WO2010098174A1 - Power circuit - Google Patents

Power circuit Download PDF

Info

Publication number
WO2010098174A1
WO2010098174A1 PCT/JP2010/051352 JP2010051352W WO2010098174A1 WO 2010098174 A1 WO2010098174 A1 WO 2010098174A1 JP 2010051352 W JP2010051352 W JP 2010051352W WO 2010098174 A1 WO2010098174 A1 WO 2010098174A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
capacitor
power supply
current
Prior art date
Application number
PCT/JP2010/051352
Other languages
French (fr)
Japanese (ja)
Inventor
正史 加瀬
太朗 中臺
謙治 加藤
Original Assignee
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光波 filed Critical 株式会社光波
Publication of WO2010098174A1 publication Critical patent/WO2010098174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present invention relates to a power supply circuit, and more particularly to a power supply circuit capable of obtaining a stable desired output voltage.
  • an LED lighting device provided with a boost type power factor correction circuit (for example, see Patent Document 1).
  • a power supply voltage from an AC power supply is converted into a DC voltage, and then the DC voltage is boosted and supplied to an LED load.
  • the power factor correction circuit in the conventional LED lighting device described in Patent Document 1 is a step-up type, a DC voltage lower than the power supply voltage cannot be obtained. Therefore, when driving the LED load with a DC voltage lower than the power supply voltage, a circuit for stepping down the voltage to the drive voltage of the LED load is required after the boost type power factor correction circuit. As a result, the circuit configuration becomes complicated, and the number of components increases, resulting in an increase in manufacturing cost.
  • the present invention has been made to solve the above-described conventional problems, and its specific purpose is to supply an output voltage lower or higher than the input voltage to the DC load without providing a special circuit.
  • An object of the present invention is to provide a power circuit that can be realized.
  • a switch circuit that is turned on and off based on the first and second switch signals, and electric power that supplies a direct current to a DC load by turning the switch circuit on and off A power supply circuit; and a control circuit that outputs the first and second switch signals to the switch circuit, wherein the power supply circuit is electrically connected based on a direct current from a rectifier circuit when the switch circuit is on.
  • a storage circuit that stores energy and outputs a direct current based on the stored electrical energy; a first capacitor connected in series with the direct current load and charged by the direct current from the storage circuit; A second capacitor disposed in parallel with the DC load and charged by the DC current from the storage circuit, the DC load being connected to the switch.
  • the power supply is driven by a direct current from the storage circuit and the first capacitor when the circuit is on, and is driven by a direct current from the second capacitor when the switch circuit is off.
  • the storage circuit charges the first capacitor when the switch circuit is off.
  • the first capacitor is connected between a connection point between the negative electrode terminal of the second capacitor and the negative electrode terminal of the DC load and the first capacitor.
  • a reverse current prevention diode is connected to prevent a direct current from flowing from the first capacitor to the second capacitor.
  • the present invention can supply an output voltage lower or higher than the input voltage to the DC load with a simple circuit configuration without providing a special circuit.
  • FIG. 1 is a circuit diagram schematically showing a configuration example of a power supply circuit according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing a configuration example of a control IC applied to the power supply circuit shown in FIG. 1. It is a block diagram which shows the other structural example of control IC roughly. It is a circuit diagram which shows roughly the example of 1 structure of the power supply circuit which is 2nd Embodiment based on this invention.
  • reference numeral 10 denotes a constant current power supply circuit (hereinafter referred to as a power supply circuit).
  • the basic configuration of the power supply circuit 10 includes a rectifier circuit 20 and a power factor control circuit (PFC circuit) 30 that improves the power factor of the DC voltage converted by the rectifier circuit 20.
  • the constant current load connected to the output terminal of the PFC circuit 30 is not particularly limited, but is a lighting device such as an organic EL or LED. For example, a plurality of light emitting diodes (LEDs) 41,. An LED series circuit 40 connected in series is illustrated.
  • the rectifier circuit 20 includes a diode bridge 21 formed of four diodes.
  • the rectifier circuit 20 performs full-wave rectification on the AC voltage input from the commercial AC power supply 11 through the input terminal and converts the AC voltage into a DC voltage. This DC voltage is supplied to the PFC circuit 30 through the output terminal of the rectifier circuit 20.
  • a PFC circuit 30 shown in FIG. 1 is a circuit that generates a constant output voltage by stepping up or down an input voltage to a desired voltage.
  • MOSFET MOSFET
  • Q primary capacitor C1
  • backflow prevention diode D2 secondary capacitor C2
  • control IC 31 control IC 31.
  • a power supply circuit is configured by the ripple current removing capacitor 22, the transformer Tr, the rectifier diode D1, the primary capacitor C1, the backflow prevention diode D2, and the secondary capacitor C2.
  • the transformer Tr, the primary capacitor C1, and the secondary capacitor C2 constitute an accumulation circuit.
  • the DC voltage whose power factor has been improved by the PFC circuit 30 is output to the LED series circuit 40 through the output terminal.
  • the control IC 31 is composed of an integrated circuit that improves the power factor by aligning the input voltage from the rectifier circuit 20 and the waveform of the input current flowing through the switching element Q.
  • This type of control IC 31 is not particularly limited.
  • the control IC 31 includes a power supply voltage input VCC terminal, a ground connection GND terminal, a feedback signal input FB terminal, a switching drive OUT terminal, and a switching current detection IS terminal.
  • a ZCD terminal for zero current detection and a MUL terminal for voltage input proportional to the full-wave rectified voltage are shown.
  • the control IC 31 generates a control pulse based on input signals to the VCC terminal, FB terminal, MUL terminal, IS terminal, and ZCD terminal.
  • the power factor is improved by changing the magnitude of the output current in accordance with the time during which the switching element Q that is on / off controlled by the control pulse is turned on.
  • a capacitor C3 is connected between the VCC terminal and the GND terminal of the control IC 31.
  • One end of the capacitor C3 is connected to the auxiliary power supply voltage VCC, and the other end of the capacitor C3 is connected to the ground.
  • a positive terminal (+) of the rectifier circuit 20 is connected between one end of the capacitor C3 and the auxiliary power supply voltage VCC via a resistor R1.
  • a connection point between the resistor R1 and the capacitor C3 is connected to the second winding Tr2 of the transformer Tr via a backflow preventing diode D4.
  • a voltage dividing resistor composed of resistors R2 and R3 is connected.
  • the output of the voltage dividing resistor is connected to the MUL terminal of the control IC 31.
  • a sine wave full-wave rectified voltage (voltage waveform proportional to the absolute value voltage of the commercial AC power supply 11) obtained by dividing the full-wave rectified voltage of the rectifier circuit 20 with resistors R2 and R3 is input to the MUL terminal. This prevents the generation of lowering and harmonic current.
  • a single transformer Tr is interposed as shown in FIG.
  • the transformer Tr is provided with a first winding Tr1 and a second winding Tr2.
  • One end of the first winding Tr1 is connected to the positive terminal of the rectifier circuit 20.
  • the other end of the first winding Tr1 is connected to one end (negative terminal) of the LED series circuit 40 through a series circuit including a rectifier diode D1, a primary capacitor C1, and a backflow prevention diode D2.
  • a charging diode D3 is connected to one end of the first winding Tr1 and a connection point between the primary capacitor C1 and the cathode of the backflow prevention diode D2.
  • the reverse current prevention diode D2 prevents the charging current to the primary capacitor C1 from flowing backward.
  • a secondary capacitor C2 is connected in parallel with the LED series circuit 40 between the anode of the backflow prevention diode D2 and the negative terminal of the rectifier circuit 20.
  • the drain of the switching element Q is connected to the connection point of the rectifier diode D1 and the primary capacitor C1.
  • the source of the switching element Q is connected to the ground via a current detection resistor R4.
  • the connection point of the source of the switching element Q and the resistor R4 is connected to the IS terminal of the control IC 31 via the resistor R5, and detects the switching current of the switching element Q.
  • the gate of the switching element Q is connected to the OUT terminal of the control IC 31 via the resistor R6.
  • the second winding Tr2 of the transformer Tr is electrically insulated from the primary winding Tr1.
  • One end of the second winding Tr2 is connected to the ground.
  • the other end of the second winding Tr2 is connected to the ZCD terminal of the control IC 31 via a resistor R7, and the value of the current flowing through the transformer Tr is detected.
  • the switching element Q changes from the on state to the off state, a current flows through the secondary winding Tr2 by a voltage proportional to the induced voltage of the first winding Tr1 induced in the secondary winding Tr2.
  • the switching element Q is turned on.
  • a series circuit composed of resistors R8, R9, and R10 is connected to one end (positive terminal) of the secondary capacitor C2.
  • An inverting input terminal of the inverting amplifier 32 is connected to a connection point between the resistor R9 and the resistor R10.
  • the resistors R9 and R10 constitute a current detection circuit that detects a current flowing through the LED series circuit 40.
  • the divided voltage value at the connection point between the resistor R9 and the resistor R10 is amplified with a predetermined amplification factor by the inverting amplifier 32, and is input to the FB terminal of the control IC 31 as a current detection value. Feedback control is performed in order to make the current of the LED series circuit 40 constant by the detected current value.
  • one end of the resistor R10 opposite to the resistor R9 side is connected to an offset voltage for operating the inverting amplifier 32.
  • the control IC 31 shown in FIG. 2 mainly includes an error amplifier 33, a multiplier (MUL) 34, a comparator 35, a flip-flop 36, a driver 37, and a zero current detector 38.
  • MUL multiplier
  • the power supply voltage from the commercial AC power supply 11 is supplied to the rectifier circuit 20.
  • the full-wave rectified direct current is supplied to the PFC circuit 30.
  • a direct current is supplied to the control IC 31 to start the operation, and a gate voltage is applied to the switching element Q.
  • FIG. 1 when the switching element Q is in the ON state, a switching current flows to the ground through the switching element Q. The current energy at that time is accumulated in the first winding Tr1 of the transformer Tr. Thereafter, when the switching element Q is turned off, the inflow of current to the first winding Tr1 is stopped, and the current energy accumulated in the first winding Tr1 is released through the rectifier diode D1, and is supplied to the primary capacitor C1. Accumulated.
