixed solvent of methyl isobutyl ketone (hereinafter referred to as MIBK) / xylene is added as a mixed solvent, and stirred and mixed. Use as the main agent.
  • MIBK methyl isobutyl ketone
  • An epoxy coating composition can be obtained by adding the masterbatch type epoxy resin curing agent composition of the present embodiment to this and dispersing it uniformly.
  • a method for producing a prepreg for example, a method obtained by impregnating an epoxy resin composition into a reinforcing substrate and heating it, such as the method described in JP 09-71633 A, WO 98/44017 pamphlet, etc. is there.
  • the varnish solvent to be impregnated include methyl ethyl ketone, acetone, ethyl cellosolve, methanol, ethanol, isopropyl alcohol and the like. It is preferable that these solvents do not remain in the prepreg.
  • the kind of reinforcement base material is not specifically limited, For example, paper, a glass cloth, a glass nonwoven fabric, an aramid cloth, a liquid crystal polymer etc. are mentioned as an example.
  • the ratio of the resin composition to the reinforcing substrate is not particularly limited, but it is usually preferable that the resin component in the prepreg is prepared to be 20 to 80% by mass.
  • thermosetting resin a thermosetting resin
  • phenol novolac curing agent a phenol novolac curing agent
  • graphite powder as a heat conductive filler
  • a heat conductive resin paste can be obtained by blending the masterbatch type epoxy resin curing agent composition of the present invention.
  • a method for producing a fuel cell separator material there are methods described in JP-A Nos. 2002-332328 and 2004-75954.
  • an artificial graphite material is used as the conductive material, and a liquid epoxy resin, biphenyl type epoxy resin, resol type phenol resin, or novolac type phenol resin is used as the thermosetting resin, and the raw materials are mixed with a mixer.
  • the master batch type epoxy resin curing agent composition of the present embodiment is added to the obtained mixture and uniformly dispersed to obtain a fuel cell sealing material molding material composition.
  • This molding material composition is compression molded at a mold temperature of 170 to 190 ° C. and a molding pressure of 150 to 300 kg / cm 2 , so that it has excellent practical conductivity and good gas impermeability and molding processability.
  • succinic acid as dicarboxylic acid is dissolved in pure water and added as a 5% by mass aqueous solution to the overcoat material solution for flexible wiring board.
  • [Content of amine compound (B)] An analysis chart was obtained by gas chromatography (GC). As an analyzer, GC-17A manufactured by Shimadzu Corporation was used, and as a detector, a flame ion detector (hereinafter referred to as FID) was used. As the column, a capillary column InterCap for Amine (length 15 m, inner diameter 0.32 mm) manufactured by GL Science was used. Helium was used as the carrier gas. A calibration curve for quantifying the content of the amine compound (B) was prepared using the solvent used in the synthesis of each amine adduct. Using this calibration curve, the content of the amine compound (B) was quantified. [Total amine value] The amount of potassium hydroxide equivalent to the amount of perchloric acid required to neutralize all basic nitrogen contained in 1 g of epoxy resin curing agent is expressed in mg, and conforms to JIS K-7237. Asked.
  • Epoxy equivalent (g) This is the mass (g) of an epoxy resin containing 1 equivalent of an epoxy group, and was determined according to JIS K-7236. [Amount of diol terminal impurity (mass%)]
  • Separation conditions based on the difference in both terminal structures of the epoxy resin were selected, and the separation liquid was fractionated using a switching valve.
  • the separated separated liquid was distilled off under reduced pressure for each fraction, and the residue was analyzed with a mass spectrometer (hereinafter referred to as MS).
  • MS mass spectrometer
  • those having a difference of 18 in the mass number of the reference peak were designated as the basic structure component having a smaller value of 18 and the impurity component having a larger diol content as having a larger value.
  • the content ratio of the diol terminal impurity component relative to the basic structure component in the epoxy resin was determined from the area ratio of the peak intensity indicating the diol terminal impurity component peak on the HPLC analysis chart and the peak intensity indicating the basic structure component.
  • Total chlorine content (ppm)
  • An epoxy resin, a curing agent for epoxy resin, or a curing agent composition for a masterbatch type epoxy resin is decomposed in the presence of excess KOH under high temperature conditions, and all the bonded chlorine is decomposed, and the generated Cl ⁇ ion is silver nitrate (AgNO) in a non-aqueous system.
  • 3 Determine the total chlorine content by titration.
  • AT-400 manufactured by Kyoto Electronics Industry was used as an automatic potentiometric titrator.
  • As the electrodes to be used glass electrode H-112 and silver electrode M-214 were used.
  • a hot plate with a stirring stirrer function (DP-1S manufactured by ASONE) was used.
  • a heat-resistant glass container was used as a container for weighing and measuring the sample. Samples for measurement 1 to 10 g were precisely weighed in a heat-resistant glass container so that the titration amount was 3 to 7 ml. To this, 25 ml of ethylene glycol monobutyl ether was added, and while stirring with a Teflon stirrer, 25 ml of a 1N KOH propylene glycol solution was further added and boiled for 20 minutes with a hot stirrer. The propylene glycol vapor generated at the time of boiling was cooled and condensed and refluxed in a heat-resistant glass container.
  • the mixture After heating, the mixture is allowed to cool to room temperature, 200 ml of acetic acid is added, and potentiometric titration is performed in an automatic analysis mode with an aqueous silver nitrate solution for analysis (0.01 mol / L) manufactured by Wako Pure Chemical. Asked. If the titer is 3 ml or less, or 7 ml or more, the weight of the sample precisely weighed in the heat-resistant glass container is adjusted and remeasured. In addition, the titration amount of the blank is obtained in the same manner while the sample is zero.
  • the total chlorine amount can be calculated by the following calculation formula.
  • Total chlorine (ppm) ⁇ (v ⁇ v 0 ) ⁇ f ⁇ 10 ⁇ 35.5 ⁇ / W W: Sample weight (g) v: Titration volume (ml) v 0 ; Blank titration (ml) f: Factor of aqueous silver nitrate solution [Hydrolyzable chlorine content (ppm)]
  • the hydrolyzable chlorine in the epoxy resin, the epoxy resin curing agent, or the masterbatch type epoxy resin curing agent composition was determined as follows.
  • AT-400 manufactured by Kyoto Electronics Industry was used as an automatic potentiometric titrator.
  • As the electrodes to be used glass electrode H-112 and silver electrode M-214 were used.
  • a hot plate with a stirring stirrer function (DP-1S manufactured by ASONE) was used.
  • a heat-resistant glass container was used as a container for weighing and measuring the sample.
  • a 3 g sample sample for measurement was precisely weighed in a heat-resistant glass container.
  • To this was added 50 ml of toluene, and while stirring with a Teflon stirrer, 20 ml of 0.1N KOH methanol solution was further added and boiled for 15 minutes. Toluene and methanol vapor generated during boiling were cooled and condensed and refluxed to a heat-resistant glass container.
  • the mixture After heating, the mixture is allowed to cool to room temperature, 1 ml of acetic acid is added, and potentiometric titration is performed in an automatic analysis mode with an aqueous silver nitrate solution (0.002 mol / L) manufactured by Wako Pure Chemical Industries. Asked. If the titer is 3 ml or less, or 7 ml or more, the weight of the sample precisely weighed in the heat-resistant glass container is adjusted and remeasured. In addition, the titration amount of the blank is obtained in the same manner while the sample is zero.
  • the amount of hydrolyzable chlorine can be calculated by the following calculation formula.
  • Hydrolyzable chlorine (ppm) ⁇ (v ⁇ v 0 ) ⁇ f ⁇ 2 ⁇ 35.5 ⁇ / W W: Sample weight (g) v: Titration volume (ml) v 0 ; Blank titration (ml) f: Factor of aqueous silver nitrate solution
  • Solubility parameter This is a value calculated by substituting the parameters shown in Table 1 above into the above formula-2 for the structure in which the epoxy group of the basic structure of the highly soluble epoxy resin is not cleaved.
  • Molecular weight between crosslinks This is a value calculated by dividing the molecular weight of the monomer having the basic structural formula of the highly soluble epoxy resin by the number of epoxy groups contained in the basic structural formula.
  • Viscosity (mPa ⁇ s) It is a value measured using a B-type viscometer at 25 ° C.
  • the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.).
  • Teurbo Classifier manufactured by Nissin Engineering Co., Ltd.
  • curing agent (H) for epoxy resins provided with the various average particle diameter shown in Table 4 was obtained by combining grinding
  • a particle size distribution meter HORIBA LA-920, manufactured by HORIBA, Ltd.
  • Examples 1 to 17, Comparative Examples 1 to 5 Using the epoxy resin curing agent (H) shown in Table 4, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Tables 5 and 6. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 5 and Table 6. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
  • the masterbatch type epoxy resin curing agent composition (M1) was repeatedly washed and filtered with xylene until the epoxy resin disappeared, and then washed and filtered with cyclohexane until the xylene disappeared. Then, it vacuum-dried at 40 degreeC and calculated
  • the separated shell was vacuum-dried at 40 ° C., and 3 g of the obtained shell sample was pulverized in an agate mortar. Thereafter, 2 mg of the pulverized product was pulverized together with 50 mg of potassium bromide (hereinafter referred to as KBr) powder, and tablets for FT / IR measurement were prepared using a tablet molding machine. Using this tablet, an infrared spectrum was obtained by FT / IR-410 manufactured by JASCO Corporation. From the obtained spectrum chart, the ratio of the peak height (H3) of the linking group (x) 1630 to 1680 cm ⁇ 1 to the height (H1) between 1050 and 1150 cm ⁇ 1 derived from CN stretching vibration ( H3 / H1) is obtained.
  • H3 peak height
  • a model compound (3) is prepared which has but does not have the linking groups (x) and (y).
  • the area ratio of the absorption band of 1630 to 1680 cm ⁇ 1 of the model compound (1) is obtained relative to the area of the absorption band of 2240 to 2260 cm ⁇ 1 of the tetramethyl succinonitrile as the standard substance.
  • the vertical axis represents the mass ratio in the calibration sample, which is a mixture of the model compound (1) and the standard substance
  • the horizontal axis represents the area of the absorption band of 1630 to 1680 cm ⁇ 1 in the model compound (1) and the tetramethyl of the standard substance.
  • a calibration curve is prepared by linear regression of the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions.
  • a calibration curve is created by linearly regressing the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions from the respective measured values.
  • the model compounds (1), (2) and (3) and the tetramethyl succinic acid nitrile which is the standard substance were all made of Tokyo Chemical Reagent Grade. In the measurement, FT / IR-410 manufactured by JASCO Corporation was used.
  • the shell separated by the above-described method was vacuum-dried at 40 ° C., and 3 g of the obtained shell sample was pulverized in an agate mortar. Thereafter, 2 mg of tetramethylsuccinonitrile, a standard substance, was pulverized together with 50 mg of potassium bromide (hereinafter referred to as KBr) powder, and tablets for FT / IR measurement were prepared using a tablet molding machine. Using this tablet, an infrared spectrum was obtained by FT / IR-410 manufactured by JASCO Corporation.
  • KBr potassium bromide
  • was 5 times or more and less than 10 times
  • was 2 times or more and less than 5 times
  • was less than 2 times.
  • the viscosity was measured at 25 ° C. using a BM viscometer.
  • a master batch type epoxy resin curing agent composition (M1) is accurately weighed in an aluminum container for differential scanning calorimetry (hereinafter referred to as DSC) measurement to a 0.1 mg unit to prepare a sample. .
  • DSC differential scanning calorimetry
  • the main component is an amine adduct obtained by reaction of an epoxy resin (e1) with an amine compound having one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group.
  • the hardener for microcapsule type epoxy resin which is coated with a specific shell, is an epoxy that has excellent low-temperature fast-curing properties, and exhibits high long-term storage stability and solvent resistance.
  • a curing agent composition for a resin can be realized.
  • Epoxy Resin EP3-1 [Production of Epoxy Resin EP3-1] To 1 kg of epoxy resin EP2-1 (bisphenol A type epoxy resin (epoxy equivalent 185, total chlorine amount 1400 ppm)), 0.5 g of tetrabutylammonium bromide was added, stirred and heated, and the internal temperature was adjusted to 175 ° C. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-1.
  • epoxy resin EP2-1 bisphenol A type epoxy resin (epoxy equivalent 185, total chlorine amount 1400 ppm)
  • Epoxy resin EP3-1 thus obtained had an epoxy equivalent of 345 g / equivalent, a softening point of 70 ° C., a number average molecular weight of 1200, and a total chlorine content of 1050 ppm.
  • [Production of Epoxy Resin EP3-2] 0.5 kg of tetrabutylammonium bromide is added to 1 kg of epoxy resin EP2-2 (3,3 ′, 5,5′-tetramethylbiphenyl type epoxy resin (epoxy equivalent 186 g / equivalent, total chlorine amount 1100 ppm)) and stirred. The inner temperature was 175 ° C. by heating. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes.
  • Epoxy resin EP3-2 obtained had an epoxy equivalent of 440 g / equivalent, a softening point of 75 ° C., a number average molecular weight of 1000, and a total chlorine content of 1000 ppm.
  • the melt viscosity was measured with a bulky epoxy resin curing agent (h-10 to h-42). [GPC measurement of number average molecular weight of epoxy resin (EP3)]
  • the measurement was carried out under the following measurement conditions, and a calibration curve was prepared using a polystyrene standard substance and quantified.
  • calibration curves were prepared using Type A-500, A-1000, A-2500, A-5000, F-1, and F-2 from Tosoh standard TSK polystyrene.
  • GPC-8020 model II data collection Ver. No. 6 was used, the analytical condition was a linear approximation of the calibration curve, and the standard method was used for the calculation method.
  • the bulky curing agent for epoxy resin (h-10) obtained in Production Example 5-1 is roughly crushed, pulverized, classified, etc. under known conditions. For example, first, it is roughly crushed to about 0.1 to 2 mm by a pulverizer “ROTOPLEX” (manufactured by Hosokawa Micron). Next, the obtained coarsely crushed material is supplied to an airflow jet mill (Nisshin Engineering Co., Ltd., CJ25 type) at a supply amount of 5.0 kg / Hr, and pulverized at a pulverization pressure of 0.6 MPa ⁇ s.
  • ROTOPLEX manufactured by Hosokawa Micron
  • the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.).
  • Teurbo Classifier manufactured by Nissin Engineering Co., Ltd.
  • curing agent for epoxy resins provided with the various average particle diameter shown in Table 8 was obtained by combining grinding
  • Examples 18 to 34, Comparative Examples 6 to 10 Using the epoxy resin curing agent (H) shown in Table 8, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Table 9 and Table 10. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 9 and Table 10. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
  • [Hardened product Tg] A 1 mm thick Teflon (registered trademark) plate on which a masterbatch type epoxy resin curing agent composition (M1) is placed on a 15 cm square coated with a release agent on a 0.5 mm thick aluminum plate Pour uniformly into the 15 mm ⁇ 30 mm mold produced in step 1 above, and further sandwich a 15 cm square coated with a release agent with a 0.5 mm thick aluminum plate. This is heated and pressurized at 150 ° C. for 1 hour at a press pressure of 2 MPa using a hot press device to produce a cured product from the masterbatch type epoxy resin curing agent.
  • M1 masterbatch type epoxy resin curing agent composition
  • the cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring apparatus DDV-25FP manufactured by Orientec, and the cured product Tg was measured from a loss tangent (tan ⁇ ) at an excitation frequency of 1 Hz.
  • Cured product Tg of 130 ° C. or lower: ⁇ , 120 ° C. or higher and lower than 130 ° C. ⁇ , 110 ° C. or higher and lower than 120 ° C. ⁇ , 95 ° C. or higher and lower than 110 ° C. x, lower than 95 ° C. was XX. [High temperature modulus]
  • a cured product is prepared by the same technique as the cured product Tg.
  • the cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring device DDV-25FP also manufactured by Orientec, and E ′ (storage elastic modulus) at 180 ° C. at an excitation frequency of 1 Hz was high temperature elastic modulus. Measure as Those having a high temperature elastic modulus of 35 MPa or more were rated ⁇ , those having 25 MPa or more and less than 35 MPa were evaluated as ⁇ , those having 15 MPa or more and less than 25 MPa were evaluated as ⁇ , those having 10 MPa or more and less than 15 MPa were evaluated as ⁇
  • the agent is excellent for low-temperature fast-curing properties, exhibits high long-term storage stability and solvent resistance, and has high cured Tg and excellent high-temperature elastic modulus. It can realize agent composition.
  • Examples 35 to 42, Comparative Examples 11 to 15 A masterbatch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) shown in Tables 11 and 12 is produced using the epoxy resin curing agent (H) shown in Table 4. And the one-component epoxy resin composition which is a raw material of an anisotropic conductive film with the mixing
  • the anisotropic conductive film obtained in accordance with Table 11 was cut to a width of 1.2 mm and attached onto a glass on which ITO (indium-tin oxide) was vapor-deposited.
  • the pressure was 20 kgf / cm 3 and the actual temperature was 75 ° C. by a crimping machine. Temporary pressure bonding was performed in 4 seconds.
  • the glass on which the anisotropic conductive film is temporarily press-bonded and a polyimide film (TCP) with a tin-plated copper circuit having a wiring width of 20 ⁇ m, a wiring height of 20 ⁇ m, and a pitch of 50 ⁇ m are pressure 30 kgf / cm 3 , an actual temperature of 120 ° C.
  • the crimping was performed under a crimping condition of ⁇ 10 seconds.
  • DSC differential scanning calorimetry
  • a reaction rate of 65% or more is indicated by ⁇ , 45-65% is indicated by ⁇ , 30-45% is indicated by ⁇ , 15-30% is indicated by ⁇ , less than 15%, or a sample in which an anisotropic conductive film could not be produced is indicated by XX. .
  • an epoxy resin curing agent (H) is synthesized using a specific raw material, and the epoxy resin curing agent (H) is infrared in a specific range.
  • a microcapsule type epoxy resin curing agent (d) that is coated with a shell having an absorption peak height ratio, it realizes long-term storage stability, low-temperature and short-time curability, and crimp connection reliability. did.
  • Epoxy Resin EP1-6 In a 2 liter three-necked flask equipped with a stirrer and a thermometer, 1,3-adamantanediol 34 g (0.2 mol) manufactured by Tokyo Chemical Industry, 370 g (4 mol) epichlorohydrin, 59 g (0.8 mol) glycidol, Tetramethylammonium chloride (0.11 g) was charged and subjected to an addition reaction for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device before adding 36 g (0.4 mol) of 48.5% sodium hydroxide. Water generated at a reaction temperature of 55 to 60 ° C.
  • Epoxy resin EP1-6 had an epoxy equivalent of 165 g / equivalent, an inter-crosslinking molecular weight of 156, and a total chlorine content of 1600 ppm.
  • Epoxy Resin EP1-7 In a 2 liter three-necked flask equipped with a stirrer and a thermometer, 95.5 g (0.27 mol) of bisphenolfluorene manufactured by JFE Chemical, 463 g (5 mol) of epichlorohydrin, 59 g (0.8 mol) of glycidol, tetramethyl 0.11 g of ammonium chloride was charged, and an addition reaction was performed for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device, after which 83 g (0.9 mol) of 48.5% sodium hydroxide was added. Water generated at a reaction temperature of 55-60 ° C.
  • Epoxy resin EP1-7 had an epoxy equivalent of 265 g / equivalent, a cross-linking molecular weight of 247, and a total chlorine content of 1500 ppm.
  • Epoxy resin EP1-8 obtained had an epoxy equivalent of 165 g / equivalent, an inter-crosslinking molecular weight of 147, and a total chlorine content of 1800 ppm.
  • epoxy resin EP3-4 1 kg of epoxy resin EP1-1 (1,6-dihydroquinaphthalene type epoxy resin (epoxy equivalent 143, total chlorine amount 900 ppm)) is charged with 0.5 g of tetrabutylammonium bromide, heated with stirring, and the internal temperature is 175 ° C. I made it. Further, 180 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-4.
  • Epoxy resin EP3-4 obtained had an epoxy equivalent of 370 g / equivalent, a softening point of 65 ° C., a number average molecular weight of 900, and a total chlorine content of 1100 ppm.
  • epoxy resin EP3-5 To 1.2 kg of epoxy resin EP2-1 (bisphenol A type epoxy resin (epoxy equivalent 185, total chlorine content 1400 ppm)), 0.5 g of tetrabutylammonium bromide was added, and the mixture was stirred and heated to bring the internal temperature to 175 ° C. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C.
  • the obtained epoxy resin EP3-5 was analyzed by LC-MS, it was a reaction product containing 20 wt% of the component corresponding to the unreacted bisphenol A type epoxy resin (EP2-1).
  • the epoxy equivalent was 335 g / equivalent
  • the softening point was 60 ° C.
  • the number average molecular weight was 1050
  • the total chlorine content was 1000 ppm.
  • Triethylenetetramine (trade name: D.E.H.24, manufactured by Dow) and distilling and separating fraction-1 and fraction-2 from the mixed components
  • Triethylenetetramine (product) manufactured by Dow Name: D.E.H.24) is known to be a mixture of four amine compounds.
  • a method of distillation separation is described. A 500-ml four-necked flask was charged with 300 g of Dow triethylenetetramine (trade name: DEH.24), a glass distillation column filled with Dickson packing, and a reflux head was installed at the top of the column. Then, it was heated in an oil bath, and the pressure was reduced to 15 Torr.
  • GC Gas chromatography
  • the analysis was carried out after diluting to 10% by weight with a solvent mixed in a ratio.
  • a standard (1) Aldrich reagent “Tris (2-aminoethyl) amine” (CAS number 4097-89-6, reagent purity 96%) and a standard (2) reagent “N N′-bis (2-aminoethyl) -1,2-ethanediamine ”(CAS number 112-24-3, reagent purity 97%) were used as standard samples.
  • the content of the sample (1) and the sample (2) was confirmed by the retention time of the obtained gas chromatography. Moreover, the ratio of each containing component including the peak which appears in retention other than a sample (1) and a sample (2) was calculated by area ratios other than the solvent of a gas chromatography. From the area ratio, the component contained in fraction-1 was 15% for the sample (1), 75% for the sample (2), and the component N, N′-bis (2-amino) The total area ratio of the two components of ethyl) -piperazine and N-[(2-aminoethyl) 2-aminoethyl] piperazine was 10%.
  • fraction-2 The components contained in fraction-2 are 5% for the sample (1), 65% for the sample (2), N, N′-bis (2-aminoethyl) -piperazine and N-[( The total area ratio of the two components of 2-aminoethyl) 2-aminoethyl] piperazine was 30%.
  • Formulation (equivalent amount) when reacting with the described epoxy resin (e1) under the reaction temperature conditions in the solvents shown in Table 14 using Dow pentaethylenehexamine (trade name: D.E.H.29) )
  • D.E.H.29 Dow pentaethylenehexamine
  • the equivalent weight was calculated based on the molecular weight (189.3) of the structure pentaethylenehexamine (CAS number 4067-16-7).
  • the bulky epoxy resin curing agent (h-23) obtained in Production Example 7-1 is roughly crushed, pulverized, classified, etc. under known conditions. For example, first, it is roughly crushed to about 0.1 to 2 mm by a pulverizer “ROTOPLEX” (manufactured by Hosokawa Micron). Next, the obtained coarsely crushed material is supplied to an airflow jet mill (Nisshin Engineering Co., Ltd., CJ25 type) at a supply amount of 5.0 kg / Hr, and pulverized at a pulverization pressure of 0.6 MPa ⁇ s.
  • ROTOPLEX manufactured by Hosokawa Micron
  • the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.).
  • Teurbo Classifier manufactured by Nissin Engineering Co., Ltd.
  • curing agent for epoxy resins provided with the various average particle diameter shown in Table 15 was obtained by combining grinding
  • Examples 43 to 66, Comparative Examples 16 to 20 Using the epoxy resin curing agent (H) shown in Table 15, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Table 16 and Table 17. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 16 and Table 17. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
  • Example 67 to 74, Comparative Examples 21 to 24 A masterbatch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) shown in Table 16 and Table 17 is produced using the epoxy resin curing agent (H) shown in Table 15. And the one-component epoxy resin composition which is a raw material of an anisotropic conductive film with the mixing
  • Tg on the high temperature side was employ
  • High temperature elastic modulus of anisotropic conductive film A cured product of the anisotropic conductive film is produced by the same technique as the cured product Tg of the anisotropic conductive film.
  • the cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring device DDV-25FP also manufactured by Orientec, and E ′ (storage elastic modulus) at 180 ° C. at an excitation frequency of 1 Hz was high temperature elastic modulus. Measure as Those having a high temperature elastic modulus of 35 MPa or more were rated ⁇ , those having 25 MPa or more and less than 35 MPa were evaluated as ⁇ , those having 15 MPa or more and less than 25 MPa were evaluated as ⁇ , those having 10 MPa or more and less than 15 MPa were evaluated as ⁇
  • the hardener for microcapsule type epoxy resin which has a hardener for epoxy resin (H) mainly composed of adduct as a starting material and is coated with a specific shell, is excellent in low-temperature fast curing and high long-term storage stability. While exhibiting solvent resistance, the hardened
  • the anisotropic conductive film containing the latent curing agent (d) for microcapsule type epoxy resin thus obtained has long-term storage stability and low-temperature short-time curability, high adhesive strength, and connection of the crimping part. It has reliability and realized that the anisotropic conductive film cured product has a high Tg and has a higher elastic modulus at a temperature higher than Tg.
  • Example of production of conductive film 15 parts by mass of bisphenol A type epoxy resin (AER-2603, manufactured by Asahi Kasei Chemicals Co., Ltd.), 6 parts by mass of phenol novolac resin (manufactured by Showa Polymer Co., Ltd., trade name “BRG-558”), synthetic rubber (manufactured by Zeon Corporation, product) 4 parts by mass (name “Nipol 1072”, weight average molecular weight 300,000) was dissolved in 20 parts by mass of a 1: 1 (mass ratio) mixed solvent of methyl ethyl ketone and butyl cellosolve acetate. In this solution, 74 parts by mass of silver powder was mixed and further kneaded by a three-roll.
  • AER-2603 manufactured by Asahi Kasei Chemicals Co., Ltd.
  • phenol novolac resin manufactured by Showa Polymer Co., Ltd., trade name “BRG-558”
  • synthetic rubber manufactured by Zeon Corporation, product 4 parts by mass
  • Example 2 50 parts by mass of the curing agent for masterbatch type epoxy resin obtained in Example 1 was further added and mixed uniformly to obtain a conductive adhesive.
  • the obtained conductive adhesive was cast on a polypropylene film having a thickness of 40 ⁇ m and dried and semi-cured at 80 ° C. for 60 minutes to obtain a conductive film having a conductive adhesive layer having a thickness of 35 ⁇ m.
  • the conductive adhesive layer was transferred to the back surface of the silicon wafer on a heat block at 80 ° C.
  • the silicon wafer was fully diced and a semiconductor chip with a conductive adhesive was bonded and cured to the lead frame on a heat block at 200 ° C. for 2 minutes, the chip had no conductivity problem.
  • Example of production of conductive paste 50 parts by mass of epoxy resin (e4), 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1, an average particle size of 14 ⁇ m, and an aspect ratio of 11 scaly silver powder (Tokuroku Chemical Research) 150 parts by mass) and 60 parts by mass of scale-like nickel powder having an average particle size of 10 ⁇ m and an aspect ratio of 9 (product name “NI110104”, manufactured by High Purity Chemical Co., Ltd.) are uniformly added. After stirring until it was, it was uniformly dispersed with three rolls to obtain a conductive paste. The obtained conductive paste was screen-printed on a polyimide film substrate having a thickness of 1.4 mm, and then heat-cured at 200 ° C.
  • insulating paste 70 parts by mass of a bisphenol F type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., trade name “YL983U”), 4 parts by mass of dicyandiamide, 100 parts by mass of silica powder, 10 parts by mass of phenylglycidyl ether as a diluent, and an organic phosphate 1 part by mass (manufactured by Nippon Kayaku Co., Ltd., trade name “PM-2”) was sufficiently mixed, and then kneaded with three rolls.
  • a bisphenol F type epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd., trade name “YL983U”
  • dicyandiamide 100 parts by mass of silica powder
  • 10 parts by mass of phenylglycidyl ether as a diluent
  • organic phosphate 1 part by mass manufactured by Nippon Kayaku Co., Ltd., trade name “PM-2”
  • Example 2 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added thereto, and further uniformly mixed, and subjected to vacuum defoaming and centrifugal defoaming to produce an insulating paste. did. Using the obtained insulating paste, a semiconductor chip was bonded to a resin substrate by heating and curing at 200 ° C. for 1 hour, and it was useful as an insulating paste.
  • Example of production of anisotropic conductive paste 40 parts by mass of bisphenol A type epoxy resin (AER6091 manufactured by Asahi Kasei Chemicals, epoxy equivalent 480 g / eq), 15 parts by mass of bisphenol A type epoxy resin (AER2603 manufactured by Asahi Kasei Chemicals) and micropearl Au-205 (manufactured by Sekisui Chemical, specific gravity) 2.67) After mixing 5 parts by mass, 70 parts by mass of the curing agent composition for masterbatch type epoxy resin obtained in Example 1 was added and mixed evenly to obtain an anisotropic conductive paste. . The obtained anisotropic conductive paste was applied on a low alkali glass having an ITO electrode. A ceramic tool at 230 ° C.
  • insulating film 180 parts by mass of phenoxy resin (trade name “YP-50” manufactured by Toto Kasei Co., Ltd.), cresol novolac type epoxy resin (epoxy equivalent 200 g / eq, product name “EOCN-1020-80” manufactured by Nippon Kayaku Co., Ltd.) 40 parts by mass, 300 parts by mass of spherical silica (average particle size: 2 ⁇ m, manufactured by Admatech Co., Ltd., trade name SE-5101) and 200 parts by mass of methyl ethyl ketone were prepared and uniformly dispersed.
  • phenoxy resin trade name “YP-50” manufactured by Toto Kasei Co., Ltd.
  • cresol novolac type epoxy resin epoxy equivalent 200 g / eq, product name “EOCN-1020-80” manufactured by Nippon Kayaku Co., Ltd.
  • spherical silica average particle size: 2 ⁇ m, manufactured by Admatech Co., Ltd., trade name SE-
  • Example 2 250 parts by mass of the curing agent composition for masterbatch type epoxy resin obtained in Example 1 is added and further stirred and mixed to obtain a solution containing the epoxy resin composition.
  • the obtained solution is applied onto polyethylene terephthalate that has been subjected to mold release treatment so that the thickness after drying is 50 ⁇ m, and is dried by heating in a hot-air circulating dryer to provide insulating properties for semiconductor adhesion.
  • a film was obtained.
  • the obtained insulating film for adhering semiconductors is cut for each supporting substrate larger than the wafer size of 5 inches, and the resin film is fitted to the electrode part side of the wafer with bump electrodes.
  • an insulating film is sandwiched between wafers with bump electrodes with a thermocompressor with the support substrate with release treatment facing up, and heat-pressed in vacuum at 70 ° C., 1 MPa, pressurization time 10 seconds to obtain a wafer with adhesive resin .
  • a dicing saw manufactured by DISCO, DAD-2H6M
  • the obtained epoxy resin composition was applied to a printed wiring board in a 1 cm square so as to have a thickness of 60 ⁇ m, and was semi-cured by heating in an oven at 110 ° C. for 10 minutes. After that, a 370 ⁇ m thick, 1 cm square silicon chip was placed on a semi-cured epoxy resin composition, and a full curing process was performed at 220 ° C. for 1 hour while applying and applying a load to contact and hold the bump and chip electrodes. went.
  • the obtained sealing material composed of the epoxy resin composition was useful without any problem in appearance and chip conduction.
  • Example of production of coating material 30 parts by mass of epoxy resin (e4), 30 parts by mass of YP-50 as a phenoxy resin (manufactured by Tohto Kasei), methyl ethyl ketone solution of methoxy group-containing silane-modified epoxy resin (manufactured by Arakawa Chemical Industries, Ltd., trade name “COMPOSELLAN E103”) ))
  • e4 30 parts by mass of epoxy resin
  • YP-50 as a phenoxy resin manufactured by Tohto Kasei
  • methyl ethyl ketone solution of methoxy group-containing silane-modified epoxy resin manufactured by Arakawa Chemical Industries, Ltd., trade name “COMPOSELLAN E103”
  • 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 were added thereto, and a solution diluted with methyl ethyl ketone to 50% by mass was prepared.
  • the prepared solution was applied on a release PET (polyethylene terephthalate) film (SG-1 manufactured by Panac Co., Ltd.) using a roll coater, dried and cured at 150 ° C. for 15 minutes, and peeled off with a thickness of 100 ⁇ m.
  • a semi-cured resin film (dry film) with a film was prepared.
  • the obtained dry film was thermocompression bonded at 120 ° C. for 10 minutes at 6 MPa on the previous copper-clad laminate, then returned to room temperature, the release film was removed, and cured at 200 ° C. for 2 hours to obtain interlayer insulation.
  • a coating material for use a useful material was obtained.
  • Example of preparation of coating composition 30 parts by mass of titanium dioxide and 70 parts by mass of talc are blended with 50 parts by mass of bisphenol A type epoxy resin (AER 6091, epoxy equivalent 480 g / eq, manufactured by Asahi Kasei Chemicals Co., Ltd.), and a 1: 1 mixed solvent of MIBK / xylene as a mixed solvent. 140 parts by mass was added, stirred and mixed to obtain the main agent. To this, 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added and dispersed uniformly to obtain a useful epoxy coating composition.
  • AER 6091 epoxy equivalent 480 g / eq, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • Examples of prepreg production In a flask in an oil bath at 130 ° C., 15 parts by mass of a novolac type epoxy resin (Dainippon Ink & Chemicals, EPICLON N-740), 30 parts by mass of a bisphenol F type epoxy resin (JER, Epicoat 4005), bisphenol 10 parts by mass of A-type liquid epoxy resin (AER2603, manufactured by Asahi Kasei Chemicals Co., Ltd.) was dissolved and mixed and cooled to 80 ° C. Further, 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added and sufficiently stirred and mixed.
  • a novolac type epoxy resin Dainippon Ink & Chemicals, EPICLON N-740
  • JER bisphenol F type epoxy resin
  • A-type liquid epoxy resin AER2603, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the resin composition cooled to room temperature was applied onto a release paper with a resin basis weight of 162 g / m 2 using a doctor knife to obtain a resin film.
  • a carbon fiber cloth made by Mitsubishi Rayon (model number: TR3110, basis weight 200 g / m 2 ) obtained by plain weaving of carbon fiber having an elastic modulus of 24 ton / mm 2 at 12.5 pieces / inch is layered on the resin film to obtain a resin composition.
  • a polypropylene prepreg was laminated and passed between a pair of rolls having a surface temperature of 90 ° C. to prepare a cloth prepreg.
  • the resin content was 45% by mass.
  • the obtained prepreg is further laminated with the fiber direction aligned, and molded under a curing condition of 150 ° C. for 1 hour to form a fiber reinforced resin (Fiber Reinforced Plastics, hereinafter referred to as FRP) molded body having carbon fibers as reinforcing fibers. Obtained.
  • FRP Fiber Reinforced Plastics
  • thermally conductive epoxy resin composition 50 parts by mass of bisphenol A type epoxy resin (AER2603, manufactured by Asahi Kasei Chemicals Co., Ltd.), 40 parts by mass of a 50% solution of phenol novolac resin (manufactured by Arakawa Chemical Industries, Ltd., trade name “Tamanor 759”) as a curing agent for epoxy resin Then, 15 parts by mass of scaly graphite powder (trade name HOPG, manufactured by Union Carbide Co., Ltd.) was stirred until it became uniform, and then uniformly dispersed by three rolls. Furthermore, 50 parts by mass of the masterbatch type epoxy resin curing agent composition (M1) obtained in Example 1 was added and sufficiently stirred and mixed.
  • AER2603 manufactured by Asahi Kasei Chemicals Co., Ltd.
  • a 50% solution of phenol novolac resin manufactured by Arakawa Chemical Industries, Ltd., trade name “Tamanor 759”
  • scaly graphite powder trade name HOPG, manufactured by Union
  • a semiconductor chip (1.5 mm square, 0.8 mm thickness) was mounted on a Cu lead frame and heat cured at 150 ° C. for 30 minutes to obtain a sample for evaluation.
  • Biphenyl type epoxy resin 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl glycidyl ether manufactured by Japan Epoxy Resin, Epicoat YX-4000 (epoxy equivalent 195), 100 parts by mass, phenol novolac resin (large Made by Nippon Ink, TD-2131) 60 parts by mass, bisphenol A type epoxy resin (Asahi Kasei Chemicals, AER2603) 10 parts by mass, artificial graphite (made by ESC, trade name SGP, average particle size 75 ⁇ m) 800 parts by mass, mold release
  • a raw material blended with an agent (calcium stearate) and a lubricant (carnauba wax) was mixed with a mixer, to which 50 parts by mass of the curing agent composition for masterbatch type epoxy resin (M1) obtained in Example 1 was added.
  • a sample for evaluation was obtained by pressure molding using a mold for molding at a molding pressure of 25 MPa, a molding temperature of 150 ° C., and a molding time of 15 minutes, and the bending strength of the obtained fuel cell separator material was defined in JIS K 7203. When measured according to the above, it showed a bending strength of 50 MPa, and when the gas permeability was measured by the JIS K7126A method using nitrogen gas, the gas permeability was 0.6 cm 3 / m 2 ⁇ 24 hours ⁇ It was atm and was useful as a separator material for fuel cells.
  • Example of production of overcoat material for flexible wiring board 50 parts by mass of epoxy resin-modified “EPB-13” (epoxy equivalent 700 g / eq., Viscosity 800 P) modified by reaction of Nippon Soda polybutadiene dicarboxylic acid resin “C-1000” with bisphenol type epoxy resin, epoxy 70 parts by mass of maleated modified polybutadiene resin “BN-1015” (acid equivalent of 145 g / eq.) Manufactured by Nippon Soda as a resin that reacts with a group, and a masterbatch type epoxy resin obtained in Example 1 as a curing accelerator 30 parts by weight of the curing agent composition (M1) and 3 parts by weight of “EXR-91” manufactured by JSR as rubber fine particles were blended and mixed uniformly with three rolls.
  • an overcoat adhesive solution 200 parts by mass of methyl ethyl ketone (MEK) is added, and the mixture is stirred and mixed with a mixer until it is uniformed, and then dispersed to obtain an overcoat adhesive solution.
  • MEK methyl ethyl ketone
  • an overcoat material sample was obtained. It was useful as an overcoat material for flexible wiring boards when the presence or absence of cracks when the obtained polyimide film was bent at 180 ° C. and the warpage of the polyimide film when treated at 50 ° C. and 150 ° C. for 8 hours were measured. It was something.

Abstract

A microencapsulated hardener for epoxy resins which comprises cores comprising an epoxy-resin hardener and shells covering the cores, characterized in that the epoxy-resin hardener comprises as a major component an amine adduct obtained by the reaction of an epoxy resin (e1) with an amine compound, the epoxy-resin hardener has an overall amine value of 370 to 1,000, the epoxy-resin hardener has an average particle diameter of 0.3-12 µm, excluding 0.3 µm, and the shells have, on at least the surface thereof, a combined group (x) that absorbs infrared rays having a wavenumber of 1,630-1,680 cm-1, a combined group (y) that absorbs infrared rays having a wavenumber of 1,680-1,725 cm-1, and a combined group (z) that absorbs infrared rays having a wavenumber of 1,730-1,755 cm-1.

Description

マイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品Microcapsule type epoxy resin curing agent, masterbatch type epoxy resin curing agent composition, one-part epoxy resin composition, and processed product
 本発明は、新規なエポキシ樹脂用硬化剤、およびそれを用いた一液性エポキシ樹脂組成物等に関する。 The present invention relates to a novel epoxy resin curing agent, a one-part epoxy resin composition using the same, and the like.
 エポキシ樹脂は、その硬化物が、機械的特性、電気的特性、熱的特性、耐薬品性、および接着性等の点で優れた性能を有することから、塗料、電気電子用絶縁材料、接着剤等の幅広い用途に利用されている。
 ここで、このような用途に利用されるエポキシ樹脂組成物としては、使用時にエポキシ樹脂と硬化剤の二成分を混合して硬化させる、いわゆる二成分系エポキシ樹脂組成物(または、「二液性エポキシ樹脂組成物」と記載することがある。)が一般的である。しかし、二液性エポキシ樹脂組成物は、室温で良好に硬化し得る反面、エポキシ樹脂と硬化剤とを別々に保管することが必要であったり、使用時には両者を計量した後に混合することが必要であったりする。また、エポキシ樹脂と硬化剤とを混合した後の使用可能な時間が限定されるため、両者を予め大量に混合しておくことができない。即ち、従来の二液性エポキシ樹脂組成物は、保管の容易性や取り扱い性、配合頻度(製造効率)の観点から、なお改良の余地を有していた。
 また、いくつかの一成分系エポキシ樹脂組成物(または、「一液性エポキシ樹脂組成物」と記載することがある。)が提案されている。このような一液性エポキシ樹脂組成物としては、例えば、ジシアンジアミド、BF3-アミン錯体、アミン塩、変性イミダゾール化合物等の潜在性硬化剤を、エポキシ樹脂に配合したものが挙げられる。
Epoxy resins have excellent performance in terms of mechanical properties, electrical properties, thermal properties, chemical resistance, adhesiveness, etc., so that epoxy resins can be used in paints, insulating materials for electric and electronic materials, adhesives, etc. It is used for a wide range of applications.
Here, as an epoxy resin composition used for such applications, a so-called two-component epoxy resin composition (or “two-component type”) in which two components of an epoxy resin and a curing agent are mixed and cured at the time of use. It may be described as “epoxy resin composition”). However, while the two-part epoxy resin composition can be cured well at room temperature, it is necessary to store the epoxy resin and the curing agent separately, and when using, it is necessary to mix both after weighing them Or Moreover, since the time which can be used after mixing an epoxy resin and a hardening | curing agent is limited, both cannot be mixed in large quantities beforehand. That is, the conventional two-component epoxy resin composition still has room for improvement from the viewpoint of ease of storage, handling, and blending frequency (manufacturing efficiency).
In addition, several one-component epoxy resin compositions (or may be described as “one-part epoxy resin compositions”) have been proposed. Examples of such a one-part epoxy resin composition include those in which a latent curing agent such as dicyandiamide, BF3-amine complex, amine salt, and modified imidazole compound is blended in an epoxy resin.
 しかし、これらの一液性エポキシ樹脂組成物は、貯蔵安定性に優れているものは硬化性に劣る傾向となり(硬化のために高温または長時間が必要とされる)、硬化性に優れるものは貯蔵安定性に劣る傾向となる(-20℃といった低温での貯蔵が必要とされる)。例えば、ジシアンジアミドを配合した一液性エポキシ樹脂組成物は、常温保存の場合に6ヵ月以上の貯蔵安定性を実現し得る。しかし、かかる一液性エポキシ樹脂組成物は、170℃以上といった高い硬化温度を必要とする場合がある。ここで、このような一液性エポキシ樹脂組成物に硬化促進剤を配合すると、硬化温度は130℃程度にまで低下し得る。しかし、室温での貯蔵安定性が低下する傾向となるため、低温での貯蔵が必要となる。即ち、高い硬化性と、優れた貯蔵安定性とを両立し得る一液性エポキシ樹脂組成物が強く求められていた。
 そして、このような事情のもと、アミン系硬化剤を含むコアを特定のシェルで被覆した、いわゆるマイクロカプセル型の硬化剤が提案されている(例えば、先行技術文献の特許文献1、特許文献2等参照)。かかるマイクロカプセル型の硬化剤は、良好な硬化性と貯蔵安定性とを両立させ得る硬化剤である。
However, these one-part epoxy resin compositions tend to be poor in curability when they are excellent in storage stability (high temperature or long time is required for curing), and those that are excellent in curability It tends to be inferior in storage stability (requires storage at a low temperature of −20 ° C.). For example, a one-component epoxy resin composition containing dicyandiamide can achieve storage stability of 6 months or more when stored at room temperature. However, such a one-part epoxy resin composition may require a high curing temperature such as 170 ° C. or higher. Here, when a curing accelerator is blended with such a one-part epoxy resin composition, the curing temperature can be lowered to about 130 ° C. However, since storage stability at room temperature tends to decrease, storage at a low temperature is required. That is, there has been a strong demand for a one-part epoxy resin composition that can achieve both high curability and excellent storage stability.
Under such circumstances, a so-called microcapsule type curing agent in which a core containing an amine-based curing agent is coated with a specific shell has been proposed (for example, Patent Document 1 and Patent Document of the prior art document). (See 2nd grade). Such a microcapsule type curing agent is a curing agent capable of achieving both good curability and storage stability.
 しかしながら、近年において、一液性エポキシ樹脂組成物における貯蔵安定性と、より良好な低温速硬化性との両立が、より高度な次元で求められている。
 特に電子機器は、高機能化、小型化、薄型化に伴い、微細な回路同士の接続、微小端子との微細回路との接続などにおいて、半導体チップの小型集積化、回路の高密度化や接続時の信頼性の向上、モバイル機器の軽量化、生産性の大幅な改善等が求められており、それらを解決する接続方法として、半導体チップの微細回路配線への実装方法として、異方導電性フィルムが用いられていることが多い。異方導電性フィルムは、接着フィルム中に導電性粒子を分散させたものであり、これを接続しようとする回路と半導体チップ間に挟み込み、所定の温度・圧力・時間で熱圧着させて用いられる工法で、液晶ディスプレイやプラズマパネルディスプレイ、さらに有機ELディスプレイパネルにおける、パネルとフレキシブル回路との接続方法において、異方導電性フィルムを介して圧着する工法が主流となっている。これらに用いられる異方導電性フィルムとしては、特許文献3~4に記載されているマイクロカプセル型潜在性硬化剤を用いたエポキシ樹脂組成物を接着剤および硬化剤として用いるものが公知である。
However, in recent years, compatibility between storage stability and better low-temperature rapid curability in a one-component epoxy resin composition has been demanded at a higher level.
In particular, as electronic devices become more sophisticated, smaller, and thinner, semiconductor chips are miniaturized, circuits are densified and connected in connection with fine circuits and connections with fine terminals. There is a need to improve reliability at the time, weight reduction of mobile devices, and significant improvement in productivity. As a connection method to solve them, anisotropic conductivity is used as a mounting method for fine circuit wiring of semiconductor chips. Films are often used. An anisotropic conductive film is a film in which conductive particles are dispersed in an adhesive film. The anisotropic conductive film is sandwiched between a circuit to be connected and a semiconductor chip and is thermocompression-bonded at a predetermined temperature, pressure, and time. As a method for connecting a panel and a flexible circuit in a liquid crystal display, a plasma panel display, and an organic EL display panel, a method of pressure bonding via an anisotropic conductive film has become mainstream. As anisotropic conductive films used for these, those using an epoxy resin composition using a microcapsule type latent curing agent described in Patent Documents 3 to 4 as an adhesive and a curing agent are known.
 しかし、異方導電性フィルムの実装工程においても、配線、回路の狭ピッチ化や、ディスプレイパネルの大型化、高画質化、薄型化による異方導電性フィルムの実装工程温度の低温化や短時間化の要求が強くなっている。低温短時間で圧着接続することが可能な異方導電性フィルムとして、例えば有機化酸化物を反応開始剤に用いたラジカル重合型が提案されている(特許文献5参照)。しかし、異方導電性フィルムとしての長期貯蔵安定性と低温短時間硬化性、および圧着部の接続信頼性という性能を全て満たすには十分ではなかった。そこで、圧着温度の低温短時間化を達成しつつ、圧着部の接続信頼性、および異方導電性フィルムの長期貯蔵安定性に優れる異方導電性フィルムが求められている。
 即ち、回路の高密度化や接続信頼性の向上、モバイル機器の軽量化、生産性の大幅な改善等といった観点から、接続材料の一つとして用いられる一液性エポキシ樹脂組成物や異方導電性フィルムにおいて重要な、マイクロカプセル型潜在性硬化剤のより一層の低温硬化性の改良と貯蔵安定性の両立が求められている。
However, even in the anisotropic conductive film mounting process, the wiring and circuit pitches are narrowed, the display panel size is increased, the image quality is increased, and the anisotropic conductive film mounting process temperature is lowered and shortened. There is a strong demand for conversion. As an anisotropic conductive film that can be crimped and connected at a low temperature in a short time, for example, a radical polymerization type using an organic oxide as a reaction initiator has been proposed (see Patent Document 5). However, it was not sufficient to satisfy all of the long-term storage stability, low-temperature short-time curability as an anisotropic conductive film, and the connection reliability of the crimped part. Therefore, there is a demand for an anisotropic conductive film that is excellent in the connection reliability of the crimped portion and the long-term storage stability of the anisotropic conductive film while achieving a low temperature and short time for the crimping temperature.
In other words, from the standpoints of increasing circuit density, improving connection reliability, reducing the weight of mobile devices, and significantly improving productivity, one-component epoxy resin compositions and anisotropic conductive materials used as one of connection materials. There is a need to further improve the low-temperature curability of the microcapsule-type latent curing agent and storage stability, which are important in a conductive film.
特開平1-70523号公報JP-A-1-70523 特開2005-344046号公報JP 2005-344046 A 特開平3-29207号公報JP-A-3-29207 特開平5-320610号公報JP-A-5-320610 特開平10-273630号公報JP-A-10-273630
 本発明は、かかる点に鑑みてなされたものであり、低温速硬化性及び貯蔵安定性に優れるマイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物及び一液性エポキシ樹脂組成物、およびその加工品を得る。また、低温で接続しても接続信頼性の高い異方導電性フィルムを提供することを目的とする。 The present invention has been made in view of the above points, and is a microcapsule-type epoxy resin curing agent, a masterbatch-type epoxy resin curing agent composition, and a one-component epoxy resin, which are excellent in low-temperature fast curing properties and storage stability. A composition and a processed product thereof are obtained. Another object of the present invention is to provide an anisotropic conductive film having high connection reliability even when connected at a low temperature.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、例えば、エポキシ樹脂用硬化剤を含むコアと、当該コアを被覆するシェルとを有するマイクロカプセル型エポキシ樹脂用硬化剤を形成するに際して、エポキシ樹脂用硬化剤を含むコアを特定の原料を用いて合成し、エポキシ樹脂用硬化剤を含むコアを、特定構造を有するシェルで被覆することにより上記課題を解決し得ることを知見し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have formed, for example, a microcapsule type epoxy resin curing agent having a core containing an epoxy resin curing agent and a shell covering the core. The knowledge that the above problem can be solved by synthesizing a core containing a curing agent for epoxy resin using a specific raw material and coating the core containing a curing agent for epoxy resin with a shell having a specific structure. Thus, the present invention has been completed.
 即ち、本発明は、以下のマイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、およびそれら硬化剤、または組成物を用いた加工品を提供する。
 [1]エポキシ樹脂用硬化剤を含むコアと、当該コアを被覆するシェルとを有するマイクロカプセル型エポキシ樹脂用硬化剤であって、
 該エポキシ樹脂用硬化剤が、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分として含み、
 該エポキシ樹脂用硬化剤の全アミン価が370以上1000以下であり、
 該エポキシ樹脂用硬化剤の平均粒径が0.3μmを超えて12μm以下であり、
 前記シェルは、赤外線吸収スペクトルにおいて波数1630~1680cm-1の赤外線を吸収する結合基(x)と、波数1680~1725cm-1の赤外線を吸収する結合基(y)と、波数1730~1755cm-1の赤外線を吸収する結合基(z)とを少なくとも表面に有することを特徴とするマイクロカプセル型エポキシ樹脂用硬化剤。
 [2]前記エポキシ樹脂(e1)が剛直な骨格構造を有するエポキシ樹脂(EP1)を含むことを特徴とする[1]に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [3]前記剛直骨格構造が、ベンゼン構造、ナフタレン構造、ビフェニル構造、トリフェニル構造、アントラセン構造、ジシクロペンタジエン構造、ノルボルネン構造、アセナフチレン構造、アダマンタン構造、フルオレン構造、ベンゾフラン構造、ベンゾオキサジン構造、インデン構造、インダン構造、ヒダントイン構造、オキサゾリン構造、環状カーボネート構造、芳香族環式イミド構造、脂環式イミド構造、オキサジアゾール構造、チアジアゾール構造、ベンゾオキサジアゾール構造、ベンゾチアジアゾール構造、カルバゾール構造、アゾメチン構造、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造、キサンテン構造、および化学構造式1からなる群より選ばれる少なくとも1種の構造であることを特徴とする[1]~[2]に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

