WO2010098295A1 - Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit - Google Patents

Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit Download PDF

Info

Publication number
WO2010098295A1
WO2010098295A1 PCT/JP2010/052668 JP2010052668W WO2010098295A1 WO 2010098295 A1 WO2010098295 A1 WO 2010098295A1 JP 2010052668 W JP2010052668 W JP 2010052668W WO 2010098295 A1 WO2010098295 A1 WO 2010098295A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
cladding layer
manufacturing
silicon substrate
Prior art date
Application number
PCT/JP2010/052668
Other languages
French (fr)
Japanese (ja)
Inventor
真也 渡邊
森生 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010098295A1 publication Critical patent/WO2010098295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)

Definitions

  • the present invention relates to an optical waveguide, an optical waveguide circuit, and a method of manufacturing the optical waveguide circuit.
  • PLCs Planner Light-wave Circuits
  • an optical waveguide manufactured by PLC manufacturing technology is realized as follows. First, a lower cladding layer is formed on a silicon (Si) substrate, and then a core film through which light is guided is formed.
  • a core is formed in a desired layout by photolithography and dry etching.
  • the upper clad layer is formed into a film.
  • the reflow layer optically functions as a clad in the same manner as the upper and lower clad layers.
  • optical waveguide circuit for example, AWG (Arrayed Waveguides Grating) for multiplexing and dividing a plurality of wavelengths, VOA (Variable Optical Attenuator) for attenuating incident light by a desired amount, and incident light
  • AWG Arrayed Waveguides Grating
  • VOA Very Optical Attenuator
  • incident light incident light
  • functions can be provided depending on the layout of the core, such as an optical switch for outputting to a desired port.
  • the characteristics representing the optical characteristics of the optical waveguide itself are represented by insertion loss (or propagation loss) and PDL (Polarization Dependent Loss). Usually, the smaller the two, the better.
  • PDL is a phenomenon in which the insertion loss of the optical waveguide varies depending on the polarization state of light, and is expressed as the amount of divergence between the insertion loss in TE (Transverce Electric) mode and the insertion loss in TM (Transverce Electromagnetic) mode. .
  • Birefringence means that the optical waveguide has a different refractive index depending on the direction.
  • the dominant cause of the occurrence of birefringence is the internal stress of the optical waveguide (in other words, the stress acting to balance with the stress received from the outside).
  • the optical waveguide is manufactured by laminating a silicon oxide film to be a clad or a core on a substrate. At this time, the process usually requires heat treatment at a very high temperature of around 1000 ° C.
  • the wafer is warped due to the difference in thermal expansion coefficient between the deposited silicon oxide film and the substrate, and the produced optical waveguide receives large stress from the wafer. This stress generates PDL.
  • a structure is proposed in which the optical waveguide is separated from the silicon substrate. It is a technique of partially floating the optical waveguide from the silicon substrate in the form of a bridge and relieving stress from the substrate to reduce the PDL. Such a structure is called a bridge structure.
  • thermo-optical phase shifter As an example.
  • the optical waveguide circuit In the optical waveguide circuit, a method of adding a function using the TO (Thermo-Optic) effect is often used.
  • This is a technology in which a glass material constituting an optical waveguide circuit actively utilizes a physical phenomenon in which the refractive index changes due to heat.
  • a Mach-Zehnder interferometer composed of a directional coupler based on an optical waveguide circuit has a structure in which input light is branched into two, propagated the same length, and then recombined.
  • a metal heater is provided on one of the waveguide paths branched here, and the phase of the light to be guided can be changed by heat generated by supplying power to the heater. In this way, when the branched waveguides are coupled, the interference state changes according to the phase difference of the light guided through the two waveguides, and the intensity of the output light can be changed.
  • thermo-optic phase shifter For example, if the phase difference is set to a half wavelength of light, both branched light beams cancel each other at the time of coupling, so the output becomes almost zero. Also, if the phase difference is zero or an integral multiple of the wavelength, the input light intensity can be substantially taken out.
  • the part that changes the phase is called a thermo-optic phase shifter.
  • the power required to shift the light having a wavelength of 1550 nm used in optical communication by a half wavelength is about 400 mW when no modification is made to the optical waveguide.
  • An optical waveguide having the following structure is typical as a general technology for reducing power consumption of a thermo-optic phase shifter realized by a planar lightwave circuit.
  • a groove is formed at a position away from the optical waveguide of the portion functioning as a phase shifter by a predetermined distance.
  • the groove is filled with air or evacuated, but the heat conductivity of the gas is sufficiently smaller than the silicon oxide film forming the cladding, so the heat generated from the heater is diffused to the cladding You can prevent.
  • Such a structure is called a ridge structure.
  • the optical waveguide portion formed by being sandwiched by the grooves is simply referred to as a ridge.
  • thermo-optic phase shifter having such a ridge structure is realized by the following manufacturing method.
  • a metal film to be a heater is formed on the upper cladding layer by a sputtering apparatus or a vapor deposition apparatus.
  • a heater is formed in a desired layout by photolithography using a photomask and a milling apparatus.
  • a groove is formed at a desired position by a dry etching apparatus.
  • the heater needs to be sufficiently protected by a resist so that the heater is not damaged by dry etching.
  • the following method is generally used to further increase the thermal efficiency.
  • the power consumption effect that can usually be realized with the ridge structure is about half as much suppression as in the normal case, and the value of 8 W for 40 channels Is not small enough.
  • the bridge structure is a structure in which the optical waveguide is separated from the silicon substrate and floated like a bridge.
  • thermal phase shifter which already has a ridge structure
  • the bridge structure suppresses the thermal diffusion to the silicon substrate in the same manner as the ridge structure suppresses the thermal diffusion to the cladding, so that a further significant power consumption reduction effect can be obtained.
  • the bridge structure has the feature of reducing PDL by releasing the stress from the substrate generated from the difference in linear expansion coefficient between the optical waveguide film and the substrate.
  • thermo-optic phase shifter brings about two great effects of low power consumption and low PDL.
  • bridge structure such a structure is called a bridge structure again.
  • the waveguide portion floating in a bridge shape is referred to as a bridge.
  • the bridge structure can be realized by a technique called sacrificial layer etching which is well known as MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • An example of the technology is disclosed in Japanese Patent Laid-Open No. 2004-37524 (hereinafter referred to as Patent Document 1).
  • this technique is a method in which a sacrificial layer is deposited in advance on a substrate, and finally only this layer is isotropically etched.
  • This method is realized by etching with hydrogen fluoride water by using a silicon substrate and using PSG (Phospho Silicate Glass: phosphorus glass) or the like as a sacrificial layer.
  • PSG Phospho Silicate Glass: phosphorus glass
  • this method has the advantage of not requiring a special device, it is essential to form a sacrificial seed film between the lower cladding layer and the silicon substrate.
  • the problem with this method is not only the increase in the number of film formation steps.
  • the silicon oxide film stacked on the sacrificial layer must be adjusted in refractive index and softening temperature to function as a waveguide while maintaining high etching selectivity to the sacrificial layer.
  • etching of a silicon substrate is generally realized by forming a ridge structure and then exposing the silicon to a gas or solution for etching.
  • non-patent documents only mention etching a silicon substrate by dry etching
  • isotropic etching of the silicon substrate can be realized by using a gas such as xenon fluoride.
  • Patent Document 2 Japanese Patent Application Publication No. 2001-521180
  • thermo-optical phase shifter for forming an insulating film as a protective layer on a cladding layer on which a heater is formed is disclosed in JP-A 2004-279993 (hereinafter referred to as Patent Document 3), paragraphs 0053 and 0054. And FIG. 3 (b).
  • the optical waveguide it is necessary to embed the core so that voids do not occur, so a film having a relatively low softening point is used for the buried layer and the upper cladding layer.
  • PSG and BPSG Bophospho Silicate Glass
  • NSG Non-dope Silicate Glass
  • the distance from the core to the external environment is very short, and the deterioration of PSG and BPSG constituting the cladding around the core due to moisture brings about a change in refractive index and stress.
  • the characteristics of the waveguide are easily changed.
  • One of the objects of the present invention is to provide an optical waveguide, an optical waveguide circuit, and a method of manufacturing an optical waveguide circuit capable of preventing the deterioration of the cladding around the core due to moisture.
  • the optical waveguide according to one aspect of the present invention has low moisture permeability, which is a member having a lower moisture permeability than silicon oxide, which covers the core through which light is guided, the cladding layer covering the core, and the exposed portion of the cladding layer. And a member.
  • An optical waveguide circuit is configured to include the above-described optical waveguide and a silicon substrate supporting the optical waveguide.
  • a first cladding layer and a core layer are sequentially formed on a silicon substrate, and a core is formed on the core layer by photolithography and etching.
  • the first low moisture-permeable member which is a member having lower moisture permeability than silicon oxide, is formed.
  • FIG. 1 is a cross-sectional view of the optical waveguide of the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an optical waveguide circuit according to a second embodiment of the present invention.
  • FIG. 3 is a flow chart showing the processing procedure of the method of manufacturing the optical waveguide circuit of the third embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of an optical waveguide circuit according to a fourth embodiment of the present invention.
  • FIG. 4B is a cross-sectional view of the optical waveguide circuit according to the fifth embodiment of the present invention.
  • FIG. 4C is a cross-sectional view of the optical waveguide circuit according to the sixth embodiment of the present invention.
  • FIG. 4D is a cross-sectional view of the optical waveguide circuit according to the seventh embodiment of the present invention.
  • FIG. 4E is a cross-sectional view of the optical waveguide circuit according to the eighth embodiment of the present invention.
  • FIG. 5A is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5B is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5C is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5A is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5B is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-
  • FIG. 5D is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5E is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5F is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5G is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5H is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5I is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5J is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5K is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 5L is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention.
  • FIG. 6 is a flow chart showing the processing procedure of the method of manufacturing the thermo-optic phase shifter of the ninth embodiment.
  • FIG. 7A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the eleventh example of the present invention.
  • FIG. 7C is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the eleventh example of the present invention.
  • FIG. 7A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of
  • FIG. 7D is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of the eleventh embodiment of the present invention.
  • FIG. 7E is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7F is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7G is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of an eleventh example of the present invention.
  • FIG. 7H is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7I is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7J is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 7K is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of the eleventh embodiment of the present invention.
  • FIG. 7L is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention.
  • FIG. 8 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the eleventh embodiment.
  • FIG. 8 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the eleventh embodiment.
  • FIG. 9A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth example of the present invention.
  • FIG. 9C is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9D is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth embodiment of the present invention.
  • FIG. 9A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth example of the present invention.
  • FIG. 9E is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9F is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9G is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth example of the present invention.
  • FIG. 9H is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9I is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9J is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9K is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 9L is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention.
  • FIG. 10 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the twelfth embodiment.
  • FIG. 11A is a plan view for explaining an example of a support of the bridge structure of the present invention.
  • 11B is a cross-sectional view of a portion of line segment BB in FIG. 11A.
  • FIG. 11C is a cross-sectional view of the portion of line segment AA in FIG. 11A.
  • FIG. 12 is a perspective view showing a process of forming a pillar by isotropic etching on a silicon substrate.
  • FIG. 13 is a perspective view showing a process of forming a pillar by isotropic etching on a silicon substrate.
  • FIG. 14 is a cross-sectional view showing an example of the heat insulating groove provided in the optical waveguide of the present invention.
  • the first embodiment relates to an example of an optical waveguide.
  • FIG. 1 is a cross-sectional view of the optical waveguide of the first embodiment of the present invention.
  • the optical waveguide 1 is configured to include a core 11 through which light is guided, a cladding layer 12 covering the core 11, and a low moisture permeability member 13 covering an exposed portion of the cladding layer 12.
  • the low moisture-permeable member 13 is a member having lower moisture permeability than silicon oxide.
  • the exposed part of the cladding layer 12 is covered with the low moisture-permeable member 13, it is possible to prevent the deterioration of the cladding layer 12 around the core 11 due to moisture.
  • FIG. 2 is a cross-sectional view of an optical waveguide circuit according to a second embodiment of the present invention.
  • the same components as in FIG. 1 will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the optical waveguide circuit 2 is configured to include the silicon substrate 14 and the optical waveguide 1.
  • the optical waveguide 1 is configured to include a core 11 through which light is guided, a cladding layer 12 covering the core 11, and a low moisture-permeable member 13 covering an exposed portion of the cladding layer 12.
  • bridge structure a structure in which the optical waveguide 1 is separated from the silicon substrate 14 and floated like a bridge
  • the structure which mounts the optical waveguide 1 on the silicon substrate 14 is also possible.
  • the optical waveguide circuit 2 capable of preventing the deterioration of the cladding layer 12 due to moisture is obtained.
  • the third embodiment relates to an example of a method of manufacturing an optical waveguide circuit.
  • FIG. 3 is a flow chart showing the processing procedure of the method of manufacturing the optical waveguide circuit of the third embodiment of the present invention.
  • a first process S1 for forming a lower cladding layer and a core layer on a silicon substrate and a second process S2 for forming a core by photolithography and dry etching.
  • a third process S3 of covering the core with the upper cladding layer and a fourth process S4 of forming an optical waveguide by removing the cladding layer at a predetermined distance from both sides of the core by photolithography and dry etching
  • a fifth process S5 of forming a low moisture-permeable member on the exposed portion of the cladding layer of the optical waveguide is a third process S3 of covering the core with the upper cladding layer, and a fourth process S4 of forming an optical waveguide by removing the cladding layer at a predetermined distance from both sides of the core by photolithography and dry etching.
  • the exposed portions of the upper and lower cladding layers are covered with the low moisture permeability member, it is possible to prevent the deterioration of the cladding layer around the core due to moisture. Therefore, a method of manufacturing the optical waveguide circuit 2 capable of preventing the deterioration of the cladding layer due to moisture is obtained.
  • FIGS. 4A to 4E are cross-sectional views showing the optical waveguides of the fourth to eighth embodiments of the present invention, respectively.
  • the fourth embodiment relates to another example of the optical waveguide circuit.
  • FIG. 4A is a cross-sectional view of an optical waveguide circuit according to a fourth embodiment of the present invention.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the optical waveguide circuit 3 is an example of a structure having a thermo-optic phase shifter.
  • the optical waveguide circuit 3 is configured to include a silicon substrate 14 and an optical waveguide 4.
  • the optical waveguide 4 includes a lower cladding layer 15, a core 11 provided on the lower cladding layer 15, a buried layer 16 covering the core 11, an upper cladding layer 17 provided on the buried layer 16, and an upper cladding.
  • Low-moisture-permeable member covering exposed portions of a heat generating member (hereinafter referred to as a "heater") 18 provided on the layer 17, the core 11, the lower cladding layer 15, the upper cladding layer 17, the embedded layer 16 and the heater 18 And 13 are included.
  • a bridge structure in which the optical waveguide 4 is separated from the silicon substrate 14 and floated like a bridge is employed.
  • surfaces of the optical waveguide 4 is also employ
  • the low moisture-permeable member 13 is formed of a silicon nitride film.
  • the heat insulation groove (not shown) is filled with air or evacuated, but since the thermal conductivity of the gas is sufficiently smaller than the film forming the cladding, the heat generated from the heater 18 It is possible to prevent diffusion into the cladding.
  • the entire bridge structure including the heater 18 is covered with the silicon nitride film, the lower cladding layer 15 and the upper cladding layer 17 around the core 11 are completely covered with the silicon nitride film.
  • Silicon nitride films are known to have lower moisture permeability than silicon oxides because the crystal structure is very dense. This property is the same for silicon oxynitride (SiON), and a silicon oxynitride film can be used instead of the silicon nitride film in this embodiment.
  • the entrance and exit of moisture is interrupted between the core 11 functioning as the optical waveguide 4, the lower cladding layer 15, the upper cladding layer 17, and the outside.
  • the core 11 functioning as the optical waveguide 4
  • the lower cladding layer 15 the upper cladding layer 17, and the outside.
  • the fifth embodiment relates to another example of the optical waveguide circuit.
  • FIG. 4B is a cross-sectional view of the optical waveguide circuit according to the fifth embodiment of the present invention.
  • symbol is attached
  • the optical waveguide circuit 5 is an example of a structure having a thermo-optic phase shifter.
  • the optical waveguide circuit 5 is configured to include a silicon substrate 14 and an optical waveguide 6.
  • the fifth embodiment has a structure in which a part of silicon nitride film (SiN) is embedded in the upper cladding layer 17.
  • SiN silicon nitride film
  • FIG. 4C is a cross-sectional view of the optical waveguide circuit according to the sixth embodiment of the present invention.
  • symbol is attached
  • the optical waveguide circuit 7 is an example of a structure having a thermo-optic phase shifter.
  • the optical waveguide circuit 7 is configured to include a silicon substrate 14 and an optical waveguide 8.
  • the sixth embodiment has a structure in which a part of silicon nitride film (SiN) is embedded in the lower cladding layer 15.
  • SiN silicon nitride film
  • FIG. 4D is a cross-sectional view of the optical waveguide circuit according to the seventh embodiment of the present invention.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the optical waveguide circuit 9 is an example of a structure having a thermo-optic phase shifter.
  • the optical waveguide circuit 9 is configured to include a silicon substrate 14 and an optical waveguide 10.
  • the seventh embodiment is not a complete bridge structure, but is an example in the case of having an intermediate structure of a ridge structure and a bridge structure.
  • the other configuration is the same as that of the fourth embodiment.
  • FIG. 4E is a cross-sectional view of the optical waveguide circuit according to the eighth embodiment of the present invention.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the optical waveguide circuit 21 is an example of a structure having a thermo-optic phase shifter.
  • the optical waveguide circuit 21 is configured to include a silicon substrate 14 and an optical waveguide 22.
  • the eighth embodiment when there is no need for a bridge structure and there is no problem even with a simple ridge structure, as shown in the figure, the effect of solving the problem can be achieved simply by forming a silicon nitride film (SiN) after forming the heat insulation groove Is obtained.
  • SiN silicon nitride film
  • the ninth embodiment relates to an example of a method of manufacturing a thermo-optic phase shifter according to the present invention.
  • 5A to 5L are schematic sectional views showing the processing procedure of the method of manufacturing the thermo-optic phase shifter according to the ninth embodiment of the present invention.
  • FIG. 6 is a flow chart showing the processing procedure of the method of manufacturing the thermo-optic phase shifter of the ninth embodiment.
  • the apparatus used in the following description, the film type used, etc. are an example, and this invention is not limited to these.
  • SiN 52 is deposited on the silicon substrate 14 by CVD or the like (S11 in FIG. 5A and FIG. 6).
  • NSG to be the material of the lower cladding layer 15 and SiON to be the material of the core layer 54 are deposited by the same apparatus (FIG. 5B and S12 in FIG. 6).
  • the core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIG. 5C and S13 in FIG. 6).
  • a film having a low softening point such as BPSG or PSG to be the embedded layer 16 for embedding the core 11 or the upper cladding layer 17 is formed, and heat treatment is performed as required (S14 in FIG. 5D and FIG. 6).
  • a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 5E and FIG. 6 S15).
  • an SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed later from above (FIG. 5F and S16 in FIG. 6).
  • a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed on the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulation groove (FIG. 5G and S17 in FIG. 6).
  • SiN 62 is formed on the exposed surface of the silicon substrate 14 (corresponding to the bottom of the heat insulation groove) and the chromium film 60 (S18 in FIG. 5H and FIG. 6) and dry etching is performed again (FIG. 5I and S19 of FIG. 6). Since RIE (Reactive Ion Etching) used for dry etching is anisotropic, the SiN 62 deposited on the side wall of the adiabatic groove is hardly removed, and only the SiN 62 on the chromium film 60 and the SiN 62 at the bottom of the adiabatic groove are removed. Since the etching rate for the chromium film 60 of RIE is slower compared to SiN 62, the chromium film 60 serves as a stopper layer to complete the etching.
  • RIE Reactive Ion Etching
  • the chromium film 60 is removed by an etchant (FIG. 5J and S20 in FIG. 6).
  • the SiN film is formed after the formation of the heat insulating groove in the step described in FIG. 5G, the structure of FIG. 4E is obtained. Further, if the SiN 59 formed in the step described in FIG. 5F is formed so as to be sandwiched between the upper cladding layers, the structure shown in FIG. 4B is obtained. If the SiN 52 formed in the process described in FIG. 5A is formed so as to be sandwiched between the lower cladding layers, the structure shown in FIG. 4C can be obtained.
  • the exposed part of the cladding layer is covered with the low moisture-permeable member (SiN film in this embodiment), it is possible to prevent the deterioration of the cladding layer around the core due to moisture.
  • the tenth embodiment relates to the distance from the heat insulating groove side wall to the core of the thermo-optic phase shifter according to the present invention.
  • FIG. 4E is used for the description of the tenth embodiment.
  • the distance from the heat insulation groove side wall 13a shown in FIG. 4E to the core 11 is d.
  • the light propagating with the core 11 generally propagates while leaking to a certain extent to the lower cladding 15 and the upper cladding layer 17.
  • SiN has a refractive index of around 2 and higher than the refractive index of a general core 11.
  • d needs to be large enough so that propagating light is not coupled to the SiN film .
  • the heat from the heater 18 easily escapes to the silicon substrate 14 side, and the power consumption as a phase shifter is increased.
  • d needs to select an optimal value.
  • d when the relative refractive index difference ⁇ of the waveguide is 0.7%, d is optimally about 15 ⁇ m, and when the relative refractive index difference ⁇ of the waveguide is about 6%, d is preferably about 3 ⁇ m. It is. These can be determined by simulation using BPM (business process management).
  • the eleventh embodiment relates to a method of manufacturing a bridge structure using sacrificial layer etching according to the present invention.
  • 7A to 7L are schematic sectional views showing the processing procedure of the method for manufacturing a bridge structure in the eleventh embodiment of the present invention.
  • FIG. 8 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the eleventh embodiment.
  • the sacrificial layer 63 is formed on the silicon substrate 14 by CVD or the like (S31 in FIGS. 7A and 8).
  • the sacrificial layer 63 is preferably a PSG film or the like having a high etching rate by BHF (buffered hydrofluoric acid).
  • SiN 52 is formed on the sacrificial layer 63.
  • NSG to be a material of the lower cladding layer 15 and SiON to be a material of the core 54 are formed (FIG. 7B and S32 in FIG. 8).
  • the core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIGS. 7C and S33 in FIG. 8).
  • a film having a low softening point such as BPSG or PSG to be the buried layer 16 or the upper cladding layer 17 is formed, and heat treatment is performed as needed (FIG. 7D and S34 in FIG. 8).
  • a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 7E and FIG. S35 of 8).
  • SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed thereafter from above (FIG. 7F and S 36 in FIG. 8).
  • a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed from above the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulating groove (FIG. 7G and S37 in FIG. 8).
  • FIG. 7G is immersed in BHF or the like to selectively etch the sacrificial layer 63 (FIG. 7H and S38 in FIG. 8), and a bridge structure is formed (FIG. 7I and S39 in FIG. 8).
  • a bridge structure using sacrificial layer etching is obtained.
  • the twelfth embodiment relates to a method of passivating the optical waveguide with SiN after bridging the optical waveguide in one example of the present invention.
  • 9A to 9L are schematic sectional views showing the processing procedure of the method for manufacturing a bridge structure of the twelfth embodiment of the present invention.
  • FIG. 10 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the twelfth embodiment.
  • SiN 52 is deposited on the silicon substrate 14 by CVD or the like (S51 in FIGS. 9A and 10).
  • NSG to be the material of the lower cladding layer 15 and SiON to be the material of the core layer 54 are deposited by the same apparatus (FIG. 9B and S52 in FIG. 10).
  • the core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIGS. 9C and S53 in FIG. 10).
  • a film having a low softening point such as BPSG or PSG to be the buried layer 16 or the upper cladding layer 17 is formed, and heat treatment is performed as needed (FIG. 9D and S54 in FIG. 10).
  • a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 9E and FIG. 10 S55).
  • SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed thereafter (FIG. 9F and S56 in FIG. 10).
  • a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed from above the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulating groove (FIG. 9G and S57 in FIG. 10).
  • the top surface of the silicon substrate 14 is isotropically etched with xenon fluoride gas or the like (FIGS. 9H and S58 in FIG. 10) to form a bridge structure (FIG. 9I and FIG. 10 S59).
  • the resist 61 is removed, and SiN 62 is deposited thereon (FIGS. 9J and S60 in FIG. 10).
  • a bridge structure in which the cladding layer is passivated with SiN after being bridged is obtained.
  • the thirteenth embodiment relates to the configuration of a support of a bridge structure.
  • 11A to 11C are configuration diagrams showing an example of a support of the bridge structure of the present invention.
  • FIG. 11A is a plan view of the phase shifter portion.
  • 11B is a cross-sectional view of a portion of line segment BB in FIG. 11A.
  • FIG. 11C is a cross-sectional view of the portion of line segment AA in FIG. 11A.
  • the lower cladding layer 15, the buried layer 16 and the upper cladding layer 17 are formed in order.
  • the core 11 is provided in the buried layer 16, and the heater 31 is provided on the upper cladding layer 17.
  • SiN is provided in the top layer and the bottom layer of the optical waveguide portion.
  • the heat insulating groove 32 is formed in the shape as shown in FIG. 11A with respect to the buried layer 16, the lower cladding layer 15, and the upper cladding layer 17, and then the upper surface of the silicon substrate 33 is etched.
  • FIG. 11C the portion of the line segment AA shown in FIG. 14 is completely side edged from the upper surface of the silicon substrate 33 which is the base portion of the optical waveguide portion to a predetermined depth.
  • the part is a bridge structure.
  • FIG. 11B in the portion of the line segment B-B shown in FIG.
  • FIG. 12 and 13 are perspective views showing the process of forming the pillars 34 by isotropic etching on a silicon substrate.
  • FIG. 12 shows a state before isotropic etching is performed on a silicon substrate
  • FIG. 13 shows a state after performing isotropic etching on a silicon substrate.
  • the external perspective view of the structure shown in FIG. 5J corresponds to FIG. 12, and the cross-sectional structure shown in FIG. 5K corresponds to the cross section of the portion of line segment B-B in FIG.
  • the cross sectional structure corresponds to the cross section of the portion of the line segment AA in FIG.
  • the SiN film formed around the optical waveguide portion is partially omitted.
  • the bridge structure and the support of the thermo-optic phase shifter according to the present invention are obtained.
  • FIG. 14 is a cross-sectional view showing an example of the heat insulating groove provided in the optical waveguide of the present invention.
  • FIG. 14 is a cross-sectional view in which the cross-sectional structure shown in FIG. 5G is expanded and displayed in the lateral direction (the left and right directions parallel to the sheet centering on the drawing).
  • phase shifter portion 41 grooves are formed on both sides of the waveguide core 42 at a predetermined distance in the lateral direction from the waveguide core 42.
  • a groove which is provided in the laminated film including the cladding 45 and the cladding 46 so as to separate the phase shifter portion 41 and which reaches the surface of the silicon substrate is referred to as a heat insulating groove 43.
  • the fourteenth embodiment since the heat insulating groove 43 is provided so that the heat from the heater 44 does not escape via the clad 45 and the clad 46, power consumption can be reduced.
  • SiN films are known to have lower moisture permeability than silicon oxides because the crystal structure is very compact.
  • the entrance and exit of water is interrupted between the core and the cladding functioning as the optical waveguide and the outside, and as a result, the refractive index and stress change due to film deterioration Can be prevented.
  • the bridge structure according to the present invention is applicable not only to the optical waveguide circuit but also to other fields such as fabrication of a cantilever in the field of MEMS (Micro Electro Mechanical Systems) etc., instead of the bridge structure by sacrificial layer etching. .

Abstract

Disclosed is an optical waveguide (1) which is configured to comprise a core (11) through which light is waveguided, a cladding layer (12) that covers the core, and a low moisture permeability member (13) that covers an exposed portion of the cladding layer and has a moisture permeability lower than that of silicon oxide.

