WO2010098408A1 - Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing starting material for enzymatic saccharification used therein - Google Patents

Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing starting material for enzymatic saccharification used therein Download PDF

Info

Publication number
WO2010098408A1
WO2010098408A1 PCT/JP2010/053007 JP2010053007W WO2010098408A1 WO 2010098408 A1 WO2010098408 A1 WO 2010098408A1 JP 2010053007 W JP2010053007 W JP 2010053007W WO 2010098408 A1 WO2010098408 A1 WO 2010098408A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
producing
ammonia
sugar
biomass raw
Prior art date
Application number
PCT/JP2010/053007
Other languages
French (fr)
Japanese (ja)
Inventor
正浩 鮫島
圭日子 五十嵐
昌久 和田
毅 上村
Original Assignee
国立大学法人東京大学
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 新日本石油株式会社 filed Critical 国立大学法人東京大学
Priority to CN2010800096216A priority Critical patent/CN102333882A/en
Priority to BRPI1013168A priority patent/BRPI1013168A2/en
Publication of WO2010098408A1 publication Critical patent/WO2010098408A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a sugar production method, an ethanol production method, and a lactic acid production method using a biomass raw material, and an enzymatic saccharification used in the sugar production method, the ethanol production method, and the lactic acid production method.
  • the present invention relates to a method for producing raw materials.
  • lactic acid is used as one of the raw materials.
  • This lactic acid can also be obtained by saccharifying the biomass raw material and further fermenting it.
  • the saccharification has been conventionally performed using concentrated sulfuric acid, but from the viewpoint of reducing the environmental load, it is desired to reduce the amount of sulfuric acid used. Therefore, in recent years, saccharification of biomass raw materials using enzymes has been widely studied as an alternative to saccharification with concentrated sulfuric acid. Enzymatic saccharification is a desirable means from the viewpoint of the influence on the environment. However, for this enzymatic saccharification, it is necessary to pre-treat biomass raw material in advance for the purpose of making the enzyme act easily. Various methods are known as a pretreatment method of this biomass raw material, and among them, steaming treatment with dilute sulfuric acid, pressurized hot water, etc. is common (for example, see Patent Documents 1 to 4 below).
  • the object of the present invention is to solve the problems in the prior art and achieve the following objects. That is, the present invention can efficiently carry out enzymatic saccharification, and therefore can improve sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency. It is an object of the present invention to provide a method and a method for producing lactic acid, and a useful method for producing a raw material for enzymatic saccharification used in the method for producing sugar, the method for producing ethanol, and the method for producing lactic acid.
  • the present inventors have made extensive studies and obtained the following knowledge. That is, by subjecting a biomass raw material containing cellulose type I, which is a natural type cellulose, with a treatment agent containing ammonia and / or an organic amine, further pulverizing and then subjecting it to enzymatic saccharification It is a knowledge that enzymatic saccharification can be efficiently carried out, and therefore sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency can be significantly improved.
  • cellulose type I which is a natural type cellulose
  • the present inventors previously used enzymatic saccharification efficiently by using cellulose having a crystal density lower than that of natural cellulose (type I cellulose) as an object of enzymatic saccharification.
  • Patent application filed that it can be carried out, and that a biomass raw material containing cellulose type I can be treated with ammonia, particularly supercritical ammonia, to efficiently obtain cellulose for enzymatic saccharification containing cellulose III type I. (See JP 2008-161125 A).
  • ⁇ 1> (a) A step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine; (B) a step of obtaining a raw material for enzyme saccharification by grinding the modified biomass raw material; and (C) a step of saccharifying the enzyme saccharification raw material to obtain a saccharide; It is a manufacturing method of the sugar characterized by including.
  • ⁇ 2> The sugar production method according to ⁇ 1>, wherein the treating agent used in the step (a) is ammonia.
  • ⁇ 3> The sugar production method according to ⁇ 1> or ⁇ 2>, wherein the biomass material containing cellulose type I is woody biomass.
  • ⁇ 4> Any one of the above ⁇ 1> to ⁇ 3>, wherein the average particle size represented by the median size of the raw material for enzymatic saccharification obtained in step (b) is 5 to 80 ⁇ m.
  • the method for producing sugar as described in 1. above.
  • ⁇ 5> A method for producing ethanol, wherein the sugar obtained by the method for producing sugar according to any one of ⁇ 1> to ⁇ 4> is fermented to obtain ethanol.
  • ⁇ 6> A method for producing lactic acid, wherein the saccharide obtained by the method for producing saccharide according to any one of ⁇ 1> to ⁇ 4> is fermented to obtain lactic acid.
  • ⁇ 7> (a) A process for obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine; and (B) a step of obtaining a raw material for enzymatic saccharification by pulverizing the modified biomass raw material, It is a manufacturing method of the raw material for enzyme saccharification characterized by including this.
  • the above-mentioned objects can be achieved, various problems in the prior art can be solved, and enzymatic saccharification can be performed efficiently. Therefore, sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency Enzymatic saccharification used in sugar production method, ethanol production method, lactic acid production method, and sugar production method, ethanol production method, and lactic acid production method
  • the raw material manufacturing method can be provided.
  • FIG. 1 is an X-ray diffraction pattern of coarsely crushed eucalyptus.
  • FIG. 2 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed eucalyptus.
  • FIG. 3 is an X-ray diffraction pattern of a sample obtained by treating crushed eucalyptus with ammonia.
  • FIG. 4 is an X-ray diffraction pattern of a sample obtained by crushing coarsely crushed eucalyptus and further treating with ammonia.
  • FIG. 5 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely crushed eucalyptus to ammonia treatment and further pulverization treatment.
  • FIG. 1 is an X-ray diffraction pattern of coarsely crushed eucalyptus.
  • FIG. 2 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed eucalyptus.
  • FIG. 6 is an X-ray diffraction diagram of coarsely ground Ezo nokinu willow.
  • FIG. 7 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed Ezo nonu willow.
  • FIG. 8 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely ground Ezo nokinu willow to ammonia treatment.
  • FIG. 9 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed Ezo nonu willow and further ammonia treatment.
  • FIG. 10 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely milled Ezo noki willow to ammonia treatment and further grinding treatment.
  • FIG. 11 is an X-ray diffraction pattern of coarsely ground cedar.
  • FIG. 12 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely cedar cedar.
  • FIG. 13 is an X-ray diffraction pattern of a sample obtained by treating coarsely ground cedar with ammonia.
  • FIG. 14 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely cedar and further treating with ammonia.
  • FIG. 15 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely ground cedar to ammonia treatment and further grinding treatment.
  • the sugar production method of the present invention comprises (a) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine; A step of obtaining a raw material for enzyme saccharification by crushing the quality biomass raw material, and (c) a step of saccharifying the raw material for enzyme saccharification to obtain a sugar, and further further steps as necessary Including.
  • a biomass raw material containing cellulose type I is treated with a treatment agent containing ammonia and / or an organic amine to obtain a modified biomass raw material.
  • biomass raw material containing the said cellulose I type there is no restriction
  • waste biomass obtained as a residue from production activities such as agriculture and forestry
  • source crop biomass obtained by intentional cultivation for the purpose of obtaining energy, etc.
  • examples of the “waste-based biomass” include waste building materials, thinned wood, rice straw, wheat straw, rice husk, bagasse and the like
  • examples of the “resource crop-based biomass” include sugarcane and corn.
  • the biomass raw material containing cellulose type I is also classified into “woody biomass” using wood as a raw material, “herbaceous biomass” using grass as a raw material, and the like. In the present invention, both woody biomass and herbaceous biomass can be used, but woody biomass is preferably used from the viewpoint that the effects of the present invention can be obtained more remarkably. Moreover, as a biomass raw material containing the said cellulose I type, the cellulose I type itself obtained by refine
  • the biomass raw material containing the said cellulose I type may be used individually by 1 type, and may use 2 or more types together.
  • Cellulose I type which is a natural type cellulose, is classified into cellulose I ⁇ type and cellulose I ⁇ type, and any of these may be used as the cellulose I type contained in the biomass raw material. Both of these may be used.
  • the collected material may be used as it is, but it is reduced to a certain size by cutting, pulverizing, or the like. It is desirable to use it afterwards.
  • the size of the biomass raw material is not particularly limited and may be appropriately selected according to the purpose.
  • the mesh opening size is preferably 5 mm or less, more preferably 3 mm or less, and further preferably 2 mm or less. preferable. When the mesh size of the mesh exceeds 5 mm, the treatment with the treatment agent may be insufficient.
  • the size is within the further preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced.
  • the process of cutting and pulverizing the collected biomass material may be referred to as “coarse pulverization”.
  • the treatment with the treatment agent containing ammonia and / or organic amine proceeds efficiently, and when pulverizing the modified biomass raw material, finer fine powder with excellent enzymatic saccharification efficiency
  • the raw material for enzyme saccharification can be obtained efficiently.
  • a grinder used for the said rough crushing According to the objective, it can select suitably, For example, a Willet mill, a cutter mill, a hammer mill, a pin mill etc. can be used.
  • the method is not particularly limited and can be appropriately selected depending on the purpose. For example, it can be performed by introducing a biomass raw material containing cellulose type I and ammonia into a pressure vessel, setting the inside of the pressure vessel to a desired pressure and temperature, and processing for a desired time.
  • the ammonia may be in the liquid phase, in the gas phase, or in a supercritical state.
  • liquid ammonia or supercritical state Ammonia is suitable.
  • the conditions for the treatment with ammonia are not limited, but generally preferred conditions are a temperature of ⁇ 35 to 140 ° C. and a pressure of 0 to 12.5 MPa.
  • the organic amine to be used is not particularly limited and can be appropriately selected according to the purpose.
  • ethylenedian, monomethylamine, monoethylamine and the like are preferably used, and ethylenediamine is preferred.
  • the treatment temperature and pressure can be the same as those in the treatment with ammonia.
  • ammonia as the treatment agent from the viewpoint of the efficiency of transformation from cellulose type I to cellulose III type I , ease of removal of the treatment agent after treatment, and the like.
  • the time for the treatment with the treatment agent containing ammonia and / or organic amine is not particularly limited, and may be a desired level depending on the amount of biomass raw material containing the cellulose type I used, the treatment pressure, the treatment temperature, and the like. Can be appropriately selected within the range in which the transformation from cellulose I type to cellulose III I type proceeds, preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, particularly 30 minutes to 5 hours. preferable. If the treatment time is less than 10 minutes, the desired degree of transformation from cellulose type I to cellulose III type I may not proceed, and if it exceeds 10 hours, more than cellulose I type to cellulose III type I The transformation to may not proceed and may be inefficient as a whole. On the other hand, when the treatment time is within the further preferable range, it is advantageous in that the transformation from cellulose I type to cellulose III I type can proceed efficiently.
  • the amount of the ammonia and / or organic amine used in the treatment with the treatment agent containing ammonia and / or organic amine is not particularly limited and may be appropriately selected depending on the purpose. 10 mg to 300 g is preferable, 100 mg to 150 g is more preferable, and 1 g to 50 g is particularly preferable with respect to 1 g of biomass raw material containing type I.
  • the amount of ammonia and / or organic amine used is less than 10 mg relative to 1 g of biomass raw material containing cellulose type I, the treatment may be insufficient. May be worse.
  • the amount used is within the particularly preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced.
  • the treatment agent containing ammonia and / or organic amine may be used in combination.
  • the compound include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, methanol, propanol, and butanol. Etc.
  • a modified biomass raw material is obtained by the treatment with the treatment agent containing ammonia and / or organic amine.
  • the treatment agent containing ammonia and / or organic amine By the treatment, at least a part of cellulose type I contained in the biomass raw material can be transformed into cellulose III type I having a lower crystal density.
  • Cellulose III type I is advantageous in that the enzyme is likely to act because of its low crystal density.
  • most hemicellulose contained in the said biomass raw material is decomposed
  • the cellulose type I and hemicellulose contained in the biomass material are changed to a state in which the enzyme is more likely to act, such as cellulose III type I and oligosaccharide derived from hemicellulose, respectively. Therefore, the enzymatic saccharification efficiency can be improved.
  • the process at least part of the cellulose I type is converted into cellulose III I type, for example, can be confirmed by X-ray diffraction, FT-IR, solid-state NMR and the like.
  • modified biomass raw material in the present application means a material obtained by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine, but the cellulose type I contained in the biomass raw material. It is preferable that at least a part is transformed into cellulose III type I.
  • the modified biomass raw material can be obtained by treating a biomass raw material containing cellulose type I, which is a natural type cellulose, with a treatment agent containing ammonia and / or an organic amine. It may be in a state of a complex of cellulose and ammonia and / or an organic amine (hereinafter sometimes referred to as “complex such as cellulose / ammonia”) produced in the process.
  • a complex of cellulose / ammonia is difficult to adjust pH during enzymatic saccharification, and has the property of returning to cellulose type I by the action of water. It is preferable to use a modified biomass raw material from which ammonia and / or organic amine has been removed from the composite of cellulose and ammonia.
  • the cellulose / ammonia obtained after the treatment with the ammonia and / or organic amine etc.
  • Examples include a method of washing the modified biomass raw material containing the composite with methanol, ethanol, acetone or the like, a method of drying under reduced pressure, and a method of drying at a temperature equal to or higher than the boiling point of the treating agent.
  • the removal method is not using an organic solvent, and is excellent in safety, at a temperature equal to or higher than the boiling point of ammonia (for example, room temperature to 50 ° C.) at normal pressure or A method of drying under reduced pressure is preferred.
  • the said modified biomass raw material contains cellulose III type I, and there is no restriction
  • the modified biomass material includes, for example, cellulose type I (cellulose I ⁇ type, cellulose I ⁇ type) and other components such as hemicellulose and lignin. May be.
  • lignin is not contained or the content thereof is small.
  • Step (b)> the raw material for enzyme saccharification is obtained by pulverizing the modified biomass raw material obtained in the step (a).
  • the modified biomass raw material obtained in the step (a) is pulverized.
  • a method for pulverizing the modified biomass raw material is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a pulverizer such as a flat mill, a planetary ball mill, a vibration ball mill, a bead mill, a jet mill or the like may be used.
  • a flat mill is preferable as the pulverizer because a fine powdery raw material for enzymatic saccharification excellent in enzymatic saccharification efficiency can be obtained with relatively low energy.
  • the modified biomass raw material can be used as the raw material for enzymatic saccharification of the present invention. By pulverizing the modified biomass raw material, it is possible to further improve the enzymatic saccharification efficiency.
  • the conditions for the pulverization are not particularly limited, and can be appropriately selected depending on the type of pulverizer, the type of biomass raw material, the average particle size of the pulverized product to be obtained, and the like.
  • the discharged pulverized material will be collected and supplied to the mortar again. Further, this may be repeated a plurality of times.
  • the number of times of pulverization is not particularly limited, and can be appropriately selected according to the type of pulverizer used, the time per pulverization, the energy applied, and the like.
  • the pulverization is advantageous in that a finer powdery raw material for enzyme saccharification with excellent enzyme saccharification efficiency can be obtained.