 [4]前記剛直骨格構造が、ベンゼン構造、ナフタレン構造、ビフェニル構造のいずれか1つ以上であることを特徴とする[1]~[3]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [5]前記アミン化合物が、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有し、かつ、前記アミンアダクトが、1級、および/または2級アミノ基を有することを特徴とする[1]~[4]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [6]前記コアが、その赤外線吸収スペクトルにおいて、1050~1150cm-1の間のピーク高さ(H1)に対する、1655cm-1のピーク高さ(H2)の比(H2/H1)が1.0以上3.0未満である[1]~[5]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [7]前記エポキシ樹脂(e1)が、
 前記エポキシ樹脂(EP1)及びエポキシ樹脂(EP2)とイソシアネート化合物との反応物からなるエポキシ樹脂(EP3)を含有するマイクロカプセル型エポキシ樹脂用硬化剤であって、該エポキシ樹脂(EP1)の基本構造式の単量体分子量が90以上1000以下であることを特徴とする請求項1~6のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [8]前記エポキシ樹脂(EP3)が、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造からなる群より選ばれる少なくとも1種の構造を有するエポキシ樹脂であることを特徴とする[7]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [9]前記エポキシ樹脂(EP3)が、オキサゾリドン構造を有するエポキシ樹脂であることを特徴とする[7]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [10]前記エポキシ樹脂(EP1)が、前記エポキシ樹脂(e1)100%中に、10%以上90%以下の割合で含有されることを特徴とする[7]~[9]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [11]前記エポキシ樹脂(EP3)が、前記エポキシ樹脂(e1)100%中に、10質量%以上90質量%以下の割合で含有されることを特徴とする[7]~[10]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [12]前記エポキシ樹脂(EP1)の架橋点間分子量が90以上500以下であることを特徴とする[2]~[11]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [13]前記エポキシ樹脂(EP3)のエポキシ当量が、300を越えて1000以下であることを特徴とする[7]~[12]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [14]前記エポキシ樹脂(EP3)の軟化点が50℃以上100℃以下であることを特徴とする[7]~[13]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [15]前記エポキシ樹脂(EP3)の数平均分子量が500以上3000以下であることを特徴とする[7]~[14]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [16]前記コアの軟化点が50℃以上90℃以下であることを特徴とする[1]~[15]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [17]前記コアの120℃溶融粘度が30Pa・s以下であることを特徴とする[1]~[16]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [18]前記シェルの少なくとも表面に有する結合基(x)、(y)、(z)が、それぞれ、ウレア基、ビュレット基、ウレタン基であり、かつ、前記シェル(S)中の結合基(x)の濃度(Cx)と結合基(x)、(y)、(z)の合計の濃度(Cx+Cy+Cz)との比(Cx/(Cx+Cy+Cz))が、0.50以上0.75未満である[1]~[17]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [19]前記コアが含有する水分量が、コア成分100質量部に対して0.05質量部以上3質量部以下であり、かつ、前記コアに含有されるアミン化合物(B)の含有量が、コア成分100質量部に対して0.001質量部以上3質量部以下である[1]~[18]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [20]エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)の全塩素量が2500ppm以下である[7]~[19]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [21]前記コアの全塩素量が2500ppm以下である[1]~[20]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [22]前記シェルが、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、アミン化合物(B)のいずれか2種、またはそれ以上の反応生成物を含む[1]~[21]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [23]前記エポキシ樹脂(e2)の全塩素量が2500ppm以下である[22]に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [24]前記シェルの赤外線吸収スペクトルにおいて、1050~1150cm-1の間の高さ(H1)に対する、1630~1680cm-1のピーク高さ(H3)の比(H3/H1)が0.3以上1.2未満である[1]~[22]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤。
 [25]エポキシ樹脂(e3)と、[1]~[24]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤とを含むマスターバッチ型エポキシ樹脂用硬化剤組成物であって、
 前記エポキシ樹脂(e3)と前記マイクロカプセル型エポキシ樹脂用硬化剤の重量比が100:10~10:1000であるマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。
 [26]前記エポキシ樹脂(e3)の全塩素量が2500ppm以下である[25]に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。
 [27]全塩素量が2500ppm以下である[25]または[26]に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。
 [28]前記エポキシ樹脂(e3)におけるジオール末端不純成分が、エポキシ樹脂(e3)の基本構造成分の0.001~30重量%である[25]~[27]のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。
 [29][1]~[24]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤と、エポキシ樹脂(e3)と、高溶解性エポキシ樹脂(G)を含み、
 前記高溶解性エポキシ樹脂(G)の基本構造の溶解度パラメーターは8.65~11.00であり、当該基本構造の架橋間分子量は105~150であり、且つジオール末端不純成分の存在割合は基本構造成分に対して0.01~20質量%であり、
 前記マイクロカプセル型エポキシ樹脂用硬化剤と、前記エポキシ樹脂(e3)とを、(マイクロカプセル型エポキシ樹脂用硬化剤):(エポキシ樹脂(e3))(質量比)として100:10~100:1000の配合比で含み、
 前記エポキシ樹脂(e3)と、前記高溶解性エポキシ樹脂(G)とを、(エポキシ樹脂(e3)):(高溶解性エポキシ樹脂(G))(質量比)として100:0.1~100:1000の配合比で含み、且つ、
 全塩素量が2500ppm以下であることを特徴とする一液性エポキシ樹脂組成物。
 [30]エポキシ樹脂(e4)と[25]~[28]に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)とを含む一液性エポキシ樹脂組成物であって、
 前記エポキシ樹脂(e4)とマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の重量比が100:10~100:1000である一液性エポキシ樹脂組成物。
 [31]酸無水物系硬化剤、フェノール系硬化剤、ヒドラジド系硬化剤、グアニジン系硬化剤、チオール系硬化剤、イミダゾール系硬化剤、およびイミダゾリン系硬化剤よりなる群より選ばれる少なくとも1種のエポキシ樹脂用硬化剤(h3)と、[25]~[28]に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)と、を含む一液性エポキシ樹脂組成物であって前記エポキシ樹脂用硬化剤(h3)とマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の重量比が100:10~10:1000である一液性エポキシ樹脂組成物。
 [32]環状ホウ酸エステル化合物(L)と、[25]~[28]に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)と、を含む一液性エポキシ樹脂組成物。
 [33]前記環状ホウ酸エステル化合物(L)が、2,2’-オキシビス[5,5-ジメチル-1,3,2-ジオキサボリナン]である[32]に記載の一液性エポキシ樹脂組成物。
 [34]前記環状ホウ酸エステル化合物(L)の含有率が0.001~10質量%である[32]、または[33]に記載の一液性エポキシ樹脂組成物。
 [35][25]~[28]のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)、又は、[29]~[34]のいずれかに記載の一液性エポキシ樹脂組成物を用いてなる加工品。
 [36]導電性粒子(a)、エポキシ環を一つ以上有するエポキシ樹脂(b)、(b)以外の樹脂からなる有機バインダー(c)、マイクロカプセル型エポキシ樹脂用硬化剤(d)を含む異方導電性フィルムにおいて、マイクロカプセル型エポキシ樹脂用硬化剤(d)が、[1]~[24]のいずれかに記載のマイクロカプセル型エポキシ樹脂用硬化剤であることを特徴とする、異方導電性フィルム。
 [37]前記異方導電性フィルム中に含有されるエポキシ当量をEXとし、前記異方導電性フィルム中に含有されるマイクロカプセル型硬化剤(d)のコア成分の全アミン価を、前記異方導電性フィルムに含有されるマイクロカプセル型硬化剤(d)の配合重量で割った値をHXとした場合、エポキシ当量とアミン価の比である(EX/HX)×100の値が、1.5≦(EX/HX)×100≦4.0である[36]に記載の異方導電性フィルム。
 [38][25]~[34]のいずれかに記載の組成物を含有するペースト状組成物。
 [39][25]~[34]のいずれかに記載の組成物を含有するフィルム状組成物。
 [40][25]~[34]のいずれかに記載の組成物を含有する接着剤。
 [41][25]~[34]のいずれかに記載の組成物を含有する接合用ペースト。
 [42][25]~[34]のいずれかに記載の組成物を含有する接合用フィルム。
 [43][25]~[34]のいずれかに記載の組成物を含有する導電性材料。
 [44][25]~[34]のいずれかに記載の組成物を含有する異方導電性材料。
 [45][25]~[34]のいずれかに記載の組成物を含有する絶縁性材料。
 [46][25]~[34]のいずれかに記載の組成物を含有する封止材料。
 [47][25]~[34]のいずれかに記載の組成物を含有するコーティング用材料。
 [48][25]~[34]のいずれかに記載の組成物を含有する塗料組成物。
 [49][25]~[34]のいずれかに記載の組成物を含有するプリプレグ。
 [50][25]~[34]のいずれかに記載の組成物を含有する熱伝導性材料。
 [51][25]~[34]のいずれかに記載の組成物を含有する燃料電池用セパレータ材。
 [52][25]~[34]のいずれかに記載の組成物を含有するフレキシブル配線基板用オーバーコート材。
That is, the present invention provides the following microcapsule type epoxy resin curing agent, masterbatch type epoxy resin curing agent composition, one-part epoxy resin composition, and a processed product using these curing agents or compositions. provide.
[1] A microcapsule-type epoxy resin curing agent having a core containing a curing agent for epoxy resin and a shell covering the core,
The epoxy resin curing agent contains, as a main component, an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound,
The total amine value of the curing agent for epoxy resin is 370 or more and 1000 or less,
The epoxy resin curing agent has an average particle size of more than 0.3 μm and not more than 12 μm,
The shell includes a bonding group (x) that absorbs infrared rays having a wave number of 1630 to 1680 cm −1 , a bonding group (y) that absorbs infrared rays having a wave number of 1680 to 1725 cm −1 , and wave numbers of 1730 to 1755 cm −1. A microcapsule-type epoxy resin curing agent having at least a bonding group (z) that absorbs infrared rays.
[2] The microcapsule type epoxy resin curing agent according to [1], wherein the epoxy resin (e1) includes an epoxy resin (EP1) having a rigid skeleton structure.
[3] The rigid skeleton structure is a benzene structure, naphthalene structure, biphenyl structure, triphenyl structure, anthracene structure, dicyclopentadiene structure, norbornene structure, acenaphthylene structure, adamantane structure, fluorene structure, benzofuran structure, benzoxazine structure, indene Structure, indane structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide structure, oxadiazole structure, thiadiazole structure, benzooxadiazole structure, benzothiadiazole structure, carbazole structure, azomethine It is at least one structure selected from the group consisting of a structure, an oxazolidone structure, a triazine structure, an isocyanurate structure, a xanthene structure, and a chemical structural formula 1 [1] to Microcapsule type curing agent for epoxy resins according to 2].
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