Description

光導波路、光導波回路、および光導波回路の製造方法Optical waveguide, optical waveguide circuit, and method of manufacturing optical waveguide circuit
 本発明は、光導波路、光導波回路、および光導波回路の製造方法に関する。 The present invention relates to an optical waveguide, an optical waveguide circuit, and a method of manufacturing the optical waveguide circuit.
 光通信を実現する様々な光デバイスの中で、平面光波回路(PLC:Planner Light-wave Circuit)を利用したデバイスは、半導体回路の製造プロセスを利用できることから、デバイスの小型化、高機能化、集積化に優れるという特長を持つ。 Among various optical devices that realize optical communication, devices utilizing Planner Light-wave Circuits (PLCs) can utilize the process of manufacturing semiconductor circuits, so the devices can be downsized and highly functional, It has the feature of being excellent in integration.
 通常、PLC製造技術で作製される光導波路は、次のようにして実現される。まず、シリコン(Si)基板上に下クラッド層を成膜し、続いて光が導波するコア膜を成膜する。 Usually, an optical waveguide manufactured by PLC manufacturing technology is realized as follows. First, a lower cladding layer is formed on a silicon (Si) substrate, and then a core film through which light is guided is formed.
 ここで様々な機能を実現するために設計されたフォトマスクを用い、フォトリソグラフィおよびドライエッチングによって、所望するレイアウトでコアを形成する。 Here, using a photomask designed to realize various functions, a core is formed in a desired layout by photolithography and dry etching.
 その後、場合によってはコアを埋め込むためのリフロー層成膜を経た後、上クラッド層を成膜する。なお、このリフロー層は光学的には上下クラッド層と同様にクラッドとして機能する。 Then, after passing through the reflow layer film-forming for embedding a core depending on the case, the upper clad layer is formed into a film. The reflow layer optically functions as a clad in the same manner as the upper and lower clad layers.
 このようにして作製された光導波回路には、例えば、複数の波長を合分波するAWG(Arrayed Waveguides Grating)、入射光を所望する量だけ減衰させるVOA(Variable Optical Attenuator)や、入射光を所望のポートに出力させる光スイッチなど、コアのレイアウトによって様々な機能を持たせることができる。 In the optical waveguide circuit manufactured in this manner, for example, AWG (Arrayed Waveguides Grating) for multiplexing and dividing a plurality of wavelengths, VOA (Variable Optical Attenuator) for attenuating incident light by a desired amount, and incident light Various functions can be provided depending on the layout of the core, such as an optical switch for outputting to a desired port.
 光導波路そのものの光学的特徴を表す特性は、挿入損失(あるいは伝播損失)、PDL(Polarization Dependent Loss:偏波依存性ロス)に代表される。通常、両者は小さければ小さいほど好ましいとされる。 The characteristics representing the optical characteristics of the optical waveguide itself are represented by insertion loss (or propagation loss) and PDL (Polarization Dependent Loss). Usually, the smaller the two, the better.
 ここでPDLとは、光の偏光状態によって光導波路の挿入損失が異なる現象であり、TE(Transverce Electric)モードにおける挿入損失と、TM(Transverce Electromagnetic)モードにおける挿入損失との乖離量として表される。 Here, PDL is a phenomenon in which the insertion loss of the optical waveguide varies depending on the polarization state of light, and is expressed as the amount of divergence between the insertion loss in TE (Transverce Electric) mode and the insertion loss in TM (Transverce Electromagnetic) mode. .
 このような乖離は光導波路が有する複屈折が大きく寄与する。複屈折とは、光導波路が方向によって異なった屈折率を有することを言う。複屈折が発生する支配的原因は、光導波路が有する内部応力(換言すれば外部から受ける応力と均衡するように働く応力)である。 Such deviation is largely due to birefringence possessed by the optical waveguide. Birefringence means that the optical waveguide has a different refractive index depending on the direction. The dominant cause of the occurrence of birefringence is the internal stress of the optical waveguide (in other words, the stress acting to balance with the stress received from the outside).
 前述したように光導波路は、基板上にクラッドやコアとなるシリコン酸化膜を積層させていくことで作製される。この時、通常、そのプロセスは1000℃前後という非常に高い温度での熱処理を必要とする。 As described above, the optical waveguide is manufactured by laminating a silicon oxide film to be a clad or a core on a substrate. At this time, the process usually requires heat treatment at a very high temperature of around 1000 ° C.
 このため、基板がシリコンなどの場合には、堆積したシリコン酸化膜と基板との熱膨張係数の差によって、ウェハは反り、作製される光導波路はウェハから大きな応力を受けることになる。この応力はPDLを発生させる。 For this reason, when the substrate is silicon or the like, the wafer is warped due to the difference in thermal expansion coefficient between the deposited silicon oxide film and the substrate, and the produced optical waveguide receives large stress from the wafer. This stress generates PDL.
 そこで、様々な工夫によって、応力を軽減する、あるいは方向性を持たないように均衡させる技術が利用されている。 Therefore, techniques have been used to reduce stress or balance so as not to have directionality by various means.
 その中の一手段として、光導波路をシリコン基板から分離する構造が提案されている。それは、光導波路を部分的にシリコン基板からブリッジ状に浮かせ、基板からの応力を開放することでPDLを軽減する技術である。このような構造をブリッジ構造と呼ぶこととする。 As one means among them, a structure is proposed in which the optical waveguide is separated from the silicon substrate. It is a technique of partially floating the optical waveguide from the silicon substrate in the form of a bridge and relieving stress from the substrate to reduce the PDL. Such a structure is called a bridge structure.
 以下、このブリッジ構造を説明するに当たり、この構造によってPDL低減以外の効果も得ることができる。その効果を「熱光学位相シフタ」を例に説明する。 Hereinafter, in describing this bridge structure, an effect other than PDL reduction can be obtained by this structure. The effect will be described using a “thermo-optical phase shifter” as an example.
 光導波回路においては、TO(Thermo-Optic:熱光学)効果を利用して機能を付加する手法がよく用いられる。これは、光導波回路を構成するガラス材料が、熱によって屈折率変化する物理現象を積極的に利用した技術である。 In the optical waveguide circuit, a method of adding a function using the TO (Thermo-Optic) effect is often used. This is a technology in which a glass material constituting an optical waveguide circuit actively utilizes a physical phenomenon in which the refractive index changes due to heat.
 例えば、光導波回路による方向性結合器で構成されるマッハツェンダ干渉計は、入力した光を二分岐し、互いに同一長伝播した後に再度結合する構造を有する。 For example, a Mach-Zehnder interferometer composed of a directional coupler based on an optical waveguide circuit has a structure in which input light is branched into two, propagated the same length, and then recombined.
 ここで分岐した一方の導波路上部に金属ヒータを設けておき、ヒータに電力を投入することで発生する熱によって、導波する光の位相を変えることができる。このようにすると、分岐した両導波路が結合する際、両者を導波した光の位相差に応じて干渉状態が変化し、出力される光強度を変化させることができる。 A metal heater is provided on one of the waveguide paths branched here, and the phase of the light to be guided can be changed by heat generated by supplying power to the heater. In this way, when the branched waveguides are coupled, the interference state changes according to the phase difference of the light guided through the two waveguides, and the intensity of the output light can be changed.
 例えば、位相差を光の半波長分とすれば、分岐された両導波光は結合時に互いに打ち消しあうため、出力はほぼゼロとなる。また、位相差がゼロまたは波長の整数倍とすれば、入力された光強度をほぼそのまま取り出すことができる。ここで、位相を変化させる部分を熱光学位相シフタと呼ぶ。 For example, if the phase difference is set to a half wavelength of light, both branched light beams cancel each other at the time of coupling, so the output becomes almost zero. Also, if the phase difference is zero or an integral multiple of the wavelength, the input light intensity can be substantially taken out. Here, the part that changes the phase is called a thermo-optic phase shifter.
 これらの現象を利用して、マッハツェンダ干渉計を光スイッチとして機能させることが可能である。また、位相差は任意に与えることができるため、連続的な位相変化を利用して光減衰器として利用することも可能となる。 It is possible to make a Mach-Zehnder interferometer function as an optical switch by utilizing these phenomena. In addition, since the phase difference can be arbitrarily given, it becomes possible to use as an optical attenuator by utilizing continuous phase change.
 このようにして実現される光デバイスを動作させるには、ヒータに電力を投入して制御することになるため、動作に必要な消費電力が小さいことが望まれる。 In order to operate the optical device realized in this manner, since power is supplied to the heater for control, it is desirable that the power consumption necessary for the operation be small.
 通常、光通信で利用される1550nmの波長を持つ光を半波長分シフトさせるに必要な電力は、光導波路に何ら工夫のない場合は400mW程度となる。 In general, the power required to shift the light having a wavelength of 1550 nm used in optical communication by a half wavelength is about 400 mW when no modification is made to the optical waveguide.
 しかし、これらが例えば40ch分の制御が必要となると、およそ16Wの電力が必要となる。この電力は非常に大きいため、一般的には光導波回路に様々な工夫が施されることで、消費電力が低減されている。 However, if they require, for example, 40 channels of control, approximately 16 W of power is required. Since this power is very large, power consumption is generally reduced by applying various devices to the optical waveguide circuit.
 平面光波回路で実現される熱光学位相シフタの一般的な低消費電力化の技術として、次のような構造を有する光導波路が代表的である。 An optical waveguide having the following structure is typical as a general technology for reducing power consumption of a thermo-optic phase shifter realized by a planar lightwave circuit.
 位相シフタとして機能する部分の光導波路から所定の距離だけ離れた位置に溝が形成された構造である。溝は、空気が充填されたり、真空にされたりすることになるが、気体の熱伝導率はクラッドを形成するシリコン酸化膜よりも十分に小さいため、ヒータから発生する熱がクラッドに拡散することを防ぐことができる。 A groove is formed at a position away from the optical waveguide of the portion functioning as a phase shifter by a predetermined distance. The groove is filled with air or evacuated, but the heat conductivity of the gas is sufficiently smaller than the silicon oxide film forming the cladding, so the heat generated from the heater is diffused to the cladding You can prevent.
 このため、消費電力を格段に小さくすることができる。このような構造をリッジ構造と呼ぶことにする。また、溝で挟み込まれて形成される光導波路部を単にリッジと呼ぶこととする。 Therefore, the power consumption can be significantly reduced. Such a structure is called a ridge structure. Further, the optical waveguide portion formed by being sandwiched by the grooves is simply referred to as a ridge.
 通常、このようなリッジ構造を備えた熱光学位相シフタは次のような製造方法で実現される。 Usually, a thermo-optic phase shifter having such a ridge structure is realized by the following manufacturing method.
 前述した通りに光導波路を形成した後、上クラッド層上にヒータとなる金属膜をスパッタリング装置あるいは蒸着装置などで成膜する。 After the optical waveguide is formed as described above, a metal film to be a heater is formed on the upper cladding layer by a sputtering apparatus or a vapor deposition apparatus.
 次にフォトマスクを用いたフォトリソグラフィとミリング装置などによって、所望するレイアウトでヒータを形成する。 Next, a heater is formed in a desired layout by photolithography using a photomask and a milling apparatus.
 次にコアを形成する工程と同様に、ドライエッチ装置によって所望の位置に溝を形成する。このとき、ドライエッチングによってヒータが損傷しないように、ヒータはレジストで十分に保護されている必要がある。 Next, as in the step of forming the core, a groove is formed at a desired position by a dry etching apparatus. At this time, the heater needs to be sufficiently protected by a resist so that the heater is not damaged by dry etching.
 リッジ構造において、より熱効率を上げるためには、次のような方法が一般的である。 In the ridge structure, the following method is generally used to further increase the thermal efficiency.
 (1)光導波路の下クラッド層を厚くする。これによってコアとシリコン基板間の熱抵抗が高くなり、シリコン基板への熱の流出が抑制される。 (1) Thicken the lower cladding layer of the optical waveguide. As a result, the thermal resistance between the core and the silicon substrate is increased, and the flow of heat to the silicon substrate is suppressed.
 (2)リッジの幅を狭める。リッジ構造の場合、熱拡散はリッジからシリコン基板へ流出が支配的となる。このため、リッジの幅を狭めるほどリッジとシリコン基板の接合面積は小さくなり、熱拡散が抑制される。 (2) Narrow the width of the ridge. In the case of the ridge structure, the thermal diffusion is dominated by the outflow from the ridge to the silicon substrate. Therefore, as the width of the ridge is narrowed, the junction area between the ridge and the silicon substrate is reduced, and thermal diffusion is suppressed.
 しかしながら、以下の理由により、これらの方法にはそれぞれに限界がある。 However, each of these methods has limitations for the following reasons.
 (1)下クラッド層を厚くするほど、膜に加わる応力は強くなり、ウェハにクラックが発生し易くなる。また、強い応力によって複屈折が大きくなり光導波路のPDLが大きくなる。さらに、厚くなるほど製造工程時間が長くなる。 (1) As the lower cladding layer becomes thicker, the stress applied to the film becomes stronger, and the wafer is more likely to be cracked. Also, due to the strong stress, the birefringence increases and the PDL of the optical waveguide increases. Further, the thicker the film, the longer the manufacturing process time.
 (2)リッジ幅を細くし過ぎると、導波光がリッジ側壁の荒れを感じ、散乱による損失が増加する。 (2) If the ridge width is made too thin, the guided light will feel rough on the ridge sidewalls, and the loss due to scattering will increase.
 可能な限りにおいてこのような施策を投じたとしても、通常、リッジ構造で実現できる消費電力化の効果は、通常の場合に比較しておよそ半分程度までの抑制であり、40chにして8Wという値は十分小さいとは言えない。 Even if such measures are implemented as much as possible, the power consumption effect that can usually be realized with the ridge structure is about half as much suppression as in the normal case, and the value of 8 W for 40 channels Is not small enough.
 そこで、リッジ構造に加えて、さらに消費電力を低減する方法として提案されている技術が、冒頭で記したブリッジ構造の採用である。前述した通りブリッジ構造は、光導波路をシリコン基板から分離し、ブリッジ状に浮かせる構造である。 Therefore, in addition to the ridge structure, a technique proposed as a method of further reducing power consumption is the adoption of the bridge structure described at the beginning. As described above, the bridge structure is a structure in which the optical waveguide is separated from the silicon substrate and floated like a bridge.