  • the pulverization is advantageous in that a finer powdery raw material for enzyme saccharification with excellent enzymatic saccharification efficiency can be obtained each time the pulverization is repeated. 4 times or less is preferable from the standpoint of inefficiency as a whole.
  • the “enzymatic saccharification raw material” refers to a material obtained by pulverizing the modified biomass raw material. By pulverizing the modified biomass raw material, it is possible to further improve the enzymatic saccharification efficiency.
  • the particle size of the enzyme saccharification raw material particles obtained by the pulverization is not particularly limited, and the preferred size varies depending on the type of biomass raw material to be used. The average particle size is preferably 5 to 80 ⁇ m, more preferably 5 to 50 ⁇ m, and even more preferably 5 to 30 ⁇ m.
  • the average particle size of the raw material for enzyme saccharification is to be less than 5 ⁇ m, it will take a great deal of energy and time for pulverization and lose economic rationality, while if it exceeds 80 ⁇ m, the enzymatic saccharification efficiency May not be sufficiently improved.
  • the average particle size of the enzyme saccharification raw material is within the further preferable range, it is advantageous in terms of the balance of energy and time required for pulverization and enzyme saccharification efficiency.
  • a median diameter obtained by measurement by a laser diffraction confusion method is adopted as an average particle diameter of the raw material for enzyme saccharification in the present application.
  • the median diameter refers to a particle diameter in which the cumulative volume of particles having a particle diameter equal to or larger than the particle diameter is equal to particles having a particle diameter equal to or smaller than the particle diameter.
  • the raw material for enzymatic saccharification obtained by pulverization of the modified biomass may be used, for example, as it is in the enzymatic saccharification of step (c) described later, or after appropriately passing through other steps, step (c) described later. It may be subjected to enzymatic saccharification.
  • pulverization is suitable for the enzyme saccharification mentioned later.
  • the pH adjustment process etc. which adjust to appropriate pH are mentioned.
  • Step (c)> the enzyme saccharification raw material obtained in the step (b) is enzymatically saccharified to obtain a saccharide.
  • the amount of the enzyme used in the enzymatic saccharification is not particularly limited and may be appropriately selected according to the purpose. For example, 0.001 to 100 mg is preferable with respect to 1 g of the enzyme saccharification raw material. 0.01 to 10 mg is more preferable, and 0.1 to 1 mg is still more preferable. If the amount of the enzyme used is less than 0.001 mg with respect to 1 g of the enzyme saccharification raw material, enzyme saccharification may be insufficient, and if it exceeds 100 mg, saccharification inhibition may occur. On the other hand, when the amount of the enzyme used is within the more preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme added.
  • the temperature for the enzymatic saccharification is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 10 to 70 ° C, more preferably 20 to 60 ° C, and further preferably 30 to 50 ° C. preferable. If the temperature is less than 10 ° C, enzyme saccharification may not proceed sufficiently, and if it exceeds 70 ° C, the enzyme may be deactivated. On the other hand, when the temperature is within the further preferable range, it is advantageous in that a large amount of sugar is obtained with respect to the amount of enzyme added.
  • the pH at the time of enzymatic saccharification is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, 4.0 to 6.0 is more preferable. If the pH is less than 3.0 or more than 8.0, the enzyme may be deactivated. On the other hand, when the pH is within the more preferable range, it is advantageous in that a large amount of sugar is obtained with respect to the amount of enzyme added.
  • a sugar solution containing glucose which is a saccharide derived from cellulose III type I contained in the raw material for enzyme saccharification obtained in the step (b) can be obtained.
  • the sugar solution obtained by the enzymatic saccharification may contain, for example, glucose derived from the cellulose type I or sugar derived from hemicellulose.
  • sugars derived from hemicellulose include pentose sugars such as xylose and arabinose, and hexose sugars such as glucose, galactose, and mannose.
  • the sugar solution may be used, for example, as it is in the ethanol production method or lactic acid production method of the present invention, which will be described later, or after the other steps described below, the ethanol production method or lactic acid of the present invention, which will be described later.
  • the method for producing ethanol of the present invention includes a step (fermentation step) of fermenting the sugar obtained by the above-described method for producing sugar of the present invention to obtain ethanol, and further includes other steps as necessary. .
  • the method for fermenting the sugar is not particularly limited and may be appropriately selected depending on the intended purpose.
  • an alcohol-fermenting microorganism such as yeast is added to the solution containing the sugar.
  • a method of performing alcoholic fermentation is particularly preferable.
  • Saccharomyces genus yeast etc. are mentioned.
  • the yeast may be natural yeast or genetically modified yeast.
  • Specific examples of the ethanol-fermenting microorganism include Saccharomyces cerevisiae, Kluyveromyces fragilis, Kluyveromyces lactis (K.
  • yeasts such as K. marxianus, Pichia stipitis, P. pastoris, Pachisolen tannofilus, Candida glabrata, or Candida glabrata Zymomonas mobilis, Symobacter pa Main (Zymobacter palmae), Clostridium thermocellum (Clostridium thermocellum), Clostridium Rujungudari (C.ljungdahlii) like bacterial or can be used these genetic recombinant.
  • yeasts such as K. marxianus, Pichia stipitis, P. pastoris, Pachisolen tannofilus, Candida glabrata, or Candida glabrata Zymomonas mobilis, Symobacter pa Main (Zymobacter palmae), Clostridium thermocellum (Clostridium thermocellum), Clostridium Rujungudari (C.ljungdahlii) like bacterial or can be used these genetic recombinant.
  • the amount of yeast used, fermentation temperature, pH, fermentation time, etc. are not particularly limited, and are appropriately selected according to, for example, the amount of sugar to be used for alcohol fermentation, the type of yeast to be used, etc. can do.
  • the ethanol obtained by the ethanol production method can be suitably used as, for example, fuel ethanol, industrial ethanol, and the like. Since the ethanol can be obtained from a biomass raw material, it can be reproduced as long as the biomass raw material can be produced, and the plant absorbs carbon dioxide in the atmosphere at the time of cultivation. Even if carbon dioxide is generated by combustion, it does not increase the carbon dioxide concentration in the atmosphere. Therefore, it can be said that ethanol is a desirable energy source for preventing global warming. In recent years, such ethanol is particularly expected to be mixed with gasoline and used as an environmentally friendly automobile fuel.
  • An alcohol other than ethanol is produced by fermenting the sugar obtained by the sugar production method of the present invention with a microorganism that produces the desired alcohol, instead of the yeast that produces ethanol.
  • a microorganism that produces the desired alcohol instead of the yeast that produces ethanol.
  • the method for producing lactic acid of the present invention includes a step (fermentation step) of fermenting the saccharide obtained by the above-described method for producing saccharide of the present invention to obtain lactic acid, and further includes other steps as necessary. .
  • the method for fermenting the sugar is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a lactic acid-fermenting microorganism such as lactic acid bacteria is added to the solution containing the sugar.
  • a method of performing lactic acid fermentation is particularly preferable.
  • the lactic acid bacterium is not particularly limited and may be appropriately selected depending on the intended purpose. Streptococcus thermophilus) and Lactobacillus bulgaricus.
  • the lactic acid bacterium may be a natural lactic acid bacterium or a genetically modified lactic acid bacterium.
  • the amount of lactic acid bacteria used, fermentation temperature, pH, fermentation time, etc. are not particularly limited, and are appropriately selected according to, for example, the amount of sugar to be used for lactic acid fermentation, the type of lactic acid bacteria used, etc. can do.
  • the lactic acid obtained by the lactic acid production method can be suitably used for producing polylactic acid by chemical polymerization, for example.
  • lactic acid which is often produced from starch such as corn, from biomass raw materials containing cellulose that cannot be used for food.
  • the method for producing lactic acid It is possible to efficiently produce polylactic acid from a biomass raw material containing
  • the saccharide obtained by the method for producing saccharides of the present invention is fermented by using microorganisms that produce the desired organic acid in place of the lactic acid bacteria, so that organic acids other than lactic acid, such as citric acid and succinic acid, can be obtained. Acid, malic acid, oxalic acid and the like can also be produced.
  • the method for producing a raw material for enzyme saccharification comprises (a) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine; and (B) A step of obtaining the enzyme saccharification raw material by pulverizing the modified biomass raw material, and further including other steps as necessary.
  • the step (a) and the step (b) are as described in the item of the method for producing a sugar of the present invention.
  • the enzyme saccharification raw material of the present invention obtained in the step (b) has its X-ray diffraction pattern in comparison with the modified biomass raw material obtained in the step (a). Has been shown to change significantly. That is, there is a possibility that some change has occurred in the cellulose structure by pulverizing the modified biomass raw material.
  • the biomass raw material is first pulverized by the same operation as in step (b) according to the method of the present invention and then treated with a treatment agent containing ammonia and / or organic amine, the pulverization is not performed.
  • Example 1 Biomass raw material- Eucalyptus was used as a biomass raw material containing cellulose type I.
  • the prepared eucalyptus was coarsely pulverized using a Willet mill with a target average particle size of 200 ⁇ m.
  • the coarsely crushed eucalyptus was subjected to treatment with supercritical ammonia by the following operation.
  • a 4 g sample of coarsely crushed eucalyptus dried in an oven at 60 ° C. for 24 hours is placed in a portable reactor TVS-N2 type (produced by TAIATSU, hereinafter referred to as “container”) having an internal volume of 120 ml, and is sealed in a cooling device. Then, while cooling the container to ⁇ 13 ° C., ammonia was allowed to flow in at a pressure of 0.5 MPa for 30 minutes.
  • a PC-V type heater manufactured by TAIATSU
  • TAIATSU a heating / pressurizing treatment
  • the pressure in the container was 11 MPa or more at which ammonia became a supercritical state.
  • the inside of the container was brought to atmospheric pressure to remove ammonia, the temperature was cooled to room temperature, and a solid sample in the container was collected. The sample was allowed to evaporate well overnight without sealing.
  • -X-ray diffraction analysis 100 mg of the crushed sample was pressure-molded at a pressure of 200 kg / cm 2 and subjected to X-ray diffraction analysis.
  • X-ray diffraction was performed by a diffractometry method using a tube-type X-ray generator RINT2200 (trade name, manufactured by Rigaku Corporation).
  • the diffraction pattern of the sample after coarse pulverization is shown in FIG. 1, the diffraction pattern of the sample after ammonia treatment is shown in FIG. 3, and the diffraction pattern of the sample after ammonia treatment and pulverization treatment is shown in FIG.
  • enzymatic saccharification reaction About the sample which performed the ammonia process and the grinding
  • Glucose yield (%) [amount of glucose in enzyme saccharification reaction solution / (amount of enzyme saccharification raw material ⁇ total glycation rate / 100)] ⁇ 100
  • Example 1-1 Enzymatic saccharification of untreated sample
  • the roughly crushed eucalyptus used in Example 1 was subjected to an enzymatic saccharification reaction as it was in the same manner as the enzymatic saccharification reaction in Example 1 without performing ammonia treatment and pulverization treatment.
  • the results are shown in Table 1.
  • Example 1-2 No ammonia treatment, enzymatic saccharification of pulverized sample
  • Example 1 The coarsely crushed eucalyptus used in Example 1 was pulverized by the same operation as the operation of pulverizing the sample after ammonia treatment in Example 1 without being ammonia-treated.
  • Example 1-3 Enzymatic saccharification of ammonia-treated sample
  • enzyme saccharification reaction was performed by operation similar to the enzyme saccharification reaction operation in Example 1 without pulverizing after that.
  • the glucose yield was calculated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 1-4 Enzymatic saccharification of a sample treated with ammonia after grinding
  • Example 1 The coarsely crushed eucalyptus used in Example 1 was pulverized by the same operation as the operation of pulverizing the sample after ammonia treatment in Example 1.
  • the pulverized sample was treated with ammonia in the same manner as the ammonia treatment in Example 1.
  • Example 2 Rough pulverization, ammonia treatment, pulverization, and enzymatic saccharification reaction were carried out in this order in the same manner as in Example 1 except that Ezo no Kinu willow was used instead of eucalyptus used in Example 1. The results are shown in Table 1. Further, the X-ray diffraction analysis was performed on the sample at each stage by the same operation as in Example 1. The X-ray diffraction pattern of each sample was similar to the corresponding eucalyptus sample in Example 1. The diffraction pattern after coarse pulverization is shown in FIG. 6, the diffraction pattern of the sample after ammonia treatment is shown in FIG.
  • Comparative Examples 2-1 to 2-4 Comparative Examples 1 corresponding to Ex. 1 was used except that the coarsely ground Ezo nocilia used in Example 2 was used instead of the coarsely ground Eucalyptus used as the starting material. Pretreatment was performed in the same manner as in -1 to 1-4, and enzymatic saccharification reaction was performed in the same manner as in Example 2 for each sample obtained. For each comparative example, the glucose yield was calculated and the results are shown in Table 1. Further, for Comparative Examples 2-2 to 2-4, X-ray diffraction analysis was performed on each pretreated sample.
  • the X-ray diffraction pattern of each sample was similar to each eucalyptus sample in Comparative Examples 1-2 to 1-4 corresponding to each sample.
  • FIG. 7 shows the diffraction pattern after the pulverization treatment
  • FIG. 9 shows the diffraction pattern of the sample treated with ammonia after the pulverization treatment.
  • Example 3 Rough pulverization, ammonia treatment, pulverization, and enzymatic saccharification reaction were performed in this order in the same manner as in Example 1 except that cedar was used instead of eucalyptus used in Example 1. The results are shown in Table 1. Further, the X-ray diffraction analysis was performed on the sample at each stage by the same operation as in Example 1. The X-ray diffraction pattern of each sample was similar to the corresponding eucalyptus sample in Example 1. The diffraction pattern after coarse pulverization is shown in FIG. 11, the diffraction pattern of the sample after ammonia treatment is shown in FIG.
  • the total glycation rate of the used cedar was 42.7%, and the average particle size of the coarsely pulverized cedar was 207 ⁇ m.
  • Comparative Examples 3-1 to 3-4 In each of Comparative Examples 1-1 to 1-4, Comparative Example 1 corresponding to Example 1 was used except that the coarsely ground cedar used in Example 3 was used instead of the coarsely ground Eucalyptus used as the starting material. Pretreatment was performed in the same manner as in -1 to 1-4, and enzymatic saccharification reaction was performed in the same manner as in Example 3 for the samples obtained in each. For each comparative example, the glucose yield was calculated and the results are shown in Table 1. Further, for Comparative Examples 3-2 to 3-4, X-ray diffraction analysis was performed on each pretreated sample.
  • the X-ray diffraction pattern of each sample was similar to each eucalyptus sample in Comparative Examples 1-2 to 1-4 corresponding to each sample.
  • FIG. 12 shows the diffraction pattern after the grinding treatment
  • FIG. 14 shows the diffraction pattern of the sample treated with ammonia after the grinding treatment.
  • the biomass saccharification efficiency is improved with respect to the untreated biomass raw material, the biomass raw material subjected to the ammonia treatment or the pulverization treatment by further pulverizing the biomass raw material and subjecting it to enzymatic saccharification
  • the enzyme saccharification efficiency can be improved even when compared with the case where the ammonia treatment is performed after the pulverization treatment.
  • the sugar production method, ethanol production method, and lactic acid production method of the present invention can significantly improve sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency.
  • the method for producing a raw material for enzyme saccharification of the present invention it is possible to efficiently obtain a material for enzyme saccharification suitable for the above-described sugar production method, ethanol production method, and lactic acid production method of the present invention. it can. Therefore, the sugar production method, ethanol production method, lactic acid production method, and enzyme saccharification raw material production method of the present invention aim to produce an environmentally friendly fuel that has been attracting attention in recent years, for example. It can be suitably used for the production of ethanol from biomass raw materials, and the production of environmentally friendly biodegradable plastics.