[4] The microcapsule type epoxy resin curing according to any one of [1] to [3], wherein the rigid skeleton structure is at least one of a benzene structure, a naphthalene structure, and a biphenyl structure Agent.
[5] The amine compound has one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group, and the amine adduct is primary, and / or The microcapsule type epoxy resin curing agent according to any one of [1] to [4], which has a secondary amino group.
[6] The ratio (H2 / H1) of the peak height (H2) at 1655 cm −1 to the peak height (H1) between 1050 and 1150 cm −1 in the infrared absorption spectrum of the core is 1.0. The microcapsule type epoxy resin curing agent according to any one of [1] to [5], which is at least 3.0.
[7] The epoxy resin (e1)
A curing agent for a microcapsule type epoxy resin containing an epoxy resin (EP3) composed of a reaction product of the epoxy resin (EP1) and the epoxy resin (EP2) with an isocyanate compound, the basic structure of the epoxy resin (EP1) The microcapsule type epoxy resin curing agent according to any one of claims 1 to 6, wherein the monomer molecular weight of the formula is from 90 to 1,000.
[8] The epoxy resin (EP3) is an epoxy resin having at least one structure selected from the group consisting of an oxazolidone structure, a triazine structure, and an isocyanurate structure. Hardener for microcapsule type epoxy resin.
[9] The microcapsule type epoxy resin curing agent according to any one of [7], wherein the epoxy resin (EP3) is an epoxy resin having an oxazolidone structure.
[10] Any one of [7] to [9], wherein the epoxy resin (EP1) is contained in a proportion of 10% to 90% in 100% of the epoxy resin (e1). The microcapsule type epoxy resin curing agent as described.
[11] Any one of [7] to [10], wherein the epoxy resin (EP3) is contained in 100% of the epoxy resin (e1) in a proportion of 10% by mass to 90% by mass. Curing agent for microcapsule type epoxy resin according to claim 1.
[12] The microcapsule type epoxy resin curing agent according to any one of [2] to [11], wherein the epoxy resin (EP1) has a molecular weight between crosslinking points of 90 or more and 500 or less.
[13] The microcapsule type epoxy resin curing agent according to any one of [7] to [12], wherein the epoxy equivalent of the epoxy resin (EP3) is more than 300 and 1000 or less.
[14] The microcapsule type epoxy resin curing agent according to any one of [7] to [13], wherein the epoxy resin (EP3) has a softening point of 50 ° C. or higher and 100 ° C. or lower.
[15] The microcapsule type epoxy resin curing agent according to any one of [7] to [14], wherein the epoxy resin (EP3) has a number average molecular weight of 500 or more and 3000 or less.
[16] The microcapsule type epoxy resin curing agent according to any one of [1] to [15], wherein the softening point of the core is 50 ° C. or higher and 90 ° C. or lower.
[17] The microcapsule type epoxy resin curing agent according to any one of [1] to [16], wherein the core has a 120 ° C. melt viscosity of 30 Pa · s or less.
[18] The bonding groups (x), (y), and (z) possessed on at least the surface of the shell are a urea group, a burette group, and a urethane group, respectively, and the bonding group in the shell (S) ( The ratio (Cx / (Cx + Cy + Cz)) of the concentration (Cx) of x) to the total concentration (Cx + Cy + Cz) of the linking groups (x), (y), (z) is 0.50 or more and less than 0.75 [1] The microcapsule-type epoxy resin curing agent according to any one of [1] to [17].
[19] The water content of the core is 0.05 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the core component, and the content of the amine compound (B) contained in the core is The microcapsule type epoxy resin curing agent according to any one of [1] to [18], which is 0.001 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the core component.
[20] The microcapsule type epoxy resin according to any one of [7] to [19], wherein the total chlorine content of the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is 2500 ppm or less Curing agent.
[21] The microcapsule-type epoxy resin curing agent according to any one of [1] to [20], wherein the total chlorine content of the core is 2500 ppm or less.
[22] The shell contains any two or more reaction products of an isocyanate compound, an active hydrogen compound, an epoxy resin curing agent (h2), an epoxy resin (e2), and an amine compound (B) [ [1] The curing agent for microcapsule type epoxy resin according to any one of [21] to [21].
[23] The microcapsule type epoxy resin curing agent according to [22], wherein the total chlorine content of the epoxy resin (e2) is 2500 ppm or less.
[24] In the infrared absorption spectrum of the shell, 1050 to a height of between 1150 cm -1 for (H1), 1630 - peak height of 1680 cm -1 (H3) of the ratio (H3 / H1) is 0.3 or more The microcapsule type epoxy resin curing agent according to any one of [1] to [22], which is less than 1.2.
[25] A masterbatch type epoxy resin curing agent composition comprising an epoxy resin (e3) and the microcapsule type epoxy resin curing agent according to any one of [1] to [24],
A masterbatch type epoxy resin curing agent composition (M1) in which a weight ratio of the epoxy resin (e3) and the microcapsule type epoxy resin curing agent is 100: 10 to 10: 1000.
[26] The masterbatch type epoxy resin curing agent composition (M1) according to [25], wherein the total chlorine content of the epoxy resin (e3) is 2500 ppm or less.
[27] The masterbatch type epoxy resin curing agent composition (M1) according to [25] or [26], wherein the total chlorine content is 2500 ppm or less.
[28] The master batch according to any one of [25] to [27], wherein the diol terminal impure component in the epoxy resin (e3) is 0.001 to 30% by weight of the basic structural component of the epoxy resin (e3). Type epoxy resin curing agent composition (M1).
[29] A microcapsule type epoxy resin curing agent according to any one of [1] to [24], an epoxy resin (e3), and a highly soluble epoxy resin (G),
The solubility parameter of the basic structure of the high-solubility epoxy resin (G) is 8.65 to 11.00, the molecular weight between crosslinks of the basic structure is 105 to 150, and the proportion of impure components of the diol terminal is basic. 0.01 to 20% by mass with respect to the structural component,
The microcapsule type epoxy resin curing agent and the epoxy resin (e3) are converted into 100: 10 to 100: 1000 as (microcapsule type epoxy resin curing agent) :( epoxy resin (e3)) (mass ratio). Including the blending ratio of
The epoxy resin (e3) and the highly soluble epoxy resin (G) are converted into 100: 0.1 to 100 as (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass ratio). : In a blending ratio of 1000, and
A one-component epoxy resin composition characterized in that the total chlorine content is 2500 ppm or less.
[30] A one-part epoxy resin composition comprising an epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) according to [25] to [28],
A one-component epoxy resin composition in which the weight ratio of the epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) is 100: 10 to 100: 1000.
[31] At least one selected from the group consisting of an acid anhydride curing agent, a phenol curing agent, a hydrazide curing agent, a guanidine curing agent, a thiol curing agent, an imidazole curing agent, and an imidazoline curing agent. A one-part epoxy resin composition comprising a curing agent for epoxy resin (h3) and a curing agent composition for masterbatch type epoxy resin described in [25] to [28] (M1), wherein the epoxy resin -Pack epoxy resin composition having a weight ratio of 100: 10 to 10: 1000 of the curing agent (h3) for the master and the curing agent composition for the masterbatch type epoxy resin (M1).
[32] A one-part epoxy resin composition comprising a cyclic borate ester compound (L) and the masterbatch type epoxy resin curing agent composition (M1) described in [25] to [28].
[33] The one-component epoxy resin composition according to [32], wherein the cyclic borate ester compound (L) is 2,2′-oxybis [5,5-dimethyl-1,3,2-dioxaborinane] .
[34] The one-component epoxy resin composition according to [32] or [33], wherein the content of the cyclic borate ester compound (L) is 0.001 to 10% by mass.
[35] The masterbatch type epoxy resin curing agent composition (M1) according to any one of [25] to [28] or the one-component epoxy resin according to any one of [29] to [34] A processed product using the composition.
[36] containing conductive particles (a), an epoxy resin (b) having one or more epoxy rings, an organic binder (c) made of a resin other than (b), and a microcapsule type epoxy resin curing agent (d) In the anisotropic conductive film, the microcapsule type epoxy resin curing agent (d) is the microcapsule type epoxy resin curing agent according to any one of [1] to [24]. Conductive film.
[37] The epoxy equivalent contained in the anisotropic conductive film is EX, and the total amine value of the core component of the microcapsule-type curing agent (d) contained in the anisotropic conductive film is set to When the value divided by the blending weight of the microcapsule type curing agent (d) contained in the directionally conductive film is HX, the value of (EX / HX) × 100, which is the ratio of epoxy equivalent to amine value, is 1 The anisotropic conductive film according to [36], wherein 0.5 ≦ (EX / HX) × 100 ≦ 4.0.
[38] A pasty composition comprising the composition according to any one of [25] to [34].
[39] A film-like composition containing the composition according to any one of [25] to [34].
[40] An adhesive containing the composition according to any one of [25] to [34].
[41] A joining paste containing the composition according to any one of [25] to [34].
[42] A bonding film containing the composition according to any one of [25] to [34].
[43] A conductive material containing the composition according to any one of [25] to [34].
[44] An anisotropic conductive material comprising the composition according to any one of [25] to [34].
[45] An insulating material containing the composition according to any one of [25] to [34].
[46] A sealing material containing the composition according to any one of [25] to [34].
[47] A coating material containing the composition according to any one of [25] to [34].
[48] A coating composition containing the composition according to any one of [25] to [34].
[49] A prepreg containing the composition according to any one of [25] to [34].
[50] A thermally conductive material containing the composition according to any one of [25] to [34].
[51] A fuel cell separator material comprising the composition according to any one of [25] to [34].
[52] An overcoat material for a flexible wiring board, comprising the composition according to any one of [25] to [34].
 本発明のマイクロカプセル型エポキシ樹脂用硬化剤は、貯蔵安定性に優れ、しかも低温速硬化性に優れる。また、低温で接続しても接続信頼性の高い異方導電性フィルムを提供することができる。 The microcapsule type epoxy resin curing agent of the present invention is excellent in storage stability and excellent in low-temperature fast curing properties. Moreover, even if it connects at low temperature, an anisotropic conductive film with high connection reliability can be provided.
 以下、本発明を実施するための形態(以下、発明の実施の形態)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments of the present invention) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
I.マイクロカプセル型エポキシ樹脂用硬化剤
 本実施形態のマイクロカプセル型エポキシ樹脂用硬化剤は、以下の特徴を有する。
 エポキシ樹脂用硬化剤を含むコアと、当該コアを被覆するシェルとを有するマイクロカプセル型エポキシ樹脂用硬化剤であって、
 該エポキシ樹脂用硬化剤が、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分として含み、
 該エポキシ樹脂用硬化剤の全アミン価が370以上1000以下であり、
 該エポキシ樹脂用硬化剤の平均粒径が0.3μmを超えて12μm以下であり、
 前記シェルは、波数1630~1680cm-1の赤外線を吸収する結合基(x)と、波数1680~1725cm-1の赤外線を吸収する結合基(y)と、波数1730~1755cm-1の赤外線を吸収する結合基(z)とを少なくとも表面に有する。
 以下に、それぞれについて詳細に説明する。
I. Microcapsule type epoxy resin curing agent The microcapsule type epoxy resin curing agent of the present embodiment has the following characteristics.
A microcapsule type epoxy resin curing agent having a core containing an epoxy resin curing agent and a shell covering the core,
The epoxy resin curing agent contains, as a main component, an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound,
The total amine value of the curing agent for epoxy resin is 370 or more and 1000 or less,
The epoxy resin curing agent has an average particle size of more than 0.3 μm and not more than 12 μm,
The shell absorbs infrared rays having a wave number of 1630 to 1680 cm −1 , absorbing groups (y) absorbing an infrared ray having a wave number of 1680 to 1725 cm −1 , and infrared rays having a wave number of 1730 to 1755 cm −1. At least on the surface.
Each will be described in detail below.
 I-1.コア
 本実施の形態におけるコアは、アミンアダクトを主成分として含む。そして、当該アミンアダクトは、エポキシ樹脂(e1)とアミン化合物との反応により得られる。
 なお、本実施の形態において「主成分」とは、特定成分の総量が、当該特定成分の含まれる組成物中に占める割合が50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上であり、100質量%であっても良いことを意味する。
 上記エポキシ樹脂(e1)としては、モノエポキシ化合物、及び多価エポキシ化合物が挙げられる。モノエポキシ化合物と多価エポキシ化合物とを併用することも可能であり、多価エポキシ化合物は複数のものを混合することも可能である。
 硬化物のガラス転移温度(Tg)が高く、高温での弾性率に優れるものとするためには、前記エポキシ樹脂(e1)が剛直な骨格構造を有するエポキシ樹脂(EP1)を含むことが好ましい。剛直骨格構造を導入した場合、該剛直骨格が分子鎖中に取り込まれ、これが硬化物を形成したときに、運動を妨げる方向に寄与すると考えられる。具体的には、分子鎖の側鎖にかさの高い置換基を組み込むことや、分子鎖の内部回転に高い障壁を有するような構造を組み込むこと、極性の高い構造をエポキシ樹脂(e1)に導入することなどにより、分子鎖の運動を妨げる働きを発揮し、剛直性を発現することになり、上記のような高ガラス転移温度(Tg)や、高温での弾性率を達成することができる。
 エポキシ樹脂(EP1)が有する剛直な骨格構造としては、ベンゼン構造、ナフタレン構造、ビフェニル構造、トリフェニル構造、アントラセン構造、ジシクロペンタジエン構造、ノルボルネン構造、アセナフチレン構造、アダマンタン構造、フルオレン構造、ベンゾフラン構造、ベンゾオキサジン構造、インデン構造、インダン構造、ヒダントイン構造、オキサゾリン構造、環状カーボネート構造、芳香族環式イミド構造、脂環式イミド構造、オキサジアゾール構造、チアジアゾール構造、ベンゾオキサジアゾール構造、ベンゾチアジアゾール構造、カルバゾール構造、アゾメチン構造、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造、キサンテン構造、および化学構造式1に記載の構造のいずれか1つ以上の構造を有していることが好ましい。剛直な骨格構造を有しているエポキシ樹脂は、1つの分子鎖に1種類有していても、2種類以上を有するエポキシ樹脂をしていてもよい。また、1つの分子鎖に1種類以上の剛直骨格構造を有するエポキシ樹脂を、2種類以上、混合してもよい。
I-1. Core The core in the present embodiment includes an amine adduct as a main component. And the said amine adduct is obtained by reaction of an epoxy resin (e1) and an amine compound.
In the present embodiment, the “main component” means that the total amount of the specific component accounts for 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass in the composition containing the specific component. % Means that it may be 100% by mass.
As said epoxy resin (e1), a monoepoxy compound and a polyhydric epoxy compound are mentioned. A monoepoxy compound and a polyvalent epoxy compound can be used in combination, and a plurality of polyvalent epoxy compounds can be mixed.
In order to make the cured product have a high glass transition temperature (Tg) and an excellent elastic modulus at a high temperature, the epoxy resin (e1) preferably contains an epoxy resin (EP1) having a rigid skeleton structure. When a rigid skeleton structure is introduced, it is considered that the rigid skeleton is incorporated into the molecular chain and contributes to the direction of hindering movement when a cured product is formed. Specifically, a bulky substituent is incorporated into the side chain of the molecular chain, a structure having a high barrier to the internal rotation of the molecular chain, and a highly polar structure is introduced into the epoxy resin (e1). By doing so, the function of hindering the movement of the molecular chain is exhibited and the rigidity is expressed, and the high glass transition temperature (Tg) as described above and the elastic modulus at a high temperature can be achieved.
Examples of the rigid skeleton structure that the epoxy resin (EP1) has include a benzene structure, a naphthalene structure, a biphenyl structure, a triphenyl structure, an anthracene structure, a dicyclopentadiene structure, a norbornene structure, an acenaphthylene structure, an adamantane structure, a fluorene structure, a benzofuran structure, Benzoxazine structure, indene structure, indane structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide structure, oxadiazole structure, thiadiazole structure, benzooxadiazole structure, benzothiadiazole structure , A carbazole structure, an azomethine structure, an oxazolidone structure, a triazine structure, an isocyanurate structure, a xanthene structure, and a structure represented by chemical structural formula 1 Rukoto is preferable. The epoxy resin having a rigid skeletal structure may be one kind in one molecular chain or may be an epoxy resin having two or more kinds. Two or more types of epoxy resins having one or more rigid skeleton structures in one molecular chain may be mixed.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 なお、剛直骨格構造のモデル図を以下に示す。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
A model diagram of the rigid skeleton structure is shown below.
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
 また、得られるアミンアダクトとエポキシ基との反応性、相溶性を考慮すると、剛直骨格構造を有するエポキシ樹脂(EP1)の基本構造式の単量体分子量は、90以上1000以下が好ましい。また、より好ましくは90以上500以下とすることが好ましい。さらに好ましくは100以上450以下、特に好ましくは120以上400以下である。剛直骨格構造部分の基本構造式の単量体分子量がこの範囲にあることで、アミンアダクトとエポキシ基の反応において、構造による障害によって反応性を阻害するということを抑えることができる。さらに、アミンアダクトとエポキシ基の反応を阻害しないという点から、上記の剛直骨格構造は、幾何学的に平面な構造が好ましい。ここで幾何学的に平面な構造とは、化学構造式で表すときに3次元構造を有さない構造である。またその構造を形成する原子は、炭素と水素からなるものが好ましい。具体的には、ベンゼン構造、ナフタレン構造、ビフェニル構造、トリフェニル構造、アントラセン構造、アセナフチレン構造、フルオレン構造、インデン構造、インダン構造が好ましい。特に好ましいものとしては、ベンゼン構造、ナフタレン構造、ビフェニル構造が好ましい。 In consideration of the reactivity and compatibility between the resulting amine adduct and epoxy group, the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) having a rigid skeleton structure is preferably 90 or more and 1,000 or less. More preferably, it is preferably 90 or more and 500 or less. More preferably, it is 100 or more and 450 or less, Most preferably, it is 120 or more and 400 or less. When the monomer molecular weight of the basic structural formula of the rigid skeleton structure portion is within this range, it is possible to suppress the inhibition of the reactivity due to the obstacle due to the structure in the reaction between the amine adduct and the epoxy group. Furthermore, the above-mentioned rigid skeleton structure is preferably a geometrically flat structure from the viewpoint of not inhibiting the reaction between the amine adduct and the epoxy group. Here, the geometrically planar structure is a structure that does not have a three-dimensional structure when expressed by a chemical structural formula. The atoms forming the structure are preferably those composed of carbon and hydrogen. Specifically, a benzene structure, naphthalene structure, biphenyl structure, triphenyl structure, anthracene structure, acenaphthylene structure, fluorene structure, indene structure, and indane structure are preferable. Particularly preferred are a benzene structure, a naphthalene structure, and a biphenyl structure.
 上記で挙げたエポキシ樹脂(EP1)が有する剛直骨格の具体例の1つであるベンゼン構造を有する化合物として、以下のものが挙げられる。例えば、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン、3-メチル-1,2-ジヒドロキシベンゼン、4-メチル-1,2-ジヒドロキシベンゼン、2-メチル-1,3-ジヒドロキシベンゼン、4-メチル-1,3-ジヒドロキシベンゼン、2-メチル-1,4-ジヒドロキシベンゼン、3-エチル-1,2-ジヒドロキシベンゼン、4-エチル-1,2-ジヒドロキシベンゼン、2-エチル-1,3-ジヒドロキシベンゼン、4-エチル-1,3-ジヒドロキシベンゼン、2-エチル-1,4-ジヒドロキシベンゼン、3-プロピル-1,2-ジヒドロキシベンゼン、4-プロピル-1,2-ジヒドロキシベンゼン、2-プロピル-1,3-ジヒドロキシベンゼン、4-プロピル-1,3-ジヒドロキシベンゼン、2-プロピル-1,4-ジヒドロキシベンゼン、3-イソプロピル-1,2-ジヒドロキシベンゼン、4-イソプロピル-1,2-ジヒドロキシベンゼン、2-イソプロピル-1,3-ジヒドロキシベンゼン、4-イソプロピル-1,3-ジヒドロキシベンゼン、2-イソプロピル-1,4-ジヒドロキシベンゼン、3-ターシャリブチル-1,2-ジヒドロキシベンゼン、4-ターシャリブチル-1,2-ジヒドロキシベンゼン等をグリシジル変性した化合物である。ナフタレン構造を有するものとしては、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン等のグリシジル化合物や、DIC製のEPICLON HP-4032、EXA-4750、日本化薬製のNC-7000、新日鐵化学製のESN-165等が挙げられる。ビフェニル構造を有する化合物としては、4,4’-ビフェノール、3,3’,5,5’-テトラアルキル-4,4’-ビフェノール等のグリシジル化合物が挙げられる。アントラセン構造を有するものとしては、1,2-エポキシアントラセン、5,8-エポキシ-1,3-メタノアントラセン 、2-メチル-9,10-ジヒドロ-9,10-エポキシアントラセン、JER製のYX8800等が挙げられる。ジシクロペンタジエン構造を有する化合物としては、DIC製のEPICLON HP-7200などが挙げられる。
 トリフェニル構造、ノルボルネン構造、アセナフチレン構造、アダマンタン構造、フルオレン構造、ベンゾフラン構造、ベンゾオキサジン構造、インデン構造、インダン構造、ヒダントイン構造、オキサゾリン構造、環状カーボネート構造、芳香族環式イミド構造、脂環式イミド構造、オキサジアゾール構造、チアジアゾール構造、ベンゾオキサジアゾール構造、ベンゾチアジアゾール構造、カルバゾール構造、アゾメチン構造、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造、キサンテン構造、および化学構造式1に記載の構造を有するエポキシ樹脂の導入例としては、
 (1)エポキシ基を有する樹脂に対して同構造を有する化合物、またはその原料を用いて変性反応を行うことで同構造を導入する方法;
 (2)同構造がヒドロキシ基を有する化合物の場合、エピクロルヒドリンを用いて、グリシジル化を行ってエポキシ基を導入することにより、前記構造を有するエポキシ樹脂を製造する方法;
 (3)同構造を有する化合物に酸触媒でフェノールを反応させて得られる樹脂に、エピクロルヒドリンを反応させた後、脱塩酸反応を行うことでエポキシ基を導入する方法;
 などがある。
 中でも、反応性や入手性、硬化物の物性の観点から、1,2-ジヒドロキシベンゼンのグリシジル化合物、1,6-ジヒドロキシナフタレンのグリシジル化合物、3,3’,5,5’-テトラアルキル-4,4’-ビフェノールのグリシジル化合物、オキサゾリドン構造含有エポキシ樹脂が好ましい。
The following are mentioned as a compound which has a benzene structure which is one of the specific examples of the rigid skeleton which the epoxy resin (EP1) mentioned above has. For example, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 3-methyl-1,2-dihydroxybenzene, 4-methyl-1,2-dihydroxybenzene, 2-methyl-1 , 3-dihydroxybenzene, 4-methyl-1,3-dihydroxybenzene, 2-methyl-1,4-dihydroxybenzene, 3-ethyl-1,2-dihydroxybenzene, 4-ethyl-1,2-dihydroxybenzene, 2-ethyl-1,3-dihydroxybenzene, 4-ethyl-1,3-dihydroxybenzene, 2-ethyl-1,4-dihydroxybenzene, 3-propyl-1,2-dihydroxybenzene, 4-propyl-1, 2-dihydroxybenzene, 2-propyl-1,3-dihydroxybenzene, 4-propyl-1 3-dihydroxybenzene, 2-propyl-1,4-dihydroxybenzene, 3-isopropyl-1,2-dihydroxybenzene, 4-isopropyl-1,2-dihydroxybenzene, 2-isopropyl-1,3-dihydroxybenzene, 4 -Modify isopropyl-1,3-dihydroxybenzene, 2-isopropyl-1,4-dihydroxybenzene, 3-tert-butyl-1,2-dihydroxybenzene, 4-tert-butyl-1,2-dihydroxybenzene, etc. It is a compound. As those having a naphthalene structure, glycidyl compounds such as 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, EPICLON HP-4032 and EXA manufactured by DIC -4750, Nippon Kayaku NC-7000, Nippon Steel Chemical Co., Ltd. ESN-165, and the like. Examples of the compound having a biphenyl structure include glycidyl compounds such as 4,4′-biphenol and 3,3 ′, 5,5′-tetraalkyl-4,4′-biphenol. Examples of those having an anthracene structure include 1,2-epoxyanthracene, 5,8-epoxy-1,3-methanoanthracene, 2-methyl-9,10-dihydro-9,10-epoxyanthracene, YX8800 manufactured by JER, etc. Is mentioned. Examples of the compound having a dicyclopentadiene structure include EPICLON HP-7200 manufactured by DIC.
Triphenyl structure, norbornene structure, acenaphthylene structure, adamantane structure, fluorene structure, benzofuran structure, benzoxazine structure, indene structure, indane structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide Structure, oxadiazole structure, thiadiazole structure, benzooxadiazole structure, benzothiadiazole structure, carbazole structure, azomethine structure, oxazolidone structure, triazine structure, isocyanurate structure, xanthene structure, and the structure described in Chemical Formula 1. As an example of introducing epoxy resin,
(1) A method of introducing the structure by performing a modification reaction using a compound having the same structure with respect to a resin having an epoxy group, or a raw material thereof;
(2) In the case where the structure is a compound having a hydroxy group, epichlorohydrin is used to glycidylate and introduce an epoxy group, thereby producing an epoxy resin having the structure;
(3) A method of introducing an epoxy group by dehydrochlorination after reacting epichlorohydrin with a resin obtained by reacting a compound having the same structure with phenol with an acid catalyst;
and so on.
Among these, from the viewpoint of reactivity, availability, and physical properties of the cured product, glycidyl compound of 1,2-dihydroxybenzene, glycidyl compound of 1,6-dihydroxynaphthalene, 3,3 ′, 5,5′-tetraalkyl-4 4,4'-biphenol glycidyl compounds and oxazolidone structure-containing epoxy resins are preferred.
 前記エポキシ樹脂(e1)は、基本構造式の単量体分子量が90以上1000以下のエポキシ樹脂(EP1)及び、エポキシ樹脂(EP2)とイソシアネート化合物との反応物からなるエポキシ樹脂(EP3)を含むことが好ましい。さらに、該単量体分子量は、90以上500以下であることが好ましい。
 ここで、基本構造式とは、化1-1、1-2、1-3および、化2-1、2-2、2-3で示す化学構造式1、および剛直骨格構造のモデル図化3-1、3-2に示す構造式の両端の結合部分に、アルキレン鎖、エステル結合を介さずに、直接、グリシジルエーテル基が結合した、もっとも分子量の小さい構造式を示す。単量体分子量とは、もっとも分子量の小さい構造で、かつ、両末端のエポキシ基が、開環しないで、3員環の状態における分子量を示す。
The epoxy resin (e1) includes an epoxy resin (EP1) having a monomer molecular weight of 90 to 1000 in the basic structural formula, and an epoxy resin (EP3) composed of a reaction product of the epoxy resin (EP2) and an isocyanate compound. It is preferable. Furthermore, the monomer molecular weight is preferably 90 or more and 500 or less.
Here, the basic structural formulas are chemical structural formula 1 shown in chemical formulas 1-1, 1-2, and 1-3, chemical formulas 2-1 and 2-2, and 2-3, and a model diagram of a rigid skeleton structure. A structural formula with the smallest molecular weight is shown in which a glycidyl ether group is directly bonded to the bonding parts at both ends of the structural formulas shown in 3-1, 3-2 without an alkylene chain or an ester bond. The monomer molecular weight is a structure having the smallest molecular weight, and indicates the molecular weight in a three-membered ring state without opening the epoxy groups at both ends.
 また、下記式(1)に示される、ゴム状弾性理論式より、ガラス転移温度(Tg)以上の高温での弾性率に対する網目架橋点間の分子量の関係式がある。
 エポキシ樹脂(e1)中にエポキシ樹脂(EP1)を含有させてアミンアダクトを形成し、該アミンアダクトを主成分とするエポキシ樹脂用硬化剤を作成した場合、その後の硬化の過程で形成される網目架橋構造の中に、エポキシ樹脂(EP1)に由来する構造が導入されることとなる。そのため、エポキシ樹脂(EP1)の基本構造式の単量体分子量の大きさが、硬化物の網目架橋中の架橋点間分子量に大きく影響することなる。エポキシ樹脂(EP1)の基本構造式の単量体分子量を小さくすることが、下記式(1)中の網目架橋点間の分子量(Mc)を小さくする方向に寄与し、結果、硬化物のガラス転移温度(Tg)以上の弾性率E’を大きくすることができる。
 エポキシ樹脂(EP1)は網目架橋点を形成するために、多価エポキシ化合物が好ましく、その基本構造式の単量体分子量は、ガラス転移温度(Tg)以上の弾性率E’を大きくするためには、90以上500以下が好ましい。より好ましくは110以上480以下、更により好ましくは120以上380以下、殊更に好ましくは130以上300以下である。
Moreover, there is a relational expression of the molecular weight between the network cross-linking points with respect to the elastic modulus at a high temperature equal to or higher than the glass transition temperature (Tg) from the rubbery elastic theoretical formula shown in the following formula (1).
When an epoxy resin (EP1) is contained in the epoxy resin (e1) to form an amine adduct, and an epoxy resin curing agent containing the amine adduct as a main component is formed, a network formed in the subsequent curing process A structure derived from the epoxy resin (EP1) is introduced into the crosslinked structure. Therefore, the size of the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) greatly affects the molecular weight between cross-linking points during network cross-linking of the cured product. Decreasing the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) contributes to decreasing the molecular weight (Mc) between the network cross-linking points in the following formula (1), and as a result, the glass of the cured product The elastic modulus E ′ not lower than the transition temperature (Tg) can be increased.
The epoxy resin (EP1) is preferably a polyvalent epoxy compound in order to form a network crosslinking point, and the monomer molecular weight of the basic structural formula is used to increase the elastic modulus E ′ above the glass transition temperature (Tg). Is preferably 90 or more and 500 or less. More preferably, it is 110 or more and 480 or less, still more preferably 120 or more and 380 or less, and still more preferably 130 or more and 300 or less.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 エポキシ樹脂(EP1)基本構造式の単量体分子量が所望の範囲内とすることで、網目架橋点間の分子量を制御することができ、ガラス転移温度Tg以上の高温での弾性率を向上させることができる。
 また、エポキシ樹脂(EP1)は、架橋点間分子量が90以上500以下であることが好ましい。また好ましくは90以上300以下、より好ましくは100以上270以下、更に好ましくは110以上240以下、特に好ましくは120以上200以下である。なお、上記架橋間分子量は、エポキシ樹脂(EP1)の基本構造式の単量体分子量を、基本構造式に含まれるエポキシ基の数で除した値で算出される。
 上記架橋間分子量を500以下とすることは、硬化物の物性であるガラス転移温度や弾性率を確保する観点から好適である。一方、上記架橋間分子量を90以上とすることは、硬化物が脆弱になることを防止する観点から好適である。
 前記エポキシ樹脂(EP1)は、前記エポキシ樹脂(e1)100%中に、10質量%以上90質量%以下の割合で含有されることが好ましい。より好ましくは15質量%以上85質量%以下、更により好ましくは20質量%以上80質量%以下である。
 エポキシ樹脂(e1)全体に対するエポキシ樹脂(EP1)の質量%が10質量%以上であることにより、硬化物の弾性率の低下を抑え、さらにはエポキシ樹脂用硬化剤の全アミン価を向上し、低温速硬化性が所望の性能を発揮することとなり、硬化物Tgも向上する。エポキシ樹脂(EP1)の質量%が90質量%以下であることにより、得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の軟化点の低下を抑え、アミンアダクトの生産性や、マイクロカプセル型硬化剤の生産性を向上させることができる。また、アミンアダクトの吸湿性が高くなることを抑え、コアの含有する水分量を所望の範囲内とし、得られたマイクロカプセル型硬化剤の貯蔵安定性をより向上させることができる。また、マスターバッチ型エポキシ樹脂組成物の取り扱い条件の制限も無くなる。硬化反応においても、水分の吸湿を抑えることができることから、硬化物の接着強度の低下や、外観不良も防ぐことができる。
By making the monomer molecular weight of the epoxy resin (EP1) basic structural formula within a desired range, the molecular weight between the network crosslinking points can be controlled, and the elastic modulus at a high temperature equal to or higher than the glass transition temperature Tg is improved. be able to.
The epoxy resin (EP1) preferably has a molecular weight between crosslinking points of 90 or more and 500 or less. Further, it is preferably 90 or more and 300 or less, more preferably 100 or more and 270 or less, still more preferably 110 or more and 240 or less, and particularly preferably 120 or more and 200 or less. The molecular weight between crosslinks is calculated by dividing the monomer molecular weight of the basic structural formula of the epoxy resin (EP1) by the number of epoxy groups contained in the basic structural formula.
Setting the molecular weight between crosslinks to 500 or less is preferable from the viewpoint of securing the glass transition temperature and the elastic modulus, which are physical properties of the cured product. On the other hand, setting the molecular weight between crosslinks to 90 or more is preferable from the viewpoint of preventing the cured product from becoming brittle.
It is preferable that the said epoxy resin (EP1) is contained in the said epoxy resin (e1) 100% in the ratio of 10 mass% or more and 90 mass% or less. More preferably, they are 15 to 85 mass%, More preferably, they are 20 to 80 mass%.
When the mass% of the epoxy resin (EP1) with respect to the entire epoxy resin (e1) is 10 mass% or more, the decrease in the elastic modulus of the cured product is suppressed, and further, the total amine value of the epoxy resin curing agent is improved. The low temperature rapid curability exhibits the desired performance, and the cured product Tg is also improved. When the mass% of the epoxy resin (EP1) is 90 mass% or less, the decrease in the softening point of the epoxy resin curing agent mainly composed of the amine adduct is suppressed, and the productivity of the amine adduct and the microcapsule type are reduced. The productivity of the curing agent can be improved. Moreover, it becomes possible to suppress the increase in the hygroscopicity of the amine adduct, to keep the water content of the core within a desired range, and to further improve the storage stability of the obtained microcapsule type curing agent. Moreover, the restriction | limiting of the handling conditions of a masterbatch type epoxy resin composition is also eliminated. Also in the curing reaction, moisture absorption can be suppressed, so that a decrease in the adhesive strength of the cured product and poor appearance can be prevented.
 エポキシ樹脂(EP2)とイソシアネート化合物の反応物からなるエポキシ樹脂(EP3)のみからなるエポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤と比較して、さらに低温速硬化性を向上させるというために、エポキシ樹脂(e1)中のエポキシ樹脂(EP1)中のエポキシ樹脂(EP3)の含有率を90質量%以下となるように、エポキシ樹脂(EP3)を混合させることが好ましい。この構成により、エポキシ樹脂用硬化剤の軟化点を上げることが容易となり、本発明のエポキシ樹脂用硬化剤をコアするとき、所望の平均粒径を得ることに好適となる。上記エポキシ樹脂(EP1)中にエポキシ樹脂(EP3)を含有させると好ましい理由は下記の通りである。エポキシ樹脂(e1)中に、エポキシ樹脂(EP1)と、上記剛直構造を含まない分子量の大きなエポキシ樹脂を混合することでエポキシ樹脂用硬化剤の軟化点を上げることは可能ではあるが、その一方でそのような硬化剤を用いたエポキシ樹脂組成物の硬化物のガラス転移温度(Tg)の低下や、硬化物の高温での弾性率の低下が懸念される。よって、エポキシ樹脂(EP1)中のエポキシ樹脂(EP3)含有率を90質量%以下とすることで、エポキシ樹脂用硬化剤の軟化点の制御だけでなく、エポキシ樹脂組成物の硬化物のガラス転移温度(Tg)を所望の温度とし、高温での弾性率にも優れるものを得ることができる。またこれは、軟化点を上げるために混合したエポキシ当量の大きいエポキシ樹脂中の構造が、硬化物の網目架橋点間分子量を下げる方向に寄与することが影響している。エポキシ樹脂(e1)中のエポキシ樹脂(EP1)に、エポキシ樹脂(EP2)とイソシアネート化合物の反応物からなるエポキシ樹脂(EP3)を混合することにより、ゴム状弾性理論式から導き出される弾性率よりも高い弾性率となる硬化物となるアミンアダクトを得ることができる。その詳細な理由は明らかではないが、エポキシ樹脂(EP2)とイソシアネート化合物の反応物が有する結合構造が、架橋間分子量に対して理論よりも高いガラス転移温度(Tg)を発現することによると考えられる。また、該結合構造を有するものであれば特に限定はされないが、高ガラス転移温度を得るという点からオキサゾリドン構造、トリアジン構造、イソシアヌレート構造などがより好ましく、これらの構造は、単独でも、また、2種類以上が混合していてもよい。
 本発明実施形態のエポキシ樹脂(EP2)とイソシアネート化合物との反応物からなるエポキシ樹脂(EP3)の製造方法としては、特に限定されず、例えば、エポキシ樹脂(EP2)とイソシアネート化合物を、必要に応じて、触媒の存在下で、例えば50~250℃の温度で0.1~24時間、反応させることにより、得ることができる。また、この反応には溶剤を使用してもよいし、使用しなくてもよい。イソシアネート化合物のモル数とエポキシ樹脂(EP2)とのエポキシ基の当量数の比は、1:0.01~1:50、より好ましくは1:0.02~1:30、さらに好ましくは1:0.05~1:20の範囲である。両者の比が前述の範囲である場合、得られる硬化物のガラス転移温度や弾性率がより良好となる傾向にある。また、イソシアネート化合物のイソシアネート基と、上記エポキシ樹脂(EP2)を反応させる触媒としては、特に限定されないが、エポキシ樹脂(EP2)とイソシアネート化合物との反応において、オキサゾリドン構造を選択的に生成する触媒であることが好ましい。
 このようなオキサゾリドン構造を選択的に生成する触媒としては、特に限定されず、例えば、塩化リチウム、ブトキシリチウム等のリチウム化合物、3フッ化ホウ素等の錯塩;テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムヨーダイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジメチルアミノエタノール、トリエチルアミン、トリブチルアミン、ベンジルジメチルアミン、N-メチルモルホリン等の3級アミン;トリフェニルホスフィン等のホスフィン類;アリルトリフェニルホスホニウムブロマイド、ジアリルジフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムクロライド、エチルトリフェニルホスホニウムヨーダイド、テトラブチルホスホニウムアセテート・酢酸錯体、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムヨーダイド等のホスホニウム化合物;トリフェニルアンチモン及びヨウ素の組み合わせ;2-フェニルイミダゾール、2-メチルイミダゾール等のイミダゾール類;等が挙げられる。これらの触媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
 オキサゾリドン構造形成触媒の使用量は、特に限定されるものではなく、通常は原料となるエポキシ樹脂(EP2)とイソシアネート化合物の総量に対して5ppm~2質量%程度の範囲で使用され、好ましくは10ppm~1質量%、より好ましくは20~5000ppm、さらに好ましくは20~1000ppmの範囲で使用される。触媒の使用量を2質量%以下とすることにより、得られる硬化物のTg低下が抑制される傾向にあり、一方、5ppm以上とすることにより、生産効率が向上する傾向にある。
 また、イソシアネート化合物のイソシアネート基と、上記エポキシ樹脂(EP2)を反応において用いる溶剤としては、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエチルエーテルアセテート等のエステル類;メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類;等が挙げられ、これらは1種を単独で又は2種以上を組み合わせて用いることができる。
Compared with a curing agent for epoxy resin mainly composed of amine adduct obtained by reaction of epoxy resin (e1) consisting only of epoxy resin (EP3) consisting of a reaction product of epoxy resin (EP2) and isocyanate compound and amine compound. In order to further improve the low temperature rapid curability, the epoxy resin (EP3) is used so that the content of the epoxy resin (EP3) in the epoxy resin (EP1) in the epoxy resin (e1) is 90% by mass or less. ) Are preferably mixed. This configuration facilitates raising the softening point of the epoxy resin curing agent, and is suitable for obtaining a desired average particle diameter when the epoxy resin curing agent of the present invention is cored. The reason why the epoxy resin (EP3) is preferably contained in the epoxy resin (EP1) is as follows. It is possible to raise the softening point of the curing agent for epoxy resin by mixing the epoxy resin (EP1) and the epoxy resin having a large molecular weight not containing the rigid structure in the epoxy resin (e1). There is a concern that the glass transition temperature (Tg) of the cured product of the epoxy resin composition using such a curing agent may be decreased, or the elastic modulus of the cured product may be decreased at a high temperature. Therefore, by controlling the content of the epoxy resin (EP3) in the epoxy resin (EP1) to 90% by mass or less, not only the softening point of the epoxy resin curing agent is controlled, but also the glass transition of the cured product of the epoxy resin composition. The temperature (Tg) is set to a desired temperature, and an excellent elastic modulus at a high temperature can be obtained. In addition, this has an influence that the structure in the epoxy resin having a large epoxy equivalent mixed for increasing the softening point contributes to decreasing the molecular weight between the network crosslinking points of the cured product. By mixing an epoxy resin (EP3) composed of a reaction product of an epoxy resin (EP2) and an isocyanate compound with the epoxy resin (EP1) in the epoxy resin (e1), the elastic modulus derived from the rubbery elastic theory formula An amine adduct serving as a cured product having a high elastic modulus can be obtained. Although the detailed reason is not clear, it is considered that the bond structure of the reaction product of the epoxy resin (EP2) and the isocyanate compound expresses a glass transition temperature (Tg) higher than the theoretical with respect to the molecular weight between the crosslinks. It is done. Further, it is not particularly limited as long as it has the bond structure, but from the viewpoint of obtaining a high glass transition temperature, an oxazolidone structure, a triazine structure, an isocyanurate structure, and the like are more preferable. Two or more types may be mixed.
It does not specifically limit as a manufacturing method of the epoxy resin (EP3) which consists of a reaction material of the epoxy resin (EP2) and isocyanate compound of this embodiment, For example, an epoxy resin (EP2) and an isocyanate compound are used as needed. In the presence of a catalyst, it can be obtained, for example, by reacting at a temperature of 50 to 250 ° C. for 0.1 to 24 hours. In this reaction, a solvent may or may not be used. The ratio of the number of moles of the isocyanate compound to the number of equivalents of epoxy groups of the epoxy resin (EP2) is 1: 0.01 to 1:50, more preferably 1: 0.02 to 1:30, still more preferably 1: It is in the range of 0.05 to 1:20. When the ratio between the two is in the above-described range, the resulting cured product tends to have a better glass transition temperature and elastic modulus. In addition, the catalyst for reacting the isocyanate group of the isocyanate compound with the epoxy resin (EP2) is not particularly limited, but a catalyst that selectively generates an oxazolidone structure in the reaction between the epoxy resin (EP2) and the isocyanate compound. Preferably there is.
The catalyst for selectively generating such an oxazolidone structure is not particularly limited, and examples thereof include lithium compounds such as lithium chloride and butoxylithium, complex salts such as boron trifluoride; tetramethylammonium chloride, tetramethylammonium bromide, Quaternary ammonium salts such as tetramethylammonium iodide and tetrabutylammonium bromide; Tertiary amines such as dimethylaminoethanol, triethylamine, tributylamine, benzyldimethylamine and N-methylmorpholine; Phosphines such as triphenylphosphine; Allyltri Phenylphosphonium bromide, diallyldiphenylphosphonium bromide, ethyltriphenylphosphonium chloride, ethyltriphenylphosphonium iodide, tetrabutyl Phosphonium compounds such as sulfonium acetate / acetic acid complex, tetrabutylphosphonium acetate, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, tetrabutylphosphonium iodide; combinations of triphenylantimony and iodine; 2-phenylimidazole, 2-methylimidazole, etc. Imidazoles; and the like. These catalysts can be used individually by 1 type or in combination of 2 or more types.
The amount of the oxazolidone structure-forming catalyst is not particularly limited, and is usually used in the range of about 5 ppm to 2% by mass with respect to the total amount of the epoxy resin (EP2) and isocyanate compound as raw materials, preferably 10 ppm. It is used in the range of ˜1% by mass, more preferably 20 to 5,000 ppm, and still more preferably 20 to 1,000 ppm. By making the usage-amount of a catalyst 2 mass% or less, it exists in the tendency for Tg fall of the hardened | cured material obtained to be suppressed, On the other hand, it exists in the tendency for production efficiency to improve by setting it as 5 ppm or more.
Examples of the solvent used in the reaction of the isocyanate group of the isocyanate compound and the epoxy resin (EP2) include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha; acetone, methyl ethyl ketone, methyl isobutyl ketone. Ketones such as ethyl acetate, acetic acid-n-butyl, esters such as propylene glycol monomethyl ethyl ether acetate; alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve, and butyl carbitol; One kind can be used alone or two or more kinds can be used in combination.
 上記エポキシ樹脂(EP2)としては、多価エポキシ化合物が好適である。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂;4,4’-ビフェノール、3,3’,5,5’-テトラアルキル-4,4’-ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化したエポキシ樹脂;1,1,1-トリス(4-ヒドロキシフェニル)メタン、4,4-(1-(4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化したエポキシ樹脂;1,1,2,2,-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化したエポキシ樹脂;グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p-オキシ安息香酸、β-オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;4,4-ジアミノジフェニルメタンやm-アミノフェノール等のアミン化合物のグリシジル化物;トリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイド;等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。また、上記エポキシ樹脂(EP1)と同一の樹脂を用いることもできる。
 エポキシ樹脂(EP2)としては、エポキシ樹脂組成物の貯蔵安定性をより高める観点や、アミンアダクトの生産性の観点(生産性が圧倒的に高い)から、グリシジル型エポキシ樹脂が好ましい。中でも、硬化物の接着性や耐熱性をより向上させる観点から、ビスフェノールAをグリシジル化したエポキシ樹脂が好ましい。
As said epoxy resin (EP2), a polyvalent epoxy compound is suitable. For example, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetrafluorobisphenol A, etc. Bisphenol-type epoxy resin obtained by glycidylation of bisphenols; 4,4′-biphenol, 3,3 ′, 5,5′-tetraalkyl-4,4′-biphenol, dihydroxynaphthalene, 9,9-bis (4-hydroxy Epoxy resin obtained by glycidylation of other dihydric phenols such as phenyl) fluorene; 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxy) Phenyl) -1-methylethyl) phenyl) ethylidene) epoxy resin obtained by glycidylation of trisphenol such as bisphenol; tetrakisphenol such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane is glycidylated Epoxy resins; phenol novolacs, cresol novolacs, bisphenol A novolaks, brominated phenol novolacs, novolac epoxy resins obtained by glycidylating novolaks such as brominated bisphenol A novolacs, etc .; epoxy resins obtained by glycidylating polyhydric phenols; Aliphatic ether type epoxy resins obtained by glycidylation of polyhydric alcohols such as polyethylene glycol and polyethylene glycol; glycidylation of hydroxycarboxylic acids such as p-oxybenzoic acid and β-oxynaphthoic acid Ester-type epoxy resins; ester-type epoxy resins obtained by glycidylation of polycarboxylic acids such as phthalic acid and terephthalic acid; glycidylated products of amine compounds such as 4,4-diaminodiphenylmethane and m-aminophenol; triglycidyl isocyanurate Glycidyl-type epoxy resins such as amine-type epoxy resins; alicyclic epoxides such as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate; and the like. These can be used alone or in combination of two or more. The same resin as the epoxy resin (EP1) can also be used.
As the epoxy resin (EP2), a glycidyl type epoxy resin is preferable from the viewpoint of further improving the storage stability of the epoxy resin composition and from the viewpoint of productivity of the amine adduct (productivity is overwhelmingly high). Among these, an epoxy resin obtained by glycidylating bisphenol A is preferable from the viewpoint of further improving the adhesiveness and heat resistance of the cured product.
 また、イソシアネート化合物としては、例えば、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート、脂肪族トリイソシアネート、ポリイソシアネート等が挙げられる。
 上記脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。上記脂環式ジイソシアネートとしては、例えば、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、1,4-イソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)-シクロヘキサン、1,3-ビス(2-イソシアナトプロピル-2イル)-シクロヘキサン等が挙げられる。上記芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシレンジイソシアネート、1,5-ナフタレンジイソシアネート等が挙げられる。上記脂肪族トリイソシアネートとしては、例えば、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートメチルヘキサン、2,6-ジイソシアナトヘキサン酸-2-イソシアナトエチル、2,6-ジイソシアナトヘキサン酸-1-メチル-2-イソシアネートエチル等が挙げられる。更に、上記ポリイソシアネートとしては、例えば、ポリメチレンポリフェニルポリイソシアネートや上記ジイソシアネート化合物より誘導されるポリイソシアネート等が挙げられる。上記ジイソシアネートより誘導されるポリイソシアネートとしては、例えば、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート、カルボジイミド型ポリイソシアネート等が挙げられる。
 イソシアネート化合物としては、硬化物の物性をより高める観点や、アミンアダクトの生産性の観点(生産性が圧倒的に高い)から、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネートが好ましい。
Moreover, as an isocyanate compound, aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, aliphatic triisocyanate, polyisocyanate etc. are mentioned, for example.
Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate. Examples of the alicyclic diisocyanate include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis (isocyanatomethyl) -cyclohexane, 1,3- And bis (2-isocyanatopropyl-2-yl) -cyclohexane. Examples of the aromatic diisocyanate include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylene diisocyanate, 1,5-naphthalene diisocyanate, and the like. Examples of the aliphatic triisocyanate include 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-triisocyanate methylhexane, and 2,6-diisocyanato. Examples include hexanoic acid-2-isocyanatoethyl and 2,6-diisocyanatohexanoic acid-1-methyl-2-isocyanatoethyl. Furthermore, examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate and polyisocyanate derived from the diisocyanate compound. Examples of the polyisocyanate derived from the diisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, and carbodiimide type polyisocyanate.
As the isocyanate compound, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and naphthalene diisocyanate are preferable from the viewpoint of further improving the physical properties of the cured product and from the viewpoint of productivity of amine adduct (productivity is overwhelmingly high).
 エポキシ樹脂(EP3)は、エポキシ樹脂(e1)100%中に、10質量%以上90質量%以下の割合で含有されることが好ましい。より好ましくは15質量%以上75質量%以下、更により好ましくは20%以上60%以下である。エポキシ樹脂(e1)全体に対するエポキシ樹脂(EP3)の質量%が10質量%以上であることにより、硬化物の物性の低下を抑えたり、さらにはコアの軟化点が低下も防止したり、エポキシ樹脂用硬化剤を主成分とするコアの平均粒径を制御することを容易にし、貯蔵安定性をより向上させることができる。また、エポキシ樹脂(EP3)の質量%が90質量%以下であることにより、得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の低温速硬化性をより向上することができる。さらに、アミンアダクトの生産性も向上する。
 上記エポキシ樹脂(EP3)のエポキシ当量は、300を超えて1000以下が好ましい。より好ましくは320以上750以下、更により好ましくは340以上600以下である。エポキシ樹脂(EP3)のエポキシ当量が300以下の場合、コアの軟化点が下がり、コアの平均粒径を制御することが困難となる。エポキシ樹脂(EP3)のエポキシ当量が1000以下であることにより、コアの全アミン価が所望の範囲内とすることが容易になり、低温速硬化性がより向上する。また、アミンアダクトの生産性も向上する。
 上記エポキシ樹脂(EP3)の軟化点は、50℃以上100℃以下が好ましい。より好ましくは55℃以上95℃以下、更により好ましくは60℃以上90℃以下である。エポキシ樹脂(EP3)の軟化点が50℃以上であることにより、コアの軟化点の低下を抑え、コアの平均粒径を制御することが容易になる。エポキシ樹脂(EP3)の軟化点が100℃以下であることにより、コアの軟化点が所望範囲よりも高くなることを抑え、本発明のマイクロカプセル型硬化剤、およびエポキシ樹脂組成物の低温速硬化性を安定に得ることができる。
 上記エポキシ樹脂(EP3)の数平均分子量は、500以上3000以下が好ましい。より好ましくは600以上2800以下、更により好ましくは800以上2500以下である。ここで、数平均分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと称す)法を用いてポリスチレン換算で求めた分子量より計算される。
 エポキシ樹脂(EP3)の数平均分子量が500以上であることにより、コアの軟化点がの低下を抑え、コアの平均粒径を制御することが容易になる。エポキシ樹脂(EP3)の数平均分子量が3000以下であることにより、コアの軟化点が所望範囲よりも高くなることを抑え、本発明のマイクロカプセル型硬化剤、およびエポキシ樹脂組成物の低温速硬化性を安定に得ることができる。
 なお、エポキシ樹脂(e1)は、上記エポキシ樹脂(EP1)、およびエポキシ樹脂(EP3)だけでなく、エポキシ樹脂(EP3)を合成する際に用いたエポキシ樹脂(EP2)を含有していてもよい。エポキシ樹脂(EP2)の含有量は、好ましくは0.1質量%以上30質量%以下、より好ましくは0.5質量%以上25質量%以下、更により好ましくは1質量%以上20質量%以下である。エポキシ樹脂(EP2)が30質量%以下であることにより、硬化物のガラス転移温度(Tg)が低下を抑えることができる。また、ガラス転移温度(Tg)より高温で高い弾性率を発揮することができる。0.1質量%以上であることにより、アミンアダクトの生産性の低下を抑えることができる。また、工業的なコストで生産することができる。
 上記エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)に含まれる全塩素量としては、硬化性と貯蔵安定性のバランスの取れたエポキシ樹脂組成物を得る観点から、好ましくは2500ppm以下、より好ましくは2000ppm以下、更に好ましくは1500ppm以下、更により好ましくは1000ppm以下である。
The epoxy resin (EP3) is preferably contained in 100% of the epoxy resin (e1) at a ratio of 10% by mass to 90% by mass. More preferably, they are 15 mass% or more and 75 mass% or less, More preferably, they are 20% or more and 60% or less. When the mass% of the epoxy resin (EP3) with respect to the whole epoxy resin (e1) is 10 mass% or more, the physical properties of the cured product can be prevented from being deteriorated, and further, the softening point of the core can be prevented from being lowered. Therefore, it is easy to control the average particle size of the core mainly composed of the curing agent for use, and the storage stability can be further improved. Moreover, when the mass% of the epoxy resin (EP3) is 90% by mass or less, the low-temperature rapid curability of the resulting epoxy resin curing agent mainly composed of the amine adduct can be improved. Furthermore, the productivity of amine adducts is also improved.
The epoxy equivalent of the epoxy resin (EP3) is preferably more than 300 and 1000 or less. More preferably, it is 320 or more and 750 or less, More preferably, it is 340 or more and 600 or less. When the epoxy equivalent of the epoxy resin (EP3) is 300 or less, the softening point of the core is lowered, and it becomes difficult to control the average particle diameter of the core. When the epoxy equivalent of the epoxy resin (EP3) is 1000 or less, it becomes easy for the total amine value of the core to be within a desired range, and the low temperature rapid curability is further improved. Also, the productivity of amine adducts is improved.
The softening point of the epoxy resin (EP3) is preferably 50 ° C. or higher and 100 ° C. or lower. More preferably, it is 55 degreeC or more and 95 degrees C or less, More preferably, it is 60 degreeC or more and 90 degrees C or less. When the softening point of the epoxy resin (EP3) is 50 ° C. or higher, it is easy to suppress the decrease in the softening point of the core and control the average particle diameter of the core. When the softening point of the epoxy resin (EP3) is 100 ° C. or lower, the softening point of the core is prevented from becoming higher than the desired range, and the microcapsule-type curing agent of the present invention and the epoxy resin composition are cured at a low temperature. Sex can be obtained stably.
The number average molecular weight of the epoxy resin (EP3) is preferably 500 or more and 3000 or less. More preferably, it is 600 or more and 2800 or less, and still more preferably 800 or more and 2500 or less. Here, the number average molecular weight is calculated from the molecular weight determined in terms of polystyrene using a gel permeation chromatography (hereinafter referred to as GPC) method.
When the number average molecular weight of the epoxy resin (EP3) is 500 or more, the decrease in the softening point of the core can be suppressed, and the average particle diameter of the core can be easily controlled. When the number average molecular weight of the epoxy resin (EP3) is 3000 or less, the softening point of the core is prevented from becoming higher than the desired range, and the microcapsule type curing agent of the present invention and the epoxy resin composition are cured at a low temperature. Sex can be obtained stably.
The epoxy resin (e1) may contain not only the epoxy resin (EP1) and the epoxy resin (EP3) but also the epoxy resin (EP2) used when the epoxy resin (EP3) is synthesized. . The content of the epoxy resin (EP2) is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and even more preferably 1% by mass to 20% by mass. is there. When the epoxy resin (EP2) is 30% by mass or less, the glass transition temperature (Tg) of the cured product can be prevented from decreasing. Moreover, a high elastic modulus can be exhibited at a temperature higher than the glass transition temperature (Tg). By being 0.1 mass% or more, a decrease in amine adduct productivity can be suppressed. Moreover, it can be produced at an industrial cost.
The total amount of chlorine contained in the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is preferably from the viewpoint of obtaining an epoxy resin composition having a balance between curability and storage stability. Is 2500 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less, and even more preferably 1000 ppm or less.
 また、上記エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)に含まれる全塩素量としては、エポキシ樹脂(e1)とアミン化合物の反応から得られたアミンアダクトを主成分とするエポキシ樹脂用硬化剤をコアとする粒子を被覆するシェル形成反応のコントロールを容易にする観点から、好ましくは0.01ppm以上、より好ましくは0.1ppm以上、更に好ましくは0.2ppm以上、更により好ましくは0.5ppm以上である。上記エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)の全塩素量0.5ppm以上、1000ppm以下であることにより、シェル形成反応がコアの粒子表面で効率よく行われ、溶剤に対する耐性、かつ、優れた貯蔵安定性を有するシェルを得ることができる。
 ここで、本実施の形態における「全塩素量」とは、化合物又は組成物中に含まれる有機塩素及び無機塩素の総量のことであり、化合物又は組成物に対する質量基準の値である。
 そして、上記エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)に含まれる全塩素量は、つぎのような方法により測定される。まず、キシレンを用いて、エポキシ樹脂組成物からエポキシ樹脂を抽出する(エポキシ樹脂が無くなるまで洗浄と濾過を繰り返す)。次に、ろ液を100℃以下で減圧留去し、測定対象としてのエポキシ樹脂を得る。得られたエポキシ樹脂試料1~10gを、滴定量が3~7mlになるよう精秤し、25mlのエチレングリコールモノブチルエーテルに溶解させる。これに1規定KOHのプロピレングリコール溶液25mlを加えて20分間煮沸し、煮沸後のエポキシ樹脂溶液を硝酸銀水溶液で滴定する。全塩素量は、当該滴定量を用いて計算により得られる。
 一方、全塩素の内、1,2-クロロヒドリン基に含まれる塩素は一般に加水分解性塩素と呼ばれる。上記エポキシ樹脂(e1)に含まれる加水分解性塩素量としては、高い硬化性と貯蔵安定性とを両立させると共に、得られる硬化物の優れた電気特性を確保する観点から、好ましくは50ppm以下、より好ましくは20ppm以下、更に好ましくは10ppm以下、下限として好ましくは0.01ppm以上、好ましくは0.05ppm以上である。
 なお、当該加水分解性塩素量は、つぎのような方法により測定される。まず、上記全塩素量の測定と同様にして測定対象としてのエポキシ樹脂を得る。得られたエポキシ樹脂試料3gを50mlのトルエンに溶解させる。これに0.1規定KOHのメタノール溶液20mlを加えて15分間煮沸し、煮沸後のエポキシ樹脂溶液を硝酸銀水溶液で滴定する。加水分解性塩素量は、当該滴定量を用いて計算により得られる。
The total amount of chlorine contained in the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is mainly composed of an amine adduct obtained from the reaction of the epoxy resin (e1) and an amine compound. From the viewpoint of facilitating the control of the shell forming reaction for coating the particles having the epoxy resin curing agent as a core, preferably 0.01 ppm or more, more preferably 0.1 ppm or more, still more preferably 0.2 ppm or more, Even more preferably, it is 0.5 ppm or more. When the total chlorine content of the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is 0.5 ppm or more and 1000 ppm or less, the shell forming reaction is efficiently performed on the particle surface of the core, A shell having resistance to a solvent and excellent storage stability can be obtained.
Here, the “total chlorine amount” in the present embodiment is the total amount of organic chlorine and inorganic chlorine contained in the compound or composition, and is a mass-based value for the compound or composition.
And the total chlorine amount contained in the said epoxy resin (EP1), an epoxy resin (EP2), and an epoxy resin (EP3) is measured with the following method. First, xylene is used to extract an epoxy resin from the epoxy resin composition (washing and filtration are repeated until the epoxy resin is used up). Next, a filtrate is depressurizingly distilled at 100 degrees C or less, and the epoxy resin as a measuring object is obtained. 1-10 g of the obtained epoxy resin sample is precisely weighed so that the titer is 3-7 ml, and dissolved in 25 ml of ethylene glycol monobutyl ether. To this, 25 ml of a 1N KOH propylene glycol solution is added and boiled for 20 minutes. The boiled epoxy resin solution is titrated with an aqueous silver nitrate solution. The total chlorine amount is obtained by calculation using the titration amount.
On the other hand, chlorine contained in the 1,2-chlorohydrin group out of all chlorine is generally called hydrolyzable chlorine. The amount of hydrolyzable chlorine contained in the epoxy resin (e1) is preferably 50 ppm or less from the viewpoint of ensuring both excellent curability and storage stability and ensuring excellent electrical properties of the resulting cured product. More preferably, it is 20 ppm or less, More preferably, it is 10 ppm or less, As a minimum, Preferably it is 0.01 ppm or more, Preferably it is 0.05 ppm or more.
The amount of hydrolyzable chlorine is measured by the following method. First, an epoxy resin as a measurement object is obtained in the same manner as the measurement of the total chlorine amount. 3 g of the obtained epoxy resin sample is dissolved in 50 ml of toluene. To this, 20 ml of 0.1N KOH methanol solution is added and boiled for 15 minutes, and the boiled epoxy resin solution is titrated with an aqueous silver nitrate solution. The amount of hydrolyzable chlorine is obtained by calculation using the titration amount.
 エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の全アミン価は、370以上1000以下であることで、低温速硬化性に優れつつ、貯蔵安定性に優れるマイクロカプセル型エポキシ樹脂用硬化剤を得ることができる。好ましくは400以上900以下、より好ましくは450以上850以下、更に好ましくは480以上800以下である。
 全アミン価が370以上とすることで低温速硬化性を得ることができる。全アミン価が1000以下とすることで、貯蔵安定性に優れたマイクロカプセル型硬化剤を得ることができる。
 上記アミン化合物としては、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物が挙げられる。脂肪族の炭化水素基に1つ以上の1級アミノ基を有するアミン化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、1,2-プロパンジアミン、テトラメチレンアミン、1,5-ジアミノペンタン、ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、2,2,4-トリエチルヘキサメチルジアミン、1,2-ジアミノプロパン、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルアミン)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルアミン)などが挙げられる。脂肪族の炭化水素基に1つ以上の1級アミノ基と1つ以上の2級アミノ基を有するアミン化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどが挙げられる。脂肪族の炭化水素基に1つ以上の1級アミノ基と1つ以上の3級アミノ基を有するアミン化合物としては、例えば、トリス(2-アミノエチル)アミンが挙げられる。脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物としては、例えば、シクロヘキシルアミン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、アミノエチルピペラジン、ジエチルアミノプロピルアミンなどが挙げられる。脂肪族または脂環式の炭化水素基に1つ以上の2級アミノ基を有するアミン化合物としては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペラジンなどが挙げられる。脂環式の炭化水素基に1つ以上の1級アミンと、1つ以上の2級アミノ基を有するアミン化合物としては、例えば、N,N’-ビス(2-アミノエチル)-ピペラジン、N-[(2-アミノエチル)2-アミノエチル]ピペラジンなどが挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
 さらにこれらのアミン化合物は、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有していれば、エポキシ樹脂(e1)と反応する前に、カルボン酸化合物、スルホン酸化合物、尿素化合物、イソシアネート化合物、チオール化合物と反応していてもよい。
 上記アミン化合物としては、貯蔵安定性と低温速硬化性のバランスにより優れるアミンアダクトを得る観点から、脂環式の炭化水素基に1つ以上の1級アミノ基と1つ以上の2級アミノ基を有するアミン化合物が好ましい。なかでもジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、トリス(2-アミノエチル)アミン、N,N’-ビス(2-アミノエチル)-ピペラジン、N-[(2-アミノエチル)2-アミノエチル]ピペラジンが特に好ましい。
 また、前記エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトが、1級、および/または2級アミノ基を有することが好ましい。1級アミノ基、および2級アミノ基の含有量については、JIS K-7245 「プラスチック-エポキシ樹脂用アミン系硬化剤-第一,第二,第三アミノ基窒素含有量の求め方」に準拠して求めることができる。
The total amine value of the curing agent for epoxy resin mainly composed of an amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is 370 or more and 1000 or less, and thus it is excellent in low temperature fast curing property and stored. A microcapsule type epoxy resin curing agent having excellent stability can be obtained. Preferably they are 400 or more and 900 or less, More preferably, they are 450 or more and 850 or less, More preferably, they are 480 or more and 800 or less.
By setting the total amine value to 370 or more, low temperature rapid curability can be obtained. By setting the total amine value to 1000 or less, a microcapsule type curing agent having excellent storage stability can be obtained.
Examples of the amine compound include amine compounds having one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group. Examples of amine compounds having one or more primary amino groups in an aliphatic hydrocarbon group include methylamine, ethylamine, propylamine, butylamine, ethylenediamine, 1,2-propanediamine, tetramethyleneamine, 1,5 -Diaminopentane, hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2,2,4-triethylhexamethyldiamine, 1,2-diaminopropane, bicyclo [2.2.1] heptane-2,5 -Diylbis (methylamine), bicyclo [2.2.1] heptane-2,6-diylbis (methylamine) and the like. Examples of the amine compound having one or more primary amino groups and one or more secondary amino groups in an aliphatic hydrocarbon group include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine. It is done. Examples of the amine compound having one or more primary amino groups and one or more tertiary amino groups in the aliphatic hydrocarbon group include tris (2-aminoethyl) amine. Examples of amine compounds having one or more primary and / or secondary amino groups in an alicyclic hydrocarbon group include cyclohexylamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, aminoethylpiperazine, And diethylaminopropylamine. Examples of amine compounds having one or more secondary amino groups in an aliphatic or alicyclic hydrocarbon group include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dimethanolamine, Examples include diethanolamine, dipropanolamine, dicyclohexylamine, and piperazine. Examples of amine compounds having one or more primary amines and one or more secondary amino groups in an alicyclic hydrocarbon group include N, N′-bis (2-aminoethyl) -piperazine, N -[(2-aminoethyl) 2-aminoethyl] piperazine and the like. These can be used alone or in combination of two or more.
Furthermore, if these amine compounds have one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group, before reacting with the epoxy resin (e1), You may react with a carboxylic acid compound, a sulfonic acid compound, a urea compound, an isocyanate compound, and a thiol compound.
As the amine compound, from the viewpoint of obtaining an amine adduct that is excellent in the balance between storage stability and low-temperature rapid curability, the alicyclic hydrocarbon group has one or more primary amino groups and one or more secondary amino groups. An amine compound having Among them, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, tris (2-aminoethyl) amine, N, N′-bis (2-aminoethyl) -piperazine, N-[(2-aminoethyl) 2-aminoethyl Piperazine is particularly preferred.
Moreover, it is preferable that the amine adduct obtained by reaction of the said epoxy resin (e1) and an amine compound has a primary and / or secondary amino group. The content of primary and secondary amino groups conforms to JIS K-7245 "Plastics-Amine curing agents for epoxy resins-Determination of nitrogen content of primary, secondary and tertiary amino groups" Can be obtained.
 本発明におけるアミンアダクトを主成分とするエポキシ樹脂用硬化剤を含むコアは赤外線吸収スペクトルにおいて、脂肪族炭化水素基に結合したアミノ基のうち、C-N伸縮振動に由来する1050~1150cm-1の間のピーク高さ(H1)に対する、1655cm-1のピーク高さ(H2)の比(H2/H1)が1.0以上3.0未満にあることを特徴とする。ここで、赤外線吸収は、赤外分光光度計を用いて測定することができるが、特に、フーリエ変換式赤外分光光度計(以下FT-IRとする)を用いることが好ましい。比(H2/H1)が1.0以上とすることは、低温速硬化性を得る観点から好適である。比(H2/H1)が3.0未満とすることで、エポキシ樹脂用硬化剤を含むコアを被覆するシェルが、コアの表面で効率よく行われるとともに、形成される膜の質、および緻密さを制御するうえで好適であるだけでなく、マイクロカプセル型エポキシ樹脂用硬化剤をエポキシ樹脂組成物に配合する際に大粒径の2次粒子が生成することを防止し、貯蔵安定性、耐溶剤性に極めて優れたマイクロカプセル型エポキシ樹脂用硬化剤を実現することができる。
 本発明のエポキシ樹脂用硬化剤を含むコアは、所望の粒径の粒子を得ることが経済的に行えるだけでなく、低温硬化性に優れ、貯蔵安定性の高いエポキシ樹脂組成物を得る観点から、軟化点としては、好ましくは50℃以上90℃以下、より好ましくは55℃以上85℃以下、更に好ましくは60℃以上で80℃以下である。コアの軟化点が50℃以上であることにより、コアの平均粒径を制御することが容易となる。コアの軟化点が90℃以下であることにより、本発明のマイクロカプセル型硬化剤、およびエポキシ樹脂組成物の低温での硬化性を安定に得ることができる。
 本発明のエポキシ樹脂用硬化剤を含むコアの120℃溶融粘度は、30Pa・s以下であることを特徴とする。好ましくは25Pa・s以下、更に好ましくは15Pa・s以下である。120℃溶融粘度を30Pa・s以下とすることで、本発明の効果である低温速硬化性に優れるエポキシ樹脂用硬化剤、およびエポキシ樹脂組成物を得ることができる。また、一方で、貯蔵安定性に優れるエポキシ樹脂用硬化剤、およびエポキシ樹脂組成物を得るためには、120℃溶融粘度は0.1mPa・s以上が好ましい。
In the infrared absorption spectrum, the core containing an epoxy resin curing agent mainly composed of an amine adduct in the present invention has an amino group bonded to an aliphatic hydrocarbon group and has a temperature of 1050 to 1150 cm −1 derived from CN stretching vibration. The ratio (H2 / H1) of the peak height (H2) of 1655 cm −1 to the peak height (H1) is between 1.0 and less than 3.0. Here, infrared absorption can be measured using an infrared spectrophotometer, but it is particularly preferable to use a Fourier transform infrared spectrophotometer (hereinafter referred to as FT-IR). A ratio (H2 / H1) of 1.0 or more is preferable from the viewpoint of obtaining low-temperature rapid curability. When the ratio (H2 / H1) is less than 3.0, the shell covering the core containing the epoxy resin curing agent is efficiently performed on the surface of the core, and the quality and density of the formed film are increased. Is not only suitable for controlling the amount, but also prevents the formation of secondary particles having a large particle size when blending the curing agent for the microcapsule type epoxy resin into the epoxy resin composition, thereby improving the storage stability and resistance. It is possible to realize a microcapsule type epoxy resin curing agent having extremely excellent solvent properties.
The core containing the epoxy resin curing agent of the present invention is not only economical to obtain particles of a desired particle size, but also from the viewpoint of obtaining an epoxy resin composition having excellent low-temperature curability and high storage stability. The softening point is preferably 50 ° C. or higher and 90 ° C. or lower, more preferably 55 ° C. or higher and 85 ° C. or lower, and further preferably 60 ° C. or higher and 80 ° C. or lower. When the softening point of the core is 50 ° C. or higher, it becomes easy to control the average particle diameter of the core. When the softening point of the core is 90 ° C. or lower, the microcapsule-type curing agent and the epoxy resin composition of the present invention can be stably obtained at low temperatures.
The core containing the curing agent for epoxy resin of the present invention has a 120 ° C. melt viscosity of 30 Pa · s or less. The pressure is preferably 25 Pa · s or less, more preferably 15 Pa · s or less. By setting the 120 ° C. melt viscosity to 30 Pa · s or less, it is possible to obtain an epoxy resin curing agent and an epoxy resin composition that are excellent in low-temperature rapid curability, which is an effect of the present invention. On the other hand, in order to obtain an epoxy resin curing agent and an epoxy resin composition having excellent storage stability, the 120 ° C. melt viscosity is preferably 0.1 mPa · s or more.
 上記エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤は、必要に応じて溶剤の存在下において、例えば50~250℃の温度で0.1~24時間、エポキシ樹脂(e1)とアミン化合物との反応を行うことで得ることができる。
 また、上記アミンアダクトは、上述のようなエポキシ樹脂(e1)とアミン化合物との反応により得られるが、ここで、エポキシ樹脂(e1)とアミン化合物との反応における配合比(当量比)は、エポキシ樹脂(e1)のエポキシ基のモル数に対するアミン化合物自体のモル数(当量)として、アミン化合物の1当量当たり、エポキシ樹脂(e1)のエポキシ基0.05~5当量、好ましくは0.2~3当量、更に好ましくは0.5~2当量の割合である。この場合の反応は、無溶媒又は溶媒中で行われる。
 上記当量比を0.05~5当量とすることで、得られるエポキシ樹脂用硬化剤の全アミン価を効果的に制御する観点から好適である。上記当量比を5当量以下にすることにより、得られるエポキシ樹脂用硬化剤の低温速硬化性を所望の性能を得ることができる指標である、エポキシ樹脂用硬化剤の全アミン価、および赤外線吸収スペクトルの高さ比(H2/H1)、軟化点、溶融粘度を所望の範囲内とすることができる。一方、上記当量比を0.05当量以上とすることは、未反応のアミン化合物の回収を経済的に行う観点から有利である。なお、未反応のアミン化合物の回収工程は、上記エポキシ樹脂用硬化剤に含まれるアミン化合物の含量を調整する際にも有用である。
 エポキシ樹脂(e1)とアミン化合物との反応を行うときに、必要に応じて用いられる溶剤としては、例えば、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類、メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類、水等であり、これらは1種を単独で又は2種以上を組み合わせて用いることができる。また、溶剤を用いるとき、溶剤を除去した後の固形分濃度としては、1重量%~80重量%の範囲で、反応を行うことが得られるエポキシ樹脂用硬化剤の全アミン価、および赤外線吸収スペクトルの高さ比(H2/H1)、軟化点、溶融粘度を所望の範囲内とするうえでも好適であり、また、工業的に生産することができる。
The epoxy resin curing agent mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) with an amine compound is 0.1% at a temperature of, for example, 50 to 250 ° C. in the presence of a solvent as necessary. It can be obtained by reacting the epoxy resin (e1) with an amine compound for ˜24 hours.
The amine adduct is obtained by the reaction of the epoxy resin (e1) and the amine compound as described above. Here, the compounding ratio (equivalent ratio) in the reaction of the epoxy resin (e1) and the amine compound is: As the number of moles (equivalent) of the amine compound itself with respect to the number of moles of the epoxy group of the epoxy resin (e1), 0.05 to 5 equivalents of the epoxy group of the epoxy resin (e1) per equivalent of the amine compound, preferably 0.2 The ratio is ˜3 equivalents, more preferably 0.5 to 2 equivalents. In this case, the reaction is carried out without solvent or in a solvent.
The equivalent ratio of 0.05 to 5 equivalents is preferable from the viewpoint of effectively controlling the total amine value of the resulting epoxy resin curing agent. By setting the equivalent ratio to 5 equivalents or less, the low-temperature fast curability of the resulting epoxy resin curing agent is an index capable of obtaining desired performance, the total amine value of the epoxy resin curing agent, and infrared absorption The spectral height ratio (H2 / H1), softening point, and melt viscosity can be set within desired ranges. On the other hand, setting the equivalent ratio to 0.05 equivalents or more is advantageous from the viewpoint of economically recovering the unreacted amine compound. In addition, the collection | recovery process of an unreacted amine compound is useful also when adjusting the content of the amine compound contained in the said hardening | curing agent for epoxy resins.
Examples of the solvent used as necessary when the epoxy resin (e1) is reacted with the amine compound include hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, mineral spirit, naphtha, acetone, With ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate, n-butyl acetate and propylene glycol monomethyl ether acetate, alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve and butyl carbitol, water, etc. Yes, these can be used alone or in combination of two or more. In addition, when using a solvent, the solid content concentration after removing the solvent is in the range of 1 wt% to 80 wt%, and the total amine value of the curing agent for epoxy resin that can be reacted, and infrared absorption It is also suitable for bringing the spectral height ratio (H2 / H1), softening point, and melt viscosity within the desired ranges, and can be industrially produced.
 本発明におけるマイクロカプセル型エポキシ樹脂用硬化剤のコアは、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤を含むコアを出発材料として形成されるが、該エポキシ樹脂用硬化剤は、メジアン径で定義される平均粒径が0.3μmを超えて12μm以下で、好ましくは1μm~10μm、さらに好ましくは1.5μm~5μmである粒子を出発材料として形成される。粒径が12μm以下であることにより、より均質な硬化物を得ることができる。また、組成物を配合する際に、大粒径の凝集物が生成を抑え、硬化物の物性を維持することができうる。0.3μmを超えることにより、出発材料粒子間の凝集を押さえ、本発明のような低温速硬化性を有するシェルの形成をより容易に行うことができる。この結果、カプセル膜形成が不完全な部分が存在することも無くなり、貯蔵安定性、耐溶剤性を維持することができる。 The core of the microcapsule type epoxy resin curing agent in the present invention is formed using a core containing an epoxy resin curing agent mainly composed of an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound as a starting material. However, the epoxy resin curing agent starts with particles having an average particle size defined by a median diameter of more than 0.3 μm and not more than 12 μm, preferably 1 μm to 10 μm, more preferably 1.5 μm to 5 μm. Formed as a material. When the particle size is 12 μm or less, a more uniform cured product can be obtained. Further, when blending the composition, it is possible to suppress the formation of aggregates having a large particle size and maintain the physical properties of the cured product. By exceeding 0.3 μm, aggregation between starting material particles can be suppressed, and formation of a shell having a low temperature fast curing property as in the present invention can be more easily performed. As a result, there is no portion where capsule film formation is incomplete, and storage stability and solvent resistance can be maintained.
 ここで、エポキシ樹脂用硬化剤の平均粒径を調整する方法としては、いくつかの方法が挙げられる。このような方法としては、例えば、塊状のエポキシ樹脂用硬化剤について、粉砕の精密な制御を行う方法、粉砕として粗粉砕と微粉砕を行い、さらに精密な分級装置により所望の範囲のものを得る方法、溶解させたエポキシ樹脂用硬化剤を噴霧乾燥させる装置の条件を制御する方法などがある。
 粉砕する装置としてはボールミル、アトライタ、ビーズミル、ジェットミルなど、必要に応じて使用できるが、衝撃式粉砕装置を用いることが多い。ここで用いられる衝撃式粉砕装置としては、例えば、旋回式流粉体衝突型ジェットミル、粉体衝突型カウンタージェットミルなどのジェットミルが挙げられる。ジェットミルは、空気などを媒体とした高速のジェット流により、固体材料同士を衝突させて微粒子化する装置である。粉砕の精密な制御方法としては、粉砕時の温度、湿度、単位時間当たりの粉砕量などを制御することがあげられる。
 粉砕品の精密な分級方法としては、粉砕した後に、分級により所定サイズの粉粒体を得るため、篩(例えば325メッシュや250メッシュなどの標準篩)や分級機を用いて分級する方法や、その粒子の比重に応じて、風力による分級を行う方法がある。このような微粒子除去の目的として使用できる分級機としては、一般には湿式分級機よりも乾式分級機のほうが優れている。例えば、日鉄鉱業(株)製のエルボージェット、ホソカワミクロン(株)製のファインシャープセパレーター、三協電業(株)製のバリアブルインパクタ、セイシン企業(株)製のスペディッククラシファイア、日本ドナルドソン(株)製のドナセレック、安川商事(株)製のワイエムマイクロカセット、日清エンジニアリング(株)製のターボクラシファイア、その他各種エアーセパレータ、ミクロンセパレーター、ミクロブレックス、アキュカットなどの乾式分級装置などが使用できるがこれらに限定されるわけではない。
 噴霧乾燥装置としては、通常のスプレードライ装置が挙げられる。
Here, there are several methods for adjusting the average particle size of the epoxy resin curing agent. As such a method, for example, a method for precisely controlling pulverization of a bulk epoxy resin curing agent, coarse pulverization and fine pulverization as pulverization, and obtaining a desired range by a precise classification device And a method for controlling conditions of an apparatus for spray-drying the dissolved epoxy resin curing agent.
As an apparatus for pulverization, a ball mill, an attritor, a bead mill, a jet mill or the like can be used as necessary, but an impact pulverizer is often used. Examples of the impact pulverizer used here include jet mills such as a swirl type powder collision type jet mill and a powder collision type counter jet mill. A jet mill is an apparatus that makes solid materials collide with each other by a high-speed jet flow using air or the like as a medium. A precise control method for pulverization includes controlling the temperature, humidity, pulverization amount per unit time, and the like.
As a precise classification method of the pulverized product, in order to obtain a granular material of a predetermined size by classification after pulverization, a method of classification using a sieve (for example, a standard sieve such as 325 mesh or 250 mesh) or a classifier, There is a method of performing classification by wind power according to the specific gravity of the particles. As a classifier that can be used for the purpose of removing such fine particles, a dry classifier is generally superior to a wet classifier. For example, Elbow Jet manufactured by Nippon Steel Mining Co., Ltd., Fine Sharp Separator manufactured by Hosokawa Micron Co., Ltd., Variable Impactor manufactured by Sankyo Electric Industry Co., Ltd., Spedick Classifier manufactured by Seishin Enterprise Co., Ltd., Donaldson Japan ( Can be used with Dona Selec Co., Ltd., YMC Microcassette Co., Ltd. manufactured by Nissin Engineering Co., Ltd., Turbo Classifier manufactured by Nissin Engineering Co., Ltd., and other air separators, Micron Separator, Microblex, Accucut etc. Is not limited to these.
Examples of the spray drying device include a normal spray drying device.
 また、エポキシ樹脂用硬化剤の平均粒径を調整する方法としては、特定の平均粒径と特定の粒径含有率とを有するエポキシ樹脂用硬化剤を複数種個別に形成し、それらを適宜混合する方法を用いることもできる。混合されたものは、更に分級され得る。
 このような粉体の混合を目的として使用する混合機としては、混合する粉体の入った容器本体を回転させる容器回転型、粉体の入った容器本体は回転させず機械攪拌や気流攪拌で混合を行う容器固定型、粉体の入った容器を回転させ、他の外力も使用して混合を行う複合型が挙げられる。
 なお、本実施の形態において「平均粒径」とは、メジアン径で定義される平均粒径を意味する。より具体的には、HORIBA LA-920(堀場製作所(株)製 粒度分布計 HORIBA LA-920)を用い、レーザー回析・光散乱法で測定されるストークス径を指す。
In addition, as a method of adjusting the average particle size of the epoxy resin curing agent, a plurality of epoxy resin curing agents having a specific average particle size and a specific particle size content are individually formed and mixed appropriately. It is also possible to use a method of The mixture can be further classified.
The mixing machine used for the purpose of mixing such powders is a container rotating type that rotates the container body containing the powder to be mixed, and mechanical stirring and air flow stirring without rotating the container body containing the powder. Examples include a container-fixing mold that performs mixing, and a composite mold that rotates a container containing powder and performs mixing using other external force.
In the present embodiment, the “average particle diameter” means an average particle diameter defined by a median diameter. More specifically, it refers to the Stokes diameter measured by a laser diffraction / light scattering method using HORIBA LA-920 (HORIBA, Ltd., particle size distribution meter HORIBA LA-920).
 更に、エポキシ樹脂用硬化剤の形状は特に制限は無く、球状、顆粒状、粉末状、不定形いずれでも良い。中でも、一液性エポキシ樹脂組成物の低粘度化の観点から、形状としては球状が好ましい。なお「球状」とは、真球は勿論の事、不定形の角が丸みを帯びた形状をも包含する。
 上述のとおり、エポキシ樹脂用硬化剤は、上記アミンアダクトを主成分として含む。ここで、エポキシ樹脂用硬化剤には、上記アミンアダクト以外の硬化剤が含まれていても良い。
 エポキシ樹脂用硬化剤に含まれる成分としては、得られるマイクロカプセル型エポキシ樹脂用硬化剤の低温速硬化性と貯蔵安定性とをより良好に両立させる観点から、アミン化合物を含有することが好ましい。
Furthermore, the shape of the curing agent for epoxy resin is not particularly limited, and may be any of spherical, granular, powder, and amorphous. Among these, from the viewpoint of reducing the viscosity of the one-component epoxy resin composition, the shape is preferably spherical. The term “spherical” includes not only true spheres but also shapes having rounded irregular corners.
As described above, the epoxy resin curing agent contains the amine adduct as a main component. Here, the curing agent for epoxy resin may contain a curing agent other than the amine adduct.
As a component contained in the curing agent for epoxy resin, it is preferable to contain an amine compound from the viewpoint of achieving both the low-temperature fast curing property and the storage stability of the resulting microcapsule type curing agent for epoxy resin.
 アミン化合物としては、上記アミンアダクトの原料の例として挙げたアミン化合物の1種又は2種以上を混合して使用することができる。
 また、このようなアミン化合物の量は、上記アミンアダクトを主成分とするエポキシ樹脂用硬化剤からなるコア100質量部に対して、0.001質量部以上3質量部以下、好ましくは0.01質量部以上2.5質量部以下、更に好ましくは0.05質量部以上1.5質量部以下である。当該割合を0.001質量部以上とすることにより、低温速硬化性を発現するうえで好ましいだけでなく、シェルの形成反応において、緻密なシェルを形成することができ、貯蔵安定性、耐溶剤性の高いマイクロカプセル型エポキシ樹脂用硬化剤を得ることができるというメリットがある。一方、3質量部以下とすることで、シェルの形成反応の制御をより安定して行うことができる。
 一方、本発明のアミンアダクトを主成分とするエポキシ樹脂用硬化剤は、低温速硬化性を実現するために必須であるが、その性質上、水分を吸着・保持しやすい性質を持つ。そのため、エポキシ樹脂用硬化剤が含有する水分量は、厳重な管理を要するものである。
As the amine compound, one or two or more of the amine compounds mentioned as examples of the raw material for the amine adduct can be mixed and used.
Moreover, the amount of such an amine compound is 0.001 part by mass or more and 3 parts by mass or less, preferably 0.01 parts by mass with respect to 100 parts by mass of the core made of the epoxy resin curing agent containing the amine adduct as a main component. It is not less than 2.5 parts by mass and more preferably not less than 0.05 parts by mass and not more than 1.5 parts by mass. By making the ratio 0.001 part by mass or more, it is not only preferable for developing low-temperature fast curability, but also in the shell formation reaction, a dense shell can be formed, storage stability, solvent resistance There is a merit that a high-capacity microcapsule type epoxy resin curing agent can be obtained. On the other hand, when the content is 3 parts by mass or less, the shell formation reaction can be controlled more stably.
On the other hand, the epoxy resin curing agent comprising the amine adduct of the present invention as a main component is indispensable for realizing low-temperature fast curing properties, but has the property of easily adsorbing and retaining moisture. Therefore, the moisture content contained in the epoxy resin curing agent requires strict management.
 本発明においてエポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするメジアン径で定義される平均粒径が0.3μmを超えて12μm以下であるエポキシ樹脂用硬化剤を出発材料としてマイクロカプセル型エポキシ樹脂用硬化剤を形成する際、エポキシ樹脂用硬化剤が含有する水分量が、上記アミンアダクトを主成分とするエポキシ樹脂用硬化剤からなるコア100質量部に対して0.05質量部以上3質量部以下とすることで、極めて優れた耐溶剤性を示すだけでなく、エポキシ樹脂用硬化剤が含有するアミン化合物の範囲をより広い範囲で含有させることができ、貯蔵安定性に優れる。またさらに、低温速硬化性にも優れるマイクロカプセル型エポキシ樹脂用硬化剤および/またはマスターバッチ型エポキシ樹脂用硬化剤組成物および/またはエポキシ樹脂組成物が得られる。 In the present invention, an epoxy resin curing agent having an average particle diameter defined by a median diameter mainly composed of an amine adduct obtained by a reaction between an epoxy resin (e1) and an amine compound is more than 0.3 μm and not more than 12 μm. When forming a microcapsule type epoxy resin curing agent as a starting material, the amount of water contained in the epoxy resin curing agent is 100 parts by mass of the epoxy resin curing agent mainly composed of the amine adduct. By not less than 0.05 parts by mass and not more than 3 parts by mass, not only shows extremely excellent solvent resistance, but also can contain a wider range of amine compounds contained in the epoxy resin curing agent, Excellent storage stability. Furthermore, a microcapsule type epoxy resin curing agent and / or a masterbatch type epoxy resin curing agent composition and / or an epoxy resin composition having excellent low-temperature rapid curing properties can be obtained.
 上記アミンアダクトを主成分とするエポキシ樹脂用硬化剤からなるコアが含有する水分量が、0.05質量部以上含有することで、エポキシ樹脂用硬化剤の粒子同士の融着を抑止して、安定な品質状態を保つことができるだけでなく、アミンアダクトを主成分とするエポキシ樹脂用硬化剤をコアとする粒子をシェルで被覆することで得ることができるマイクロカプセル型エポキシ樹脂用硬化剤のコアを被覆する、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、アミン化合物(B)のいずれか2種、またはそれ以上の反応生成物からなるシェルが、コアの表面で効率よく被覆されるとともに、形成される膜の質、および緻密さが、エポキシ樹脂用硬化剤に含有されるアミン化合物を効率的にカプセル膜形成反応に包含する作用を果たし、その結果、貯蔵安定性および耐溶剤性に優れ、かつ、硬化性にも優れる膜質を得ることができる。エポキシ樹脂用硬化剤が含有する水分量が3質量部以下であることにより、エポキシ樹脂用硬化剤の粒子粉末を製造・貯蔵・保管する際に、粒子同士の凝集を抑え、エポキシ樹脂用硬化剤の粒子粉末を安定した品質で製造・管理しやすくなる。また、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、低分子アミン化合物(B)のいずれか2種、またはそれ以上の反応生成物からなるシェルの、エポキシ樹脂用硬化剤の表面での形成時にも、粒子粉末の凝集現象を抑えたことにより、安定した品質のマイクロカプセル型エポキシ樹脂用硬化剤、および/またはマスターバッチ型エキシ樹脂用硬化剤組成物を得ることができる。
 本発明のアミンアダクトを主成分とするエポキシ樹脂用硬化剤からなるコアが含有する水分量を特定範囲にする方法としては、いくつかの方法が挙げられる。例えば、エポキシ樹脂用硬化剤を粉砕する際の温度および湿度環境を制御することにより、所望の含有水分量にする方法、所望の平均粒径を有するエポキシ樹脂用硬化剤を得た後、恒温恒湿状態に一定時間保つことで含有水分量を所望の範囲に調製する方法、エポキシ樹脂用硬化剤の出発粒子を減圧真空状態にて乾燥し、水分を除去した後、密閉状態にして水分の変化を抑制する方法などが挙げられる。
 本発明のエアミンアダクトを主成分とするエポキシ樹脂用硬化剤からなるコアが含有する水分量は、通常の水分量の定量方法なら問題なく使用することができる。例えば、電量滴定を利用するカールフィッシャー法や、TCD(Thermal Conductivity Detector)検出器によるガスクロマトグラフィー、化学反応を起こし水分量に応じて発生する水素ガス量による定量方式などがある。
When the amount of water contained in the core composed of the epoxy resin curing agent containing the amine adduct as a main component is 0.05 parts by mass or more, the fusion of particles of the epoxy resin curing agent is suppressed, The core of the microcapsule type epoxy resin curing agent that can be obtained by covering the particles with the core of the epoxy resin curing agent mainly composed of amine adducts as well as maintaining a stable quality state. A shell made of a reaction product of two or more of an isocyanate compound, an active hydrogen compound, an epoxy resin curing agent (h2), an epoxy resin (e2), and an amine compound (B) The surface of the resin is efficiently coated, and the quality and denseness of the film that is formed make the amine compound contained in the epoxy resin curing agent more efficient. Play action includes the capsule film formation reaction, as a result, excellent storage stability and solvent resistance, and can be obtained film quality excellent in curability. When the amount of water contained in the epoxy resin curing agent is 3 parts by mass or less, when the particle powder of the epoxy resin curing agent is produced, stored, and stored, aggregation of particles is suppressed, and the epoxy resin curing agent It becomes easy to manufacture and manage the particle powder with stable quality. Moreover, the epoxy of the shell which consists of a reaction product of any 2 types or more of an isocyanate compound, an active hydrogen compound, the hardening | curing agent for epoxy resins (h2), an epoxy resin (e2), and a low molecular amine compound (B). Stable quality microcapsule type epoxy resin curing agent and / or masterbatch type epoxy resin curing agent composition can be obtained by suppressing aggregation phenomenon of particle powder even when forming on the surface of resin curing agent. Obtainable.
As a method for setting the amount of water contained in the core composed of the curing agent for epoxy resin mainly composed of the amine adduct of the present invention to be in a specific range, there are several methods. For example, by controlling the temperature and humidity environment when pulverizing a curing agent for epoxy resin, a method for obtaining a desired moisture content, a curing agent for epoxy resin having a desired average particle size, and a constant temperature and constant temperature are obtained. A method of adjusting the moisture content to a desired range by keeping it in a wet state for a certain period of time, drying the starting particles of the epoxy resin curing agent in a vacuum, removing the moisture, and then changing the moisture to a sealed state The method of suppressing this etc. is mentioned.
The water content contained in the core composed of the epoxy resin curing agent mainly composed of the amine amine adduct of the present invention can be used without any problem if it is a normal method for determining the water content. For example, there are a Karl Fischer method using coulometric titration, gas chromatography using a TCD (Thermal Conductivity Detector) detector, a quantification method based on the amount of hydrogen gas generated according to the amount of water that causes a chemical reaction.
 ここで、本発明のアミンアダクトを主成分とするエポキシ樹脂用硬化剤には、上記アミンアダクトとアミン化合物以外の硬化剤が含まれていても良い。
 上記アミンアダクトとアミン化合物以外の硬化剤としては、例えば、カルボン酸化合物、スルホン酸化合物、イソシアネート化合物、尿素化合物及びイミダゾール化合物よりなる群から選択された1種又は2種以上の化合物、およびそれらと上記アミンアダクトの原料として記載したエポキシ樹脂(e1)またはアミン化合物との反応物;
 無水フタル酸、無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸、メチルナジック酸等の酸無水物系硬化剤;
 フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック等のフェノール系硬化剤;
 プロピレングリコール変性ポリメルカプタン、トリメチロールプロパンのチオグルコン酸エステル、ポリスルフィド樹脂等のメルカプタン系硬化剤;
 トリフルオロボランのエチルアミン塩等のハロゲン化ホウ素塩系硬化剤;
 1,8-ジアザビシクロ(5,4,0)-ウンデカ-7-エンのフェノール塩等の四級アンモニウム塩系硬化剤;
 3-フェニル-1,1-ジメチルウレア等の尿素系硬化剤;
 トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン系硬化剤;
等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
 なお、上記カルボン酸化合物としては、例えば、コハク酸、アジピン酸、セバシン酸、フタル酸、ダイマー酸等が挙げられる。
 また、スルホン酸化合物としては、例えば、エタンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 また、イソシアネート化合物としては、例えば、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート、脂肪族トリイソシアネート、ポリイソシアネート等が挙げられる。
 上記脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。上記脂環式ジイソシアネートとしては、例えば、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、1,4-イソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)-シクロヘキサン、1,3-ビス(2-イソシアナトプロピル-2イル)-シクロヘキサン等が挙げられる。上記芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシレンジイソシアネート、1,5-ナフタレンジイソシアネート等が挙げられる。上記脂肪族トリイソシアネートとしては、例えば、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートメチルヘキサン、2,6-ジイソシアナトヘキサン酸-2-イソシアナトエチル、2,6-ジイソシアナトヘキサン酸-1-メチル-2-イソシアネートエチル等が挙げられる。更に、上記ポリイソシアネートとしては、例えば、ポリメチレンポリフェニルポリイソシアネートや上記ジイソシアネート化合物より誘導されるポリイソシアネート等が挙げられる。上記ジイソシアネートより誘導されるポリイソシアネートとしては、例えば、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート、カルボジイミド型ポリイソシアネート等が挙げられる。
 また、上記尿素化合物としては、例えば、尿素、メチル尿素、ジメチル尿素、エチル尿素、t-ブチル尿素等が挙げられる。
 また、上記イミダゾール化合物としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール等のイミダゾール類が挙げられる。
Here, the curing agent for epoxy resin mainly composed of the amine adduct of the present invention may contain a curing agent other than the amine adduct and the amine compound.
Examples of the curing agent other than the amine adduct and the amine compound include one or two or more compounds selected from the group consisting of a carboxylic acid compound, a sulfonic acid compound, an isocyanate compound, a urea compound, and an imidazole compound, and A reaction product with the epoxy resin (e1) or amine compound described as a raw material of the amine adduct;
Acid anhydride curing agents such as phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic acid;
Phenolic curing agents such as phenol novolak, cresol novolak, bisphenol A novolak;
Mercaptan curing agents such as propylene glycol-modified polymercaptan, trimethylolpropane thiogluconate, polysulfide resin;
Boron halide-based curing agents such as ethylamine salt of trifluoroborane;
Quaternary ammonium salt curing agents such as phenol salt of 1,8-diazabicyclo (5,4,0) -undec-7-ene;
Urea curing agents such as 3-phenyl-1,1-dimethylurea;
Phosphine curing agents such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate;
Etc. These can be used alone or in combination of two or more.
Examples of the carboxylic acid compound include succinic acid, adipic acid, sebacic acid, phthalic acid, and dimer acid.
Examples of the sulfonic acid compound include ethanesulfonic acid and p-toluenesulfonic acid.
Moreover, as an isocyanate compound, aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, aliphatic triisocyanate, polyisocyanate etc. are mentioned, for example.
Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate. Examples of the alicyclic diisocyanate include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis (isocyanatomethyl) -cyclohexane, 1,3- And bis (2-isocyanatopropyl-2-yl) -cyclohexane. Examples of the aromatic diisocyanate include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylene diisocyanate, 1,5-naphthalene diisocyanate, and the like. Examples of the aliphatic triisocyanate include 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-triisocyanate methylhexane, and 2,6-diisocyanato. Examples include hexanoic acid-2-isocyanatoethyl and 2,6-diisocyanatohexanoic acid-1-methyl-2-isocyanatoethyl. Furthermore, examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate and polyisocyanate derived from the diisocyanate compound. Examples of the polyisocyanate derived from the diisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, and carbodiimide type polyisocyanate.
Examples of the urea compound include urea, methylurea, dimethylurea, ethylurea, t-butylurea and the like.
Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-aminoethyl-2-methylimidazole. 1- (2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3- Examples thereof include imidazoles such as butoxypropyl) -2-methylimidazole and 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4-methylimidazole.
 また、本発明のアミンアダクトを主成分とするエポキシ樹脂用硬化剤を含むコアに含まれる全塩素量としては、貯蔵安定性と低温速硬化性のバランスの高いマイクロカプセル型エポキシ樹脂用硬化剤を得る観点から、好ましくは2500ppm以下、より好ましくは2000ppm以下、更に好ましくは1500ppm以下、更により好ましくは1000ppm以下である。コアに含まれる全塩素量としては、シェル形成反応のコントロールを容易にする観点から、好ましくは0.01ppm以上、より好ましくは0.1ppm以上、更に好ましくは0.2ppm以上、更により好ましくは0.5ppm以上である。全塩素量0.5ppm以上、1000ppm以下であることにより、シェル形成反応が硬化剤表面で効率よく行われ、溶剤に対する耐性にも優れた貯蔵安定性を有するシェルを得ることができる。 In addition, as the total amount of chlorine contained in the core containing the epoxy resin curing agent mainly composed of the amine adduct of the present invention, a microcapsule type epoxy resin curing agent having a high balance between storage stability and low temperature rapid curing property is used. From the viewpoint of obtaining, it is preferably 2500 ppm or less, more preferably 2000 ppm or less, still more preferably 1500 ppm or less, and even more preferably 1000 ppm or less. The total amount of chlorine contained in the core is preferably 0.01 ppm or more, more preferably 0.1 ppm or more, still more preferably 0.2 ppm or more, and even more preferably 0, from the viewpoint of facilitating the control of the shell formation reaction. .5 ppm or more. When the total chlorine content is 0.5 ppm or more and 1000 ppm or less, a shell-forming reaction is efficiently performed on the surface of the curing agent, and a shell having storage stability excellent in resistance to a solvent can be obtained.
 また、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトの重量平均分子量が、150以上20000未満であることを特徴とする。好ましくは300以上8000以下、さらに好ましくは350以上2500以下である。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと称す)法を用いてポリエチレンオキシド換算で求めた分子量より計算される。
 重量平均分子量が150より大きいことで、貯蔵安定性に優れたマイクロカプセル化が可能なコアを得ることができる。重量平均分子量が20000未満であることにより、マイクロカプセル型エポキシ樹脂用硬化剤の低温速硬化性がより向上する。
 エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトの重量平均分子量を、150以上20000未満とすることで、優れた低温速硬化性と貯蔵安定性を両立することができる。
Moreover, the weight average molecular weight of the amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is 150 or more and less than 20000. Preferably they are 300 or more and 8000 or less, More preferably, they are 350 or more and 2500 or less. Here, the weight average molecular weight is calculated from the molecular weight determined in terms of polyethylene oxide using a gel permeation chromatography (hereinafter referred to as GPC) method.
When the weight average molecular weight is greater than 150, a core capable of microencapsulation with excellent storage stability can be obtained. When the weight average molecular weight is less than 20000, the low-temperature rapid curability of the microcapsule type epoxy resin curing agent is further improved.
By setting the weight average molecular weight of the amine adduct obtained by the reaction of the epoxy resin (e1) and the amine compound to 150 or more and less than 20000, both excellent low-temperature fast curability and storage stability can be achieved.
 I-2.シェル
 本実施の形態におけるマイクロカプセル型エポキシ樹脂用硬化剤は、上述のようなエポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤をコアとし、当該コアを被覆するシェルとを有する。
I-2. Shell The microcapsule-type epoxy resin curing agent in the present embodiment has, as a core, an epoxy resin curing agent mainly composed of an amine adduct obtained by a reaction between the epoxy resin (e1) and the amine compound as described above. And a shell covering the core.
 上記シェルとしては、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、及びアミン化合物(B)よりなる群から選択された2種以上を原料として得られる反応生成物を含むことが好適である。
 ここで、イソシアネート化合物としては、上記エポキシ樹脂用硬化剤に含まれていても良い、上記アミンアダクト以外の硬化剤の原料として説明したイソシアネート化合物が使用できる。
 上記活性水素化合物としては、例えば、水、少なくとも1個の一級アミノ基および/または二級アミノ基を有する化合物、少なくとも1個の水酸基を有する化合物等を挙げることができる。
 少なくとも1個の一級アミノ基および/または二級アミノ基を有する化合物としては、脂肪族アミン、脂環式アミン、芳香族アミンを使用することができる。
 脂肪族アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ジブチルアミン等のアルキルアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン;
 ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン;
 ポリオキシプロピレンジアミン、ポリオキシエチレンジアミン等のポリオキシアルキレンポリアミン類;
 等が挙げられる。
 脂環式アミンとしては、例えば、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族アミンとしては、アニリン、トルイジン、べンジルアミン、ナフチルアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。
 一方、少なくとも1個の水酸基を有する化合物としては、アルコール化合物とフェノール化合物等が挙げられる。
 アルコール化合物としては、例えば、メチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、ドテシルアルコール、ステアリルアルコール、エイコシルアルコール、アリルアルコール、クロチルアルコール、プロパルギルアルコール、シクロペンタノール、シクロヘキサノール、べンジルアルコール、シンナミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチル等のモノアルコール類;
 エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、水添ビスフェノールA、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;
 少なくとも1個のエポキシ基を有する化合物と、少なくとも1個の水酸基、カルボキシル基、一級または二級アミノ基、メルカプト基を有する化合物との反応により得られる、二級水酸基を1分子中に2個以上有する化合物等の多価アルコール類;
 等が挙げられる。これらのアルコール化合物においては、第一、第二、または第三アルコールのいずれでもよい。
 フェノール化合物としては、例えば、石炭酸、クレゾール、キシレノール、カルバクロール、モチール、ナフトール等のモノフェノール類、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、ピロガロール、フロログルシン等の多価フェノール類を挙げられる。
 これら少なくとも1個の水酸基を有する化合物としては、潜在性や耐溶剤性の観点から、多価アルコール類や多価フェノール類等が好ましく、多価アルコール類が特に好ましい。
 上記エポキシ樹脂用硬化剤(h2)としては、上述したエポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤と同一であっても、異なっていてもよいが、同一であることが好ましい。
 また、エポキシ樹脂(e2)としては、上述したエポキシ樹脂(e1)やエポキシ樹脂(EP2)で挙げられたエポキシ樹脂、中でも、多価エポキシ化合物を好ましく用いることができる。なお、エポキシ樹脂(e2)は、上記エポキシ樹脂(e1)やエポキシ樹脂(EP2)、後述するエポキシ樹脂(e3)と同一であっても、異なっていてもよい。エポキシ樹脂(e2)としては、複数種を併用することも可能である。
 ここで、エポキシ樹脂は、通常、分子内に塩素が結合した不純末端を有するが、このような不純末端は硬化物の電気特性に悪影響を及ぼす。そこで、上記エポキシ樹脂(e2)に含まれる全塩素量としては、好ましくは2500ppm以下、より好ましくは1500ppm以下、更に好ましくは1000ppm以下である。
The shell is a reaction product obtained by using two or more selected from the group consisting of an isocyanate compound, an active hydrogen compound, a curing agent for epoxy resin (h2), an epoxy resin (e2), and an amine compound (B) as a raw material. It is preferable to include an object.
Here, as an isocyanate compound, the isocyanate compound demonstrated as a raw material of hardening | curing agents other than the said amine adduct which may be contained in the said hardening | curing agent for epoxy resins can be used.
Examples of the active hydrogen compound include water, a compound having at least one primary amino group and / or a secondary amino group, a compound having at least one hydroxyl group, and the like.
As the compound having at least one primary amino group and / or secondary amino group, aliphatic amines, alicyclic amines, and aromatic amines can be used.
Examples of the aliphatic amine include alkylamines such as methylamine, ethylamine, propylamine, butylamine, and dibutylamine, and alkylenediamines such as ethylenediamine, propylenediamine, butylenediamine, and hexamethylenediamine;
Polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine;
Polyoxyalkylene polyamines such as polyoxypropylenediamine and polyoxyethylenediamine;
Etc.
Examples of the alicyclic amine include cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, and isophoronediamine.
Aromatic amines include aniline, toluidine, benzylamine, naphthylamine, diaminodiphenylmethane, diaminodiphenylsulfone, and the like.
On the other hand, examples of the compound having at least one hydroxyl group include alcohol compounds and phenol compounds.
Examples of alcohol compounds include methyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, dodecyl alcohol, stearyl alcohol, and eicosyl. Monoalcohols such as alcohol, allyl alcohol, crotyl alcohol, propargyl alcohol, cyclopentanol, cyclohexanol, benzyl alcohol, cinnamyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monobutyl;
Polyhydric alcohols such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-butanediol, 1,4-butanediol, hydrogenated bisphenol A, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol;
Two or more secondary hydroxyl groups obtained in a molecule by reaction between a compound having at least one epoxy group and a compound having at least one hydroxyl group, carboxyl group, primary or secondary amino group, or mercapto group Polyhydric alcohols such as compounds having:
Etc. These alcohol compounds may be any of primary, secondary, or tertiary alcohols.
Examples of the phenol compound include monophenols such as carboxylic acid, cresol, xylenol, carvacrol, motile, and naphthol, and polyhydric phenols such as catechol, resorcin, hydroquinone, bisphenol A, bisphenol F, pyrogallol, and phloroglucin.
As these compounds having at least one hydroxyl group, polyhydric alcohols, polyhydric phenols and the like are preferable from the viewpoints of latency and solvent resistance, and polyhydric alcohols are particularly preferable.
The epoxy resin curing agent (h2) is the same as or different from the epoxy resin curing agent mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) and the amine compound. However, they are preferably the same.
Moreover, as an epoxy resin (e2), a polyvalent epoxy compound can be preferably used among the epoxy resins mentioned by the epoxy resin (e1) and the epoxy resin (EP2) mentioned above. The epoxy resin (e2) may be the same as or different from the epoxy resin (e1), the epoxy resin (EP2), and the epoxy resin (e3) described later. As the epoxy resin (e2), a plurality of types can be used in combination.
Here, the epoxy resin usually has an impure end in which chlorine is bonded in the molecule, but such an end impairs the electrical characteristics of the cured product. Therefore, the total amount of chlorine contained in the epoxy resin (e2) is preferably 2500 ppm or less, more preferably 1500 ppm or less, and still more preferably 1000 ppm or less.
 アミン化合物(B)としては、上記アミンアダクトの原料の例として挙げたアミン化合物や、上記エポキシ樹脂用硬化剤に含まれていても良い、上記アミンアダクト以外の硬化剤の原料として説明したアミン化合物、イミダゾール化合物が使用できる。これらは、1種又は2種以上を混合して使用することができる。
 上記のようなイソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、及びアミン化合物(B)よりなる群から選択された2種以上を原料として行う反応条件としては、特に限定されるものではないが、通常、-10℃~150℃の温度範囲で、10分~12時間の反応時間である。
 イソシアネート化合物と活性水素化合物とを用いる場合の配合比は、(イソシアネート化合物中のイソシアネート基):(活性水素化合物中の活性水素)(当量比)として、好ましくは1:0.1~1:1000の範囲である。
 エポキシ樹脂用硬化剤(h2)とエポキシ樹脂(e2)とを用いる場合の配合比は、(エポキシ樹脂用硬化剤(h2)):(エポキシ樹脂(e2))(質量比)として、好ましくは1:0.001~1:1000、より好ましくは1:0.01~1:100である。
 上記反応は、必要により分散媒中で行なうことができる。分散媒としては、溶媒、可塑剤、樹脂類等が挙げられる。
 溶媒としては、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;
 酢酸エチル、酢酸-n-ブチル、プロピレングリコールモノメチルエチルエーテルアセテート等のエステル類;
 メタノール、イソプロパノール、n-ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類;
 水等が挙げられる。
 可塑剤としては、例えば、フタル酸ジブチル、フタル酸ジ(2-エチルヘキシシル)等のフタル酸ジエステル系可塑剤;
 アジピン酸ジ(2-エチルヘキシシル)等の脂肪族二塩基酸エステル系可塑剤;
 リン酸トリクレジル等のリン酸トリエステル系可塑剤;
 ポリエチレングリコールエステル等のグリコールエステル系可塑剤;
 等が挙げられる。
 樹脂類としては、例えば、シリコーン樹脂類、エポキシ樹脂類、フェノール樹脂類等が挙げられる。
As the amine compound (B), the amine compound mentioned as an example of the raw material for the amine adduct and the amine compound described as a raw material for the curing agent other than the amine adduct, which may be contained in the curing agent for epoxy resin An imidazole compound can be used. These can be used 1 type or in mixture of 2 or more types.
As reaction conditions for using as a raw material two or more selected from the group consisting of the isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) as described above Although not particularly limited, the reaction time is usually 10 minutes to 12 hours in the temperature range of −10 ° C. to 150 ° C.
The blending ratio when using an isocyanate compound and an active hydrogen compound is preferably 1: 0.1 to 1: 1000 as (isocyanate group in the isocyanate compound) :( active hydrogen in the active hydrogen compound) (equivalent ratio). Range.
The blending ratio in the case of using the epoxy resin curing agent (h2) and the epoxy resin (e2) is preferably 1 as (the epoxy resin curing agent (h2)) :( epoxy resin (e2)) (mass ratio). : 0.001 to 1: 1000, more preferably 1: 0.01 to 1: 100.
The above reaction can be carried out in a dispersion medium if necessary. Examples of the dispersion medium include a solvent, a plasticizer, and resins.
Examples of the solvent include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, naphtha;
Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone;
Esters such as ethyl acetate, n-butyl acetate, propylene glycol monomethyl ethyl acetate;
Alcohols such as methanol, isopropanol, n-butanol, butyl cellosolve, butyl carbitol;
Water etc. are mentioned.
Examples of the plasticizer include phthalic acid diester plasticizers such as dibutyl phthalate and di (2-ethylhexyl) phthalate;
Aliphatic dibasic acid ester plasticizers such as di (2-ethylhexyl) adipate;
Phosphate triester plasticizers such as tricresyl phosphate;
Glycol ester plasticizers such as polyethylene glycol esters;
Etc.
Examples of the resins include silicone resins, epoxy resins, phenol resins and the like.
 中でも、エポキシ樹脂(e2)とエポキシ樹脂硬化剤(h2)との反応は、通常-10℃~150℃、好ましくは0℃~100℃の温度範囲で、1~168時間、好ましくは2時間~72時間の反応時間で行われる。また、分散媒として好ましくは、溶媒、可塑剤等が用いられる。
 なお、溶媒、可塑剤としては、前述のイソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、アミン化合物(B)のいずれか2種、またはそれ以上の反応で使用できる溶媒や、可塑剤の例として挙げたものが使用できる。
 なお、上記のような反応生成物が、上記シェル中に占める割合としては、通常1質量%以上、好ましくは50質量%以上であり、100質量%であっても良い。
Among them, the reaction between the epoxy resin (e2) and the epoxy resin curing agent (h2) is usually in the temperature range of −10 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 1 to 168 hours, preferably 2 hours to It is carried out with a reaction time of 72 hours. Moreover, a solvent, a plasticizer, etc. are preferably used as a dispersion medium.
In addition, as a solvent and a plasticizer, any of the aforementioned isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) may be used in a reaction of two or more. Solvents that can be used and those listed as examples of plasticizers can be used.
In addition, as a ratio which the above reaction products occupy in the said shell, it is 1 mass% or more normally, Preferably it is 50 mass% or more, and 100 mass% may be sufficient.
 本実施の形態におけるマイクロカプセル型エポキシ樹脂用硬化剤において、コアを被覆するようにシェルを形成する方法としては、例えば、以下のような方法を採用することができる。
(a)シェル成分を分散媒である溶剤に溶解し、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の粒子を分散媒に分散させ、シェル成分の溶解度を下げて、エポキシ樹脂用硬化剤粒子の表面にシェルを析出させる方法。
(b)エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の粒子を分散媒に分散させ、この分散媒にシェルを形成する材料を添加してエポキシ樹脂用硬化剤の粒子上に析出させる方法。
(c)分散媒にシェルを形成する材料の原料を添加し、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤の粒子の表面を反応の場として、そこでシェル形成材料を生成する方法。
 ここで、上記(b)、(c)の方法は、反応と被覆を同時に行うことができるので好ましい。なお、分散媒としては、溶媒、可塑剤、樹脂等が挙げられる。また、溶媒、可塑剤、樹脂としては、上述したイソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、及び前記アミン化合物(B)よりなる群から選択された2種以上を原料として得られる反応生成物を得る際に使用できる溶媒、可塑剤、樹脂の例として挙げたものが使用できる。
 また、分散媒としてエポキシ樹脂を用いると、シェル形成と同時に、マスターバッチ型エポキシ樹脂硬化剤組成物を得ることができるため好適である。
 なお、シェルの形成反応は、通常、-10℃~150℃、好ましくは0℃から100℃の温度範囲で、10分~72時間、好ましくは30分~24時間の反応時間で行われる。
 本発明におけるマイクロカプセル型硬化剤の表面に有する官能基については、コアが、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤を出発材料とし、かつ、エポキシ樹脂用硬化剤がメジアン径で定義される平均粒径が0.3μmを超えて12μm以下である粒子を出発材料として形成され、
 前記シェルが、波数1630~1680cm-1の赤外線を吸収する結合基(x)と波数1680~1725cm-1の赤外線を吸収する結合基(y)および波数1730~1755cm-1の赤外線を吸収する結合基(z)を少なくとも表面に有することを特徴とする。結合基(x)のうち、特に有用なものとして、ウレア結合を挙げることができる。結合基(y)のうち、特に有用なものとして、ビュレット結合を挙げることができる。また、結合基(z)のうち、特に有用なものは、ウレタン結合である。また、結合基(x)、(y)および(z)がエポキシ樹脂用硬化剤を出発材料として形成されるマイクロカプセル型エポキシ樹脂用硬化剤のコアの少なくとも表面に有することは、顕微FT-IRを用いて測定することができる。
 ここで、上記シェルが有する、波数1630~1680cm-1の赤外線を吸収する結合基(x)と波数1680~1725cm-1の赤外線を吸収する結合基(y)および波数1730~1755cm-1の赤外線を吸収する結合基(z)は、それぞれ1~1000meq/kg、1~1000meq/kgおよび1~200meq/kgの範囲の濃度を有していることが好ましい。ここで言う濃度とは、マイクロカプセル型エポキシ樹脂用硬化剤に対する値である。
In the microcapsule type epoxy resin curing agent in the present embodiment, as a method of forming the shell so as to cover the core, for example, the following method can be employed.
(A) Dissolving the shell component in a solvent that is a dispersion medium, and dispersing the epoxy resin curing agent particles mainly composed of an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound in the dispersion medium; A method of lowering the solubility of the shell component to deposit the shell on the surface of the curing agent particle for epoxy resin.
(B) Disperse particles of a curing agent for an epoxy resin mainly composed of an amine adduct obtained by the reaction of the epoxy resin (e1) and an amine compound in a dispersion medium, and add a material that forms a shell to the dispersion medium. And depositing on the epoxy resin curing agent particles.
(C) The material of the shell forming material is added to the dispersion medium, and the surface of the epoxy resin curing agent particle mainly composed of an amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound is reacted. As a field, a method of generating shell-forming material there.
Here, the methods (b) and (c) are preferable because the reaction and the coating can be performed simultaneously. In addition, as a dispersion medium, a solvent, a plasticizer, resin, etc. are mentioned. The solvent, plasticizer, and resin are selected from the group consisting of the isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), and amine compound (B) described above. What was mentioned as an example of the solvent, plasticizer, and resin which can be used when obtaining the reaction product obtained by using seed | species or more as a raw material can be used.
Further, it is preferable to use an epoxy resin as a dispersion medium because a masterbatch type epoxy resin curing agent composition can be obtained simultaneously with shell formation.
The shell formation reaction is usually carried out in the temperature range of −10 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for a reaction time of 10 minutes to 72 hours, preferably 30 minutes to 24 hours.
With respect to the functional group on the surface of the microcapsule type curing agent in the present invention, the starting material is a curing agent for epoxy resin whose core is an amine adduct obtained by the reaction between the epoxy resin (e1) and an amine compound. In addition, the epoxy resin curing agent is formed starting from particles having an average particle size defined by a median diameter of more than 0.3 μm and 12 μm or less,
The shell includes a bonding group (x) that absorbs infrared light having a wave number of 1630 to 1680 cm −1 , a bonding group (y) that absorbs infrared light having a wave number of 1680 to 1725 cm −1 , and a bond that absorbs infrared light having a wave number of 1730 to 1755 cm −1. It has a group (z) at least on the surface. Of the bonding groups (x), urea linkages can be mentioned as particularly useful. Among the linking groups (y), buret bonds can be mentioned as particularly useful. Of the bonding groups (z), a particularly useful one is a urethane bond. In addition, the fact that the bonding groups (x), (y) and (z) have at least the surface of the core of the microcapsule type epoxy resin curing agent formed using the epoxy resin curing agent as a starting material is a microscopic FT-IR. Can be measured.
Here, the shell has an infrared wave number 1630 ~ 1680 cm-binding group that absorbs infrared -1 (x) and the binding group that absorbs infrared wave number 1680 ~ 1725cm -1 (y) and a wavenumber of 1730 ~ 1755 cm -1 It is preferable that the bonding group (z) that absorbs has a concentration in the range of 1 to 1000 meq / kg, 1 to 1000 meq / kg, and 1 to 200 meq / kg, respectively. The concentration referred to here is a value for the microcapsule type epoxy resin curing agent.
 結合基(x)の濃度が1meq/kg以上の場合、機械的剪断力に対して高い耐性を有するカプセル型硬化剤を得るのに有利である。また、1000meq/kg以下の場合、高い硬化性を得るのに有利である。さらに好ましい結合基(x)の濃度範囲は10~300meq/kgである。
 結合基(y)の濃度が1meq/kg以上の場合、機械的剪断力に対して高い耐性を有するカプセル型硬化剤を得るのに有利である。また、1000meq/kg以下の場合、高い硬化性を得るのに有利である。さらに好ましい結合基(y)の範囲は10~200meq/kgである。
 結合基(z)の濃度が1meq/kg以上の場合、機械的剪断力に対して高い耐性を有するシェルを形成するのに有利である。また、200meq/kg以下の場合、高い硬化性を得るのに有利である。さらに好ましい結合基(z)の濃度範囲は、5~100meq/kgである。
 シェルが有する結合基(x)、(y)、(z)が、それぞれ、ウレア基、ビュレット基、ウレタン基であり、かつ、結合基(x)の濃度(Cx)と結合基(x)、(y)、(z)の合計の濃度(Cx+Cy+Cz)との比(Cx/(Cx+Cy+Cz))が、0.50以上0.75未満にあることを特徴とする。濃度比が0.50以上であることは、マイクロカプセル型エポキシ樹脂用硬化剤の耐溶剤性の点から好ましい。また、濃度比が0.75以下であることは、シェル形成反応において、マイクロカプセル型エポキシ樹脂用硬化剤同士の融着・凝集を抑え、マイクロカプセル型エポキシ樹脂用硬化剤を安定した品質で管理しやすくなるという点から好ましい。
When the concentration of the bonding group (x) is 1 meq / kg or more, it is advantageous to obtain a capsule type curing agent having high resistance against mechanical shearing force. Moreover, when it is 1000 meq / kg or less, it is advantageous to obtain high curability. A more preferable concentration range of the linking group (x) is 10 to 300 meq / kg.
When the concentration of the bonding group (y) is 1 meq / kg or more, it is advantageous to obtain a capsule-type curing agent having high resistance against mechanical shearing force. Moreover, when it is 1000 meq / kg or less, it is advantageous to obtain high curability. A more preferable range of the linking group (y) is 10 to 200 meq / kg.
When the concentration of the bonding group (z) is 1 meq / kg or more, it is advantageous to form a shell having high resistance against mechanical shearing force. Moreover, when it is 200 meq / kg or less, it is advantageous to obtain high curability. A more preferable concentration range of the linking group (z) is 5 to 100 meq / kg.
The bonding groups (x), (y), and (z) of the shell are a urea group, a burette group, and a urethane group, respectively, and the concentration (Cx) of the bonding group (x) and the bonding group (x), The ratio (Cx / (Cx + Cy + Cz)) to the total concentration (Cx + Cy + Cz) of (y) and (z) is 0.50 or more and less than 0.75. A concentration ratio of 0.50 or more is preferable from the viewpoint of solvent resistance of the microcapsule type epoxy resin curing agent. The concentration ratio of 0.75 or less suppresses the fusion / aggregation of the microcapsule type epoxy resin curing agents in the shell formation reaction, and manages the microcapsule type epoxy resin curing agent with stable quality. It is preferable from the point of being easy to do.
 結合基(x)、結合基(y)および結合基(z)の濃度の定量、および結合基の濃度比の定量は、以下に示す方法にて定量することができる。まず、結合基(x)、(y)、(z)を定量する検量線の作成方法として、日本分光(株)社製FT/IR-410を使用して、標準物質としてテトラメチルこはく酸ニトリル
Figure JPOXMLDOC01-appb-C000014