 既にリッジ構造を具備した熱位相シフタの場合、リッジをシリコン基板から分離することで実現する。リッジ構造がクラッドへの熱拡散を抑制するのと同様に、ブリッジ構造はシリコン基板への熱拡散を抑制するため、さらに大幅な消費電力低減の効果が得られる。 In the case of a thermal phase shifter which already has a ridge structure, it is realized by separating the ridge from the silicon substrate. The bridge structure suppresses the thermal diffusion to the silicon substrate in the same manner as the ridge structure suppresses the thermal diffusion to the cladding, so that a further significant power consumption reduction effect can be obtained.
 また、前述した通り、ブリッジ構造は、光導波路膜と基板との線膨張係数差から発生する基板からの応力が開放されることによる、PDLの低減という特長を持つ。 Further, as described above, the bridge structure has the feature of reducing PDL by releasing the stress from the substrate generated from the difference in linear expansion coefficient between the optical waveguide film and the substrate.
 このため、熱光学位相シフタにおけるブリッジ構造の採用は、低消費電力化、低PDL化という二つの大きな効果をもたらす。 For this reason, adoption of the bridge structure in the thermo-optic phase shifter brings about two great effects of low power consumption and low PDL.
 以下、このような構造を改めてブリッジ構造と呼ぶ。また、ブリッジ状に浮いた導波路部分をブリッジと呼ぶこととする。 Hereinafter, such a structure is called a bridge structure again. Also, the waveguide portion floating in a bridge shape is referred to as a bridge.
 ブリッジ構造は、MEMS(Micro Electro Mechanical Systems)技術としてよく知られている犠牲層エッチングという技術によって実現できる。その技術の一例が特開2004-37524号公報(以下では、特許文献1と称する)に開示されている。 The bridge structure can be realized by a technique called sacrificial layer etching which is well known as MEMS (Micro Electro Mechanical Systems) technology. An example of the technology is disclosed in Japanese Patent Laid-Open No. 2004-37524 (hereinafter referred to as Patent Document 1).
 特許文献1に開示されているように、この技術は、予め基板上に犠牲層を堆積させておき、最終的にこの層だけ等方的にエッチングする方法である。 As disclosed in Patent Document 1, this technique is a method in which a sacrificial layer is deposited in advance on a substrate, and finally only this layer is isotropically etched.
 この方法は、シリコン基板を使用し、PSG(Phospho Silicate Glass:燐ガラス)などを犠牲層とすることで、フッ化水素水によるエッチングで実現される。 This method is realized by etching with hydrogen fluoride water by using a silicon substrate and using PSG (Phospho Silicate Glass: phosphorus glass) or the like as a sacrificial layer.
 シリコン酸化膜にリンをドープするとフッ化水素水に対して早いエッチングレートを持つようになるため、PSGだけを選択的にエッチングすることが可能となるのである。 When phosphorus is doped into the silicon oxide film, it has an early etching rate to hydrogen fluoride water, so that it is possible to selectively etch only PSG.
 この方法は特殊な装置を必要としない利点があるが、犠牲層となる種膜を、下クラッド層とシリコン基板の間に成膜することが必須となる。 Although this method has the advantage of not requiring a special device, it is essential to form a sacrificial seed film between the lower cladding layer and the silicon substrate.
 この方法の課題は単に成膜工程が増えてしまうだけではない。犠牲層上に積層するシリコン酸化膜は、犠牲層に対して高いエッチング選択性を保ちつつ、導波路として機能する屈折率や軟化温度を調整しなければならない。 The problem with this method is not only the increase in the number of film formation steps. The silicon oxide film stacked on the sacrificial layer must be adjusted in refractive index and softening temperature to function as a waveguide while maintaining high etching selectivity to the sacrificial layer.
 これは、製造プロセス全体の設計自由度を大きく奪ってしまうことを意味する。また、フッ化水素は犠牲層膜以外のシリコン酸化膜も多かれ少なかれエッチングしてしまうため、光導波路としてダメージなく作製するための設計と技術が必要となる。 This means that the design process of the entire manufacturing process is largely lost. In addition, since hydrogen fluoride also etches silicon oxide films other than the sacrificial layer film more or less, design and technology for manufacturing without damage as an optical waveguide are required.
 そこで、代替手段としてシリコン基板をエッチングする方法がある。この場合には、犠牲層は不要であるため、従来の確立された光導波路製造プロセスに何ら影響なくブリッジ構造を実現することができる。 Therefore, there is a method of etching a silicon substrate as an alternative means. In this case, since the sacrificial layer is unnecessary, the bridge structure can be realized without any influence on the conventional established optical waveguide manufacturing process.
 このような方法は、例えば、“Bridge-Suspended Silica-Waveguide Thermo-Optic Phase Shifter and Its Application to Mach-Zehnder Type Optical Switch(A.Sugita et al., Trans. IEICE,Vol.E73(1990) pp.105-109)”(以下では、非特許文献と称する)に開示されている。 Such a method is described, for example, in “Bridge-Suspended Silica-Waveguide Thermo-Optic Phase Shifter and Its Application to Mach-Zehnder Type Optical Switch (A. Sugita et al., Trans. IEICE, Vol. E 73 (1990)) pp. 105-109) "(hereinafter referred to as non-patent documents).
 非特許文献にも開示されているが、通常、シリコン基板のエッチングは、リッジ構造を形成した後に、シリコンをエッチングするガスまたは溶液に晒すことで実現される。 Although disclosed in the non-patent document, etching of a silicon substrate is generally realized by forming a ridge structure and then exposing the silicon to a gas or solution for etching.
 非特許文献にはドライエッチングによってシリコン基板をエッチングするとだけ記されているが、フッ化キセノンなどのガスを使用することでシリコン基板の等方的なエッチングが実現可能である。 Although non-patent documents only mention etching a silicon substrate by dry etching, isotropic etching of the silicon substrate can be realized by using a gas such as xenon fluoride.
 また、関連技術の他の例としてエアブリッジ構造のシリコン細線光導波路の発明が、特表2001-521180号公報(以下では、特許文献2と称する)に開示されている。 Further, as another example of the related art, the invention of a silicon thin wire optical waveguide having an air bridge structure is disclosed in Japanese Patent Application Publication No. 2001-521180 (hereinafter referred to as Patent Document 2).
 さらに、ヒータが形成されたクラッド層上に、さらに保護層として絶縁膜を成膜する熱光学位相シフタが、特開2004-279993号公報(以下では、特許文献3と称する)の段落0053、0054および図3(b)に開示されている。 Furthermore, a thermo-optical phase shifter for forming an insulating film as a protective layer on a cladding layer on which a heater is formed is disclosed in JP-A 2004-279993 (hereinafter referred to as Patent Document 3), paragraphs 0053 and 0054. And FIG. 3 (b).
 しかしながら、上記のようなシリコン基板をエッチングする方法に限らず、リッジ構造、ブリッジ構造、いずれの場合においても次のような課題がある。 However, the following problems are encountered in any of the ridge structure and the bridge structure in addition to the method of etching the silicon substrate as described above.
 通常、光導波路の作製において、ボイド(void:空間)が発生しないようにコアを埋め込む必要があるため、埋め込み層や上クラッド層には、軟化点が比較的低い膜を使用する。 Usually, in the fabrication of the optical waveguide, it is necessary to embed the core so that voids do not occur, so a film having a relatively low softening point is used for the buried layer and the upper cladding layer.
 これらは何もドーピングされていないNSG(Non-dope Silicate Glass)にリンやボロンなどがドーピングされたPSGやBPSG(Borophospho Silicate Glass)などに代表される。 These are typified by PSG and BPSG (Borophospho Silicate Glass) in which phosphorus, boron and the like are doped into NSG (Non-dope Silicate Glass) not doped with anything.
 ところが、このような膜は水分に対して非常に影響を受けやすいという弱点を持つ。すなわちリンやボロンが水分と反応しやすい特徴を持つため、湿気を含む環境に曝された場合に、表面に析出してしまう。 However, such membranes have the disadvantage that they are very sensitive to moisture. That is, since phosphorus and boron have a characteristic of easily reacting with moisture, they will be deposited on the surface when exposed to an environment containing moisture.
 特にリッジ構造やブリッジ構造など有する光導波路においては、コアから外部環境までの距離が非常に短く、コア周辺のクラッドを構成するPSGやBPSGの湿気による変質は、屈折率や応力変化をもたらし、光導波路の特性を容易に変化させてしまう。 In particular, in an optical waveguide having a ridge structure or a bridge structure, the distance from the core to the external environment is very short, and the deterioration of PSG and BPSG constituting the cladding around the core due to moisture brings about a change in refractive index and stress. The characteristics of the waveguide are easily changed.
 一方、前述の特許文献3に、ヒータが形成されたクラッド層上に保護層として絶縁膜を成膜する発明が開示されているが、これはヒータ上面に絶縁層を形成しただけであり、後述する本発明のようにクラッド層の露出部分を覆う発明とは構成が全く異なる。 On the other hand, although the invention which forms an insulating film into a film as a protective layer on the cladding layer in which the heater was formed is disclosed by the above-mentioned patent document 3, this is only forming the insulating layer on the heater upper surface. The configuration is completely different from the invention of covering the exposed part of the cladding layer as in the present invention.
 したがって、前述の特許文献1~3および非特許文献のいずれにも本発明が解決しようとする課題は開示されていない。 Therefore, the problems to be solved by the present invention are not disclosed in any of the above-mentioned Patent Documents 1 to 3 and non-patent documents.
 本発明の目的の一つは、コア周辺のクラッドの湿気による変質を防止することが可能な光導波路、光導波回路、および光導波回路の製造方法を提供することである。 One of the objects of the present invention is to provide an optical waveguide, an optical waveguide circuit, and a method of manufacturing an optical waveguide circuit capable of preventing the deterioration of the cladding around the core due to moisture.
 本発明の一側面の光導波路は、光が導波するコアと、コアを覆うクラッド層と、クラッド層の露出部分を覆う、シリコン酸化物よりも水分の透過性が低い部材である低透湿性部材と、を有する構成である。 The optical waveguide according to one aspect of the present invention has low moisture permeability, which is a member having a lower moisture permeability than silicon oxide, which covers the core through which light is guided, the cladding layer covering the core, and the exposed portion of the cladding layer. And a member.
 また、本発明の一側面の光導波回路は、上記光導波路と、この光導波路を支持するシリコン基板と、を有する構成である。 An optical waveguide circuit according to one aspect of the present invention is configured to include the above-described optical waveguide and a silicon substrate supporting the optical waveguide.
 さらに、本発明の一側面の光導波回路の製造方法は、シリコン基板の上に第1のクラッド層およびコア層を順に形成し、コア層に対してフォトリソグラフィ技術およびエッチング技術によりコアを形成し、コアを覆う第2のクラッド層を形成し、フォトリソグラフィ技術およびエッチング技術によりコアの両側面のそれぞれから所定の距離だけ離れた位置の第1および第2のクラッド層に溝を形成し、第1および第2のクラッド層の露出部分に、シリコン酸化物よりも水分の透過性が低い部材である第1の低透湿性部材を形成するものである。 Furthermore, in the method of manufacturing an optical waveguide circuit according to one aspect of the present invention, a first cladding layer and a core layer are sequentially formed on a silicon substrate, and a core is formed on the core layer by photolithography and etching. Forming a second cladding layer covering the core, forming grooves in the first and second cladding layers at a predetermined distance from each of both side surfaces of the core by photolithography technology and etching technology; In the exposed portions of the first and second cladding layers, the first low moisture-permeable member, which is a member having lower moisture permeability than silicon oxide, is formed.
図1は本発明の第1実施例の光導波路の断面図である。FIG. 1 is a cross-sectional view of the optical waveguide of the first embodiment of the present invention. 図2は本発明の第2実施例の光導波回路の断面図である。FIG. 2 is a cross-sectional view of an optical waveguide circuit according to a second embodiment of the present invention. 図3は本発明の第3実施例の光導波回路の製造方法の処理手順を示すフローチャートである。FIG. 3 is a flow chart showing the processing procedure of the method of manufacturing the optical waveguide circuit of the third embodiment of the present invention. 図4Aは本発明の第4実施例の光導波回路の断面図である。FIG. 4A is a cross-sectional view of an optical waveguide circuit according to a fourth embodiment of the present invention. 図4Bは本発明の第5実施例の光導波回路の断面図である。FIG. 4B is a cross-sectional view of the optical waveguide circuit according to the fifth embodiment of the present invention. 図4Cは本発明の第6実施例の光導波回路の断面図である。FIG. 4C is a cross-sectional view of the optical waveguide circuit according to the sixth embodiment of the present invention. 図4Dは本発明の第7実施例の光導波回路の断面図である。FIG. 4D is a cross-sectional view of the optical waveguide circuit according to the seventh embodiment of the present invention. 図4Eは本発明の第8実施例の光導波回路の断面図である。FIG. 4E is a cross-sectional view of the optical waveguide circuit according to the eighth embodiment of the present invention. 図5Aは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5A is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Bは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5B is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Cは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5C is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Dは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5D is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Eは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5E is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Fは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5F is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Gは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5G is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Hは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5H is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Iは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5I is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Jは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5J is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Kは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5K is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図5Lは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。FIG. 5L is a schematic cross sectional view showing a processing procedure of a method of manufacturing the thermo-optic phase shifter of the ninth embodiment of the present invention. 図6は第9実施例の熱光学位相シフタの製造方法の処理手順を示すフローチャートである。