Abstract

Disclosed are a method for producing a sugar, a method for producing ethanol and a method for producing lactic acid, wherein enzymatic saccharification can be performed efficiently, thereby respectively improving the production efficiency of sugar, the production efficiency of ethanol and the production efficiency of lactic acid. Also disclosed is a method for producing a useful starting material for enzymatic saccharification which is used in the above-described production methods. Specifically disclosed is a method for producing a sugar, which is characterized by comprising: (a) a step of obtaining a modified biomass starting material by processing a biomass starting material containing a type I cellulose with a processing agent containing ammonia and/or an organic amine; (b) a step of obtaining a starting material for enzymatic saccharification by pulverizing the modified biomass starting material; and (c) a step of obtaining a sugar by enzymatically saccharifying the starting material for enzymatic saccharification.

Description

糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用原料の製造方法Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
 本発明は、バイオマス原料を利用した、糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びに、前記糖の製造方法、エタノールの製造方法、及び乳酸の製造方法に用いられる、酵素糖化用原料の製造方法に関する。 The present invention relates to a sugar production method, an ethanol production method, and a lactic acid production method using a biomass raw material, and an enzymatic saccharification used in the sugar production method, the ethanol production method, and the lactic acid production method. The present invention relates to a method for producing raw materials.
 近年、地球温暖化対策の一環として、木質バイオマスや草本バイオマス等のセルロースを含む原料からエタノールを製造し、各種燃料や化学原料として利用しようとする試みが広く行われている。バイオマス原料からのエタノールの製造は、例えば、収集したバイオマス原料を、糖化工程において糖に分解した後、発酵工程において酵母等の微生物を用いてエタノールに変換することにより行うことができる。 In recent years, as part of measures against global warming, attempts have been widely made to produce ethanol from raw materials containing cellulose such as woody biomass and herbaceous biomass and use them as various fuels and chemical raw materials. Production of ethanol from biomass raw material can be performed, for example, by decomposing the collected biomass raw material into sugar in the saccharification step and then converting it to ethanol using a microorganism such as yeast in the fermentation step.
 一方、環境負荷低減の観点から、生分解性ポリマーの利用が増加しており、その原料のひとつとして乳酸が使用されている。この乳酸も、前記のバイオマス原料を糖化し、さらにこれを発酵することにより得ることができる。 On the other hand, the use of biodegradable polymers is increasing from the viewpoint of reducing environmental impact, and lactic acid is used as one of the raw materials. This lactic acid can also be obtained by saccharifying the biomass raw material and further fermenting it.
 前記糖化は、従来より、濃硫酸を用いて行われることが多かったが、環境負荷低減の観点から、硫酸の使用量を少なくすることが望まれている。そこで、近年は、濃硫酸による糖化に代わる手段として、酵素を用いたバイオマス原料の糖化が広く研究されている。酵素による糖化は、環境に対する影響の観点から望ましい手段であるが、この酵素糖化のためには、酵素を作用させ易くする目的から、予めバイオマス原料に対して前処理を行うことが必要となる。このバイオマス原料の前処理方法として様々な方法が知られているが、中でも、希硫酸、加圧熱水等による蒸煮処理などが一般的である(例えば、下記特許文献1~4参照。)。しかしながら、前記したように硫酸の使用が好ましくないこと、及びバイオマス原料にこれらの前処理を行い、得られた処理物を酵素糖化に供する場合では、所望の程度の酵素糖化効率を得るためには該前処理を多段で行う必要があったり、200℃以上の高温にしなければならない等の問題がある。 The saccharification has been conventionally performed using concentrated sulfuric acid, but from the viewpoint of reducing the environmental load, it is desired to reduce the amount of sulfuric acid used. Therefore, in recent years, saccharification of biomass raw materials using enzymes has been widely studied as an alternative to saccharification with concentrated sulfuric acid. Enzymatic saccharification is a desirable means from the viewpoint of the influence on the environment. However, for this enzymatic saccharification, it is necessary to pre-treat biomass raw material in advance for the purpose of making the enzyme act easily. Various methods are known as a pretreatment method of this biomass raw material, and among them, steaming treatment with dilute sulfuric acid, pressurized hot water, etc. is common (for example, see Patent Documents 1 to 4 below). However, as described above, in order to obtain the desired degree of enzymatic saccharification efficiency in the case where the use of sulfuric acid is not preferable, and when these pretreatments are performed on the biomass raw material and the obtained processed product is subjected to enzymatic saccharification, There are problems that it is necessary to perform the pretreatment in multiple stages, and that the temperature must be increased to 200 ° C. or higher.
 また、バイオマス原料を物理的手段により微細に粉砕することにより、化学的、生物化学的反応性が向上することが知られているが、粉砕のみにより充分な酵素糖化効率を得ようとすると、粉砕工程に多大なエネルギーを要し、経済合理性を失うおそれがある。 In addition, it is known that chemical and biochemical reactivity can be improved by finely pulverizing biomass raw materials by physical means, but if sufficient enzymatic saccharification efficiency is obtained by pulverization alone, The process requires a lot of energy and may lose economic rationality.
 さらに、バイオマス原料をアンモニアあるいは有機アミンを用いて前処理することにより、その化学的、生物化学的反応性が向上することが知られている(例えば、下記特許文献5参照。)。しかし、前記前処理されたバイオマスであっても、その酵素糖化効率は未だ充分とはいえない。したがって、より酵素糖化効率を高めることのできる酵素糖化技術の開発、及び、前記酵素糖化に適したバイオマス原料の前処理技術の開発が、未だ望まれているのが現状である。 Furthermore, it is known that the chemical and biochemical reactivity of a biomass raw material is improved by pretreatment with ammonia or organic amine (see, for example, Patent Document 5 below). However, even with the pretreated biomass, the enzymatic saccharification efficiency is still not sufficient. Therefore, at present, the development of an enzyme saccharification technique that can further increase the enzyme saccharification efficiency and the development of a pretreatment technique for biomass raw materials suitable for the enzyme saccharification are still desired.
特開2006-075007号公報JP 2006-075007 A 特開2004-121055号公報JP 2004-121055 A 特表2002-541355号公報JP-T-2002-541355 特開2002-159954号公報JP 2002-159954 A 欧州特許公開第77287号公報European Patent Publication No. 77287
 本発明は、前記従来技術における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、酵素糖化を効率的に行うことができ、そのため、糖の生産効率、エタノールの生産効率、及び乳酸の生産効率を向上させることが可能な、糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びに、前記糖の製造方法、エタノールの製造方法、及び乳酸の製造方法に用いられる、有用な酵素糖化用原料の製造方法を提供することを目的とする。 The object of the present invention is to solve the problems in the prior art and achieve the following objects. That is, the present invention can efficiently carry out enzymatic saccharification, and therefore can improve sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency. It is an object of the present invention to provide a method and a method for producing lactic acid, and a useful method for producing a raw material for enzymatic saccharification used in the method for producing sugar, the method for producing ethanol, and the method for producing lactic acid.
 前記課題を解決するため、本発明者らは鋭意検討した結果、以下のような知見を得た。即ち、天然型セルロースであるセルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより得られる改質バイオマス原料を、更に粉砕した後に、酵素糖化に供することにより、酵素糖化を効率的に行うことができ、したがって、糖の生産効率、エタノールの生産効率、及び乳酸の生産効率を格段に向上させることができるという知見である。 In order to solve the above-mentioned problems, the present inventors have made extensive studies and obtained the following knowledge. That is, by subjecting a biomass raw material containing cellulose type I, which is a natural type cellulose, with a treatment agent containing ammonia and / or an organic amine, further pulverizing and then subjecting it to enzymatic saccharification It is a knowledge that enzymatic saccharification can be efficiently carried out, and therefore sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency can be significantly improved.
 なお、本発明者らは以前に、天然型セルロースであるセルロースI型よりも低い結晶密度を有するセルロース(例えばセルロースIII型)を酵素糖化の対象物として用いることにより、酵素糖化を効率的に行うことができること、及び、セルロースI型を含むバイオマス原料を、アンモニア、特に超臨界アンモニアで処理することにより、セルロースIII型を含む酵素糖化用セルロースを効率的に得ることができることを特許出願している(特開2008-161125号公報参照。)。 In addition, the present inventors previously used enzymatic saccharification efficiently by using cellulose having a crystal density lower than that of natural cellulose (type I cellulose) as an object of enzymatic saccharification. Patent application filed that it can be carried out, and that a biomass raw material containing cellulose type I can be treated with ammonia, particularly supercritical ammonia, to efficiently obtain cellulose for enzymatic saccharification containing cellulose III type I. (See JP 2008-161125 A).
 バイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理した後に、更に粉砕して酵素糖化に供することにより、バイオマス原料の酵素糖化効率を格段に向上させることができることは、従来知られておらず、本発明者らによる新たな知見である。 It has been conventionally known that the enzymatic saccharification efficiency of a biomass raw material can be remarkably improved by treating the biomass raw material with a treatment agent containing ammonia and / or an organic amine, and then further pulverizing and subjecting it to enzymatic saccharification. This is a new finding by the present inventors.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> (a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、
(b)前記改質バイオマス原料を粉砕することにより、酵素糖化用原料を得る工程、及び、
(c)前記酵素糖化用原料を、酵素糖化せしめ、糖を得る工程、
を含むことを特徴とする糖の製造方法である。
 <2> 工程(a)において用いる処理剤が、アンモニアであることを特徴とする前記<1>に記載の糖の製造方法である。
 <3> セルロースI型を含むバイオマス原料が、木質バイオマスであることを特徴とする前記<1>又は<2>に記載の糖の製造方法である。
 <4> 工程(b)において得られる酵素糖化用原料のメジアン径で表される平均粒径が、5~80μmであることを特徴とする、前記<1>~<3>のいずれか一項に記載の糖の製造方法である。
 <5> 前記<1>~<4>のいずれか一項に記載の糖の製造方法により得られた糖を、発酵させて、エタノールを得ることを特徴とするエタノールの製造方法である。
 <6> 前記<1>~<4>のいずれか一項に記載の糖の製造方法により得られた糖を、発酵させて、乳酸を得ることを特徴とする乳酸の製造方法である。
 <7> (a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、及び、
(b)前記改質バイオマス原料を、粉砕することにより、酵素糖化用原料を得る工程、
を含むことを特徴とする酵素糖化用原料の製造方法である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> (a) A step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine;
(B) a step of obtaining a raw material for enzyme saccharification by grinding the modified biomass raw material; and
(C) a step of saccharifying the enzyme saccharification raw material to obtain a saccharide;
It is a manufacturing method of the sugar characterized by including.
<2> The sugar production method according to <1>, wherein the treating agent used in the step (a) is ammonia.
<3> The sugar production method according to <1> or <2>, wherein the biomass material containing cellulose type I is woody biomass.
<4> Any one of the above <1> to <3>, wherein the average particle size represented by the median size of the raw material for enzymatic saccharification obtained in step (b) is 5 to 80 μm. The method for producing sugar as described in 1. above.
<5> A method for producing ethanol, wherein the sugar obtained by the method for producing sugar according to any one of <1> to <4> is fermented to obtain ethanol.
<6> A method for producing lactic acid, wherein the saccharide obtained by the method for producing saccharide according to any one of <1> to <4> is fermented to obtain lactic acid.
<7> (a) A process for obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine; and
(B) a step of obtaining a raw material for enzymatic saccharification by pulverizing the modified biomass raw material,
It is a manufacturing method of the raw material for enzyme saccharification characterized by including this.
 本発明によると、前記目的を達成し、従来における諸問題を解決することができ、酵素糖化を効率的に行うことができ、そのため、糖の生産効率、エタノールの生産効率、及び乳酸の生産効率を向上させることが可能な、糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びに、前記糖の製造方法、エタノールの製造方法、及び乳酸の製造方法に用いられる、有用な酵素糖化用原料の製造方法を提供することができる。 According to the present invention, the above-mentioned objects can be achieved, various problems in the prior art can be solved, and enzymatic saccharification can be performed efficiently. Therefore, sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency Enzymatic saccharification used in sugar production method, ethanol production method, lactic acid production method, and sugar production method, ethanol production method, and lactic acid production method The raw material manufacturing method can be provided.
図1は、粗粉砕したユーカリのX線回折図である。FIG. 1 is an X-ray diffraction pattern of coarsely crushed eucalyptus. 図2は、粗粉砕したユーカリを粉砕した試料のX線回折図である。FIG. 2 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed eucalyptus. 図3は、粗粉砕したユーカリをアンモニア処理した試料のX線回折図である。FIG. 3 is an X-ray diffraction pattern of a sample obtained by treating crushed eucalyptus with ammonia. 図4は、粗粉砕したユーカリを粉砕し、さらにアンモニア処理した試料のX線回折図である。FIG. 4 is an X-ray diffraction pattern of a sample obtained by crushing coarsely crushed eucalyptus and further treating with ammonia. 図5は、粗粉砕したユーカリをアンモニア処理し、さらに粉砕処理した試料のX線回折図である。FIG. 5 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely crushed eucalyptus to ammonia treatment and further pulverization treatment. 図6は、粗粉砕したエゾノキヌヤナギのX線回折図である。FIG. 6 is an X-ray diffraction diagram of coarsely ground Ezo nokinu willow. 図7は、粗粉砕したエゾノキヌヤナギを粉砕した試料のX線回折図である。FIG. 7 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed Ezo nonu willow. 図8は、粗粉砕したエゾノキヌヤナギをアンモニア処理した試料のX線回折図である。FIG. 8 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely ground Ezo nokinu willow to ammonia treatment. 図9は、粗粉砕したエゾノキヌヤナギを粉砕し、さらにアンモニア処理した試料のX線回折図である。FIG. 9 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely crushed Ezo nonu willow and further ammonia treatment. 図10は、粗粉砕したエゾノキヌヤナギをアンモニア処理し、さらに粉砕処理した試料のX線回折図である。FIG. 10 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely milled Ezo noki willow to ammonia treatment and further grinding treatment. 図11は、粗粉砕したスギのX線回折図である。FIG. 11 is an X-ray diffraction pattern of coarsely ground cedar. 図12は、粗粉砕したスギを粉砕した試料のX線回折図である。FIG. 12 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely cedar cedar. 図13は、粗粉砕したスギをアンモニア処理した試料のX線回折図である。FIG. 13 is an X-ray diffraction pattern of a sample obtained by treating coarsely ground cedar with ammonia. 図14は、粗粉砕したスギを粉砕し、さらにアンモニア処理した試料のX線回折図である。FIG. 14 is an X-ray diffraction pattern of a sample obtained by pulverizing coarsely cedar and further treating with ammonia. 図15は、粗粉砕したスギをアンモニア処理し、さらに粉砕処理した試料のX線回折図である。FIG. 15 is an X-ray diffraction pattern of a sample obtained by subjecting coarsely ground cedar to ammonia treatment and further grinding treatment.
(糖の製造方法)
 本発明の糖の製造方法は、(a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、(b)前記改質バイオマス原料を粉砕することにより、酵素糖化用原料を得る工程、及び、(c)前記酵素糖化用原料を、酵素糖化せしめ、糖を得る工程、を含み、必要に応じて更にその他の工程を含む。
(Method for producing sugar)
The sugar production method of the present invention comprises (a) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine; A step of obtaining a raw material for enzyme saccharification by crushing the quality biomass raw material, and (c) a step of saccharifying the raw material for enzyme saccharification to obtain a sugar, and further further steps as necessary Including.
<工程(a)>