を準備する。さらに1630~1680cm-1の吸収帯を持つ結合基(x)を有するが、(y)および(z)を有しないモデル化合物(1)
Figure JPOXMLDOC01-appb-C000015

、同様に1680~1725cm-1の吸収帯を持つ結合基(y)を有するが、結合基(x)および(z)を有しないモデル化合物(2)
Figure JPOXMLDOC01-appb-C000016

、1730~1755cm-1の吸収帯を持つ結合基(z)を有するが、結合基(x)および(y)を有しないモデル化合物(3)
Figure JPOXMLDOC01-appb-C000017

を準備する。そして、標準物質とモデル化合物(1)、(2)、(3)のそれぞれを、任意の割合で、精密に秤量して混合した混合物を、KBr粉末とともに粉砕して錠剤成型機を用いてFT/IR測定用検量サンプル錠剤を調製する。標準物質のテトラメチルこはく酸ニトリルの2240~2260cm-1の吸収帯の面積に対して、モデル化合物(1)の1630~1680cm-1の吸収帯の面積比を求める。即ち、縦軸にモデル化合物(1)と標準物質との混合物である検量サンプルにおける質量比を、横軸にモデル化合物(1)における1630~1680cm-1の吸収帯の面積と標準物質のテトラメチルこはく酸ニトリルの2240~2260cm-1の吸収帯の面積比として、赤外線吸収帯の面積比と含有物の質量比の関係を直線回帰することにより検量線を作成する。同様に、モデル化合物(2)および(3)についても、それぞれの実測値より、赤外線吸収帯の面積比と含有物の質量比の関係を直線回帰することにより検量線を作成する。なお、モデル化合物(1)、(2)、(3)および標準物質であるテトラメチルこはく酸ニトリルは、いずれも東京化成の試薬グレードを用いた。
The quantification of the concentration of the linking group (x), the linking group (y) and the linking group (z), and the quantification of the concentration ratio of the linking group can be quantified by the method shown below. First, as a method for preparing a calibration curve for quantifying the linking groups (x), (y), (z), FT / IR-410 manufactured by JASCO Corporation was used, and tetramethyl succinonitrile as a standard substance.
Figure JPOXMLDOC01-appb-C000014

Prepare. Further, a model compound (1) having a bonding group (x) having an absorption band of 1630 to 1680 cm −1 but not having (y) and (z)
Figure JPOXMLDOC01-appb-C000015

Model compound (2) having a binding group (y) having an absorption band of 1680 to 1725 cm −1 , but having no binding groups (x) and (z)
Figure JPOXMLDOC01-appb-C000016

Model compound (3) having a linking group (z) having an absorption band of 1730 to 1755 cm −1 but having no linking groups (x) and (y)
Figure JPOXMLDOC01-appb-C000017