FIG. 6 is a flow chart showing the processing procedure of the method of manufacturing the thermo-optic phase shifter of the ninth embodiment. 図7Aは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Bは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the eleventh example of the present invention. 図7Cは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7C is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the eleventh example of the present invention. 図7Dは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7D is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of the eleventh embodiment of the present invention. 図7Eは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7E is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Fは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7F is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Gは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7G is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of an eleventh example of the present invention. 図7Hは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7H is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Iは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7I is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Jは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7J is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図7Kは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7K is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure of the eleventh embodiment of the present invention. 図7Lは本発明の第11実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 7L is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to an eleventh embodiment of the present invention. 図8は第11実施例におけるブリッジ構造の製造方法の処理手順を示すフローチャートである。FIG. 8 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the eleventh embodiment. 図9Aは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9A is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Bは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9B is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth example of the present invention. 図9Cは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9C is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Dは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9D is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth embodiment of the present invention. 図9Eは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9E is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Fは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9F is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Gは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9G is a schematic cross sectional view showing a processing procedure of the manufacturing method of the bridge structure of the twelfth example of the present invention. 図9Hは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9H is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Iは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9I is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Jは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9J is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Kは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9K is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図9Lは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。FIG. 9L is a schematic cross sectional view showing a processing procedure of a method of manufacturing a bridge structure according to a twelfth embodiment of the present invention. 図10は第12実施例におけるブリッジ構造の製造方法の処理手順を示すフローチャートである。FIG. 10 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the twelfth embodiment. 図11Aは本発明のブリッジ構造の支柱の一例を説明するための平面図である。FIG. 11A is a plan view for explaining an example of a support of the bridge structure of the present invention. 図11Bは図11Aにおける線分B-Bの部位の断面図である。11B is a cross-sectional view of a portion of line segment BB in FIG. 11A. 図11Cは図11Aにおける線分A-Aの部位の断面図である。FIG. 11C is a cross-sectional view of the portion of line segment AA in FIG. 11A. 図12はシリコン基板に対する等方性エッチングによる、支柱の形成プロセスを示す斜視図である。FIG. 12 is a perspective view showing a process of forming a pillar by isotropic etching on a silicon substrate. 図13はシリコン基板に対する等方性エッチングによる、支柱の形成プロセスを示す斜視図である。FIG. 13 is a perspective view showing a process of forming a pillar by isotropic etching on a silicon substrate. 図14は本発明の光導波路に設けられる断熱溝の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the heat insulating groove provided in the optical waveguide of the present invention.
 以下、本発明の実施例について添付図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 第1実施例は光導波路の一例に関する。図1は本発明の第1実施例の光導波路の断面図である。図1を参照すると、光導波路1は光が導波するコア11と、コア11を覆うクラッド層12と、クラッド層12の露出部分を覆う低透湿性部材13とを含む構成である。低透湿性部材13は、シリコン酸化物よりも水分の透過性が低い部材である。 The first embodiment relates to an example of an optical waveguide. FIG. 1 is a cross-sectional view of the optical waveguide of the first embodiment of the present invention. Referring to FIG. 1, the optical waveguide 1 is configured to include a core 11 through which light is guided, a cladding layer 12 covering the core 11, and a low moisture permeability member 13 covering an exposed portion of the cladding layer 12. The low moisture-permeable member 13 is a member having lower moisture permeability than silicon oxide.
 第1実施例によれば、クラッド層12の露出部分が低透湿性部材13で覆われるため、コア11周辺のクラッド層12の湿気による変質を防止することが可能となる。 According to the first embodiment, since the exposed part of the cladding layer 12 is covered with the low moisture-permeable member 13, it is possible to prevent the deterioration of the cladding layer 12 around the core 11 due to moisture.
 第2実施例は光導波回路の一例に関する。図2は本発明の第2実施例の光導波回路の断面図である。なお、図1と同様の構成部分には同一番号を付し、その説明を省略する。 The second embodiment relates to an example of an optical waveguide circuit. FIG. 2 is a cross-sectional view of an optical waveguide circuit according to a second embodiment of the present invention. The same components as in FIG. 1 will be assigned the same reference numerals and descriptions thereof will be omitted.
 図2を参照すると、光導波回路2は、シリコン基板14と、光導波路1とを含む構成である。また、光導波路1は光が導波するコア11と、コア11を覆うクラッド層12と、クラッド層12の露出部分を覆う低透湿性部材13とを含む構成である。 Referring to FIG. 2, the optical waveguide circuit 2 is configured to include the silicon substrate 14 and the optical waveguide 1. The optical waveguide 1 is configured to include a core 11 through which light is guided, a cladding layer 12 covering the core 11, and a low moisture-permeable member 13 covering an exposed portion of the cladding layer 12.
 本実施例では、光導波路1をシリコン基板14から分離し、ブリッジ状に浮かせる構造(以下、「ブリッジ構造」と表示する)を採用している。 In the present embodiment, a structure in which the optical waveguide 1 is separated from the silicon substrate 14 and floated like a bridge (hereinafter referred to as “bridge structure”) is employed.
 なお、光導波路1をシリコン基板14上に載置する構成も可能である。 In addition, the structure which mounts the optical waveguide 1 on the silicon substrate 14 is also possible.
 第2実施例によれば、クラッド層12の露出部分が低透湿性部材13で覆われるため、コア11周辺のクラッド層12の湿気による変質を防止することが可能となる。したがって、クラッド層12の湿気による変質を防止することが可能な光導波回路2が得られる。 According to the second embodiment, since the exposed part of the cladding layer 12 is covered with the low moisture-permeable member 13, it is possible to prevent the deterioration of the cladding layer 12 around the core 11 due to moisture. Therefore, the optical waveguide circuit 2 capable of preventing the deterioration of the cladding layer 12 due to moisture is obtained.
 第3実施例は光導波回路の製造方法の一例に関する。図3は本発明の第3実施例の光導波回路の製造方法の処理手順を示すフローチャートである。 The third embodiment relates to an example of a method of manufacturing an optical waveguide circuit. FIG. 3 is a flow chart showing the processing procedure of the method of manufacturing the optical waveguide circuit of the third embodiment of the present invention.
 図3を参照すると、光導波回路の製造方法は、シリコン基板上に下クラッド層とコア層とを成膜する第1処理S1と、フォトリソグラフィおよびドライエッチングによりコアを形成する第2処理S2と、コアを上クラッド層で覆う第3処理S3と、フォトリソグラフィおよびドライエッチングによりコア両脇から所定の距離だけ離れた位置のクラッド層を除去することで、光導波路を形成する第4処理S4と、光導波路のクラッド層の露出部分上に低透湿性部材を成膜する第5処理S5とを含む構成である。 Referring to FIG. 3, in the method of manufacturing an optical waveguide circuit, a first process S1 for forming a lower cladding layer and a core layer on a silicon substrate, and a second process S2 for forming a core by photolithography and dry etching. A third process S3 of covering the core with the upper cladding layer, and a fourth process S4 of forming an optical waveguide by removing the cladding layer at a predetermined distance from both sides of the core by photolithography and dry etching And a fifth process S5 of forming a low moisture-permeable member on the exposed portion of the cladding layer of the optical waveguide.
 第3実施例によれば、上下クラッド層の露出部分が低透湿性部材で覆われるため、コア周辺のクラッド層の湿気による変質を防止することが可能となる。したがって、クラッド層の湿気による変質を防止することが可能な光導波回路2の製造方法が得られる。 According to the third embodiment, since the exposed portions of the upper and lower cladding layers are covered with the low moisture permeability member, it is possible to prevent the deterioration of the cladding layer around the core due to moisture. Therefore, a method of manufacturing the optical waveguide circuit 2 capable of preventing the deterioration of the cladding layer due to moisture is obtained.
 次に、第4実施例から第8実施例の光導波回路の構成を説明する。図4Aから図4Eのそれぞれは、本発明の第4実施例から第8実施例のそれぞれの光導波路を示す断面図である。 Next, the configuration of the optical waveguide circuit of the fourth to eighth embodiments will be described. FIGS. 4A to 4E are cross-sectional views showing the optical waveguides of the fourth to eighth embodiments of the present invention, respectively.
 第4実施例は光導波回路の他の一例に関する。 The fourth embodiment relates to another example of the optical waveguide circuit.
 図4Aは本発明の第4実施例の光導波回路の断面図である。なお、図1に示した構成と同様な構成には同一の符号を付し、その説明を省略する。 FIG. 4A is a cross-sectional view of an optical waveguide circuit according to a fourth embodiment of the present invention. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図4Aを参照すると、光導波回路3は、熱光学位相シフタを有する構造の一例である。 Referring to FIG. 4A, the optical waveguide circuit 3 is an example of a structure having a thermo-optic phase shifter.
 光導波回路3は、シリコン基板14と、光導波路4とを含む構成である。また、光導波路4は下クラッド層15と、下クラッド層15上に設けられたコア11と、コア11を覆う埋め込み層16と、埋め込み層16上に設けられた上クラッド層17と、上クラッド層17上に設けられた発熱部材(以下では、「ヒータ」と称する)18と、コア11、下クラッド層15、上クラッド層17、埋め込み層16およびヒータ18の露出部を覆う低透湿性部材13とを含む構成である。 The optical waveguide circuit 3 is configured to include a silicon substrate 14 and an optical waveguide 4. The optical waveguide 4 includes a lower cladding layer 15, a core 11 provided on the lower cladding layer 15, a buried layer 16 covering the core 11, an upper cladding layer 17 provided on the buried layer 16, and an upper cladding. Low-moisture-permeable member covering exposed portions of a heat generating member (hereinafter referred to as a "heater") 18 provided on the layer 17, the core 11, the lower cladding layer 15, the upper cladding layer 17, the embedded layer 16 and the heater 18 And 13 are included.
 本実施例では、光導波路4をシリコン基板14から分離し、ブリッジ状に浮かせるブリッジ構造を採用している。また、光導波路4の両側面のそれぞれから所定の距離だけ離れた部位に断熱溝(不図示)を設けたリッジ構造も採用している。さらに、低透湿性部材13の一例として、低透湿性部材13をシリコン窒化膜で構成している。 In this embodiment, a bridge structure in which the optical waveguide 4 is separated from the silicon substrate 14 and floated like a bridge is employed. Moreover, the ridge structure which provided the heat insulation groove (not shown) in the site | part which only predetermined distance separated from each of the both sides | surfaces of the optical waveguide 4 is also employ | adopted. Furthermore, as an example of the low moisture-permeable member 13, the low moisture-permeable member 13 is formed of a silicon nitride film.
 断熱溝(不図示)には、空気が充填されたり、真空にされたりすることになるが、気体の熱伝導率はクラッドを形成する膜よりも十分に小さいため、ヒータ18から発生する熱がクラッドに拡散することを防ぐことができる。 The heat insulation groove (not shown) is filled with air or evacuated, but since the thermal conductivity of the gas is sufficiently smaller than the film forming the cladding, the heat generated from the heater 18 It is possible to prevent diffusion into the cladding.
 本実施例では、ヒータ18を含むブリッジ構造全体をシリコン窒化膜で覆っているため、コア11周辺の下クラッド層15、上クラッド層17はシリコン窒化膜で完全に覆われた構造となる。 In this embodiment, since the entire bridge structure including the heater 18 is covered with the silicon nitride film, the lower cladding layer 15 and the upper cladding layer 17 around the core 11 are completely covered with the silicon nitride film.
 シリコン窒化膜は、結晶構造が非常に緻密であるため、透湿性がシリコン酸化物よりも低いことが知られている。この性質は、シリコン酸窒化物(SiON)についても同様で、本実施例においてシリコン窒化膜に代えてシリコン酸窒化膜を用いることもできる。 Silicon nitride films are known to have lower moisture permeability than silicon oxides because the crystal structure is very dense. This property is the same for silicon oxynitride (SiON), and a silicon oxynitride film can be used instead of the silicon nitride film in this embodiment.