 前記工程(a)では、セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る。
<Process (a)>
In the step (a), a biomass raw material containing cellulose type I is treated with a treatment agent containing ammonia and / or an organic amine to obtain a modified biomass raw material.
-セルロースI型を含むバイオマス原料-
 前記セルロースI型を含むバイオマス原料としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、農業や林業等の生産活動に伴う残渣として得られる「廃棄物系バイオマス」や、エネルギー等を得る目的で意図的に栽培して得られる「資源作物系バイオマス」などを使用することができる。前記「廃棄物系バイオマス」としては、例えば、廃建材、間伐材、稲わら、麦わら、もみ殻、バガスなどが挙げられ、また、前記「資源作物系バイオマス」としては、例えば、サトウキビ、トウモロコシ等の食物としても栽培される糖質・デンプン系作物及びセルロース類の利用を目的として栽培されるユーカリ、ポプラ、アカシア、ヤナギ、スギ、スイッチグラス、ネピアグラス、エリアンサス、ミスカンサス、ススキなどが挙げられる。また、前記セルロースI型を含むバイオマス原料は、木を原料とした「木質バイオマス」、草を原料とした「草本バイオマス」などにも分類される。本発明においては、木質バイオマス及び草本バイオマス共に使用することができるが、本発明の効果がより顕著に得られるとの観点から、木質バイオマスが好ましく使用される。また、前記セルロースI型を含むバイオマス原料としては、前記したような各種バイオマスから精製等することにより得られたセルロースI型そのものであってもよい。前記セルロースI型を含むバイオマス原料は、1種単独で使用してもよいし、2種以上を併用してもよい。なお、天然型セルロースであるセルロースI型は、セルロースIα型とセルロースIβ型とに分類されるが、前記バイオマス原料に含まれるセルロースI型としては、これらのいずれであってもよく、また、これらの両者であってもよい。
-Biomass raw materials containing cellulose type I-
There is no restriction | limiting in particular as a biomass raw material containing the said cellulose I type, According to the objective, it can select suitably. For example, “waste biomass” obtained as a residue from production activities such as agriculture and forestry, “resource crop biomass” obtained by intentional cultivation for the purpose of obtaining energy, etc. can be used. . Examples of the “waste-based biomass” include waste building materials, thinned wood, rice straw, wheat straw, rice husk, bagasse and the like, and examples of the “resource crop-based biomass” include sugarcane and corn. Eucalyptus, poplar, acacia, willow, cedar, switchgrass, napiergrass, Eliansus, Miscanthus, Susuki, etc. It is done. The biomass raw material containing cellulose type I is also classified into “woody biomass” using wood as a raw material, “herbaceous biomass” using grass as a raw material, and the like. In the present invention, both woody biomass and herbaceous biomass can be used, but woody biomass is preferably used from the viewpoint that the effects of the present invention can be obtained more remarkably. Moreover, as a biomass raw material containing the said cellulose I type, the cellulose I type itself obtained by refine | purifying etc. from various biomass as mentioned above may be sufficient. The biomass raw material containing the said cellulose I type may be used individually by 1 type, and may use 2 or more types together. Cellulose I type, which is a natural type cellulose, is classified into cellulose I α type and cellulose I β type, and any of these may be used as the cellulose I type contained in the biomass raw material. Both of these may be used.
 前記アンモニア及び/又は有機アミンを含む処理剤による処理において、前記セルロースI型を含むバイオマス原料としては、収集されたものをそのまま使用してもよいが、裁断、粉砕等によりある程度以下の大きさにしてから使用することが望ましい。前記バイオマス原料の大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、通過するメッシュの目開きとして5mm以下が好ましく、3mm以下がより好ましく、2mm以下が更に好ましい。前記メッシュの目開きの大きさが5mmを超えると、前記処理剤による処理が不十分となることがある。一方、前記大きさが、前記更に好ましい範囲内であると、処理時間が短縮できる、使用する処理剤の量を少なくできる等の点で、有利である。なお、以下、前記の収集したバイオマス原料を裁断、粉砕する工程を「粗粉砕」ということがある。 In the treatment with the treatment agent containing ammonia and / or organic amine, as the biomass raw material containing cellulose type I, the collected material may be used as it is, but it is reduced to a certain size by cutting, pulverizing, or the like. It is desirable to use it afterwards. The size of the biomass raw material is not particularly limited and may be appropriately selected according to the purpose. For example, the mesh opening size is preferably 5 mm or less, more preferably 3 mm or less, and further preferably 2 mm or less. preferable. When the mesh size of the mesh exceeds 5 mm, the treatment with the treatment agent may be insufficient. On the other hand, when the size is within the further preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced. Hereinafter, the process of cutting and pulverizing the collected biomass material may be referred to as “coarse pulverization”.
 前記粗粉砕を予め行うことにより、アンモニア及び/又は有機アミンを含む処理剤による処理が効率的に進行し、また改質バイオマス原料を粉砕する際に、より微細な、酵素糖化効率に優れる微粉末状の酵素糖化用原料を効率的に得ることができる。前記粗粉砕に用いる粉砕機としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウィレーミル、カッターミル、ハンマーミル、ピンミル等を用いることができる。 By performing the coarse pulverization in advance, the treatment with the treatment agent containing ammonia and / or organic amine proceeds efficiently, and when pulverizing the modified biomass raw material, finer fine powder with excellent enzymatic saccharification efficiency The raw material for enzyme saccharification can be obtained efficiently. There is no restriction | limiting in particular as a grinder used for the said rough crushing, According to the objective, it can select suitably, For example, a Willet mill, a cutter mill, a hammer mill, a pin mill etc. can be used.
-アンモニア及び/又は有機アミンによる処理-
 前記セルロースI型を含むバイオマス原料を、処理剤としてアンモニアを用いた処理を行う場合、その方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記セルロースI型を含むバイオマス原料と、アンモニアとを、圧力容器内に導入し、前記圧力容器内を所望の圧力及び温度に設定して、所望の時間処理することにより行うことができる。前記アンモニアは液相であっても、気相であっても、また超臨界状態であってもよい。アンモニアによる処理により、バイオマス原料中のセルロースI型の少なくとも一部がより酵素糖化効率の高いセルロースIII型へと変態するが、その変態効率を向上する観点からは、液体アンモニア又は超臨界状態のアンモニアが適する。しかし、目標とする糖化率、消費エネルギー等を勘案し、それぞれに適した条件での処理を選択することができる。アンモニアによる処理の条件も限定されるものではないが、一般的に好ましい条件としては、温度が-35~140℃、圧力が0~12.5MPaである。
-Treatment with ammonia and / or organic amine-
When the biomass raw material containing the cellulose type I is treated with ammonia as a treating agent, the method is not particularly limited and can be appropriately selected depending on the purpose. For example, it can be performed by introducing a biomass raw material containing cellulose type I and ammonia into a pressure vessel, setting the inside of the pressure vessel to a desired pressure and temperature, and processing for a desired time. The ammonia may be in the liquid phase, in the gas phase, or in a supercritical state. By the treatment with ammonia, at least a part of cellulose type I in the biomass raw material is transformed into cellulose III type I having higher enzymatic saccharification efficiency. From the viewpoint of improving the transformation efficiency, liquid ammonia or supercritical state Ammonia is suitable. However, in consideration of the target saccharification rate, energy consumption, etc., it is possible to select treatments under conditions suitable for each. The conditions for the treatment with ammonia are not limited, but generally preferred conditions are a temperature of −35 to 140 ° C. and a pressure of 0 to 12.5 MPa.
 前記セルロースI型を含むバイオマスを、処理剤として有機アミンを用いた処理を行う場合、使用する有機アミンとしては、特に制限はなく、目的に応じて適宜選択することができる。例えば、エチレンジアン、モノメチルアミン、モノエチルアミンなどが好ましく用いられ、エチレンジアミンが好ましい。これらの有機アミンにより前記セルロースI型を含むバイオマスを処理する場合は、特に限定されないが、処理温度、圧力は上記アンモニアによる処理と同様の条件とすることができる。 When the biomass containing cellulose type I is treated with an organic amine as a treating agent, the organic amine to be used is not particularly limited and can be appropriately selected according to the purpose. For example, ethylenedian, monomethylamine, monoethylamine and the like are preferably used, and ethylenediamine is preferred. When the biomass containing cellulose type I is treated with these organic amines, the treatment temperature and pressure can be the same as those in the treatment with ammonia.
 本発明においては、セルロースI型からセルロースIII型への変態の効率、処理後の処理剤の除去の容易さ等の観点から、処理剤としてはアンモニアを用いることが好ましい。 In the present invention, it is preferable to use ammonia as the treatment agent from the viewpoint of the efficiency of transformation from cellulose type I to cellulose III type I , ease of removal of the treatment agent after treatment, and the like.
 前記アンモニア及び/又は有機アミンを含む処理剤による処理の時間としては、特に制限はなく、用いる前記セルロースI型を含むバイオマス原料の量や、前記した処理圧力、処理温度等に応じ、所望の程度のセルロースI型からセルロースIII型への変態が進行する範囲内で適宜選択することができるが、10分~10時間が好ましく、30分~8時間が更に好ましく、30分~5時間が特に好ましい。前記処理時間が、10分未満であると、所望の程度のセルロースI型からセルロースIII型への変態が進行しないことがあり、10時間を超えると、それ以上セルロースI型からセルロースIII型への変態は進行せず、全体として非効率となることがある。一方、前記処理時間が、前記更に好ましい範囲内であると、効率よく、セルロースI型からセルロースIII型への変態を進行させることができる点で、有利である。 The time for the treatment with the treatment agent containing ammonia and / or organic amine is not particularly limited, and may be a desired level depending on the amount of biomass raw material containing the cellulose type I used, the treatment pressure, the treatment temperature, and the like. Can be appropriately selected within the range in which the transformation from cellulose I type to cellulose III I type proceeds, preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, particularly 30 minutes to 5 hours. preferable. If the treatment time is less than 10 minutes, the desired degree of transformation from cellulose type I to cellulose III type I may not proceed, and if it exceeds 10 hours, more than cellulose I type to cellulose III type I The transformation to may not proceed and may be inefficient as a whole. On the other hand, when the treatment time is within the further preferable range, it is advantageous in that the transformation from cellulose I type to cellulose III I type can proceed efficiently.
 前記アンモニア及び/又は有機アミンを含む処理剤による処理時の、前記アンモニア及び/又は有機アミンの使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記セルロースI型を含むバイオマス原料1gに対して、10mg~300gが好ましく、100mg~150gがより好ましく、1g~50gが特に好ましい。前記アンモニア及び/又は有機アミンの使用量が、前記セルロースI型を含むバイオマス原料1gに対して、10mg未満であると、処理が不十分となることがあり、300gを超えると、処理の効率が悪くなることがある。一方、その使用量が、前記特に好ましい範囲内であると、処理時間が短縮できる、使用する処理剤の量を少なくできる等の点で、有利である。 The amount of the ammonia and / or organic amine used in the treatment with the treatment agent containing ammonia and / or organic amine is not particularly limited and may be appropriately selected depending on the purpose. 10 mg to 300 g is preferable, 100 mg to 150 g is more preferable, and 1 g to 50 g is particularly preferable with respect to 1 g of biomass raw material containing type I. When the amount of ammonia and / or organic amine used is less than 10 mg relative to 1 g of biomass raw material containing cellulose type I, the treatment may be insufficient. May be worse. On the other hand, when the amount used is within the particularly preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced.
 なお、前記アンモニア及び/又は有機アミンを含む処理剤による処理時には、少なくとも前記処理剤がアンモニア及び/又は有機アミンを含んでいれば、更にその他の化合物を組み合わせて使用してもよく、前記その他の化合物としては、例えば、二酸化炭素、窒素、エチレン、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、トルエン、ベンゼン、フェノール、ジオキサン、キシレン、アセトン、クロロホルム、四塩化炭素、エタノール、メタノール、プロパノール、ブタノールなどが挙げられる。なお、前記その他の化合物としては、水は使用しないことが好ましい。前記水を使用すると、得られたセルロースIII型が、セルロースI型に戻ってしまう場合がある。 In addition, at the time of the treatment with the treatment agent containing ammonia and / or organic amine, as long as at least the treatment agent contains ammonia and / or organic amine, other compounds may be used in combination. Examples of the compound include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, methanol, propanol, and butanol. Etc. In addition, it is preferable not to use water as said other compound. With the water, cellulose III type I obtained was, in some cases back to cellulose I type.
-改質バイオマス原料-
 前記アンモニア及び/又は有機アミンを含む処理剤による処理により、改質バイオマス原料が得られる。前記処理により、前記バイオマス原料に含まれるセルロースI型の少なくとも一部を、より結晶密度の低いセルロースIII型へと変態させることができる。セルロースIII型は、その結晶密度の低さから、酵素が作用し易い点で、有利である。更に、前記処理により、前記バイオマス原料に含まれるヘミセルロースの大部分は、オリゴ糖程度にまで分解され、水に可溶となる。したがって、前記バイオマス原料を、前記処理することにより、前記バイオマス原料に含まれるセルロースI型やヘミセルロースを、それぞれセルロースIII型やヘミセルロース由来のオリゴ糖といった、より酵素が作用し易い状態へと変化させることができ、そのため、酵素糖化効率を向上させることが可能となる。なお、前記処理により、セルロースI型の少なくとも一部がセルロースIII型へと変換されたことは、例えば、X線回折、FT-IR、固体NMR等により確認することができる。なお、本願における「改質バイオマス原料」とは、セルロースI型を含むバイオマス原料をアンモニア及び/又は有機アミンを含む処理剤により処理したものを意味するが、バイオマス原料中に含まれるセルロースI型の少なくとも一部がセルロースIII型へと変態したものであることが好ましい。
-Reformed biomass feedstock-
A modified biomass raw material is obtained by the treatment with the treatment agent containing ammonia and / or organic amine. By the treatment, at least a part of cellulose type I contained in the biomass raw material can be transformed into cellulose III type I having a lower crystal density. Cellulose III type I is advantageous in that the enzyme is likely to act because of its low crystal density. Furthermore, by the said process, most hemicellulose contained in the said biomass raw material is decomposed | disassembled to an oligosaccharide grade, and becomes soluble in water. Therefore, by processing the biomass material, the cellulose type I and hemicellulose contained in the biomass material are changed to a state in which the enzyme is more likely to act, such as cellulose III type I and oligosaccharide derived from hemicellulose, respectively. Therefore, the enzymatic saccharification efficiency can be improved. Incidentally, by the process, at least part of the cellulose I type is converted into cellulose III I type, for example, can be confirmed by X-ray diffraction, FT-IR, solid-state NMR and the like. The “modified biomass raw material” in the present application means a material obtained by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine, but the cellulose type I contained in the biomass raw material. It is preferable that at least a part is transformed into cellulose III type I.
 なお、前記改質バイオマス原料において、セルロースは、その分子構造の間に、他の化合物を有していてもよい。例えば、改質バイオマス原料は、前記したように、天然型セルロースであるセルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより得ることができるが、その処理工程で生成する、セルロースとアンモニア及び/又は有機アミンとの複合体(以下、「セルロース・アンモニア等複合体」と称することがある。)の状態であってもよい。しかしながら、前記セルロース・アンモニア等複合体は、酵素糖化時におけるpHの調整が困難であり、また、水の作用を受けることによりセルロースI型に戻ってしまう性質を有すること等から、酵素糖化時には、前記セルロース・アンモニア等複合体からアンモニア及び/又は有機アミンを除去した状態の、改質バイオマス原料を使用することが好ましい。 In the modified biomass raw material, cellulose may have other compounds between its molecular structures. For example, as described above, the modified biomass raw material can be obtained by treating a biomass raw material containing cellulose type I, which is a natural type cellulose, with a treatment agent containing ammonia and / or an organic amine. It may be in a state of a complex of cellulose and ammonia and / or an organic amine (hereinafter sometimes referred to as “complex such as cellulose / ammonia”) produced in the process. However, the complex of cellulose / ammonia is difficult to adjust pH during enzymatic saccharification, and has the property of returning to cellulose type I by the action of water. It is preferable to use a modified biomass raw material from which ammonia and / or organic amine has been removed from the composite of cellulose and ammonia.
 したがって、前記アンモニア及び/又は有機アミンによる処理の後には、前記セルロース・アンモニア等複合体から、アンモニア及び/又は有機アミンを除去する除去工程を設けることが好ましい。前記アンモニア及び/又は有機アミンの除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記アンモニア及び/又は有機アミンによる処理後、得られた前記セルロース・アンモニア等複合体を含む改質バイオマス原料を、メタノール、エタノール、アセトン等で洗浄する方法、減圧乾燥する方法、処理剤の沸点以上の温度で乾燥させる方法などが挙げられる。前記処理剤としてアンモニアを用いる場合には、その除去方法としては、有機溶媒を使用せず、安全性に優れる点で、アンモニアの沸点以上の温度(例えば、常温~50℃)で、常圧又は減圧下に乾燥させる方法が好ましい。 Therefore, after the treatment with ammonia and / or organic amine, it is preferable to provide a removal step of removing ammonia and / or organic amine from the composite of cellulose and ammonia. The method for removing the ammonia and / or organic amine is not particularly limited and may be appropriately selected depending on the purpose. For example, the cellulose / ammonia obtained after the treatment with the ammonia and / or organic amine, etc. Examples include a method of washing the modified biomass raw material containing the composite with methanol, ethanol, acetone or the like, a method of drying under reduced pressure, and a method of drying at a temperature equal to or higher than the boiling point of the treating agent. In the case of using ammonia as the treating agent, the removal method is not using an organic solvent, and is excellent in safety, at a temperature equal to or higher than the boiling point of ammonia (for example, room temperature to 50 ° C.) at normal pressure or A method of drying under reduced pressure is preferred.
 なお、前記改質バイオマス原料は、セルロースIII型を含むことが好ましく、その割合に制限はないが、これが多い程、優れた酵素糖化効率が得られる点で、好ましい。また、前記改質バイオマス原料は、前記セルロースIII型以外にも、例えば、セルロースI型(セルロースIα型、セルロースIβ型)や、その他の成分、例えば、ヘミセルロース、リグニン等が含まれていてもよい。ただし、酵素糖化の効率向上の観点から、リグニンは含まれない、あるいはその含有量が小さいことが好ましい。 In addition, it is preferable that the said modified biomass raw material contains cellulose III type I, and there is no restriction | limiting in the ratio, However, The more is preferable at the point from which the outstanding enzyme saccharification efficiency is obtained. In addition to the cellulose III type I , the modified biomass material includes, for example, cellulose type I (cellulose I α type, cellulose I β type) and other components such as hemicellulose and lignin. May be. However, from the viewpoint of improving the efficiency of enzymatic saccharification, it is preferable that lignin is not contained or the content thereof is small.
<工程(b)>
 前記工程(b)では、前記工程(a)により得られた改質バイオマス原料を、粉砕することにより、酵素糖化用原料を得る。
<Step (b)>
In the step (b), the raw material for enzyme saccharification is obtained by pulverizing the modified biomass raw material obtained in the step (a).
-粉砕-
 工程(b)において、前記工程(a)により得られた改質バイオマス原料を粉砕する。
-Grinding-
In the step (b), the modified biomass raw material obtained in the step (a) is pulverized.
 前記改質バイオマス原料の粉砕を行う方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平臼、遊星型ボールミル、振動ボールミル、ビーズミル、ジェットミル等の粉砕機を用いて行うことができる。これらの中でも、前記粉砕機としては、微細な、酵素糖化効率に優れる微粉末状の酵素糖化用原料を、比較的低エネルギーにて得ることができる点で、平臼が好ましい。前記粉砕により、前記改質バイオマス原料を、本発明の酵素糖化用原料とすることができる。前記改質バイオマス原料を、粉砕することにより、より酵素糖化効率を向上させることが可能となる。 A method for pulverizing the modified biomass raw material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a pulverizer such as a flat mill, a planetary ball mill, a vibration ball mill, a bead mill, a jet mill or the like may be used. Can be used. Among these, a flat mill is preferable as the pulverizer because a fine powdery raw material for enzymatic saccharification excellent in enzymatic saccharification efficiency can be obtained with relatively low energy. By the pulverization, the modified biomass raw material can be used as the raw material for enzymatic saccharification of the present invention. By pulverizing the modified biomass raw material, it is possible to further improve the enzymatic saccharification efficiency.
 前記粉砕を行う条件としては、特に限定されず、粉砕機の種類、バイオマス原料の種類、得ようとする粉砕物の平均粒径等によって適宜選択することができる。なお、粉砕機として平臼を用いる場合は、粉砕されたバイオマス原料が臼から排出されるため、粉砕を更に行う場合には、排出された粉砕物を回収し、再度臼に供給することとなり、さらにこれを複数回繰り返してもよい。その場合、粉砕を行う回数としては、特に制限はなく、用いる粉砕機の種類や、粉砕1回あたりの時間、負荷されるエネルギー等に応じて適宜選択することができるが、2回以上繰り返して行うことにより、より微細な、酵素糖化効率に優れる微粉末状の酵素糖化用原料を得ることができる点で、有利である。前記粉砕は、回数を重ねるごとに、より微細な、酵素糖化効率に優れる微粉末状の酵素糖化用原料を得ることができる点で有利であるが、回数を重ねすぎても、それ以上の微粉化や酵素糖化効率の向上は望めず、全体として非効率となる点で、4回以下が好ましい。 The conditions for the pulverization are not particularly limited, and can be appropriately selected depending on the type of pulverizer, the type of biomass raw material, the average particle size of the pulverized product to be obtained, and the like. In addition, when using a flat mill as a pulverizer, since the pulverized biomass raw material is discharged from the mortar, when further pulverizing, the discharged pulverized material will be collected and supplied to the mortar again. Further, this may be repeated a plurality of times. In this case, the number of times of pulverization is not particularly limited, and can be appropriately selected according to the type of pulverizer used, the time per pulverization, the energy applied, and the like. This is advantageous in that a finer powdery raw material for enzyme saccharification with excellent enzyme saccharification efficiency can be obtained. The pulverization is advantageous in that a finer powdery raw material for enzyme saccharification with excellent enzymatic saccharification efficiency can be obtained each time the pulverization is repeated. 4 times or less is preferable from the standpoint of inefficiency as a whole.
-酵素糖化用原料-
 本発明の方法に係る「酵素糖化用原料」とは、前記改質バイオマス原料を、粉砕処理したものをいう。前記改質バイオマス原料を、粉砕することにより、より酵素糖化効率を向上させることが可能となる。前記粉砕により得られる前記酵素糖化用原料の粒子の大きさとしては、特に制限はなく、また使用するバイオマス原料の種類によって好ましい大きさが変化することから、一概に限定することはできないが、その平均粒径として、5~80μmが好ましく、5~50μmがより好ましく、5~30μmが更に好ましい。前記酵素糖化用原料の平均粒径を、5μm未満にしようとする場合、粉砕に多大なエネルギー及び時間を要して、経済合理性を失することとなり、一方、80μmを超えると、酵素糖化効率が充分に向上しないことがある。一方、前記酵素糖化用原料の平均粒径が、前記更に好ましい範囲内であると、粉砕に要するエネルギー及び時間と酵素糖化効率のバランスの点で、有利である。なお、本願における前記酵素糖化用原料の平均粒径としては、レーザー回折錯乱法により測定して得られるメジアン径を採用する。ここでメジアン径とは、その粒径以上の粒径を有する粒子と、その粒径以下の粒径を有する粒子との累計体積が同一となる粒径をいう。
-Raw material for enzymatic saccharification-
The “enzymatic saccharification raw material” according to the method of the present invention refers to a material obtained by pulverizing the modified biomass raw material. By pulverizing the modified biomass raw material, it is possible to further improve the enzymatic saccharification efficiency. The particle size of the enzyme saccharification raw material particles obtained by the pulverization is not particularly limited, and the preferred size varies depending on the type of biomass raw material to be used. The average particle size is preferably 5 to 80 μm, more preferably 5 to 50 μm, and even more preferably 5 to 30 μm. If the average particle size of the raw material for enzyme saccharification is to be less than 5 μm, it will take a great deal of energy and time for pulverization and lose economic rationality, while if it exceeds 80 μm, the enzymatic saccharification efficiency May not be sufficiently improved. On the other hand, if the average particle size of the enzyme saccharification raw material is within the further preferable range, it is advantageous in terms of the balance of energy and time required for pulverization and enzyme saccharification efficiency. In addition, as an average particle diameter of the raw material for enzyme saccharification in the present application, a median diameter obtained by measurement by a laser diffraction confusion method is adopted. Here, the median diameter refers to a particle diameter in which the cumulative volume of particles having a particle diameter equal to or larger than the particle diameter is equal to particles having a particle diameter equal to or smaller than the particle diameter.
 前記改質バイオマスの粉砕により得られた酵素糖化用原料は、例えば、そのまま、後述する工程(c)の酵素糖化に供してもよいし、適宜その他の工程を経た後、後述する工程(c)の酵素糖化に供してもよい。前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記粉砕により得られた微粉末状の酵素糖化用原料を、後述する酵素糖化に適切となるようなpHに調整する、pH調整工程などが挙げられる。 The raw material for enzymatic saccharification obtained by pulverization of the modified biomass may be used, for example, as it is in the enzymatic saccharification of step (c) described later, or after appropriately passing through other steps, step (c) described later. It may be subjected to enzymatic saccharification. There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the raw material for enzyme saccharification of the fine powder obtained by the said grinding | pulverization is suitable for the enzyme saccharification mentioned later. The pH adjustment process etc. which adjust to appropriate pH are mentioned.
<工程(c)>
 前記工程(c)では、前記工程(b)により得られた酵素糖化用原料を、酵素糖化させて、糖を得る。
<Step (c)>
In the step (c), the enzyme saccharification raw material obtained in the step (b) is enzymatically saccharified to obtain a saccharide.
-酵素糖化-
 前記酵素糖化を行う方法としては、特に制限はなく、例えば、下記に示すような条件下で行うことができる。
 前記酵素糖化に使用する酵素としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、セルラーゼ、セロビアーゼ(β-グルコシダーゼ)などが挙げられる。
-Enzymatic saccharification-
There is no restriction | limiting in particular as the method of performing the said enzyme saccharification, For example, it can carry out on the conditions as shown below.
There is no restriction | limiting in particular as an enzyme used for the said enzyme saccharification, According to the objective, it can select suitably, For example, a cellulase, cellobiase ((beta) -glucosidase), etc. are mentioned.
 前記酵素糖化の際の前記酵素の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記酵素糖化用原料1gに対して、0.001~100mgが好ましく、0.01~10mgがより好ましく、0.1~1mgが更に好ましい。前記酵素の使用量が、前記酵素糖化用原料1gに対して、0.001mg未満であると、酵素糖化が不十分となることがあり、100mgを超えると、糖化阻害が起こることがある。一方、前記酵素の使用量が、前記更に好ましい範囲内であると、酵素添加量に対して得られる糖の量が多い点で、有利である。 The amount of the enzyme used in the enzymatic saccharification is not particularly limited and may be appropriately selected according to the purpose. For example, 0.001 to 100 mg is preferable with respect to 1 g of the enzyme saccharification raw material. 0.01 to 10 mg is more preferable, and 0.1 to 1 mg is still more preferable. If the amount of the enzyme used is less than 0.001 mg with respect to 1 g of the enzyme saccharification raw material, enzyme saccharification may be insufficient, and if it exceeds 100 mg, saccharification inhibition may occur. On the other hand, when the amount of the enzyme used is within the more preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme added.
 前記酵素糖化の際の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10~70℃が好ましく、20~60℃がより好ましく、30~50℃が更に好ましい。前記温度が、10℃未満であると、酵素糖化が十分に進行しないことがあり、70℃を超えると、酵素が失活することがある。一方、前記温度が、前記更に好ましい範囲内であると、酵素添加量に対して得られる糖の量が多い点で、有利である。 The temperature for the enzymatic saccharification is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 10 to 70 ° C, more preferably 20 to 60 ° C, and further preferably 30 to 50 ° C. preferable. If the temperature is less than 10 ° C, enzyme saccharification may not proceed sufficiently, and if it exceeds 70 ° C, the enzyme may be deactivated. On the other hand, when the temperature is within the further preferable range, it is advantageous in that a large amount of sugar is obtained with respect to the amount of enzyme added.
 前記酵素糖化の際のpHとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3.0~8.0が好ましく、3.5~7.0がより好ましく、4.0~6.0が更に好ましい。前記pHが、3.0未満、又は8.0を超えると、酵素が失活することがある。一方、前記pHが、前記更に好ましい範囲内であると、酵素添加量に対して得られる糖の量が多い点で、有利である。 The pH at the time of enzymatic saccharification is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, 4.0 to 6.0 is more preferable. If the pH is less than 3.0 or more than 8.0, the enzyme may be deactivated. On the other hand, when the pH is within the more preferable range, it is advantageous in that a large amount of sugar is obtained with respect to the amount of enzyme added.
-糖-
 前記酵素糖化により、例えば、前記工程(b)で得られた酵素糖化用原料に含まれるセルロースIII型由来の糖である、グルコースを含む糖液を得ることができる。また、その他にも、前記酵素糖化により得られた糖液は、例えば、前記セルロースI型由来のグルコースを含んでいてもよいし、ヘミセルロース由来の糖を含んでいてもよい。へミセルロース由来の糖としては、例えば、キシロース、アラビノースといった五炭糖や、グルコース、ガラクトース、マンノースといった六炭糖が挙げられる。
 前記糖液は、例えば、そのまま後述する本発明のエタノールの製造方法や乳酸の製造方法に供してもよいし、以下のようなその他の工程を経て、後述する本発明のエタノールの製造方法や乳酸の製造方法に供してもよい。
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記糖液を、後述する各発酵工程に適切となるようなpHに調整する、pH調整工程などが挙げられる。
-sugar-
By the enzyme saccharification, for example, a sugar solution containing glucose which is a saccharide derived from cellulose III type I contained in the raw material for enzyme saccharification obtained in the step (b) can be obtained. In addition, the sugar solution obtained by the enzymatic saccharification may contain, for example, glucose derived from the cellulose type I or sugar derived from hemicellulose. Examples of sugars derived from hemicellulose include pentose sugars such as xylose and arabinose, and hexose sugars such as glucose, galactose, and mannose.
The sugar solution may be used, for example, as it is in the ethanol production method or lactic acid production method of the present invention, which will be described later, or after the other steps described below, the ethanol production method or lactic acid of the present invention, which will be described later. You may use for the manufacturing method of.
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the pH adjustment process etc. which adjust the said sugar liquid to pH suitable for each fermentation process mentioned later, etc. Is mentioned.
(エタノールの製造方法)
 本発明のエタノールの製造方法は、前記した本発明の糖の製造方法により得られた糖を、発酵させて、エタノールを得る工程(発酵工程)を含み、必要に応じて更にその他の工程を含む。
(Ethanol production method)
The method for producing ethanol of the present invention includes a step (fermentation step) of fermenting the sugar obtained by the above-described method for producing sugar of the present invention to obtain ethanol, and further includes other steps as necessary. .
<発酵工程(アルコール発酵工程)>
 前記エタノールの製造方法において、前記糖を発酵させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記糖を含む溶液に酵母等のアルコール発酵微生物を添加して、アルコール発酵を行わせる方法が、特に好ましい。前記酵母としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、サッカロマイセス属酵母などが挙げられる。なお、前記酵母は、天然酵母であってもよいし、遺伝子組み換え酵母であってもよい。前記エタノール発酵微生物の具体的な例としては、サッカロマイセス・セルビシエ(Saccharomyces cerevisiae)、クルイベロマイセス・フラジリス(Kluyveromyces fragilis)、クルイベロマイセス・ラクティス(K.lactis)、クルイベロマイセス・マルキシアヌス(K.marxianus)、ピキア・スティピティス(Pichia stipitis)、ピキア・パストリス(P.pastoris)、パチソレン・タンノフィルス(Pachysolen tannophilus)、カンジダ・グラビラータ(Candida Glabrata)等の酵母又はこれらの遺伝子組換え体、ザイモモナズ・モビリス(Zymomonas mobilis)、サイモバクター・パルメ(Zymobacter palmae)、クロストリジウム・サーモセラム(Clostridium thermocellum)、クロストリジウム・ルジュングダーリ(C.ljungdahlii)等の細菌又はこれらの遺伝子組換え体を用いることが出来る。
<Fermentation process (alcohol fermentation process)>