Prepare. Then, a mixture obtained by accurately weighing and mixing each of the standard substance and the model compounds (1), (2), and (3) at an arbitrary ratio is pulverized with KBr powder and FT is used using a tablet molding machine. / Prepare a calibration sample tablet for IR measurement. The area ratio of the absorption band of 1630 to 1680 cm −1 of the model compound (1) is obtained relative to the area of the absorption band of 2240 to 2260 cm −1 of the tetramethyl succinonitrile as the standard substance. That is, the vertical axis represents the mass ratio in the calibration sample, which is a mixture of the model compound (1) and the standard substance, and the horizontal axis represents the area of the absorption band of 1630 to 1680 cm −1 in the model compound (1) and the tetramethyl of the standard substance. As an area ratio of the absorption band of succinonitrile of 2240 to 2260 cm −1, a calibration curve is prepared by linear regression of the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions. Similarly, for the model compounds (2) and (3), a calibration curve is created by linearly regressing the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions from the respective measured values. The model compounds (1), (2) and (3) and the tetramethyl succinic acid nitrile which is the standard substance were all made of Tokyo Chemical Reagent Grade.
 つぎに、結合基(x)、(y)、(z)の濃度比の測定を示す。まず、マイクロカプセル型エポキシ樹脂用硬化剤を40℃で真空乾燥してその重量を求める。さらにマイクロカプセル型エポキシ樹脂用硬化剤より分離したカプセル膜を40℃で真空乾燥して、マイクロカプセル型エポキシ樹脂用硬化剤より得られるカプセル膜の重量を測定する。マイクロカプセル型エポキシ樹脂用硬化剤よりカプセル膜の分離方法は、マイクロカプセル型エポキシ樹脂用硬化剤を、メタノールを用いて、エポキシ樹脂硬化剤がなくなるまで洗浄と、ろ過を繰り返し、50℃以下の温度でメタノールを完全に除去乾燥する。このサンプル3gに、標準物質であるテトラメチルこはく酸ニトリルを10mg加えて、メノウ乳鉢で粉砕混合後、その混合物を2mgとKBr粉末50mgとともに粉砕して錠剤成型機を用いてFT/IR測定用錠剤を作成する。本錠剤を用いて、日本分光(株)社製FT/IR-410により赤外線スペクトルを得る。得られたスペクトルチャートと、先ほど作成した検量線より、結合基(x)、(y)、(z)のサンプル中の濃度を求めて、マイクロカプセル型エポキシ樹脂用硬化剤1kg当たりの結合基の濃度と、その濃度比を求めることができる。
 本発明において、シェルが有する結合基(x)、(y)、(z)の合計の濃度比=(Cx/(Cx+Cy+Cz))の値を所望の範囲にする方法としては、シェルを形成する反応における、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、アミン化合物(B)の仕込み量を制御する方法、それぞれの原材料の比率を制御する方法、シェル形成反応の温度および/または時間を制御する方法などがある。特に、ウレア結合、ビュレット結合を生成するために用いられるイソシアネート化合物、ウレタン結合を生成するために用いられる1分子中に1個以上の水酸基を有する化合物の仕込み量を制御することである。
Next, measurement of the concentration ratio of the linking groups (x), (y), and (z) is shown. First, the microcapsule type epoxy resin curing agent is vacuum-dried at 40 ° C. to determine its weight. Further, the capsule membrane separated from the microcapsule type epoxy resin curing agent is vacuum dried at 40 ° C., and the weight of the capsule membrane obtained from the microcapsule type epoxy resin curing agent is measured. The capsule membrane is separated from the microcapsule-type epoxy resin curing agent by using a methanol-based hardener for the microcapsule-type epoxy resin, washing and filtering until the epoxy resin curing agent disappears, and a temperature of 50 ° C. or lower. To completely remove methanol and dry. 10 mg of tetramethyl succinonitrile as a standard substance is added to 3 g of this sample, pulverized and mixed in an agate mortar, and then the mixture is pulverized with 2 mg and 50 mg of KBr powder. Create Using this tablet, an infrared spectrum is obtained by FT / IR-410 manufactured by JASCO Corporation. From the obtained spectrum chart and the calibration curve created earlier, the concentration of the bonding group (x), (y), (z) in the sample was determined, and the bonding group per kg of the microcapsule type epoxy resin curing agent was determined. The concentration and the concentration ratio can be obtained.
In the present invention, a method for bringing the value of the total concentration ratio of the bonding groups (x), (y), and (z) of the shell = (Cx / (Cx + Cy + Cz)) into a desired range is a reaction for forming a shell. , Isocyanate compound, active hydrogen compound, epoxy resin curing agent (h2), epoxy resin (e2), method of controlling the amount of amine compound (B) charged, method of controlling the ratio of each raw material, shell formation reaction And a method for controlling the temperature and / or time of the device. In particular, it is to control the amount of an isocyanate compound used to generate a urea bond or a burette bond, or a compound having one or more hydroxyl groups in one molecule used to generate a urethane bond.
 本発明におけるシェルの赤外線吸収スペクトルにおいて、ウレア基、ビュレット基、ウレタン基に起因すると推定されるC-N伸縮振動に由来する1050~1150cm-1の間の高さ(H1)に対する、結合基(x)1630~1680cm-1のピーク高さ(H3)の比(H3/H1)が0.3以上1.2未満にあることを特徴とする。
 比(H3/H1)が1.2未満とすることは、低温速硬化性を得る観点から好適である。比(H3/H1)が0.3以上とすることで、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤含むコアを被覆するシェルが、貯蔵安定性、耐溶剤性を発現するに足る緻密な膜を形成するうえで好適であるだけでなく、マイクロカプセル型エポキシ樹脂用硬化剤をエポキシ樹脂組成物に配合する際に、大粒径の2次粒子が生成することを防止し、極めて優れたマイクロカプセル型エポキシ樹脂用硬化剤を実現することができる。
In the infrared absorption spectrum of the shell of the present invention, a bonding group (for a height (H1) between 1050 and 1150 cm −1 derived from CN stretching vibration presumed to be caused by a urea group, a burette group and a urethane group ( x) The peak height (H3) ratio (H3 / H1) of 1630 to 1680 cm −1 is 0.3 or more and less than 1.2.
A ratio (H3 / H1) of less than 1.2 is preferable from the viewpoint of obtaining low-temperature rapid curability. When the ratio (H3 / H1) is 0.3 or more, the shell covering the core containing the epoxy resin curing agent mainly composed of the amine adduct obtained by the reaction between the epoxy resin (e1) and the amine compound, Not only is it suitable for forming a dense film sufficient to exhibit storage stability and solvent resistance, but also when a microcapsule-type epoxy resin curing agent is added to the epoxy resin composition, it has a large particle size. The generation of secondary particles can be prevented, and a very excellent microcapsule type epoxy resin curing agent can be realized.
 また、シェルが有する結合基(x)、結合基(y)および結合基(z)の存在域の合計厚みとしては、平均層厚で5~1000nmが好ましい。5nm以上で貯蔵安定性を得ることができ、1000nm以下で実用的な硬化性を得すことができる。なお、ここでいう層の厚みは、透過型電子顕微鏡により測定することができる。特に好ましい結合基の合計厚みは、平均層厚で10~100nmである。 In addition, the total thickness of the existence region of the bonding group (x), the bonding group (y), and the bonding group (z) included in the shell is preferably 5 to 1000 nm in average layer thickness. Storage stability can be obtained at 5 nm or more, and practical curability can be obtained at 1000 nm or less. In addition, the thickness of a layer here can be measured with a transmission electron microscope. A particularly preferable total thickness of the bonding groups is 10 to 100 nm as an average layer thickness.
II.マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)
 本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)は、エポキシ樹脂(e3)と上述したマイクロカプセル型エポキシ樹脂用硬化剤とを、(エポキシ樹脂(e3):(マイクロカプセル型エポキシ樹脂用硬化剤))(質量比)として100:10~100:1000の配合比で含む。
 本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)は、室温で液状又は25℃での粘度が50mPa・s以上1000万mPa・s以下のペースト状が好ましい。粘度が低いほど作業性が高く、容器への付着量を下げて廃棄物の低減が可能であり好ましい。
 上記エポキシ樹脂(e3)としては、上述したエポキシ樹脂(e1)やエポキシ樹脂(EP2)で挙げられたエポキシ樹脂、中でも、多価エポキシ化合物を好ましく用いることができる。これらは複数種を併用することも可能である。
 特に、これらの中で、得られる硬化物の接着性や耐熱性の点から、多価フェノール類をグリシジル化したエポキシ樹脂が好ましく、特に、ビスフェノール型エポキシ樹脂が好ましい。とりわけ、ビスフェノールAのグリシジル化物とビスフェノールFのグリシジル化物が好ましい。
 なお、前述のように、エポキシ樹脂の分子内の塩素が結合した不純末端は硬化物の電気特性に悪影響を及ぼすので、上記エポキシ樹脂(e3)に含まれる全塩素量は、好ましくは2500ppm以下、より好ましくは1500ppm以下、更に好ましくは1000ppm以下である。
 また、同様の観点から、マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の全体に含まれる全塩素量も、2500ppm以下であることが好ましい。
II. Masterbatch type epoxy resin curing agent composition (M1)
The masterbatch type epoxy resin curing agent composition (M1) of the present embodiment comprises an epoxy resin (e3) and the above-described microcapsule type epoxy resin curing agent (epoxy resin (e3): (microcapsule type). (Epoxy resin curing agent))) (mass ratio) in a mixing ratio of 100: 10 to 100: 1000.
The masterbatch type epoxy resin curing agent composition (M1) of the present invention is preferably in the form of a paste that is liquid at room temperature or has a viscosity at 25 ° C. of 50 mPa · s to 10 million mPa · s. The lower the viscosity, the higher the workability, and the lower the amount of adhesion to the container, which can reduce waste, which is preferable.
As said epoxy resin (e3), the epoxy resin mentioned by the epoxy resin (e1) and epoxy resin (EP2) mentioned above, Among these, a polyvalent epoxy compound can be used preferably. These can be used in combination.
Of these, epoxy resins obtained by glycidylation of polyhydric phenols are preferable, and bisphenol-type epoxy resins are particularly preferable from the viewpoints of adhesiveness and heat resistance of the obtained cured product. In particular, glycidylated products of bisphenol A and glycidylated products of bisphenol F are preferable.
In addition, as described above, since the impurity terminal to which chlorine in the molecule of the epoxy resin is bonded adversely affects the electrical properties of the cured product, the total chlorine content contained in the epoxy resin (e3) is preferably 2500 ppm or less, More preferably, it is 1500 ppm or less, More preferably, it is 1000 ppm or less.
From the same viewpoint, the total chlorine amount contained in the entire masterbatch type epoxy resin curing agent composition (M1) is also preferably 2500 ppm or less.
 更に、上記エポキシ樹脂(e3)のジオール末端不純成分が、エポキシ樹脂(e3)の基本構造成分中に占める割合は、好ましくは0.001~30質量%、より好ましくは0.01~25質量%、更に好ましくは0.1~20質量%、更により好ましくは0.5~18質量%、殊更に好ましくは1.2~15質量%である。
 ここで、ジオール末端不純成分とは、どちらか一方、または両方の末端のエポキシ基が開環して、1,2-グリコールを形成した構造をもつエポキシ樹脂のことをいう。参考文献として、エポキシ樹脂技術協会刊行の「総説 エポキシ樹脂 第1巻基礎編I」を挙げる。エポキシ樹脂(e3)の基本構造成分およびジオール末端不純成分の分析方法については、同じくエポキシ樹脂技術協会刊行の「総説 エポキシ樹脂 第1巻基礎編I」において引用されている文献に記載の方法を参考に分析を行う。
 そして、エポキシ樹脂(e3)のジオール末端不純成分がエポキシ樹脂(e3)の基本構造成分中に占める割合を30質量%以下とすることは、エポキシ樹脂と硬化剤から形成される硬化物中の架橋密度が低下するとともに、架橋構造に分子自由度の高い極性基が導入されることにより、硬化物の様々な性能低下を引き起こす。また、エポキシ樹脂用硬化剤(H)を被覆するシェル(S)の緻密さの低下を招き、貯蔵安定性、耐溶剤性の低下の原因となる。また、0.001質量%以上とすることにより、エポキシ樹脂組成物の硬化性を向上させ得る。
 なお、上記エポキシ樹脂(e3)のジオール末端不純成分がエポキシ樹脂(e3)の基本構造成分中に占める割合は、実施例の項に記載の方法により得た値である。
 本発明のマスターバッチ型エポキシ樹脂硬化剤組成物(M1)を製造する方法として、マイクロカプセル型エポキシ樹脂用硬化剤を、三本ロール等を用いてエポキシ樹脂(e3)中に分散させる方法や、エポキシ樹脂(e3)の中でエポキシ樹脂用性硬化剤(H)の表面にシェル(S)の生成反応を行い、マイクロカプセル型エポキシ樹脂用硬化剤を得ると同時に、マスターバッチ型エポキシ樹脂硬化剤組成物(M1)を得る方法等が挙げられる。後者が、生産性が高く好ましい。
Furthermore, the proportion of the diol terminal impurity component of the epoxy resin (e3) in the basic structural component of the epoxy resin (e3) is preferably 0.001 to 30% by mass, more preferably 0.01 to 25% by mass. More preferably, the content is 0.1 to 20% by mass, still more preferably 0.5 to 18% by mass, and still more preferably 1.2 to 15% by mass.
Here, the diol terminal impure component refers to an epoxy resin having a structure in which one or both terminal epoxy groups are ring-opened to form 1,2-glycol. As a reference, mention is made of “Review Epoxy Resin Vol. 1 Basic I” published by the Epoxy Resin Technology Association. For the analysis method of the basic structural component and diol terminal impurity component of the epoxy resin (e3), refer to the method described in the literature cited in “Review Epoxy Resin Vol. Perform an analysis.
And the ratio which the diol terminal impure component of an epoxy resin (e3) occupies in the basic structural component of an epoxy resin (e3) shall be 30 mass% or less is bridge | crosslinking in the hardened | cured material formed from an epoxy resin and a hardening | curing agent. Along with the decrease in density, the introduction of a polar group having a high degree of molecular freedom into the cross-linked structure causes various performance degradations of the cured product. In addition, the density of the shell (S) covering the epoxy resin curing agent (H) is reduced, which causes a decrease in storage stability and solvent resistance. Moreover, sclerosis | hardenability of an epoxy resin composition can be improved by setting it as 0.001 mass% or more.
In addition, the ratio which the diol terminal impure component of the said epoxy resin (e3) accounts in the basic structural component of an epoxy resin (e3) is the value obtained by the method as described in the term of an Example.
As a method for producing the masterbatch type epoxy resin curing agent composition (M1) of the present invention, a method of dispersing the microcapsule type epoxy resin curing agent in the epoxy resin (e3) using three rolls, In the epoxy resin (e3), a shell (S) is formed on the surface of the epoxy resin curing agent (H) to obtain a microcapsule type epoxy resin curing agent, and at the same time, a masterbatch type epoxy resin curing agent. The method etc. which obtain a composition (M1) are mentioned. The latter is preferable because of high productivity.
III.一液性エポキシ樹脂組成物
 本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)は、これをさらにエポキシ樹脂で希釈して、一液性エポキシ樹脂組成物とすることができる。
 なかでも、マイクロカプセル型エポキシ樹脂用硬化剤と、エポキシ樹脂(e3)と、高溶解性エポキシ樹脂(G)を含み、
 前記高溶解性エポキシ樹脂(G)の基本構造の溶解度パラメーターは8.65~11.00であり、当該基本構造の架橋間分子量は105~150であり、且つジオール末端不純成分の存在割合は基本構造成分に対して0.01~20質量%であり、
 前記マイクロカプセル型エポキシ樹脂用硬化剤と、前記エポキシ樹脂(e3)とを、(マイクロカプセル型エポキシ樹脂用硬化剤):(エポキシ樹脂(e3))(質量比)として100:10~100:1000の配合比で含み、
 前記エポキシ樹脂(e3)と、前記高溶解性エポキシ樹脂(G)とを、(エポキシ樹脂(e3)):(高溶解性エポキシ樹脂(G))(質量比)として100:0.1~100:1000の配合比で含み、且つ、
 全塩素量が2500ppm以下である一液性エポキシ樹脂組成物が好ましい。
 このような一液性エポキシ樹脂組成物は、速硬化性に優れるだけでなく、硬化物の硬化ムラの抑制やガラス転移温度(Tg)向上など特に優れた特徴を有する。
III. One-part epoxy resin composition The masterbatch type epoxy resin curing agent composition (M1) of the present invention can be further diluted with an epoxy resin to form a one-part epoxy resin composition.
Among these, a microcapsule type epoxy resin curing agent, an epoxy resin (e3), and a highly soluble epoxy resin (G) are included.
The solubility parameter of the basic structure of the high-solubility epoxy resin (G) is 8.65 to 11.00, the molecular weight between crosslinks of the basic structure is 105 to 150, and the proportion of impure components of the diol terminal is basic. 0.01 to 20% by mass with respect to the structural component,
The microcapsule type epoxy resin curing agent and the epoxy resin (e3) are converted into 100: 10 to 100: 1000 as (microcapsule type epoxy resin curing agent) :( epoxy resin (e3)) (mass ratio). Including the blending ratio of
The epoxy resin (e3) and the highly soluble epoxy resin (G) are converted into 100: 0.1 to 100 as (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass ratio). : In a blending ratio of 1000, and
A one-component epoxy resin composition having a total chlorine content of 2500 ppm or less is preferred.
Such a one-component epoxy resin composition has not only excellent quick curability but also particularly excellent characteristics such as suppression of uneven curing of the cured product and improvement of glass transition temperature (Tg).
 ここで、上記基本構造の溶解度パラメーターとは、高溶解性エポキシ樹脂(G)の基本構造のエポキシ基が開裂していない状態の構造に対して、表1に示されたパラメーターを下記式(2)に代入することにより算出される値である。 Here, the solubility parameter of the basic structure refers to the parameter shown in Table 1 below for the structure in which the epoxy group of the basic structure of the highly soluble epoxy resin (G) is not cleaved. ) Is a value calculated by substituting in ().
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 本実施の形態において用いられる、基本構造の溶解度パラメーターが8.65~11.00となる高溶解性エポキシ樹脂(G)としてより具体的には、例えば、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン、3-メチル-1,2-ジヒドロキシベンゼン、4-メチル-1,2-ジヒドロキシベンゼン、2-メチル-1,3-ジヒドロキシベンゼン、4-メチル-1,3-ジヒドロキシベンゼン、2-メチル-1,4-ジヒドロキシベンゼン、3-エチル-1,2-ジヒドロキシベンゼン、4-エチル-1,2-ジヒドロキシベンゼン、2-エチル-1,3-ジヒドロキシベンゼン、4-エチル-1,3-ジヒドロキシベンゼン、2-エチル-1,4-ジヒドロキシベンゼン、3-プロピル-1,2-ジヒドロキシベンゼン、4-プロピル-1,2-ジヒドロキシベンゼン、2-プロピル-1,3-ジヒドロキシベンゼン、4-プロピル-1,3-ジヒドロキシベンゼン、2-プロピル-1,4-ジヒドロキシベンゼン、3-イソプロピル-1,2-ジヒドロキシベンゼン、4-イソプロピル-1,2-ジヒドロキシベンゼン、2-イソプロピル-1,3-ジヒドロキシベンゼン、4-イソプロピル-1,3-ジヒドロキシベンゼン、2-イソプロピル-1,4-ジヒドロキシベンゼン、3-ターシャリブチル-1,2-ジヒドロキシベンゼン、4-ターシャリブチル-1,2-ジヒドロキシベンゼン、2-ターシャリブチル-1,3-ジヒドロキシベンゼン、4-ターシャリブチル-1,3-ジヒドロキシベンゼン、2-ターシャリブチル-1,4-ジヒドロキシベンゼン、3-ブチル-1,2-ジヒドロキシベンゼン、4-ブチル-1,2-ジヒドロキシベンゼン、2-ブチル-1,3-ジヒドロキシベンゼン、4-ブチル-1,3-ジヒドロキシベンゼン、2-ブチル-1,4-ジヒドロキシベンゼン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレンのグリシジル化合物などが挙げられる。中でも、1,3-ジヒドロキシベンゼン、2-メチル-1,4-ジヒドロキシベンゼン、2-ターシャリブチル-1,4-ジヒドロキシベンゼンなどが好ましい。 More specifically, as the highly soluble epoxy resin (G) having a solubility parameter of the basic structure of 8.65 to 11.00 used in the present embodiment, for example, 1,2-dihydroxybenzene, 1,3 -Dihydroxybenzene, 1,4-dihydroxybenzene, 3-methyl-1,2-dihydroxybenzene, 4-methyl-1,2-dihydroxybenzene, 2-methyl-1,3-dihydroxybenzene, 4-methyl-1, 3-dihydroxybenzene, 2-methyl-1,4-dihydroxybenzene, 3-ethyl-1,2-dihydroxybenzene, 4-ethyl-1,2-dihydroxybenzene, 2-ethyl-1,3-dihydroxybenzene, 4 -Ethyl-1,3-dihydroxybenzene, 2-ethyl-1,4-dihydroxybenzene, 3-propi -1,2-dihydroxybenzene, 4-propyl-1,2-dihydroxybenzene, 2-propyl-1,3-dihydroxybenzene, 4-propyl-1,3-dihydroxybenzene, 2-propyl-1,4-dihydroxy Benzene, 3-isopropyl-1,2-dihydroxybenzene, 4-isopropyl-1,2-dihydroxybenzene, 2-isopropyl-1,3-dihydroxybenzene, 4-isopropyl-1,3-dihydroxybenzene, 2-isopropyl- 1,4-dihydroxybenzene, 3-tert-butyl-1,2-dihydroxybenzene, 4-tert-butyl-1,2-dihydroxybenzene, 2-tert-butyl-1,3-dihydroxybenzene, 4-tertiary Butyl-1,3-dihydroxybenzene, 2-ter Tert-butyl-1,4-dihydroxybenzene, 3-butyl-1,2-dihydroxybenzene, 4-butyl-1,2-dihydroxybenzene, 2-butyl-1,3-dihydroxybenzene, 4-butyl-1,3- Dihydroxybenzene, 2-butyl-1,4-dihydroxybenzene, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, , 8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, glycidyl compounds of 1,8-dihydroxynaphthalene, and the like. Of these, 1,3-dihydroxybenzene, 2-methyl-1,4-dihydroxybenzene, 2-tertiarybutyl-1,4-dihydroxybenzene and the like are preferable.
 また、上記高溶解性エポキシ樹脂(G)について、当該基本構造の架橋間分子量は105~150、好ましくは107~145、より好ましくは108~140、更により好ましくは109~130である。
 上記架橋間分子量を150以下とすることは、硬化物の耐熱性を確保する観点、及び硬化時の硬化収縮を小さくして被着体同士の接着力を確保する観点から好適である。一方、上記架橋間分子量を105以上とすることは、硬化物が脆弱になることを防止する観点から好適である。
Further, regarding the above highly soluble epoxy resin (G), the molecular weight between crosslinks of the basic structure is 105 to 150, preferably 107 to 145, more preferably 108 to 140, and still more preferably 109 to 130.
Setting the molecular weight between crosslinks to 150 or less is preferable from the viewpoint of securing the heat resistance of the cured product and the viewpoint of securing the adhesive force between the adherends by reducing the curing shrinkage during curing. On the other hand, setting the molecular weight between crosslinks to 105 or more is preferable from the viewpoint of preventing the cured product from becoming brittle.
 なお、上記架橋間分子量は、高溶解性エポキシ樹脂の基本構造式の単量体分子量を、基本構造式に含まれるエポキシ基の数で除した値で算出される。
 更に、上記高溶解性エポキシ樹脂(G)について、ジオール末端不純成分の存在割合は、基本構造成分に対して0.01~20質量%、好ましくは0.01~15質量%、より好ましくは0.1~10質量%、更に好ましくは0.2~8質量%である。
 当該存在割合を20質量%以下とすることで、エポキシ樹脂と硬化剤から形成される硬化物中の架橋密度の低下を抑え、さらに架橋構造に分子自由度の高い極性基が導入されることにより、硬化物の様々な性能低下を防止する。また、エポキシ樹脂用硬化剤(H)を被覆するシェル(S)の緻密さの低下を防ぎ、貯蔵安定性、耐溶剤性の低下を抑える。一方、0.01質量%以上とすることは、エポキシ樹脂組成物の硬化性を低下させない観点から好適である。
 なお、上記ジオール末端不純成分の存在割合は、実施例の項に記載の方法により算出される。
 本実施の形態において、上述したエポキシ樹脂(e3)と、上記高溶解性エポキシ樹脂(G)との配合比は、(エポキシ樹脂(e3)):(高溶解性エポキシ樹脂(G))(質量比)として通常100:0.1~100:1000、好ましくは100:10~100:500、より好ましくは100:15~100:350、更に好ましくは100:20~100:300である。
 エポキシ樹脂(e3)100質量部に対する高溶解性エポキシ樹脂(G)の配合量を0.1質量部以上とすることは、低温速硬化性と貯蔵安定性とを充分に発揮させる観点から好適である。一方、1000質量部以下とすることは、吸水率の上昇を抑制する観点から好適である。
 また、本発明の一液性エポキシ樹脂組成物は、エポキシ樹脂(e4)と本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物を含み、その重量比が100:10~100:1000であることを特徴とする。
 ここで、エポキシ樹脂(e4)としては、上述したエポキシ樹脂(e1)やエポキシ樹脂(EP2)で挙げられたエポキシ樹脂、中でも、多価エポキシ化合物を好ましく用いることができる。これらは複数種を併用することも可能である。また、製造方法としては、前述のマスターバッチ型エポキシ樹脂硬化剤組成物(M1)の、製造方法の例として挙げた方法が利用できる。
The molecular weight between crosslinks is calculated by dividing the monomer molecular weight of the basic structural formula of the highly soluble epoxy resin by the number of epoxy groups contained in the basic structural formula.
Further, in the highly soluble epoxy resin (G), the proportion of the diol terminal impurity component is 0.01 to 20% by mass, preferably 0.01 to 15% by mass, more preferably 0%, based on the basic structural component. 1 to 10% by mass, more preferably 0.2 to 8% by mass.
By controlling the abundance ratio to 20% by mass or less, a decrease in the crosslinking density in the cured product formed from the epoxy resin and the curing agent is suppressed, and a polar group having a high degree of molecular freedom is introduced into the crosslinked structure. Prevents various performance degradation of cured products. Moreover, the fall of the denseness of the shell (S) which coat | covers the hardening | curing agent for epoxy resins (H) is prevented, and the fall of storage stability and solvent resistance is suppressed. On the other hand, it is suitable to set it as 0.01 mass% or more from a viewpoint which does not reduce sclerosis | hardenability of an epoxy resin composition.
The proportion of the diol terminal impurity component is calculated by the method described in the Examples section.
In this Embodiment, the compounding ratio of the epoxy resin (e3) mentioned above and the said highly soluble epoxy resin (G) is (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass The ratio is usually 100: 0.1 to 100: 1000, preferably 100: 10 to 100: 500, more preferably 100: 15 to 100: 350, and still more preferably 100: 20 to 100: 300.
Setting the blending amount of the high-solubility epoxy resin (G) to 100 parts by mass of the epoxy resin (e3) to 0.1 parts by mass or more is preferable from the viewpoint of sufficiently exhibiting low-temperature fast curing properties and storage stability. is there. On the other hand, setting it as 1000 mass parts or less is suitable from a viewpoint of suppressing the raise in a water absorption rate.
The one-part epoxy resin composition of the present invention includes the epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition of the present invention, and the weight ratio thereof is 100: 10 to 100: 1000. It is characterized by.
Here, as an epoxy resin (e4), the polyvalent epoxy compound can be preferably used among the epoxy resins mentioned by the epoxy resin (e1) and the epoxy resin (EP2) mentioned above. These can be used in combination. Moreover, as a manufacturing method, the method quoted as an example of the manufacturing method of the above-mentioned masterbatch type epoxy resin hardening | curing agent composition (M1) can be utilized.
 なお、本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)には、その他エポキシ樹脂用硬化剤(h3)を添加して、一液性エポキシ樹脂組成物とすることもできる。このようなエポキシ樹脂用硬化剤(h3)としては、接着強度、Tg、配合容易性等の観点から、酸無水物系硬化剤、フェノール系硬化剤、ヒドラジド系硬化剤、グアニジン系硬化剤、チオール系硬化剤、イミダゾール系硬化剤、およびイミダゾリン系硬化剤より選ばれる少なくとも1種のエポキシ樹脂用硬化剤が好ましい。
 上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸、無水-3-クロロフタル酸、無水-4-クロロフタル酸、無水ベンゾフェノンテトラカルボン酸、無水コハク酸、無水メチルコハク酸、無水ジメチルコハク酸、無水ジクロールコハク酸、メチルナジック酸、ドテシルコハク酸、無水クロレンデック酸、無水マレイン酸等が挙げられる。
 フェノール系硬化剤としては、例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック等が挙げられる。
 ヒドラジド系硬化剤としては、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジドテレフタル酸ジヒドラジド、p-オキシ安息香酸ヒドラジド、サリチル酸ヒドラジド、フェニルアミノプロピオン酸ヒドラジド、マレイン酸ジヒドラジド等が挙げられる。
 グアニジン系硬化剤としては、例えば、ジシアンジアミド、メチルグアニジン、エチルグアニジン、プロピルグアニジン、ブチルグアニジン、ジメチルグアニジン、トリメチルグアニジン、フェニルグアニジン、ジフェニルグアニジン、トルイルグアニジン等が挙げられる。
 チオール系硬化剤としては、例えば、トリメチロールプロパン トリス(チオグリコレート)、ペンタエリスリトール テトラキス(チオグリコレート)、エチレングリコール ジチオグリコレート、トリメチロールプロパン トリス(β-チオプロピオネート)、ペンタエリスリトール テトラキス(β-チオプロピオネート)、ジペンタエリスリトール ポリ(β-チオプロピオネート)等のポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物や、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール等のアルキルポリチオール化合物、末端チオール基含有ポリエーテル、末端チオール基含有ポリチオエーテル、エポキシ化合物と硫化水素の反応によって得られるチオール化合物、ポリチオールとエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等が挙げられる。
 イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール等のイミダゾール化合物単体の他、2-メチルイミダゾールとビスフェノールA型エポキシ樹脂との反応生成物、2-エチル-4-メチルイミダゾールとビスフェノールA型エポキシ樹脂との反応生成物等の所謂イミダゾール系のアミンアダクト、さらにイミダゾール系のアミンアダクトをマイクロカプセル化したものが挙げられる。
 イミダゾリン系硬化剤としては、例えば、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-フェニルイミダゾリン、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾリン、2-メチルイミダゾリン、2,4-ジメチルイミダゾリン、2-エチルイミダゾリン、2-エチル-4-メチルイミダゾリン、2-ベンジルイミダゾリン、2-フェニルイミダゾリン、2-(o-トリル)-イミダゾリン、テトラメチレン-ビス-イミダゾリン、1,1,3-トリメチル-1,4-テトラメチレン-ビス-イミダゾリン、1,3,3-トリメチル-1,4-テトラメチレン-ビス-イミダゾリン、1,1,3-トリメチル-1,4-テトラメチレン-ビス-4-メチルイミダゾリン、1,3,3-トリメチル-1,4-テトラメチレン-ビス-4-メチルイミダゾリン、1,2-フェニレン-ビス-イミダゾリン、1,3-フェニレン-ビス-イミダゾリン、1,4-フェニレン-ビス-イミダゾリン、1,4-フェニレン-ビス-4-メチルイミダゾリン等が挙げられる。
In addition, the hardening agent composition for masterbatch type epoxy resins (M1) of this invention can also add the hardening | curing agent for epoxy resins (h3), and can also be set as a one-component epoxy resin composition. As such a curing agent for epoxy resin (h3), from the viewpoint of adhesive strength, Tg, blendability, etc., an acid anhydride curing agent, a phenol curing agent, a hydrazide curing agent, a guanidine curing agent, a thiol At least one epoxy resin curing agent selected from a system curing agent, an imidazole curing agent, and an imidazoline curing agent is preferable.
Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-chlorophthalic anhydride, and 4-chlorophthalic anhydride. Benzophenone tetracarboxylic anhydride, succinic anhydride, methyl succinic anhydride, dimethyl succinic anhydride, dichlor succinic anhydride, methyl nadic acid, dodecyl succinic acid, chlorendec anhydride, maleic anhydride and the like.
Examples of the phenolic curing agent include phenol novolak, cresol novolak, and bisphenol A novolak.
Examples of the hydrazide curing agent include succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide terephthalic acid hydrazide, p-oxybenzoic acid hydrazide, salicylic acid hydrazide, phenylaminopropionic acid hydrazide, and maleic acid dihydrazide. It is done.
Examples of the guanidine curing agent include dicyandiamide, methylguanidine, ethylguanidine, propylguanidine, butylguanidine, dimethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine, toluylguanidine and the like.
Examples of the thiol curing agent include trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol dithioglycolate, trimethylolpropane tris (β-thiopropionate), pentaerythritol tetrakis. (Β-thiopropionate), dipentaerythritol poly (β-thiopropionate) and the like, thiol compounds obtained by esterification reaction of mercapto organic acid, 1,4-butanedithiol, 1,6- Hexanedithiol, alkyl polythiol compounds such as 1,10-decanedithiol, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound with hydrogen sulfide, Thiol compounds having terminal thiol group obtained by the reaction of Richioru and epoxy compounds.
Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-aminoethyl-2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3-butoxy In addition to imidazole compounds such as propyl) -2-methylimidazole and 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4-methylimidazole, the reaction of 2-methylimidazole with bisphenol A type epoxy resin Product, 2-ethyl-4-methylimidazole Called imidazole of the amine adduct such as the reaction product of bisphenol A type epoxy resins include those obtained by further microencapsulated amine adduct of imidazole.
Examples of the imidazoline-based curing agent include 1- (2-hydroxy-3-phenoxypropyl) -2-phenylimidazoline, 1- (2-hydroxy-3-butoxypropyl) -2-methylimidazoline, 2-methylimidazoline, 2,4-dimethylimidazoline, 2-ethylimidazoline, 2-ethyl-4-methylimidazoline, 2-benzylimidazoline, 2-phenylimidazoline, 2- (o-tolyl) -imidazoline, tetramethylene-bis-imidazoline, 1, 1,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,3,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,1,3-trimethyl-1,4-tetramethylene -Bis-4-methylimidazoline, 1,3,3-trimethyl-1,4-the Ramethylene-bis-4-methylimidazoline, 1,2-phenylene-bis-imidazoline, 1,3-phenylene-bis-imidazoline, 1,4-phenylene-bis-imidazoline, 1,4-phenylene-bis-4-methyl Examples include imidazoline.
 なお、エポキシ樹脂用硬化剤(h3)が上記マスターバッチ型エポキシ樹脂用硬化剤組成物に占める割合は、エポキシ樹脂用硬化剤(h3)とマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の重量比で100:10~10:1000である。
 上記マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)には、環状ホウ酸エステル化合物を含有させて、一液性エポキシ樹脂組成物とすることもできる。
 上記環状ホウ酸エステル化合物は、一液性エポキシ樹脂組成物の貯蔵安定性を向上させ得る。
 ここで、環状ホウ酸エステル化合物とは、ホウ素が環式構造に含まれているものを意味する。このような環状ホウ酸エステル化合物としては、中でも、2,2’-オキシビス[5,5-ジメチル-1,3,2-ジオキサボリナン]が好ましい。
 なお、環状ホウ酸エステル化合物が、上記一液性エポキシ樹脂組成物中に占める割合は、通常0.001~10質量%である。
 なお、マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)に、その他エポキシ樹脂用硬化剤(h3)を添加した一液性エポキシ樹脂組成物、またはマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)に環状ホウ酸エステル化合物を添加した一液性エポキシ樹脂組成物の製造方法としては、前述のマスターバッチ型エポキシ樹脂硬化剤組成物(M1)の製造方法の例として挙げた方法が利用できる。
In addition, the ratio for which the hardening | curing agent for epoxy resins (h3) accounts in the said hardening | curing agent composition for masterbatch type epoxy resins is the hardening | curing agent composition for epoxy resins (h3), and the hardening | curing agent composition for masterbatch type epoxy resins (M1). The weight ratio is 100: 10 to 10: 1000.
The above-mentioned masterbatch type epoxy resin curing agent composition (M1) may contain a cyclic borate ester compound to form a one-component epoxy resin composition.
The cyclic borate ester compound can improve the storage stability of the one-component epoxy resin composition.
Here, the cyclic borate compound means a compound in which boron is contained in a cyclic structure. As such a cyclic borate ester compound, 2,2′-oxybis [5,5-dimethyl-1,3,2-dioxaborinane] is particularly preferable.
The proportion of the cyclic borate ester compound in the one-component epoxy resin composition is usually 0.001 to 10% by mass.
In addition, the one-part epoxy resin composition which added the hardening | curing agent for epoxy resins (h3) to the hardening agent composition for masterbatch type epoxy resins (M1), or the hardening | curing agent composition for masterbatch type epoxy resins (M1) The method mentioned as an example of the manufacturing method of the above-mentioned masterbatch type epoxy resin hardening | curing agent composition (M1) can be utilized as a manufacturing method of the one-component epoxy resin composition which added the cyclic boric acid ester compound to).
 本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)には、例えば、増量剤、補強材、充填材、顔料、導電微粒子、有機溶剤、反応性希釈剤、非反応性希釈剤、樹脂類、結晶性アルコール、カップリング剤等を含有させることができる。
 充填剤としては、例えば、コールタール、ガラス繊維、アスベスト繊維、ほう素繊維、炭素繊維、セルロース、ポリエチレン粉、ポリプロピレン粉、石英紛、鉱物性ケイ酸塩、雲母、アスベスト粉、スレート粉が挙げられる。
 顔料としては、例えば、カオリン、酸化アルミニウム三水和物、水酸化アルミニウム、チョーク粉、石こう、炭酸カルシウム、三酸化アンチモン、ペントン、シリカ、エアロゾル、リトポン、バライト、二酸化チタン等が挙げられる。
 導電微粒子としては、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、酸化鉄、金、銀、アルミニウム粉、鉄粉、ニッケル、銅、亜鉛、クロム、半田、ナノサイズの金属結晶、金属間化合物等を挙げることができる。
 これらはいずれもその用途に応じて有効に用いられる。
 また、上記有機溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル等が挙げられる。
 反応性希釈剤としては、例えば、ブチルグリシジルエーテル、N,N’-グリシジル-o-トルイジン、フェニルグリシジルエーテル、スチレンオキサイド、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等が挙げられる。
 非反応性希釈剤としては、例えば、ジオクチルフタレート、ジブチルフタレート、ジオクチルアジベート、石油系溶剤等が挙げられる。
 樹脂類としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエーテル樹脂、メラミン樹脂やウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、アルキッド変性エポキシ樹脂等の変性エポキシ樹脂が挙げられる。
 結晶性アルコールとしては、例えば、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、ペンタエリスリトール、ソルビトール、ショ糖、トリメチロールプロパンが挙げられる。
The masterbatch type epoxy resin curing agent composition (M1) of the present invention includes, for example, an extender, a reinforcing material, a filler, a pigment, conductive fine particles, an organic solvent, a reactive diluent, a non-reactive diluent, and a resin. , Crystalline alcohols, coupling agents, and the like.
Examples of the filler include coal tar, glass fiber, asbestos fiber, boron fiber, carbon fiber, cellulose, polyethylene powder, polypropylene powder, quartz powder, mineral silicate, mica, asbestos powder, and slate powder. .
Examples of the pigment include kaolin, aluminum oxide trihydrate, aluminum hydroxide, chalk powder, gypsum, calcium carbonate, antimony trioxide, penton, silica, aerosol, lithopone, barite, and titanium dioxide.
Examples of the conductive fine particles include carbon black, graphite, carbon nanotube, fullerene, iron oxide, gold, silver, aluminum powder, iron powder, nickel, copper, zinc, chromium, solder, nano-sized metal crystal, intermetallic compound, etc. Can be mentioned.
Any of these can be used effectively depending on the application.
Examples of the organic solvent include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate and the like.
Examples of reactive diluents include butyl glycidyl ether, N, N′-glycidyl-o-toluidine, phenyl glycidyl ether, styrene oxide, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol diester. Examples thereof include glycidyl ether.
Examples of non-reactive diluents include dioctyl phthalate, dibutyl phthalate, dioctyl adipate, and petroleum solvents.
Examples of the resins include polyester resins, polyurethane resins, acrylic resins, polyether resins, melamine resins, urethane-modified epoxy resins, rubber-modified epoxy resins, alkyd-modified epoxy resins, and other modified epoxy resins.
Examples of the crystalline alcohol include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, pentaerythritol, sorbitol, sucrose, and trimethylolpropane.
IV.異方導電性フィルム
 本願のマイクロカプセル型エポキシ樹脂用硬化剤を含む異方導電性フィルムは、低温短時間による圧着において、接着強度、導通信頼性が向上する。
また、得られる異方導電性フィルムのガラス転移温度、弾性率が向上するという点から、マイクロカプセル型エポキシ樹脂用硬化剤のコアの主成分である、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトにおいて、エポキシ樹脂(e1)が剛直な骨格構造を有するエポキシ樹脂(EP1)を含むことが好ましい。
IV. Anisotropic conductive film The anisotropic conductive film containing the microcapsule-type epoxy resin curing agent of the present application has improved adhesive strength and conduction reliability in low-temperature and short-time pressure bonding.
In addition, the reaction between the epoxy resin (e1), which is the main component of the core of the microcapsule type epoxy resin curing agent, and the amine compound from the viewpoint of improving the glass transition temperature and the elastic modulus of the anisotropic conductive film obtained. In the amine adduct obtained by the above, it is preferable that the epoxy resin (e1) contains an epoxy resin (EP1) having a rigid skeleton structure.
 (a)導電性粒子
 本発明における導電粒子(a)は、半田粒子、ニッケル粒子、金属の表面を他の金属で被覆した粒子、例えば、スチレン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、スチレン-ブタジエン樹脂等の樹脂粒子に金、ニッケル、銀、銅、半田等の導電性薄膜で被覆を施した粒子等が使用される。
 本発明における導電性粒子(a)の粒径は0.1~20μmであることが好ましい。粒子径が小さすぎる場合、端子の表面粗さのバラツキに影響されて接続が不安定に成りやすくて好ましくない。大きすぎる場合は、隣接する端子間の短絡が起こりやすくなって好ましくない。また、接続抵抗を損なわない範囲で絶縁性粒子を併用してもよい。導電性粒子の配合量は、隣接する端子間の絶縁性を確保しつつ、圧着方向に電気的接続が可能となる範囲が好ましい。エポキシ樹脂(b)、および(c)有機バインダーの合計に対して、0.03~20vol%の範囲が好ましく、より好ましくは0.1~10vol%である。導電粒子の配合量が20vol%以下であることにより、隣接する端子間の絶縁性が良好となる。また、0.03vol%以上であることは、圧着方向の導通を確保するという点で好ましい。
(A) Conductive particles The conductive particles (a) in the present invention are solder particles, nickel particles, particles having a metal surface coated with another metal, for example, styrene resin, urethane resin, melamine resin, epoxy resin, acrylic resin. Further, particles obtained by coating resin particles such as phenol resin and styrene-butadiene resin with a conductive thin film such as gold, nickel, silver, copper, and solder are used.
The particle size of the conductive particles (a) in the present invention is preferably 0.1 to 20 μm. If the particle size is too small, the connection is likely to be unstable due to the variation in the surface roughness of the terminals, which is not preferable. If it is too large, a short circuit between adjacent terminals tends to occur, which is not preferable. Moreover, you may use together an insulating particle in the range which does not impair connection resistance. The blending amount of the conductive particles is preferably within a range that allows electrical connection in the crimping direction while ensuring insulation between adjacent terminals. The range of 0.03 to 20 vol% is preferable with respect to the total of the epoxy resin (b) and (c) organic binder, and more preferably 0.1 to 10 vol%. When the blending amount of the conductive particles is 20 vol% or less, the insulation between adjacent terminals becomes good. Moreover, it is preferable that it is 0.03 vol% or more from the point of ensuring the conduction | electrical_connection of a crimping | compression-bonding direction.
 (b)エポキシ環を一つ以上有するエポキシ樹脂
 本発明におけるエポキシ環を一つ以上有するエポキシ樹脂(b)としては、公知の種々の化合物を用いることが出来る。異方導電性フィルムの接着強度を高めることができるので、多価エポキシ化合物が好ましい。より好ましくは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。
 また、本発明の異方導電性フィルムは、その作製において、上記(a)、(b)、(c)、(d)の各成分を、適切な溶剤に均一・混合したワニス状組成物を作製する。その際、そのワニス状組成物において、マスターバッチ型エポキシ樹脂用硬化剤組成物に含まれるエポキシ樹脂(e3)と、エポキシ樹脂(b)の合計のエポキシ当量をEXとし、マイクロカプセル型エポキシ樹脂用硬化剤(d)、および/またはマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)中のマイクロカプセル型エポキシ樹脂用硬化剤(d)、および/または一液性エポキシ樹脂組成物中のマイクロカプセル型エポキシ樹脂用硬化剤(d)のコアを形成するエポキシ樹脂用硬化剤の全アミン価をワニス状組成物中のマイクロカプセル型硬化剤(d)の配合重量で割った値をHXとした場合、エポキシ量とアミン量の比である(EX/HX)×100の値が、1.5≦(EX/HX)×100≦4.0であることを特徴とする。
 (EX/HX)×100の値が1.5以上であること、つまりアミンの量が多すぎない場合に、異方導電性フィルムの接着強度をより確保し、導通信頼性の優れたものになる。4.0以下であること、つまりエポキシの量が多すぎない場合に、低温短時間硬化性がより優れたものとなる。また、硬化物の架橋が不足せず、異方導電性フィルムの硬化物のTg以上での弾性率がより向上する。また、異方導電性フィルムの接着強度の点からも好ましい。
(B) Epoxy resin having one or more epoxy rings As the epoxy resin (b) having one or more epoxy rings in the present invention, various known compounds can be used. A polyvalent epoxy compound is preferred because the adhesive strength of the anisotropic conductive film can be increased. More preferably, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned.
In addition, the anisotropic conductive film of the present invention has a varnish-like composition in which the above components (a), (b), (c), and (d) are uniformly and mixed in an appropriate solvent. Make it. At that time, in the varnish-like composition, the total epoxy equivalent of the epoxy resin (e3) and the epoxy resin (b) contained in the masterbatch type epoxy resin curing agent composition is EX, and the microcapsule type epoxy resin is used. Curing agent (d) and / or curing agent (d) for microcapsule type epoxy resin in curing agent composition (M1) for masterbatch type epoxy resin, and / or microcapsule in one-component epoxy resin composition The value obtained by dividing the total amine value of the epoxy resin curing agent forming the core of the epoxy resin curing agent (d) by the blending weight of the microcapsule curing agent (d) in the varnish-like composition as HX The value of (EX / HX) × 100, which is the ratio of the epoxy amount to the amine amount, is 1.5 ≦ (EX / HX) × 100 ≦ 4.0.
When the value of (EX / HX) × 100 is 1.5 or more, that is, when the amount of amine is not too much, the adhesive strength of the anisotropic conductive film is further secured and the conduction reliability is excellent. Become. When it is 4.0 or less, that is, when the amount of the epoxy is not too large, the low-temperature short-time curability becomes more excellent. Moreover, the cured product is not insufficiently crosslinked, and the elastic modulus at Tg or higher of the cured product of the anisotropic conductive film is further improved. Moreover, it is preferable also from the point of the adhesive strength of an anisotropic conductive film.
 (c)(b)以外の樹脂からなる有機バインダー
 本発明における(b)以外の樹脂からなる有機バインダーとしては、シランカップリング剤などの添加剤や、アクリル樹脂、フェノキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アクリルゴム、SBR、NBR、ポリビニルブチラールなどが好ましい。
(C) Organic binder made of resin other than (b) The organic binder made of resin other than (b) in the present invention includes additives such as silane coupling agents, acrylic resins, phenoxy resins, polyester resins, urethane resins. Acrylic rubber, SBR, NBR, polyvinyl butyral and the like are preferable.
 (d)マイクロカプセル型エポキシ樹脂用硬化剤
 本発明におけるマイクロカプセル型硬化剤(d)は、上記記載のI.マイクロカプセル型エポキシ樹脂用硬化剤を用いるが、異方導電性フィルムを製造する際、導電粒子(a)と、エポキシ樹脂(b)、有機バインダー(c)、およびマイクロカプセル型エポキシ樹脂用硬化剤(d)を所望の重量比で配合するためには、マイクロカプセル型エポキシ樹脂用硬化剤を含むマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)や、一液性エポキシ樹脂組成物を用いると、マイクロカプセル型エポキシ樹脂用硬化剤(d)が均一に分散されており、配合の際の凝集物の発生による硬化ムラや、異方導電性フィルムの外観を損なうことなく、工業的に有利に製造することができる。
(D) Curing Agent for Microcapsule Type Epoxy Resin The microcapsule type curing agent (d) in the present invention has the I.S. Although a microcapsule type epoxy resin curing agent is used, when producing an anisotropic conductive film, conductive particles (a), an epoxy resin (b), an organic binder (c), and a microcapsule type epoxy resin curing agent. In order to blend (d) at a desired weight ratio, a masterbatch type epoxy resin curing agent composition (M1) containing a microcapsule type epoxy resin curing agent or a one-component epoxy resin composition is used. In addition, the microcapsule type epoxy resin curing agent (d) is uniformly dispersed, and industrially advantageous without impairing the curing unevenness due to the generation of aggregates during blending and the appearance of the anisotropic conductive film. Can be manufactured.
 本発明における異方導電性フィルムは、おおよそ次のような手法で作製される。例えば、(b)成分のエポキシ樹脂と(c)成分のフェノキシ樹脂を酢酸エチルとトルエンの混合溶剤に溶解し異方導電性フィルムの原料であるワニスを得る。そのワニスにマイクロカプセル型エポキシ樹脂用硬化剤(d)を含むマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)と、(a)成分の導電粒子を加え、均一に混合し、一液性エポキシ樹脂組成物を得た。得られた一液性エポキシ樹脂組成物をポリエチレンテレフタレートフィルム上に塗布し、必要な温度・時間で温風を送風することにより酢酸エチルとトルエンを乾燥除去し、任意の厚さの異方導電性フィルムを得ることができる。
 本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物や一液性エポキシ樹脂組成物は、上記異方導電性フィルム以外のペースト状、フィルム状の形態を具備することができ、あらゆる用途(加工品)に利用できる。
 特に、接着剤および/または接合用ペースト、接合用フィルムの他に、導電材料、異方導電性材料、絶縁材料、封止材、コーティング材、塗料組成物、プリプレグ、熱伝導性材料、セパレータ材、及びフレキシブル配線基板用オーバーコート材等として有用である。
 接着剤および/または接合用ペースト、接合用フィルムとしては、例えば、液状接着剤やフィルム状接着剤、ダイボンディング材等に有用である。フィルム状接着剤の製造方法としては、例えば、特開昭62-141083号公報や、特開平05-295329号公報等に記載された方法がある。より具体的には、固形エポキシ樹脂、液状エポキシ樹脂、さらに固形のウレタン樹脂を、50質量%になるようにトルエンに溶解・混合・分散させた溶液を作成する。得られた溶液に本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を溶液に対して30質量%添加・分散させたワニスを調製する。このワニス溶液を、例えば、厚さ50μmの剥離用ポリエチレンテレフタレート基材に、ワニス溶液中のトルエンが乾燥後の塗膜の厚さが30μmとなるようにワニス溶液を塗布する。ワニス溶液中のトルエンを乾燥させることにより、常温では不活性であり、加熱することにより潜在性硬化剤の作用により接着性を発揮する、接合用フィルムを得ることができる。
 導電材料としては導電フィルム、導電ペースト等がある。異方導電材料としては、異方導電性フィルム以外に、異方導電性ペースト等がある。その製造方法としては、例えば、特開2000-21236号公報に記載された方法がある。より具体的には、例えば、前述の異方導電性フィルムにおいて用いられる導電材料である半田粒子、ニッケル粒子、ナノサイズの金属結晶、金属の表面を他の金属で被覆した粒子、銅と銀の傾斜粒子、スチレン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、スチレン-ブタジエン樹脂等の樹脂粒子に金、ニッケル、銀、銅、半田等の導電性薄膜で被覆を施した粒子等を1~20μm程度の球形の微粒子とし、固形エポキシ樹脂や液状エポキシ樹脂に3本ロール等で混合・分散させて、異方導電性ペーストを得る方法等がある。
 絶縁材料としては、絶縁接着フィルム、絶縁接着ペーストがある。前述の接合用フィルムを用いることで、絶縁材料である絶縁接着フィルムを得ることができる。また、封止材料を用いる他、前述の充填剤のうち、絶縁性の充填剤をマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)や一液性エポキシ樹脂組成物に配合することで、絶縁接着ペーストを得ることができる。
 封止材としては、固形封止材や液状封止材、フィルム状封止材等がある。液状封止材は、アンダーフィル材、ポッティング材、ダム材等として有用である。封止材の製造方法としては、例えば、特開平5-43661号公報、特開2002-226675号公報に記載された方法がある。より具体的には、ビスフェノールA型エポキシ樹脂、硬化剤として例えば酸無水物、硬化剤として無水メチルヘキサヒドロフタル酸、さらに球状溶融シリカ粉末を加えて均一に混合し、それに本発明で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を加え均一に混合することにより封止材を得ることができる。
 コーティング用材料としては、例えば電子材料のコーティング材、プリント配線板のカバー用のオーバーコート材、プリント基板の層間絶縁用樹脂組成物等が挙げられる。コーティング用材料の製造方法としては、例えば、特公平4-6116号公報や、特開平7-304931号公報、特開平8-64960号公報、さらに特開2003-246838等に記載の各種方法がある。より具体的には、充填剤からシリカ等を選定してフィラーとして、ビスフェノールA型エポキシ樹脂のほかフェノキシ樹脂、ゴム変性エポキシ樹脂等を配合し、さらに本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物を配合し、メチルエチルケトン(以下、MEKとする)で50%の溶液を調製する。これをポリイミドフィルム上に50μmの厚さで塗布した後、MEKを乾燥させることでコーティング材を得る。このようにしてコーティングされたフィルムと銅箔を重ねて、60~150℃でラミネートする。当該ラミネートを180~200℃で加熱硬化させることにより、層間をエポキシ樹脂組成物によりコーティングされた積層板を得ることができる。
The anisotropic conductive film in the present invention is produced by the following method. For example, the epoxy resin of component (b) and the phenoxy resin of component (c) are dissolved in a mixed solvent of ethyl acetate and toluene to obtain a varnish that is a raw material for the anisotropic conductive film. The master batch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) and the conductive particles of the component (a) are added to the varnish and mixed uniformly to obtain a one-component epoxy. A resin composition was obtained. The resulting one-pack epoxy resin composition is applied onto a polyethylene terephthalate film, and ethyl acetate and toluene are removed by drying by blowing hot air at the required temperature and time. A film can be obtained.
The masterbatch type epoxy resin curing agent composition and one-part epoxy resin composition of the present embodiment can have a paste-like or film-like form other than the anisotropic conductive film, and can be used in any application ( It can be used for processed products.
In particular, in addition to adhesives and / or bonding pastes and bonding films, conductive materials, anisotropic conductive materials, insulating materials, sealing materials, coating materials, coating compositions, prepregs, thermal conductive materials, separator materials It is useful as an overcoat material for flexible wiring boards.
The adhesive and / or bonding paste and bonding film are useful for liquid adhesives, film adhesives, die bonding materials and the like, for example. As a method for producing a film adhesive, for example, there are methods described in JP-A-62-141083 and JP-A-05-295329. More specifically, a solution is prepared by dissolving, mixing, and dispersing solid epoxy resin, liquid epoxy resin, and solid urethane resin in toluene so as to be 50% by mass. A varnish is prepared by adding and dispersing 30% by mass of the curing agent composition for masterbatch type epoxy resin (M1) of the present embodiment to the obtained solution. For example, the varnish solution is applied to a polyethylene terephthalate substrate for peeling having a thickness of 50 μm so that the toluene in the varnish solution has a thickness of 30 μm after drying. By drying toluene in the varnish solution, it is possible to obtain a bonding film that is inactive at room temperature and exhibits adhesiveness by the action of the latent curing agent when heated.
Examples of the conductive material include a conductive film and a conductive paste. As the anisotropic conductive material, there is an anisotropic conductive paste in addition to the anisotropic conductive film. As a manufacturing method thereof, for example, there is a method described in Japanese Patent Application Laid-Open No. 2000-21236. More specifically, for example, solder particles, nickel particles, nano-sized metal crystals, particles having a metal surface coated with another metal, copper and silver, which are conductive materials used in the anisotropic conductive film described above. Particles obtained by coating resin particles such as inclined particles, styrene resin, urethane resin, melamine resin, epoxy resin, acrylic resin, phenol resin, styrene-butadiene resin with a conductive thin film such as gold, nickel, silver, copper, solder, etc. Or the like are made into spherical fine particles of about 1 to 20 μm and mixed and dispersed in a solid epoxy resin or a liquid epoxy resin with three rolls, etc. to obtain an anisotropic conductive paste.
Examples of the insulating material include an insulating adhesive film and an insulating adhesive paste. By using the bonding film described above, an insulating adhesive film that is an insulating material can be obtained. In addition to using a sealing material, among the above-mentioned fillers, an insulating filler is blended into a masterbatch type epoxy resin curing agent composition (M1) or a one-part epoxy resin composition to provide insulation. An adhesive paste can be obtained.
Examples of the sealing material include a solid sealing material, a liquid sealing material, and a film-like sealing material. The liquid sealing material is useful as an underfill material, a potting material, a dam material, or the like. As a method for manufacturing the sealing material, for example, there are methods described in JP-A-5-43661 and JP-A-2002-226675. More specifically, a bisphenol A type epoxy resin, an acid anhydride as a curing agent, methylhexahydrophthalic anhydride as a curing agent, and spherical fused silica powder were added and mixed uniformly to obtain the present invention. The encapsulant can be obtained by adding the masterbatch type epoxy resin curing agent composition (M1) and mixing them uniformly.
Examples of the coating material include an electronic material coating material, an overcoat material for a printed wiring board cover, and a resin composition for interlayer insulation of a printed board. As a method for producing a coating material, for example, there are various methods described in JP-B-4-6116, JP-A-7-304931, JP-A-8-64960, and JP-A-2003-246838. . More specifically, silica or the like is selected from the filler, and as a filler, phenoxy resin, rubber-modified epoxy resin, etc. are blended in addition to bisphenol A type epoxy resin, and further, curing for the masterbatch type epoxy resin of this embodiment The agent composition is blended, and a 50% solution is prepared with methyl ethyl ketone (hereinafter referred to as MEK). After coating this on a polyimide film with a thickness of 50 μm, the coating material is obtained by drying MEK. The film thus coated and the copper foil are stacked and laminated at 60 to 150 ° C. The laminate is heat-cured at 180 to 200 ° C. to obtain a laminated plate whose layers are coated with the epoxy resin composition.
 塗料組成物の製造方法としては、例えば特開平11-323247号公報、特開2005-113103号公報等に記載された方法がある。より具体的には、ビスフェノールA型エポキシ樹脂に、二酸化チタン、タルク等を配合し、混合溶剤としてメチルイソブチルケトン(以下、MIBKとする)/キシレンの1:1混合溶剤を添加、攪拌、混合して主剤とする。これに本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物を添加し、均一に分散させることにより、エポキシ塗料組成物を得ることができる。 Examples of the method for producing the coating composition include the methods described in JP-A Nos. 11-323247 and 2005-113103. More specifically, titanium dioxide, talc, and the like are blended into bisphenol A type epoxy resin, and a 1: 1 mixed solvent of methyl isobutyl ketone (hereinafter referred to as MIBK) / xylene is added as a mixed solvent, and stirred and mixed. Use as the main agent. An epoxy coating composition can be obtained by adding the masterbatch type epoxy resin curing agent composition of the present embodiment to this and dispersing it uniformly.
 プリプレグの製造方法としては、例えば、特開平09-71633号公報、WO98/44017号パンフレット等に記載された方法のように、エポキシ樹脂組成物を補強基材に含浸し、加熱して得る方法がある。なお、含浸させるワニスの溶剤としては、メチルエチルケトン、アセトン、エチルセルソルブ、メタノール、エタノール、イソプロピルアルコール等があげられる。これらの溶剤はプリプレグ中に残存しないことが好ましい。なお、補強基材の種類は特に限定しないが、例えば、紙、ガラス布、ガラス不織布、アラミド布、液晶ポリマー等が例として挙げられる。樹脂組成物分と補強基材の割合も特に限定されないが、通常、プリプレグ中の樹脂分が20~80質量%となるように調製するのが好ましい。 As a method for producing a prepreg, for example, a method obtained by impregnating an epoxy resin composition into a reinforcing substrate and heating it, such as the method described in JP 09-71633 A, WO 98/44017 pamphlet, etc. is there. Examples of the varnish solvent to be impregnated include methyl ethyl ketone, acetone, ethyl cellosolve, methanol, ethanol, isopropyl alcohol and the like. It is preferable that these solvents do not remain in the prepreg. In addition, although the kind of reinforcement base material is not specifically limited, For example, paper, a glass cloth, a glass nonwoven fabric, an aramid cloth, a liquid crystal polymer etc. are mentioned as an example. The ratio of the resin composition to the reinforcing substrate is not particularly limited, but it is usually preferable that the resin component in the prepreg is prepared to be 20 to 80% by mass.
 熱伝導性材料の製造方法としては、例えば、特開平06-136244号公報、特開平10-237410号公報、特開2000-3987号公報等に記載された方法がある。より具体的には、熱硬化性樹脂としてエポキシ樹脂、硬化剤としてフェノールノボラック硬化剤、さらに熱伝導フィラーとしてグラファイト粉末を配合して均一に混練する。これに本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物を配合して熱伝導性樹脂ペーストを得ることができる。
 燃料電池用セパレータ材の製造方法としては、特開2002-332328号、特開2004-75954号等に記載された方法がある。より具体的には、導電性材料として人造黒鉛材料、熱硬化性樹脂として液状エポキシ樹脂、ビフェニル型エポキシ樹脂、レゾール型フェノール樹脂、ノボラック型フェノール樹脂を用いて、ミキサーで原料を混合する。得られた混合物に、本実施の形態のマスターバッチ型エポキシ樹脂用硬化剤組成物を添加し、均一に分散させることにより燃料電池用シール材成型材料組成物を得る。この成型材料組成物を金型温度170~190℃、成型圧力150~300kg/cmで圧縮成型することで、実用的な導電性に優れ、かつ、ガス不透過性も良好で、成型加工性に優れた、燃料電池用セパレータ材を得ることができる。
 フレキシブル配線基板用オーバーコート材の製造方法としては、WO00/64960号、特開2006-137838号等に記載された方法がある。より具体的には、エポキシ樹脂、およびエポキシ樹脂と反応するカルボキシル変性されたポリブタジエンならびにゴム粒子等を適宜添加して、フレキシブル配線基板用オーバーコート材となるように調製する。これに硬化促進剤として本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物を添加し、均一に分散させてエポキシ樹脂組成物を得る。このエポキシ樹脂組成物をMEKに溶解分散させて、固形分濃度が30質量%のフレキシブル配線基板用オーバーコート材溶液を調製する。さらに、ジカルボン酸としてコハク酸を純水に溶解して、5質量%水溶液としてフレキシブル配線基板用オーバーコート材溶液に添加する。厚さ65μmのポリイミドフィルムに対して、前記フレキシブル配線基板用オーバーコート材溶液を、乾燥後の膜厚が25μmとなるように塗布し、さらに150℃、20分間乾燥することにより、フレキシブル配線基板用オーバーコート材を得ることができる。
As a method for producing the heat conductive material, for example, there are methods described in JP-A-06-136244, JP-A-10-237410, JP-A-2000-3987, and the like. More specifically, an epoxy resin as a thermosetting resin, a phenol novolac curing agent as a curing agent, and graphite powder as a heat conductive filler are blended and uniformly kneaded. A heat conductive resin paste can be obtained by blending the masterbatch type epoxy resin curing agent composition of the present invention.
As a method for producing a fuel cell separator material, there are methods described in JP-A Nos. 2002-332328 and 2004-75954. More specifically, an artificial graphite material is used as the conductive material, and a liquid epoxy resin, biphenyl type epoxy resin, resol type phenol resin, or novolac type phenol resin is used as the thermosetting resin, and the raw materials are mixed with a mixer. The master batch type epoxy resin curing agent composition of the present embodiment is added to the obtained mixture and uniformly dispersed to obtain a fuel cell sealing material molding material composition. This molding material composition is compression molded at a mold temperature of 170 to 190 ° C. and a molding pressure of 150 to 300 kg / cm 2 , so that it has excellent practical conductivity and good gas impermeability and molding processability. It is possible to obtain a fuel cell separator material excellent in
As a method for producing an overcoat material for a flexible wiring board, there are methods described in WO00 / 64960, JP-A-2006-137838, and the like. More specifically, an epoxy resin, carboxyl-modified polybutadiene that reacts with the epoxy resin, rubber particles, and the like are appropriately added to prepare an overcoat material for a flexible wiring board. The curing agent composition for masterbatch type epoxy resins of this invention is added to this as a hardening accelerator, and it disperse | distributes uniformly and obtains an epoxy resin composition. This epoxy resin composition is dissolved and dispersed in MEK to prepare an overcoat material solution for a flexible wiring board having a solid content concentration of 30% by mass. Further, succinic acid as dicarboxylic acid is dissolved in pure water and added as a 5% by mass aqueous solution to the overcoat material solution for flexible wiring board. By applying the overcoat material solution for flexible wiring board to a polyimide film having a thickness of 65 μm so that the film thickness after drying becomes 25 μm, and further drying at 150 ° C. for 20 minutes, An overcoat material can be obtained.
 本発明を実施例に基づいて説明する。
 また、以下物性測定において、◎、○、△、×、××と評価しているが、本願明細書において、◎、○、△であれば、本願の効果を奏するのに十分な値と評価している。
[製造例1-1~1-10]
 表2に示す溶媒中、表2に示す反応溶液濃度、反応温度条件にてエポキシ樹脂(e1)と、脂肪族又は脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物とを反応させた。その後、減圧下で溶剤を留去することにより、アミンアダクト、又はアミンアダクトを主成分とする、塊状のエポキシ樹脂用硬化剤h-1~h-10を得た。なお、得られた塊状のエポキシ樹脂用硬化剤h-1~h-10の評価結果を表2に併記した。
 なお、特に指定しない場合を除き、実施例の表に記載の「トリエチレンテトラミン」、および「テトラエチレンペンタミン」は、和光純薬製の試薬を用いており、それぞれは、エチレンアミン混合物である。反応の際にその仕込みの量としては、全量がリニア(直鎖状)な構造のトリエチレンテトラミン、テトラエチレンペンタミンであるとして、当量を計算した。
The present invention will be described based on examples.
In addition, in the following physical property measurement, ◎, ○, △, ×, XX are evaluated. However, in this specification, if ◎, ○, △, it is evaluated as a value sufficient to achieve the effect of the present application. is doing.
[Production Examples 1-1 to 1-10]
In the solvent shown in Table 2, the epoxy resin (e1) and one or more primary and / or secondary in the aliphatic or alicyclic hydrocarbon group under the reaction solution concentration and reaction temperature conditions shown in Table 2 Reaction with an amine compound having an amino group. Thereafter, the solvent was distilled off under reduced pressure to obtain a bulky epoxy resin curing agent h-1 to h-10 mainly composed of an amine adduct. The evaluation results of the obtained bulk epoxy resin curing agents h-1 to h-10 are also shown in Table 2.
Unless otherwise specified, “Triethylenetetramine” and “Tetraethylenepentamine” in the table of Examples use reagents manufactured by Wako Pure Chemicals, and each is an ethyleneamine mixture. . In the reaction, the equivalent amount was calculated assuming that the total amount was triethylenetetramine or tetraethylenepentamine having a linear (linear) structure.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
〔アミン化合物(B)の含量〕
 ガスクロマトグラフィ(GC)により、分析チャートを得た。分析装置としては、島津製作所製GC-17A、検出器は水素炎イオン検出器(Flame Ionization Detector、以後FIDとする)を用いた。カラムとしてはGLサイエンス製キャピラリカラム InterCap for Amines(長さ15m、内径0.32mm)を使用した。キャリアガスはヘリウムを用いた。各アミンアダクトを合成する際において使用される溶媒を用いて、アミン化合物(B)の含量を定量するための検量線を作成した。かかる検量線を用いて、アミン化合物(B)の含量を定量した。
〔全アミン価〕
 エポキシ樹脂用硬化剤1g中に含まれる全塩基性窒素を中和するために要する過塩素酸量と当量の水酸化カリウムの量をmg数で表記した値であり、JIS K-7237に準拠して求めた。
[Content of amine compound (B)]
An analysis chart was obtained by gas chromatography (GC). As an analyzer, GC-17A manufactured by Shimadzu Corporation was used, and as a detector, a flame ion detector (hereinafter referred to as FID) was used. As the column, a capillary column InterCap for Amine (length 15 m, inner diameter 0.32 mm) manufactured by GL Science was used. Helium was used as the carrier gas. A calibration curve for quantifying the content of the amine compound (B) was prepared using the solvent used in the synthesis of each amine adduct. Using this calibration curve, the content of the amine compound (B) was quantified.
[Total amine value]
The amount of potassium hydroxide equivalent to the amount of perchloric acid required to neutralize all basic nitrogen contained in 1 g of epoxy resin curing agent is expressed in mg, and conforms to JIS K-7237. Asked.
[製造例2-1]
 撹拌装置、温度計を備えた2リットルの三つ口フラスコに、tert-ブチルハイドロキノン166g(1モル)、エピクロルヒドリン1850g(20モル)、グリシドール296g(4モル)、テトラメチルアンモニウムクロライド0.55gを仕込み、加熱還流下で2時間付加反応させた。次いで内容物を60℃に冷却し、水分除去装置を装着してから、48.5%水酸化ナトリウムを183g(2.2モル)加えた。反応温度55~60℃、減圧度100~150mmHgで生成する水を連続的に共沸除去させ、留出液のうちエピクロルヒドリン層を反応系にもどしながら閉環反応を行わせた。生成水が56.5mlに達した点を反応終了点とした。その後、減圧ろ過、水洗を繰り返し、さらに減圧蒸留により残存エピクロルヒドリンを回収し粗エポキシ樹脂を得た。
 得られた粗エポキシ樹脂を繰返し減圧蒸留にかけ、高溶解性エポキシ樹脂G-1を得た。得られた高溶解性エポキシ樹脂G-1の評価結果を表3に示す。
[Production Example 2-1]
A 2 liter three-necked flask equipped with a stirrer and a thermometer is charged with 166 g (1 mol) of tert-butylhydroquinone, 1850 g (20 mol) of epichlorohydrin, 296 g (4 mol) of glycidol, and 0.55 g of tetramethylammonium chloride. The addition reaction was carried out for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device before adding 183 g (2.2 mol) of 48.5% sodium hydroxide. Water generated at a reaction temperature of 55 to 60 ° C. and a reduced pressure of 100 to 150 mmHg was continuously removed by azeotropic distillation, and the ring closure reaction was carried out while returning the epichlorohydrin layer of the distillate to the reaction system. The point at which the produced water reached 56.5 ml was defined as the reaction end point. Thereafter, filtration under reduced pressure and washing with water were repeated, and the remaining epichlorohydrin was recovered by distillation under reduced pressure to obtain a crude epoxy resin.
The obtained crude epoxy resin was repeatedly subjected to distillation under reduced pressure to obtain a highly soluble epoxy resin G-1. Table 3 shows the evaluation results of the resulting highly soluble epoxy resin G-1.
[製造例2-2]
 tert-ブチルハイドロキノン166g(1モル)の代わりにレゾルシン110g(1モル)を使用した以外は製造例2-1と同様に行い、高溶解性エポキシ樹脂G-2を得た。得られた高溶解性エポキシ樹脂G-2の評価結果を表3に示す。
[Production Example 2-2]
A highly soluble epoxy resin G-2 was obtained in the same manner as in Production Example 2-1, except that 110 g (1 mol) of resorcin was used instead of 166 g (1 mol) of tert-butylhydroquinone. Table 3 shows the evaluation results of the resulting highly soluble epoxy resin G-2.
[製造例2-3]
 反応時にグリシドールを添加しなかった以外は製造例2-1と同様に行い、高溶解性エポキシ樹脂G-3を得た。得られた高溶解性エポキシ樹脂G-3の評価結果を表3に示す。
[Production Example 2-3]
A highly soluble epoxy resin G-3 was obtained in the same manner as in Production Example 2-1, except that glycidol was not added during the reaction. Table 3 shows the evaluation results of the resulting highly soluble epoxy resin G-3.
[製造例3-1]
 48.5%水酸化ナトリウムを158g(1.9モル)とした以外は製造例2-1と同様に行い、高溶解性エポキシ樹脂G-4を得た。得られた高溶解性エポキシ樹脂G-4の評価結果を表3に示す。
[Production Example 3-1]
A highly soluble epoxy resin G-4 was obtained in the same manner as in Production Example 2-1, except that 158 g (1.9 mol) of 48.5% sodium hydroxide was used. Table 3 shows the evaluation results of the resulting highly soluble epoxy resin G-4.
[製造例3-2]
 48.5%水酸化ナトリウムを173g(2.1モル)とした以外は製造例2-1と同様に行い、高溶解性エポキシ樹脂G-5’を得た。この高溶解性エポキシ樹脂G-5’を酸により加水分解して、高溶解性エポキシ樹脂G-5を得た。得られた高溶解性エポキシ樹脂G-5の評価結果を表3に示す。
[Production Example 3-2]
A highly soluble epoxy resin G-5 ′ was obtained in the same manner as in Production Example 2-1, except that 173 g (2.1 mol) of 48.5% sodium hydroxide was used. This highly soluble epoxy resin G-5 ′ was hydrolyzed with an acid to obtain highly soluble epoxy resin G-5. Table 3 shows the evaluation results of the resulting highly soluble epoxy resin G-5.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
〔エポキシ当量(g)〕
 1当量のエポキシ基を含むエポキシ樹脂の質量(g)であり、JIS K-7236に準拠して求めた。
〔ジオール末端不純成分量(質量%)〕
 エポキシ樹脂を、以下の方法で分析して定量した。まず、高速液体クロマトグラフィ(HPLC)により、クロマトグラム(HPLC分析チャート)を得た。分析装置としては、東ソー製AS-8021、検出器UV-8020を用いた。カラムとしてはミリポア社製のノバパックC-18を使用した。移動相は水/アセトニトリル=70/30~0/100とした(グラジェントをかけた)。検出波長は254nmとした。エポキシ樹脂の両方の末端構造の違いによる分離条件を選定して、分離液について切り替え弁を使用して分取した。分取した分離液をフラクションごとに減圧、留去し、残渣を質量分析計(以下、MSとする)で分析した。MSスペクトルにより、基準ピークの質量数に18の差があるものどうしについて、18小さいものを基本構造成分、18大きいものをジオール末端不純成分とした。HPLC分析チャート上のジオール末端不純成分ピークの強度を示す面積と、基本構造成分を示すピーク強度の面積比から、エポキシ樹脂中の基本構造成分に対する、ジオール末端不純成分の含有率を求めた。
〔全塩素量(ppm)〕
 エポキシ樹脂、またはエポキシ樹脂用硬化剤、またはマスターバッチ型エポキシ樹脂用硬化剤組成物を過剰のKOH存在下、高温条件で結合塩素を全て分解し、生成したClイオンを非水系で硝酸銀(AgNO)を用いて滴定することで全塩素量を求める。
 使用する器具として、自動電位差滴定装置は京都電子工業製のAT-400を用いた。使用する電極は、ガラス電極H-112と銀電極M-214を用いた。加熱は攪拌スターラー機能付きのホットプレート(アズワン製DP-1S)を用いた。サンプルを秤量、測定する容器は、耐熱ガラス容器を用いた。
 測定用サンプル試料1~10gを滴定量が3~7mlになるよう耐熱ガラス容器に精秤した。これに、25mlのエチレングリコールモノブチルエーテルを添加、テフロン製攪拌子にて攪拌しつつ、更に1規定KOHのプロピレングリコール溶液25mlを加えて、ホットスターラーで20分間煮沸した。煮沸時に発生するプロピレングリコール蒸気は、冷却・凝縮させて耐熱ガラス容器に還流させた。加熱終了後、室温になるまで放冷した後、酢酸200mlを添加して、和光純薬製の(0.01mol/L)の分析用硝酸銀水溶液で自動分析モードにて電位差滴定を行い、滴適量を求めた。滴定量が3ml以下、または、7ml以上となった場合は、耐熱ガラス容器に精秤する試料の重量を調整して、再測定を行う。また、試料をゼロの状態で、ブランクの滴定量も同様にして求める。
 全塩素量は、以下の計算式により、算出することができる。
 