 第4実施例によれば、このような構造とすることで、光導波路4として機能するコア11、下クラッド層15および上クラッド層17と、外部との間で水分の出入りが断たれるため、結果として膜変質による屈折率や応力変化を防止することが可能となる。 According to the fourth embodiment, with such a structure, the entrance and exit of moisture is interrupted between the core 11 functioning as the optical waveguide 4, the lower cladding layer 15, the upper cladding layer 17, and the outside. As a result, it is possible to prevent a change in refractive index and stress due to film deterioration.
 第5実施例は光導波回路の他の一例に関する。図4Bは本発明の第5実施例の光導波回路の断面図である。なお、図1に示した構成と同様な構成には同一の符号を付し、その説明を省略する。 The fifth embodiment relates to another example of the optical waveguide circuit. FIG. 4B is a cross-sectional view of the optical waveguide circuit according to the fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure similar to the structure shown in FIG. 1, and the description is abbreviate | omitted.
 図4Bを参照すると、光導波回路5は、熱光学位相シフタを有する構造の一例である。 Referring to FIG. 4B, the optical waveguide circuit 5 is an example of a structure having a thermo-optic phase shifter.
 光導波回路5は、シリコン基板14と、光導波路6とを含む構成である。第5実施例は一部のシリコン窒化膜(SiN)を上クラッド層17内部に埋め込んだ構造となっている。その他の構成は第4実施例と同様である。 The optical waveguide circuit 5 is configured to include a silicon substrate 14 and an optical waveguide 6. The fifth embodiment has a structure in which a part of silicon nitride film (SiN) is embedded in the upper cladding layer 17. The other configuration is the same as that of the fourth embodiment.
 第5実施例によれば、第4実施例と同様の効果を奏する。 According to the fifth embodiment, the same effect as the fourth embodiment can be obtained.
 第6実施例は光導波回路の他の一例に関する。図4Cは本発明の第6実施例の光導波回路の断面図である。なお、図1に示した構成と同様な構成には同一の符号を付し、その説明を省略する。 The sixth embodiment relates to another example of the optical waveguide circuit. FIG. 4C is a cross-sectional view of the optical waveguide circuit according to the sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure similar to the structure shown in FIG. 1, and the description is abbreviate | omitted.
 図4Cを参照すると、光導波回路7は、熱光学位相シフタを有する構造の一例である。 Referring to FIG. 4C, the optical waveguide circuit 7 is an example of a structure having a thermo-optic phase shifter.
 光導波回路7は、シリコン基板14と、光導波路8とを含む構成である。第6実施例は一部のシリコン窒化膜(SiN)を下クラッド層15内部に埋め込んだ構造となっている。その他の構成は第4実施例と同様である。 The optical waveguide circuit 7 is configured to include a silicon substrate 14 and an optical waveguide 8. The sixth embodiment has a structure in which a part of silicon nitride film (SiN) is embedded in the lower cladding layer 15. The other configuration is the same as that of the fourth embodiment.
 第6実施例によれば、第4実施例と同様の効果を奏する。 According to the sixth embodiment, the same effect as that of the fourth embodiment can be obtained.
 第7実施例は光導波回路の他の一例に関する。図4Dは本発明の第7実施例の光導波回路の断面図である。なお、図1に示した構成と同様な構成には同一の符号を付し、その説明を省略する。 The seventh embodiment relates to another example of the optical waveguide circuit. FIG. 4D is a cross-sectional view of the optical waveguide circuit according to the seventh embodiment of the present invention. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図4Dを参照すると、光導波回路9は、熱光学位相シフタを有する構造の一例である。 Referring to FIG. 4D, the optical waveguide circuit 9 is an example of a structure having a thermo-optic phase shifter.
 光導波回路9は、シリコン基板14と、光導波路10とを含む構成である。第7実施例は完全なブリッジ構造ではなく、リッジ構造とブリッジ構造の中間的構造を有している場合の例である。その他の構成は第4実施例と同様である。 The optical waveguide circuit 9 is configured to include a silicon substrate 14 and an optical waveguide 10. The seventh embodiment is not a complete bridge structure, but is an example in the case of having an intermediate structure of a ridge structure and a bridge structure. The other configuration is the same as that of the fourth embodiment.
 第7実施例によれば、第4実施例と同様の効果を奏する。 According to the seventh embodiment, the same effect as that of the fourth embodiment can be obtained.
 第8実施例は光導波回路の他の一例に関する。図4Eは本発明の第8実施例の光導波回路の断面図である。なお、図1に示した構成と同様な構成には同一の符号を付し、その説明を省略する。 The eighth embodiment relates to another example of the optical waveguide circuit. FIG. 4E is a cross-sectional view of the optical waveguide circuit according to the eighth embodiment of the present invention. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図4Eを参照すると、光導波回路21は、熱光学位相シフタを有する構造の一例である。 Referring to FIG. 4E, the optical waveguide circuit 21 is an example of a structure having a thermo-optic phase shifter.
 光導波回路21は、シリコン基板14と、光導波路22とを含む構成である。第8実施例に示すように、ブリッジ構造が必要なく、単なるリッジ構造でも問題ない場合は、同図に示すように断熱溝形成後にシリコン窒化膜(SiN)を成膜するだけで課題解決の効果が得られる。 The optical waveguide circuit 21 is configured to include a silicon substrate 14 and an optical waveguide 22. As shown in the eighth embodiment, when there is no need for a bridge structure and there is no problem even with a simple ridge structure, as shown in the figure, the effect of solving the problem can be achieved simply by forming a silicon nitride film (SiN) after forming the heat insulation groove Is obtained.
 第8実施例によれば、第4実施例と同様の効果を奏する。 According to the eighth embodiment, the same effect as that of the fourth embodiment can be obtained.
 第9実施例は本発明に係る熱光学位相シフタの製造方法の一例に関する。図5A~図5Lは本発明の第9実施例の熱光学位相シフタの製造方法の処理手順を示す断面模式図である。図6は第9実施例の熱光学位相シフタの製造方法の処理手順を示すフローチャートである。但し、以下の説明で使用する装置や使用する膜種などは一例であり、本発明はこれらに限定されない。 The ninth embodiment relates to an example of a method of manufacturing a thermo-optic phase shifter according to the present invention. 5A to 5L are schematic sectional views showing the processing procedure of the method of manufacturing the thermo-optic phase shifter according to the ninth embodiment of the present invention. FIG. 6 is a flow chart showing the processing procedure of the method of manufacturing the thermo-optic phase shifter of the ninth embodiment. However, the apparatus used in the following description, the film type used, etc. are an example, and this invention is not limited to these.
 まず、シリコン基板14の上にCVDなどによりSiN52を成膜する(図5Aおよび図6のS11)。 First, SiN 52 is deposited on the silicon substrate 14 by CVD or the like (S11 in FIG. 5A and FIG. 6).
 次に下クラッド層15の材料となるNSG、コア層54の材料となるSiONを同装置にて成膜する(図5Bおよび図6のS12)。 Next, NSG to be the material of the lower cladding layer 15 and SiON to be the material of the core layer 54 are deposited by the same apparatus (FIG. 5B and S12 in FIG. 6).
 フォトリソグラフィおよびドライエッチング技術によってコア11を形成し、必要に応じた熱処理を施す(図5Cおよび図6のS13)。 The core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIG. 5C and S13 in FIG. 6).
 その後、コア11を埋め込むための埋め込み層16や上クラッド層17となるBPSGやPSGなどの軟化点の低い膜を成膜し、必要に応じた熱処理を施す(図5Dおよび図6のS14)。 Thereafter, a film having a low softening point such as BPSG or PSG to be the embedded layer 16 for embedding the core 11 or the upper cladding layer 17 is formed, and heat treatment is performed as required (S14 in FIG. 5D and FIG. 6).
 次に、上クラッド層17上に、ヒータとなるPtやTiなどの金属膜をスパッタリング装置あるいは蒸着装置などで成膜し、フォトリソグラフィおよびエッチングによってコア直上にヒータ18を形成する(図5Eおよび図6のS15)。 Next, a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 5E and FIG. 6 S15).
 次に、上クラッド層17の上にヒータ18を覆うSiN59を成膜し、その上からのちにストッパ層の役割を担うクロム膜60を成膜する(図5Fおよび図6のS16)。 Next, an SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed later from above (FIG. 5F and S16 in FIG. 6).
 次に、フォトリソグラフィ技術によりクロム膜60の上に所定のパターンのレジスト61を形成する。続いて、レジスト61の上からドライエッチングを行うことにより、コア両脇から所定の距離だけ離れた位置のクラッド層を除去し、断熱溝を形成する(図5Gおよび図6のS17)。 Next, a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed on the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulation groove (FIG. 5G and S17 in FIG. 6).
 レジスト61を除去した後、シリコン基板14の露出面(断熱溝底面に相当)とクロム膜60の上にSiN62を成膜し(図5Hおよび図6のS18)、そのまま再びドライエッチを行う(図5Iおよび図6のS19)。ドライエッチに使用するRIE(Reactive Ion Etching)は異方性があるため、断熱溝側壁に堆積したSiN62はほとんど除去されず、クロム膜60上のSiN62および断熱溝底面のSiN62のみが除去される。RIEのクロム膜60に対するエッチングレートはSiN62と比較して遅いため、クロム膜60がストッパ層としての役目を果たしてエッチングを完了する。 After removing the resist 61, SiN 62 is formed on the exposed surface of the silicon substrate 14 (corresponding to the bottom of the heat insulation groove) and the chromium film 60 (S18 in FIG. 5H and FIG. 6) and dry etching is performed again (FIG. 5I and S19 of FIG. 6). Since RIE (Reactive Ion Etching) used for dry etching is anisotropic, the SiN 62 deposited on the side wall of the adiabatic groove is hardly removed, and only the SiN 62 on the chromium film 60 and the SiN 62 at the bottom of the adiabatic groove are removed. Since the etching rate for the chromium film 60 of RIE is slower compared to SiN 62, the chromium film 60 serves as a stopper layer to complete the etching.
 その後、クロム膜60をエッチャントで除去する(図5Jおよび図6のS20)。 Thereafter, the chromium film 60 is removed by an etchant (FIG. 5J and S20 in FIG. 6).
 最後に、フッ化キセノンガスなどによってシリコンを等方的にエッチングし(図5Kおよび図6のS21)、導波路直下のシリコンが橋脚となる支柱部分(不図示)を残してすべてエッチングされたところで(図5Lおよび図6のS22)、ブリッジ構造が完成する。 Finally, silicon is etched isotropically with xenon fluoride gas or the like (FIGS. 5K and S21 in FIG. 6), and all the silicon just under the waveguide is etched except a pillar portion (not shown) which becomes a bridge. (FIG. 5L and S22 in FIG. 6), the bridge structure is completed.
 ここで、下地のSiN52を堆積させずに、図5Gで説明した工程の断熱溝形成後にSiNを成膜すれば、図4Eの構造が得られる。また、図5Fで説明した工程で成膜するSiN59を、上クラッド層で挟み込むように成膜すれば、図4Bの構造が得られる。図5Aで説明した工程で成膜するSiN52を、下クラッド層で挟み込むように成膜すれば、図4Cの構造を得ることができる。 Here, without depositing the underlying SiN 52, if the SiN film is formed after the formation of the heat insulating groove in the step described in FIG. 5G, the structure of FIG. 4E is obtained. Further, if the SiN 59 formed in the step described in FIG. 5F is formed so as to be sandwiched between the upper cladding layers, the structure shown in FIG. 4B is obtained. If the SiN 52 formed in the process described in FIG. 5A is formed so as to be sandwiched between the lower cladding layers, the structure shown in FIG. 4C can be obtained.
 第9実施例によれば、クラッド層の露出部分が低透湿性部材(本実施例では、SiN膜)で覆われるため、コア周辺のクラッド層の湿気による変質を防止することが可能となる。 According to the ninth embodiment, since the exposed part of the cladding layer is covered with the low moisture-permeable member (SiN film in this embodiment), it is possible to prevent the deterioration of the cladding layer around the core due to moisture.
 第10実施例は本発明に係る熱光学位相シフタの断熱溝側壁からコアまでの距離に関する。第10実施例の説明には前述の図4Eを用いる。 The tenth embodiment relates to the distance from the heat insulating groove side wall to the core of the thermo-optic phase shifter according to the present invention. The above-mentioned FIG. 4E is used for the description of the tenth embodiment.
 図4Eに示す断熱溝側壁13aから、コア11までの距離をdとする。コア11と伝播する光は、一般的に、下クラッド15,上クラッド層17にある程度浸み出しながら伝播する。 The distance from the heat insulation groove side wall 13a shown in FIG. 4E to the core 11 is d. The light propagating with the core 11 generally propagates while leaking to a certain extent to the lower cladding 15 and the upper cladding layer 17.
 SiNは屈折率が2前後と、一般的なコア11の屈折率より高く、側壁13aにSiN膜を成膜する場合は、SiN膜に伝播光が結合しないよう、dを十分大きくする必要がある。一方で、dをあまり大きくすると、ヒータ18からの熱がシリコン基板14側に逃げやすくなるため位相シフタとしての消費電力が大きくなってしまう。 SiN has a refractive index of around 2 and higher than the refractive index of a general core 11. When depositing a SiN film on the side wall 13a, d needs to be large enough so that propagating light is not coupled to the SiN film . On the other hand, if d is too large, the heat from the heater 18 easily escapes to the silicon substrate 14 side, and the power consumption as a phase shifter is increased.
 このため、dは最適な値を選択する必要がある。一般的に、導波路の比屈折率差Δが0.7%の場合、dは15μm程度が最適であり、導波路の比屈折率差Δが6%程度の場合、dは3μm程度が最適である。これらはBPM(business process management)を用いたシミュレーションによって求めることが可能である。 For this reason, d needs to select an optimal value. In general, when the relative refractive index difference Δ of the waveguide is 0.7%, d is optimally about 15 μm, and when the relative refractive index difference Δ of the waveguide is about 6%, d is preferably about 3 μm. It is. These can be determined by simulation using BPM (business process management).
 第10実施例によれば、断熱溝側壁からコアまでの最適距離を得ることが可能となる。 According to the tenth embodiment, it is possible to obtain the optimum distance from the heat insulation groove side wall to the core.
 第11実施例は、本発明の、犠牲層エッチングを利用したブリッジ構造の製造方法に関する。図7A~図7Lは本発明の第11実施例におけるブリッジ構造の製造方法の処理手順を示す断面模式図である。図8は第11実施例におけるブリッジ構造の製造方法の処理手順を示すフローチャートである。 The eleventh embodiment relates to a method of manufacturing a bridge structure using sacrificial layer etching according to the present invention. 7A to 7L are schematic sectional views showing the processing procedure of the method for manufacturing a bridge structure in the eleventh embodiment of the present invention. FIG. 8 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the eleventh embodiment.
 まず、シリコン基板14の上にCVDなどにより犠牲層63を成膜する(図7Aおよび図8のS31)。犠牲層63はBHF(バッファードフッ酸)によるエッチングレートが早いPSG膜などが好ましい。さらに、犠牲層63の上にSiN52を成膜する。 First, the sacrificial layer 63 is formed on the silicon substrate 14 by CVD or the like (S31 in FIGS. 7A and 8). The sacrificial layer 63 is preferably a PSG film or the like having a high etching rate by BHF (buffered hydrofluoric acid). Further, SiN 52 is formed on the sacrificial layer 63.