In the method for producing ethanol, the method for fermenting the sugar is not particularly limited and may be appropriately selected depending on the intended purpose. For example, an alcohol-fermenting microorganism such as yeast is added to the solution containing the sugar. In particular, a method of performing alcoholic fermentation is particularly preferable. There is no restriction | limiting in particular as said yeast, According to the objective, it can select suitably, For example, Saccharomyces genus yeast etc. are mentioned. The yeast may be natural yeast or genetically modified yeast. Specific examples of the ethanol-fermenting microorganism include Saccharomyces cerevisiae, Kluyveromyces fragilis, Kluyveromyces lactis (K. lactis), Kluyveromyces marxianus Recombinant yeasts such as K. marxianus, Pichia stipitis, P. pastoris, Pachisolen tannofilus, Candida glabrata, or Candida glabrata Zymomonas mobilis, Symobacter pa Main (Zymobacter palmae), Clostridium thermocellum (Clostridium thermocellum), Clostridium Rujungudari (C.ljungdahlii) like bacterial or can be used these genetic recombinant.
 前記発酵の際の、前記酵母の使用量、発酵温度、pH、発酵時間等については、特に制限はなく、例えば、アルコール発酵に供する糖の量、使用する酵母の種類等に応じて、適宜選択することができる。 In the fermentation, the amount of yeast used, fermentation temperature, pH, fermentation time, etc. are not particularly limited, and are appropriately selected according to, for example, the amount of sugar to be used for alcohol fermentation, the type of yeast to be used, etc. can do.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記発酵工程により得られたエタノールを分離精製する工程などが挙げられる。前記分離精製の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蒸留などが挙げられる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the process etc. which isolate | separate and refine | purify the ethanol obtained by the said fermentation process are mentioned. The method for separation and purification is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include distillation.
 前記エタノールの製造方法により得られたエタノールは、例えば、燃料用エタノール、工業用エタノールなどとして好適に利用可能である。前記エタノールはバイオマス原料から得ることができるので、前記バイオマス原料となる植物を生産できる限りは再生産が可能であり、また、前記植物は栽培時に大気中の二酸化炭素を吸収するため、前記エタノールを燃焼させて二酸化炭素が発生したとしても、大気中の二酸化炭素濃度を増加させることにはならない。したがって、前記エタノールは、地球温暖化防止に望ましいエネルギー源ということができる。また、このようなエタノールは、近年特に、ガソリンに混合し、環境に優しい自動車燃料として使用することが期待されている。 The ethanol obtained by the ethanol production method can be suitably used as, for example, fuel ethanol, industrial ethanol, and the like. Since the ethanol can be obtained from a biomass raw material, it can be reproduced as long as the biomass raw material can be produced, and the plant absorbs carbon dioxide in the atmosphere at the time of cultivation. Even if carbon dioxide is generated by combustion, it does not increase the carbon dioxide concentration in the atmosphere. Therefore, it can be said that ethanol is a desirable energy source for preventing global warming. In recent years, such ethanol is particularly expected to be mixed with gasoline and used as an environmentally friendly automobile fuel.
 本発明の糖の製造方法により得られる糖を、前記エタノールを産生する酵母等に代えて、それぞれ目的とするアルコール類を産生する微生物を使用して発酵せしめることにより、エタノール以外のアルコール類を製造することもできる。例えば、アセトン・ブタノール菌を使用した発酵を行うことにより、ブタノールを製造することができる。 An alcohol other than ethanol is produced by fermenting the sugar obtained by the sugar production method of the present invention with a microorganism that produces the desired alcohol, instead of the yeast that produces ethanol. You can also For example, butanol can be produced by fermentation using acetone / butanol bacteria.
(乳酸の製造方法)
 本発明の乳酸の製造方法は、前記した本発明の糖の製造方法により得られた糖を、発酵させて、乳酸を得る工程(発酵工程)を含み、必要に応じて更にその他の工程を含む。
(Production method of lactic acid)
The method for producing lactic acid of the present invention includes a step (fermentation step) of fermenting the saccharide obtained by the above-described method for producing saccharide of the present invention to obtain lactic acid, and further includes other steps as necessary. .
<発酵工程(乳酸発酵工程)>
 前記乳酸の製造方法において、前記糖を発酵させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記糖を含む溶液に乳酸菌等の乳酸発酵微生物を添加して、乳酸発酵を行わせる方法が、特に好ましい。前記乳酸菌としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラクトバチルス・マニホティヴォランス(Lactobacillus manihotivorans)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)、ラクトバチルス・ブルガリカス(Lactobacillus bulgaricus)などが挙げられる。なお、前記乳酸菌は、天然の乳酸菌であってもよいし、遺伝子組み換え乳酸菌であってもよい。
<Fermentation process (lactic acid fermentation process)>
In the lactic acid production method, the method for fermenting the sugar is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a lactic acid-fermenting microorganism such as lactic acid bacteria is added to the solution containing the sugar. In particular, a method of performing lactic acid fermentation is particularly preferable. The lactic acid bacterium is not particularly limited and may be appropriately selected depending on the intended purpose. Streptococcus thermophilus) and Lactobacillus bulgaricus. The lactic acid bacterium may be a natural lactic acid bacterium or a genetically modified lactic acid bacterium.
 前記発酵の際の、前記乳酸菌の使用量、発酵温度、pH、発酵時間等については、特に制限はなく、例えば、乳酸発酵に供する糖の量、使用する乳酸菌の種類等に応じて、適宜選択することができる。 In the fermentation, the amount of lactic acid bacteria used, fermentation temperature, pH, fermentation time, etc. are not particularly limited, and are appropriately selected according to, for example, the amount of sugar to be used for lactic acid fermentation, the type of lactic acid bacteria used, etc. can do.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記発酵工程により得られた乳酸を分離精製する工程などが挙げられる。前記分離精製の方法としては、特に制限はなく、目的に応じて適宜選択することができる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the process etc. which isolate | separate and refine | purify the lactic acid obtained by the said fermentation process are mentioned. The separation / purification method is not particularly limited and may be appropriately selected depending on the intended purpose.
 前記乳酸の製造方法により得られた乳酸は、例えば、化学的に重合させて、ポリ乳酸を製造することに好適に利用可能である。現在は、トウモロコシ等のデンプンから製造されることが多い乳酸を、食料には供し得ないセルロースを含むバイオマス原料から生産可能になることが望ましく、前記乳酸の製造方法によれば、このようなセルロースを含むバイオマス原料からの効率的なポリ乳酸の製造を可能とすることができる。 The lactic acid obtained by the lactic acid production method can be suitably used for producing polylactic acid by chemical polymerization, for example. Currently, it is desirable to be able to produce lactic acid, which is often produced from starch such as corn, from biomass raw materials containing cellulose that cannot be used for food. According to the method for producing lactic acid, It is possible to efficiently produce polylactic acid from a biomass raw material containing
 本発明の糖の製造方法により得られる糖を、前記乳酸菌に代えて、それぞれ目的とする有機酸を産生する微生物を使用して発酵せしめることにより、乳酸以外の有機酸、例えば、クエン酸、コハク酸、リンゴ酸、シュウ酸等を製造することもできる。 The saccharide obtained by the method for producing saccharides of the present invention is fermented by using microorganisms that produce the desired organic acid in place of the lactic acid bacteria, so that organic acids other than lactic acid, such as citric acid and succinic acid, can be obtained. Acid, malic acid, oxalic acid and the like can also be produced.
(酵素糖化用原料の製造方法)
 本発明の酵素糖化用原料の製造方法は、(a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、及び、(b)前記改質バイオマス原料を、粉砕することにより、酵素糖化用原料を得る工程、を含み、必要に応じて更にその他の工程を含む。
(Method for producing raw materials for enzymatic saccharification)
The method for producing a raw material for enzyme saccharification according to the present invention comprises (a) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treating agent containing ammonia and / or an organic amine; and (B) A step of obtaining the enzyme saccharification raw material by pulverizing the modified biomass raw material, and further including other steps as necessary.
 前記酵素糖化用原料の製造方法における、前記(a)工程、及び、前記(b)工程としては、前記した本発明の糖の製造方法の項目に記載した通りである。 In the method for producing the enzyme saccharification raw material, the step (a) and the step (b) are as described in the item of the method for producing a sugar of the present invention.
 セルロースを含むバイオマス原料を粉砕することにより、化学的及び生物学的反応性が向上することは一般的に知られている。また、セルロースI型を含むバイオマス原料を、アンモニア等により処理することで、セルロースI型がセルロースIII型に変態し、酵素糖化効率が向上することも本発明者らが既に開示している。 It is generally known that chemical and biological reactivity is improved by pulverizing a biomass raw material containing cellulose. In addition, the present inventors have already disclosed that by treating a biomass raw material containing cellulose type I with ammonia or the like, cellulose type I is transformed into cellulose type III and type I to improve enzymatic saccharification efficiency.
 本発明の糖の製造方法においては、バイオマス原料をアンモニア及び/又は有機アミンを含む処理剤による処理のみを行った後酵素糖化を行う場合、バイオマス原料を粉砕処理のみ行った後酵素糖化を行う場合、さらには、バイオマス原料をまず粉砕し、その後アンモニア及び/又は有機アミンを含む処理剤で処理し、酵素糖化を行う場合に比較して、格段に優れた効率にて酵素糖化行うことが可能である。この作用機構は定かではないが、本発明者らは以下のように推定している。 In the sugar production method of the present invention, when enzymatic saccharification is performed after the biomass raw material is only treated with a treatment agent containing ammonia and / or organic amine, and when the biomass raw material is only pulverized, enzymatic saccharification is performed. Furthermore, it is possible to carry out enzymatic saccharification with much superior efficiency compared to the case where the biomass raw material is first pulverized and then treated with a treatment agent containing ammonia and / or organic amine to carry out enzymatic saccharification. is there. Although this mechanism of action is not clear, the present inventors presume as follows.
 本発明に係る糖の製造方法にあっては、工程(b)において得られる本発明の酵素糖化用原料は、工程(a)において得られる改質バイオマス原料との対比において、そのX線回折パターンが顕著に変化することが明らかになっている。即ち、改質バイオマス原料を粉砕することにより、セルロースの構造に何らかの変化が生じている可能性が考えられる。一方、まずバイオマス原料を本発明の方法に係る工程(b)と同様の操作により粉砕を行い、その後アンモニア及び/又は有機アミンを含む処理剤により処理を行った場合には、粉砕を行わずにアンモニア及び/又は有機アミンを含む処理剤により処理を行った場合との対比において、X線回折パターンに顕著な差異は見られない。このことから、改質バイオマス原料を粉砕した場合に生じるこのX線回折パターンの変化に反映される構造の変化が、本発明に係る酵素糖化用原料が高い酵素糖化効率を有することと関係している可能性も考えられる。 In the sugar production method according to the present invention, the enzyme saccharification raw material of the present invention obtained in the step (b) has its X-ray diffraction pattern in comparison with the modified biomass raw material obtained in the step (a). Has been shown to change significantly. That is, there is a possibility that some change has occurred in the cellulose structure by pulverizing the modified biomass raw material. On the other hand, when the biomass raw material is first pulverized by the same operation as in step (b) according to the method of the present invention and then treated with a treatment agent containing ammonia and / or organic amine, the pulverization is not performed. There is no significant difference in the X-ray diffraction pattern in comparison with the case of treatment with a treatment agent containing ammonia and / or organic amine. From this, the structural change reflected in the change in the X-ray diffraction pattern generated when the modified biomass raw material is pulverized is related to the fact that the raw material for enzyme saccharification according to the present invention has high enzyme saccharification efficiency. It is possible that
 以下に本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
-バイオマス原料-
 セルロースI型を含むバイオマス原料として、ユーカリを使用した。
Example 1
-Biomass raw material-
Eucalyptus was used as a biomass raw material containing cellulose type I.
-粗粉砕処理-
 用意したユーカリを、ウィレーミルを用い、目標平均粒径を200μmとして、粗粉砕した。
-Coarse grinding-
The prepared eucalyptus was coarsely pulverized using a Willet mill with a target average particle size of 200 μm.
-アンモニア処理-
 上記粗粉砕したユーカリを、以下の操作により、超臨界状態のアンモニアによる処理に供した。
 60℃のオーブンで24時間乾燥させた粗粉砕ユーカリの試料4gを、内容積120mlのポータブルリアクターTVS-N2型(TAIATSU社製:以後、「容器」という。)に入れて密閉し、冷却装置にて容器を-13℃に冷却しながら、30分間、圧力0.5MPaにてアンモニアを流入せしめた。その後、PC-V型のヒーター(TAIATSU社製)を容器に取り付け、140℃にて1時間の加熱・加圧処理を行った。この時容器内の圧力が、アンモニアが超臨界状態となる11MPa以上になっていることを確認した。処理後、容器内を大気圧とすることで、アンモニアを除去し、温度を室温まで冷却して容器内の固形物試料を回収した。該試料を密封せずに一晩おいてアンモニアを十分蒸散させた。
-Ammonia treatment-
The coarsely crushed eucalyptus was subjected to treatment with supercritical ammonia by the following operation.
A 4 g sample of coarsely crushed eucalyptus dried in an oven at 60 ° C. for 24 hours is placed in a portable reactor TVS-N2 type (produced by TAIATSU, hereinafter referred to as “container”) having an internal volume of 120 ml, and is sealed in a cooling device. Then, while cooling the container to −13 ° C., ammonia was allowed to flow in at a pressure of 0.5 MPa for 30 minutes. Thereafter, a PC-V type heater (manufactured by TAIATSU) was attached to the container, and a heating / pressurizing treatment was performed at 140 ° C. for 1 hour. At this time, it was confirmed that the pressure in the container was 11 MPa or more at which ammonia became a supercritical state. After the treatment, the inside of the container was brought to atmospheric pressure to remove ammonia, the temperature was cooled to room temperature, and a solid sample in the container was collected. The sample was allowed to evaporate well overnight without sealing.
-粉砕処理-
 セラミック製平臼、家庭用臼式お茶粉末器「まるごと緑茶 EU6820」(商品名、パナソニック社製)を使用し、上記アンモニア処理した試料2gを、目盛り「細かい」の設定にて1回当り10分間、3回繰り返して粉砕した。
-Crushing process-
Using a ceramic flat mortar and home mortar-type tea powder device “Marugoto Green Tea EU6820” (trade name, manufactured by Panasonic Corporation), 2 g of the above ammonia-treated sample was set for 10 minutes each time with the setting of “fine” on the scale. Milled repeatedly 3 times.
-X線回折分析-
 上記粉砕された試料100mgを200kg/cmの圧力にて加圧成型し、X線回折分析に供した。X線回折は管球型X線発生装置 RINT2200(商品名、リガク社製)を用い、ディフラクトメトリー法によって行った。電圧38kV、電流50mA、モノクロメーターで単色化したCuKα線(波長0.15418nm)を用い、操作範囲2θ=5~30°、ステップ幅0.1°、積算時間20秒の条件にてステップスキャン法で測定した。また、粗粉砕後の試料、アンモニア処理後の試料についても、同様の操作により、X線回折分析を行った。粗粉砕後の試料の回折パターンを図1に、アンモニア処理後の試料の回折パターンを図3に、アンモニア処理、粉砕処理後の試料の回折パターンを図5にそれぞれ示す。
-X-ray diffraction analysis-
100 mg of the crushed sample was pressure-molded at a pressure of 200 kg / cm 2 and subjected to X-ray diffraction analysis. X-ray diffraction was performed by a diffractometry method using a tube-type X-ray generator RINT2200 (trade name, manufactured by Rigaku Corporation). Step scan method with a voltage of 38 kV, a current of 50 mA, a monochromator CuKα ray (wavelength 0.15418 nm), operating range 2θ = 5 to 30 °, step width 0.1 °, integration time 20 seconds Measured with Moreover, the X-ray diffraction analysis was performed by the same operation also about the sample after coarse grinding | pulverization and the sample after ammonia treatment. The diffraction pattern of the sample after coarse pulverization is shown in FIG. 1, the diffraction pattern of the sample after ammonia treatment is shown in FIG. 3, and the diffraction pattern of the sample after ammonia treatment and pulverization treatment is shown in FIG.
-酵素糖化反応-
 上記によりアンモニア処理及び粉砕処理を行った試料について、以下の操作により、酵素糖化反応を行った。
 内容積1.5mlのマイクロチューブに、精秤した試料10mgを取り、試料濃度1%(wt/vol)、酵素としてCelluclast@1.5L及びNovozyme@188(共に商品名、Novozyme社製)を各酵素濃度0.01%(wt/vol)、計0.02%(wt/vol)の酵素濃度、pH4.5(酢酸緩衝液)となるように酵素糖化反応液を調製した。これを37℃の恒温室にて回転振とう機(15回転/分)を用い24時間転倒振とうして酵素糖化反応を行った。反応後遠心分離によって得られた上澄み液中のグルコース濃度をグルコースCIIテストワコー(商品名、和光純薬社製)を用いて測定し、グルコース収率を算出し、結果を表1に示した。
 なお、グルコース収率は次式で定義される。
 
グルコース収率(%)=[酵素糖化反応液中のグルコース量/(酵素糖化原料の量×全グルコース化率/100)]×100
 
全グルコース化率(%):(バイオマス原料を別途化学的に完全に加水分解したときに得られるグルコースの量/バイオマス原料の量)×100(バイオマス原料基準の理論収率に相当)
 
 なお、使用したユーカリの全グルコース化率は43.3%であった。
-Enzymatic saccharification reaction-
About the sample which performed the ammonia process and the grinding | pulverization process by the above, enzymatic saccharification reaction was performed by the following operation.
Take 10 mg of precisely weighed sample in a microtube with an internal volume of 1.5 ml, sample concentration 1% (wt / vol), Celluclast@1.5L and Novozyme @ 188 (both trade names, manufactured by Novozyme) as enzymes An enzyme saccharification reaction solution was prepared so that the enzyme concentration was 0.01% (wt / vol), the enzyme concentration was 0.02% (wt / vol) in total, and the pH was 4.5 (acetate buffer). This was subjected to an enzymatic saccharification reaction by shaking for 24 hours using a rotary shaker (15 rpm) in a constant temperature room at 37 ° C. The glucose concentration in the supernatant obtained by centrifugation after the reaction was measured using Glucose CII Test Wako (trade name, manufactured by Wako Pure Chemical Industries, Ltd.), the glucose yield was calculated, and the results are shown in Table 1.
The glucose yield is defined by the following formula.

Glucose yield (%) = [amount of glucose in enzyme saccharification reaction solution / (amount of enzyme saccharification raw material × total glycation rate / 100)] × 100

Total glucosylation rate (%): (amount of glucose obtained when a biomass raw material is completely hydrolyzed separately / amount of biomass raw material) × 100 (corresponding to a theoretical yield based on biomass raw material)

The total glycation rate of the used eucalyptus was 43.3%.
(比較例1-1:未処理の試料の酵素糖化)
 実施例1で用いた粗粉砕したユーカリについて、アンモニア処理及び粉砕処理を行うことなく、そのまま実施例1における酵素糖化反応と同様の操作にて酵素糖化反応を行った。結果を表1に示す。
(Comparative Example 1-1: Enzymatic saccharification of untreated sample)
The roughly crushed eucalyptus used in Example 1 was subjected to an enzymatic saccharification reaction as it was in the same manner as the enzymatic saccharification reaction in Example 1 without performing ammonia treatment and pulverization treatment. The results are shown in Table 1.
(比較例1-2:アンモニア処理なし、粉砕処理試料の酵素糖化)
-粉砕処理-
 実施例1で用いた粗粉砕したユーカリを、アンモニア処理することなく、実施例1におけるアンモニア処理後の試料を粉砕した操作と同一の操作にて粉砕を行った。
(Comparative Example 1-2: No ammonia treatment, enzymatic saccharification of pulverized sample)
-Crushing process-
The coarsely crushed eucalyptus used in Example 1 was pulverized by the same operation as the operation of pulverizing the sample after ammonia treatment in Example 1 without being ammonia-treated.
-X線回折分析-
 上記粉砕された試料のX線回折分析を、実施例1と同様の操作にて行った。回折パターンを図2に示す。
-X-ray diffraction analysis-
X-ray diffraction analysis of the crushed sample was performed in the same manner as in Example 1. The diffraction pattern is shown in FIG.
-酵素糖化反応-
 上記粉砕された試料について、実施例1における酵素糖化反応操作と同様の操作により、酵素糖化反応を行った。実施例1と同様にグルコース収率を算出し、結果を表1に示す。
-Enzymatic saccharification reaction-
The smashed sample was subjected to an enzymatic saccharification reaction by the same operation as the enzymatic saccharification reaction operation in Example 1. The glucose yield was calculated in the same manner as in Example 1, and the results are shown in Table 1.
(比較例1-3:アンモニア処理試料の酵素糖化)
 実施例1にて得た、粗粉砕したユーカリをアンモニア処理した試料について、その後粉砕処理することなく、実施例1における酵素糖化反応操作と同様の操作により、酵素糖化反応を行った。実施例1と同様にグルコース収率を算出し、結果を表1に示す。
(Comparative Example 1-3: Enzymatic saccharification of ammonia-treated sample)
About the sample which processed the coarsely ground eucalyptus obtained in Example 1 with ammonia, enzyme saccharification reaction was performed by operation similar to the enzyme saccharification reaction operation in Example 1 without pulverizing after that. The glucose yield was calculated in the same manner as in Example 1, and the results are shown in Table 1.
(比較例1-4:粉砕処理後にアンモニア処理した試料の酵素糖化)
-粉砕処理-
 実施例1にて用いた粗粉砕したユーカリを、実施例1におけるアンモニア処理後の試料を粉砕した操作と同一の操作にて粉砕を行った。
(Comparative Example 1-4: Enzymatic saccharification of a sample treated with ammonia after grinding)
-Crushing process-
The coarsely crushed eucalyptus used in Example 1 was pulverized by the same operation as the operation of pulverizing the sample after ammonia treatment in Example 1.
 上記粉砕処理した試料を、実施例1におけるアンモニア処理と同様の操作にて、アンモニア処理した。 The pulverized sample was treated with ammonia in the same manner as the ammonia treatment in Example 1.
-X線回折分析-
 上記粉砕後にアンモニア処理された試料のX線回折分析を、実施例1と同様の操作にて行った。回折パターンを図4に示す。
-X-ray diffraction analysis-
X-ray diffraction analysis of the sample treated with ammonia after the pulverization was performed in the same manner as in Example 1. The diffraction pattern is shown in FIG.
-酵素糖化反応-
 上記、粉砕処理後にアンモニア処理された試料について、実施例1における酵素糖化反応操作と同様の操作により、酵素糖化反応を行った。実施例1と同様にグルコース収率を算出し、結果を表1に示す。
-Enzymatic saccharification reaction-
The sample subjected to the ammonia treatment after the pulverization treatment was subjected to the enzyme saccharification reaction by the same operation as the enzyme saccharification reaction operation in Example 1. The glucose yield was calculated in the same manner as in Example 1, and the results are shown in Table 1.
(実施例2)
 実施例1において用いたユーカリに代えて、エゾノキヌヤナギを用いた以外は、実施例1と同様の操作にて、粗粉砕、アンモニア処理、粉砕、酵素糖化反応をこの順に行った。結果を表1に示す。また、各段階の試料について、実施例1と同様の操作により、X線回折分析を行った。それぞれの試料のX線回折パターンは、実施例1における相当する各ユーカリ試料と類似したものであった。粗粉砕後の回折パターンを図6に、アンモニア処理後の試料の回折パターンを図8に、アンモニア処理、粉砕処理後の試料の回折パターンを図10にそれぞれ示す。
 なお、使用したエゾノキヌヤナギの全グルコース化率は45.1%、粗粉砕したエゾノキヌヤナギの平均粒径は252μmであった。
(Example 2)
Rough pulverization, ammonia treatment, pulverization, and enzymatic saccharification reaction were carried out in this order in the same manner as in Example 1 except that Ezo no Kinu willow was used instead of eucalyptus used in Example 1. The results are shown in Table 1. Further, the X-ray diffraction analysis was performed on the sample at each stage by the same operation as in Example 1. The X-ray diffraction pattern of each sample was similar to the corresponding eucalyptus sample in Example 1. The diffraction pattern after coarse pulverization is shown in FIG. 6, the diffraction pattern of the sample after ammonia treatment is shown in FIG. 8, and the diffraction pattern of the sample after ammonia treatment and pulverization treatment is shown in FIG.
In addition, the total glucoseation rate of the used Ezo nokinu willow was 45.1%, and the average particle diameter of the coarsely pulverized Ezo noki willow was 252 μm.
(比較例2-1~2-4)
 比較例1-1~1-4のそれぞれにおいて、出発原料として用いた粗粉砕されたユーカリに代えて、実施例2において用いた粗粉砕されたエゾノキヌヤナギを用いた以外は、それぞれ相当する比較例1-1~1-4と同様の操作にて前処理を行い、それぞれにおいて得た試料について、実施例2と同様の操作にて、酵素糖化反応を行った。各比較例について、グルコース収率を算出し、結果を表1に示す。また、比較例2-2~2-4について、それぞれの前処理後の試料について、X線回折分析を行った。それぞれの試料のX線回折パターンは、それぞれに相当する比較例1-2~1-4における各ユーカリ試料と類似したものであった。粉砕処理後の回折パターンを図7に、粉砕処理後にアンモニア処理した試料の回折パターンを図9にそれぞれ示す。
(Comparative Examples 2-1 to 2-4)
In each of Comparative Examples 1-1 to 1-4, Comparative Example 1 corresponding to Ex. 1 was used except that the coarsely ground Ezo nocilia used in Example 2 was used instead of the coarsely ground Eucalyptus used as the starting material. Pretreatment was performed in the same manner as in -1 to 1-4, and enzymatic saccharification reaction was performed in the same manner as in Example 2 for each sample obtained. For each comparative example, the glucose yield was calculated and the results are shown in Table 1. Further, for Comparative Examples 2-2 to 2-4, X-ray diffraction analysis was performed on each pretreated sample. The X-ray diffraction pattern of each sample was similar to each eucalyptus sample in Comparative Examples 1-2 to 1-4 corresponding to each sample. FIG. 7 shows the diffraction pattern after the pulverization treatment, and FIG. 9 shows the diffraction pattern of the sample treated with ammonia after the pulverization treatment.
(実施例3)
 実施例1において用いたユーカリに代えて、スギを用いた以外は、実施例1と同様の操作にて、粗粉砕、アンモニア処理、粉砕、酵素糖化反応をこの順に行った。結果を表1に示す。また、各段階の試料について、実施例1と同様の操作により、X線回折分析を行った。それぞれの試料のX線回折パターンは、実施例1における相当する各ユーカリ試料と類似したものであった。粗粉砕後の回折パターンを図11に、アンモニア処理後の試料の回折パターンを図13に、アンモニア処理、粉砕処理後の試料の回折パターンを図15にそれぞれ示す。
 なお、使用したスギの全グルコース化率は42.7%、粗粉砕したスギの平均粒径は207μmであった。
(Example 3)
Rough pulverization, ammonia treatment, pulverization, and enzymatic saccharification reaction were performed in this order in the same manner as in Example 1 except that cedar was used instead of eucalyptus used in Example 1. The results are shown in Table 1. Further, the X-ray diffraction analysis was performed on the sample at each stage by the same operation as in Example 1. The X-ray diffraction pattern of each sample was similar to the corresponding eucalyptus sample in Example 1. The diffraction pattern after coarse pulverization is shown in FIG. 11, the diffraction pattern of the sample after ammonia treatment is shown in FIG. 13, and the diffraction pattern of the sample after ammonia treatment and pulverization treatment is shown in FIG.
The total glycation rate of the used cedar was 42.7%, and the average particle size of the coarsely pulverized cedar was 207 μm.
(比較例3-1~3-4)
 比較例1-1~1-4のそれぞれにおいて、出発原料として用いた粗粉砕されたユーカリに代えて、実施例3において用いた粗粉砕されたスギを用いた以外は、それぞれ相当する比較例1-1~1-4と同様の操作にて前処理を行い、それぞれにおいて得た試料について、実施例3と同様の操作にて、酵素糖化反応を行った。各比較例について、グルコース収率を算出し、結果を表1に示す。また、比較例3-2~3-4について、それぞれの前処理後の試料について、X線回折分析を行った。それぞれの試料のX線回折パターンは、それぞれに相当する比較例1-2~1-4における各ユーカリ試料と類似したものであった。粉砕処理後の回折パターンを図12に、粉砕処理後にアンモニア処理した試料の回折パターンを図14にそれぞれ示す。
(Comparative Examples 3-1 to 3-4)
In each of Comparative Examples 1-1 to 1-4, Comparative Example 1 corresponding to Example 1 was used except that the coarsely ground cedar used in Example 3 was used instead of the coarsely ground Eucalyptus used as the starting material. Pretreatment was performed in the same manner as in -1 to 1-4, and enzymatic saccharification reaction was performed in the same manner as in Example 3 for the samples obtained in each. For each comparative example, the glucose yield was calculated and the results are shown in Table 1. Further, for Comparative Examples 3-2 to 3-4, X-ray diffraction analysis was performed on each pretreated sample. The X-ray diffraction pattern of each sample was similar to each eucalyptus sample in Comparative Examples 1-2 to 1-4 corresponding to each sample. FIG. 12 shows the diffraction pattern after the grinding treatment, and FIG. 14 shows the diffraction pattern of the sample treated with ammonia after the grinding treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、バイオマス原料を、アンモニア処理した後に、更に粉砕して酵素糖化に供することにより、未処理のバイオマス原料、アンモニア処理又は粉砕処理を行ったバイオマス原料に対して酵素糖化効率が向上するのみならず、粉砕処理の後にアンモニア処理を行った場合に比較しても、酵素糖化効率を向上させることができることが示された。また、図1~図15の結果から、バイオマス原料をアンモニア処理することにより、2θ=12°、17°、21°のセルロースIII型に帰属されるX線回折ピークが現れること、これを粉砕することにより回折パターンが顕著に変化すること、さらに、前記アンモニア処理後に粉砕した場合の回折パターンは、バイオマス原料を粉砕後にアンモニア処理した場合のそれとは異なることが明らかとなった。これにより、バイオマス原料をアンモニア処理した後に粉砕することにより、特有の構造をもつことが示唆される。 From the results in Table 1, the biomass saccharification efficiency is improved with respect to the untreated biomass raw material, the biomass raw material subjected to the ammonia treatment or the pulverization treatment by further pulverizing the biomass raw material and subjecting it to enzymatic saccharification In addition, it was shown that the enzyme saccharification efficiency can be improved even when compared with the case where the ammonia treatment is performed after the pulverization treatment. Further, from the results shown in FIGS. 1 to 15, by treating the biomass raw material with ammonia, X-ray diffraction peaks attributed to cellulose III type I of 2θ = 12 °, 17 ° and 21 ° appear, and this is pulverized. As a result, it was revealed that the diffraction pattern changes remarkably, and that the diffraction pattern when pulverized after the ammonia treatment is different from that when the biomass raw material is ammonia-treated after pulverization. This suggests that the biomass raw material has a specific structure by pulverization after ammonia treatment.
 本発明の糖の製造方法、エタノールの製造方法、及び乳酸の製造方法によれば、糖の生産効率、エタノールの生産効率、及び乳酸の生産効率を格段に向上させることができる。また、本発明の酵素糖化用原料の製造方法によれば、前記した本発明の糖の製造方法、エタノールの製造方法、及び乳酸の製造方法に好適な酵素糖化用原料を効率的に得ることができる。したがって、本発明の糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びに、酵素糖化用原料の製造方法は、例えば、近年注目されている、環境に優しい燃料を産出することを目的としたバイオマス原料からのエタノール製造、また、環境に優しい生分解性プラスチックの製造等に、好適に利用可能である。 The sugar production method, ethanol production method, and lactic acid production method of the present invention can significantly improve sugar production efficiency, ethanol production efficiency, and lactic acid production efficiency. In addition, according to the method for producing a raw material for enzyme saccharification of the present invention, it is possible to efficiently obtain a material for enzyme saccharification suitable for the above-described sugar production method, ethanol production method, and lactic acid production method of the present invention. it can. Therefore, the sugar production method, ethanol production method, lactic acid production method, and enzyme saccharification raw material production method of the present invention aim to produce an environmentally friendly fuel that has been attracting attention in recent years, for example. It can be suitably used for the production of ethanol from biomass raw materials, and the production of environmentally friendly biodegradable plastics.

Claims (7)

  1. (a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、
    (b)前記改質バイオマス原料を粉砕することにより、酵素糖化用原料を得る工程、及び、
    (c)前記酵素糖化用原料を、酵素糖化せしめ、糖を得る工程、
    を含むことを特徴とする糖の製造方法。
    (A) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine;
    (B) a step of obtaining a raw material for enzyme saccharification by grinding the modified biomass raw material; and
    (C) a step of saccharifying the enzyme saccharification raw material to obtain a saccharide;
    A method for producing sugar, comprising:
  2.  工程(a)において用いる処理剤が、アンモニアであることを特徴とする請求の範囲第1項に記載の糖の製造方法。 The method for producing sugar according to claim 1, wherein the treating agent used in step (a) is ammonia.
  3.  セルロースI型を含むバイオマス原料が、木質バイオマスであることを特徴とする請求の範囲第1項又は第2項に記載の糖の製造方法。 The method for producing sugar according to claim 1 or 2, wherein the biomass raw material containing cellulose type I is woody biomass.
  4.  工程(b)において得られる酵素糖化用原料のメジアン径で表される平均粒径が、5~80μmであることを特徴とする、請求の範囲第1項~第3項のいずれか一項に記載の糖の製造方法。 The average particle diameter represented by the median diameter of the enzyme saccharification raw material obtained in step (b) is 5 to 80 µm, according to any one of claims 1 to 3, A method for producing the sugar as described.
  5.  請求の範囲第1項~第4項のいずれか一項に記載の糖の製造方法により得られた糖を、発酵させて、エタノールを得ることを特徴とするエタノールの製造方法。 A method for producing ethanol, wherein the saccharide obtained by the method for producing saccharide according to any one of claims 1 to 4 is fermented to obtain ethanol.
  6.  請求の範囲第1項~第4項のいずれか一項に記載の糖の製造方法により得られた糖を、発酵させて、乳酸を得ることを特徴とする乳酸の製造方法。 A method for producing lactic acid, wherein the saccharide obtained by the method for producing saccharide according to any one of claims 1 to 4 is fermented to obtain lactic acid.
  7. (a)セルロースI型を含むバイオマス原料を、アンモニア及び/又は有機アミンを含む処理剤で処理することにより、改質バイオマス原料を得る工程、及び、
    (b)前記改質バイオマス原料を、粉砕することにより、酵素糖化用原料を得る工程、
    を含むことを特徴とする酵素糖化用原料の製造方法。
     
    (A) a step of obtaining a modified biomass raw material by treating a biomass raw material containing cellulose type I with a treatment agent containing ammonia and / or an organic amine; and
    (B) a step of obtaining a raw material for enzymatic saccharification by pulverizing the modified biomass raw material,
    The manufacturing method of the raw material for enzyme saccharification characterized by including this.
PCT/JP2010/053007 2009-02-27 2010-02-25 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing starting material for enzymatic saccharification used therein WO2010098408A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800096216A CN102333882A (en) 2009-02-27 2010-02-25 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing starting material for enzymatic saccharification used therein
BRPI1013168A BRPI1013168A2 (en) 2009-02-27 2010-02-25 method for producing sugar, method for producing ethanol, method for producing lactic acid and method for producing starting material for enzymatic saccharification.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009046794A JP5469881B2 (en) 2009-02-27 2009-02-27 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
JP2009-046794 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098408A1 true WO2010098408A1 (en) 2010-09-02

Family

ID=42665612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053007 WO2010098408A1 (en) 2009-02-27 2010-02-25 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing starting material for enzymatic saccharification used therein

Country Status (4)

Country Link
JP (1) JP5469881B2 (en)
CN (1) CN102333882A (en)
BR (1) BRPI1013168A2 (en)
WO (1) WO2010098408A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099558A1 (en) * 2010-02-12 2011-08-18 国立大学法人東京大学 Sugar production method, ethanol production method, and lactic acid production method
JP2012050408A (en) * 2010-09-03 2012-03-15 Aomori Prefectural Industrial Technology Research Center Saccharification raw material and method for producing the same, and method for producing ethanol
WO2012096219A1 (en) * 2011-01-11 2012-07-19 Jx日鉱日石エネルギー株式会社 Method for producing starting material for enzymatic saccharification, method for producing sugar and method for producing ethanol
US8394611B2 (en) 2006-05-01 2013-03-12 Board Of Trustees Of Michigan State University Process for the treatment of lignocellulosic biomass
US8673031B2 (en) 2009-08-24 2014-03-18 Board Of Trustees Of Michigan State University Pretreated densified biomass products
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US8968515B2 (en) 2006-05-01 2015-03-03 Board Of Trustees Of Michigan State University Methods for pretreating biomass
WO2015033948A1 (en) * 2013-09-04 2015-03-12 関西化学機械製作株式会社 Method for producing ethanol
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US9650657B2 (en) 2010-04-19 2017-05-16 Board Of Trustees Of Michigan State University Methods for producing extracted and digested products from pretreated lignocellulosic biomass
US10202660B2 (en) 2012-03-02 2019-02-12 Board Of Trustees Of Michigan State University Methods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers
US10730958B2 (en) 2017-03-08 2020-08-04 Board Of Trustees Of Michigan State University Pretreatment of densified biomass using liquid ammonia and systems and products related thereto
US11440999B2 (en) 2017-07-07 2022-09-13 Board Of Trustees Of Michigan State University De-esterification of biomass prior to ammonia pretreatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042170A (en) * 2013-07-26 2015-03-05 三協立山株式会社 Method for producing ethanol
DK3178939T3 (en) * 2014-08-07 2020-03-23 Nissan Chemical Corp INSURANCE ENZYM COMPOSITION, INSURANCE REACTION SOLUTION, AND PROCEDURES FOR SUGAR PRODUCTION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111593A (en) * 2004-10-15 2006-04-27 National Institute Of Advanced Industrial & Technology Method for producing industrial raw material from wood
JP2006136263A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for treating lignocellulosic biomass
WO2006092984A1 (en) * 2005-02-28 2006-09-08 Yukiguni Maitake Co., Ltd. Pretreatment of waste mushroom bed and method of converting the same into sugars and ethanol
JP2008161125A (en) * 2006-12-28 2008-07-17 Univ Of Tokyo Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzyme saccharification used for them and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111593A (en) * 2004-10-15 2006-04-27 National Institute Of Advanced Industrial & Technology Method for producing industrial raw material from wood
JP2006136263A (en) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology Method for treating lignocellulosic biomass
WO2006092984A1 (en) * 2005-02-28 2006-09-08 Yukiguni Maitake Co., Ltd. Pretreatment of waste mushroom bed and method of converting the same into sugars and ethanol
JP2008161125A (en) * 2006-12-28 2008-07-17 Univ Of Tokyo Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzyme saccharification used for them and method for producing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771425B2 (en) 2006-05-01 2014-07-08 Board Of Trustees Of Michigan State University Process for the treatment of lignocellulosic biomass
US9644222B2 (en) 2006-05-01 2017-05-09 Board Of Trustees Of Michigan State University Methods for pretreating biomass
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US8968515B2 (en) 2006-05-01 2015-03-03 Board Of Trustees Of Michigan State University Methods for pretreating biomass
US8394611B2 (en) 2006-05-01 2013-03-12 Board Of Trustees Of Michigan State University Process for the treatment of lignocellulosic biomass
US9039792B2 (en) 2009-08-24 2015-05-26 Board Of Trustees Of Michigan State University Methods for producing and using densified biomass products containing pretreated biomass fibers
US9458482B2 (en) 2009-08-24 2016-10-04 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers
US8673031B2 (en) 2009-08-24 2014-03-18 Board Of Trustees Of Michigan State University Pretreated densified biomass products
WO2011099558A1 (en) * 2010-02-12 2011-08-18 国立大学法人東京大学 Sugar production method, ethanol production method, and lactic acid production method
US9650657B2 (en) 2010-04-19 2017-05-16 Board Of Trustees Of Michigan State University Methods for producing extracted and digested products from pretreated lignocellulosic biomass
JP2012050408A (en) * 2010-09-03 2012-03-15 Aomori Prefectural Industrial Technology Research Center Saccharification raw material and method for producing the same, and method for producing ethanol
WO2012096219A1 (en) * 2011-01-11 2012-07-19 Jx日鉱日石エネルギー株式会社 Method for producing starting material for enzymatic saccharification, method for producing sugar and method for producing ethanol
JP2012143179A (en) * 2011-01-11 2012-08-02 Jx Nippon Oil & Energy Corp Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
US10202660B2 (en) 2012-03-02 2019-02-12 Board Of Trustees Of Michigan State University Methods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
JPWO2015033948A1 (en) * 2013-09-04 2017-03-02 関西化学機械製作株式会社 Ethanol production method
WO2015033948A1 (en) * 2013-09-04 2015-03-12 関西化学機械製作株式会社 Method for producing ethanol
US9816113B2 (en) 2013-09-04 2017-11-14 Kansai Chemical Engineering Co., Ltd. Method for producing ethanol
US10730958B2 (en) 2017-03-08 2020-08-04 Board Of Trustees Of Michigan State University Pretreatment of densified biomass using liquid ammonia and systems and products related thereto
US11440999B2 (en) 2017-07-07 2022-09-13 Board Of Trustees Of Michigan State University De-esterification of biomass prior to ammonia pretreatment

Also Published As

Publication number Publication date
CN102333882A (en) 2012-01-25
JP5469881B2 (en) 2014-04-16
JP2010200624A (en) 2010-09-16
BRPI1013168A2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
JP5469881B2 (en) Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
JP6509283B2 (en) Biomass processing method
JP5109121B2 (en) Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzymatic saccharification used therein and method for producing the same
CN100365099C (en) Novel technology for producing liquid fuel using biomass
Zhao et al. Bioethanol from lignocellulosic biomass
Wyman Ethanol from lignocellulosic biomass: technology, economics, and opportunities
WO2011099558A1 (en) Sugar production method, ethanol production method, and lactic acid production method
Zhao et al. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells
US20100151550A1 (en) Method for recovering energy from the organic fraction of solid urban waste and associated facility
WO2010147218A1 (en) Biomass feedstock processing method, sugar production method, ethanol production method, and lactic acid production method
Maiti et al. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes
Kurian et al. Bioconversion of hemicellulose hydrolysate of sweet sorghum bagasse to ethanol by using Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp.
Gao et al. Ethanol production from sugarcane bagasse by fed‐batch simultaneous saccharification and fermentation at high solids loading
WO2013138255A1 (en) Integrated biorefinery
Ritslaid et al. State of the art in bioethanol production.
Deshavath et al. Liquefaction of lignocellulosic biomass through biochemical conversion pathway: a strategic approach to achieve an industrial titer of bioethanol
Geberekidan et al. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process
Chapla et al. Enhanced cellulosic ethanol production from mild-alkali pretreated rice straw in SSF using Clavispora NRRL Y-50464
JP2011010597A (en) Sugar and method for producing sugar, method for producing ethanol and method for producing lactic acid
JP5702644B2 (en) Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
Dien et al. Hydrolysis and fermentation of pericarp and endosperm fibers recovered from enzymatic corn dry‐grind process
JP2009022165A (en) Method for producing ethanol
WO2012096236A1 (en) Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
Pangsang et al. High ethanol production from oil palm empty fruit bunch pretreated by hot-compressed water technique
Katepogu et al. Lactic acid production by Pediococcus pentosaceus HLV1 from banana crop residue: an economic and renewable resource

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009621.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3607/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10746287

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013168

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110829