 全塩素(ppm)={(v-v)×f×10×35.5}/W
           W ;試料重量(g)
           v ;滴定量(ml)
           v;ブランク滴定量(ml)
           f ;硝酸銀水溶液のファクター
 
〔加水分解性塩素量(ppm)〕
 エポキシ樹脂、またはエポキシ樹脂用硬化剤、またはマスターバッチ型エポキシ樹脂用硬化剤組成物中の加水分解性塩素を下記のようにして求めた。
 使用する器具として、自動電位差滴定装置は京都電子工業製のAT-400を用いた。使用する電極は、ガラス電極H-112と銀電極M-214を用いた。加熱は攪拌スターラー機能付きのホットプレート(アズワン製DP-1S)を用いた。サンプルを秤量、測定する容器は、耐熱ガラス容器を用いた。
 測定用サンプル試料3gを耐熱ガラス容器に精秤した。これに50mlのトルエンを添加、テフロン製攪拌子にて攪拌しつつ、さらに0.1規定KOHのメタノール溶液20mlを加えて15分間煮沸した。煮沸時に発生するトルエン、およびメタノール蒸気は、冷却・凝縮させて耐熱ガラス容器に還流させた。加熱終了後、室温になるまで放冷した後、酢酸を1ml添加して、和光純薬製の(0.002mol/L)の分析用硝酸銀水溶液で自動分析モードにて電位差滴定を行い、滴適量を求めた。滴定量が3ml以下、または、7ml以上となった場合は、耐熱ガラス容器に精秤する試料の重量を調整して、再測定を行う。また、試料をゼロの状態で、ブランクの滴定量も同様にして求める。
 加水分解性塩素量は、以下の計算式により、算出することができる。
 
 加水分解性塩素(ppm)={(v-v)×f×2×35.5}/W
           W ;試料重量(g)
           v ;滴定量(ml)
           v;ブランク滴定量(ml)
           f ;硝酸銀水溶液のファクター
 
〔溶解度パラメーター〕
 高溶解性エポキシ樹脂の基本構造のエポキシ基が開裂していない状態の構造に対して、上記表1に示されたパラメーターを上記式-2に代入することにより算出された値である。
〔架橋間分子量〕
 高溶解性エポキシ樹脂の基本構造式の単量体の分子量を、基本構造式に含まれるエポキシ基の数で除した値で算出した値である。
〔粘度(mPa・s)〕
 25℃でB型粘度計を使用して測定した値である。
[Epoxy equivalent (g)]
This is the mass (g) of an epoxy resin containing 1 equivalent of an epoxy group, and was determined according to JIS K-7236.
[Amount of diol terminal impurity (mass%)]
The epoxy resin was analyzed and quantified by the following method. First, a chromatogram (HPLC analysis chart) was obtained by high performance liquid chromatography (HPLC). As an analyzer, AS-8021 manufactured by Tosoh Corporation and a detector UV-8020 were used. As the column, Novapack C-18 manufactured by Millipore was used. The mobile phase was water / acetonitrile = 70/30 to 0/100 (graded). The detection wavelength was 254 nm. Separation conditions based on the difference in both terminal structures of the epoxy resin were selected, and the separation liquid was fractionated using a switching valve. The separated separated liquid was distilled off under reduced pressure for each fraction, and the residue was analyzed with a mass spectrometer (hereinafter referred to as MS). According to the MS spectrum, those having a difference of 18 in the mass number of the reference peak were designated as the basic structure component having a smaller value of 18 and the impurity component having a larger diol content as having a larger value. The content ratio of the diol terminal impurity component relative to the basic structure component in the epoxy resin was determined from the area ratio of the peak intensity indicating the diol terminal impurity component peak on the HPLC analysis chart and the peak intensity indicating the basic structure component.
[Total chlorine content (ppm)]
An epoxy resin, a curing agent for epoxy resin, or a curing agent composition for a masterbatch type epoxy resin is decomposed in the presence of excess KOH under high temperature conditions, and all the bonded chlorine is decomposed, and the generated Cl ion is silver nitrate (AgNO) in a non-aqueous system. 3 ) Determine the total chlorine content by titration.
As an instrument to be used, AT-400 manufactured by Kyoto Electronics Industry was used as an automatic potentiometric titrator. As the electrodes to be used, glass electrode H-112 and silver electrode M-214 were used. For the heating, a hot plate with a stirring stirrer function (DP-1S manufactured by ASONE) was used. A heat-resistant glass container was used as a container for weighing and measuring the sample.
Samples for measurement 1 to 10 g were precisely weighed in a heat-resistant glass container so that the titration amount was 3 to 7 ml. To this, 25 ml of ethylene glycol monobutyl ether was added, and while stirring with a Teflon stirrer, 25 ml of a 1N KOH propylene glycol solution was further added and boiled for 20 minutes with a hot stirrer. The propylene glycol vapor generated at the time of boiling was cooled and condensed and refluxed in a heat-resistant glass container. After heating, the mixture is allowed to cool to room temperature, 200 ml of acetic acid is added, and potentiometric titration is performed in an automatic analysis mode with an aqueous silver nitrate solution for analysis (0.01 mol / L) manufactured by Wako Pure Chemical. Asked. If the titer is 3 ml or less, or 7 ml or more, the weight of the sample precisely weighed in the heat-resistant glass container is adjusted and remeasured. In addition, the titration amount of the blank is obtained in the same manner while the sample is zero.
The total chlorine amount can be calculated by the following calculation formula.

Total chlorine (ppm) = {(v−v 0 ) × f × 10 × 35.5} / W
W: Sample weight (g)
v: Titration volume (ml)
v 0 ; Blank titration (ml)
f: Factor of aqueous silver nitrate solution
[Hydrolyzable chlorine content (ppm)]
The hydrolyzable chlorine in the epoxy resin, the epoxy resin curing agent, or the masterbatch type epoxy resin curing agent composition was determined as follows.
As an instrument to be used, AT-400 manufactured by Kyoto Electronics Industry was used as an automatic potentiometric titrator. As the electrodes to be used, glass electrode H-112 and silver electrode M-214 were used. For the heating, a hot plate with a stirring stirrer function (DP-1S manufactured by ASONE) was used. A heat-resistant glass container was used as a container for weighing and measuring the sample.
A 3 g sample sample for measurement was precisely weighed in a heat-resistant glass container. To this was added 50 ml of toluene, and while stirring with a Teflon stirrer, 20 ml of 0.1N KOH methanol solution was further added and boiled for 15 minutes. Toluene and methanol vapor generated during boiling were cooled and condensed and refluxed to a heat-resistant glass container. After heating, the mixture is allowed to cool to room temperature, 1 ml of acetic acid is added, and potentiometric titration is performed in an automatic analysis mode with an aqueous silver nitrate solution (0.002 mol / L) manufactured by Wako Pure Chemical Industries. Asked. If the titer is 3 ml or less, or 7 ml or more, the weight of the sample precisely weighed in the heat-resistant glass container is adjusted and remeasured. In addition, the titration amount of the blank is obtained in the same manner while the sample is zero.
The amount of hydrolyzable chlorine can be calculated by the following calculation formula.