 次に下クラッド層15の材料となるNSG、コア54層の材料となるSiONを成膜する(図7Bおよび図8のS32)。 Next, NSG to be a material of the lower cladding layer 15 and SiON to be a material of the core 54 are formed (FIG. 7B and S32 in FIG. 8).
 フォトリソグラフィおよびドライエッチング技術によってコア11を形成し、必要に応じた熱処理を施す(図7Cおよび図8のS33)。 The core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIGS. 7C and S33 in FIG. 8).
 その後、埋め込み層16や上クラッド層17となるBPSGやPSGなどの軟化点の低い膜を成膜し、必要に応じた熱処理を施す(図7Dおよび図8のS34)。 Thereafter, a film having a low softening point such as BPSG or PSG to be the buried layer 16 or the upper cladding layer 17 is formed, and heat treatment is performed as needed (FIG. 7D and S34 in FIG. 8).
 次に、上クラッド層17上に、ヒータとなるPtやTiなどの金属膜をスパッタリング装置あるいは蒸着装置などで成膜し、フォトリソグラフィおよびエッチングによってコア直上にヒータ18を形成する(図7Eおよび図8のS35)。 Next, a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 7E and FIG. S35 of 8).
 次に、上クラッド層17の上にヒータ18を覆うSiN59を成膜し、その上からのちにストッパ層の役割を担うクロム膜60を成膜する(図7Fおよび図8のS36)。 Next, SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed thereafter from above (FIG. 7F and S 36 in FIG. 8).
 次に、フォトリソグラフィ技術によりクロム膜60の上に所定のパターンのレジスト61を形成する。続いて、レジスト61の上からドライエッチングを行うことにより、コア両脇から所定の距離だけ離れた位置のクラッド層を除去し、断熱溝を形成する(図7Gおよび図8のS37)。 Next, a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed from above the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulating groove (FIG. 7G and S37 in FIG. 8).
 次に、図7Gに示す構造をBHFなどに浸漬し、犠牲層63を選択的にエッチングし(図7Hおよび図8のS38)、ブリッジ構造が形成される(図7Iおよび図8のS39)。 Next, the structure shown in FIG. 7G is immersed in BHF or the like to selectively etch the sacrificial layer 63 (FIG. 7H and S38 in FIG. 8), and a bridge structure is formed (FIG. 7I and S39 in FIG. 8).
 その後、レジストを除去し、SiN62を成膜する(図7Jおよび図8のS40)。 Thereafter, the resist is removed and SiN 62 is deposited (FIG. 7J and S40 in FIG. 8).
 ドライエッチングによって、断熱溝底面(シリコン基板14の上面)およびクロム膜60上のSiN62を除去する(図7Kおよび図8のS41)。 By dry etching, the SiN 62 on the bottom of the heat insulation groove (the upper surface of the silicon substrate 14) and the chromium film 60 is removed (FIG. 7K and S41 in FIG. 8).
 最後にクロム膜60を除去して、ブリッジ構造が完成する(図7Lおよび図8のS42)。 Finally, the chromium film 60 is removed to complete the bridge structure (FIG. 7L and S42 of FIG. 8).
 第11実施例によれば、犠牲層エッチングを利用したブリッジ構造が得られる。 According to the eleventh embodiment, a bridge structure using sacrificial layer etching is obtained.
 第12実施例は、本発明の一例における光導波路をブリッジ化した後、光導波路をSiNでパッシベーションする方法に関する。図9A~図9Lは本発明の第12実施例のブリッジ構造の製造方法の処理手順を示す断面模式図である。図10は第12実施例におけるブリッジ構造の製造方法の処理手順を示すフローチャートである。 The twelfth embodiment relates to a method of passivating the optical waveguide with SiN after bridging the optical waveguide in one example of the present invention. 9A to 9L are schematic sectional views showing the processing procedure of the method for manufacturing a bridge structure of the twelfth embodiment of the present invention. FIG. 10 is a flow chart showing the processing procedure of the manufacturing method of the bridge structure in the twelfth embodiment.
 まず、シリコン基板14の上にCVDなどによりSiN52を成膜する(図9Aおよび図10のS51)。 First, SiN 52 is deposited on the silicon substrate 14 by CVD or the like (S51 in FIGS. 9A and 10).
 次に下クラッド層15の材料となるNSG、コア層54の材料となるSiONを同装置にて成膜する(図9Bおよび図10のS52)。 Next, NSG to be the material of the lower cladding layer 15 and SiON to be the material of the core layer 54 are deposited by the same apparatus (FIG. 9B and S52 in FIG. 10).
 フォトリソグラフィおよびドライエッチング技術によってコア11を形成し、必要に応じた熱処理を施す(図9Cおよび図10のS53)。 The core 11 is formed by photolithography and dry etching techniques, and heat treatment is performed as needed (FIGS. 9C and S53 in FIG. 10).
 その後、埋め込み層16や上クラッド層17となるBPSGやPSGなどの軟化点の低い膜を成膜し、必要に応じた熱処理を施す(図9Dおよび図10のS54)。 Thereafter, a film having a low softening point such as BPSG or PSG to be the buried layer 16 or the upper cladding layer 17 is formed, and heat treatment is performed as needed (FIG. 9D and S54 in FIG. 10).
 次に、上クラッド層17上に、ヒータとなるPtやTiなどの金属膜をスパッタリング装置あるいは蒸着装置などで成膜し、フォトリソグラフィおよびエッチングによってコア直上にヒータ18を形成する(図9Eおよび図10のS55)。 Next, a metal film such as Pt or Ti to be a heater is formed on the upper cladding layer 17 by a sputtering apparatus or a vapor deposition apparatus, and the heater 18 is formed right above the core by photolithography and etching (FIG. 9E and FIG. 10 S55).
 次に、上クラッド層17の上にヒータ18を覆うSiN59を成膜し、その上からのちにストッパ層の役割を担うクロム膜60を成膜する(図9Fおよび図10のS56)。 Next, SiN 59 covering the heater 18 is formed on the upper cladding layer 17, and a chromium film 60 serving as a stopper layer is formed thereafter (FIG. 9F and S56 in FIG. 10).
 次に、フォトリソグラフィ技術によりクロム膜60の上に所定のパターンのレジスト61を形成する。続いて、レジスト61の上からドライエッチングを行うことにより、コア両脇から所定の距離だけ離れた位置のクラッド層を除去し、断熱溝を形成する(図9Gおよび図10のS57)。 Next, a resist 61 having a predetermined pattern is formed on the chromium film 60 by photolithography. Subsequently, dry etching is performed from above the resist 61 to remove the cladding layer at a predetermined distance from both sides of the core, thereby forming a heat insulating groove (FIG. 9G and S57 in FIG. 10).
 次に、フッ化キセノンガスなどによってシリコン基板14の上面を等方的にエッチングし(図9Hおよび図10のS58)、ブリッジ構造が形成される(図9Iおよび図10のS59)。 Next, the top surface of the silicon substrate 14 is isotropically etched with xenon fluoride gas or the like (FIGS. 9H and S58 in FIG. 10) to form a bridge structure (FIG. 9I and FIG. 10 S59).
 レジスト61を除去し、その上からSiN62を成膜する(図9Jおよび図10のS60)。 The resist 61 is removed, and SiN 62 is deposited thereon (FIGS. 9J and S60 in FIG. 10).
 次に、ドライエッチングによって、断熱溝底面(シリコン基板14の上面)およびクロム膜60上のSiN62を除去する(図9Kおよび図10のS61)。 Next, the SiN 62 on the bottom of the heat insulation groove (upper surface of the silicon substrate 14) and the chromium film 60 is removed by dry etching (FIG. 9K and S61 in FIG. 10).
 最後にクロム膜60を除去して、ブリッジ構造が完成する(図9Lおよび図10のS62)。 Finally, the chromium film 60 is removed to complete the bridge structure (FIG. 9L and S62 in FIG. 10).
 第12実施例によれば、ブリッジ化した後でクラッド層をSiNでパッシベーションしたブリッジ構造が得られる。 According to the twelfth embodiment, a bridge structure in which the cladding layer is passivated with SiN after being bridged is obtained.
 第13実施例はブリッジ構造の支柱の構成に関する。図11A~図11Cは本発明のブリッジ構造の支柱の一例を示す構成図である。図11Aは位相シフタ部の平面図である。図11Bは図11Aにおける線分B-Bの部位の断面図である。図11Cは図11Aにおける線分A-Aの部位の断面図である。 The thirteenth embodiment relates to the configuration of a support of a bridge structure. 11A to 11C are configuration diagrams showing an example of a support of the bridge structure of the present invention. FIG. 11A is a plan view of the phase shifter portion. 11B is a cross-sectional view of a portion of line segment BB in FIG. 11A. FIG. 11C is a cross-sectional view of the portion of line segment AA in FIG. 11A.
 図11Aおよび図11Bに示す光導波路部では、下クラッド層15、埋め込み層16および上クラッド層17が順に形成されている。コア11が埋め込み層16内に設けられ、ヒータ31が上クラッド層17の上に設けられている。光導波路部の最上層と最下層にはSiNが設けられている。 In the optical waveguide portion shown in FIGS. 11A and 11B, the lower cladding layer 15, the buried layer 16 and the upper cladding layer 17 are formed in order. The core 11 is provided in the buried layer 16, and the heater 31 is provided on the upper cladding layer 17. SiN is provided in the top layer and the bottom layer of the optical waveguide portion.
 例えば、埋め込み層16、下クラッド層15および上クラッド層17に対して図11Aに示すような形状に断熱溝32を形成し、続いて、シリコン基板33の上面をエッチングする。これにより、図14に示す線分A-Aの部位は、図11Cに示すように、光導波路部の下地部分となるシリコン基板33の上面から所定の深さまでが完全にサイドエッジされ、光導波路部がブリッジ構造となる。一方、図14に示す線分B-Bの部位は、図11Bに示すように、シリコン基板33による支柱34が残る。 For example, the heat insulating groove 32 is formed in the shape as shown in FIG. 11A with respect to the buried layer 16, the lower cladding layer 15, and the upper cladding layer 17, and then the upper surface of the silicon substrate 33 is etched. As a result, as shown in FIG. 11C, the portion of the line segment AA shown in FIG. 14 is completely side edged from the upper surface of the silicon substrate 33 which is the base portion of the optical waveguide portion to a predetermined depth. The part is a bridge structure. On the other hand, as shown in FIG. 11B, in the portion of the line segment B-B shown in FIG.
 図12および図13は、シリコン基板に対する等方性エッチングによる、支柱34の形成プロセスを示す斜視図である。図12がシリコン基板に等方性エッチングを行う前の状態を示し、図13がシリコン基板に等方性エッチングを行った後の状態を示している。 12 and 13 are perspective views showing the process of forming the pillars 34 by isotropic etching on a silicon substrate. FIG. 12 shows a state before isotropic etching is performed on a silicon substrate, and FIG. 13 shows a state after performing isotropic etching on a silicon substrate.
 例えば、図5Jに示した構造の外観斜視図は図12に相当し、図5Kに示した断面構造は図13の線分B-Bの部位の断面に相当し、かつ、図5Lに示した断面構造は図13の線分A-Aの部位の断面に相当する。なお、図12および図13では便宜上、光導波路部の周辺に形成されたSiN膜を一部省略して記載している。 For example, the external perspective view of the structure shown in FIG. 5J corresponds to FIG. 12, and the cross-sectional structure shown in FIG. 5K corresponds to the cross section of the portion of line segment B-B in FIG. The cross sectional structure corresponds to the cross section of the portion of the line segment AA in FIG. In FIG. 12 and FIG. 13, for the sake of convenience, the SiN film formed around the optical waveguide portion is partially omitted.
 第13実施例によれば、本発明に係る熱光学位相シフタのブリッジ構造および支柱が得られる。 According to the thirteenth embodiment, the bridge structure and the support of the thermo-optic phase shifter according to the present invention are obtained.
 第14実施例は断熱溝の構成に関する。図14は本発明の光導波路に設けられる断熱溝の一例を示す断面図である。図14は図5Gに示した断面構造に対して横方向(図を中心にして紙面に平行な左右の方向)に拡張して表示した断面図である。 The fourteenth embodiment relates to the configuration of the heat insulating groove. FIG. 14 is a cross-sectional view showing an example of the heat insulating groove provided in the optical waveguide of the present invention. FIG. 14 is a cross-sectional view in which the cross-sectional structure shown in FIG. 5G is expanded and displayed in the lateral direction (the left and right directions parallel to the sheet centering on the drawing).
 図14に示すように、位相シフタ部分41において、導波路コア42を中心に、導波路コア42から横方向に所定の距離だけ離れた両側に溝が形成されている。このように、位相シフタ部分41を分離するように、クラッド45およびクラッド46を含む積層膜に設けられ、シリコン基板表面に到達する溝を断熱溝43と称している。 As shown in FIG. 14, in the phase shifter portion 41, grooves are formed on both sides of the waveguide core 42 at a predetermined distance in the lateral direction from the waveguide core 42. As described above, a groove which is provided in the laminated film including the cladding 45 and the cladding 46 so as to separate the phase shifter portion 41 and which reaches the surface of the silicon substrate is referred to as a heat insulating groove 43.
 第14実施例によれば、ヒータ44からの熱がクラッド45およびクラッド46を経由して逃げないように断熱溝43を設けているため、消費電力を低減することが可能となる。 According to the fourteenth embodiment, since the heat insulating groove 43 is provided so that the heat from the heater 44 does not escape via the clad 45 and the clad 46, power consumption can be reduced.
 SiN膜は、結晶構造が非常に緻密であるため、透湿性がシリコン酸化物よりも低いことが知られている。図14に示す位相シフタ部分41をSiN膜で覆うことで、光導波路として機能するコアおよびクラッドと、外部との間で水分の出入りが断たれるため、結果として膜変質による屈折率や応力変化を防止することが可能となる。 SiN films are known to have lower moisture permeability than silicon oxides because the crystal structure is very compact. By covering the phase shifter portion 41 shown in FIG. 14 with the SiN film, the entrance and exit of water is interrupted between the core and the cladding functioning as the optical waveguide and the outside, and as a result, the refractive index and stress change due to film deterioration Can be prevented.
 本発明の効果の一例として、コア周辺のクラッドの湿気による、コアの変質を防止することができる。 As one example of the effect of the present invention, it is possible to prevent the deterioration of the core due to the moisture of the cladding around the core.
 本発明に係るブリッジ構造は、光導波回路に限らず、犠牲層エッチングによるブリッジ構造に代わって他の分野にも、例えばMEMS(Micro Electro Mechanical Systems)分野などにおけるカンチレバーの作製にも利用可能である。 The bridge structure according to the present invention is applicable not only to the optical waveguide circuit but also to other fields such as fabrication of a cantilever in the field of MEMS (Micro Electro Mechanical Systems) etc., instead of the bridge structure by sacrificial layer etching. .
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and the examples, the present invention is not limited to the above embodiments and the examples. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
 なお、この出願は、2009年2月25日に出願された日本出願の特願2009-041601の内容が全て取り込まれており、この日本出願を基礎として優先権を主張するものである。 This application incorporates all the contents of Japanese Patent Application No. 2009-041601 filed on February 25, 2009, and claims priority based on this Japanese application.
 1、4、6、8、10、22  光導波路
 2、3、5、7、9、21  光導波回路
 11  コア
 12  クラッド層
 13  低透湿性部材
 14、33  シリコン基板
 15  下クラッド層
 16  埋め込み層
 17  上クラッド層
 18、31、44  ヒータ
 32、43  断熱溝
 34  支柱
 41  位相シフタ部分
 42  導波路コア
 45、46  クラッド
1, 4, 6, 8, 10, 22 Optical waveguide 2, 3, 5, 7, 9, 21 Optical waveguide circuit 11 Core 12 Clad layer 13 Low moisture permeability member 14, 33 Silicon substrate 15 Lower clad layer 16 Buried layer 17 Upper cladding layer 18, 31, 44 Heater 32, 43 Heat insulation groove 34 Support 41 Phase shifter portion 42 Waveguide core 45, 46 Cladding