  • the primary capacitor C1 functions as a first output power supply when the switching element Q is in an on state.
  • the current energy stored in the primary capacitor C1 is released, and a current flows in the closed circuit of the switching element Q, the secondary capacitor C2, and the primary capacitor C1 to supply a charging current to the secondary capacitor C2, and the switching element Q, LED A current flows in the closed circuit of the series circuit 40, the backflow prevention diode D2, and the primary capacitor C1.
  • the output of the voltage dividing resistor composed of the resistors R9 and R10 which are current detection circuits of the LED series circuit 40 is input to the inverting input terminal of the inverting amplifier 32 as shown in FIGS.
  • the inverting amplifier 32 amplifies the phase-inverted voltage to a predetermined amplification factor.
  • the amplified voltage is supplied to the inverting input terminal of the error amplifier 33 in the control IC 31 through the FB terminal of the control IC 31.
  • the voltage input to the FB terminal of the control IC 31 is compared with the reference voltage Vref, and a voltage having a level corresponding to the error voltage with respect to the reference voltage Vref is amplified by a predetermined amount. Amplify to rate. The amplified error voltage is output to the multiplier 34 in the control IC 31.
  • the multiplier 34 is supplied with the divided output voltage from the rectifier circuit 20 through the MUL terminal of the control IC 31, and multiplies the output voltage by the output voltage from the error amplifier 34. Voltage is generated.
  • the voltage of the multiplier 34 is output to the inverting input terminal of the comparator 35 in the control IC 31 as a current target value of the switching current.
  • the output voltage of the multiplier 34 has a waveform similar to the full-wave rectification waveform, and the amplitude is a voltage proportional to the current flowing through the LED series circuit 40 (the discharge amount of the primary capacitor C1).
  • the voltage converted by the current detection resistor R4 of the switching element Q is compared with the voltage from the multiplier 34, and the pulse width-modulated pulse is obtained. appear.
  • the output of the comparator 35 is supplied to the reset terminal R of the flip-flop 36 in the control IC 31.
  • the output of the comparator 35 is power amplified by a driver 37 in the control IC 31 and drives the gate of the switching element Q.
  • the switching element Q controls the on-time of the switching element Q by the pulse signal modulated by the pulse width generated by the comparator 35 and also controls the current flowing through the first winding Tr1 of the transformer Tr.
  • constant current control can be performed so that the reference voltage Vref of the error amplifier 33 and the divided voltage from the secondary capacitor C2 are equal.
  • the output of the comparator 35 is inverted and the flip-flop 36 is reset.
  • the switching element Q is turned off, the charging diode D3 becomes conductive, and the current flowing through the transformer Tr flows into the primary capacitor C1 through the rectifier diode D1.
  • This current flows in the closed circuit of the primary capacitor C1, the charging diode D3, and the primary winding Tr1 of the transformer Tr, and the primary capacitor C1 is charged. Since the current flowing through the primary winding Tr1 is directly supplied to the primary capacitor C1, a voltage obtained by adding the coil voltage of the primary winding Tr1 to the full-wave rectified voltage of the rectifier circuit 20 is supplied to the primary capacitor C1.
  • an output voltage lower than the input voltage can be supplied to the LED series circuit 40.
  • the electrical energy is charged from the primary capacitor C1 to the secondary capacitor C2, and a current flows through the closed circuit of the LED series circuit 40 and the secondary capacitor C2.
  • the secondary capacitor C2 functions as a second output power source when the switching element Q is in an off state.
  • the fact that the current flowing through the primary winding Tr1 of the transformer Tr has become zero is detected by the secondary winding Tr2 of the transformer Tr and the zero current detector 38.
  • the zero current detector 38 detects that the current flowing through the primary winding Tr1 has become zero, the flip-flop 36 is set and the switching element Q is turned on.
  • the average value of the current flowing through the primary winding Tr1 of the transformer Tr becomes equal to the voltage waveform of the commercial AC power supply 11, and improvement of the power factor and suppression of harmonic current can be realized.
  • the LED series having a higher voltage specification than the voltage of the commercial AC power supply 11 is set.
  • the power supply circuit 10 suitable for driving the circuit 40 or driving the LED series circuit 40 having a lower voltage specification than the voltage of the commercial AC power supply 11 is obtained.
  • the output voltage of the multiplier 34 increases, and the pulse width of the pulse signal generated from the comparator 35 increases.
  • the on-time during which the switching element Q is on-controlled increases, and the amount of charge charged to the primary capacitor C1 increases.
  • the power supply circuit 10 that drives the LED series circuit 40 having a higher voltage specification than the voltage of the commercial AC power supply 11 can be effectively used.
  • the power supply circuit 10 that drives the LED series circuit 40 having a lower voltage specification than the voltage of the commercial AC power supply 11 can be effectively used.
  • FIG. 3 schematically shows another configuration example of the control IC.
  • the difference from the first embodiment is that the output voltage from the error amplifier 33 is supplied to the comparator 35 via the multiplier (MUL) 34 in the first embodiment.
  • MUL multiplier
  • the output voltage from the error amplifier 33 is directly supplied to the comparator 35.
  • symbol are attached
  • the control IC 31 in this modified example inputs the voltage converted by the resistors R9 and R10 to the inverting input terminal of the inverting amplifier 32, and applies the reference voltage Vref to the non-inverting input terminal of the error amplifier 33. input.
  • the output of the error amplifier 33 is compared with the voltage converted by the current detection resistor 4 of the switching element Q by the comparator 35.
  • the output of the comparator 35 is output via the flip-flop 36 and the driver 37, and drives the gate of the switching element Q.
  • the output of the comparator 35 is inverted to reset the flip-flop 36, and the switching element Q is turned off.
  • the flip-flop 36 is set and the switching element Q is turned on.
  • the voltage converted by the resistors R9 and R10 is supplied to the inverting input terminal of the inverting amplifier 32 and the inverting input terminal of the error amplifier 33 through the FB terminal of the control IC 31.
  • the present invention is not limited to this.
  • the voltage converted by the resistors R9 and R10 is input to the error amplifier 33 through the FB terminal of the control IC 31 without using the inverting amplifier 32 according to the polarity of the FB terminal of the control IC 31.
  • the structure which does may be sufficient.
  • FIG. 4 schematically shows a configuration example of the power supply circuit according to the second embodiment.
  • the substantially same members as those in the first embodiment are given the same member names and symbols. Therefore, a detailed description of substantially the same members as those in the first embodiment is omitted.
  • the power supply circuit 10 according to the second embodiment is different from the first embodiment in that a constant voltage power supply circuit is used as a power supply for the LED 41.
  • a series circuit composed of resistors R11 and R12 is connected in parallel to a constant voltage load composed of an LED series circuit 42 connected to a resistor R15 between output terminals of the power supply circuit 10.
  • a series circuit including resistors R13 and R14 is connected to a connection point between the resistors R11 and R12.
  • the inverting input terminal of the inverting amplifier 32 is connected to the connection point of the resistors R13 and R14.
  • the resistors R11 to R14 constitute a voltage detection circuit that detects a voltage applied to a constant voltage load.
  • the divided voltage value at the connection point of the resistors R13 and R14 is input to the FB terminal of the control IC 31 through the inverting amplifier 32.
  • the control IC 31 shown in FIG. 2 or 3 can be used effectively.
  • the voltage input to the FB terminal By setting the voltage input to the FB terminal to a predetermined value suitable for driving the LED series circuit 40 with respect to the reference voltage Vref of the error amplifier 33, an output lower than the input voltage is provided without providing an expensive circuit.
  • a voltage or a high output voltage can be supplied to the LED series circuit 40.
  • the voltage converted by the resistors R13 and R14 is input to the inverting input terminal of the inverting amplifier 32 and the inverting terminal of the error amplifier 33 through the FB terminal of the control IC 31.
  • the present invention is not limited to this.
  • the voltage converted by the resistors R13 and R14 is not converted to the voltage of the control IC 31 without using the inverting amplifier 32 according to the polarity of the FB terminal of the control IC 31.
  • the configuration may be such that the error amplifier 33 is input through the FB terminal.
  • the switching element Q when the switching element Q is on, electrical energy is accumulated based on the direct current from the rectifier circuit 20, and the direct current is output based on the accumulated electrical energy.
  • the configuration in which the single transformer Tr is provided in the power supply circuit as the storage circuit to be performed is illustrated, for example, a configuration in which a single coil is provided in the power supply circuit may be used.
  • the critical mode control method is illustrated in which the switching element Q is controlled to be turned on when the current flowing through the transformer Tr becomes zero. However, the current flowing through the transformer Tr is prevented from becoming zero.
  • the present invention can also be applied to a continuous current mode control system to be controlled, and the initial object of the present invention can be sufficiently achieved.
  • the power supply circuit of the illuminating device was illustrated, this invention is not limited to this.
  • the present invention can be effectively used as a power circuit for driving a DC motor such as an air conditioner, a refrigerator, a ventilation fan or a pump, for example.
  • a constant voltage load For example, it can be used as a general-purpose DC voltage power source. Therefore, the present invention is not limited to the above embodiments and modifications, and various design changes can be made within the scope described in each claim.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a power circuit capable of supplying an output voltage lower than or higher than an input voltage to a direct-current load utilizing a simple circuit configuration without any special circuitry being provided. The power circuit (10) is equipped with a power supply circuit which has a transformer (Tr), a rectifying diode (D1), a primary capacitor (C1) and a secondary capacitor (C2), and with a switching element (Q). An LED series circuit (40) is driven by a direct current from the primary capacitor (C1) when the switching element (Q) is on, and is driven by a direct current from the secondary capacitor (C2) when the switching element (Q) is off. The primary capacitor (C1) is charged by the transformer (Tr) when the switching element (Q) is off.

Description

電源回路Power circuit
 本発明は、電源回路に係わり、特に、安定した所望の出力電圧が得られる電源回路に関する。 The present invention relates to a power supply circuit, and more particularly to a power supply circuit capable of obtaining a stable desired output voltage.
 従来、昇圧型の力率改善回路を備えたLED点灯装置がある(例えば、特許文献1参照。)。この特許文献1に記載された従来のLED点灯装置は、交流電源からの電源電圧を直流電圧に変換した後、その直流電圧を昇圧してLED負荷に供給している。 Conventionally, there is an LED lighting device provided with a boost type power factor correction circuit (for example, see Patent Document 1). In the conventional LED lighting device described in Patent Document 1, a power supply voltage from an AC power supply is converted into a DC voltage, and then the DC voltage is boosted and supplied to an LED load.
特開2004-327152号公報JP 2004-327152 A
 しかしながら、上記特許文献1に記載された従来のLED点灯装置における力率改善回路は昇圧型であるので、電源電圧よりも低い直流電圧を得ることはできない。そのため、電源電圧よりも低い直流電圧でLED負荷を駆動させる場合は、昇圧型の力率改善回路の後段に、LED負荷の駆動電圧まで電圧を降圧させる回路を必要としていた。その結果、回路構成が複雑化するとともに、構成部品点数が増加してしまうこととなり、製作コストの増大を招くという問題点があった。 However, since the power factor correction circuit in the conventional LED lighting device described in Patent Document 1 is a step-up type, a DC voltage lower than the power supply voltage cannot be obtained. Therefore, when driving the LED load with a DC voltage lower than the power supply voltage, a circuit for stepping down the voltage to the drive voltage of the LED load is required after the boost type power factor correction circuit. As a result, the circuit configuration becomes complicated, and the number of components increases, resulting in an increase in manufacturing cost.
 従って、本発明は上記従来の課題を解決すべくなされたものであり、その具体的な目的は、格別な回路を設けることなく、入力電圧よりも低い出力電圧あるいは高い出力電圧を直流負荷に供給可能とした電源回路を提供することにある。 Accordingly, the present invention has been made to solve the above-described conventional problems, and its specific purpose is to supply an output voltage lower or higher than the input voltage to the DC load without providing a special circuit. An object of the present invention is to provide a power circuit that can be realized.
[1]本発明は、上記目的を達成するため、第1及び第2のスイッチ信号に基づいてオン及びオフするスイッチ回路と、前記スイッチ回路のオン及びオフによって直流負荷に直流電流を供給する電力供給回路と、前記第1及び第2のスイッチ信号を前記スイッチ回路に出力する制御回路とを備え、前記電力供給回路は、前記スイッチ回路がオンのとき、整流回路からの直流電流に基づいて電気エネルギーを蓄積し、蓄積した前記電気エネルギーに基づいて直流電流を出力する蓄積回路と、前記直流負荷と直列に接続されて前記蓄積回路からの前記直流電流によって充電される第1のコンデンサと、前記直流負荷と並列に配置されて前記蓄積回路からの前記直流電流によって充電される第2のコンデンサとを有し、前記直流負荷は、前記スイッチ回路がオンのとき、前記蓄積回路と前記第1のコンデンサからの直流電流によって駆動され、前記スイッチ回路がオフのとき、前記第2のコンデンサからの直流電流によって駆動されることを特徴とする電源回路にある。
[2]上記[1]記載の発明にあって、前記蓄積回路は、前記スイッチ回路がオフのとき、前記第1のコンデンサを充電することを特徴としている。
[3]上記[1]記載の発明にあって、前記第2のコンデンサの負極端子と前記直流負荷の負極端子との接続点と、前記第1のコンデンサとの間に、前記第1のコンデンサから前記第2のコンデンサへ直流電流が流れるのを防止する逆流防止用ダイオードが接続されていることを特徴としている。
[1] In order to achieve the above object, according to the present invention, a switch circuit that is turned on and off based on the first and second switch signals, and electric power that supplies a direct current to a DC load by turning the switch circuit on and off A power supply circuit; and a control circuit that outputs the first and second switch signals to the switch circuit, wherein the power supply circuit is electrically connected based on a direct current from a rectifier circuit when the switch circuit is on. A storage circuit that stores energy and outputs a direct current based on the stored electrical energy; a first capacitor connected in series with the direct current load and charged by the direct current from the storage circuit; A second capacitor disposed in parallel with the DC load and charged by the DC current from the storage circuit, the DC load being connected to the switch. The power supply is driven by a direct current from the storage circuit and the first capacitor when the circuit is on, and is driven by a direct current from the second capacitor when the switch circuit is off. In the circuit.
[2] In the invention described in [1], the storage circuit charges the first capacitor when the switch circuit is off.
[3] In the invention described in [1] above, the first capacitor is connected between a connection point between the negative electrode terminal of the second capacitor and the negative electrode terminal of the DC load and the first capacitor. A reverse current prevention diode is connected to prevent a direct current from flowing from the first capacitor to the second capacitor.
 本発明は、格別な回路を設けることなく簡単な回路構成で、入力電圧よりも低い出力電圧あるいは高い出力電圧を直流負荷に供給できる。 The present invention can supply an output voltage lower or higher than the input voltage to the DC load with a simple circuit configuration without providing a special circuit.
本発明に係る第1の実施の形態である電源回路の一構成例を概略的に示す回路図である。1 is a circuit diagram schematically showing a configuration example of a power supply circuit according to a first embodiment of the present invention. 図1に示す電源回路に適用される制御ICの一構成例を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration example of a control IC applied to the power supply circuit shown in FIG. 1. 制御ICの他の構成例を概略的に示すブロック図である。It is a block diagram which shows the other structural example of control IC roughly. 本発明に係る第2の実施の形態である電源回路の一構成例を概略的に示す回路図である。It is a circuit diagram which shows roughly the example of 1 structure of the power supply circuit which is 2nd Embodiment based on this invention.
10      電源回路
11      商用交流電源
20      整流回路
21      ダイオードブリッジ
22,C3   コンデンサ
30      PFC回路
31      制御IC
32      反転アンプ
33      エラーアンプ
34      乗算器
35      比較器
36      フリップフロップ
37      ドライバ
38      ゼロ電流検出器
40,42   LED直列回路
41      LED
C1      一次コンデンサ
C2      二次コンデンサ
D1      整流ダイオード
D2,D4   逆流防止用ダイオード
D3      充電用ダイオード
Q       スイッチング素子
R1~R15  抵抗
Tr      トランス
Tr1     第1巻線
Tr2     第2巻線
10 power supply circuit 11 commercial AC power supply 20 rectifier circuit 21 diode bridge 22, C3 capacitor 30 PFC circuit 31 control IC
32 Inverting amplifier 33 Error amplifier 34 Multiplier 35 Comparator 36 Flip-flop 37 Driver 38 Zero current detector 40, 42 LED series circuit 41 LED
C1 Primary capacitor C2 Secondary capacitor D1 Rectifier diodes D2 and D4 Backflow prevention diode D3 Charging diode Q Switching elements R1 to R15 Resistance Tr Transformer Tr1 First winding Tr2 Second winding
 以下、本発明の好適な実施の形態を添付図面に基づいて具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings.
[第1の実施の形態]
(電源回路の構成)
 図1において、符号10は定電流電源回路(以下、電源回路という。)を示している。電源回路10の基本構成は、整流回路20と、この整流回路20で変換した直流電圧の力率を改善する力率制御回路(PFC回路)30とからなっている。PFC回路30の出力端に接続される定電流負荷としては、特に限定するものではないが、有機ELやLED等の照明装置であり、例えば複数個の発光ダイオード(LED)41,…,41を直列接続したLED直列回路40を図示している。
[First Embodiment]
(Configuration of power supply circuit)
In FIG. 1, reference numeral 10 denotes a constant current power supply circuit (hereinafter referred to as a power supply circuit). The basic configuration of the power supply circuit 10 includes a rectifier circuit 20 and a power factor control circuit (PFC circuit) 30 that improves the power factor of the DC voltage converted by the rectifier circuit 20. The constant current load connected to the output terminal of the PFC circuit 30 is not particularly limited, but is a lighting device such as an organic EL or LED. For example, a plurality of light emitting diodes (LEDs) 41,. An LED series circuit 40 connected in series is illustrated.
(整流回路の構成)
 整流回路20は、図1に示すように、4個のダイオードで形成されたダイオードブリッジ21からなる。整流回路20は、商用交流電源11から入力端子を通じて入力される交流電圧を全波整流して直流電圧に変換する。この直流電圧は整流回路20の出力端子を通じてPFC回路30へ供給される。
(Configuration of rectifier circuit)
As shown in FIG. 1, the rectifier circuit 20 includes a diode bridge 21 formed of four diodes. The rectifier circuit 20 performs full-wave rectification on the AC voltage input from the commercial AC power supply 11 through the input terminal and converts the AC voltage into a DC voltage. This DC voltage is supplied to the PFC circuit 30 through the output terminal of the rectifier circuit 20.
(PFC回路の構成)
 図1に示すPFC回路30は、入力電圧を所望の電圧まで昇圧又は降圧して一定の出力電圧を生成する回路であり、リップル電流除去用のコンデンサ22、トランスTr、整流ダイオードD1、スイッチング素子(MOSFET)Q、一次コンデンサC1、逆流防止用ダイオードD2、二次コンデンサC2、及び制御IC31を有している。図示例にあっては、リップル電流除去用コンデンサ22、トランスTr、整流ダイオードD1、一次コンデンサC1、逆流防止用ダイオードD2及び二次コンデンサC2により電力供給回路が構成されている。トランスTr、一次コンデンサC1、及び二次コンデンサC2により蓄積回路が構成されている。PFC回路30で力率改善した直流電圧は、出力端子を通じてLED直列回路40へ出力される。
(Configuration of PFC circuit)
A PFC circuit 30 shown in FIG. 1 is a circuit that generates a constant output voltage by stepping up or down an input voltage to a desired voltage. MOSFET) Q, primary capacitor C1, backflow prevention diode D2, secondary capacitor C2, and control IC 31. In the illustrated example, a power supply circuit is configured by the ripple current removing capacitor 22, the transformer Tr, the rectifier diode D1, the primary capacitor C1, the backflow prevention diode D2, and the secondary capacitor C2. The transformer Tr, the primary capacitor C1, and the secondary capacitor C2 constitute an accumulation circuit. The DC voltage whose power factor has been improved by the PFC circuit 30 is output to the LED series circuit 40 through the output terminal.
 制御IC31は、図1に示すように、整流回路20からの入力電圧とスイッチング素子Qに流れる入力電流の波形を揃えて力率を改善する集積回路から構成されたものである。この種の制御IC31としては、特に限定されるものではないが、例えば富士電機株式会社製のFA5500及びFA5501のように高調波電流抑制用あるいは力率改善用としてIC化された回路を用いることができる。図示例によると、制御IC31が備える端子としては、電源電圧入力用のVCC端子、グランド接続用のGND端子、フィードバック信号入力用のFB端子、スイッチング駆動用のOUT端子、スイッチング電流検出用のIS端子、ゼロ電流検出用のZCD端子、及び全波整流電圧に比例した電圧入力用のMUL端子が示されている。制御IC31は、VCC端子、FB端子、MUL端子、IS端子、ZCD端子への入力信号に基づいて制御パルスを生成する。その制御パルスによりオン、オフ制御されるスイッチング素子Qがオンする時間に応じて出力電流の大きさを変化させることで力率が改善される。 As shown in FIG. 1, the control IC 31 is composed of an integrated circuit that improves the power factor by aligning the input voltage from the rectifier circuit 20 and the waveform of the input current flowing through the switching element Q. This type of control IC 31 is not particularly limited. For example, it is possible to use a circuit made into an IC for suppressing harmonic current or improving power factor, such as FA5500 and FA5501 manufactured by Fuji Electric Co., Ltd. it can. According to the illustrated example, the control IC 31 includes a power supply voltage input VCC terminal, a ground connection GND terminal, a feedback signal input FB terminal, a switching drive OUT terminal, and a switching current detection IS terminal. A ZCD terminal for zero current detection and a MUL terminal for voltage input proportional to the full-wave rectified voltage are shown. The control IC 31 generates a control pulse based on input signals to the VCC terminal, FB terminal, MUL terminal, IS terminal, and ZCD terminal. The power factor is improved by changing the magnitude of the output current in accordance with the time during which the switching element Q that is on / off controlled by the control pulse is turned on.
 制御IC31のVCC端子とGND端子との間には、図1に示すように、コンデンサC3が接続されている。コンデンサC3の一端は補助電源電圧VCCに接続されており、コンデンサC3の他端はグランドに接続されている。コンデンサC3の一端と補助電源電圧VCCとの間には抵抗R1を介して整流回路20の正側端子(+)が接続されている。抵抗R1とコンデンサC3との接続点は逆流防止用のダイオードD4を介してトランスTrの第2巻線Tr2に接続されている。 As shown in FIG. 1, a capacitor C3 is connected between the VCC terminal and the GND terminal of the control IC 31. One end of the capacitor C3 is connected to the auxiliary power supply voltage VCC, and the other end of the capacitor C3 is connected to the ground. A positive terminal (+) of the rectifier circuit 20 is connected between one end of the capacitor C3 and the auxiliary power supply voltage VCC via a resistor R1. A connection point between the resistor R1 and the capacitor C3 is connected to the second winding Tr2 of the transformer Tr via a backflow preventing diode D4.
 整流回路20の正側端子及び制御IC31のGND端子の間は、図1に示すように、抵抗R2,R3からなる分圧抵抗に接続されている。その分圧抵抗の出力は制御IC31のMUL端子に接続されている。MUL端子には、整流回路20の全波整流電圧を抵抗R2,R3で分圧した正弦波全波整流電圧(商用交流電源11の絶対値電圧に比例した電圧波形)が入力され、力率の低下と高調波電流の発生を防止している。 Between the positive terminal of the rectifier circuit 20 and the GND terminal of the control IC 31, as shown in FIG. 1, a voltage dividing resistor composed of resistors R2 and R3 is connected. The output of the voltage dividing resistor is connected to the MUL terminal of the control IC 31. A sine wave full-wave rectified voltage (voltage waveform proportional to the absolute value voltage of the commercial AC power supply 11) obtained by dividing the full-wave rectified voltage of the rectifier circuit 20 with resistors R2 and R3 is input to the MUL terminal. This prevents the generation of lowering and harmonic current.
 電源回路10には、図1に示すように、単一のトランスTrが介装されている。トランスTrには第1巻線Tr1と第2巻線Tr2とが設けられている。第1巻線Tr1の一端は整流回路20の正側端子に接続されている。第1巻線Tr1の他端は、整流ダイオードD1、一次コンデンサC1、及び逆流防止用ダイオードD2からなる直列回路を介してLED直列回路40の一端(負極端子)に接続されている。第1巻線Tr1の一端と、一次コンデンサC1及び逆流防止用ダイオードD2のカソードの接続点とには充電用ダイオードD3が接続されている。スイッチング素子Qがオフ状態にあるとき、整流ダイオードD1、一次コンデンサC1、充電用ダイオードD3及びトランスTrの1次巻線Tr1の閉路で電流を循環させて一次コンデンサC1を充電する。 In the power supply circuit 10, a single transformer Tr is interposed as shown in FIG. The transformer Tr is provided with a first winding Tr1 and a second winding Tr2. One end of the first winding Tr1 is connected to the positive terminal of the rectifier circuit 20. The other end of the first winding Tr1 is connected to one end (negative terminal) of the LED series circuit 40 through a series circuit including a rectifier diode D1, a primary capacitor C1, and a backflow prevention diode D2. A charging diode D3 is connected to one end of the first winding Tr1 and a connection point between the primary capacitor C1 and the cathode of the backflow prevention diode D2. When the switching element Q is in the OFF state, the primary capacitor C1 is charged by circulating current through the closed circuit of the rectifier diode D1, the primary capacitor C1, the charging diode D3, and the primary winding Tr1 of the transformer Tr.
 逆流防止用ダイオードD2は、図1に示すように、一次コンデンサC1への充電電流が逆流するのを防止する。逆流防止用ダイオードD2のアノードと整流回路20の負側端子との間には二次コンデンサC2がLED直列回路40と並列に接続されている。整流ダイオードD1及び一次コンデンサC1の接続点にはスイッチング素子Qのドレインが接続されている。スイッチング素子Qのソースは電流検出用の抵抗R4を介してグランドに接続されている。スイッチング素子Qのソース及び抵抗R4の接続点は抵抗R5を介して制御IC31のIS端子に接続されており、スイッチング素子Qのスイッチング電流を検出する。スイッチング素子Qのゲートは抵抗R6を介して制御IC31のOUT端子に接続されている。 As shown in FIG. 1, the reverse current prevention diode D2 prevents the charging current to the primary capacitor C1 from flowing backward. A secondary capacitor C2 is connected in parallel with the LED series circuit 40 between the anode of the backflow prevention diode D2 and the negative terminal of the rectifier circuit 20. The drain of the switching element Q is connected to the connection point of the rectifier diode D1 and the primary capacitor C1. The source of the switching element Q is connected to the ground via a current detection resistor R4. The connection point of the source of the switching element Q and the resistor R4 is connected to the IS terminal of the control IC 31 via the resistor R5, and detects the switching current of the switching element Q. The gate of the switching element Q is connected to the OUT terminal of the control IC 31 via the resistor R6.
 トランスTrの第2巻線Tr2は、図1に示すように、一次巻線Tr1とは電気的に絶縁された状態にある。第2巻線Tr2の一端はグランドに接続されている。第2巻線Tr2の他端は抵抗R7を介して制御IC31のZCD端子に接続されており、トランスTrに流れる電流値が検出される。スイッチング素子Qがオン状態からオフ状態になると、二次巻線Tr2に誘起された第1巻線Tr1の誘起電圧に比例した電圧によって二次巻線Tr2に電流が流れるように構成されている。第2巻線Tr2からの電圧に基づいてトランスTrの電流がゼロに戻ったことが検出されると、スイッチング素子Qをオン状態にする。 As shown in FIG. 1, the second winding Tr2 of the transformer Tr is electrically insulated from the primary winding Tr1. One end of the second winding Tr2 is connected to the ground. The other end of the second winding Tr2 is connected to the ZCD terminal of the control IC 31 via a resistor R7, and the value of the current flowing through the transformer Tr is detected. When the switching element Q changes from the on state to the off state, a current flows through the secondary winding Tr2 by a voltage proportional to the induced voltage of the first winding Tr1 induced in the secondary winding Tr2. When it is detected that the current of the transformer Tr has returned to zero based on the voltage from the second winding Tr2, the switching element Q is turned on.
 二次コンデンサC2の一端(正極端子)には、図1に示すように、抵抗R8,R9,R10からなる直列回路が接続されている。抵抗R9と抵抗R10との接続点には反転アンプ32の反転入力端子が接続されている。抵抗R9と抵抗R10とはLED直列回路40に流れる電流を検出する電流検出回路を構成している。抵抗R9と抵抗R10との接続点における分圧値は、反転アンプ32により所定の増幅率で増幅され、制御IC31のFB端子に電流検出値として入力される。電流検出値によりLED直列回路40の電流を一定にするためにフィードバック制御が行われる。抵抗R10の抵抗R9側と反対側の一端は、図示を省略しているが、反転アンプ32を動作させるためのオフセット電圧に接続されている。 As shown in FIG. 1, a series circuit composed of resistors R8, R9, and R10 is connected to one end (positive terminal) of the secondary capacitor C2. An inverting input terminal of the inverting amplifier 32 is connected to a connection point between the resistor R9 and the resistor R10. The resistors R9 and R10 constitute a current detection circuit that detects a current flowing through the LED series circuit 40. The divided voltage value at the connection point between the resistor R9 and the resistor R10 is amplified with a predetermined amplification factor by the inverting amplifier 32, and is input to the FB terminal of the control IC 31 as a current detection value. Feedback control is performed in order to make the current of the LED series circuit 40 constant by the detected current value. Although not shown, one end of the resistor R10 opposite to the resistor R9 side is connected to an offset voltage for operating the inverting amplifier 32.
(電源回路の動作)
 次に、図1及び図2において電源回路10の動作を説明する。図2に示す制御IC31は、エラーアンプ33、乗算器(MUL)34、比較器35、フリップフロップ36、ドライバ37及びゼロ電流検出器38により主に構成されている。いま、商用交流電源11が電源回路10に印加されると、商用交流電源11からの電源電圧は整流回路20に供給される。整流回路20により全波整流された後、全波整流された直流電流はPFC回路30に供給される。制御IC31に直流電流が供給されて動作を開始し、スイッチング素子Qにゲート電圧が印加することになる。
(Power circuit operation)
Next, the operation of the power supply circuit 10 will be described with reference to FIGS. The control IC 31 shown in FIG. 2 mainly includes an error amplifier 33, a multiplier (MUL) 34, a comparator 35, a flip-flop 36, a driver 37, and a zero current detector 38. Now, when the commercial AC power supply 11 is applied to the power supply circuit 10, the power supply voltage from the commercial AC power supply 11 is supplied to the rectifier circuit 20. After full-wave rectification by the rectifier circuit 20, the full-wave rectified direct current is supplied to the PFC circuit 30. A direct current is supplied to the control IC 31 to start the operation, and a gate voltage is applied to the switching element Q.
 図1において、スイッチング素子Qがオン状態にあるときにスイッチング素子Qを通してスイッチング電流がグランドへ流れる。そのときの電流エネルギーはトランスTrの第1巻線Tr1に蓄積される。その後、スイッチング素子Qがオフ状態になると、第1巻線Tr1への電流の流入が停止され、第1巻線Tr1に蓄積された電流エネルギーは整流ダイオードD1を介して放出され、一次コンデンサC1に蓄積される。一次コンデンサC1は、スイッチング素子Qがオン状態にあるときに第1の出力電源として機能する。一次コンデンサC1に蓄積された電流エネルギーは放出され、スイッチング素子Q、二次コンデンサC2、及び一次コンデンサC1の閉路で電流が流れ、二次コンデンサC2に充電電流を供給するとともに、スイッチング素子Q、LED直列回路40、逆流防止用ダイオードD2、及び一次コンデンサC1の閉路で電流が流れる。 In FIG. 1, when the switching element Q is in the ON state, a switching current flows to the ground through the switching element Q. The current energy at that time is accumulated in the first winding Tr1 of the transformer Tr. Thereafter, when the switching element Q is turned off, the inflow of current to the first winding Tr1 is stopped, and the current energy accumulated in the first winding Tr1 is released through the rectifier diode D1, and is supplied to the primary capacitor C1. Accumulated. The primary capacitor C1 functions as a first output power supply when the switching element Q is in an on state. The current energy stored in the primary capacitor C1 is released, and a current flows in the closed circuit of the switching element Q, the secondary capacitor C2, and the primary capacitor C1 to supply a charging current to the secondary capacitor C2, and the switching element Q, LED A current flows in the closed circuit of the series circuit 40, the backflow prevention diode D2, and the primary capacitor C1.
 一方、LED直列回路40の電流検出回路である抵抗R9,R10からなる分圧抵抗の出力は、図1及び図2に示すように、反転アンプ32の反転入力端子に入力される。反転アンプ32では、位相反転された電圧を所定の増幅率に増幅する。増幅した電圧は制御IC31のFB端子を通じて制御IC31内のエラーアンプ33の反転入力端子へと供給される。 On the other hand, the output of the voltage dividing resistor composed of the resistors R9 and R10 which are current detection circuits of the LED series circuit 40 is input to the inverting input terminal of the inverting amplifier 32 as shown in FIGS. The inverting amplifier 32 amplifies the phase-inverted voltage to a predetermined amplification factor. The amplified voltage is supplied to the inverting input terminal of the error amplifier 33 in the control IC 31 through the FB terminal of the control IC 31.
 エラーアンプ33では、図1及び図2に示すように、制御IC31のFB端子に入力された電圧と基準電圧Vrefとが比較され、基準電圧Vrefに対する誤差電圧に応じたレベルの電圧を所定の増幅率に増幅する。増幅した誤差電圧は制御IC31内の乗算器34へと出力される。 In the error amplifier 33, as shown in FIGS. 1 and 2, the voltage input to the FB terminal of the control IC 31 is compared with the reference voltage Vref, and a voltage having a level corresponding to the error voltage with respect to the reference voltage Vref is amplified by a predetermined amount. Amplify to rate. The amplified error voltage is output to the multiplier 34 in the control IC 31.
 乗算器34では、図1及び図2に示すように、整流回路20からの分圧された出力電圧が制御IC31のMUL端子を通じて供給され、その出力電圧とエラーアンプ34からの出力電圧とを乗算した電圧が生成される。乗算器34の電圧は、スイッチング電流の電流目標値として制御IC31内の比較器35の反転入力端子へと出力される。乗算器34の出力電圧は全波整流波形に相似する波形となり、振幅がLED直列回路40に流れる電流(一次コンデンサC1の放電量)に比例した電圧となる。 As shown in FIGS. 1 and 2, the multiplier 34 is supplied with the divided output voltage from the rectifier circuit 20 through the MUL terminal of the control IC 31, and multiplies the output voltage by the output voltage from the error amplifier 34. Voltage is generated. The voltage of the multiplier 34 is output to the inverting input terminal of the comparator 35 in the control IC 31 as a current target value of the switching current. The output voltage of the multiplier 34 has a waveform similar to the full-wave rectification waveform, and the amplitude is a voltage proportional to the current flowing through the LED series circuit 40 (the discharge amount of the primary capacitor C1).
 比較器35では、図1及び図2に示すように、スイッチング素子Qの電流検出用の抵抗R4により電圧変換された電圧と乗算器34からの電圧とが比較され、パルス幅変調されたパルスを発生する。比較器35の出力は制御IC31内のフリップフロップ36のリセット端子Rに供給される。比較器35の出力は制御IC31内のドライバ37で電力増幅され、スイッチング素子Qのゲートを駆動する。スイッチング素子Qは、比較器35によって発生するパルス幅変調されたパルス信号でスイッチング素子Qのオン時間を制御するとともに、トランスTrの第1巻線Tr1に流れる電流を制御する。これにより、エラーアンプ33の基準電圧Vrefと二次コンデンサC2からの分圧された電圧とが等しくなるように定電流制御することができる。 In the comparator 35, as shown in FIGS. 1 and 2, the voltage converted by the current detection resistor R4 of the switching element Q is compared with the voltage from the multiplier 34, and the pulse width-modulated pulse is obtained. appear. The output of the comparator 35 is supplied to the reset terminal R of the flip-flop 36 in the control IC 31. The output of the comparator 35 is power amplified by a driver 37 in the control IC 31 and drives the gate of the switching element Q. The switching element Q controls the on-time of the switching element Q by the pulse signal modulated by the pulse width generated by the comparator 35 and also controls the current flowing through the first winding Tr1 of the transformer Tr. Thus, constant current control can be performed so that the reference voltage Vref of the error amplifier 33 and the divided voltage from the secondary capacitor C2 are equal.
 スイッチング素子Qの電流検出用の抵抗R4により電圧変換された電圧が乗算器34の出力電圧よりも大きくなると、比較器35の出力が反転してフリップフロップ36をリセットする。スイッチング素子Qがオフ状態になると、充電用ダイオードD3が導通し、トランスTrを流れていた電流は整流ダイオードD1を通じて一次コンデンサC1へ流れ込む。この電流は、一次コンデンサC1、充電用ダイオードD3及びトランスTrの1次巻線Tr1の閉路で流れ、一次コンデンサC1が充電される。1次巻線Tr1に流れる電流を一次コンデンサC1へ直接供給しているので、整流回路20の全波整流電圧に1次巻線Tr1のコイル電圧を加えた電圧が一次コンデンサC1に供給されることはなくなり、入力電圧よりも低い出力電圧をLED直列回路40へ供給することが可能となる。一方、スイッチング素子Qのオン状態において、一次コンデンサC1から二次コンデンサC2に電気エネルギーは充電され、LED直列回路40及び二次コンデンサC2の閉路で電流が流れる。二次コンデンサC2は、スイッチング素子Qがオフ状態であるときに第2の出力電源として機能する。 When the voltage converted by the current detection resistor R4 of the switching element Q becomes larger than the output voltage of the multiplier 34, the output of the comparator 35 is inverted and the flip-flop 36 is reset. When the switching element Q is turned off, the charging diode D3 becomes conductive, and the current flowing through the transformer Tr flows into the primary capacitor C1 through the rectifier diode D1. This current flows in the closed circuit of the primary capacitor C1, the charging diode D3, and the primary winding Tr1 of the transformer Tr, and the primary capacitor C1 is charged. Since the current flowing through the primary winding Tr1 is directly supplied to the primary capacitor C1, a voltage obtained by adding the coil voltage of the primary winding Tr1 to the full-wave rectified voltage of the rectifier circuit 20 is supplied to the primary capacitor C1. Thus, an output voltage lower than the input voltage can be supplied to the LED series circuit 40. On the other hand, in the ON state of the switching element Q, the electrical energy is charged from the primary capacitor C1 to the secondary capacitor C2, and a current flows through the closed circuit of the LED series circuit 40 and the secondary capacitor C2. The secondary capacitor C2 functions as a second output power source when the switching element Q is in an off state.
 トランスTrの一次巻線Tr1に流れる電流がゼロになったことをトランスTrの二次巻線Tr2とゼロ電流検出器38とにより検出する。ゼロ電流検出器38により一次巻線Tr1に流れる電流がゼロになったことを検出すると、フリップフロップ36をセットしてスイッチング素子Qをオン状態にする。 The fact that the current flowing through the primary winding Tr1 of the transformer Tr has become zero is detected by the secondary winding Tr2 of the transformer Tr and the zero current detector 38. When the zero current detector 38 detects that the current flowing through the primary winding Tr1 has become zero, the flip-flop 36 is set and the switching element Q is turned on.
 上記動作を繰り返すことで、トランスTrの一次巻線Tr1に流れる電流の平均値は商用交流電源11の電圧波形に等しくなり、力率の向上と高調波電流の抑制を実現することができる。 By repeating the above operation, the average value of the current flowing through the primary winding Tr1 of the transformer Tr becomes equal to the voltage waveform of the commercial AC power supply 11, and improvement of the power factor and suppression of harmonic current can be realized.
 エラーアンプ33の基準電圧Vrefに対して、FB端子に入力される電圧をLED直列回路40の駆動に適した所定値に設定することで、商用交流電源11の電圧よりも高電圧仕様のLED直列回路40を駆動する場合や商用交流電源11の電圧よりも低電圧仕様のLED直列回路40を駆動する場合に好適な電源回路10が得られる。図2において、エラーアンプ33の基準電圧Vrefに対してFB端子に入力される電圧を小さく設定すると、乗算器34の出力電圧が上がり、比較器35から発生するパルス信号のパルス幅が大きくなる。スイッチング素子Qがオン制御されるオン時間が長くなり、一次コンデンサC1へ充電される充電量が増大する。これにより、商用交流電源11の電圧よりも高電圧仕様のLED直列回路40を駆動する電源回路10として効果的に使用することができるようになる。 By setting the voltage input to the FB terminal to a predetermined value suitable for driving the LED series circuit 40 with respect to the reference voltage Vref of the error amplifier 33, the LED series having a higher voltage specification than the voltage of the commercial AC power supply 11 is set. The power supply circuit 10 suitable for driving the circuit 40 or driving the LED series circuit 40 having a lower voltage specification than the voltage of the commercial AC power supply 11 is obtained. In FIG. 2, when the voltage input to the FB terminal is set smaller than the reference voltage Vref of the error amplifier 33, the output voltage of the multiplier 34 increases, and the pulse width of the pulse signal generated from the comparator 35 increases. The on-time during which the switching element Q is on-controlled increases, and the amount of charge charged to the primary capacitor C1 increases. As a result, the power supply circuit 10 that drives the LED series circuit 40 having a higher voltage specification than the voltage of the commercial AC power supply 11 can be effectively used.
 一方、エラーアンプ33の基準電圧Vrefに対してFB端子に入力される電圧を大きく設定すると、乗算器34の出力電圧が下がり、比較器35から発生するパルス信号のパルス幅が小さくなる。スイッチング素子Qがオン制御されるオン時間が短くなり、一次コンデンサC1への充電量が低下する。これにより、商用交流電源11の電圧よりも低電圧仕様のLED直列回路40を駆動する電源回路10として効果的に使用することができるようになる。 On the other hand, if the voltage input to the FB terminal is set to be larger than the reference voltage Vref of the error amplifier 33, the output voltage of the multiplier 34 is lowered and the pulse width of the pulse signal generated from the comparator 35 is reduced. The ON time during which the switching element Q is ON-controlled is shortened, and the amount of charge to the primary capacitor C1 is reduced. As a result, the power supply circuit 10 that drives the LED series circuit 40 having a lower voltage specification than the voltage of the commercial AC power supply 11 can be effectively used.
[制御ICの変形例]
 図3は制御ICの他の構成例を概略的に示している。図3において上記第1の実施の形態と大きく異なるところは、上記第1の実施の形態にあってはエラーアンプ33からの出力電圧が乗算器(MUL)34を介して比較器35に供給される構成となっていたものを、この変形例ではエラーアンプ33からの出力電圧を直接的に比較器35に供給した点にある。なお、上記第1の実施の形態と実質的に同じ部材には同一の部材名と符号を付している。従って、上記第1の実施の形態と実質的に同じ部材に関する詳細な説明は省略する。
[Modification of control IC]
FIG. 3 schematically shows another configuration example of the control IC. In FIG. 3, the difference from the first embodiment is that the output voltage from the error amplifier 33 is supplied to the comparator 35 via the multiplier (MUL) 34 in the first embodiment. In this modification, the output voltage from the error amplifier 33 is directly supplied to the comparator 35. In addition, the same member name and code | symbol are attached | subjected to the member substantially the same as the said 1st Embodiment. Therefore, a detailed description of substantially the same members as those in the first embodiment is omitted.
 この変形例における制御IC31は、図3に示すように、抵抗R9,R10により電圧変換された電圧を反転アンプ32の反転入力端子に入力し、エラーアンプ33の非反転入力端子に基準電圧Vrefを入力する。エラーアンプ33の出力は、比較器35でスイッチング素子Qの電流検出用の抵抗4により電圧変換された電圧と比較される。比較器35の出力はフリップフロップ36及びドライバ37を介して出力され、スイッチング素子Qのゲートを駆動する。 As shown in FIG. 3, the control IC 31 in this modified example inputs the voltage converted by the resistors R9 and R10 to the inverting input terminal of the inverting amplifier 32, and applies the reference voltage Vref to the non-inverting input terminal of the error amplifier 33. input. The output of the error amplifier 33 is compared with the voltage converted by the current detection resistor 4 of the switching element Q by the comparator 35. The output of the comparator 35 is output via the flip-flop 36 and the driver 37, and drives the gate of the switching element Q.
 スイッチング素子Qの電流検出用の抵抗4により電圧変換された電圧がエラーアンプ33の出力電圧よりも大きくなると、比較器35の出力が反転してフリップフロップ36をリセットし、スイッチング素子Qをオフ状態にする。ゼロ電流検出器38により一次巻線Tr1に流れる電流がゼロになったことを検出すると、フリップフロップ36をセットしてスイッチング素子Qをオン状態にする。この動作を繰り返すことで、LED直列回路40に流れる電流を一定に保つとともに、商用交流電源11の電圧よりも高い電圧を有するLED直列回路40の駆動や商用交流電源11の電圧よりも低い電圧のLED直列回路40の駆動に適した電圧が出力される。 When the voltage converted by the current detection resistor 4 of the switching element Q becomes larger than the output voltage of the error amplifier 33, the output of the comparator 35 is inverted to reset the flip-flop 36, and the switching element Q is turned off. To. When the zero current detector 38 detects that the current flowing through the primary winding Tr1 has become zero, the flip-flop 36 is set and the switching element Q is turned on. By repeating this operation, the current flowing through the LED series circuit 40 is kept constant, and the LED series circuit 40 having a voltage higher than the voltage of the commercial AC power supply 11 is driven or has a voltage lower than the voltage of the commercial AC power supply 11. A voltage suitable for driving the LED series circuit 40 is output.
 なお、上記第1の実施の形態及び変形例にあっては、抵抗R9,R10により電圧変換された電圧を反転アンプ32の反転入力端子、及び制御IC31のFB端子を通じてエラーアンプ33の反転入力端子に入力する構成例を説明したが、本発明はこれに限定されるものではない。本発明にあっては、例えば制御IC31のFB端子の極性に応じて反転アンプ32を介装することなく、抵抗R9,R10により電圧変換された電圧を制御IC31のFB端子を通じてエラーアンプ33に入力する構成であってもよいことは勿論である。 In the first embodiment and the modification, the voltage converted by the resistors R9 and R10 is supplied to the inverting input terminal of the inverting amplifier 32 and the inverting input terminal of the error amplifier 33 through the FB terminal of the control IC 31. However, the present invention is not limited to this. In the present invention, for example, the voltage converted by the resistors R9 and R10 is input to the error amplifier 33 through the FB terminal of the control IC 31 without using the inverting amplifier 32 according to the polarity of the FB terminal of the control IC 31. Of course, the structure which does may be sufficient.
[第2の実施の形態]
 図4は第2の実施の形態である電源回路の一構成例を概略的に示している。同図において上記第1の実施の形態と実質的に同じ部材には同一の部材名と符号を付している。従って、上記第1の実施の形態と実質的に同じ部材に関する詳細な説明は省略する。
[Second Embodiment]
FIG. 4 schematically shows a configuration example of the power supply circuit according to the second embodiment. In the figure, the substantially same members as those in the first embodiment are given the same member names and symbols. Therefore, a detailed description of substantially the same members as those in the first embodiment is omitted.
 この第2の実施の形態である電源回路10にあっては、LED41の電源として定電圧電源回路とした点が上記第1の実施の形態とは異なっている。図示例によれば、電源回路10の出力端子間には抵抗R11,R12からなる直列回路が抵抗R15に接続されたLED直列回路42からなる定電圧負荷に並列接続されている。抵抗R11及び抵抗R12の接続点には抵抗R13,R14からなる直列回路が接続されている。抵抗R13,R14の接続点には反転アンプ32の反転入力端子が接続されている。抵抗R11~R14は定電圧負荷にかかる電圧を検出する電圧検出回路を構成している。この抵抗R13,R14の接続点における分圧値は反転アンプ32を通じて制御IC31のFB端子に入力される。 The power supply circuit 10 according to the second embodiment is different from the first embodiment in that a constant voltage power supply circuit is used as a power supply for the LED 41. According to the illustrated example, a series circuit composed of resistors R11 and R12 is connected in parallel to a constant voltage load composed of an LED series circuit 42 connected to a resistor R15 between output terminals of the power supply circuit 10. A series circuit including resistors R13 and R14 is connected to a connection point between the resistors R11 and R12. The inverting input terminal of the inverting amplifier 32 is connected to the connection point of the resistors R13 and R14. The resistors R11 to R14 constitute a voltage detection circuit that detects a voltage applied to a constant voltage load. The divided voltage value at the connection point of the resistors R13 and R14 is input to the FB terminal of the control IC 31 through the inverting amplifier 32.
 この第2の実施の形態では、上記第1の実施の形態と同様に、図2又は図3に示す制御IC31を効果的に使用することができる。エラーアンプ33の基準電圧Vrefに対して、FB端子に入力される電圧をLED直列回路40の駆動に適した所定値に設定することで、高価な回路を設けることなく、入力電圧よりも低い出力電圧あるいは高い出力電圧をLED直列回路40に供給することができる。 In the second embodiment, as in the first embodiment, the control IC 31 shown in FIG. 2 or 3 can be used effectively. By setting the voltage input to the FB terminal to a predetermined value suitable for driving the LED series circuit 40 with respect to the reference voltage Vref of the error amplifier 33, an output lower than the input voltage is provided without providing an expensive circuit. A voltage or a high output voltage can be supplied to the LED series circuit 40.
 なお、この第2の実施の形態にあっても、抵抗R13,R14により電圧変換された電圧を反転アンプ32の反転入力端子、及び制御IC31のFB端子を通じてエラーアンプ33の反転入力端子に入力する構成を例示したが、これに限定されるものではなく、例えば制御IC31のFB端子の極性に応じて反転アンプ32を介装することなく、抵抗R13,R14により電圧変換された電圧を制御IC31のFB端子を通じてエラーアンプ33に入力する構成であってもよい。 Even in the second embodiment, the voltage converted by the resistors R13 and R14 is input to the inverting input terminal of the inverting amplifier 32 and the inverting terminal of the error amplifier 33 through the FB terminal of the control IC 31. Although the configuration is illustrated, the present invention is not limited to this. For example, the voltage converted by the resistors R13 and R14 is not converted to the voltage of the control IC 31 without using the inverting amplifier 32 according to the polarity of the FB terminal of the control IC 31. The configuration may be such that the error amplifier 33 is input through the FB terminal.
 以上の説明からも明らかなように、上記各図示例では、スイッチング素子Qがオンのとき整流回路20からの直流電流に基づいて電気エネルギーを蓄積し、蓄積した電気エネルギーに基づいて直流電流を出力する蓄積回路として単一のトランスTrを電力供給回路に設けた構成を例示したが、例えば単一のコイルを電力供給回路に設けた構成であってもよい。また、上記各図示例では、トランスTrに流れる電流がゼロになったときにスイッチ素子Qをオンさせるように制御する臨界モード制御方式を例示したが、トランスTrに流れる電流がゼロにならないように制御する電流連続モード制御方式にも適用することが可能であり、本発明の初期の目的を十分に達成することができる。また、上記各図示例では、照明装置の電源回路を例示したが、本発明はこれに限定されるものではない。本発明は、定電流負荷の場合は、例えばエアコン、冷蔵庫、換気扇やポンプ等の直流モータ駆動用の電源回路などとして効果的に使用することができることは勿論であり、定電圧負荷の場合は、例えば汎用の直流電圧電源としての使用が可能である。従って、本発明は、上記各実施の形態及び変形例に限定されるものではなく、各請求項に記載した範囲内で様々に設計変更が可能である。 As is clear from the above description, in each of the illustrated examples, when the switching element Q is on, electrical energy is accumulated based on the direct current from the rectifier circuit 20, and the direct current is output based on the accumulated electrical energy. Although the configuration in which the single transformer Tr is provided in the power supply circuit as the storage circuit to be performed is illustrated, for example, a configuration in which a single coil is provided in the power supply circuit may be used. In each of the illustrated examples, the critical mode control method is illustrated in which the switching element Q is controlled to be turned on when the current flowing through the transformer Tr becomes zero. However, the current flowing through the transformer Tr is prevented from becoming zero. The present invention can also be applied to a continuous current mode control system to be controlled, and the initial object of the present invention can be sufficiently achieved. Moreover, in each said example of illustration, although the power supply circuit of the illuminating device was illustrated, this invention is not limited to this. In the case of a constant current load, the present invention can be effectively used as a power circuit for driving a DC motor such as an air conditioner, a refrigerator, a ventilation fan or a pump, for example. In the case of a constant voltage load, For example, it can be used as a general-purpose DC voltage power source. Therefore, the present invention is not limited to the above embodiments and modifications, and various design changes can be made within the scope described in each claim.

Claims (3)

  1.  第1及び第2のスイッチ信号に基づいてオン及びオフするスイッチ回路と、
     前記スイッチ回路のオン及びオフによって直流負荷に直流電流を供給する電力供給回路と、
     前記第1及び第2のスイッチ信号を前記スイッチ回路に出力する制御回路とを備え、
     前記電力供給回路は、
     前記スイッチ回路がオンのとき、整流回路からの直流電流に基づいて電気エネルギーを蓄積し、蓄積した前記電気エネルギーに基づいて直流電流を出力する蓄積回路と、
     前記直流負荷と直列に接続されて前記蓄積回路からの前記直流電流によって充電される第1のコンデンサと、
     前記直流負荷と並列に配置されて前記蓄積回路からの前記直流電流によって充電される第2のコンデンサとを有し、
     前記直流負荷は、前記スイッチ回路がオンのとき、前記蓄積回路と前記第1のコンデンサからの直流電流によって駆動され、前記スイッチ回路がオフのとき、前記第2のコンデンサからの直流電流によって駆動されることを特徴とする電源回路。
    A switch circuit that is turned on and off based on the first and second switch signals;
    A power supply circuit for supplying a direct current to a direct current load by turning on and off the switch circuit;
    A control circuit for outputting the first and second switch signals to the switch circuit;
    The power supply circuit includes:
    When the switch circuit is on, the storage circuit stores electrical energy based on the direct current from the rectifier circuit, and outputs direct current based on the stored electrical energy;
    A first capacitor connected in series with the DC load and charged by the DC current from the storage circuit;
    A second capacitor disposed in parallel with the DC load and charged by the DC current from the storage circuit;
    The DC load is driven by a direct current from the storage circuit and the first capacitor when the switch circuit is on, and is driven by a direct current from the second capacitor when the switch circuit is off. A power supply circuit characterized by that.
  2.  前記蓄積回路は、前記スイッチ回路がオフのとき、前記第1のコンデンサを充電することを特徴とする請求項1記載の電源回路。 The power storage circuit according to claim 1, wherein the storage circuit charges the first capacitor when the switch circuit is off.
  3.  前記第2のコンデンサの負極端子と前記直流負荷の負極端子との接続点と、前記第1のコンデンサとの間に、前記第1のコンデンサから前記第2のコンデンサへ直流電流が流れるのを防止する逆流防止用ダイオードが接続されていることを特徴とする請求項1記載の電源回路。 Preventing a direct current from flowing from the first capacitor to the second capacitor between the connection point between the negative electrode terminal of the second capacitor and the negative electrode terminal of the DC load and the first capacitor. 2. A power supply circuit according to claim 1, further comprising a backflow prevention diode connected thereto.
PCT/JP2010/051352 2009-02-24 2010-02-01 Power circuit WO2010098174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009040348A JP5616028B2 (en) 2009-02-24 2009-02-24 Power circuit
JP2009-040348 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010098174A1 true WO2010098174A1 (en) 2010-09-02

Family

ID=42665384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051352 WO2010098174A1 (en) 2009-02-24 2010-02-01 Power circuit

Country Status (2)

Country Link
JP (1) JP5616028B2 (en)
WO (1) WO2010098174A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094700A1 (en) * 2011-12-20 2013-06-27 シチズンホールディングス株式会社 Led module
US8723425B2 (en) 2011-06-17 2014-05-13 Stevan Pokrajac Light emitting diode driver circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645257B2 (en) * 2010-11-18 2014-12-24 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element lighting device and lighting fixture using the same
JP6365162B2 (en) * 2014-09-17 2018-08-01 東芝ライテック株式会社 Power supply device and lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221867A (en) * 1986-03-13 1987-09-29 Fujitsu Ltd Dc-dc converter
JPH03226266A (en) * 1990-01-31 1991-10-07 Mitsubishi Electric Corp Pulse power supply
JPH08168257A (en) * 1994-12-15 1996-06-25 Cosel Usa Inc Switching regulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221867A (en) * 1986-03-13 1987-09-29 Fujitsu Ltd Dc-dc converter
JPH03226266A (en) * 1990-01-31 1991-10-07 Mitsubishi Electric Corp Pulse power supply
JPH08168257A (en) * 1994-12-15 1996-06-25 Cosel Usa Inc Switching regulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723425B2 (en) 2011-06-17 2014-05-13 Stevan Pokrajac Light emitting diode driver circuit
WO2013094700A1 (en) * 2011-12-20 2013-06-27 シチズンホールディングス株式会社 Led module
JP5312711B1 (en) * 2011-12-20 2013-10-09 シチズンホールディングス株式会社 LED module
JP2014078687A (en) * 2011-12-20 2014-05-01 Citizen Holdings Co Ltd LED module
US9508910B2 (en) 2011-12-20 2016-11-29 Citizen Holdings Co., Ltd. LED module
US9887185B2 (en) 2011-12-20 2018-02-06 Citizen Watch Co., Ltd. Packaging of LED chips and driver circuit on the same substrate

Also Published As

Publication number Publication date
JP2010200428A (en) 2010-09-09
JP5616028B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5796175B2 (en) LED lighting circuit
US8890440B2 (en) Circuits and methods for driving light sources
US8680783B2 (en) Bias voltage generation using a load in series with a switch
TWI566506B (en) System and method of feed forward for boost converters with improved power factor and reduced energy storage
US8604707B2 (en) Power supply
US9485819B2 (en) Single stage LED driver system, control circuit and associated control method
JP5603975B2 (en) Constant current drive LED module device
US8742676B2 (en) Drive circuit for light emitting diode array based on sepic or cuk topology
US20140368128A1 (en) Active capacitor circuit
JP2007142057A (en) Light emitting diode driving device, and semiconductor device for driving light emitting diode
US8760071B2 (en) Drive circuit for light emitting diode array based on a buck-boost topology
JP5077572B2 (en) Light emitting diode lighting device
JP2009302017A (en) Light-emitting diode-lighting device, and lighting system
JP2014075875A (en) Dc power supply device
GB2497213A (en) Circuits and methods for driving light sources
KR20110136537A (en) Led driving circuit and method for protecting from high voltage and driving with constant current
JP5616028B2 (en) Power circuit
JP5686218B1 (en) Lighting device and lighting apparatus
JP6187024B2 (en) LED power supply device and LED lighting device
JP2013116003A (en) Lighting device
Pal et al. Improved power quality opto-couplerless Cuk converter for flickerless LED lighting
KR20090056025A (en) Power supply for a lamp comprising light emitting diode
JP5645303B2 (en) Remote control one converter power supply circuit
US20100039842A1 (en) Power conversion system and power conversion method thereof
JP2019164922A (en) Lighting device, and emergency luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746055

Country of ref document: EP

Kind code of ref document: A1