Hydrolyzable chlorine (ppm) = {(v−v 0 ) × f × 2 × 35.5} / W
W: Sample weight (g)
v: Titration volume (ml)
v 0 ; Blank titration (ml)
f: Factor of aqueous silver nitrate solution
[Solubility parameter]
This is a value calculated by substituting the parameters shown in Table 1 above into the above formula-2 for the structure in which the epoxy group of the basic structure of the highly soluble epoxy resin is not cleaved.
[Molecular weight between crosslinks]
This is a value calculated by dividing the molecular weight of the monomer having the basic structural formula of the highly soluble epoxy resin by the number of epoxy groups contained in the basic structural formula.
[Viscosity (mPa · s)]
It is a value measured using a B-type viscometer at 25 ° C.
[製造例4-1~4-11]
 製造例1-1で得た塊状のエポキシ樹脂用硬化剤(h-1)を、公知の条件で粗砕・粉砕・分級等する。例えば、まず、粉砕機「ロートプレックス」(ホソカワミクロン社製)により、0.1~2mm程度に粗砕する。次に、得られた粗砕物を、5.0kg/Hrの供給量で、気流式ジェットミル(日清エンジニアリング社製、CJ25型)に供給し、0.6MPa・sの粉砕圧で粉砕する。次に、粉砕物を空気分級機「ターボクラシファイア」(日清エンジニアリング社製)により分級する。このように粉砕と分級操作を最適に組み合わせることにより、表4に示す種々の平均粒径を備えたエポキシ樹脂用硬化剤(H)を得た。
[Production Examples 4-1 to 4-11]
The bulky curing agent for epoxy resin (h-1) obtained in Production Example 1-1 is crushed, pulverized, classified, etc. under known conditions. For example, first, it is roughly crushed to about 0.1 to 2 mm by a pulverizer “ROTOPLEX” (manufactured by Hosokawa Micron). Next, the obtained coarsely crushed material is supplied to an airflow jet mill (Nisshin Engineering Co., Ltd., CJ25 type) at a supply amount of 5.0 kg / Hr, and pulverized at a pulverization pressure of 0.6 MPa · s. Next, the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.). Thus, the hardening | curing agent (H) for epoxy resins provided with the various average particle diameter shown in Table 4 was obtained by combining grinding | pulverization and classification operation optimally.
〔平均粒径(μm)〕
 試料4mgを界面活性剤(三井サイテック(株)製、エアロゾルOT-75)のシクロヘキサン溶液32g(界面活性剤の濃度:1質量%)に入れ、超音波洗浄器(本田電子(株)製、 MODEL W-211)で5分超音波照射した。このときの超音波洗浄器内の水温は19±2℃に調整した。得られた分散液を一部取り、粒度分布計(堀場製作所(株)製、HORIBA LA-920)にて、平均粒径の測定、及び粒度分布の測定(小粒径含有率の測定)を行なった。
〔エポキシ樹脂用硬化剤(H)の赤外線吸収特性〕
 エポキシ樹脂用硬化剤(H)3gをメノウ乳鉢で粉砕した。その後、その粉砕物と臭化カリウム(以下、KBr)粉末50mgとともに混合してさらに粉砕し、錠剤成型機を用いてFT/IR測定用錠剤を作成した。この錠剤を用いて、日本分光(株)社製FT/IR-410により赤外線スペクトルを得た。得られたスペクトルチャートから、C-N伸縮振動に由来する1050~1150cm-1の間のピーク高さ(H1)に対する、1655cm-1のピーク高さ(H2)の比(H2/H1)を求める。
〔エポキシ樹脂用硬化剤(H)が含有する水分量〕
 ダイアインスツルメンツ製カールフィッシャー水分計CA-100型を使用して測定した。
[Average particle size (μm)]
4 mg of the sample was placed in 32 g of a cyclohexane solution (surfactant concentration: 1% by mass) of a surfactant (Mitsui Cytec Co., Ltd., Aerosol OT-75), and an ultrasonic cleaner (Honda Electronics Co., Ltd., MODEL). Ultrasonic irradiation was performed for 5 minutes at W-211). The water temperature in the ultrasonic cleaner at this time was adjusted to 19 ± 2 ° C. Part of the obtained dispersion was taken, and the average particle size was measured with a particle size distribution meter (HORIBA LA-920, manufactured by HORIBA, Ltd.), and the particle size distribution was measured (measurement of small particle size content). I did it.
[Infrared absorption characteristics of curing agent for epoxy resin (H)]
3 g of epoxy resin curing agent (H) was ground in an agate mortar. Thereafter, the pulverized product and 50 mg of potassium bromide (hereinafter referred to as KBr) powder were mixed and further pulverized, and a tablet for FT / IR measurement was prepared using a tablet molding machine. Using this tablet, an infrared spectrum was obtained by FT / IR-410 manufactured by JASCO Corporation. From the obtained spectrum chart, the ratio (H2 / H1) of the peak height (H2) of 1655 cm −1 to the peak height (H1) between 1050 and 1150 cm −1 derived from CN stretching vibration is obtained. .
[Moisture content contained in epoxy resin curing agent (H)]
The measurement was performed using a Karl Fischer moisture meter model CA-100 manufactured by Dia Instruments.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
[実施例1~17,比較例1~5]
 表4に示すエポキシ樹脂用硬化剤(H)を用い、表5、および表6に示す配合にてマスターバッチ型エポキシ樹脂用硬化剤を得た。得られたマスターバッチ型エポキシ樹脂用硬化剤の評価結果を表5、および表6に併記した。なお、特に明示しない評価方法については、上記いずれかの製造例と同様である。
[Examples 1 to 17, Comparative Examples 1 to 5]
Using the epoxy resin curing agent (H) shown in Table 4, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Tables 5 and 6. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 5 and Table 6. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
〔シェル(S)中の赤外線吸収特性〕
 マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を、キシレンを用いて、エポキシ樹脂がなくなるまで洗浄と濾過を繰り返した後、キシレンが無くなるまでシクロヘキサンで洗浄と濾過を繰り返した。その後、40℃で真空乾燥してその質量を求めた(マイクロカプセル型エポキシ樹脂用硬化剤の分離)。さらに、マイクロカプセル型エポキシ樹脂用硬化剤を、メタノールを用いて、エポキシ樹脂硬化剤がなくなるまで洗浄とろ過を繰り返し、50℃以下の温度でメタノールを完全に除去乾燥した(マイクロカプセル型エポキシ樹脂硬化剤からシェルの分離)。分離したシェルを40℃で真空乾燥して、得られたシェルサンプル3gをメノウ乳鉢で粉砕した。その後、その粉砕物2mgを臭化カリウム(以下、KBr)粉末50mgとともに粉砕して、錠剤成型機を用いてFT/IR測定用錠剤を作成した。この錠剤を用いて、日本分光(株)社製FT/IR-410により赤外線スペクトルを得た。得られたスペクトルチャートから、C-N伸縮振動に由来する1050~1150cm-1の間の高さ(H1)に対する、結合基(x)1630~1680cm-1のピーク高さ(H3)の比(H3/H1)を求める。
〔結合基(x)、(y)、(z)の有無、およびシェル中の濃度比〕
 まず標準IRスペクトル検量線を得る方法としては、標準物質としてテトラメチルこはく酸ニトリルを準備する。さらに特許文献1に開示されている、1630~1680cm-1の吸収帯を持つ結合基(x)を有するが、(y)および(z)を有しないモデル化合物(M1)、同様に1680~1725cm-1の吸収帯を持つ結合基(y)を有するが、結合基(x)および(z)を有しないモデル化合物(M2)、1730~1755cm-1の吸収帯を持つ結合基(z)を有するが、結合基(x)および(y)を有しないモデル化合物(3)を準備する。標準物質のテトラメチルこはく酸ニトリルの2240~2260cm-1の吸収帯の面積に対して、モデル化合物(1)の1630~1680cm-1の吸収帯の面積比を求める。即ち、縦軸にモデル化合物(1)と標準物質との混合物である検量サンプルにおける質量比を、横軸にモデル化合物(1)における1630~1680cm-1の吸収帯の面積と標準物質のテトラメチルこはく酸ニトリルの2240~2260cm-1の吸収帯の面積比として、赤外線吸収帯の面積比と含有物の質量比の関係を直線回帰することにより検量線を作成する。同様に、モデル化合物(2)および(3)についても、それぞれの実測値より、赤外線吸収帯の面積比と含有物の質量比の関係を直線回帰することにより検量線を作成する。なお、モデル化合物(1)、(2)、(3)および標準物質であるテトラメチルこはく酸ニトリルは、いずれも東京化成の試薬グレードを用いた。
 測定の際、日本分光(株)社製FT/IR-410を使用した。
[Infrared absorption characteristics in shell (S)]
The masterbatch type epoxy resin curing agent composition (M1) was repeatedly washed and filtered with xylene until the epoxy resin disappeared, and then washed and filtered with cyclohexane until the xylene disappeared. Then, it vacuum-dried at 40 degreeC and calculated | required the mass (separation of the hardening | curing agent for microcapsule type epoxy resins). Further, the microcapsule type epoxy resin curing agent was repeatedly washed and filtered with methanol until the epoxy resin curing agent disappeared, and the methanol was completely removed and dried at a temperature of 50 ° C. or less (microcapsule type epoxy resin curing). Separation of the shell from the agent). The separated shell was vacuum-dried at 40 ° C., and 3 g of the obtained shell sample was pulverized in an agate mortar. Thereafter, 2 mg of the pulverized product was pulverized together with 50 mg of potassium bromide (hereinafter referred to as KBr) powder, and tablets for FT / IR measurement were prepared using a tablet molding machine. Using this tablet, an infrared spectrum was obtained by FT / IR-410 manufactured by JASCO Corporation. From the obtained spectrum chart, the ratio of the peak height (H3) of the linking group (x) 1630 to 1680 cm −1 to the height (H1) between 1050 and 1150 cm −1 derived from CN stretching vibration ( H3 / H1) is obtained.
[Presence / absence of bonding group (x), (y), (z) and concentration ratio in shell]
First, as a method for obtaining a standard IR spectrum calibration curve, tetramethylsuccinonitrile is prepared as a standard substance. Further, a model compound (M1) having a binding group (x) having an absorption band of 1630 to 1680 cm −1 but not having (y) and (z), disclosed in Patent Document 1, is similarly 1680 to 1725 cm. Model compound (M2) having a linking group (y) having an absorption band of −1 but not having a linking group (x) and (z), a linking group (z) having an absorption band of 1730 to 1755 cm −1 A model compound (3) is prepared which has but does not have the linking groups (x) and (y). The area ratio of the absorption band of 1630 to 1680 cm −1 of the model compound (1) is obtained relative to the area of the absorption band of 2240 to 2260 cm −1 of the tetramethyl succinonitrile as the standard substance. That is, the vertical axis represents the mass ratio in the calibration sample, which is a mixture of the model compound (1) and the standard substance, and the horizontal axis represents the area of the absorption band of 1630 to 1680 cm −1 in the model compound (1) and the tetramethyl of the standard substance. As an area ratio of the absorption band of succinonitrile of 2240 to 2260 cm −1, a calibration curve is prepared by linear regression of the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions. Similarly, for the model compounds (2) and (3), a calibration curve is created by linearly regressing the relationship between the area ratio of the infrared absorption band and the mass ratio of the inclusions from the respective measured values. The model compounds (1), (2) and (3) and the tetramethyl succinic acid nitrile which is the standard substance were all made of Tokyo Chemical Reagent Grade.
In the measurement, FT / IR-410 manufactured by JASCO Corporation was used.
 続いて、前述の方法で分離したシェルを40℃で真空乾燥して、得られたシェルサンプル3gをメノウ乳鉢で粉砕した。その後、その粉砕物に標準物質のテトラメチルこはく酸ニトリル2mgを臭化カリウム(以下、KBr)粉末50mgとともに粉砕して、錠剤成型機を用いてFT/IR測定用錠剤を作成した。この錠剤を用いて、日本分光(株)社製FT/IR-410により赤外線スペクトルを得た。得られたスペクトルチャートと、標準IRスペクトル検量線とを比較することにより、シェル中の結合基(x)、(y)、(z)の存在を確認するとともに、得られたスペクトルチャートの面積と標準IRスペクトル検量線より、結合基(x)、(y)、(z)のシェルサンプル中の濃度を求めて、マイクロカプセル型エポキシ樹脂用硬化剤1kg当たりの結合基量とその濃度比を求める。
〔貯蔵安定性〕
 マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を40℃で1週間保存した前後の粘度を測定し、粘度上昇倍率で評価した。保存後の粘度上昇率が10倍以上またはゲル化した場合を×、5倍以上10倍未満を△、2倍以上5倍未満を○、2倍未満を◎とした。なお、粘度は、25℃でBM型粘度計を使用して測定した。
〔低温短時間硬化性〕
 マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を0.1mgの単位まで正確に示差走査熱量測定(Differential Scanning Calorimetry:以下、DSC)測定用のアルミ製容器に精秤してサンプルを作製する。120℃のホットプレートにDSC測定用アルミ容器に精秤したサンプルを載せて加熱して硬化反応を進行させる。10秒後にDSC測定用容器をホットプレートから取り除き、加熱前後のサンプルをセイコーインスツルメント社製DSC220Cを用いて、昇温速度10℃/分の条件で、サンプルの総発熱量をそれぞれ測定する。((加熱前の総発熱量(C1)-加熱後の総発熱量(C2))/(加熱前の総発熱量(C1))×100=低温短時間反応率(%)として、低温短時間硬化性を評価する。
 反応率65%以上を◎、45~65%を○、30~45%を△、15~30%を×、15%未満を××とした。
〔マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の耐溶剤性〕
 マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の耐溶剤性の測定について、マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)80部をトルエン15部、酢酸エチル5部と混合したサンプルを調製し、40℃6時間加温し、加温後のサンプルの粘度を測定した。粘度が200mPa・s以下のものを◎、200~1000mPa・sのものを○、1000~20000mPa・sのものを△、20000~2000000mPa・sのものを×、2000000mPa・s以上のものを××とした。
 表5の結果から、以下の事項を読み取ることができる。
(1)エポキシ樹脂(e1)と脂肪族又は脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物との反応により得られたアミンアダクトを主成分とするエポキシ樹脂用硬化剤を出発材料とし、これを特定のシェルにより被覆したマイクロカプセル型エポキシ樹脂用硬化剤は、低温速硬化性に優れ、高い長期貯蔵安定性・耐溶剤性を発揮するエポキシ樹脂用硬化剤組成物を実現し得る。
(2)シェルの赤外線吸収スペクトルにおいて、1050~1150cm-1の間の高さ(H1)に対する、1630~1680cm-1のピーク高さ(H3)の比(H3/H1)が0.3以上1.2未満にあることは、高い耐溶剤性を発揮しつつ、低温速硬化性の実現に寄与し得る。
Subsequently, the shell separated by the above-described method was vacuum-dried at 40 ° C., and 3 g of the obtained shell sample was pulverized in an agate mortar. Thereafter, 2 mg of tetramethylsuccinonitrile, a standard substance, was pulverized together with 50 mg of potassium bromide (hereinafter referred to as KBr) powder, and tablets for FT / IR measurement were prepared using a tablet molding machine. Using this tablet, an infrared spectrum was obtained by FT / IR-410 manufactured by JASCO Corporation. By comparing the obtained spectrum chart with a standard IR spectrum calibration curve, the presence of the bonding groups (x), (y), (z) in the shell is confirmed, and the area of the obtained spectrum chart and The concentration of the bonding groups (x), (y), and (z) in the shell sample is determined from the standard IR spectrum calibration curve, and the bonding group amount and its concentration ratio per kg of the microcapsule type epoxy resin curing agent are determined. .
[Storage stability]
The viscosities before and after the masterbatch type epoxy resin curing agent composition (M1) was stored at 40 ° C. for 1 week were measured and evaluated by the viscosity increase ratio. When the rate of increase in viscosity after storage was 10 times or more or gelled, × was 5 times or more and less than 10 times, Δ was 2 times or more and less than 5 times, and ○ was less than 2 times. The viscosity was measured at 25 ° C. using a BM viscometer.
[Low-temperature short-time curing]
A master batch type epoxy resin curing agent composition (M1) is accurately weighed in an aluminum container for differential scanning calorimetry (hereinafter referred to as DSC) measurement to a 0.1 mg unit to prepare a sample. . A sample precisely weighed in an aluminum container for DSC measurement is placed on a 120 ° C. hot plate and heated to advance the curing reaction. After 10 seconds, the DSC measurement container is removed from the hot plate, and the sample before and after heating is measured using a DSC220C manufactured by Seiko Instruments Inc. at a temperature increase rate of 10 ° C./min. ((Total calorific value before heating (C1) −total calorific value after heating (C2)) / (total calorific value before heating (C1)) × 100 = low-temperature short-time reaction rate (%) Evaluate curability.
A reaction rate of 65% or more was evaluated as ◎, 45-65% as ◯, 30-45% as △, 15-30% as x, and less than 15% as xx.
[Solvent resistance of the masterbatch type epoxy resin curing agent composition (M1)]
About the measurement of the solvent resistance of the curing agent composition for masterbatch type epoxy resin (M1), a sample obtained by mixing 80 parts of the curing agent composition for masterbatch type epoxy resin (M1) with 15 parts of toluene and 5 parts of ethyl acetate. The sample was prepared and heated at 40 ° C. for 6 hours, and the viscosity of the sample after heating was measured. Viscosity of 200 mPa · s or less, ◎, 200 to 1000 mPa · s ○, 1000 to 20000 mPa · s Δ, 20000 to 2000000 mPa · s ×, 20000 mPa · s or more ×× It was.
From the results in Table 5, the following matters can be read.
(1) The main component is an amine adduct obtained by reaction of an epoxy resin (e1) with an amine compound having one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group. The hardener for microcapsule type epoxy resin, which is coated with a specific shell, is an epoxy that has excellent low-temperature fast-curing properties, and exhibits high long-term storage stability and solvent resistance. A curing agent composition for a resin can be realized.
(2) In the infrared absorption spectrum of the shell, 1050 a height of between ~ 1150 cm -1 for (H1), the ratio (H3 / H1) of the peak height of 1630 ~ 1680 cm -1 (H3) is 0.3 or more 1 If it is less than .2, it can contribute to the realization of low temperature fast curability while exhibiting high solvent resistance.
[エポキシ樹脂EP3-1の製造]
 エポキシ樹脂EP2-1(ビスフェノールA型エポキシ樹脂(エポキシ当量185、全塩素量1400ppm))1kgに、テトラブチルアンモニウムブロマイド0.5gを投入し、撹拌加熱し、内温を175℃にした。さらに、トリレンジイソシアネート160gを120分かけて投入した。投入終了後、反応温度を175℃に保ち、4時間撹拌し、エポキシ樹脂EP3-1を得た。得られたエポキシ樹脂EP3-1のエポキシ当量345g/当量、軟化点70℃、数平均分子量1200、全塩素量1050ppmであった。
[エポキシ樹脂EP3-2の製造]
 エポキシ樹脂EP2-2(3,3’,5,5’-テトラメチルビフェニル型エポキシ樹脂(エポキシ当量186g/当量、全塩素量1100ppm))1kgに、テトラブチルアンモニウムブロマイド0.5gを投入し、撹拌加熱し、内温を175℃にした。さらに、トリレンジイソシアネート160gを120分かけて投入した。投入終了後、反応温度を175℃に保ち、4時間撹拌し、エポキシ樹脂EP3-2を得た。得られたエポキシ樹脂EP3-2のエポキシ当量440g/当量、軟化点75℃、数平均分子量1000、全塩素量1000ppmであった。
[Production of Epoxy Resin EP3-1]
To 1 kg of epoxy resin EP2-1 (bisphenol A type epoxy resin (epoxy equivalent 185, total chlorine amount 1400 ppm)), 0.5 g of tetrabutylammonium bromide was added, stirred and heated, and the internal temperature was adjusted to 175 ° C. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-1. Epoxy resin EP3-1 thus obtained had an epoxy equivalent of 345 g / equivalent, a softening point of 70 ° C., a number average molecular weight of 1200, and a total chlorine content of 1050 ppm.
[Production of Epoxy Resin EP3-2]
0.5 kg of tetrabutylammonium bromide is added to 1 kg of epoxy resin EP2-2 (3,3 ′, 5,5′-tetramethylbiphenyl type epoxy resin (epoxy equivalent 186 g / equivalent, total chlorine amount 1100 ppm)) and stirred. The inner temperature was 175 ° C. by heating. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-2. Epoxy resin EP3-2 obtained had an epoxy equivalent of 440 g / equivalent, a softening point of 75 ° C., a number average molecular weight of 1000, and a total chlorine content of 1000 ppm.
[製造例5-1~5-15]
 表7に示す溶媒中、表7に示す反応溶液濃度、反応温度条件にてエポキシ樹脂(e1)と、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物とを反応させた。なお、エポキシ樹脂(e1)は、表7に記載の配合のように、エポキシ樹脂(EP1)、エポキシ樹脂(EP2)、エポキシ樹脂(EP3)を用いている。その後、減圧下で溶剤を留去することにより、アミンアダクト、又はアミンアダクトを主成分とする、塊状のエポキシ樹脂用硬化剤h-10~h-22を得た。なお、得られた塊状のエポキシ樹脂用硬化剤h-10~h-22の評価結果を表7に併記した。
[Production Examples 5-1 to 5-15]
In the solvent shown in Table 7, the epoxy resin (e1) and one or more primary and / or secondary in the aliphatic or alicyclic hydrocarbon group under the reaction solution concentration and reaction temperature conditions shown in Table 7 An amine compound having an amino group was reacted. The epoxy resin (e1) uses an epoxy resin (EP1), an epoxy resin (EP2), and an epoxy resin (EP3) as shown in Table 7. Thereafter, the solvent was distilled off under reduced pressure to obtain a mass of epoxy resin curing agents h-10 to h-22 mainly composed of amine adduct. The evaluation results of the resulting bulk epoxy resin curing agents h-10 to h-22 are also shown in Table 7.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
〔軟化点の測定〕
 JIS K7234に準拠し、グリセリン浴を用いて、MEIHOHSHA SOFTNING POINT TETSTER ASP-M2SPを用いて、環球法による軟化点測定を行った。なお軟化点は、エポキシ樹脂EP3、塊状のエポキシ樹脂用硬化剤ともに同じ方法で測定した。
〔溶融粘度の測定〕
 Thermo ELECTORON CORPORATION製のレオメーター(Rheo Stress5600)を用いて、測昇温速度を5℃/minの条件での粘度-温度曲線において、120℃の溶融粘度を測定した。なお溶融粘度は、塊状のエポキシ樹脂用硬化剤(h-10~h-42)において測定した。
〔エポキシ樹脂(EP3)の数平均分子量のGPC測定〕
 下記の測定条件で測定し、ポリスチレンの標準物質を用いて検量線を作成して定量した。ポリスチレンの標準物質は、東ソー製の標準TSKポリスチレンのうち、TypeA-500、A-1000、A-2500、A-5000、F-1、F-2を用いて検量線を作成した。検量線の作成、および、分析チャートの解析については、解析ソフトとして、東ソー製のGPC-8020 modelII データ収集Ver.6を使用し、解析条件は、検量線を1次近似し、計算式メソッドは標準条件を使用した。
 カラム:東ソー株式会社製:HCL-8120GEL SUPER 1000、2000、3000直列
 溶出液:テトラヒドロフラン
 流量:0.6ml/min
検量サンプル、およびエポキシ樹脂EP3のサンプル調製条件
 サンプル0.5gに対して、溶出液1Lとなる比率でサンプルを溶解、調製した。
 検出器:東ソー製UV8020を使用し254nmで測定
〔エポキシ樹脂(EP1)の架橋間分子量〕
 エポキシ樹脂(EP1)の基本構造式の単量体の分子量を、基本構造式に含まれるエポキシ基の数で除した値で算出した値である。
[Measurement of softening point]
Based on JIS K7234, the softening point measurement by the ring and ball method was performed using MEIHOSHA SOFTNING POINT TETSTER ASP-M2SP using a glycerin bath. The softening point was measured by the same method for both the epoxy resin EP3 and the block epoxy resin curing agent.
(Measurement of melt viscosity)
A melt viscosity at 120 ° C. was measured using a rheometer manufactured by Thermo Electronics Corporation (Rheo Stress 5600) on a viscosity-temperature curve at a temperature measurement rate of 5 ° C./min. The melt viscosity was measured with a bulky epoxy resin curing agent (h-10 to h-42).
[GPC measurement of number average molecular weight of epoxy resin (EP3)]
The measurement was carried out under the following measurement conditions, and a calibration curve was prepared using a polystyrene standard substance and quantified. As standard materials for polystyrene, calibration curves were prepared using Type A-500, A-1000, A-2500, A-5000, F-1, and F-2 from Tosoh standard TSK polystyrene. For the creation of a calibration curve and analysis of an analysis chart, GPC-8020 model II data collection Ver. No. 6 was used, the analytical condition was a linear approximation of the calibration curve, and the standard method was used for the calculation method.
Column: manufactured by Tosoh Corporation: HCL-8120GEL SUPER 1000, 2000, 3000 series Eluent: Tetrahydrofuran Flow rate: 0.6 ml / min
Calibration Sample and Sample Preparation Conditions for Epoxy Resin EP3 The sample was dissolved and prepared at a ratio of 1 L of eluate to 0.5 g of sample.
Detector: Measured at 254 nm using UV 8020 manufactured by Tosoh [molecular weight between crosslinks of epoxy resin (EP1)]
This is a value calculated by dividing the molecular weight of the monomer of the basic structural formula of the epoxy resin (EP1) by the number of epoxy groups contained in the basic structural formula.
[製造例6-1~6-14]
 製造例5-1で得た塊状のエポキシ樹脂用硬化剤(h-10)を、公知の条件で粗砕・粉砕・分級等する。例えば、まず、粉砕機「ロートプレックス」(ホソカワミクロン社製)により、0.1~2mm程度に粗砕する。次に、得られた粗砕物を、5.0kg/Hrの供給量で、気流式ジェットミル(日清エンジニアリング社製、CJ25型)に供給し、0.6MPa・sの粉砕圧で粉砕する。次に、粉砕物を空気分級機「ターボクラシファイア」(日清エンジニアリング社製)により分級する。このように粉砕と分級操作を最適に組み合わせることにより、表8に示す種々の平均粒径を備えたエポキシ樹脂用硬化剤を得た。
[Production Examples 6-1 to 6-14]
The bulky curing agent for epoxy resin (h-10) obtained in Production Example 5-1 is roughly crushed, pulverized, classified, etc. under known conditions. For example, first, it is roughly crushed to about 0.1 to 2 mm by a pulverizer “ROTOPLEX” (manufactured by Hosokawa Micron). Next, the obtained coarsely crushed material is supplied to an airflow jet mill (Nisshin Engineering Co., Ltd., CJ25 type) at a supply amount of 5.0 kg / Hr, and pulverized at a pulverization pressure of 0.6 MPa · s. Next, the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.). Thus, the hardening | curing agent for epoxy resins provided with the various average particle diameter shown in Table 8 was obtained by combining grinding | pulverization and classification operation optimally.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
[実施例18~34,比較例6~10]
 表8に示すエポキシ樹脂用硬化剤(H)を用い、表9、および表10に示す配合にてマスターバッチ型エポキシ樹脂用硬化剤を得た。得られたマスターバッチ型エポキシ樹脂用硬化剤の評価結果を表9、および表10に併記した。なお、特に明示しない評価方法については、上記いずれかの製造例と同様である。
[Examples 18 to 34, Comparative Examples 6 to 10]
Using the epoxy resin curing agent (H) shown in Table 8, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Table 9 and Table 10. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 9 and Table 10. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
〔硬化物Tg〕
 マスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を、離型剤を塗布した15cm角で、厚さ0.5mmのアルミ製の板に載せた厚さ1mmのテフロン(登録商標)製の板で作製した15mm×30mmの型枠内に均一に流し込み、さらに離型剤を塗布した15cm角で、厚さ0.5mmのアルミ製の板で挟みこむ。これを熱プレス装置を用いて、150℃、1時間、プレス圧2MPaで加熱加圧してマスターバッチ型エポキシ樹脂用硬化剤から硬化物を作製する。
 この硬化物をオリエンテック製の動的粘弾性測定装置 DDV-25FPを用いて、2℃/minで昇温、加振周波数1Hzにおける損失正接(tanδ)より硬化物Tgを測定した。
 硬化物Tgが130℃以下のものを◎、120℃以上130℃未満のものを○、110℃以上120℃未満のものを△、95℃以上110℃未満のものを×、95℃未満のものを××とした。
〔高温弾性率〕
 硬化物Tgと同じ手法により硬化物を作製する。この硬化物を、同じくオリエンテック製の動的粘弾性測定装置 DDV-25FPを用いて、2℃/minで昇温、加振周波数1Hzにおける180℃のE’(貯蔵弾性率)を高温弾性率として測定する。
 高温弾性率が35MPa以上のものを◎、25MPa以上35MPa未満のものを○、15MPa以上25MPa未満のものを△、10MPa以上15MPa未満のものを×、10MPa未満のものを××とした。
[Hardened product Tg]
A 1 mm thick Teflon (registered trademark) plate on which a masterbatch type epoxy resin curing agent composition (M1) is placed on a 15 cm square coated with a release agent on a 0.5 mm thick aluminum plate Pour uniformly into the 15 mm × 30 mm mold produced in step 1 above, and further sandwich a 15 cm square coated with a release agent with a 0.5 mm thick aluminum plate. This is heated and pressurized at 150 ° C. for 1 hour at a press pressure of 2 MPa using a hot press device to produce a cured product from the masterbatch type epoxy resin curing agent.
The cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring apparatus DDV-25FP manufactured by Orientec, and the cured product Tg was measured from a loss tangent (tan δ) at an excitation frequency of 1 Hz.
Cured product Tg of 130 ° C. or lower: ◎, 120 ° C. or higher and lower than 130 ° C. ○, 110 ° C. or higher and lower than 120 ° C. Δ, 95 ° C. or higher and lower than 110 ° C. x, lower than 95 ° C. Was XX.
[High temperature modulus]
A cured product is prepared by the same technique as the cured product Tg. The cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring device DDV-25FP also manufactured by Orientec, and E ′ (storage elastic modulus) at 180 ° C. at an excitation frequency of 1 Hz was high temperature elastic modulus. Measure as
Those having a high temperature elastic modulus of 35 MPa or more were rated ◎, those having 25 MPa or more and less than 35 MPa were evaluated as ○, those having 15 MPa or more and less than 25 MPa were evaluated as Δ, those having 10 MPa or more and less than 15 MPa were evaluated as ×
 表9、および表10の結果から、以下の事項を読み取ることができる。
 基本構造式の単量体分子量が90以上500以下のエポキシ樹脂(EP1)と、エポキシ樹脂(EP2)とイソシアネート化合物の反応物からなるエポキシ樹脂(EP3)を含み、かつ、エポキシ樹脂(EP3)のエポキシ樹脂(e1)全体に対する重量比が、10%以上90%以下であるエポキシ樹脂(e1)と、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物(B)との反応により得られたアミンアダクトを主成分とするエポキシ樹脂用硬化剤(H)を出発材料とし、これを特定のシェルにより被覆したマイクロカプセル型エポキシ樹脂用硬化剤は、低温速硬化性に優れ、高い長期貯蔵安定性・耐溶剤性を発揮するともに、硬化物Tgが高く、高温弾性率に優れるエポキシ樹脂用硬化剤組成物を実現し得る。
From the results of Table 9 and Table 10, the following matters can be read.
An epoxy resin (EP1) having a monomer molecular weight of 90 to 500 in the basic structural formula, an epoxy resin (EP3) composed of a reaction product of an epoxy resin (EP2) and an isocyanate compound, and an epoxy resin (EP3) An epoxy resin (e1) having a weight ratio of 10% or more and 90% or less to the entire epoxy resin (e1), and one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group Curing for a microcapsule type epoxy resin, in which an epoxy resin curing agent (H) mainly composed of an amine adduct obtained by reaction with a group-containing amine compound (B) is coated with a specific shell. The agent is excellent for low-temperature fast-curing properties, exhibits high long-term storage stability and solvent resistance, and has high cured Tg and excellent high-temperature elastic modulus. It can realize agent composition.
[実施例35~42,比較例11~15]
 表4に示すエポキシ樹脂用硬化剤(H)を用い、表11および表12に示すマイクロカプセル型エポキシ樹脂用硬化剤(d)を含むマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を製造し、表13に示す配合にて異方導電性フィルムの原料である一液性エポキシ樹脂組成物を得た。得られた一液性エポキシ樹脂組成物を厚さ100μmのポリエチレンテレフタレートフィルム上に塗布して、60℃10分間送風乾燥し、厚さ35μmの異方導電性フィルムを作製した。得られて異方導電性フィルムの評価結果を表13に併記した。なお、製造例4-1で得られたエポキシ樹脂用硬化剤(H-1)であるエポキシ樹脂用硬化剤粉末を、マイクロカプセル化しないで使用した場合、乾燥後のフィルムは硬化反応が既に進行しており、異方導電性フィルムを得ることができなかった。
[Examples 35 to 42, Comparative Examples 11 to 15]
A masterbatch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) shown in Tables 11 and 12 is produced using the epoxy resin curing agent (H) shown in Table 4. And the one-component epoxy resin composition which is a raw material of an anisotropic conductive film with the mixing | blending shown in Table 13 was obtained. The obtained one-component epoxy resin composition was applied onto a polyethylene terephthalate film having a thickness of 100 μm and air-dried at 60 ° C. for 10 minutes to produce an anisotropic conductive film having a thickness of 35 μm. The obtained anisotropic conductive film evaluation results are shown in Table 13. When the epoxy resin curing agent powder (H-1) obtained in Production Example 4-1 was used without microencapsulation, the cured film had already undergone a curing reaction. The anisotropic conductive film could not be obtained.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
[異方導電性フィルムの評価方法]
 表11により得られた異方導電性フィルムを幅1.2mmに切断し、ITO(インジウム-すず酸化物)を蒸着したガラス上に貼り付け、圧着機によって圧力20kgf/cm3、実温75℃×4秒で仮圧着した。その後、上記の異方導電性フィルムが仮圧着されたガラスと、配線幅20μm、配線高20μm、ピッチ50μmのすずめっき銅回路付きポリイミドフィルム(TCP)とを圧力30kgf/cm、実温度120℃×10秒の圧着条件にて圧着した。
〔低温短時間硬化性〕
 上記において作製された異方導電性フィルム、およびその異方導電性フィルムの圧着後のサンプルをそれぞれ0.1mgの単位まで正確に示差走査熱量測定(Differential Scanning Calorimetry:以下、DSC)測定用のアルミ製容器に精秤する。圧着前後のサンプルをセイコーインスツルメント社製DSC220Cを用いて、昇温速度10℃/分の条件で、サンプルの総発熱量をそれぞれ測定する。
 ((加熱前の総発熱量(C1)-加熱後の総発熱量(C2))/(加熱前の総発熱量(C1))×100=低温短時間反応率(%)として、低温短時間硬化性を評価する。
反応率65%以上を◎、45~65%を○、30~45%を△、15~30%を×、15%未満、または異方導電性フィルムが作製できなかったサンプルを××とした。
〔貯蔵安定性〕
 実施例、または比較例で得られた異方導電性フィルムを40℃-50%RHの恒温恒湿槽にて放置し、100時間経過後の異方導電性フィルムについて、上記異方導電性フィルムの評価方法と同様に圧着サンプルを作製し、TCPの隣接する端子間の電気接続抵抗を抵抗測定器(HIOKI-3227)にて測定し、配線の抵抗1組分とITOの抵抗分とを差し引いて2で割った値を端子-ITO間の抵抗値とし、抵抗値8個の平均値を測定した。抵抗値において、接続が取れなかった端子が一つでもあったものは×、すべての端子において接続がとれたものは○とした。
〔接着強度〕
 上記のITO-TCP圧着サンプルを60℃-90%RHの恒温恒湿槽にて500時間放置し、TCPとガラスとの90度剥離強度を引っ張り試験機(島津製作所製、AGS-50A)にて測定した。剥離強度が500gf/cm以上のものを○、300~500gf/cmのものを△、150~300gf/cm以下のものを×、150gf/cm未満、または異方導電性フィルムが作製できなかったサンプルを××とした。
〔導通信頼性〕
 上記のITO-TCP圧着サンプルを60℃-90%RHの恒温恒湿槽にて500時間放置し、貯蔵安定性と同様の評価にて、抵抗値を測定する。抵抗値において、接続が取れなかった端子が一つでもあったものは×、接続抵抗値が10倍以上に増加していたものは△、接続抵抗値の増加が2~10倍までのものを○、接続抵抗値の増加が2倍未満のものを◎とした。
[Method for evaluating anisotropic conductive film]
The anisotropic conductive film obtained in accordance with Table 11 was cut to a width of 1.2 mm and attached onto a glass on which ITO (indium-tin oxide) was vapor-deposited. The pressure was 20 kgf / cm 3 and the actual temperature was 75 ° C. by a crimping machine. Temporary pressure bonding was performed in 4 seconds. Thereafter, the glass on which the anisotropic conductive film is temporarily press-bonded and a polyimide film (TCP) with a tin-plated copper circuit having a wiring width of 20 μm, a wiring height of 20 μm, and a pitch of 50 μm are pressure 30 kgf / cm 3 , an actual temperature of 120 ° C. The crimping was performed under a crimping condition of × 10 seconds.
[Low-temperature short-time curing]
Aluminum for differential scanning calorimetry (DSC) measurement of the anisotropic conductive film produced in the above, and the sample after compression bonding of the anisotropic conductive film, accurately to a unit of 0.1 mg each. Weigh accurately in a container. Using the DSC220C manufactured by Seiko Instruments Inc., the samples before and after the crimping are each measured for the total calorific value of the sample under the condition of a heating rate of 10 ° C./min.
((Total calorific value before heating (C1) −total calorific value after heating (C2)) / (total calorific value before heating (C1)) × 100 = low-temperature short-time reaction rate (%) Evaluate curability.
A reaction rate of 65% or more is indicated by ◎, 45-65% is indicated by ◯, 30-45% is indicated by △, 15-30% is indicated by ×, less than 15%, or a sample in which an anisotropic conductive film could not be produced is indicated by XX. .
[Storage stability]
The anisotropic conductive film obtained in Examples or Comparative Examples is left in a constant temperature and humidity chamber of 40 ° C.-50% RH, and the anisotropic conductive film after 100 hours has passed. A crimped sample is prepared in the same manner as in the evaluation method, and the electrical connection resistance between adjacent terminals of the TCP is measured with a resistance measuring instrument (HIOKI-3227), and one set of wiring resistance and the resistance of ITO are subtracted. The value divided by 2 was used as the resistance value between the terminal and ITO, and the average value of 8 resistance values was measured. In the resistance value, the case where there was even one terminal that could not be connected was indicated as x, and the case where connection was established at all terminals was indicated as ◯.
[Adhesive strength]
The above ITO-TCP press-bonded sample is left in a constant temperature and humidity chamber of 60 ° C.-90% RH for 500 hours, and the 90 ° peel strength between TCP and glass is measured with a tensile tester (Shimadzu AGS-50A). It was measured. Samples with a peel strength of 500 gf / cm or more, ◯ with 300 to 500 gf / cm, Δ with 150 to 300 gf / cm or less, less than 150 gf / cm, or an anisotropic conductive film could not be produced Was XX.
[Conduction reliability]
The above ITO-TCP press-bonded sample is left in a constant temperature and humidity chamber of 60 ° C.-90% RH for 500 hours, and the resistance value is measured by the same evaluation as the storage stability. In the resistance value, if there was even one terminal that could not be connected, ×, if the connection resistance value increased more than 10 times, △, if the increase in connection resistance value was 2 to 10 times. ○, the case where the increase in the connection resistance value was less than twice was marked as ◎.
 表13の結果から、以下の事項を読み取ることができる。
 マイクロカプセル型エポキシ樹脂用潜在性硬化剤を含む異方導電性フィルムにおいて、エポキシ樹脂用硬化剤(H)を特定の原料を用いて合成し、エポキシ樹脂用硬化剤(H)を特定範囲の赤外線吸収ピーク高さ比を有するシェルで被覆するマイクロカプセル型エポキシ樹脂用硬化剤(d)を用いることにより、長期貯蔵安定性と低温短時間硬化性、および圧着部の接続信頼性を有することを実現した。
From the results in Table 13, the following matters can be read.
In an anisotropic conductive film containing a microcapsule type epoxy resin latent curing agent, an epoxy resin curing agent (H) is synthesized using a specific raw material, and the epoxy resin curing agent (H) is infrared in a specific range. By using a microcapsule type epoxy resin curing agent (d) that is coated with a shell having an absorption peak height ratio, it realizes long-term storage stability, low-temperature and short-time curability, and crimp connection reliability. did.
[エポキシ樹脂EP1-6の製造]
 撹拌装置、温度計を備えた2リットルの三つ口フラスコに、東京化成製1,3-アダマンタンジオール34g(0.2モル)、エピクロルヒドリン370g(4モル)、グリシドール59g(0.8モル)、テトラメチルアンモニウムクロライド0.11gを仕込み、加熱還流下で2時間付加反応させた。次いで内容物を60℃に冷却し、水分除去装置を装着してから、48.5%水酸化ナトリウムを36g(0.4モル)加えた。反応温度55~60℃、減圧度100~150mmHgで生成する水を連続的に共沸除去させ、留出液のうちエピクロルヒドリン層を反応系にもどしながら閉環反応を行わせた。生成水が11mlに達した点を反応終了点とした。その後、減圧ろ過、水洗を繰り返し、さらに減圧蒸留により残存エピクロルヒドリンを回収しエポキシ樹脂EP1-6を得た。得られたエポキシ樹脂EP1-6のエポキシ当量165g/当量、架橋間分子量156、全塩素量1600ppmであった。
[エポキシ樹脂EP1-7の製造]
 撹拌装置、温度計を備えた2リットルの三つ口フラスコに、JFEケミカル製ビスフェノールフルオレン95.5g(0.27モル)、エピクロルヒドリン463g(5モル)、グリシドール59g(0.8モル)、テトラメチルアンモニウムクロライド0.11gを仕込み、加熱還流下で2時間付加反応させた。次いで内容物を60℃に冷却し、水分除去装置を装着してから、48.5%水酸化ナトリウムを83g(0.9モル)加えた。反応温度55~60℃、減圧度20~150mmHgで生成する水を連続的に共沸除去させ、留出液のうちエピクロルヒドリン層を反応系にもどしながら閉環反応を行わせた。その後、トルエン150gを加えて生成したエポキシ樹脂を溶解させて、油水分離と未溶解分を減圧ろ過、さらに減圧蒸留により残存エピクロルヒドリンとトルエンを回収し、エポキシ樹脂EP1-7を得た。得られたエポキシ樹脂EP1-7のエポキシ当量265g/当量、架橋間分子量247、全塩素量1500ppmであった。
[エポキシ樹脂EP1-8の製造]
 撹拌装置、温度計を備えた2リットルの三つ口フラスコに、JFEケミカル製1,2-インダンジオール37.5g(0.25モル)、エピクロルヒドリン463g(5モル)、グリシドール59g(0.8モル)、テトラメチルアンモニウムクロライド0.11gを仕込み、加熱還流下で2時間付加反応させた。次いで内容物を60℃に冷却し、水分除去装置を装着してから、48.5%水酸化ナトリウムを83g(0.9モル)加えた。反応温度55~60℃、減圧度20~150mmHgで生成する水を連続的に共沸除去させ、留出液のうちエピクロルヒドリン層を反応系にもどしながら閉環反応を行わせた。その後、トルエン150gを加えて生成したエポキシ樹脂を溶解させて、油水分離と未溶解分を減圧ろ過、さらに減圧蒸留により残存エピクロルヒドリンとトルエンを回収し、エポキシ樹脂EP1-8を得た。得られたエポキシ樹脂EP1-8のエポキシ当量165g/当量、架橋間分子量147、全塩素量1800ppmであった。
[エポキシ樹脂EP3-4の製造]
 エポキシ樹脂EP1-1(1,6-ジヒドロキナフタレン型エポキシ樹脂(エポキシ当量143、全塩素量900ppm))1kgに、テトラブチルアンモニウムブロマイド0.5gを投入し、撹拌加熱し、内温を175℃にした。さらに、トリレンジイソシアネート180gを120分かけて投入した。投入終了後、反応温度を175℃に保ち、4時間撹拌し、エポキシ樹脂EP3-4を得た。得られたエポキシ樹脂EP3-4のエポキシ当量370g/当量、軟化点65℃、数平均分子量900、全塩素量1100ppmであった。
[エポキシ樹脂EP3-5の製造]
 エポキシ樹脂EP2-1(ビスフェノールA型エポキシ樹脂(エポキシ当量185、全塩素量1400ppm))1.2kgに、テトラブチルアンモニウムブロマイド0.5gを投入し、撹拌加熱し、内温を175℃にした。さらに、トリレンジイソシアネート160gを120分かけて投入した。投入終了後、反応温度を175℃に保ち、4時間撹拌し、エポキシ樹脂EP3-5を得た。得られたエポキシ樹脂EP3-5をLC-MSで分析したところ、未反応のビスフェノールA型エポキシ樹脂(EP2-1)に相当する成分の含有量が20wt%含まれる反応物であった。エポキシ樹脂EP3-5全体を分析した結果、エポキシ当量335g/当量、軟化点60℃、数平均分子量1050、全塩素量1000ppmであった。
[Production of Epoxy Resin EP1-6]
In a 2 liter three-necked flask equipped with a stirrer and a thermometer, 1,3-adamantanediol 34 g (0.2 mol) manufactured by Tokyo Chemical Industry, 370 g (4 mol) epichlorohydrin, 59 g (0.8 mol) glycidol, Tetramethylammonium chloride (0.11 g) was charged and subjected to an addition reaction for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device before adding 36 g (0.4 mol) of 48.5% sodium hydroxide. Water generated at a reaction temperature of 55 to 60 ° C. and a reduced pressure of 100 to 150 mmHg was continuously removed by azeotropic distillation, and the ring closure reaction was carried out while returning the epichlorohydrin layer of the distillate to the reaction system. The point at which the produced water reached 11 ml was defined as the reaction end point. Thereafter, filtration under reduced pressure and washing with water were repeated, and the remaining epichlorohydrin was recovered by distillation under reduced pressure to obtain an epoxy resin EP1-6. Epoxy resin EP1-6 obtained had an epoxy equivalent of 165 g / equivalent, an inter-crosslinking molecular weight of 156, and a total chlorine content of 1600 ppm.
[Production of Epoxy Resin EP1-7]
In a 2 liter three-necked flask equipped with a stirrer and a thermometer, 95.5 g (0.27 mol) of bisphenolfluorene manufactured by JFE Chemical, 463 g (5 mol) of epichlorohydrin, 59 g (0.8 mol) of glycidol, tetramethyl 0.11 g of ammonium chloride was charged, and an addition reaction was performed for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device, after which 83 g (0.9 mol) of 48.5% sodium hydroxide was added. Water generated at a reaction temperature of 55-60 ° C. and a reduced pressure of 20-150 mmHg was continuously removed by azeotropic distillation, and the ring closure reaction was carried out while returning the epichlorohydrin layer of the distillate to the reaction system. Thereafter, 150 g of toluene was added to dissolve the produced epoxy resin, oil-water separation and undissolved components were filtered under reduced pressure, and residual epichlorohydrin and toluene were recovered by distillation under reduced pressure to obtain epoxy resin EP1-7. Epoxy resin EP1-7 obtained had an epoxy equivalent of 265 g / equivalent, a cross-linking molecular weight of 247, and a total chlorine content of 1500 ppm.
[Production of Epoxy Resin EP1-8]
To a 2 liter three-necked flask equipped with a stirrer and a thermometer, 37.5 g (0.25 mol) of 1,2-indanediol manufactured by JFE Chemical, 463 g (5 mol) of epichlorohydrin, 59 g (0.8 mol) of glycidol ), 0.11 g of tetramethylammonium chloride was charged, and the addition reaction was carried out for 2 hours under heating and reflux. The contents were then cooled to 60 ° C. and equipped with a moisture removal device, after which 83 g (0.9 mol) of 48.5% sodium hydroxide was added. Water generated at a reaction temperature of 55-60 ° C. and a reduced pressure of 20-150 mmHg was continuously removed by azeotropic distillation, and the ring closure reaction was carried out while returning the epichlorohydrin layer of the distillate to the reaction system. Thereafter, 150 g of toluene was added to dissolve the produced epoxy resin, oil-water separation and undissolved components were filtered under reduced pressure, and residual epichlorohydrin and toluene were recovered by distillation under reduced pressure to obtain epoxy resin EP1-8. Epoxy resin EP1-8 obtained had an epoxy equivalent of 165 g / equivalent, an inter-crosslinking molecular weight of 147, and a total chlorine content of 1800 ppm.
[Production of epoxy resin EP3-4]
1 kg of epoxy resin EP1-1 (1,6-dihydroquinaphthalene type epoxy resin (epoxy equivalent 143, total chlorine amount 900 ppm)) is charged with 0.5 g of tetrabutylammonium bromide, heated with stirring, and the internal temperature is 175 ° C. I made it. Further, 180 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-4. Epoxy resin EP3-4 obtained had an epoxy equivalent of 370 g / equivalent, a softening point of 65 ° C., a number average molecular weight of 900, and a total chlorine content of 1100 ppm.
[Production of epoxy resin EP3-5]
To 1.2 kg of epoxy resin EP2-1 (bisphenol A type epoxy resin (epoxy equivalent 185, total chlorine content 1400 ppm)), 0.5 g of tetrabutylammonium bromide was added, and the mixture was stirred and heated to bring the internal temperature to 175 ° C. Furthermore, 160 g of tolylene diisocyanate was added over 120 minutes. After completion of the addition, the reaction temperature was kept at 175 ° C. and the mixture was stirred for 4 hours to obtain an epoxy resin EP3-5. When the obtained epoxy resin EP3-5 was analyzed by LC-MS, it was a reaction product containing 20 wt% of the component corresponding to the unreacted bisphenol A type epoxy resin (EP2-1). As a result of analyzing the entire epoxy resin EP3-5, the epoxy equivalent was 335 g / equivalent, the softening point was 60 ° C., the number average molecular weight was 1050, and the total chlorine content was 1000 ppm.
 トリエチレンテトラミン(商品名:D.E.H.24、Dow社製)を蒸留分離して、混合成分から留分-1、留分-2の蒸留分離方法
 Dow社製のトリエチレンテトラミン(商品名:D.E.H.24)は、4種類のアミン化合物の混合物であることが知られている。反応性の高いアミンアダクトを得るために、蒸留分離する方法を記載する。
 500mlの4ツ口フラスコにDow社製のトリエチレンテトラミン(商品名:D.E.H.24)を300g仕込み、ディクソンパッキンを充填したガラス製蒸留塔に、還流式ヘッドを塔頂部に設置して、オイルバスにて加温、圧力15Torrに減圧して蒸留分離操作を行った。
 抜き出し:蒸留塔戻り=1:1になるように還流比を制御して、塔頂温度が安定したところで留分の抜き出しを開始し、留分-1を100g採取したところで、抜き出しを停止した。
 抜き出し:蒸留塔戻り=1:1の還流比の状態で、圧力を5Torrに変更して、塔頂温度が安定するまで抜き出しを止める。塔頂温度が安定したところで抜き出し操作を再開し、留分-2を100g採取した。
Method of distilling triethylenetetramine (trade name: D.E.H.24, manufactured by Dow) and distilling and separating fraction-1 and fraction-2 from the mixed components Triethylenetetramine (product) manufactured by Dow Name: D.E.H.24) is known to be a mixture of four amine compounds. In order to obtain a highly reactive amine adduct, a method of distillation separation is described.
A 500-ml four-necked flask was charged with 300 g of Dow triethylenetetramine (trade name: DEH.24), a glass distillation column filled with Dickson packing, and a reflux head was installed at the top of the column. Then, it was heated in an oil bath, and the pressure was reduced to 15 Torr.
Extraction: The reflux ratio was controlled so that the return to the distillation column was 1: 1, and when the tower top temperature was stabilized, the extraction of the fraction was started, and when 100 g of fraction-1 was collected, the extraction was stopped.
Extraction: distillation tower return = 1: 1 reflux ratio, change pressure to 5 Torr and stop extraction until the top temperature is stable. When the column top temperature was stabilized, the extraction operation was restarted, and 100 g of fraction-2 was collected.
 Dow社製のトリエチレンテトラミン(商品名:D.E.H.24)を蒸留分離して、混合成分から留分-1、留分-2の成分のガスクロマトグラフィ(GC)分析方法
 ガスクロマトグラフィ(GC)により、分析チャートを得た。分析装置としては、島津製作所製GC-17A、検出器は水素炎イオン検出器(Flame Ionization Detector)を用いた。カラムとしてはGLサイエンス製 キャピラリカラムInterCap for Amines(長さ15m、内径0.32mm)を使用した。キャリアガスはヘリウムを用いた。
 蒸留分離前のトリエチレンテトラミン(商品名:D.E.H.24)のブランク、および蒸留分離した留分-1、留分-2を、それぞれ、トルエン:1-ブタノール=1:1の重量比で混合した溶剤で10重量%に希釈して分析を行った。
 また、検量用サンプルとして、標品(1)アルドリッチ製の試薬「トリス(2-アミノエチル)アミン」(CASナンバー4097-89-6、試薬純度96%)、および標品(2)試薬「N、N’-ビス(2-アミノエチル)-1,2-エタンジアミン」(CASナンバー112-24-3、試薬純度97%)の2つを標準サンプルに用いた。得られるガスクロマトグラフィのリテンションタイムにより、標品(1)、標品(2)の含有を確認した。また、標品(1)と標品(2)以外のリテンションに現れるピークを含めて、各含有成分の割合は、ガスクロマトグラフィの溶剤以外の面積比率で計算した。
 面積比率より、留分-1に含有される成分は、標品(1)が15%、標品(2)が75%、さらに、含有成分である、N,N’-ビス(2-アミノエチル)-ピペラジンとN-[(2-アミノエチル)2-アミノエチル]ピペラジンの2つの成分の合計の面積比率は10%であった。
 また、留分-2に含有される成分は、標品(1)が5%、標品(2)が65%、N,N’-ビス(2-アミノエチル)-ピペラジンとN-[(2-アミノエチル)2-アミノエチル]ピペラジンの2つの成分の合計の面積比率は30%であった。
Gas chromatography (GC) analysis method of components of fraction-1 and fraction-2 from mixed components by distilling triethylenetetramine (trade name: DEH.24) manufactured by Dow Co. GC), an analysis chart was obtained. As an analyzer, GC-17A manufactured by Shimadzu Corporation was used, and as a detector, a flame ionization detector (Frame Ionization Detector) was used. As the column, a capillary column InterCap for Amine (length 15 m, inner diameter 0.32 mm) manufactured by GL Science was used. Helium was used as the carrier gas.
A blank of triethylenetetramine (trade name: D.E.H.24) before distillation separation and a fraction-1 and a fraction-2 obtained by distillation separation were respectively toluene: 1-butanol = 1: 1 weight. The analysis was carried out after diluting to 10% by weight with a solvent mixed in a ratio.
In addition, as a sample for calibration, a standard (1) Aldrich reagent “Tris (2-aminoethyl) amine” (CAS number 4097-89-6, reagent purity 96%) and a standard (2) reagent “N N′-bis (2-aminoethyl) -1,2-ethanediamine ”(CAS number 112-24-3, reagent purity 97%) were used as standard samples. The content of the sample (1) and the sample (2) was confirmed by the retention time of the obtained gas chromatography. Moreover, the ratio of each containing component including the peak which appears in retention other than a sample (1) and a sample (2) was calculated by area ratios other than the solvent of a gas chromatography.
From the area ratio, the component contained in fraction-1 was 15% for the sample (1), 75% for the sample (2), and the component N, N′-bis (2-amino) The total area ratio of the two components of ethyl) -piperazine and N-[(2-aminoethyl) 2-aminoethyl] piperazine was 10%.
The components contained in fraction-2 are 5% for the sample (1), 65% for the sample (2), N, N′-bis (2-aminoethyl) -piperazine and N-[( The total area ratio of the two components of 2-aminoethyl) 2-aminoethyl] piperazine was 30%.
[製造例7-1~7-20]
 表14に示す溶媒中、表14に示す反応溶液濃度、反応温度条件にてエポキシ樹脂(e1)と、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物とを反応させた。なお、エポキシ樹脂(e1)は、表14に記載の配合のように、エポキシ樹脂(EP1)、エポキシ樹脂(EP2)、エポキシ樹脂(EP3)を用いている。その後、減圧下で溶剤を留去することにより、アミンアダクト、又はアミンアダクトを主成分とする、塊状のエポキシ樹脂用硬化剤h-23~h-42を得た。なお、得られた塊状のエポキシ樹脂用硬化剤h-23~h-36の評価結果を表14に併記した。
 なお、Dow社製のトリエチレンテトラミン(商品名:D.E.H.24)を蒸留分離して得られた留分-1、留分-2を用いて、表14に示す溶媒中、反応温度条件にて、記載のエポキシ樹脂(e1)と反応させるときの配合(当量)は、エポキシ樹脂のエポキシ基のモル数に対して、アミン化合物のモル数は、留分-1、および留分-2ともに、「N、N’-ビス(2-アミノエチル)-1,2-エタンジアミン」(CASナンバー112-24-3)の分子量(146.2)を元に、当量を計算した。
 Dow製のペンタエチレンヘキサミン(商品名:D.E.H.29)を用いて、表14に示す溶媒中、反応温度条件にて、記載のエポキシ樹脂(e1)と反応させるときの配合(当量)は、エポキシ樹脂のエポキシ基のモル数に対して、アミン化合物のモル数は、仕込みのDow製のペンタエチレンヘキサミン(商品名:D.E.H.29)の分子量が、全量「リニアな構造のペンタエチレンヘキサミン(CASナンバー 4067-16-7)」の分子量(189.3)を元に、当量を計算した。
〔エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分とするエポキシ樹脂用硬化剤(h-23~h-42の重量平均分子量のGPC測定〕
 下記の測定条件で測定し、ポリオキシエチレンの標準物質を用いて検量線を作成して定量した。ポリエチレンオキシドの標準物質は、東ソー製の標準TSK標準ポリエチレンオキシドのうち、TypeSE-2、SE-5、SE-8、および和光純薬製の試薬ポリエチレングリコール200、400、1000、1500、2000,4000、8000、20000を用いて検量線を作成した。検量線の作成、および、分析チャートの解析については、解析ソフトとして、東ソー製のGPC-8020 modelII データ収集Ver.6を使用し、解析条件は、検量線を1次近似し、計算式メソッドは標準条件を使用した。
 カラム:東ソー株式会社製:TSKgelG4000HXLとG3000HXLを直列して使用
 溶出液:0.1mol/Lとなるようにエチレンジアミンを添加した、ジメチルホルムアミドを使用
 流量:0.8ml/min
検量サンプル、およびエポキシ樹脂用硬化剤のサンプル調製条件
 サンプル0.5gに対して、溶出液1Lとなる比率でサンプルを溶解、調製した。
 検出器:東ソー製UV8020を使用し280nmで測定
[Production Examples 7-1 to 7-20]
In the solvent shown in Table 14, the epoxy resin (e1) and one or more primary and / or secondary in the aliphatic or alicyclic hydrocarbon group under the reaction solution concentration and reaction temperature conditions shown in Table 14 Reaction with an amine compound having an amino group. In addition, the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) are used for the epoxy resin (e1) as shown in Table 14. Thereafter, the solvent was distilled off under reduced pressure to obtain a bulky epoxy resin curing agent h-23 to h-42 mainly composed of an amine adduct. The evaluation results of the resulting bulk epoxy resin curing agents h-23 to h-36 are also shown in Table 14.
In addition, using a fraction-1 and a fraction-2 obtained by distillation separation of triethylenetetramine (trade name: DEH.24) manufactured by Dow, the reaction was carried out in the solvents shown in Table 14. The compounding (equivalent) when reacting with the described epoxy resin (e1) under temperature conditions is such that the number of moles of the amine compound is the fraction-1 and the fraction of the number of moles of the epoxy group of the epoxy resin. -2 was calculated on the basis of the molecular weight (146.2) of “N, N′-bis (2-aminoethyl) -1,2-ethanediamine” (CAS number 112-24-3).
Formulation (equivalent amount) when reacting with the described epoxy resin (e1) under the reaction temperature conditions in the solvents shown in Table 14 using Dow pentaethylenehexamine (trade name: D.E.H.29) ) Is the number of moles of the epoxy group of the epoxy resin, the number of moles of the amine compound, the total molecular weight of the charged Dow pentaethylenehexamine (trade name: DEH29) is “linear” The equivalent weight was calculated based on the molecular weight (189.3) of the structure pentaethylenehexamine (CAS number 4067-16-7).
[Curing agent for epoxy resin mainly composed of amine adduct obtained by reaction of epoxy resin (e1) with amine compound (GPC measurement of weight average molecular weight of h-23 to h-42)
The measurement was performed under the following measurement conditions, and a calibration curve was prepared using a polyoxyethylene standard substance and quantified. Polyethylene oxide standard materials are TSE standard polyethylene oxide manufactured by Tosoh, TypeSE-2, SE-5, SE-8, and reagent polyethylene glycol 200, 400, 1000, 1500, 2000, 4000 manufactured by Wako Pure Chemical Industries, Ltd. , 8000 and 20000 were used to create a calibration curve. For the creation of a calibration curve and analysis of an analysis chart, GPC-8020 model II data collection Ver. No. 6 was used, the analytical condition was a linear approximation of the calibration curve, and the standard method was used for the calculation method.
Column: manufactured by Tosoh Corporation: TSKgel G4000HXL and G3000HXL are used in series. Eluent: dimethylformamide added with ethylenediamine to 0.1 mol / L is used. Flow rate: 0.8 ml / min
Calibration sample and epoxy resin curing agent sample preparation conditions The sample was dissolved and prepared at a ratio of 1 L of eluate to 0.5 g of the sample.
Detector: Measured at 280 nm using Tosoh UV8020
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032

Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034

Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
[製造例8-1~8-22]
 製造例7-1で得た塊状のエポキシ樹脂用硬化剤(h-23)を、公知の条件で粗砕・粉砕・分級等する。例えば、まず、粉砕機「ロートプレックス」(ホソカワミクロン社製)により、0.1~2mm程度に粗砕する。次に、得られた粗砕物を、5.0kg/Hrの供給量で、気流式ジェットミル(日清エンジニアリング社製、CJ25型)に供給し、0.6MPa・sの粉砕圧で粉砕する。次に、粉砕物を空気分級機「ターボクラシファイア」(日清エンジニアリング社製)により分級する。このように粉砕と分級操作を最適に組み合わせることにより、表15に示す種々の平均粒径を備えたエポキシ樹脂用硬化剤を得た。
[Production Examples 8-1 to 8-22]
The bulky epoxy resin curing agent (h-23) obtained in Production Example 7-1 is roughly crushed, pulverized, classified, etc. under known conditions. For example, first, it is roughly crushed to about 0.1 to 2 mm by a pulverizer “ROTOPLEX” (manufactured by Hosokawa Micron). Next, the obtained coarsely crushed material is supplied to an airflow jet mill (Nisshin Engineering Co., Ltd., CJ25 type) at a supply amount of 5.0 kg / Hr, and pulverized at a pulverization pressure of 0.6 MPa · s. Next, the pulverized product is classified by an air classifier “Turbo Classifier” (manufactured by Nissin Engineering Co., Ltd.). Thus, the hardening | curing agent for epoxy resins provided with the various average particle diameter shown in Table 15 was obtained by combining grinding | pulverization and classification operation optimally.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
[実施例43~66,比較例16~20]
 表15に示すエポキシ樹脂用硬化剤(H)を用い、表16、および表17に示す配合にてマスターバッチ型エポキシ樹脂用硬化剤を得た。得られたマスターバッチ型エポキシ樹脂用硬化剤の評価結果を表16、および表17に併記した。なお、特に明示しない評価方法については、上記いずれかの製造例と同様である。
[Examples 43 to 66, Comparative Examples 16 to 20]
Using the epoxy resin curing agent (H) shown in Table 15, a masterbatch type epoxy resin curing agent was obtained with the formulation shown in Table 16 and Table 17. The evaluation results of the obtained masterbatch type epoxy resin curing agent are also shown in Table 16 and Table 17. Note that the evaluation method not particularly specified is the same as in any of the above production examples.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037

Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
[実施例67~74,比較例21~24]
 表15に示すエポキシ樹脂用硬化剤(H)を用い、表16および表17に示すマイクロカプセル型エポキシ樹脂用硬化剤(d)を含むマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を製造し、表18に示す配合にて異方導電性フィルムの原料である一液性エポキシ樹脂組成物を得た。得られた一液性エポキシ樹脂組成物を厚さ100μmのポリエチレンテレフタレートフィルム上に塗布して、60℃10分間送風乾燥し、厚さ35μmの異方導電性フィルムを作製した。得られて異方導電性フィルムの評価結果を表13に併記した。なお、製造例8-1で得られたエポキシ樹脂用硬化剤(H-26)であるエポキシ樹脂用硬化剤粉末を、マイクロカプセル化しないで使用した場合、乾燥後のフィルムは硬化反応が既に進行しており、異方導電性フィルムを得ることができなかった。
[Examples 67 to 74, Comparative Examples 21 to 24]
A masterbatch type epoxy resin curing agent composition (M1) containing the microcapsule type epoxy resin curing agent (d) shown in Table 16 and Table 17 is produced using the epoxy resin curing agent (H) shown in Table 15. And the one-component epoxy resin composition which is a raw material of an anisotropic conductive film with the mixing | blending shown in Table 18 was obtained. The obtained one-component epoxy resin composition was applied onto a polyethylene terephthalate film having a thickness of 100 μm and air-dried at 60 ° C. for 10 minutes to produce an anisotropic conductive film having a thickness of 35 μm. The obtained anisotropic conductive film evaluation results are shown in Table 13. When the epoxy resin curing agent powder (H-26) obtained in Production Example 8-1 was used without microencapsulation, the cured film had already undergone a curing reaction. The anisotropic conductive film could not be obtained.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
[異方導電性フィルムの評価方法]
〔異方導電性フィルムの硬化物Tg〕
 上記実施例に記載の方法で得られた厚さ100μmの異方導電性フィルムを熱プレス装置を用いて、150℃、2分間、プレス圧2MPaで加熱加圧して異方導電性フィルムの硬化物を作製する。
 この硬化物をオリエンテック製の動的粘弾性測定装置 DDV-25FPを用いて、2℃/minで昇温、加振周波数1Hzにおける損失正接(tanδ)より硬化物Tgを測定した。
 硬化物Tgが130℃以下のものを◎、120℃以上130℃未満のものを○、110℃以上120℃未満のものを△、95℃以上110℃未満のものを×、95℃未満のものを××とした。
 なお、異方導電性フィルムの配合組成により、Tgが2つ以上現れる組成においては、高温側のTgを採用して評価した。
〔異方導電性フィルムの高温弾性率〕
 異方導電性フィルムの硬化物Tgと同じ手法により異方導電性フィルムの硬化物を作製する。この硬化物を、同じくオリエンテック製の動的粘弾性測定装置 DDV-25FPを用いて、2℃/minで昇温、加振周波数1Hzにおける180℃のE’(貯蔵弾性率)を高温弾性率として測定する。
 高温弾性率が35MPa以上のものを◎、25MPa以上35MPa未満のものを○、15MPa以上25MPa未満のものを△、10MPa以上15MPa未満のものを×、10MPa未満のものを××とした。
[Method for evaluating anisotropic conductive film]
[Hardened product Tg of anisotropic conductive film]
A cured anisotropic conductive film obtained by heating and pressurizing an anisotropic conductive film having a thickness of 100 μm obtained by the method described in the above example using a hot press apparatus at 150 ° C. for 2 minutes at a press pressure of 2 MPa. Is made.
The cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring apparatus DDV-25FP manufactured by Orientec, and the cured product Tg was measured from a loss tangent (tan δ) at an excitation frequency of 1 Hz.
Cured product Tg of 130 ° C. or lower: ◎, 120 ° C. or higher and lower than 130 ° C. ○, 110 ° C. or higher and lower than 120 ° C. Δ, 95 ° C. or higher and lower than 110 ° C. x, lower than 95 ° C. Was XX.
In addition, in the composition which two or more Tg appears by the compounding composition of an anisotropic conductive film, Tg on the high temperature side was employ | adopted and evaluated.
[High temperature elastic modulus of anisotropic conductive film]
A cured product of the anisotropic conductive film is produced by the same technique as the cured product Tg of the anisotropic conductive film. The cured product was heated at 2 ° C./min using a dynamic viscoelasticity measuring device DDV-25FP also manufactured by Orientec, and E ′ (storage elastic modulus) at 180 ° C. at an excitation frequency of 1 Hz was high temperature elastic modulus. Measure as
Those having a high temperature elastic modulus of 35 MPa or more were rated ◎, those having 25 MPa or more and less than 35 MPa were evaluated as ○, those having 15 MPa or more and less than 25 MPa were evaluated as Δ, those having 10 MPa or more and less than 15 MPa were evaluated as ×
 表16、17および表18の結果から、以下の事項を読み取ることができる。
 剛直な骨格構造を有するエポキシ樹脂(e1)と、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有するアミン化合物との反応により得られたアミンアダクトを主成分とするエポキシ樹脂用硬化剤(H)を出発材料とし、これを特定のシェルにより被覆したマイクロカプセル型エポキシ樹脂用硬化剤は、低温速硬化性に優れ、高い長期貯蔵安定性・耐溶剤性を発揮するともに、硬化物Tgが高く、高温弾性率に優れるエポキシ樹脂用硬化剤組成物を実現し得る。
 また、そのようにして得られたマイクロカプセル型エポキシ樹脂用潜在性硬化剤(d)を含む異方導電性フィルムは、長期貯蔵安定性と低温短時間硬化性、高い接着強度および圧着部の接続信頼性を有し、異方導電性フィルム硬化物のTgが高く、Tgより高温において高い弾性率を有することを実現した。
From the results of Tables 16, 17 and 18, the following matters can be read.
An amine obtained by reacting an epoxy resin (e1) having a rigid skeleton structure with an amine compound having one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group The hardener for microcapsule type epoxy resin, which has a hardener for epoxy resin (H) mainly composed of adduct as a starting material and is coated with a specific shell, is excellent in low-temperature fast curing and high long-term storage stability. While exhibiting solvent resistance, the hardened | cured material composition for epoxy resins which is high in hardened | cured material Tg and excellent in a high temperature elastic modulus can be implement | achieved.
Further, the anisotropic conductive film containing the latent curing agent (d) for microcapsule type epoxy resin thus obtained has long-term storage stability and low-temperature short-time curability, high adhesive strength, and connection of the crimping part. It has reliability and realized that the anisotropic conductive film cured product has a high Tg and has a higher elastic modulus at a temperature higher than Tg.
[導電性フィルムの作製の実施例]
 ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、AER-2603)15質量部、フェノールノボラック樹脂(昭和高分子社製、商品名「BRG-558」)6質量部、合成ゴム(日本ゼオン社製、商品名「ニポール1072」、重量平均分子量30万)4質量部を、メチルエチルケトンとブチルセロソルブアセテートの1:1(質量比)混合溶剤20質量部に溶解した。この溶液に銀粉末74質量部を混合し、さらに三本ロールにより混練した。これにさらに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤を50質量部加えて、さらに均一に混合し、導電性接着剤を得た。得られた導電性接着剤を厚さ40μmのポリプロピレンフィルム上にキャストして、80℃で60分間、乾燥半硬化させ、厚さ35μm の導電性接着剤層を有する導電性フィルムを得た。この導電性フィルムを用い、80℃のヒートブロック上でシリコンウェハー裏面に導電性接着剤層を転写した。さらにシリコンウェハーをフルダイシングし、ヒートブロック上でリードフレームに導電性接着剤付半導体チップを、200℃、2分間の条件で接着硬化させたところ、チップに導電性の問題がなかった。
[導電性ペーストの作製の実施例]
 50質量部のエポキシ樹脂(e4)に、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物50質量部、平均粒径が14μm、アスペクト比が11の鱗片状銀粉(徳力化学研究所(株)製)150質量部、及び平均粒径が10μm、アスペクト比が9の鱗片状ニッケル粉(高純度化学(株)製、商品名「NI110104」)60質量部を添加し、均一になるまで撹拌後、三本ロールで均一に分散して導電ペーストとした。得られた導電ペーストを、厚さ1.4mmのポリイミドフィルム基板上にスクリーン印刷した後、200℃で1時間、加熱硬化させた。得られた配線板の導電性を測定した結果、導電性ペーストとして有用なものであった。
[絶縁性ペーストの作製の実施例]
 ビスフェノールF型エポキシ樹脂(油化シェルエポキシ株式会社製、商品名「YL983U」)70質量部、ジシアンジアミド4質量部、シリカ粉末100質量部、希釈剤としてフェニルグリシジルエーテル10質量部、および有機リン酸エステル(日本化薬社製、商品名「PM-2」)1質量部を十分混合した後、さらに三本ロールで混練した。さらに、そこに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を50質量部加えて、さらに均一に混合し、減圧脱泡および遠心脱泡処理を行い、絶縁性ペーストを製造した。得られた絶縁性ペーストを用いて、半導体チップを樹脂基板に200℃で1時間加熱硬化させて接着したところ、絶縁性ペーストとして有用であった。
[異方導電性ペーストの作製の実施例]
 ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER6091、エポキシ当量480g/eq)40質量部、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER2603)15質量部と導電粒子としてミクロパールAu-205(積水化学製、比重2.67)5質量部を混合後、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を70質量部加えて、さらに均一に混合させて、異方導電性ペーストを得た。得られた異方導電性ペーストを、ITO電極を有する低アルカリガラス上に塗布した。230℃のセラミックツールで、30秒間、2MPaの圧力にて試験用TAB(Tape Automated Bonding)フィルムと圧着し貼り合わせを行った。隣接するITO電極間の抵抗値を測定したところ、異方導電性ペーストとして有用であった。
[絶縁性フィルムの作製の実施例]
 フェノキシ樹脂(東都化成株式会社製、商品名「YP-50」)180質量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量200g/eq、日本化薬株式会社製、商品名「EOCN-1020-80」)40質量部、球状シリカ(平均粒径:2μm、アドマテック株式会社製、商品名 SE-5101)300質量部、メチルエチルケトン200質量部を調合し、均一分散させた。これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を250質量部加え、さらに攪拌・混合して、エポキシ樹脂組成物を含む溶液を得る。得られた溶液を、離型処理を施したポリエチレンテレフタレート上に、乾燥後の厚さが50μmになるように塗布し、熱風循環式乾燥機の中で加熱乾燥を行い、半導体接着用の絶縁性フィルムを得た。得られた半導体接着用の絶縁性フィルムを5インチのウェハサイズよりも大きく支持基材ごとに切断し、バンプ電極付きウェハの電極部側に樹脂フィルムを合わせる。次に離型処理付き支持基材を上にして熱圧着器でバンプ電極付きウェハで絶縁性フィルムを挟み、70℃、1MPa、加圧時間10秒で真空中加熱圧着し接着樹脂付きウェハを得る。続いて、ダイシングソー(DISCO製、DAD-2H6M)を用いてスピンドル回転数30,000rpm、カッティングスピード20mm/secで切断分離した個片の接着フィルム付き半導体素子に樹脂剥がれがないか観察した。得られたフィルムは絶縁性フィルムとして有用なものであった。
[Example of production of conductive film]
15 parts by mass of bisphenol A type epoxy resin (AER-2603, manufactured by Asahi Kasei Chemicals Co., Ltd.), 6 parts by mass of phenol novolac resin (manufactured by Showa Polymer Co., Ltd., trade name “BRG-558”), synthetic rubber (manufactured by Zeon Corporation, product) 4 parts by mass (name “Nipol 1072”, weight average molecular weight 300,000) was dissolved in 20 parts by mass of a 1: 1 (mass ratio) mixed solvent of methyl ethyl ketone and butyl cellosolve acetate. In this solution, 74 parts by mass of silver powder was mixed and further kneaded by a three-roll. To this, 50 parts by mass of the curing agent for masterbatch type epoxy resin obtained in Example 1 was further added and mixed uniformly to obtain a conductive adhesive. The obtained conductive adhesive was cast on a polypropylene film having a thickness of 40 μm and dried and semi-cured at 80 ° C. for 60 minutes to obtain a conductive film having a conductive adhesive layer having a thickness of 35 μm. Using this conductive film, the conductive adhesive layer was transferred to the back surface of the silicon wafer on a heat block at 80 ° C. Furthermore, when the silicon wafer was fully diced and a semiconductor chip with a conductive adhesive was bonded and cured to the lead frame on a heat block at 200 ° C. for 2 minutes, the chip had no conductivity problem.
[Example of production of conductive paste]
50 parts by mass of epoxy resin (e4), 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1, an average particle size of 14 μm, and an aspect ratio of 11 scaly silver powder (Tokuroku Chemical Research) 150 parts by mass) and 60 parts by mass of scale-like nickel powder having an average particle size of 10 μm and an aspect ratio of 9 (product name “NI110104”, manufactured by High Purity Chemical Co., Ltd.) are uniformly added. After stirring until it was, it was uniformly dispersed with three rolls to obtain a conductive paste. The obtained conductive paste was screen-printed on a polyimide film substrate having a thickness of 1.4 mm, and then heat-cured at 200 ° C. for 1 hour. As a result of measuring the conductivity of the obtained wiring board, it was useful as a conductive paste.
[Example of production of insulating paste]
70 parts by mass of a bisphenol F type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., trade name “YL983U”), 4 parts by mass of dicyandiamide, 100 parts by mass of silica powder, 10 parts by mass of phenylglycidyl ether as a diluent, and an organic phosphate 1 part by mass (manufactured by Nippon Kayaku Co., Ltd., trade name “PM-2”) was sufficiently mixed, and then kneaded with three rolls. Further, 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added thereto, and further uniformly mixed, and subjected to vacuum defoaming and centrifugal defoaming to produce an insulating paste. did. Using the obtained insulating paste, a semiconductor chip was bonded to a resin substrate by heating and curing at 200 ° C. for 1 hour, and it was useful as an insulating paste.
[Example of production of anisotropic conductive paste]
40 parts by mass of bisphenol A type epoxy resin (AER6091 manufactured by Asahi Kasei Chemicals, epoxy equivalent 480 g / eq), 15 parts by mass of bisphenol A type epoxy resin (AER2603 manufactured by Asahi Kasei Chemicals) and micropearl Au-205 (manufactured by Sekisui Chemical, specific gravity) 2.67) After mixing 5 parts by mass, 70 parts by mass of the curing agent composition for masterbatch type epoxy resin obtained in Example 1 was added and mixed evenly to obtain an anisotropic conductive paste. . The obtained anisotropic conductive paste was applied on a low alkali glass having an ITO electrode. A ceramic tool at 230 ° C. was pressed and bonded to a test TAB (Tape Automated Bonding) film at a pressure of 2 MPa for 30 seconds. When the resistance value between the adjacent ITO electrodes was measured, it was useful as an anisotropic conductive paste.
[Example of production of insulating film]
180 parts by mass of phenoxy resin (trade name “YP-50” manufactured by Toto Kasei Co., Ltd.), cresol novolac type epoxy resin (epoxy equivalent 200 g / eq, product name “EOCN-1020-80” manufactured by Nippon Kayaku Co., Ltd.) 40 parts by mass, 300 parts by mass of spherical silica (average particle size: 2 μm, manufactured by Admatech Co., Ltd., trade name SE-5101) and 200 parts by mass of methyl ethyl ketone were prepared and uniformly dispersed. To this, 250 parts by mass of the curing agent composition for masterbatch type epoxy resin obtained in Example 1 is added and further stirred and mixed to obtain a solution containing the epoxy resin composition. The obtained solution is applied onto polyethylene terephthalate that has been subjected to mold release treatment so that the thickness after drying is 50 μm, and is dried by heating in a hot-air circulating dryer to provide insulating properties for semiconductor adhesion. A film was obtained. The obtained insulating film for adhering semiconductors is cut for each supporting substrate larger than the wafer size of 5 inches, and the resin film is fitted to the electrode part side of the wafer with bump electrodes. Next, an insulating film is sandwiched between wafers with bump electrodes with a thermocompressor with the support substrate with release treatment facing up, and heat-pressed in vacuum at 70 ° C., 1 MPa, pressurization time 10 seconds to obtain a wafer with adhesive resin . Subsequently, using a dicing saw (manufactured by DISCO, DAD-2H6M), it was observed whether the semiconductor element with the adhesive film of the individual pieces cut and separated at a spindle rotation speed of 30,000 rpm and a cutting speed of 20 mm / sec was peeled off. The obtained film was useful as an insulating film.
[封止材の作製の実施例]
 ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、AER6091、エポキシ当量480g/eq)50質量部、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、AER2603)30質量部、硬化剤として無水フタル酸を主成分とするHN-2200(日立化成工業(株)製)40質量部、平均粒径16μmの球状溶融シリカ80質量部を均一に分散、配合した。これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を20質量部加えてエポキシ樹脂組成物を得る。得られたエポキシ樹脂組成物をプリント配線基板上に厚さ60μmになるように1cm角に塗布し、110℃10分、オーブンで加熱して半硬化させた。その後、厚さ370μm、1cm角のシリコンチップを半硬化させたエポキシ樹脂組成物の上に乗せ、荷重を加えてバンプとチップの電極を接触・保持しつつ220℃で1時間、完全硬化処理を行った。得られたエポキシ樹脂組成物からなる封止材は、外観およびチップの導通に問題のない有用なものであった。
[コーティング材の作製の実施例]
 30質量部のエポキシ樹脂(e4)、フェノキシ樹脂としてYP-50を30質量部(東都化成製)、メトキシ基含有シラン変性エポキシ樹脂のメチルエチルケトン溶液(荒川化学工業(株)製、商品名「コンポセランE103」)を50質量部、これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を50質量部加えて、メチルエチルケトンで50質量%に希釈・混合させた溶液を調製した。調製した溶液を、剥離PET(ポリエチレンテレフタレート)フィルム(パナック(株)製、SG-1)上に、ロールコーターを用いて塗布し、150℃で15分、乾燥、硬化させ、膜厚100μmの剥離フィルム付き半硬化樹脂膜(ドライフィルム)を作製した。得られたドライフィルムを先の銅張り積層板上に120℃で、10分間、6MPaで加熱圧着した後、室温に戻して剥離フィルムを除去し、200℃で2時間硬化させたところ、層間絶縁用のコーティング材として有用なものが得られた。
[塗料組成物の作製の実施例]
 ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、AER6091、エポキシ当量480g/eq)50質量部に、二酸化チタン30質量部、タルク70質量部を配合し、混合溶剤としてMIBK/キシレンの1:1混合溶剤140質量部を添加、攪拌、混合して主剤とした。これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を50質量部添加し、均一に分散させることにより、エポキシ塗料組成物として有用なものが得られた。
[プリプレグの作製の実施例]
 130℃のオイルバス中のフラスコ内にノボラック型エポキシ樹脂(大日本インキ化学工業社製、EPICLON N-740)15質量部、ビスフェノールF型エポキシ樹脂(JER社製、エピコート4005)30質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ社製、AER2603)10質量部を溶解・混合し80℃まで冷やした。さらに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物を50質量部加えて、十分、攪拌して混合した。室温に冷ました前記樹脂組成物を離型紙上にドクターナイフを用いて樹脂目付162g/mで塗布し、樹脂フィルムとした。次に、この樹脂フィルム上に弾性率24トン/mmの炭素繊維を12.5本/インチで平織りした三菱レイヨン製カーボンファイバークロス(型番:TR3110、目付200g/m)を重ねて樹脂組成物を炭素繊維クロスに含浸させた後、ポリプロピレンフィルムを重ねて表面温度90℃のロール対の間を通して、クロスプリプレグを作製した。樹脂の含有率は45質量%だった。得られたプリプレグを、繊維方向を揃えてさらに積層し、硬化条件150℃×1時間で成形を行い、炭素繊維を補強繊維とする繊維強化樹脂(Fiber Reinforced Plastics、以下FRPとする)成形体を得た。作製したプリプレグは有用なものであった。
[熱伝導性エポキシ樹脂組成物の作製の実施例]
 ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ社製、AER2603)50質量部、エポキシ樹脂用硬化剤としてフェノールノボラック樹脂(荒川化学工業(株)製、商品名「タマノル759」)のメチルエチルケトン50%溶液40質量部、鱗片状グラファイト粉末(ユニオンカーバイト社製、商品名HOPG)15質量部を均一になるまで攪拌後、3本ロールで均一に分散させた。これにさらに、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を50質量部加えて、十分、攪拌して混合した。得られた導電ペーストを用いて、Cuリードフレーム上に半導体チップ(1.5mm角、厚み0.8mm)をマウントし、150℃で30分間加熱硬化させて評価用サンプルを得た。得られたサンプルの熱伝導性についてレーザフラッシュ法により測定した。すなわち、測定した熱拡散率α、比熱Cp、密度σから、式、K=α×Cp×σより熱伝導率Kを求めた。Kは5×10-3Cal/cm・sec・℃以上あり、熱伝導性ペーストとして有用なものであった。
[Example of production of sealing material]
Bisphenol A type epoxy resin (Asahi Kasei Chemicals, AER6091, epoxy equivalent 480 g / eq) 50 parts by mass, Bisphenol A type epoxy resin (Asahi Kasei Chemicals, AER2603) 30 parts by mass, phthalic anhydride as a curing agent 40 parts by mass of HN-2200 (manufactured by Hitachi Chemical Co., Ltd.) and 80 parts by mass of spherical fused silica having an average particle size of 16 μm were uniformly dispersed and blended. To this, 20 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 is added to obtain an epoxy resin composition. The obtained epoxy resin composition was applied to a printed wiring board in a 1 cm square so as to have a thickness of 60 μm, and was semi-cured by heating in an oven at 110 ° C. for 10 minutes. After that, a 370 μm thick, 1 cm square silicon chip was placed on a semi-cured epoxy resin composition, and a full curing process was performed at 220 ° C. for 1 hour while applying and applying a load to contact and hold the bump and chip electrodes. went. The obtained sealing material composed of the epoxy resin composition was useful without any problem in appearance and chip conduction.
[Example of production of coating material]
30 parts by mass of epoxy resin (e4), 30 parts by mass of YP-50 as a phenoxy resin (manufactured by Tohto Kasei), methyl ethyl ketone solution of methoxy group-containing silane-modified epoxy resin (manufactured by Arakawa Chemical Industries, Ltd., trade name “COMPOSELLAN E103”) )) And 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 were added thereto, and a solution diluted with methyl ethyl ketone to 50% by mass was prepared. The prepared solution was applied on a release PET (polyethylene terephthalate) film (SG-1 manufactured by Panac Co., Ltd.) using a roll coater, dried and cured at 150 ° C. for 15 minutes, and peeled off with a thickness of 100 μm. A semi-cured resin film (dry film) with a film was prepared. The obtained dry film was thermocompression bonded at 120 ° C. for 10 minutes at 6 MPa on the previous copper-clad laminate, then returned to room temperature, the release film was removed, and cured at 200 ° C. for 2 hours to obtain interlayer insulation. As a coating material for use, a useful material was obtained.
[Example of preparation of coating composition]
30 parts by mass of titanium dioxide and 70 parts by mass of talc are blended with 50 parts by mass of bisphenol A type epoxy resin (AER 6091, epoxy equivalent 480 g / eq, manufactured by Asahi Kasei Chemicals Co., Ltd.), and a 1: 1 mixed solvent of MIBK / xylene as a mixed solvent. 140 parts by mass was added, stirred and mixed to obtain the main agent. To this, 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added and dispersed uniformly to obtain a useful epoxy coating composition.
[Examples of prepreg production]
In a flask in an oil bath at 130 ° C., 15 parts by mass of a novolac type epoxy resin (Dainippon Ink & Chemicals, EPICLON N-740), 30 parts by mass of a bisphenol F type epoxy resin (JER, Epicoat 4005), bisphenol 10 parts by mass of A-type liquid epoxy resin (AER2603, manufactured by Asahi Kasei Chemicals Co., Ltd.) was dissolved and mixed and cooled to 80 ° C. Further, 50 parts by mass of the masterbatch type epoxy resin curing agent composition obtained in Example 1 was added and sufficiently stirred and mixed. The resin composition cooled to room temperature was applied onto a release paper with a resin basis weight of 162 g / m 2 using a doctor knife to obtain a resin film. Next, a carbon fiber cloth made by Mitsubishi Rayon (model number: TR3110, basis weight 200 g / m 2 ) obtained by plain weaving of carbon fiber having an elastic modulus of 24 ton / mm 2 at 12.5 pieces / inch is layered on the resin film to obtain a resin composition. After impregnating the product with carbon fiber cloth, a polypropylene prepreg was laminated and passed between a pair of rolls having a surface temperature of 90 ° C. to prepare a cloth prepreg. The resin content was 45% by mass. The obtained prepreg is further laminated with the fiber direction aligned, and molded under a curing condition of 150 ° C. for 1 hour to form a fiber reinforced resin (Fiber Reinforced Plastics, hereinafter referred to as FRP) molded body having carbon fibers as reinforcing fibers. Obtained. The produced prepreg was useful.
[Example of production of thermally conductive epoxy resin composition]
50 parts by mass of bisphenol A type epoxy resin (AER2603, manufactured by Asahi Kasei Chemicals Co., Ltd.), 40 parts by mass of a 50% solution of phenol novolac resin (manufactured by Arakawa Chemical Industries, Ltd., trade name “Tamanor 759”) as a curing agent for epoxy resin Then, 15 parts by mass of scaly graphite powder (trade name HOPG, manufactured by Union Carbide Co., Ltd.) was stirred until it became uniform, and then uniformly dispersed by three rolls. Furthermore, 50 parts by mass of the masterbatch type epoxy resin curing agent composition (M1) obtained in Example 1 was added and sufficiently stirred and mixed. Using the obtained conductive paste, a semiconductor chip (1.5 mm square, 0.8 mm thickness) was mounted on a Cu lead frame and heat cured at 150 ° C. for 30 minutes to obtain a sample for evaluation. The thermal conductivity of the obtained sample was measured by a laser flash method. That is, from the measured thermal diffusivity α, specific heat Cp, and density σ, the thermal conductivity K was obtained from the equation K = α × Cp × σ. K was 5 × 10 −3 Cal / cm · sec · ° C. or more, and was useful as a heat conductive paste.
[燃料電池用セパレータ材の作製の実施例]
 ビフェニル型エポキシ樹脂3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニルグリシジルエーテル(ジャパンエポキシレジン製、エピコートYX-4000(エポキシ当量195)100質量部、フェノールノボラック樹脂(大日本インキ製、TD-2131)60質量部、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製、AER2603)10質量部、人造黒鉛(エスイーシー社製、商品名SGP、平均粒径75μm)800質量部、離型剤(ステアリン酸カルシウム)、滑剤(カルナバワックス)を配合した原料をミキサーで混合した。これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を50質量部加えて、3本ロールで均一に混合した。得られた材料を燃料電池用セパレータ材用金型を用いて、成型圧力25MPa、成型温度150℃、成型時間15分で加圧成型して評価用サンプルを得た。得られた燃料電池用セパレータ材の曲げ強さをJIS K 7203に準じて測定したところ、50MPaの曲げ強さを示した。また、ガス透過性を窒素ガスを用いて、JIS K7126A法により測定したところ、ガス透過率は0.6cm/m・24時間・atmであり、燃料電池用セパレータ材として有用なものであった。
[フレキシブル配線基板用オーバーコート材の作製の実施例]
 日本曹達製のポリブタジエンジカルボン酸樹脂「C-1000」とビスフェノール型エポキシ樹脂との反応によりエポキシ樹脂変性された樹脂「EPB-13」(エポキシ当量700g/eq.、粘度800P)を50質量部、エポキシ基と反応する樹脂として、日本曹達製のマレイン化変性ポリブタジエン樹脂「BN-1015」(酸当量145g/eq.)を70質量部、硬化促進剤として実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)を30質量部、ゴム微粒子としてJSR製「EXR-91」を3質量部配合して、3本ロールで均一に混合した。さらにメチルエチルケトン(MEK)を200質量部加えてミキサーで均一になるまで攪拌混合して溶解分散させ、オーバーコート用接着剤溶液を得る。幅35mm×長さ60mm×厚さ65μmのポリイミドフィルムに対して、前記接着剤溶液を乾燥後の膜厚が25μmとなるように塗布し、さらに150℃、20分間乾燥することにより、フレキシブル配線基板用オーバーコート材サンプルを得た。得られたポリイミドフィルムを180℃屈曲させたときのクラック発生の有無、および湿度50%、150℃で8時間処理したときのポリイミドフィルムの反りを測定したところ、フレキシブル配線基板用オーバーコート材として有用なものであった。
[Example of production of separator material for fuel cell]
Biphenyl type epoxy resin 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl glycidyl ether (manufactured by Japan Epoxy Resin, Epicoat YX-4000 (epoxy equivalent 195), 100 parts by mass, phenol novolac resin (large Made by Nippon Ink, TD-2131) 60 parts by mass, bisphenol A type epoxy resin (Asahi Kasei Chemicals, AER2603) 10 parts by mass, artificial graphite (made by ESC, trade name SGP, average particle size 75 μm) 800 parts by mass, mold release A raw material blended with an agent (calcium stearate) and a lubricant (carnauba wax) was mixed with a mixer, to which 50 parts by mass of the curing agent composition for masterbatch type epoxy resin (M1) obtained in Example 1 was added. Mix uniformly with 3 rolls and use the resulting material as a fuel cell separator. A sample for evaluation was obtained by pressure molding using a mold for molding at a molding pressure of 25 MPa, a molding temperature of 150 ° C., and a molding time of 15 minutes, and the bending strength of the obtained fuel cell separator material was defined in JIS K 7203. When measured according to the above, it showed a bending strength of 50 MPa, and when the gas permeability was measured by the JIS K7126A method using nitrogen gas, the gas permeability was 0.6 cm 3 / m 2 · 24 hours · It was atm and was useful as a separator material for fuel cells.
[Example of production of overcoat material for flexible wiring board]
50 parts by mass of epoxy resin-modified “EPB-13” (epoxy equivalent 700 g / eq., Viscosity 800 P) modified by reaction of Nippon Soda polybutadiene dicarboxylic acid resin “C-1000” with bisphenol type epoxy resin, epoxy 70 parts by mass of maleated modified polybutadiene resin “BN-1015” (acid equivalent of 145 g / eq.) Manufactured by Nippon Soda as a resin that reacts with a group, and a masterbatch type epoxy resin obtained in Example 1 as a curing accelerator 30 parts by weight of the curing agent composition (M1) and 3 parts by weight of “EXR-91” manufactured by JSR as rubber fine particles were blended and mixed uniformly with three rolls. Furthermore, 200 parts by mass of methyl ethyl ketone (MEK) is added, and the mixture is stirred and mixed with a mixer until it is uniformed, and then dispersed to obtain an overcoat adhesive solution. By applying the adhesive solution to a polyimide film having a width of 35 mm × length of 60 mm × thickness of 65 μm so that the film thickness after drying is 25 μm, and further drying at 150 ° C. for 20 minutes, a flexible wiring board An overcoat material sample was obtained. It was useful as an overcoat material for flexible wiring boards when the presence or absence of cracks when the obtained polyimide film was bent at 180 ° C. and the warpage of the polyimide film when treated at 50 ° C. and 150 ° C. for 8 hours were measured. It was something.

Claims (52)

  1.  エポキシ樹脂用硬化剤を含むコアと、当該コアを被覆するシェルとを有するマイクロカプセル型エポキシ樹脂用硬化剤であって、
     該エポキシ樹脂用硬化剤が、エポキシ樹脂(e1)とアミン化合物との反応により得られるアミンアダクトを主成分として含み、
     該エポキシ樹脂用硬化剤の全アミン価が370以上1000以下であり、
     該エポキシ樹脂用硬化剤の平均粒径が0.3μmを超えて12μm以下であり、
     前記シェルは、赤外線吸収スペクトルにおいて波数1630~1680cm-1の赤外線を吸収する結合基(x)と、波数1680~1725cm-1の赤外線を吸収する結合基(y)と、波数1730~1755cm-1の赤外線を吸収する結合基(z)とを少なくとも表面に有することを特徴とするマイクロカプセル型エポキシ樹脂用硬化剤。
    A microcapsule type epoxy resin curing agent having a core containing an epoxy resin curing agent and a shell covering the core,
    The epoxy resin curing agent contains, as a main component, an amine adduct obtained by a reaction between the epoxy resin (e1) and an amine compound,
    The total amine value of the curing agent for epoxy resin is 370 or more and 1000 or less,
    The epoxy resin curing agent has an average particle size of more than 0.3 μm and not more than 12 μm,
    The shell includes a bonding group (x) that absorbs infrared rays having a wave number of 1630 to 1680 cm −1 , a bonding group (y) that absorbs infrared rays having a wave number of 1680 to 1725 cm −1 , and wave numbers of 1730 to 1755 cm −1. A microcapsule-type epoxy resin curing agent having at least a bonding group (z) that absorbs infrared rays.
  2.  前記エポキシ樹脂(e1)が剛直な骨格構造を有するエポキシ樹脂(EP1)を含むことを特徴とする請求項1に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to claim 1, wherein the epoxy resin (e1) includes an epoxy resin (EP1) having a rigid skeleton structure.
  3.  前記剛直骨格構造が、ベンゼン構造、ナフタレン構造、ビフェニル構造、トリフェニル構造、アントラセン構造、ジシクロペンタジエン構造、ノルボルネン構造、アセナフチレン構造、アダマンタン構造、フルオレン構造、ベンゾフラン構造、ベンゾオキサジン構造、インデン構造、インダン構造、ヒダントイン構造、オキサゾリン構造、環状カーボネート構造、芳香族環式イミド構造、脂環式イミド構造、オキサジアゾール構造、チアジアゾール構造、ベンゾオキサジアゾール構造、ベンゾチアジアゾール構造、カルバゾール構造、アゾメチン構造、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造、キサンテン構造、および化学構造式1からなる群より選ばれる少なくとも1種の構造であることを特徴とする請求項2のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003
    The rigid skeleton structure is a benzene structure, naphthalene structure, biphenyl structure, triphenyl structure, anthracene structure, dicyclopentadiene structure, norbornene structure, acenaphthylene structure, adamantane structure, fluorene structure, benzofuran structure, benzoxazine structure, indene structure, indane Structure, hydantoin structure, oxazoline structure, cyclic carbonate structure, aromatic cyclic imide structure, alicyclic imide structure, oxadiazole structure, thiadiazole structure, benzoxiadiazole structure, benzothiadiazole structure, carbazole structure, azomethine structure, oxazolidone The structure according to claim 2, wherein the structure is at least one selected from the group consisting of a structure, a triazine structure, an isocyanurate structure, a xanthene structure, and a chemical structural formula 1. Microcapsule type epoxy resin curing agent according to any one of claims.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003
  4.  前記剛直骨格構造が、ベンゼン構造、ナフタレン構造、ビフェニル構造のいずれか1つ以上であることを特徴とする請求項2に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 3. The microcapsule type epoxy resin curing agent according to claim 2, wherein the rigid skeleton structure is at least one of a benzene structure, a naphthalene structure, and a biphenyl structure.
  5.  前記アミン化合物が、脂肪族または脂環式の炭化水素基に1つ以上の1級、および/または2級アミノ基を有し、かつ、前記アミンアダクトが、1級、および/または2級アミノ基を有することを特徴とする請求項1~4のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The amine compound has one or more primary and / or secondary amino groups in an aliphatic or alicyclic hydrocarbon group, and the amine adduct is a primary and / or secondary amino group. The microcapsule-type epoxy resin curing agent according to any one of claims 1 to 4, which has a group.
  6.  前記コアが、その赤外線吸収スペクトルにおいて、1050~1150cm-1の間のピーク高さ(H1)に対する、1655cm-1のピーク高さ(H2)の比(H2/H1)が1.0以上3.0未満である請求項1~5のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 2. In the infrared absorption spectrum of the core, the ratio (H2 / H1) of the peak height (H2) of 1655 cm −1 to the peak height (H1) between 1050 and 1150 cm −1 is 1.0 or more. The microcapsule type epoxy resin curing agent according to any one of claims 1 to 5, which is less than 0.
  7.  前記エポキシ樹脂(e1)が、
     前記エポキシ樹脂(EP1)及びエポキシ樹脂(EP2)とイソシアネート化合物との反応物からなるエポキシ樹脂(EP3)を含有するマイクロカプセル型エポキシ樹脂用硬化剤であって、該エポキシ樹脂(EP1)の基本構造式の単量体分子量が90以上1000以下であることを特徴とする請求項1~6のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。
    The epoxy resin (e1) is
    A curing agent for a microcapsule type epoxy resin containing an epoxy resin (EP3) composed of a reaction product of the epoxy resin (EP1) and the epoxy resin (EP2) with an isocyanate compound, the basic structure of the epoxy resin (EP1) The microcapsule type epoxy resin curing agent according to any one of claims 1 to 6, wherein the monomer molecular weight of the formula is from 90 to 1,000.
  8.  前記エポキシ樹脂(EP3)が、オキサゾリドン構造、トリアジン構造、イソシアヌレート構造からなる群より選ばれる少なくとも1種の構造を有するエポキシ樹脂であることを特徴とする請求項7に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule-type epoxy resin according to claim 7, wherein the epoxy resin (EP3) is an epoxy resin having at least one structure selected from the group consisting of an oxazolidone structure, a triazine structure, and an isocyanurate structure. Curing agent.
  9.  前記エポキシ樹脂(EP3)が、オキサゾリドン構造を有するエポキシ樹脂であることを特徴とする請求項7に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to claim 7, wherein the epoxy resin (EP3) is an epoxy resin having an oxazolidone structure.
  10.  前記エポキシ樹脂(EP1)が、前記エポキシ樹脂(e1)100%中に、10質量%以上90質量%以下の割合で含有されることを特徴とする請求項7~9のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 10. The epoxy resin (EP1) is contained in 100% of the epoxy resin (e1) at a ratio of 10% by mass to 90% by mass, according to any one of claims 7 to 9. Hardener for microcapsule type epoxy resin.
  11.  前記エポキシ樹脂(EP3)が、前記エポキシ樹脂(e1)100%中に、10質量%以上90質量%以下の割合で含有されることを特徴とする請求項7~10のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The epoxy resin (EP3) is contained in 100% of the epoxy resin (e1) in a proportion of 10% by mass to 90% by mass. Hardener for microcapsule type epoxy resin.
  12.  前記エポキシ樹脂(EP1)の架橋点間分子量が90以上500以下であることを特徴とする請求項2~11のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 2 to 11, wherein the epoxy resin (EP1) has a molecular weight between crosslinking points of 90 or more and 500 or less.
  13.  前記エポキシ樹脂(EP3)のエポキシ当量が、300を越えて1000以下であることを特徴とする請求項7~12のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 7 to 12, wherein an epoxy equivalent of the epoxy resin (EP3) is more than 300 and 1000 or less.
  14.  前記エポキシ樹脂(EP3)の軟化点が50℃以上100℃以下であることを特徴とする請求項7~13のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 7 to 13, wherein the epoxy resin (EP3) has a softening point of 50 ° C or higher and 100 ° C or lower.
  15.  前記エポキシ樹脂(EP3)の数平均分子量が500以上3000以下であることを特徴とする請求項7~14のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 7 to 14, wherein the epoxy resin (EP3) has a number average molecular weight of 500 or more and 3000 or less.
  16.  前記コアの軟化点が50℃以上90℃以下であることを特徴とする請求項1~15のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 1 to 15, wherein the softening point of the core is 50 ° C or higher and 90 ° C or lower.
  17.  前記コアの120℃溶融粘度が30Pa・s以下であることを特徴とする請求項1~16のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 1 to 16, wherein the core has a 120 ° C melt viscosity of 30 Pa · s or less.
  18.  前記シェルの少なくとも表面に有する結合基(x)、(y)、(z)が、それぞれ、ウレア基、ビュレット基、ウレタン基であり、かつ、前記シェル(S)中の結合基(x)の濃度(Cx)と結合基(x)、(y)、(z)の合計の濃度(Cx+Cy+Cz)との比(Cx/(Cx+Cy+Cz))が、0.50以上0.75未満である請求項1~17のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The bonding groups (x), (y), (z) on at least the surface of the shell are a urea group, a burette group, and a urethane group, respectively, and the bonding group (x) in the shell (S) The ratio (Cx / (Cx + Cy + Cz)) of the concentration (Cx) to the total concentration (Cx + Cy + Cz) of the linking groups (x), (y), (z) is 0.50 or more and less than 0.75. 18. The microcapsule-type epoxy resin curing agent according to any one of 1 to 17.
  19.  前記コアが含有する水分量が、コア成分100質量部に対して0.05質量部以上3質量部以下であり、かつ、前記コアに含有されるアミン化合物(B)の含有量が、コア成分100質量部に対して0.001質量部以上3質量部以下である請求項1~18のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The water content contained in the core is 0.05 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the core component, and the content of the amine compound (B) contained in the core is the core component. The microcapsule-type epoxy resin curing agent according to any one of claims 1 to 18, wherein the amount is 0.001 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass.
  20.  エポキシ樹脂(EP1)、およびエポキシ樹脂(EP2)、およびエポキシ樹脂(EP3)の全塩素量が2500ppm以下である請求項7~19のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 7 to 19, wherein the total chlorine content of the epoxy resin (EP1), the epoxy resin (EP2), and the epoxy resin (EP3) is 2500 ppm or less.
  21.  前記コアの全塩素量が2500ppm以下である請求項1~20のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to any one of claims 1 to 20, wherein the total chlorine content of the core is 2500 ppm or less.
  22.  前記シェルが、イソシアネート化合物、活性水素化合物、エポキシ樹脂用硬化剤(h2)、エポキシ樹脂(e2)、アミン化合物(B)のいずれか2種、またはそれ以上の反応生成物を含む請求項1~21のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The shell contains an isocyanate compound, an active hydrogen compound, an epoxy resin curing agent (h2), an epoxy resin (e2), an amine compound (B), or two or more reaction products. 21. The microcapsule-type epoxy resin curing agent according to any one of 21.
  23.  前記エポキシ樹脂(e2)の全塩素量が2500ppm以下である請求項22に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 The microcapsule type epoxy resin curing agent according to claim 22, wherein the total chlorine content of the epoxy resin (e2) is 2500 ppm or less.
  24.  前記シェルの赤外線吸収スペクトルにおいて、1050~1150cm-1の間の高さ(H1)に対する、1630~1680cm-1のピーク高さ(H3)の比(H3/H1)が0.3以上1.2未満である請求項1~22のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤。 In the infrared absorption spectrum of the shell, to the height between 1050 ~ 1150cm -1 (H1), 1630 ~ 1680cm ratio of the peak height (H3) of -1 (H3 / H1) is 0.3 to 1.2 The curing agent for microcapsule type epoxy resin according to any one of claims 1 to 22, wherein the curing agent is less than.
  25.  エポキシ樹脂(e3)と、請求項1~24のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤とを含むマスターバッチ型エポキシ樹脂用硬化剤組成物であって、
     前記エポキシ樹脂(e3)と前記マイクロカプセル型エポキシ樹脂用硬化剤の重量比が100:10~10:1000であるマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。
    A masterbatch type epoxy resin curing agent composition comprising an epoxy resin (e3) and the microcapsule type epoxy resin curing agent according to any one of claims 1 to 24,
    A masterbatch type epoxy resin curing agent composition (M1) in which a weight ratio of the epoxy resin (e3) and the microcapsule type epoxy resin curing agent is 100: 10 to 10: 1000.
  26.  前記エポキシ樹脂(e3)の全塩素量が2500ppm以下である請求項25に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。 26. The masterbatch type epoxy resin curing agent composition (M1) according to claim 25, wherein the total chlorine content of the epoxy resin (e3) is 2500 ppm or less.
  27.  全塩素量が2500ppm以下である請求項25または26に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。 27. The masterbatch type epoxy resin curing agent composition (M1) according to claim 25 or 26, wherein the total chlorine content is 2500 ppm or less.
  28.  前記エポキシ樹脂(e3)におけるジオール末端不純成分が、エポキシ樹脂(e3)の基本構造成分の0.001~30重量%である請求項25~27のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)。 The masterbatch type epoxy resin according to any one of claims 25 to 27, wherein the diol terminal impure component in the epoxy resin (e3) is 0.001 to 30% by weight of the basic structural component of the epoxy resin (e3). Curing agent composition (M1).
  29.  請求項1~24のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤と、エポキシ樹脂(e3)と、高溶解性エポキシ樹脂(G)を含み、
     前記高溶解性エポキシ樹脂(G)の基本構造の溶解度パラメーターは8.65~11.00であり、当該基本構造の架橋間分子量は105~150であり、且つジオール末端不純成分の存在割合は基本構造成分に対して0.01~20質量%であり、
     前記マイクロカプセル型エポキシ樹脂用硬化剤と、前記エポキシ樹脂(e3)とを、(マイクロカプセル型エポキシ樹脂用硬化剤):(エポキシ樹脂(e3))(質量比)として100:10~100:1000の配合比で含み、
     前記エポキシ樹脂(e3)と、前記高溶解性エポキシ樹脂(G)とを、(エポキシ樹脂(e3)):(高溶解性エポキシ樹脂(G))(質量比)として100:0.1~100:1000の配合比で含み、且つ、
     全塩素量が2500ppm以下であることを特徴とする一液性エポキシ樹脂組成物。
    A curing agent for microcapsule type epoxy resin according to any one of claims 1 to 24, an epoxy resin (e3), and a highly soluble epoxy resin (G),
    The solubility parameter of the basic structure of the high-solubility epoxy resin (G) is 8.65 to 11.00, the molecular weight between crosslinks of the basic structure is 105 to 150, and the proportion of impure components of the diol terminal is basic. 0.01 to 20% by mass with respect to the structural component,
    The microcapsule type epoxy resin curing agent and the epoxy resin (e3) are converted into 100: 10 to 100: 1000 as (microcapsule type epoxy resin curing agent) :( epoxy resin (e3)) (mass ratio). Including the blending ratio of
    The epoxy resin (e3) and the highly soluble epoxy resin (G) are converted into 100: 0.1 to 100 as (epoxy resin (e3)) :( highly soluble epoxy resin (G)) (mass ratio). : In a blending ratio of 1000, and
    A one-component epoxy resin composition characterized in that the total chlorine content is 2500 ppm or less.
  30.  エポキシ樹脂(e4)と請求項25~28に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)とを含む一液性エポキシ樹脂組成物であって、
     前記エポキシ樹脂(e4)とマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の重量比が100:10~100:1000である一液性エポキシ樹脂組成物。
    A one-part epoxy resin composition comprising an epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) according to claims 25 to 28,
    A one-component epoxy resin composition in which the weight ratio of the epoxy resin (e4) and the masterbatch type epoxy resin curing agent composition (M1) is 100: 10 to 100: 1000.
  31.  酸無水物系硬化剤、フェノール系硬化剤、ヒドラジド系硬化剤、グアニジン系硬化剤、チオール系硬化剤、イミダゾール系硬化剤、およびイミダゾリン系硬化剤よりなる群より選ばれる少なくとも1種のエポキシ樹脂用硬化剤(h3)と、請求項25~28に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)と、を含む一液性エポキシ樹脂組成物であって前記エポキシ樹脂用硬化剤(h3)とマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)の重量比が100:10~10:1000である一液性エポキシ樹脂組成物。 For at least one epoxy resin selected from the group consisting of acid anhydride curing agents, phenolic curing agents, hydrazide curing agents, guanidine curing agents, thiol curing agents, imidazole curing agents, and imidazoline curing agents. A one-part epoxy resin composition comprising a curing agent (h3) and a masterbatch type epoxy resin curing agent composition (M1) according to claims 25 to 28, wherein the epoxy resin curing agent (h3) ) And the masterbatch type epoxy resin curing agent composition (M1) in a weight ratio of 100: 10 to 10: 1000.
  32.  環状ホウ酸エステル化合物(L)と、請求項25~28に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)と、を含む一液性エポキシ樹脂組成物。 A one-part epoxy resin composition comprising a cyclic borate ester compound (L) and a masterbatch type epoxy resin curing agent composition (M1) according to claims 25-28.
  33.  前記環状ホウ酸エステル化合物(L)が、2,2’-オキシビス[5,5-ジメチル-1,3,2-ジオキサボリナン]である請求項32に記載の一液性エポキシ樹脂組成物。 The one-component epoxy resin composition according to claim 32, wherein the cyclic borate ester compound (L) is 2,2'-oxybis [5,5-dimethyl-1,3,2-dioxaborinane].
  34.  前記環状ホウ酸エステル化合物(L)の含有率が0.001~10質量%である請求項32、または33に記載の一液性エポキシ樹脂組成物。 The one-component epoxy resin composition according to claim 32 or 33, wherein the content of the cyclic borate ester compound (L) is 0.001 to 10 mass%.
  35.  請求項25~28のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物(M1)、又は、請求項29~34のいずれかに記載の一液性エポキシ樹脂組成物を用いてなる加工品。 Processing using the masterbatch type epoxy resin curing agent composition (M1) according to any one of claims 25 to 28 or the one-component epoxy resin composition according to any one of claims 29 to 34. Goods.
  36.  導電性粒子(a)
     エポキシ環を一つ以上有するエポキシ樹脂(b)
     (b)以外の樹脂からなる有機バインダー(c)
     マイクロカプセル型エポキシ樹脂用硬化剤(d)
     を含む異方導電性フィルムにおいて、マイクロカプセル型エポキシ樹脂用硬化剤(d)が、請求項1~24のいずれか1項に記載のマイクロカプセル型エポキシ樹脂用硬化剤、であることを特徴とする、異方導電性フィルム。
    Conductive particles (a)
    Epoxy resin (b) having one or more epoxy rings
    Organic binder made of resin other than (b) (c)
    Hardener for microcapsule type epoxy resin (d)
    In the anisotropic conductive film containing the microcapsule-type epoxy resin curing agent (d), the microcapsule-type epoxy resin curing agent according to any one of claims 1 to 24, An anisotropic conductive film.
  37.  前記異方導電性フィルム中に含有されるエポキシ当量をEXとし、
     前記異方導電性フィルム中に含有されるマイクロカプセル型硬化剤(d)のコア成分の全アミン価を、前記異方導電性フィルムに含有されるマイクロカプセル型硬化剤(d)の配合重量で割った値をHXとした場合、
     エポキシ当量とアミン価の比である(EX/HX)×100の値が、1.5≦(EX/HX)×100≦4.0である請求項36に記載の異方導電性フィルム。
    The epoxy equivalent contained in the anisotropic conductive film is EX,
    The total amine value of the core component of the microcapsule-type curing agent (d) contained in the anisotropic conductive film is the blending weight of the microcapsule-type curing agent (d) contained in the anisotropic conductive film. If the divided value is HX,
    37. The anisotropic conductive film according to claim 36, wherein a value of (EX / HX) × 100, which is a ratio between an epoxy equivalent and an amine value, is 1.5 ≦ (EX / HX) × 100 ≦ 4.0.
  38.  請求項25~34のいずれか1項に記載の組成物を含有するペースト状組成物。 A paste-like composition containing the composition according to any one of claims 25 to 34.
  39.  請求項25~34のいずれか1項に記載の組成物を含有するフィルム状組成物。 A film-like composition containing the composition according to any one of claims 25 to 34.
  40.  請求項25~34のいずれか1項に記載の組成物を含有する接着剤。 An adhesive containing the composition according to any one of claims 25 to 34.
  41.  請求項25~34のいずれか1項に記載の組成物を含有する接合用ペースト。 A joining paste containing the composition according to any one of claims 25 to 34.
  42.  請求項25~34のいずれか1項に記載の組成物を含有する接合用フィルム。 A bonding film containing the composition according to any one of claims 25 to 34.
  43.  請求項25~34のいずれか1項に記載の組成物を含有する導電性材料。 A conductive material containing the composition according to any one of claims 25 to 34.
  44.  請求項25~34のいずれか1項に記載の組成物を含有する異方導電性材料。 An anisotropic conductive material containing the composition according to any one of claims 25 to 34.
  45.  請求項25~34のいずれか1項に記載の組成物を含有する絶縁性材料。 An insulating material containing the composition according to any one of claims 25 to 34.
  46.  請求項25~34のいずれか1項に記載の組成物を含有する封止材料。 A sealing material containing the composition according to any one of claims 25 to 34.
  47.  請求項25~34のいずれか1項に記載の組成物を含有するコーティング用材料。 A coating material containing the composition according to any one of claims 25 to 34.
  48.  請求項25~34のいずれか1項に記載の組成物を含有する塗料組成物。 A coating composition containing the composition according to any one of claims 25 to 34.
  49.  請求項25~34のいずれか1項に記載の組成物を含有するプリプレグ。 A prepreg containing the composition according to any one of claims 25 to 34.
  50.  請求項25~34のいずれか1項に記載の組成物を含有する熱伝導性材料。 A heat conductive material containing the composition according to any one of claims 25 to 34.
  51.  請求項25~34のいずれか1項に記載の組成物を含有する燃料電池用セパレータ材 A fuel cell separator material comprising the composition according to any one of claims 25 to 34.
  52.  請求項25~34のいずれか1項に記載の組成物を含有するフレキシブル配線基板用オーバーコート材。 An overcoat material for a flexible wiring board, comprising the composition according to any one of claims 25 to 34.
PCT/JP2010/053054 2009-02-27 2010-02-26 Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article WO2010098431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117019856A KR101310593B1 (en) 2009-02-27 2010-02-26 Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article
JP2011501662A JP5534615B2 (en) 2009-02-27 2010-02-26 Microcapsule type epoxy resin curing agent, masterbatch type epoxy resin curing agent composition, one-part epoxy resin composition, and processed product
CN2010800098071A CN102333808B (en) 2009-02-27 2010-02-26 Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009045753 2009-02-27
JP2009045768 2009-02-27
JP2009-045768 2009-02-27
JP2009-045753 2009-02-27
JP2009-175883 2009-07-28
JP2009175883 2009-07-28

Publications (2)

Publication Number Publication Date
WO2010098431A1 true WO2010098431A1 (en) 2010-09-02
WO2010098431A9 WO2010098431A9 (en) 2010-11-18

Family

ID=42665635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053054 WO2010098431A1 (en) 2009-02-27 2010-02-26 Microencapsulated hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack epoxy resin composition, and processed article

Country Status (5)

Country Link
JP (1) JP5534615B2 (en)
KR (1) KR101310593B1 (en)
CN (1) CN102333808B (en)
TW (1) TWI449723B (en)
WO (1) WO2010098431A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051621A (en) * 2012-09-07 2014-03-20 Asahi Kasei E-Materials Corp Liquid resin composition and finished article
JP2015042713A (en) * 2013-08-26 2015-03-05 株式会社Adeka Energy line sensitive composition
JP2015117333A (en) * 2013-12-19 2015-06-25 旭化成イーマテリアルズ株式会社 Masterbatch type latent epoxy resin hardening agent composition and epoxy resin composition using the same
JP2015221859A (en) * 2014-05-22 2015-12-10 旭化成イーマテリアルズ株式会社 Epoxy resin curing agent, microcapsule-type epoxy resin curing agent, master batch-type epoxy resin curing agent composition, one-component epoxy resin composition, and processed product
JP2017095571A (en) * 2015-11-20 2017-06-01 旭化成株式会社 Epoxy resin composition for encapsulation material and encapsulation material
JP2017095570A (en) * 2015-11-20 2017-06-01 旭化成株式会社 Epoxy resin composition for adhesive film
JP2017160409A (en) * 2016-03-08 2017-09-14 広東広山新材料有限公司 Isocyanate-modified epoxy resin and its application
JP2019123795A (en) * 2018-01-16 2019-07-25 大阪ガスケミカル株式会社 Amine adduct and use thereof
JP2020031227A (en) * 2015-11-20 2020-02-27 旭化成株式会社 Epoxy resin composition for sealant, and sealant
CN112500821A (en) * 2020-12-29 2021-03-16 烟台信友新材料有限公司 Ultraviolet-curing single-component epoxy adhesive with variable operation time and preparation method thereof
CN113388227A (en) * 2021-06-21 2021-09-14 高速铁路建造技术国家工程实验室 Water-based epoxy resin and preparation method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604129B (en) * 2012-03-11 2013-12-11 东华大学 Dispersion method of carbon nanometer pipe in ethoxyline resin
CN103113710B (en) * 2013-01-28 2014-12-17 北京化工大学常州先进材料研究院 Method for preparing epoxy resin prepreg capable of being cured at normal temperature
TWI543995B (en) * 2013-07-08 2016-08-01 旭化成化學股份有限公司 Modified resin and resin composition
EP2837645A1 (en) * 2013-08-12 2015-02-18 Basf Se Use of 2,5-bisaminomethylfurane as curing agent for epoxy resins
CN103483900B (en) * 2013-09-26 2015-01-07 江苏高博智融科技有限公司 Metallic paint filling material
JP6331525B2 (en) 2014-03-14 2018-05-30 オムロン株式会社 Method of curing resin composition
KR101646531B1 (en) * 2016-01-18 2016-08-08 회명산업 주식회사 Latent Curing Agent for Epoxy Resin, Method for Preparing the Same, One Pack Type Epoxy Resin Composition Comprising Above Latent Curing Agent
KR101805298B1 (en) * 2016-03-22 2017-12-05 주식회사 케이씨씨 Thermosetting adhesive flim
KR20180001487A (en) * 2016-06-24 2018-01-04 에스케이디스커버리 주식회사 Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics
CN107037042A (en) * 2016-10-19 2017-08-11 中国石油化工股份有限公司 A kind of corrosion monitoring coating
WO2019050005A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film housing set, and manufacturing method thereof
RU2670233C1 (en) * 2017-09-12 2018-10-19 Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук Method for producing microcapsulated epoxy resin curing agent
CN109810616B (en) * 2019-02-02 2021-04-23 南京顺锦新材料技术有限公司 High-wear-resistance epoxy ceramic composite coating and preparation method thereof
KR102311918B1 (en) * 2019-10-25 2021-10-13 주식회사 국일인토트 High temperature insulation washer and its manufacturing method
CN111704825A (en) * 2020-07-11 2020-09-25 张家港科思创感光新材料有限公司 Photosensitive solder resist ink composition containing novel curing agent and application thereof
CN112992404B (en) * 2021-05-06 2021-09-03 西安宏星电子浆料科技股份有限公司 High-conductivity conductive slurry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095486A1 (en) * 2004-03-31 2005-10-13 Asahi Kasei Chemicals Corporation Hardener for epoxy resin and epoxy resin composition
WO2006090794A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Chemicals Corporation Latent hardener for epoxy resin and epoxy resin composition
WO2007037378A1 (en) * 2005-09-29 2007-04-05 Asahi Kasei Chemicals Corporation High-stability microencapsulated hardener for epoxy resin and epoxy resin composition
JP2007091900A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for rapidly curable epoxy resin and epoxy resin composition
WO2007088889A1 (en) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation Microcapsule type hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack type epoxy resin composition, and processed article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911981B2 (en) * 2006-02-03 2012-04-04 旭化成イーマテリアルズ株式会社 Curing agent for highly water-containing solvent-containing epoxy resin and epoxy resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095486A1 (en) * 2004-03-31 2005-10-13 Asahi Kasei Chemicals Corporation Hardener for epoxy resin and epoxy resin composition
WO2006090794A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Chemicals Corporation Latent hardener for epoxy resin and epoxy resin composition
WO2007037378A1 (en) * 2005-09-29 2007-04-05 Asahi Kasei Chemicals Corporation High-stability microencapsulated hardener for epoxy resin and epoxy resin composition
JP2007091900A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for rapidly curable epoxy resin and epoxy resin composition
WO2007088889A1 (en) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation Microcapsule type hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack type epoxy resin composition, and processed article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051621A (en) * 2012-09-07 2014-03-20 Asahi Kasei E-Materials Corp Liquid resin composition and finished article
JP2015042713A (en) * 2013-08-26 2015-03-05 株式会社Adeka Energy line sensitive composition
JP2015117333A (en) * 2013-12-19 2015-06-25 旭化成イーマテリアルズ株式会社 Masterbatch type latent epoxy resin hardening agent composition and epoxy resin composition using the same
JP2015221859A (en) * 2014-05-22 2015-12-10 旭化成イーマテリアルズ株式会社 Epoxy resin curing agent, microcapsule-type epoxy resin curing agent, master batch-type epoxy resin curing agent composition, one-component epoxy resin composition, and processed product
JP2020031227A (en) * 2015-11-20 2020-02-27 旭化成株式会社 Epoxy resin composition for sealant, and sealant
JP2017095571A (en) * 2015-11-20 2017-06-01 旭化成株式会社 Epoxy resin composition for encapsulation material and encapsulation material
JP2017095570A (en) * 2015-11-20 2017-06-01 旭化成株式会社 Epoxy resin composition for adhesive film
JP2017160409A (en) * 2016-03-08 2017-09-14 広東広山新材料有限公司 Isocyanate-modified epoxy resin and its application
JP2019123795A (en) * 2018-01-16 2019-07-25 大阪ガスケミカル株式会社 Amine adduct and use thereof
JP7051454B2 (en) 2018-01-16 2022-04-11 大阪ガスケミカル株式会社 Amine Adduct and its uses
CN112500821A (en) * 2020-12-29 2021-03-16 烟台信友新材料有限公司 Ultraviolet-curing single-component epoxy adhesive with variable operation time and preparation method thereof
CN112500821B (en) * 2020-12-29 2022-07-15 烟台信友新材料有限公司 Ultraviolet-curing single-component epoxy adhesive with variable operation time and preparation method thereof
CN113388227A (en) * 2021-06-21 2021-09-14 高速铁路建造技术国家工程实验室 Water-based epoxy resin and preparation method thereof
CN113388227B (en) * 2021-06-21 2023-08-04 高速铁路建造技术国家工程实验室 Water-based epoxy resin and preparation method thereof

Also Published As

Publication number Publication date
TWI449723B (en) 2014-08-21
KR101310593B1 (en) 2013-09-23
JP5534615B2 (en) 2014-07-02
JPWO2010098431A1 (en) 2012-09-06
TW201035158A (en) 2010-10-01
KR20110119760A (en) 2011-11-02
CN102333808A (en) 2012-01-25
WO2010098431A9 (en) 2010-11-18
CN102333808B (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5534615B2 (en) Microcapsule type epoxy resin curing agent, masterbatch type epoxy resin curing agent composition, one-part epoxy resin composition, and processed product
JP5148292B2 (en) Microcapsule type epoxy resin curing agent, master-batch type epoxy resin curing agent composition, one-part epoxy resin composition, and processed product
JP4583373B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP4753934B2 (en) Latent curing agent for epoxy resin and epoxy resin composition
JP6085130B2 (en) Liquid resin composition and processed product
JP5258018B2 (en) Highly stable microcapsule-type epoxy resin curing agent and epoxy resin composition
JP4326524B2 (en) Capsule type curing agent and composition
JP5543879B2 (en) Curing agent composition for epoxy resin and one-part epoxy resin composition
JP4911981B2 (en) Curing agent for highly water-containing solvent-containing epoxy resin and epoxy resin composition
JP2007204669A (en) Curing agent for epoxy resin, having specific small particle diameter particle size distribution and epoxy resin composition
JP2007091899A (en) Highly stable curing agent for epoxy resin and epoxy resin composition
JP4877716B2 (en) Curing agent for fast-curing epoxy resin and epoxy resin composition
JP2007091901A (en) Curing agent for mildly reactive epoxy resin and epoxy resin composition
JP5596385B2 (en) Hardener for masterbatch type epoxy resin
JP6505428B2 (en) Microcapsule type amine curing agent, curable resin composition, fine chemicals and composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009807.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501662

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117019856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746310

Country of ref document: EP

Kind code of ref document: A1