Claims (9)

  1.  光が導波するコアと、
     前記コアを覆うクラッド層と、
     前記クラッド層の露出部分を覆う、シリコン酸化物よりも水分の透過性が低い部材である低透湿性部材と、
    を有する光導波路。
    A core through which light is guided,
    A cladding layer covering the core;
    A low moisture-permeable member, which is a member that has a lower moisture permeability than silicon oxide and covers the exposed portion of the cladding layer;
    An optical waveguide.
  2.  請求項1記載の光導波路において、
     前記クラッド層の上に発熱部材が設けられている、光導波路。
    In the optical waveguide according to claim 1,
    An optical waveguide, wherein a heat generating member is provided on the cladding layer.
  3.  請求項2記載の光導波路において、
     前記コアの両側面のそれぞれから所定の距離だけ離れた位置に設けられ、前記発熱部材による熱が前記クラッド層を介して拡散するのを防ぐための溝をさらに有する、光導波路。
    In the optical waveguide according to claim 2,
    An optical waveguide is further provided at a position separated by a predetermined distance from each of both side surfaces of the core, and further includes a groove for preventing heat from the heat generating member from diffusing through the cladding layer.
  4.  請求項1から3のいずれか1項記載の光導波路において、
     前記低透湿性部材がケイ素と窒素を含む化合物で構成されている、光導波路。
    In the optical waveguide according to any one of claims 1 to 3,
    The optical waveguide, wherein the low moisture-permeable member is made of a compound containing silicon and nitrogen.
  5.  請求項1から4のいずれか1項記載の光導波路と、
     前記光導波路を支持するシリコン基板と、
    を有する光導波回路。
    An optical waveguide according to any one of claims 1 to 4;
    A silicon substrate supporting the optical waveguide;
    An optical waveguide circuit.
  6.  請求項5記載の光導波路回路において、
     前記光導波路は該光導波路と前記シリコン基板との間の一部に空間が形成されたブリッジ構造である、光導波回路。
    In the optical waveguide circuit according to claim 5,
    The optical waveguide circuit, wherein the optical waveguide is a bridge structure in which a space is formed in a part between the optical waveguide and the silicon substrate.
  7.  シリコン基板の上に第1のクラッド層およびコア層を順に形成し、
     前記コア層に対してフォトリソグラフィ技術およびエッチング技術によりコアを形成し、
     前記コアを覆う第2のクラッド層を形成し、
     フォトリソグラフィ技術およびエッチング技術により前記コアの両側面のそれぞれから所定の距離だけ離れた位置の前記第1および前記第2のクラッド層に溝を形成し、
     前記第1および前記第2のクラッド層の露出部分に、シリコン酸化物よりも水分の透過性が低い部材である第1の低透湿性部材を形成する、光導波回路の製造方法。
    Forming a first cladding layer and a core layer sequentially on the silicon substrate,
    Forming a core on the core layer by photolithography technology and etching technology;
    Forming a second cladding layer covering the core;
    Forming a groove in the first and second cladding layers at a predetermined distance from each of both side surfaces of the core by photolithography and etching techniques;
    A method of manufacturing an optical waveguide circuit, wherein a first low moisture-permeable member, which is a member having lower moisture permeability than silicon oxide, is formed in exposed portions of the first and second cladding layers.
  8.  請求項7記載の光導波回路の製造方法において、
     前記コアを覆う前記第2のクラッド層を形成した後に、該第2のクラッド層の上に発熱部材を形成する、光導波回路の製造方法。
    In the method of manufacturing an optical waveguide circuit according to claim 7,
    A method of manufacturing an optical waveguide circuit, wherein a heat generating member is formed on the second cladding layer after forming the second cladding layer covering the core.
  9.  請求項7または8記載の光導波回路の製造方法において、
     前記シリコン基板の上に前記第1のクラッド層および前記コア層を順に形成する際、前記第1の低透湿性部材と同質な部材である第2の低透湿性部材を前記シリコン基板と前記第1のクラッド層の間に形成し、
     前記第1および前記第2のクラッド層の露出部分に前記第1の低透湿性部材を形成した後、前記第2の低透湿性部材に接する、前記シリコン基板の上面のうち、一部の上面から所定の深さまでシリコンを除去することにより、前記第2の低透湿性部材と前記シリコン基板との間に空間を形成する、光導波回路の製造方法。
    In the method of manufacturing an optical waveguide circuit according to claim 7 or 8,
    When the first clad layer and the core layer are sequentially formed on the silicon substrate, a second low moisture-permeable member which is a member of the same quality as the first low moisture-permeable member is the silicon substrate and the Formed between two cladding layers,
    The upper surface of a portion of the upper surface of the silicon substrate in contact with the second low moisture-permeable member after forming the first low moisture-permeable member on the exposed portion of the first and second cladding layers A method of manufacturing an optical waveguide circuit, wherein a space is formed between the second low moisture-permeable member and the silicon substrate by removing silicon to a predetermined depth.
PCT/JP2010/052668 2009-02-25 2010-02-23 Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit WO2010098295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009041601A JP2012112984A (en) 2009-02-25 2009-02-25 Optical waveguide, optical waveguide circuit and production method therefor
JP2009-041601 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010098295A1 true WO2010098295A1 (en) 2010-09-02

Family

ID=42665502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052668 WO2010098295A1 (en) 2009-02-25 2010-02-23 Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit

Country Status (2)

Country Link
JP (1) JP2012112984A (en)
WO (1) WO2010098295A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170750A (en) * 2014-03-07 2015-09-28 住友電気工業株式会社 Optical semiconductor element and manufacturing method of the same
JP2018169435A (en) * 2017-03-29 2018-11-01 Nttエレクトロニクス株式会社 Optical circuit component and method for manufacturing optical circuit component
JPWO2021005635A1 (en) * 2019-07-05 2021-01-14
WO2022011351A1 (en) * 2020-07-10 2022-01-13 Acacia Communications, Inc. Optical waveguide passivation for moisture protection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142995A (en) * 2015-02-04 2016-08-08 古河電気工業株式会社 Optical waveguide circuit and method of manufacturing the same
JP2016206425A (en) * 2015-04-23 2016-12-08 日本電信電話株式会社 Optical module and manufacturing method thereof
JP7069602B2 (en) * 2017-08-25 2022-05-18 富士通株式会社 A method for manufacturing a waveguide type wavelength filter, a wavelength tunable light source using the same, an optical transceiver, and a waveguide type wavelength filter.
EP3719943A4 (en) * 2017-11-28 2021-07-21 Opto Electronics Solutions Wavelength tunable laser
WO2022125565A1 (en) 2020-12-07 2022-06-16 Ours Technology, Llc Heat dissipation in an optical device

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037903A (en) * 1989-03-14 1991-01-16 Fujitsu Ltd Semiconductor optical waveguide
JPH0375606A (en) * 1989-08-17 1991-03-29 Nippon Telegr & Teleph Corp <Ntt> Flush type optical waveguide made of quartz system and production thereof
JPH04109623A (en) * 1990-08-29 1992-04-10 Nec Corp Semiconductor device with p-n junction
JPH0547744A (en) * 1991-08-19 1993-02-26 Fujitsu Ltd Manufacture of semiconductor device
JPH05166802A (en) * 1991-12-13 1993-07-02 Ricoh Co Ltd Semiconductor device
JPH05188227A (en) * 1992-01-08 1993-07-30 Sumitomo Electric Ind Ltd Waveguide path
JPH08204203A (en) * 1995-01-25 1996-08-09 Toshiba Corp Production of semiconductor device
JP2000122016A (en) * 1998-08-10 2000-04-28 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JP2000180642A (en) * 1998-12-16 2000-06-30 Hitachi Cable Ltd Quartz glass waveguide and manufacture of it
JP2000311893A (en) * 1999-02-17 2000-11-07 Applied Materials Inc Method and device for forming material layer from atomic gas
JP2001228345A (en) * 2000-02-14 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Optical wave guide circuit module
JP2002196171A (en) * 2000-12-26 2002-07-10 Furukawa Electric Co Ltd:The Optical waveguide and method for manufacturing the same
JP2002318117A (en) * 2001-04-20 2002-10-31 Canon Inc Semiconductor ring laser gyro and its manufacturing method
JP2004037524A (en) * 2002-06-28 2004-02-05 Nec Corp Thermooptic phase shifter and method ror manufacturing the same
JP2004046044A (en) * 2002-07-15 2004-02-12 Fusako Watanabe Quartz-based optical waveguide
JP2004279993A (en) * 2003-03-19 2004-10-07 Nec Corp Heat optical phase shifter
JP2005258365A (en) * 2004-03-08 2005-09-22 Takaya Watanabe Quartz-based thermooptic optical switch
JP2007025583A (en) * 2005-07-21 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> Thermooptic phase modulator and its manufacturing method
WO2008047634A1 (en) * 2006-10-20 2008-04-24 Nec Corporation Thermo-optic phase shifter and method for producing the same
WO2008111407A1 (en) * 2007-03-09 2008-09-18 Nec Corporation Thermo-optical phase shifter
JP2009020356A (en) * 2007-07-12 2009-01-29 Nec Corp Silicon structure

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037903A (en) * 1989-03-14 1991-01-16 Fujitsu Ltd Semiconductor optical waveguide
JPH0375606A (en) * 1989-08-17 1991-03-29 Nippon Telegr & Teleph Corp <Ntt> Flush type optical waveguide made of quartz system and production thereof
JPH04109623A (en) * 1990-08-29 1992-04-10 Nec Corp Semiconductor device with p-n junction
JPH0547744A (en) * 1991-08-19 1993-02-26 Fujitsu Ltd Manufacture of semiconductor device
JPH05166802A (en) * 1991-12-13 1993-07-02 Ricoh Co Ltd Semiconductor device
JPH05188227A (en) * 1992-01-08 1993-07-30 Sumitomo Electric Ind Ltd Waveguide path
JPH08204203A (en) * 1995-01-25 1996-08-09 Toshiba Corp Production of semiconductor device
JP2000122016A (en) * 1998-08-10 2000-04-28 Sumitomo Osaka Cement Co Ltd Waveguide type optical modulator
JP2000180642A (en) * 1998-12-16 2000-06-30 Hitachi Cable Ltd Quartz glass waveguide and manufacture of it
JP2000311893A (en) * 1999-02-17 2000-11-07 Applied Materials Inc Method and device for forming material layer from atomic gas
JP2001228345A (en) * 2000-02-14 2001-08-24 Nippon Telegr & Teleph Corp <Ntt> Optical wave guide circuit module
JP2002196171A (en) * 2000-12-26 2002-07-10 Furukawa Electric Co Ltd:The Optical waveguide and method for manufacturing the same
JP2002318117A (en) * 2001-04-20 2002-10-31 Canon Inc Semiconductor ring laser gyro and its manufacturing method
JP2004037524A (en) * 2002-06-28 2004-02-05 Nec Corp Thermooptic phase shifter and method ror manufacturing the same
JP2004046044A (en) * 2002-07-15 2004-02-12 Fusako Watanabe Quartz-based optical waveguide
JP2004279993A (en) * 2003-03-19 2004-10-07 Nec Corp Heat optical phase shifter
JP2005258365A (en) * 2004-03-08 2005-09-22 Takaya Watanabe Quartz-based thermooptic optical switch
JP2007025583A (en) * 2005-07-21 2007-02-01 Nippon Telegr & Teleph Corp <Ntt> Thermooptic phase modulator and its manufacturing method
WO2008047634A1 (en) * 2006-10-20 2008-04-24 Nec Corporation Thermo-optic phase shifter and method for producing the same
WO2008111407A1 (en) * 2007-03-09 2008-09-18 Nec Corporation Thermo-optical phase shifter
JP2009020356A (en) * 2007-07-12 2009-01-29 Nec Corp Silicon structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170750A (en) * 2014-03-07 2015-09-28 住友電気工業株式会社 Optical semiconductor element and manufacturing method of the same
JP2018169435A (en) * 2017-03-29 2018-11-01 Nttエレクトロニクス株式会社 Optical circuit component and method for manufacturing optical circuit component
JPWO2021005635A1 (en) * 2019-07-05 2021-01-14
JP7273340B2 (en) 2019-07-05 2023-05-15 日本電信電話株式会社 Optical module and its manufacturing method
WO2022011351A1 (en) * 2020-07-10 2022-01-13 Acacia Communications, Inc. Optical waveguide passivation for moisture protection

Also Published As

Publication number Publication date
JP2012112984A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2010098295A1 (en) Optical waveguide, optical waveguide circuit, and method for manufacturing optical waveguide circuit
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
KR100972677B1 (en) Silicon structure and method of manufacturing the same
US20090016674A1 (en) Silicon structure and method of manufacturing the same
KR100724683B1 (en) Planar Lightwave Circuit Type Variable Optical Attenuator
JPWO2008111447A1 (en) Optical waveguide and method for manufacturing the same
JP4221364B2 (en) Thermal compensation of waveguides with a dual material core.
JP4638749B2 (en) Thermo-optic phase modulator and manufacturing method thereof
CN110780381A (en) Polarization beam splitter with asymmetric three-waveguide structure and preparation method thereof
Doerr et al. 16-band integrated dynamic gain equalization filter with less than 2.8-dB insertion loss
JP4934614B2 (en) Thermo-optic phase shifter
JP2005531817A (en) Thermal compensation of waveguides with a dual material core.
JP6991259B2 (en) Optical waveguide element
JP4954828B2 (en) Optical waveguide circuit and manufacturing method thereof
Lin Athermal metal-free planar waveguide concave grating demultiplexer
JP3746776B2 (en) Waveguide type optical wavelength multiplexer / demultiplexer
Hashizume et al. Silica PLC-VOA using suspended narrow ridge structures and its application to V-AWG
Chu et al. Silicon photonic-wire waveguide devices
Liu et al. Optical add and drop multiplexer using on-chip integration of planar light circuits and optical microelectromechanical system switching
Mizuno et al. Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler
Bonar et al. Advancements in passive planar lightwave circuits and hybrid integration devices
Hsu A simple optical interconnection integrated with low birefringence silicon-on-insulator waveguide
Fukazawa et al. Si photonic wire components and microfilters on SOI substrate
JP2005326561A (en) Optical wavelength multiplexer/demultiplexer
Bonar et al. Advancements in passive planar lightwave circuits and hybrid integration devices Progrès dans les circuits optiques passifs à technologie plane et composants intégrés hybrides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP