WO2010098008A1 - Composition for dip forming, and dip-formed articles - Google Patents

Composition for dip forming, and dip-formed articles Download PDF

Info

Publication number
WO2010098008A1
WO2010098008A1 PCT/JP2010/000217 JP2010000217W WO2010098008A1 WO 2010098008 A1 WO2010098008 A1 WO 2010098008A1 JP 2010000217 W JP2010000217 W JP 2010000217W WO 2010098008 A1 WO2010098008 A1 WO 2010098008A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
ethylenically unsaturated
salt
synthetic polyisoprene
unsaturated dicarboxylic
Prior art date
Application number
PCT/JP2010/000217
Other languages
French (fr)
Japanese (ja)
Inventor
小林治
若田務
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011501467A priority Critical patent/JP5472286B2/en
Publication of WO2010098008A1 publication Critical patent/WO2010098008A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention suppresses the formation of coarse agglomerates during aging, and is excellent in tensile strength even if the aging period is not lengthened, and also excellent in safety when used in contact with the human body.
  • the present invention relates to a dip-molding composition that gives a dip-molded body and a dip-molded body formed by molding the dip-molding composition.
  • a dip-molded product which is dip-molded with a dip molding composition containing natural latex and used in contact with a human body such as a nipple, balloon, glove, balloon, and sack.
  • natural latex contains a protein that causes allergic symptoms in the human body
  • Patent Document 1 discloses a dip molding composition in which a latex of acrylonitrile-butadiene copolymer rubber containing an ethylenically unsaturated acid monomer unit is blended with a vulcanization accelerator composed of sulfur, zinc oxide and a thiazole compound.
  • a dip-molded body obtained by dip-molding a product is disclosed.
  • the dip-molded body of Patent Document 1 does not contain a protein that causes allergic symptoms in the human body, it has a high stress at 300% elongation and is not satisfactory in terms of flexibility.
  • Patent Document 2 discloses a dip molding composition in which sulfur, zinc oxide, a specific vulcanization accelerator and a dispersant are blended with a synthetic polyisoprene latex, and such a dip molding composition is disclosed as follows. It gives a dip-molded body that is flexible and excellent in tensile strength.
  • an anionic surfactant such as sodium lauryl sulfate, an alkaline earth metal salt of casein, and the like are disclosed, and the latter can be preferably used.
  • casein is a kind of protein and there is a concern that it causes allergic symptoms in the human body.
  • the composition for dip molding containing the latex of synthetic polyisoprene is usually aged for a suitable period (sometimes referred to as pre-vulcanization) so as to maintain the tensile strength of the resulting dip-molded article stably high. )) And then subjected to dip molding.
  • a suitable period sometimes referred to as pre-vulcanization
  • the dip obtained without increasing the aging period There exists a problem in which the tensile strength of a molded object is inferior.
  • the dispersion stability of the synthetic polyisoprene latex decreases, and coarse agglomerates are produced during aging, making it difficult to use for dip molding. is there.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-246891 (published on September 5, 2003)”
  • Japanese Patent Gazette “Special Table 2004-532752 (published on Oct. 28, 2004)”
  • the problem to be solved by the present invention is to suppress the formation of coarse agglomerates during aging, and also has excellent tensile strength without increasing the aging period and is used in contact with the human body.
  • Another object of the present invention is to provide a dip-molding composition that provides a dip-molded article with excellent safety.
  • the inventors of the present invention as a dispersant to be blended in a dip molding composition containing a synthetic polyisoprene latex, a sulfur vulcanizing agent, zinc oxide and a vulcanization accelerator, has a weight average.
  • the inventors have found that the above problems can be solved by selecting a salt of a styrene-maleic acid polymer or a styrene-maleic acid monoester polymer having a molecular weight in a specific range, and the present invention has been completed.
  • a dip-molding composition containing a synthetic polyisoprene latex, a sulfur-based vulcanizing agent, zinc oxide, a vulcanization accelerator and a dispersing agent, wherein the dispersing agent has a weight average molecular weight of 1.
  • Olefin compound having a molecular weight of 1,000 to 150,000 and / or an ethylenically unsaturated dicarboxylic acid polymer salt and / or an olefin compound having a weight average molecular weight of 1,000 to 150,000 and an ethylenically unsaturated dicarboxylic acid monoester polymer
  • a dip-forming composition characterized in that it is a salt of
  • a dip-molded body obtained by dip-molding the above dip-molding composition.
  • the dip-forming composition of the present invention is excellent in tensile strength and used in contact with the human body while suppressing the formation of coarse aggregates during aging and without extending the aging period.
  • a dip-molded body having excellent safety is provided.
  • the dip molding composition of the present invention contains a synthetic polyisoprene latex, a sulfur vulcanizing agent, zinc oxide, a vulcanization accelerator and a specific dispersant.
  • the synthetic polyisoprene latex used in the present invention is a synthetic polyisoprene latex obtained by polymerizing isoprene.
  • the synthetic polyisoprene may be obtained by copolymerizing a small amount of another ethylenically unsaturated monomer copolymerizable with isoprene.
  • the content of isoprene units in the synthetic polyisoprene is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the synthetic polyisoprene is most preferably a homopolymer of isoprene from the viewpoint of obtaining a dip-molded product that is flexible and excellent in tensile strength.
  • Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) Examples thereof include ethylenically unsaturated carboxylic acid ester monomers such as 2-ethylhexyl acrylate; crosslinkable monomers such as divinylbenzene, diethylene glycol di (meth) acrylate, and pentaerythritol (meth) acrylate.
  • ethylenically unsaturated monomers copolymerizable with isoprene can be used alone or in combination of two or more.
  • the ratio of the cis bond unit in the isoprene unit in the synthetic polyisoprene is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. is there.
  • the average molecular weight of the synthetic polyisoprene is a weight average molecular weight in terms of standard polystyrene by gel permeation chromatography analysis, preferably 500,000 to 5,000,000, more preferably 800,000 to 3,000,000. It is. When the average molecular weight of the synthetic polyisoprene is 500,000 or more, the tensile strength of the dip-molded product is improved, and when it is 5,000,000 or less, the synthetic polyisoprene latex tends to be easily produced.
  • a synthetic polyisoprene solution dissolved in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary.
  • Isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith is emulsion-polymerized or suspension-polymerized to produce a synthetic polyisoprene latex directly.
  • a method for producing isoprene latex is mentioned.
  • Synthetic polyisoprene having a high proportion of cis-bond units in isoprene units can be used, and the production method (1) is preferable because a dip-molded article having excellent tensile strength can be obtained.
  • Synthetic polyisoprene is a solution of isoprene in an inert polymerization solvent using, for example, a Ziegler polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. It can be obtained by polymerization.
  • the obtained synthetic polyisoprene polymerization solution can be used as it is, or after the solid synthetic polyisoprene is taken out from the polymerization solution, the solid synthetic polyisoprene can be dissolved in an organic solvent and used.
  • Examples of the organic solvent used in the above production method (1) include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene and cyclohexane; pentane, hexane and heptane. Aliphatic hydrocarbon solvents such as methylene chloride, chloroform, ethylene dichloride and the like; and the like. Of these, aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferable, and alicyclic hydrocarbon solvents are particularly preferable.
  • the amount of the organic solvent used is, for example, 2,000 parts by mass or less, preferably 20 to 1,500 parts by mass, more preferably 50 to 1,000 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. .
  • surfactant examples include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid, Salts of fatty acids such as linolenic acid, anionic surfactants such as alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, higher alcohol sulfates and alkylsulfosuccinates; alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride And other cationic surfactants.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester
  • myristic acid, palmitic acid, oleic acid, Salts of fatty acids
  • Copolymerizable surfactants such as sulfoesters of ⁇ , ⁇ -unsaturated carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, and sulfoalkylaryl ethers can also be used. Of these, anionic surfactants are preferred. These surfactants can be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.5 to 50 parts by mass, more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.5 parts by mass or more, sufficient latex stability can be obtained, and if it is 50 parts by mass or less, it is economically advantageous, and it is difficult to foam, resulting in foaming during dip molding. The problem can be suppressed.
  • An apparatus for emulsifying an organic solvent solution of synthetic polyisoprene in water in the presence of a surfactant is not particularly limited as long as it is generally commercially available as an emulsifier or a disperser.
  • the method for adding the surfactant is not particularly limited, and it may be added in advance to an organic solvent solution of water and / or synthetic polyisoprene, or may be added to the emulsion during the emulsification operation. It may be added all at once or dividedly.
  • emulsifier examples include batch type emulsifiers such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), and TK auto homomixer (manufactured by Special Machine Industries); TK pipeline homo mixer (special machine industry) Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), thrasher, trigonal wet pulverizer (manufactured by Mitsui Miike Chemical Co., Ltd.), Cavitron (manufactured by Eurotech Co., Ltd.), milder, fine flow mill (manufactured by Taiheiyo Kiko Co., Ltd.) Continuous emulsifiers; high-pressure emulsifiers such as microfluidizer (manufactured by Mizuho Kogyo), nanomizer (manufactured by Nanomizer), APV Gaurin (manufactured by Gaurin); Machine:
  • the conditions for the emulsification operation are not particularly limited, and a processing temperature, a processing time, and the like are appropriately selected so that a desired dispersion state is obtained.
  • the organic solvent is removed from the emulsion obtained through the emulsification operation to obtain a synthetic polyisoprene latex.
  • the method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation and the like can be employed.
  • a concentration operation may be performed by employing a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration or the like.
  • the solid content concentration of the synthetic polyisoprene latex is preferably 30 to 70% by mass, more preferably 40 to 70% by mass. If the solid content concentration is 30% by mass or more, the synthetic polyisoprene latex can be prevented from separating when the synthetic polyisoprene latex is stored, and if it is 70% by mass or less, the synthetic polyisoprene particles are aggregated. And generation of coarse aggregates can be suppressed.
  • the volume average particle diameter of the synthetic polyisoprene particles in the synthetic polyisoprene latex is preferably 0.05 to 3 ⁇ m, more preferably 0.2 to 2 ⁇ m. If the volume average particle diameter is 0.05 ⁇ m or more, the latex viscosity is not too high and handling is easy, and if it is 3 ⁇ m or less, a film is formed on the latex surface when the synthetic polyisoprene latex is stored. Can be suppressed, and handling becomes easy.
  • additives such as a pH adjuster, an antifoaming agent, a preservative, a crosslinking agent, a chelating agent, an oxygen scavenger, and a dispersing agent may be blended within a range not impairing the effects of the present invention.
  • the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium bicarbonate; ammonia An organic amine compound such as trimethylammonium or triethanolamine. Of these, alkali metal hydroxides or ammonia are preferably used.
  • the dip molding composition of the present invention contains a sulfur-based vulcanizing agent.
  • sulfur vulcanizing agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and the like; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N, N And sulfur-containing compounds such as' -dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides, and 2- (4'-morpholinodithio) benzothiazole. Of these, sulfur is preferably used.
  • the amount of the sulfur vulcanizing agent used is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene.
  • the content is 0.1 to 10 parts by mass, the tensile strength of the dip-molded product can be improved.
  • the dip molding composition of the present invention contains zinc oxide.
  • the amount of zinc oxide used is not particularly limited, but is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene.
  • the amount of zinc oxide used is not particularly limited, but is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene.
  • the dip molding composition of the present invention contains a vulcanization accelerator.
  • vulcanization accelerator those usually used in dip molding can be used.
  • the amount of the vulcanization accelerator used is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.05 part by mass or more, the tensile strength of the dip-molded product does not decrease, and a suitable tensile strength can be obtained. Moreover, it can prevent that the elongation of a dip molded object falls that it is 5 mass parts or less, and can be set as suitable tensile strength.
  • the dip molding composition of the present invention contains a specific dispersant.
  • the dispersant used in the present invention includes an olefin compound having a weight average molecular weight of 1,000 to 150,000 and an ethylenically unsaturated dicarboxylic acid polymer salt and an olefin compound having a weight average molecular weight of 1,000 to 150,000. -At least one of the salts of the ethylenically unsaturated dicarboxylic acid monoester polymer.
  • the olefin compound forming the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is not particularly limited as long as it is a hydrocarbon compound having a carbon-carbon unsaturated bond.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene; cyclomonoolefins such as cyclobutene, cyclopentene, cyclohexene; 1,3-butadiene, isoprene, 1,3-pentadiene, cyclo Conjugated dienes such as pentadiene; vinyl aromatic hydrocarbons such as styrene, methylstyrene, ethylstyrene, and ⁇ -methylstyrene. Among these, vinyl aromatic hydrocarbons are preferable and styrene is more preferable because of excellent dispersion stabilization effect.
  • olefin compounds can be used alone or in combination of two or more.
  • Examples of the ethylenically unsaturated dicarboxylic acid that forms the olefin compound-ethylenically unsaturated dicarboxylic acid polymer include fumaric acid, maleic acid, itaconic acid, citraconic acid, and the like. Since it forms a carboxyl group, ethylenically unsaturated dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, and citraconic anhydride can also be used. Of course, ammonium fumarate, sodium fumarate, maleic acid ammonium salt, maleic acid sodium salt, itaconic acid ammonium salt, citraconic acid ammonium salt, etc. which have previously formed a salt structure can also be used.
  • ethylenically unsaturated dicarboxylic acids can be used alone or in combination of two or more.
  • Examples of the ethylenically unsaturated dicarboxylic acid monoester forming the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer include monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, monobutyl fumarate, monopentyl fumarate , Monomethyl maleate, monoethyl maleate, monopropyl maleate, monobutyl maleate, monopentyl maleate, monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, monobutyl itaconate, monomethyl citraconic acid, monoethyl citraconic acid, citraconic acid Examples thereof include monopropyl and monobutyl citraconic acid.
  • these ethylenically unsaturated dicarboxylic acid monoesters can be neutralized with a base in advance and used in a salt structure state.
  • ethylenically unsaturated dicarboxylic acid monoesters can be used alone or in combination of two or more.
  • a corresponding alcohol such as methanol, ethanol, propanol, butanol is reacted with the dicarboxylic acid anhydride group in the polymer, It can also be converted to a monoester structure of dicarboxylic acid.
  • the molar ratio between the unit derived from the olefin compound and the unit derived from the ethylenically unsaturated dicarboxylic acid is preferably 30:70 to 80:20, more preferably 40. : 60 to 75:25. Within this range, the dispersion stabilizing effect is superior.
  • the molar ratio between the unit derived from the olefin compound and the unit derived from the ethylenically unsaturated dicarboxylic acid monoester is preferably 30:70 to 80:20, More preferably, it is 40:60 to 75:25. Within this range, the dispersion stabilizing effect is superior.
  • the weight average molecular weights of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer are both 1,000 to 150,000, and 3,000 to 120,000. Is preferably in the range of 3,000 to 100,000, more preferably in the range of 3,000 to 100,000, and still more preferably in the range of 3,000 to 90,000. Even if the weight average molecular weight is low or high, the storage stability of the resulting dip-forming composition is poor.
  • the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer is converted to a salt structure by reacting with a base to neutralize the carboxyl group when the salt structure ethylenically unsaturated dicarboxylic acid is not used. Obtained.
  • Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • Alkali metal carbonates such as sodium carbonate and potassium carbonate
  • Alkali metal hydrogen carbonates such as sodium hydrogencarbonate
  • Ammonia Organic amine compounds such as trimethylammonium and triethanolamine. Of these, ammonia is preferably used.
  • the reaction rate of the neutralization reaction is preferably 70% or more, more preferably 80% or more, and complete neutralization is particularly preferable.
  • the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is obtained by reacting with a base to neutralize the carboxyl group when the salted ethylenically unsaturated dicarboxylic acid monoester is not used. Obtained by converting to structure.
  • the base used and the neutralization reaction rate are the same as described above.
  • the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer can each be produced by conventional methods.
  • olefin compound ethylenically unsaturated dicarboxylic acid and ethylenically unsaturated dicarboxylic acid monoester in desired ratio
  • organic peroxide such as benzoyl peroxide and cumene hydroperoxide
  • azobisisobutyronitrile azobisisobutyronitrile
  • the molecular weight of the polymer can be adjusted by adjusting the concentration of the polymerization initiator and the polymerization temperature, or adding an appropriate amount of a thiol compound or an alcohol compound that functions as a molecular weight regulator.
  • the total amount of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer salt used is preferably 100 parts by mass of the synthetic polyisoprene.
  • the amount is 0.1 to 10 parts by mass, and more preferably 0.5 to 3 parts by mass.
  • the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer form a salt structure, they are easily dissolved in water and in an aqueous solution state. It can be handled.
  • the concentration is not particularly limited, but is, for example, 5 to 45% by mass.
  • the dip molding composition of the present invention further requires a reinforcing agent such as carbon black, silica and talc; a filler such as calcium carbonate and clay; an anti-aging agent; an ultraviolet absorber; and a compounding agent such as a plasticizer. It can be blended accordingly.
  • a reinforcing agent such as carbon black, silica and talc
  • a filler such as calcium carbonate and clay
  • an anti-aging agent such as calcium carbonate and clay
  • an ultraviolet absorber an ultraviolet absorber
  • a compounding agent such as a plasticizer
  • Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6- ⁇ -methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenolic antioxidants such as reaction products; 2,2′-thiobis- (4-methyl-6-tert-butylphenol), 4,4′-thio Bis- (6-t-butyl-o-cresol), 2,6-di-t-butyl-4-
  • Thiobisphenol antioxidants such as tris (nonylphenyl) phosphite, diphenylisodecyl phosphite, tetraphenyldipropylene glycol diphosphite; sulfur ester aging such as dilauryl thiodipropionate Inhibitors: phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4 '-( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, N, N-diphenyl-p- Phenylenediamine, N-isopropyl-N'-phenyl-p-pheny Amine-based anti-aging agents such as diamine and butyraldehyde-aniline condensates; quinoline anti-aging agents such as 6-
  • the amount of the anti-aging agent used is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.05 mass part or more, a vulcanization reaction can fully be advanced. Moreover, if it is 10 mass parts or less, it is economically advantageous and the dip molded object of sufficient tensile strength can be obtained.
  • the method for preparing the dip molding composition is not particularly limited.
  • a dispersing machine such as a ball mill, a kneader, or a disper
  • a synthetic polyisoprene latex is blended with a sulfur-based vulcanizing agent, zinc oxide, a vulcanization accelerator and the above-described dispersing agent, and if necessary.
  • the aqueous dispersion is mixed with the synthetic polyisoprene latex. The method of doing is mentioned. It is also possible to add other compounding agents after previously mixing the above-mentioned dispersant with the synthetic polyisoprene latex.
  • the pH of the dip molding composition is preferably 7 or more, more preferably in the range of pH 8-12.
  • the solid content concentration of the dip molding composition is, for example, in the range of 15 to 65% by mass.
  • the dip molding composition of the present invention is preferably aged (also referred to as pre-vulcanization) before being subjected to dip molding.
  • the pre-curing time is not particularly limited and depends on the pre-curing temperature, but is preferably 1 to 14 days, and more preferably 1 to 7 days. By setting the duration to 1 to 14 days, a dip-molded product having a suitable tensile strength can be obtained.
  • the pre-vulcanization temperature is preferably 20 to 40 ° C.
  • pre-vulcanization After pre-vulcanization, it is preferably stored at a temperature of 10 to 25 ° C. until it is used for dip molding. By setting the temperature to 10 to 25 ° C., a dip-molded product having a suitable tensile strength can be obtained.
  • the dip-molded product of the present invention is obtained by dip-molding the dip-molding composition of the present invention.
  • Dip molding is a method in which a mold is immersed in a dip molding composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and the composition deposited on the mold surface is dried. is there.
  • the mold prior to being immersed in the dip molding composition can be preheated.
  • a coagulant can be used as necessary before the mold is immersed in the dip molding composition or after the mold is pulled up from the dip molding composition.
  • the method of using the coagulant include a method in which a mold before dipping in a dip molding composition is immersed in a coagulant solution to attach the coagulant to the mold (anode coagulation dipping method), a dip molding composition This is a method of immersing the mold in which the material is deposited in a coagulant solution (Teag adhesion dipping method).
  • An anode coagulation dipping method is preferred in that a dip-formed body with little thickness unevenness can be obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetates such as barium acetate, calcium acetate, and zinc acetate Water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more, and are preferably used in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methyl alcohol and ethyl alcohol, and a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by mass, more preferably 15 to 30% by mass.
  • the deposit formed on the mold is dried by heating. Drying conditions are appropriately selected.
  • the deposit formed on the mold is vulcanized by heating.
  • the heating conditions during vulcanization are not particularly limited, but are preferably 60 to 150 ° C., more preferably 100 to 130 ° C., and preferably 10 to 120 minutes.
  • the method of heating is not particularly limited, and there are a method of heating with warm air in an oven, a method of heating by irradiating infrared rays, and the like.
  • the mold is washed with water or warm water to remove water-soluble impurities (eg, excess surfactant, coagulant) before or after heating the mold on which the dip molding composition has been deposited.
  • water-soluble impurities eg, excess surfactant, coagulant
  • the dip-formed body after vulcanization is desorbed from the mold.
  • the desorption method include a method of peeling from a mold by hand, a method of peeling by water pressure or compressed air pressure. If the dip-molded product being formed has sufficient strength against desorption, it may be desorbed in the middle step and then the subsequent processing may be continued.
  • the dip-molded body is a glove
  • organic fine particles such as talc and calcium carbonate or starch particles are used as gloves. It may be dispersed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • volume average particle diameter of synthetic polyisoprene latex The volume average particle diameter was determined using a light scattering diffraction particle measuring device (Coulter LS-230).
  • (4) Tensile Strength of Dip Molded Body The tensile strength of the dip molded body was measured based on ASTM D412. The dip-formed film was punched with a dumbbell (Die-C) to prepare a test piece for measuring tensile strength. The test piece was pulled at a tensile speed of 500 mm / min with a Tensilon universal testing machine (RTC-1225A manufactured by Orientec Co., Ltd.), and the tensile strength (unit: MPa) immediately before breaking was measured.
  • RTC-1225A Tensilon universal testing machine
  • dip molding composition Storage stability of dip molding composition
  • the obtained dip molding composition was stored in a thermostatic bath at 30 ° C for 7 days. Thereafter, the dip-forming composition was passed through a 100-mesh wire mesh, and the dry mass of the aggregate remaining on the wire mesh was measured. It shows as a percentage of the total solid content in the dip molding composition of the dried aggregate. A large value indicates that the dip molding composition is inferior in storage stability.
  • Cyclohexane is distilled off from the emulsion at 80 ° C. under a reduced pressure of ⁇ 0.01 to ⁇ 0.09 MPa, and then centrifuged with a continuous centrifuge (SGR509 manufactured by Alfa Laval) to obtain a solid concentration of 57 mass.
  • % Synthetic polyisoprene latex was obtained.
  • the volume average particle diameter of this synthetic polyisoprene latex was 1.0 ⁇ m.
  • the weight average molecular weight of the synthetic polyisoprene was about 1,600,000, and the ratio of cis bond units was 98% by mass.
  • Example 1 While stirring the synthetic polyisoprene latex obtained in Production Example 1, an aqueous solution of ammonium salt (dispersant A) of styrene-maleic acid mono-n-butyl ester polymer (Arakawa Chemical Industries, Ltd .: Alastor 703S) An amount corresponding to 0.75 parts by mass in terms of solid content was added to 100 parts by mass of the solid content of the latex. Next, while stirring the obtained mixture, 1.5 parts by weight of zinc oxide, 1.5 parts by weight of sulfur, an anti-aging agent (made by Goodyear) in terms of solid content with respect to 100 parts by weight of synthetic polyisoprene in the mixture.
  • an anti-aging agent made by Goodyear
  • Wingstay L 2 parts by weight, 0.125 parts by weight of zinc diethyldithiocarbamate, 0.3 parts by weight of mercaptobenzothiazole zinc salt, after adding an aqueous dispersion of each compounding agent, and then adding an aqueous potassium hydroxide solution
  • a dip molding composition having a pH adjusted to 10.5 was obtained. This was stored at 30 ° C. in a thermostatic bath.
  • the film-coated mold was placed in an oven, heated from 50 ° C. to 60 ° C. for 25 minutes and pre-dried, and then placed in a 70 ° C. oven for 10 minutes for further drying.
  • the mold was immersed in warm water at 60 ° C. for 2 minutes and then air-dried at room temperature for 10 minutes. Thereafter, the mold coated with the film was placed in an oven and vulcanized at 100 ° C. for 60 minutes.
  • the mold covered with the vulcanized film was cooled to room temperature, talc was sprayed, and then the film was peeled from the glass mold. The tensile strength of the obtained film was measured, and the results are shown in Table 1.
  • the dip-forming composition was stored at 30 ° C., and the dip-forming was performed every day to obtain a dip-formed body over time.
  • the tensile strength of the obtained dip-molded product was measured, and the tensile strength of the dip-molded product obtained on the third day, the number of days when the tensile strength becomes maximum, and the tensile strength at that time are shown in Table 1.
  • Example 2 In place of Dispersant A, styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (manufactured by Hercules: Scriptset 550; the molar ratio of maleic acid mono-sec-butyl ester to maleic acid monomethyl ester is 2: 1) using an aqueous ammonium salt solution obtained by neutralizing 100% with aqueous ammonia as the dispersant B, and the blending amount thereof is 100 parts by mass of the solid content of the synthetic isoprene latex. This was performed in the same manner as in Example 1 except that the amount was changed to an amount corresponding to 1 part by mass in terms of solid content.
  • Example 3 an aqueous ammonium salt solution obtained by neutralizing 100% of a styrene-maleic anhydride polymer (manufactured by Yoshitsumi Fujii Co., Ltd .: SMA-1000P) with aqueous ammonia is used as the dispersant C.
  • SMA-1000P styrene-maleic anhydride polymer
  • Example 1 The same procedure as in Example 1 was performed except that the dispersant A was not added.
  • Comparative Example 2 Example of Example except that an aqueous ammonium salt solution obtained by neutralizing 100% of styrene-maleic anhydride polymer (manufactured by Hercules: Scriptset 520) with ammonia water instead of the dispersant A was used as the dispersant D. 1 was performed.
  • Example 3 The same procedure as in Example 1 was performed except that sodium lauryl sulfate was used in place of Dispersant A.
  • Dispersants B to D were subjected to measurement as they were commercially available.
  • the molecular weight was measured by gel permeation chromatography using tetrahydrofuran as an eluent and TSKgel-SuperHZM-M manufactured by Tosoh Corporation as a column, and calculated as a weight average molecular weight in terms of standard polystyrene.
  • TSKgel-SuperHM-H manufactured by Tosoh Corporation was used as a column.
  • Table 1 shows the following.
  • composition for dip molding of Comparative Example 2 using Dispersant D in which the weight average molecular weight of the dispersant is larger than the range of the present invention was inferior in storage stability and had a low tensile strength on the third day.
  • the dip molding compositions of Examples 1 to 3 which are within the scope of the present invention, also have good storage stability, high tensile strength on the third day, and until the maximum tensile strength is reached. The period of was short.
  • the dip molding composition according to the present invention forms at least one of the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer. More preferably, the olefin compound is styrene.
  • the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt is more preferably a styrene-maleic acid polymer salt.
  • the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is more preferably a styrene-maleic acid monoester polymer salt.
  • At least one of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer salt is ammonium. More preferably, it is a salt.
  • the weight average molecular weight of the dispersant is more preferably 5,900 or more and 84,700 or less.
  • the amount of the dispersant is more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene latex.
  • the synthetic polyisoprene forming the synthetic polyisoprene latex is more preferably a homopolymer of isoprene.
  • the synthetic polyisoprene latex is produced by emulsifying a synthetic polyisoprene solution dissolved in an organic solvent in water in the presence of a surfactant. It is more preferable.
  • a molded product obtained by dip-molding the dip-forming composition of the present invention is a medical article such as a nipple for baby bottles, a dropper, a tube, a water pillow, a balloon sac, a catheter, and a condom; a toy such as a balloon, a doll, and a ball; It is suitable for industrial articles such as pressure forming bags and gas storage bags; surgical, diagnostic, household, agricultural, fishery and industrial gloves; finger sacks and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A composition for dip forming, which comprises a synthetic polyisoprene latex, a sulfur-containing vulcanizing agent, zinc oxide, a vulcanization accelerator, and a dispersant, said dispersant being either a salt of an olefinic compound/ ethylenically unsaturated dicarboxylic acid copolymer having a weight-average molecular weight of 1,000 to 150,000 and/or a salt of an olefinic compound/ethylenically unsaturated dicarboxylic monoester copolymer having a weight-average molecular weight of 1,000 to 150,000.

Description

ディップ成形用組成物及びディップ成形体DIP MOLDING COMPOSITION AND DIP MOLDED BODY
 本発明は、熟成している間の粗大凝集物の生成を抑制しながら、しかも熟成期間を長くしなくても引張強度に優れ、かつ人体と接触して使用される場合にも安全性に優れたディップ成形体を与えるディップ成形用組成物及び当該ディップ成形用組成物を成形してなるディップ成形体に関する。 The present invention suppresses the formation of coarse agglomerates during aging, and is excellent in tensile strength even if the aging period is not lengthened, and also excellent in safety when used in contact with the human body. The present invention relates to a dip-molding composition that gives a dip-molded body and a dip-molded body formed by molding the dip-molding composition.
 従来、天然ラテックスを含有するディップ成形用組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が知られている。しかしながら、天然ラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。 Conventionally, a dip-molded product is known which is dip-molded with a dip molding composition containing natural latex and used in contact with a human body such as a nipple, balloon, glove, balloon, and sack. However, since natural latex contains a protein that causes allergic symptoms in the human body, there are cases in which there is a problem as a dip-molded body that is in direct contact with a biological mucous membrane or organ.
 そこで、合成のアクリロニトリル-ブタジエン共重合体ゴムやポリイソプレンのラテックスを用いる検討がされている。 Therefore, studies have been made on using synthetic acrylonitrile-butadiene copolymer rubber and polyisoprene latex.
 例えば、特許文献1には、エチレン性不飽和酸単量体単位を含むアクリロニトリル-ブタジエン共重合体ゴムのラテックスに、硫黄、酸化亜鉛およびチアゾール化合物からなる加硫促進剤を配合したディップ成形用組成物をディップ成形して得られたディップ成形体が開示されている。特許文献1のディップ成形体は、人体にアレルギー症状を引き起こすような蛋白質を含んでいないものの、300%伸張時の応力が高く、柔軟性の点では満足いくものではない。 For example, Patent Document 1 discloses a dip molding composition in which a latex of acrylonitrile-butadiene copolymer rubber containing an ethylenically unsaturated acid monomer unit is blended with a vulcanization accelerator composed of sulfur, zinc oxide and a thiazole compound. A dip-molded body obtained by dip-molding a product is disclosed. Although the dip-molded body of Patent Document 1 does not contain a protein that causes allergic symptoms in the human body, it has a high stress at 300% elongation and is not satisfactory in terms of flexibility.
 また、特許文献2には、合成ポリイソプレンのラテックスに、硫黄、酸化亜鉛、特定の加硫促進剤および分散剤を配合したディップ成形用組成物が開示され、このようなディップ成形用組成物は、柔軟で、かつ引張強度にも優れるディップ成形体を与える。ここで用いる分散剤としては、ラウリル硫酸ナトリウムなどのアニオン性界面活性剤、カゼインのアルカリ土類金属塩などが開示され、後者が好ましく使用できることが開示されている。しかしながら、カゼインは蛋白質の1種であり、人体にアレルギー症状を引き起こす懸念がある。 Further, Patent Document 2 discloses a dip molding composition in which sulfur, zinc oxide, a specific vulcanization accelerator and a dispersant are blended with a synthetic polyisoprene latex, and such a dip molding composition is disclosed as follows. It gives a dip-molded body that is flexible and excellent in tensile strength. As the dispersant used here, an anionic surfactant such as sodium lauryl sulfate, an alkaline earth metal salt of casein, and the like are disclosed, and the latter can be preferably used. However, casein is a kind of protein and there is a concern that it causes allergic symptoms in the human body.
 また、合成ポリイソプレンのラテックスを含有するディップ成形用組成物は、得られるディップ成形体の引張強度を安定的に高く維持するよう、通常、適当な期間、熟成(前加硫といわれることもある。)された後、ディップ成形に供される。ところが、カゼインのアルカリ土類金属塩に代えて、ラウリル硫酸ナトリウムを分散剤として使用する場合、及び、カゼインのアルカリ土類金属塩を配合しない場合には、熟成する期間を長くしないと得られるディップ成形体の引張強度が劣る問題がある。さらに、分散剤を配合しない場合には、合成ポリイソプレンのラテックスの分散安定性が低下して、熟成している間に粗大な凝集物が生成してディップ成形に供することが困難となる問題がある。 Moreover, the composition for dip molding containing the latex of synthetic polyisoprene is usually aged for a suitable period (sometimes referred to as pre-vulcanization) so as to maintain the tensile strength of the resulting dip-molded article stably high. )) And then subjected to dip molding. However, in the case where sodium lauryl sulfate is used as a dispersant instead of the alkaline earth metal salt of casein, and when the alkaline earth metal salt of casein is not blended, the dip obtained without increasing the aging period There exists a problem in which the tensile strength of a molded object is inferior. Furthermore, in the case where a dispersant is not blended, the dispersion stability of the synthetic polyisoprene latex decreases, and coarse agglomerates are produced during aging, making it difficult to use for dip molding. is there.
日本国公開特許公報「特開2003-246891号公報(2003年9月5日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-246891 (published on September 5, 2003)” 日本国公開特許公報「特表2004-532752号公報(2004年10月28日公開)」Japanese Patent Gazette “Special Table 2004-532752 (published on Oct. 28, 2004)”
 本発明が解決しようとする課題は、熟成している間の粗大凝集物の生成を抑制しながら、しかも熟成期間を長くしなくても引張強度に優れ、かつ人体と接触して使用される場合にも安全性に優れたディップ成形体を与えるディップ成形用組成物を提供することである。 The problem to be solved by the present invention is to suppress the formation of coarse agglomerates during aging, and also has excellent tensile strength without increasing the aging period and is used in contact with the human body. Another object of the present invention is to provide a dip-molding composition that provides a dip-molded article with excellent safety.
 本発明の発明者等は、上記課題を解決するため、合成ポリイソプレンラテックス、硫黄系加硫剤、酸化亜鉛および加硫促進剤を含有するディップ成形用組成物に配合する分散剤として、重量平均分子量が特定範囲にあるスチレン-マレイン酸重合体またはスチレン-マレイン酸モノエステル重合体の塩を選択することにより、上記課題を解決できることを見出し、本発明を完成するに至った。 In order to solve the above problems, the inventors of the present invention, as a dispersant to be blended in a dip molding composition containing a synthetic polyisoprene latex, a sulfur vulcanizing agent, zinc oxide and a vulcanization accelerator, has a weight average. The inventors have found that the above problems can be solved by selecting a salt of a styrene-maleic acid polymer or a styrene-maleic acid monoester polymer having a molecular weight in a specific range, and the present invention has been completed.
 かくして本発明によれば、合成ポリイソプレンラテックス、硫黄系加硫剤、酸化亜鉛、加硫促進剤及び分散剤を含有するディップ成形用組成物であって、該分散剤が、重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩および/または重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩であることを特徴とするディップ成形用組成物が提供される。 Thus, according to the present invention, a dip-molding composition containing a synthetic polyisoprene latex, a sulfur-based vulcanizing agent, zinc oxide, a vulcanization accelerator and a dispersing agent, wherein the dispersing agent has a weight average molecular weight of 1. Olefin compound having a molecular weight of 1,000 to 150,000 and / or an ethylenically unsaturated dicarboxylic acid polymer salt and / or an olefin compound having a weight average molecular weight of 1,000 to 150,000 and an ethylenically unsaturated dicarboxylic acid monoester polymer A dip-forming composition characterized in that it is a salt of
 また、本発明によれば、前記のディップ成形用組成物をディップ成形して得られるディップ成形体が提供される。 Further, according to the present invention, there is provided a dip-molded body obtained by dip-molding the above dip-molding composition.
 本発明のディップ成形用組成物は、熟成している間の粗大凝集物の生成を抑制しながら、しかも熟成期間を長くしなくても引張強度に優れ、かつ人体と接触して使用される場合にも安全性に優れたディップ成形体を与えるものである。 The dip-forming composition of the present invention is excellent in tensile strength and used in contact with the human body while suppressing the formation of coarse aggregates during aging and without extending the aging period. In addition, a dip-molded body having excellent safety is provided.
 本発明のディップ成形用組成物は、合成ポリイソプレンラテックス、硫黄系加硫剤、酸化亜鉛、加硫促進剤及び特定の分散剤を含有するものである。 The dip molding composition of the present invention contains a synthetic polyisoprene latex, a sulfur vulcanizing agent, zinc oxide, a vulcanization accelerator and a specific dispersant.
 本発明で用いる合成ポリイソプレンラテックスは、イソプレンを重合して得られる合成ポリイソプレンのラテックスである。 The synthetic polyisoprene latex used in the present invention is a synthetic polyisoprene latex obtained by polymerizing isoprene.
 合成ポリイソプレンは、イソプレンと共重合可能な他のエチレン性不飽和単量体を少量共重合したものであってもよい。合成ポリイソプレンのイソプレン単位の含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上である。柔軟で、引張強度に優れるディップ成形体が得られる点から、合成ポリイソプレンは、イソプレンの単独重合体であることが最も好ましい。 The synthetic polyisoprene may be obtained by copolymerizing a small amount of another ethylenically unsaturated monomer copolymerizable with isoprene. The content of isoprene units in the synthetic polyisoprene is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The synthetic polyisoprene is most preferably a homopolymer of isoprene from the viewpoint of obtaining a dip-molded product that is flexible and excellent in tensile strength.
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、例えば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレンなどのビニル芳香族単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシルなどのエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体が挙げられる。 Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, α- Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) Examples thereof include ethylenically unsaturated carboxylic acid ester monomers such as 2-ethylhexyl acrylate; crosslinkable monomers such as divinylbenzene, diethylene glycol di (meth) acrylate, and pentaerythritol (meth) acrylate.
 イソプレンと共重合可能な他のエチレン性不飽和単量体は、単独又は2種以上を組み合わせて用いることができる。 Other ethylenically unsaturated monomers copolymerizable with isoprene can be used alone or in combination of two or more.
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。ディップ成形体の引張強度に優れる点から、合成ポリイソプレンにおける、イソプレン単位中のシス結合単位の割合は、好ましくは70質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上である。 There are four types of isoprene units in the synthetic polyisoprene, which are cis bond units, trans bond units, 1,2-vinyl bond units, and 3,4-vinyl bond units, depending on the bond state of isoprene. From the viewpoint of excellent tensile strength of the dip-molded product, the ratio of the cis bond unit in the isoprene unit in the synthetic polyisoprene is preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. is there.
 合成ポリイソプレンの平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算の重量平均分子量で、好ましくは500,000~5,000,000、より好ましくは800,000~3,000,000である。合成ポリイソプレンの平均分子量が500,000以上であると、ディップ成形体の引張強度が向上し、5,000,000以下であると合成ポリイソプレンラテックスが製造し易くなる傾向にある。 The average molecular weight of the synthetic polyisoprene is a weight average molecular weight in terms of standard polystyrene by gel permeation chromatography analysis, preferably 500,000 to 5,000,000, more preferably 800,000 to 3,000,000. It is. When the average molecular weight of the synthetic polyisoprene is 500,000 or more, the tensile strength of the dip-molded product is improved, and when it is 5,000,000 or less, the synthetic polyisoprene latex tends to be easily produced.
 本発明で用いる合成ポリイソプレンラテックスの製造方法としては、例えば、(1)有機溶媒に溶解した合成ポリイソプレン溶液を、界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、(2)イソプレン単独または、イソプレンとそれと共重合可能なエチレン性不飽和単量体との混合物を、乳化重合もしくは懸濁重合して、直接、合成ポリイソプレンラテックスを製造する方法が挙げられる。 As a method for producing the synthetic polyisoprene latex used in the present invention, for example, (1) a synthetic polyisoprene solution dissolved in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary. (2) Isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith is emulsion-polymerized or suspension-polymerized to produce a synthetic polyisoprene latex directly. A method for producing isoprene latex is mentioned.
 イソプレン単位中のシス結合単位の割合が高い合成ポリイソプレンを用いることができ、引張強度に優れるディップ成形体が得られる点から、(1)の製造方法が好ましい。 Synthetic polyisoprene having a high proportion of cis-bond units in isoprene units can be used, and the production method (1) is preferable because a dip-molded article having excellent tensile strength can be obtained.
 合成ポリイソプレンは、例えば、トリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、不活性重合溶媒中で、イソプレンを溶液重合して得ることができる。得られた合成ポリイソプレンの重合溶液を、そのまま用いることも、該重合溶液から固形の合成ポリイソプレンを取り出した後、固形の合成ポリイソプレンを有機溶媒に溶解して用いることもできる。 Synthetic polyisoprene is a solution of isoprene in an inert polymerization solvent using, for example, a Ziegler polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. It can be obtained by polymerization. The obtained synthetic polyisoprene polymerization solution can be used as it is, or after the solid synthetic polyisoprene is taken out from the polymerization solution, the solid synthetic polyisoprene can be dissolved in an organic solvent and used.
 また、市販の固形の合成ポリイソプレンを用いることもできる。 Also, commercially available solid synthetic polyisoprene can be used.
 前述の(1)の製造方法で用いる有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、芳香族炭化水素溶媒や脂環族炭化水素溶媒が好ましく、中でも脂環族炭化水素溶媒が好ましい。 Examples of the organic solvent used in the above production method (1) include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene and cyclohexane; pentane, hexane and heptane. Aliphatic hydrocarbon solvents such as methylene chloride, chloroform, ethylene dichloride and the like; and the like. Of these, aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferable, and alicyclic hydrocarbon solvents are particularly preferable.
 有機溶媒の使用量は、合成ポリイソプレン100質量部に対して、例えば、2,000質量部以下であり、好ましくは20~1,500質量部、より好ましくは50~1,000質量部である。 The amount of the organic solvent used is, for example, 2,000 parts by mass or less, preferably 20 to 1,500 parts by mass, more preferably 50 to 1,000 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. .
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性界面活性剤;ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸の如き脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性界面活性剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性界面活性剤が挙げられる。α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の界面活性剤を用いることもできる。なかでも、アニオン性界面活性剤が好適である。これらの界面活性剤は、単独又は2種以上組み合わせて用いることができる。 Examples of the surfactant include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid, Salts of fatty acids such as linolenic acid, anionic surfactants such as alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, higher alcohol sulfates and alkylsulfosuccinates; alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride And other cationic surfactants. Copolymerizable surfactants such as sulfoesters of α, β-unsaturated carboxylic acids, sulfate esters of α, β-unsaturated carboxylic acids, and sulfoalkylaryl ethers can also be used. Of these, anionic surfactants are preferred. These surfactants can be used alone or in combination of two or more.
 界面活性剤の使用量は、合成ポリイソプレン100質量部に対して、好ましくは0.5~50質量部、より好ましくは0.5~20質量部である。0.5質量部以上であれば、十分なラテックスの安定性を得ることができ、50質量部以下であれば、経済的にも有利であり、また発泡しにくいので、ディップ成形時に発泡により生じる問題を抑制できる。 The amount of the surfactant used is preferably 0.5 to 50 parts by mass, more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.5 parts by mass or more, sufficient latex stability can be obtained, and if it is 50 parts by mass or less, it is economically advantageous, and it is difficult to foam, resulting in foaming during dip molding. The problem can be suppressed.
 合成ポリイソプレンの有機溶媒溶液を、界面活性剤の存在下、水中で乳化する装置は、一般に乳化機又は分散機として市販されているものであれば特に限定されず使用できる。 An apparatus for emulsifying an organic solvent solution of synthetic polyisoprene in water in the presence of a surfactant is not particularly limited as long as it is generally commercially available as an emulsifier or a disperser.
 なお、界面活性剤の添加方法は、特に限定されず、予め水及び/又は合成ポリイソプレンの有機溶媒溶液に添加しても、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 The method for adding the surfactant is not particularly limited, and it may be added in advance to an organic solvent solution of water and / or synthetic polyisoprene, or may be added to the emulsion during the emulsification operation. It may be added all at once or dividedly.
 乳化装置としては、例えば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機;TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、キャビトロン(ユーロテック社製)、マイルダー、ファインフローミル(太平洋機工社製)等の連続式乳化機;マイクロフルイダイザー(みずほ工業社製)、ナノマイザー(ナノマイザー社製)、APVガウリン(ガウリン社製)等の高圧乳化機;膜乳化機(冷化工業社製)等の膜乳化機;バイブロミキサー(冷化工業社製)等の振動式乳化機;超音波ホモジナイザー(ブランソン社製)等の超音波乳化機;等が挙げられる。 Examples of the emulsifier include batch type emulsifiers such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), and TK auto homomixer (manufactured by Special Machine Industries); TK pipeline homo mixer (special machine industry) Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), thrasher, trigonal wet pulverizer (manufactured by Mitsui Miike Chemical Co., Ltd.), Cavitron (manufactured by Eurotech Co., Ltd.), milder, fine flow mill (manufactured by Taiheiyo Kiko Co., Ltd.) Continuous emulsifiers; high-pressure emulsifiers such as microfluidizer (manufactured by Mizuho Kogyo), nanomizer (manufactured by Nanomizer), APV Gaurin (manufactured by Gaurin); Machine: Vibratory emulsifier such as Vibro mixer (manufactured by Chilling Industries Co., Ltd.); Ultrasonic emulsifier such as ultrasonic homogenizer (manufactured by Branson) And the like.
 乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定する。 The conditions for the emulsification operation are not particularly limited, and a processing temperature, a processing time, and the like are appropriately selected so that a desired dispersion state is obtained.
 通常、乳化操作を経て得られた乳化物から有機溶媒を除去して、合成ポリイソプレンラテックスを得る。乳化物から有機溶媒を除去する方法は、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留等の方法を採用することができる。 Usually, the organic solvent is removed from the emulsion obtained through the emulsification operation to obtain a synthetic polyisoprene latex. The method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation and the like can be employed.
 さらに、必要に応じ、合成ポリイソプレンラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法を採用して濃縮操作を施してもよい。 Furthermore, if necessary, in order to increase the solid content concentration of the synthetic polyisoprene latex, a concentration operation may be performed by employing a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration or the like.
 合成ポリイソプレンラテックスの固形分濃度は、好ましくは30~70質量%、より好ましくは40~70質量%である。固形分濃度が30質量%以上であれば、合成ポリイソプレンラテックスを貯蔵した際に、合成ポリイソプレン粒子が分離することを抑制でき、70質量%以下であれば、合成ポリイソプレン粒子同士が凝集して粗大凝集物が発生することを抑制できる。 The solid content concentration of the synthetic polyisoprene latex is preferably 30 to 70% by mass, more preferably 40 to 70% by mass. If the solid content concentration is 30% by mass or more, the synthetic polyisoprene latex can be prevented from separating when the synthetic polyisoprene latex is stored, and if it is 70% by mass or less, the synthetic polyisoprene particles are aggregated. And generation of coarse aggregates can be suppressed.
 合成ポリイソプレンラテックス中の合成ポリイソプレン粒子の体積平均粒子径は、好ましくは0.05~3μm、より好ましくは0.2~2μmである。この体積平均粒子径が0.05μm以上であれば、ラテックス粘度が高すぎることがなく取り扱いが容易であり、3μm以下であれば、合成ポリイソプレンラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制でき、取り扱いが容易となる。 The volume average particle diameter of the synthetic polyisoprene particles in the synthetic polyisoprene latex is preferably 0.05 to 3 μm, more preferably 0.2 to 2 μm. If the volume average particle diameter is 0.05 μm or more, the latex viscosity is not too high and handling is easy, and if it is 3 μm or less, a film is formed on the latex surface when the synthetic polyisoprene latex is stored. Can be suppressed, and handling becomes easy.
 合成ポリイソプレンラテックスには、本発明の効果を損なわない範囲で、pH調整剤、消泡剤、防腐剤、架橋剤、キレート化剤、酸素捕捉剤、分散剤等の添加剤を配合することができる。pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアンモニウム、トリエタノールアミンなどの有機アミン化合物である。なかでも、アルカリ金属の水酸化物またはアンモニアが好ましく用いられる。 To the synthetic polyisoprene latex, additives such as a pH adjuster, an antifoaming agent, a preservative, a crosslinking agent, a chelating agent, an oxygen scavenger, and a dispersing agent may be blended within a range not impairing the effects of the present invention. it can. Examples of the pH adjuster include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium bicarbonate; ammonia An organic amine compound such as trimethylammonium or triethanolamine. Of these, alkali metal hydroxides or ammonia are preferably used.
 本発明のディップ成形用組成物は硫黄系加硫剤を含有する。 The dip molding composition of the present invention contains a sulfur-based vulcanizing agent.
 硫黄系加硫剤としては、例えば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノンー2)、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。なかでも、硫黄が好ましく使用できる。 Examples of sulfur vulcanizing agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and the like; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N, N And sulfur-containing compounds such as' -dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides, and 2- (4'-morpholinodithio) benzothiazole. Of these, sulfur is preferably used.
 硫黄系加硫剤の使用量は、特に限定されないが、合成ポリイソプレン100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~3質量部である。0.1~10質量部であることにより、ディップ成形体の引張強度を向上させることができる。 The amount of the sulfur vulcanizing agent used is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. When the content is 0.1 to 10 parts by mass, the tensile strength of the dip-molded product can be improved.
 本発明のディップ成形用組成物は、酸化亜鉛を含有する。 The dip molding composition of the present invention contains zinc oxide.
 酸化亜鉛の使用量は、特に限定されないが、合成ポリイソプレン100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~2質量部である。0.1質量部以上であることにより、ディップ成形体の引張強度を向上させることができ、5質量部以下であることにより、ディップ成形用組成物中の合成ポリイソプレン粒子の安定性を向上させて、粗大な凝集物が発生することを抑制できる。 The amount of zinc oxide used is not particularly limited, but is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. By being 0.1 parts by mass or more, the tensile strength of the dip-molded product can be improved, and by being 5 parts by mass or less, the stability of the synthetic polyisoprene particles in the dip-molding composition is improved. Thus, the generation of coarse aggregates can be suppressed.
 本発明のディップ成形用組成物は、加硫促進剤を含有する。 The dip molding composition of the present invention contains a vulcanization accelerator.
 加硫促進剤としては、ディップ成形において通常用いられるものが使用でき、例えば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられる。なかでも、ジエチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの加硫促進剤は、単独で又は2種以上を組合せて用いることができる。 As the vulcanization accelerator, those usually used in dip molding can be used. For example, diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid Dithiocarbamic acids and zinc salts thereof; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N , N-diethylthio-carbylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino-dithio) benzothia Lumpur, 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis (2-benzothiazyl mercaptomethyl) such as urea and the like. Of these, zinc diethyldithiocarbamate, 2-mercaptobenzothiazole, and zinc 2-mercaptobenzothiazole are preferable. These vulcanization accelerators can be used alone or in combination of two or more.
 加硫促進剤の使用量は、合成ポリイソプレン100質量部に対して、好ましくは0.05~5質量部であり、更に好ましくは0.1~2質量部である。0.05質量部以上であるとディップ成形体の引張強度が低下せず好適な引張強度にすることができる。また、5質量部以下であると、ディップ成形体の伸びが低下することを防ぎ、好適な引張強度にすることができる。 The amount of the vulcanization accelerator used is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.05 part by mass or more, the tensile strength of the dip-molded product does not decrease, and a suitable tensile strength can be obtained. Moreover, it can prevent that the elongation of a dip molded object falls that it is 5 mass parts or less, and can be set as suitable tensile strength.
 本発明のディップ成形用組成物は、特定の分散剤を含有する。 The dip molding composition of the present invention contains a specific dispersant.
 本発明で用いる分散剤は、重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩および重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方である。 The dispersant used in the present invention includes an olefin compound having a weight average molecular weight of 1,000 to 150,000 and an ethylenically unsaturated dicarboxylic acid polymer salt and an olefin compound having a weight average molecular weight of 1,000 to 150,000. -At least one of the salts of the ethylenically unsaturated dicarboxylic acid monoester polymer.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体およびオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体を形成するオレフィン化合物は、炭素-炭素不飽和結合を有する炭化水素化合物であれば特に限定されないが、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどのα-オレフィン;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロモノオレフィン;1,3-ブタジエン、イソプレン、1,3-ペンタジエン、シクロペンタジエンなどの共役ジエン;スチレン、メチルスチレン、エチルスチレン、α-メチルスチレンなどのビニル芳香族炭化水素などが挙げられる。中でも、分散安定化効果により優れる点から、ビニル芳香族炭化水素が好ましく、スチレンがより好ましい。 The olefin compound forming the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is not particularly limited as long as it is a hydrocarbon compound having a carbon-carbon unsaturated bond. Α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene; cyclomonoolefins such as cyclobutene, cyclopentene, cyclohexene; 1,3-butadiene, isoprene, 1,3-pentadiene, cyclo Conjugated dienes such as pentadiene; vinyl aromatic hydrocarbons such as styrene, methylstyrene, ethylstyrene, and α-methylstyrene. Among these, vinyl aromatic hydrocarbons are preferable and styrene is more preferable because of excellent dispersion stabilization effect.
 これらのオレフィン化合物は、単独で又は2種以上を組合せて用いることができる。 These olefin compounds can be used alone or in combination of two or more.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体を形成するエチレン性不飽和ジカルボン酸としては、例えば、フマル酸、マレイン酸、イタコン酸、シトラコン酸などを挙げることができるが、容易に加水分解してカルボキシル基を形成することから、無水マレイン酸、無水イタコン酸、無水シトラコン酸などのエチレン性不飽和ジカルボン酸無水物も使用できる。当然、予め、塩構造を形成したフマル酸アンモニウム塩、フマル酸ナトリウム塩、マレイン酸アンモニウム塩、マレイン酸ナトリウム塩、イタコン酸アンモニウム塩、シトラコン酸アンモニウム塩なども使用できる。 Examples of the ethylenically unsaturated dicarboxylic acid that forms the olefin compound-ethylenically unsaturated dicarboxylic acid polymer include fumaric acid, maleic acid, itaconic acid, citraconic acid, and the like. Since it forms a carboxyl group, ethylenically unsaturated dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, and citraconic anhydride can also be used. Of course, ammonium fumarate, sodium fumarate, maleic acid ammonium salt, maleic acid sodium salt, itaconic acid ammonium salt, citraconic acid ammonium salt, etc. which have previously formed a salt structure can also be used.
 これらのエチレン性不飽和ジカルボン酸は、単独で又は2種以上を組合せて用いることができる。 These ethylenically unsaturated dicarboxylic acids can be used alone or in combination of two or more.
 オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体を形成するエチレン性不飽和ジカルボン酸モノエステルとしては、例えば、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノブチル、フマル酸モノペンチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノブチル、マレイン酸モノペンチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノブチル、シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノブチルなどを挙げることができる。なお、これらのエチレン性不飽和ジカルボン酸モノエステルを予め塩基を用いて中和し、塩構造の状態で用いることもできる。 Examples of the ethylenically unsaturated dicarboxylic acid monoester forming the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer include monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, monobutyl fumarate, monopentyl fumarate , Monomethyl maleate, monoethyl maleate, monopropyl maleate, monobutyl maleate, monopentyl maleate, monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, monobutyl itaconate, monomethyl citraconic acid, monoethyl citraconic acid, citraconic acid Examples thereof include monopropyl and monobutyl citraconic acid. In addition, these ethylenically unsaturated dicarboxylic acid monoesters can be neutralized with a base in advance and used in a salt structure state.
 これらのエチレン性不飽和ジカルボン酸モノエステルは、単独で又は2種以上を組合せて用いることができる。 These ethylenically unsaturated dicarboxylic acid monoesters can be used alone or in combination of two or more.
 なお、オレフィン化合物とエチレン性不飽和ジカルボン酸無水物との重合体を形成した後、重合体中のジカルボン酸無水物基に、対応するメタノール、エタノール、プロパノール、ブタノールなどのアルコールを反応させて、ジカルボン酸のモノエステル構造に変換することもできる。 In addition, after forming a polymer of an olefin compound and an ethylenically unsaturated dicarboxylic acid anhydride, a corresponding alcohol such as methanol, ethanol, propanol, butanol is reacted with the dicarboxylic acid anhydride group in the polymer, It can also be converted to a monoester structure of dicarboxylic acid.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体において、オレフィン化合物に由来する単位とエチレン性不飽和ジカルボン酸に由来する単位とのモル比は、好ましくは30:70~80:20、より好ましくは40:60~75:25である。この範囲にあると、分散安定化効果により優れている。 In the olefin compound-ethylenically unsaturated dicarboxylic acid polymer, the molar ratio between the unit derived from the olefin compound and the unit derived from the ethylenically unsaturated dicarboxylic acid is preferably 30:70 to 80:20, more preferably 40. : 60 to 75:25. Within this range, the dispersion stabilizing effect is superior.
 オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体において、オレフィン化合物に由来する単位とエチレン性不飽和ジカルボン酸モノエステルに由来する単位とのモル比は、好ましくは30:70~80:20、より好ましくは40:60~75:25である。この範囲にあると、分散安定化効果により優れている。 In the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer, the molar ratio between the unit derived from the olefin compound and the unit derived from the ethylenically unsaturated dicarboxylic acid monoester is preferably 30:70 to 80:20, More preferably, it is 40:60 to 75:25. Within this range, the dispersion stabilizing effect is superior.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体およびオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の重量平均分子量は、いずれも、1,000~150,000であり、3,000~120,000の範囲にあることが好ましく、3,000~100,000の範囲にあることがより好ましく、3,000~90,000の範囲にあることがさらに好ましい。重量平均分子量が低くても、高くても得られるディップ成形用組成物の貯蔵安定性に劣る。 The weight average molecular weights of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer are both 1,000 to 150,000, and 3,000 to 120,000. Is preferably in the range of 3,000 to 100,000, more preferably in the range of 3,000 to 100,000, and still more preferably in the range of 3,000 to 90,000. Even if the weight average molecular weight is low or high, the storage stability of the resulting dip-forming composition is poor.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩は、塩構造のエチレン性不飽和ジカルボン酸を用いない場合には、塩基と反応させてカルボキシル基を中和することにより、塩構造へ変換して得られる。 The salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer is converted to a salt structure by reacting with a base to neutralize the carboxyl group when the salt structure ethylenically unsaturated dicarboxylic acid is not used. Obtained.
 塩基としては、特に限定されないが、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアンモニウム、トリエタノールアミンなどの有機アミン化合物である。なかでも、アンモニアが好ましく用いられる。 Although it does not specifically limit as a base, Alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide; Alkali metal carbonates, such as sodium carbonate and potassium carbonate; Alkali metal hydrogen carbonates, such as sodium hydrogencarbonate; Ammonia: Organic amine compounds such as trimethylammonium and triethanolamine. Of these, ammonia is preferably used.
 中和反応の反応率は、好ましくは70%以上、より好ましくは80%以上であり、完全中和させることが特に好ましい。 The reaction rate of the neutralization reaction is preferably 70% or more, more preferably 80% or more, and complete neutralization is particularly preferable.
 オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩は、塩構造のエチレン性不飽和ジカルボン酸モノエステルを用いない場合には、塩基と反応させてカルボキシル基を中和することにより、塩構造へ変換して得られる。 The salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is obtained by reacting with a base to neutralize the carboxyl group when the salted ethylenically unsaturated dicarboxylic acid monoester is not used. Obtained by converting to structure.
 用いる塩基や中和反応率に関しては、前述と同様である。 The base used and the neutralization reaction rate are the same as described above.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体およびオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体は、それぞれ、常法により製造することができる。 The olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer can each be produced by conventional methods.
 前述のオレフィン化合物、エチレン性不飽和ジカルボン酸およびエチレン性不飽和ジカルボン酸モノエステルを所望の割合で混合し、ベンゾイルパーオキサイド、キュメンハイドロパーオキサイドなどの有機過酸化物やアゾビスイソブチロニトリルなどのアゾ化合物を重合開始剤として用いて重合することにより製造できる。 Mix the above-mentioned olefin compound, ethylenically unsaturated dicarboxylic acid and ethylenically unsaturated dicarboxylic acid monoester in desired ratio, organic peroxide such as benzoyl peroxide and cumene hydroperoxide, azobisisobutyronitrile, etc. This azo compound can be used as a polymerization initiator for polymerization.
 重合体の分子量は、重合開始剤の濃度や重合温度を調節したり、分子量調整剤として機能するチオール化合物やアルコール化合物を適量添加したりすることにより、調整できる。 The molecular weight of the polymer can be adjusted by adjusting the concentration of the polymerization initiator and the polymerization temperature, or adding an appropriate amount of a thiol compound or an alcohol compound that functions as a molecular weight regulator.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体、オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体、およびそれらの塩は、市販品を用いることもできる。 Commercial products can also be used for the olefin compound-ethylenically unsaturated dicarboxylic acid polymer, the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer, and salts thereof.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩およびオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩の使用量は、その合計で、合成ポリイソプレン100質量部に対して、好ましくは0.1~10質量部であり、更に好ましくは0.5~3質量部である。0.1質量部以上であることにより、ディップ成形用組成物の貯蔵安定性が向上し、10質量部以下であることにより、ディップ成形用組成物の泡立ちを抑制し、ディップ成形体にピンホールが形成されるなどの不具合を抑制できる。 The total amount of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer salt used is preferably 100 parts by mass of the synthetic polyisoprene. The amount is 0.1 to 10 parts by mass, and more preferably 0.5 to 3 parts by mass. By being 0.1 parts by mass or more, the storage stability of the dip molding composition is improved, and by being 10 parts by mass or less, foaming of the dip molding composition is suppressed, and a pinhole is formed in the dip molding. Can be prevented.
 オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩およびオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩は、塩構造を形成しているため、水に溶解し易く、水溶液の状態で取り扱うことができる。その濃度は、特に限定されないが、例えば、5~45質量%である。 Since the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer form a salt structure, they are easily dissolved in water and in an aqueous solution state. It can be handled. The concentration is not particularly limited, but is, for example, 5 to 45% by mass.
 本発明のディップ成形用組成物には、さらに、カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;老化防止剤;紫外線吸収剤;可塑剤等の配合剤を必要に応じて配合することができる。 The dip molding composition of the present invention further requires a reinforcing agent such as carbon black, silica and talc; a filler such as calcium carbonate and clay; an anti-aging agent; an ultraviolet absorber; and a compounding agent such as a plasticizer. It can be blended accordingly.
 老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物などのフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、単独で又は2種以上を組合せて用いることができる。 Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-α-dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6-α-methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenolic antioxidants such as reaction products; 2,2′-thiobis- (4-methyl-6-tert-butylphenol), 4,4′-thio Bis- (6-t-butyl-o-cresol), 2,6-di-t-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, etc. Thiobisphenol antioxidants; phosphite antioxidants such as tris (nonylphenyl) phosphite, diphenylisodecyl phosphite, tetraphenyldipropylene glycol diphosphite; sulfur ester aging such as dilauryl thiodipropionate Inhibitors: phenyl-α-naphthylamine, phenyl-β-naphthylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4 '-(α, α-dimethylbenzyl) diphenylamine, N, N-diphenyl-p- Phenylenediamine, N-isopropyl-N'-phenyl-p-pheny Amine-based anti-aging agents such as diamine and butyraldehyde-aniline condensates; quinoline anti-aging agents such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; 2,5-di- (t -Amil) Hydroquinone anti-aging agents such as hydroquinone; These anti-aging agents can be used alone or in combination of two or more.
 老化防止剤の使用量は、合成ポリイソプレン100質量部に対して、好ましくは0.05~10質量部であり、更に好ましくは0.1~5質量部である。0.05質量部以上であれば、十分に加硫反応を進行させることができる。また、10質量部以下であれば、経済的に有利であり、また十分な引張強度のディップ成形体を得ることができる。 The amount of the anti-aging agent used is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene. If it is 0.05 mass part or more, a vulcanization reaction can fully be advanced. Moreover, if it is 10 mass parts or less, it is economically advantageous and the dip molded object of sufficient tensile strength can be obtained.
 ディップ成形用組成物の調製方法は、特に限定されない。当該調整方法としては、ボールミル、ニーダー、ディスパー等の分散機を用いて、合成ポリイソプレンラテックスに硫黄系加硫剤、酸化亜鉛、加硫促進剤および前記の分散剤、並びに必要に応じて配合されるその他の配合剤を混合する方法や、予め上記の分散機を用いて、合成ポリイソプレンラテックス以外の所望の配合成分の水性分散液を調製した後、該水性分散液を合成ポリイソプレンラテックスに混合する方法などが挙げられる。合成ポリイソプレンラテックスに前記の分散剤を予め混合した後、その他の配合剤を添加することもできる。 The method for preparing the dip molding composition is not particularly limited. As the adjustment method, using a dispersing machine such as a ball mill, a kneader, or a disper, a synthetic polyisoprene latex is blended with a sulfur-based vulcanizing agent, zinc oxide, a vulcanization accelerator and the above-described dispersing agent, and if necessary. After preparing an aqueous dispersion of the desired compounding ingredients other than the synthetic polyisoprene latex using the above-mentioned disperser or a method of mixing other compounding agents, the aqueous dispersion is mixed with the synthetic polyisoprene latex. The method of doing is mentioned. It is also possible to add other compounding agents after previously mixing the above-mentioned dispersant with the synthetic polyisoprene latex.
 ディップ成形用組成物のpHは、7以上であることが好ましく、pH8~12の範囲であることがより好ましい。 The pH of the dip molding composition is preferably 7 or more, more preferably in the range of pH 8-12.
 ディップ成形用組成物の固形分濃度は、例えば、15~65質量%の範囲にある。 The solid content concentration of the dip molding composition is, for example, in the range of 15 to 65% by mass.
 本発明のディップ成形用組成物は、ディップ成形に供する前に、熟成(前加硫ともいう。)させることが好ましい。 The dip molding composition of the present invention is preferably aged (also referred to as pre-vulcanization) before being subjected to dip molding.
 前加硫する時間は、特に限定されず、前加硫温度にも依存するが、好ましくは1~14日間であり、更に好ましくは1~7日間である。1~14日間とすることにより、好適な引張強度のディップ成形体を得ることができる。 The pre-curing time is not particularly limited and depends on the pre-curing temperature, but is preferably 1 to 14 days, and more preferably 1 to 7 days. By setting the duration to 1 to 14 days, a dip-molded product having a suitable tensile strength can be obtained.
 前加硫温度は、好ましくは20~40℃である。 The pre-vulcanization temperature is preferably 20 to 40 ° C.
 前加硫した後、ディップ成形に供されるまで、好ましくは10~25℃の温度で貯蔵することが好ましい。10~25℃とすることで、好適な引張強度のディップ成形体を得ることができる。 After pre-vulcanization, it is preferably stored at a temperature of 10 to 25 ° C. until it is used for dip molding. By setting the temperature to 10 to 25 ° C., a dip-molded product having a suitable tensile strength can be obtained.
 本発明のディップ成形体は、本発明のディップ成形用組成物をディップ成形して得られる。 The dip-molded product of the present invention is obtained by dip-molding the dip-molding composition of the present invention.
 ディップ成形は、ディップ成形用組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、型の表面に沈着した当該組成物を乾燥させる方法である。ディップ成形用組成物に浸漬される前の型は予熱され得る。型をディップ成形用組成物に浸漬する前又は型をディップ成形用組成物から引き上げた後、必要に応じて凝固剤を使用できる。凝固剤の使用方法の具体例は、ディップ成形用組成物に浸漬する前の型を凝固剤溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ディップ成形用組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)である。 Dip molding is a method in which a mold is immersed in a dip molding composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and the composition deposited on the mold surface is dried. is there. The mold prior to being immersed in the dip molding composition can be preheated. A coagulant can be used as necessary before the mold is immersed in the dip molding composition or after the mold is pulled up from the dip molding composition. Specific examples of the method of using the coagulant include a method in which a mold before dipping in a dip molding composition is immersed in a coagulant solution to attach the coagulant to the mold (anode coagulation dipping method), a dip molding composition This is a method of immersing the mold in which the material is deposited in a coagulant solution (Teag adhesion dipping method).
 厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。 An anode coagulation dipping method is preferred in that a dip-formed body with little thickness unevenness can be obtained.
 凝固剤の具体例は、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、単独または2種以上組み合わせて用いることができ、好ましくは水溶液の状態で使用する。この水溶液は、さらにメチルアルコール、エチルアルコールなどの水溶性有機溶媒やノニオン性界面活性剤を含有し得る。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50質量%、より好ましくは15~30質量%である。 Specific examples of coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetates such as barium acetate, calcium acetate, and zinc acetate Water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more, and are preferably used in the form of an aqueous solution. This aqueous solution may further contain a water-soluble organic solvent such as methyl alcohol and ethyl alcohol, and a nonionic surfactant. The concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by mass, more preferably 15 to 30% by mass.
 型をディップ成形用組成物から引き上げた後、例えば、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択する。 After the mold is lifted from the dip molding composition, for example, the deposit formed on the mold is dried by heating. Drying conditions are appropriately selected.
 次いで、加熱して、型上に形成された沈着物を加硫する。 Next, the deposit formed on the mold is vulcanized by heating.
 加硫時の加熱条件は、特に限定されないが、好ましくは60~150℃、より好ましくは100~130℃の加熱温度で、好ましくは10~120分の加熱時間である。 The heating conditions during vulcanization are not particularly limited, but are preferably 60 to 150 ° C., more preferably 100 to 130 ° C., and preferably 10 to 120 minutes.
 加熱の方法は、特に限定されないが、オーブンの中で温風で加熱する方法、赤外線を照射して加熱する方法などである。 The method of heating is not particularly limited, and there are a method of heating with warm air in an oven, a method of heating by irradiating infrared rays, and the like.
 ディップ成形用組成物を沈着させた型を加熱する前あるいは加熱した後に、水溶性不純物(例えば、余剰の界面活性剤、凝固剤)を除去するために、好ましくは型を水または温水で洗浄する。 Preferably, the mold is washed with water or warm water to remove water-soluble impurities (eg, excess surfactant, coagulant) before or after heating the mold on which the dip molding composition has been deposited. .
 加硫後のディップ成形体は、型から脱着される。脱着方法の具体例は、手で型から剥がす方法、水圧又は圧縮空気圧力により剥がす方法である。形成途中のディップ成形体が脱着に対する十分な強度を有していれば、途中工程で脱着し、引き続き、その後の処理を継続してもよい。 The dip-formed body after vulcanization is desorbed from the mold. Specific examples of the desorption method include a method of peeling from a mold by hand, a method of peeling by water pressure or compressed air pressure. If the dip-molded product being formed has sufficient strength against desorption, it may be desorbed in the middle step and then the subsequent processing may be continued.
 ディップ成形体が手袋である場合、ディップ成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子又は澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。 When the dip-molded body is a glove, in order to prevent the dip-molded bodies from sticking to the contact surface and improve slipping during attachment and detachment, organic fine particles such as talc and calcium carbonate or starch particles are used as gloves. It may be dispersed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「%」および「部」は、特に断りのない限り、質量基準である。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples. In the following, “%” and “part” are based on mass unless otherwise specified.
 各種の物性は以下のように測定された。
(1)  合成ポリイソプレンの重量平均分子量
 合成ポリイソプレンラテックスを固形分濃度で0.1質量%となるように、テトラヒドロフランに溶解した。この溶液をゲル・パーミエーション・クロマトグラフィー分析し、標準ポリスチレン換算の重量平均分子量として算出した。
(2)  合成ポリイソプレンのシス結合単位量
 合成ポリイソプレンラテックスにメタノールを添加し、凝固した。得られた凝固物を乾燥した後、1H-NMR分析して、合成ポリイソプレン中の全イソプレン単位に対するシス結合単位の割合で示す。
(3)  合成ポリイソプレンラテックスの体積平均粒子径
 光散乱回折粒子測定装置(コールター社製:LS-230)を用いて、体積平均粒子径として求めた。
(4)  ディップ成形体の引張強度
 ディップ成形体の引張強度は、ASTM D412に基づいて測定された。ディップ成形フィルムをダンベル(Die-C)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機((株)オリエンテック製RTC-1225A)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)を測定した。
(5)  ディップ成形用組成物の貯蔵安定性
 得られたディップ成形用組成物を、恒温槽内にて、30℃で7日間貯蔵した。その後、ディップ成形用組成物を100メッシュの金網に通し、金網上に残存する凝集物の乾燥質量を計測した。この乾燥凝集物のディップ成形用組成物中の全固形分に対する百分率割合で示す。この数値が大きいと、ディップ成形用組成物は貯蔵安定性に劣ることを示している。
Various physical properties were measured as follows.
(1) Weight average molecular weight of synthetic polyisoprene Synthetic polyisoprene latex was dissolved in tetrahydrofuran so that the solid content concentration was 0.1% by mass. This solution was subjected to gel permeation chromatography analysis and calculated as a weight average molecular weight in terms of standard polystyrene.
(2) Amount of cis bond unit of synthetic polyisoprene Methanol was added to the synthetic polyisoprene latex and coagulated. The obtained coagulated product is dried and then analyzed by 1H-NMR, and expressed as a ratio of cis bond units to all isoprene units in the synthetic polyisoprene.
(3) Volume average particle diameter of synthetic polyisoprene latex The volume average particle diameter was determined using a light scattering diffraction particle measuring device (Coulter LS-230).
(4) Tensile Strength of Dip Molded Body The tensile strength of the dip molded body was measured based on ASTM D412. The dip-formed film was punched with a dumbbell (Die-C) to prepare a test piece for measuring tensile strength. The test piece was pulled at a tensile speed of 500 mm / min with a Tensilon universal testing machine (RTC-1225A manufactured by Orientec Co., Ltd.), and the tensile strength (unit: MPa) immediately before breaking was measured.
(5) Storage stability of dip molding composition The obtained dip molding composition was stored in a thermostatic bath at 30 ° C for 7 days. Thereafter, the dip-forming composition was passed through a 100-mesh wire mesh, and the dry mass of the aggregate remaining on the wire mesh was measured. It shows as a percentage of the total solid content in the dip molding composition of the dried aggregate. A large value indicates that the dip molding composition is inferior in storage stability.
 (製造例1)
 合成ポリイソプレン(日本ゼオン(株)製:NIPOL IR2200L)をシクロヘキサンに溶解し、固形分濃度10質量%のポリイソプレンのシクロヘキサン溶液を調整した。当該シクロヘキサン溶液と固形分濃度1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を質量比で1:1となるように混合し、攪拌した。この操作をローター・ステーター型乳化機(太平洋機工(株)製マイルダー307)により10回行い、乳化液を得た。当該乳化液から80℃、-0.01~-0.09MPaの減圧下でシクロヘキサンを留去し、その後、連続遠心分離機(アルファラバル社製SGR509)で遠心分離を行い、固形分濃度57質量%の合成ポリイソプレンラテックスを得た。この合成ポリイソプレンラテックスの体積平均粒子径は、1.0μmであった。合成ポリイソプレンの重量平均分子量は約1,600,000で、そのシス結合単位の割合は、98質量%であった。
(Production Example 1)
Synthetic polyisoprene (manufactured by Nippon Zeon Co., Ltd .: NIPOL IR2200L) was dissolved in cyclohexane to prepare a cyclohexane solution of polyisoprene having a solid content concentration of 10% by mass. The cyclohexane solution and a sodium dodecylbenzenesulfonate aqueous solution having a solid content concentration of 1.5% by mass were mixed at a mass ratio of 1: 1 and stirred. This operation was performed 10 times with a rotor-stator type emulsifier (Milk 307 manufactured by Taiheiyo Kiko Co., Ltd.) to obtain an emulsion. Cyclohexane is distilled off from the emulsion at 80 ° C. under a reduced pressure of −0.01 to −0.09 MPa, and then centrifuged with a continuous centrifuge (SGR509 manufactured by Alfa Laval) to obtain a solid concentration of 57 mass. % Synthetic polyisoprene latex was obtained. The volume average particle diameter of this synthetic polyisoprene latex was 1.0 μm. The weight average molecular weight of the synthetic polyisoprene was about 1,600,000, and the ratio of cis bond units was 98% by mass.
 (実施例1)
 製造例1で得た合成ポリイソプレンラテックスを攪拌しながら、スチレン-マレイン酸モノ-n-ブチルエステル重合体のアンモニウム塩(分散剤A)水溶液(荒川化学工業(株)製:アラスター703S)を、当該ラテックスの固形分100質量部に対して、固形分換算で0.75質量部に相当する量添加した。次いで、得られた混合物を攪拌しながら、混合物中の合成ポリイソプレン100質量部に対して、固形分換算で酸化亜鉛1.5質量部、硫黄1.5質量部、老化防止剤(グッドイヤー社製Wingstay L)2質量部、ジエチルジチオカルバミン酸亜鉛0.125質量部、メルカプトベンゾチアゾール亜鉛塩0.3質量部となるように、各配合剤の水分散液を添加した後、水酸化カリウム水溶液を添加して、pHを10.5に調整したディップ成形用組成物を得た。これを恒温槽内にて、30℃で貯蔵した。
Example 1
While stirring the synthetic polyisoprene latex obtained in Production Example 1, an aqueous solution of ammonium salt (dispersant A) of styrene-maleic acid mono-n-butyl ester polymer (Arakawa Chemical Industries, Ltd .: Alastor 703S) An amount corresponding to 0.75 parts by mass in terms of solid content was added to 100 parts by mass of the solid content of the latex. Next, while stirring the obtained mixture, 1.5 parts by weight of zinc oxide, 1.5 parts by weight of sulfur, an anti-aging agent (made by Goodyear) in terms of solid content with respect to 100 parts by weight of synthetic polyisoprene in the mixture. Wingstay L) 2 parts by weight, 0.125 parts by weight of zinc diethyldithiocarbamate, 0.3 parts by weight of mercaptobenzothiazole zinc salt, after adding an aqueous dispersion of each compounding agent, and then adding an aqueous potassium hydroxide solution Thus, a dip molding composition having a pH adjusted to 10.5 was obtained. This was stored at 30 ° C. in a thermostatic bath.
 (ディップ成形)
 表面がすり加工されたガラス型(直径約5cm、すり部長さ約15cm)を洗浄し、70℃のオーブン内で予備加熱した後、16質量%の硝酸カルシウム及び0.05質量%のポリオキシエチレンラウリルエーテル(花王(株)製エマルゲン109P)からなる凝固剤水溶液に5秒間浸漬し、取り出した。次いで、凝固剤で被覆されたガラス型を70℃のオーブン内で乾燥した。その後、凝固剤で被覆されたガラス型をオーブンから取り出し、上記ディップ成形用組成物に10秒間浸漬してから取り出し、室温で60分間乾燥した。フィルムで被覆された型をオーブン内に置き、25分間で50℃から60℃まで昇温して予備乾燥し、70℃のオーブン内に10分間置いて更に乾燥した。型を60℃の温水中に2分間浸漬した後、室温で10分間風乾した。その後、フィルムで被覆された型をオーブン内に置き、100℃で60分間加硫を行った。加硫されたフィルムで被覆された型を室温まで冷却し、タルクを散布した後、当該フィルムをガラス型から剥離した。得られたフィルムの引張強度を測定し、結果を表1に示す。
(Dip molding)
A glass mold (diameter of about 5 cm, crushed portion length of about 15 cm) whose surface has been ground is washed, preheated in an oven at 70 ° C., then 16% by mass of calcium nitrate and 0.05% by mass of polyoxyethylene It was immersed in a coagulant aqueous solution made of lauryl ether (Emulgen 109P manufactured by Kao Corporation) for 5 seconds and taken out. The glass mold coated with the coagulant was then dried in an oven at 70 ° C. Thereafter, the glass mold coated with the coagulant was taken out from the oven, dipped in the dip molding composition for 10 seconds, taken out, and dried at room temperature for 60 minutes. The film-coated mold was placed in an oven, heated from 50 ° C. to 60 ° C. for 25 minutes and pre-dried, and then placed in a 70 ° C. oven for 10 minutes for further drying. The mold was immersed in warm water at 60 ° C. for 2 minutes and then air-dried at room temperature for 10 minutes. Thereafter, the mold coated with the film was placed in an oven and vulcanized at 100 ° C. for 60 minutes. The mold covered with the vulcanized film was cooled to room temperature, talc was sprayed, and then the film was peeled from the glass mold. The tensile strength of the obtained film was measured, and the results are shown in Table 1.
 (ディップ成形用組成物の経時変化)
 ディップ成形用組成物を30℃で貯蔵し、一日毎に、前記のディップ成形を行い、経時でディップ成形体を得た。得られたディップ成形体の引張強度を測定し、3日目に得られたディップ成形体の引張強度と、引張強度が最大となる日数およびその時の引張強度を表1に示す。
(Aging change of dip molding composition)
The dip-forming composition was stored at 30 ° C., and the dip-forming was performed every day to obtain a dip-formed body over time. The tensile strength of the obtained dip-molded product was measured, and the tensile strength of the dip-molded product obtained on the third day, the number of days when the tensile strength becomes maximum, and the tensile strength at that time are shown in Table 1.
 (実施例2)
 分散剤Aに代えて、スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体(Hercules社製:Scripset550;なお、マレイン酸モノ-sec-ブチルエステルとマレイン酸モノメチルエステルのモル比は、2:1である。)をアンモニア水を用いて100%中和して得られたアンモニウム塩水溶液を分散剤Bとして用い、その配合量を、合成イソプレンラテックスの固形分100質量部に対して、固形分換算で1質量部に相当する量に変更する以外は、実施例1と同様に行った。
(Example 2)
In place of Dispersant A, styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (manufactured by Hercules: Scriptset 550; the molar ratio of maleic acid mono-sec-butyl ester to maleic acid monomethyl ester is 2: 1) using an aqueous ammonium salt solution obtained by neutralizing 100% with aqueous ammonia as the dispersant B, and the blending amount thereof is 100 parts by mass of the solid content of the synthetic isoprene latex. This was performed in the same manner as in Example 1 except that the amount was changed to an amount corresponding to 1 part by mass in terms of solid content.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
 (実施例3)
 分散剤Aに代えて、スチレン-無水マレイン酸重合体(藤井義通商(株)製:SMA-1000P)をアンモニア水を用いて100%中和して得られたアンモニウム塩水溶液を分散剤Cとして用いる以外は、実施例1と同様に行った。
(Example 3)
Instead of the dispersant A, an aqueous ammonium salt solution obtained by neutralizing 100% of a styrene-maleic anhydride polymer (manufactured by Yoshitsumi Fujii Co., Ltd .: SMA-1000P) with aqueous ammonia is used as the dispersant C. The same procedure as in Example 1 was performed except that it was used.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
 (比較例1)
 分散剤Aを添加しない以外は、実施例1と同様に行った。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the dispersant A was not added.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
 (比較例2)
 分散剤Aに代えて、スチレン-無水マレイン酸重合体(Hercules社製:Scripset520)をアンモニア水を用いて100%中和して得られたアンモニウム塩水溶液を分散剤Dとして用いる以外は、実施例1と同様に行った。
(Comparative Example 2)
Example of Example except that an aqueous ammonium salt solution obtained by neutralizing 100% of styrene-maleic anhydride polymer (manufactured by Hercules: Scriptset 520) with ammonia water instead of the dispersant A was used as the dispersant D. 1 was performed.
 評価結果を表1に示す。但し、貯蔵4日目で、ディップ成形用組成物全体が凝集した状態になったため、それ以降の評価は行わなかった。 Evaluation results are shown in Table 1. However, since the whole composition for dip molding became agglomerated on the fourth day of storage, the subsequent evaluation was not performed.
 (比較例3)
 分散剤Aに代えて、ラウリル硫酸ナトリウム塩を用いる以外は、実施例1と同様に行った。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that sodium lauryl sulfate was used in place of Dispersant A.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
 なお、用いた分散剤の特性を以下に示す。
[分散剤A]:スチレン-マレイン酸モノ-n-ブチルエステル重合体のアンモニウム塩(荒川化学工業(株)製;アラスター703S)
 スチレン-マレイン酸モノ-n-ブチルエステル重合体の重量平均分子量=13,800
[分散剤B]:スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体(Hercules社製:Scripset550)のアンモニウム塩
 スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体の重量平均分子量=84,700
 なお、マレイン酸モノ-sec-ブチルエステルとマレイン酸モノメチルエステルのモル比は、2:1である。
[分散剤C]:スチレン-無水マレイン酸重合体(藤井義通商(株)製:SMA-1000P)のアンモニウム塩
 スチレン-無水マレイン酸重合体の重量平均分子量=5,900
[分散剤D]:スチレン-無水マレイン酸重合体(Hercules社製:Scripset520)のアンモニウム塩
 スチレン-無水マレイン酸重合体の重量平均分子量=220,000
 (分散剤の重量平均分子量の測定)
 分散剤Aは、1質量%の塩酸水溶液中に滴下し、析出物をイオン交換水で十分に洗浄した後、乾燥して測定に供した。
In addition, the characteristic of the used dispersing agent is shown below.
[Dispersant A]: Ammonium salt of styrene-maleic acid mono-n-butyl ester polymer (Arakawa Chemical Industries, Ltd .; Alastor 703S)
Weight average molecular weight of styrene-maleic acid mono-n-butyl ester polymer = 13,800
[Dispersant B]: Ammonium salt of styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (manufactured by Hercules: Scripset 550) Styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer Weight average molecular weight = 84,700
The molar ratio of maleic acid mono-sec-butyl ester to maleic acid monomethyl ester is 2: 1.
[Dispersant C]: Ammonium salt of styrene-maleic anhydride polymer (manufactured by Yoshitsumi Fujii Co., Ltd .: SMA-1000P) Weight average molecular weight of styrene-maleic anhydride polymer = 5,900
[Dispersant D]: Ammonium salt of styrene-maleic anhydride polymer (manufactured by Hercules: Scriptset 520) Weight average molecular weight of styrene-maleic anhydride polymer = 220,000
(Measurement of weight average molecular weight of dispersant)
Dispersant A was dropped into a 1% by mass hydrochloric acid aqueous solution, and the precipitate was thoroughly washed with ion-exchanged water, then dried and subjected to measurement.
 分散剤B~Dは、市販品をそのまま、測定に供した。 Dispersants B to D were subjected to measurement as they were commercially available.
 分子量の測定は、テトラヒドロフランを溶離液とし、東ソー(株)製のTSKgel-SuperHZM-Mをカラムとして用いて、ゲル・パーミエーション・クロマトグラフィー分析し、標準ポリスチレン換算の重量平均分子量として算出した。なお、分散剤Dの測定については、カラムとして東ソー(株)製のTSKgel-SuperHM-Hを用いた。 The molecular weight was measured by gel permeation chromatography using tetrahydrofuran as an eluent and TSKgel-SuperHZM-M manufactured by Tosoh Corporation as a column, and calculated as a weight average molecular weight in terms of standard polystyrene. For measurement of the dispersant D, TSKgel-SuperHM-H manufactured by Tosoh Corporation was used as a column.
Figure JPOXMLDOC01-appb-T000001
 表1から、次のようなことがわかった。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the following.
 分散剤を添加しない比較例1のディップ成形用組成物は、凝集物が生成し、貯蔵安定性に劣る上、3日目の引張強度が低く、最大引張強度に到達するまでの期間が長かった。 In the dip molding composition of Comparative Example 1 in which no dispersant was added, aggregates were formed, the storage stability was poor, the tensile strength on the third day was low, and the period until reaching the maximum tensile strength was long. .
 分散剤の重量平均分子量が本発明の範囲より大きい分散剤Dを用いた比較例2のディップ成形用組成物は、貯蔵安定性に劣る上、3日目の引張強度が低かった。 The composition for dip molding of Comparative Example 2 using Dispersant D in which the weight average molecular weight of the dispersant is larger than the range of the present invention was inferior in storage stability and had a low tensile strength on the third day.
 ラウリル硫酸ナトリウム塩を添加した比較例3のディップ成形用組成物は、貯蔵安定性は良好であるものの、3日目の引張強度が低く、最大引張強度に到達するまでの期間が長かった。 Although the dip molding composition of Comparative Example 3 to which sodium lauryl sulfate was added had good storage stability, the tensile strength on the third day was low and the period until reaching the maximum tensile strength was long.
 これらの比較例に対して、本発明の範囲である実施例1~3のディップ成形用組成物は、貯蔵安定性も良好で、3日目の引張強度が高く、最大引張強度に到達するまでの期間が短かった。 In contrast to these comparative examples, the dip molding compositions of Examples 1 to 3, which are within the scope of the present invention, also have good storage stability, high tensile strength on the third day, and until the maximum tensile strength is reached. The period of was short.
 なお、本発明に係るディップ成形用組成物では、上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩及びオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方を形成するオレフィン化合物がスチレンであることがより好ましい。 The dip molding composition according to the present invention forms at least one of the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer. More preferably, the olefin compound is styrene.
 また、本発明に係るディップ成形用組成物では、上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩は、スチレン-マレイン酸重合体の塩であることがより好ましい。 In the dip molding composition according to the present invention, the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt is more preferably a styrene-maleic acid polymer salt.
 また、本発明に係るディップ成形用組成物では、上記オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体は、スチレン-マレイン酸モノエステル重合体の塩であることがより好ましい。 In the dip molding composition according to the present invention, the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is more preferably a styrene-maleic acid monoester polymer salt.
 また、本発明に係るディップ成形用組成物では、上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩及びオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方は、アンモニウム塩であることがより好ましい。 In the dip molding composition according to the present invention, at least one of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer salt is ammonium. More preferably, it is a salt.
 また、本発明に係るディップ成形用組成物では、上記分散剤の重量平均分子量が、5,900以上、84,700以下であることがより好ましい。 Further, in the dip molding composition according to the present invention, the weight average molecular weight of the dispersant is more preferably 5,900 or more and 84,700 or less.
 また、本発明に係るディップ成形用組成物では、上記分散剤の量は、上記合成ポリイソプレンラテックス100質量部に対して、0.1~10質量部であることがより好ましい。 In the dip molding composition according to the present invention, the amount of the dispersant is more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene latex.
 また、本発明に係るディップ成形用組成物では、上記合成ポリイソプレンラテックスを形成する合成ポリイソプレンはイソプレンの単独重合体であることがより好ましい。 In the dip molding composition according to the present invention, the synthetic polyisoprene forming the synthetic polyisoprene latex is more preferably a homopolymer of isoprene.
 また、本発明に係るディップ成形用組成物では、上記合成ポリイソプレンラテックスは、有機溶媒に溶解した合成ポリイソプレン溶液を、界面活性剤の存在下に、水中で乳化して製造されたものであることがより好ましい。 In the dip molding composition according to the present invention, the synthetic polyisoprene latex is produced by emulsifying a synthetic polyisoprene solution dissolved in an organic solvent in water in the presence of a surfactant. It is more preferable.
 本発明のディップ成形用組成物をディップ成形してなる成形体は、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;手術用、診察用、家庭用、農業用、漁業用および工業用の手袋;指サックなどに好適である。 A molded product obtained by dip-molding the dip-forming composition of the present invention is a medical article such as a nipple for baby bottles, a dropper, a tube, a water pillow, a balloon sac, a catheter, and a condom; a toy such as a balloon, a doll, and a ball; It is suitable for industrial articles such as pressure forming bags and gas storage bags; surgical, diagnostic, household, agricultural, fishery and industrial gloves; finger sacks and the like.

Claims (10)

  1.  合成ポリイソプレンラテックス、硫黄系加硫剤、酸化亜鉛、加硫促進剤及び分散剤を含有するディップ成形用組成物であって、該分散剤が、重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩および重量平均分子量が1,000~150,000であるオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方であることを特徴とするディップ成形用組成物。 A composition for dip molding comprising a synthetic polyisoprene latex, a sulfur-based vulcanizing agent, zinc oxide, a vulcanization accelerator and a dispersing agent, wherein the dispersing agent has a weight average molecular weight of 1,000 to 150,000. It is at least one of a salt of an olefin compound-ethylenically unsaturated dicarboxylic acid polymer and a salt of an olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer having a weight average molecular weight of 1,000 to 150,000. A composition for dip molding characterized by the above.
  2.  上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩及びオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方を形成するオレフィン化合物がスチレンである請求項1に記載のディップ成形用組成物。 2. The dip according to claim 1, wherein the olefin compound forming at least one of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer salt and the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer salt is styrene. Molding composition.
  3.  上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩は、スチレン-マレイン酸重合体の塩である請求項1又は2に記載のディップ成形用組成物。 3. The dip molding composition according to claim 1, wherein the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer is a salt of a styrene-maleic acid polymer.
  4.  上記オレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体は、スチレン-マレイン酸モノエステル重合体の塩である請求項1~3のいずれか1項に記載のディップ成形用組成物。 The dip molding composition according to any one of claims 1 to 3, wherein the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is a salt of a styrene-maleic acid monoester polymer.
  5.  上記オレフィン化合物-エチレン性不飽和ジカルボン酸重合体の塩及びオレフィン化合物-エチレン性不飽和ジカルボン酸モノエステル重合体の塩のうち少なくとも一方は、アンモニウム塩である請求項1~4のいずれか1項に記載のディップ成形用組成物。 5. At least one of the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid polymer and the salt of the olefin compound-ethylenically unsaturated dicarboxylic acid monoester polymer is an ammonium salt. The composition for dip molding as described in 2.
  6.  上記分散剤の重量平均分子量が、5,900以上、84,700以下である請求項1~5のいずれか1項に記載のディップ成形用組成物。 The dip molding composition according to any one of claims 1 to 5, wherein the dispersant has a weight average molecular weight of 5,900 or more and 84,700 or less.
  7.  上記分散剤の量は、上記合成ポリイソプレンラテックス100質量部に対して、0.1~10質量部である請求項1~6のいずれか1項に記載のディップ成形用組成物。 The dip molding composition according to any one of claims 1 to 6, wherein the amount of the dispersant is 0.1 to 10 parts by mass with respect to 100 parts by mass of the synthetic polyisoprene latex.
  8.  上記合成ポリイソプレンラテックスを形成する合成ポリイソプレンはイソプレンの単独重合体である請求項1~7のいずれか1項に記載のディップ成形用組成物。 The dip molding composition according to any one of claims 1 to 7, wherein the synthetic polyisoprene forming the synthetic polyisoprene latex is a homopolymer of isoprene.
  9.  上記合成ポリイソプレンラテックスは、有機溶媒に溶解した合成ポリイソプレン溶液を、界面活性剤の存在下に、水中で乳化して製造されたものである請求項1~8のいずれか1項に記載のディップ成形用組成物。 9. The synthetic polyisoprene latex is produced by emulsifying a synthetic polyisoprene solution dissolved in an organic solvent in water in the presence of a surfactant. Dip molding composition.
  10.  請求項1~9のいずれか1項に記載のディップ成形用組成物をディップ成形して得られるディップ成形体。 A dip-molded product obtained by dip-molding the dip-molding composition according to any one of claims 1 to 9.
PCT/JP2010/000217 2009-02-28 2010-01-18 Composition for dip forming, and dip-formed articles WO2010098008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501467A JP5472286B2 (en) 2009-02-28 2010-01-18 DIP MOLDING COMPOSITION AND DIP MOLDED BODY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009047429 2009-02-28
JP2009-047429 2009-02-28
JP2009-062266 2009-03-16
JP2009062266 2009-03-16

Publications (1)

Publication Number Publication Date
WO2010098008A1 true WO2010098008A1 (en) 2010-09-02

Family

ID=42665228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000217 WO2010098008A1 (en) 2009-02-28 2010-01-18 Composition for dip forming, and dip-formed articles

Country Status (2)

Country Link
JP (1) JP5472286B2 (en)
WO (1) WO2010098008A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099501A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Latex, composition for dip molding and dip molded body
WO2014129547A1 (en) * 2013-02-22 2014-08-28 日本ゼオン株式会社 Latex for dip molding use, composition for dip molding use, and dip-molded article
WO2015046391A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Composition for dip molding, and dip-molded article
WO2016088576A1 (en) * 2014-12-04 2016-06-09 日本ゼオン株式会社 Dip-molding synthetic polyisoprene latex, dip-molding composition, and dip-molded body
JPWO2014157034A1 (en) * 2013-03-28 2017-02-16 日本ゼオン株式会社 Method for producing synthetic isoprene polymer latex
KR20180109875A (en) * 2016-02-03 2018-10-08 니폰 제온 가부시키가이샤 Method for producing polymer latex
JP2019035065A (en) * 2017-08-21 2019-03-07 住友精化株式会社 Method for producing latex composition
CN114685922A (en) * 2020-12-25 2022-07-01 北京化工大学 Bio-based itaconate rubber gloves and preparation method thereof
JP2023500155A (en) * 2019-11-07 2023-01-04 コッサン エスディーエヌ.ビーエイチディー. Polymer/Inorganic Composite Particle Blends Used to Make Rubber Articles in Dip Coating Processes and Methods of Making Rubber Articles Using the Blends
CN116371476A (en) * 2023-04-27 2023-07-04 青岛中瑞泰达催化新材料有限公司 Pre-vulcanization method of hydrogenation catalyst
WO2023181837A1 (en) 2022-03-23 2023-09-28 日本ゼオン株式会社 Latex composition and dip-molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532752A (en) * 2001-03-12 2004-10-28 アレジアンス、コーポレイション Polyisoprene product and its manufacturing process
WO2006057392A1 (en) * 2004-11-29 2006-06-01 Zeon Corporation Composition for dip forming and dip-formed molding
WO2008001764A1 (en) * 2006-06-30 2008-01-03 Four Road Research Ltd. Latex composition containing crosslinking agent and crosslinked molded body thereof
WO2008117620A1 (en) * 2007-03-27 2008-10-02 Zeon Corporation Rubber latex, rubber latex for dip molding, and dip-molded article
JP2009209229A (en) * 2008-03-03 2009-09-17 Nippon Zeon Co Ltd Composition for dip molding and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532752A (en) * 2001-03-12 2004-10-28 アレジアンス、コーポレイション Polyisoprene product and its manufacturing process
WO2006057392A1 (en) * 2004-11-29 2006-06-01 Zeon Corporation Composition for dip forming and dip-formed molding
WO2008001764A1 (en) * 2006-06-30 2008-01-03 Four Road Research Ltd. Latex composition containing crosslinking agent and crosslinked molded body thereof
WO2008117620A1 (en) * 2007-03-27 2008-10-02 Zeon Corporation Rubber latex, rubber latex for dip molding, and dip-molded article
JP2009209229A (en) * 2008-03-03 2009-09-17 Nippon Zeon Co Ltd Composition for dip molding and molded article

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099501A1 (en) * 2011-12-27 2015-04-30 日本ゼオン株式会社 Latex, dip molding composition and dip molding
WO2013099501A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Latex, composition for dip molding and dip molded body
EP2960293A4 (en) * 2013-02-22 2016-09-28 Zeon Corp Latex for dip molding use, composition for dip molding use, and dip-molded article
WO2014129547A1 (en) * 2013-02-22 2014-08-28 日本ゼオン株式会社 Latex for dip molding use, composition for dip molding use, and dip-molded article
TWI595041B (en) * 2013-02-22 2017-08-11 Zeon Corp An emulsion for dipping, a composition for impregnation molding, and an impregnated molded article
US9546239B2 (en) 2013-02-22 2017-01-17 Zeon Corporation Latex for molding use, composition for dip molding use, and dip-molded article
JPWO2014129547A1 (en) * 2013-02-22 2017-02-02 日本ゼオン株式会社 Dip molding latex, dip molding composition and dip molding
JPWO2014157034A1 (en) * 2013-03-28 2017-02-16 日本ゼオン株式会社 Method for producing synthetic isoprene polymer latex
WO2015046391A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Composition for dip molding, and dip-molded article
US20160168366A1 (en) * 2013-09-30 2016-06-16 Zeon Corporation Dip-forming composition and dip-forming article
JPWO2015046391A1 (en) * 2013-09-30 2017-03-09 日本ゼオン株式会社 DIP MOLDING COMPOSITION AND DIP MOLDED BODY
US9637621B2 (en) 2013-09-30 2017-05-02 Zeon Corporation Dip-forming composition and dip-formed article
EP3029100A4 (en) * 2013-09-30 2017-06-28 Zeon Corporation Composition for dip molding, and dip-molded article
JPWO2016088576A1 (en) * 2014-12-04 2017-09-14 日本ゼオン株式会社 Synthetic polyisoprene latex for dip molding, dip molding composition and dip molded body
WO2016088576A1 (en) * 2014-12-04 2016-06-09 日本ゼオン株式会社 Dip-molding synthetic polyisoprene latex, dip-molding composition, and dip-molded body
KR20180109875A (en) * 2016-02-03 2018-10-08 니폰 제온 가부시키가이샤 Method for producing polymer latex
CN108699251A (en) * 2016-02-03 2018-10-23 日本瑞翁株式会社 The manufacturing method of polymer emulsion
JPWO2017135144A1 (en) * 2016-02-03 2018-12-06 日本ゼオン株式会社 Method for producing polymer latex
KR102634108B1 (en) 2016-02-03 2024-02-05 니폰 제온 가부시키가이샤 Method of making polymer latex
EP3412707A4 (en) * 2016-02-03 2019-09-18 Zeon Corporation Polymer latex production method
JP7046611B2 (en) 2017-08-21 2022-04-04 住友精化株式会社 Method for manufacturing latex composition
JP2019035065A (en) * 2017-08-21 2019-03-07 住友精化株式会社 Method for producing latex composition
JP2023500155A (en) * 2019-11-07 2023-01-04 コッサン エスディーエヌ.ビーエイチディー. Polymer/Inorganic Composite Particle Blends Used to Make Rubber Articles in Dip Coating Processes and Methods of Making Rubber Articles Using the Blends
JP7234463B2 (en) 2019-11-07 2023-03-07 コッサン エスディーエヌ.ビーエイチディー. Polymer/Inorganic Composite Particle Blends Used to Make Rubber Articles in Dip Coating Processes and Methods of Making Rubber Articles Using the Blends
CN114685922A (en) * 2020-12-25 2022-07-01 北京化工大学 Bio-based itaconate rubber gloves and preparation method thereof
WO2023181837A1 (en) 2022-03-23 2023-09-28 日本ゼオン株式会社 Latex composition and dip-molded body
CN116371476A (en) * 2023-04-27 2023-07-04 青岛中瑞泰达催化新材料有限公司 Pre-vulcanization method of hydrogenation catalyst
CN116371476B (en) * 2023-04-27 2024-05-10 青岛中瑞泰丰新材料有限公司 Pre-vulcanization method of hydrogenation catalyst

Also Published As

Publication number Publication date
JP5472286B2 (en) 2014-04-16
JPWO2010098008A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5999103B2 (en) Latex, dip molding composition and dip molding
JP5472286B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
JP5488137B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
JP6358262B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
WO2014129547A1 (en) Latex for dip molding use, composition for dip molding use, and dip-molded article
WO2017130889A1 (en) Latex composition
JP5187501B2 (en) DIP MOLDING COMPOSITION AND MOLDED BODY
WO2018155243A1 (en) Latex composition
KR102699049B1 (en) Method for producing polymer latex
WO2014181714A1 (en) Polyisoprene latex for molding medical supplies, composition for dip molding, medical supplies, and method for molding same
WO2019039523A1 (en) Latex composition
JP6614159B2 (en) Synthetic polyisoprene latex for dip molding, dip molding composition and dip molded body
WO2019058807A1 (en) Production method for latex composition
JP6729549B2 (en) Method for producing synthetic isoprene polymer latex for dip molding, method for producing dip molding composition and method for producing dip molded article
JP6572902B2 (en) Method for producing dip-molded body
JP2016150946A (en) Isoprene polymer latex for dip molding, composition for dip molding and dip molded body
US20230295385A1 (en) Film molded body
WO2021171994A1 (en) Method for producing dip-molded article
JP2019034982A (en) Latex composition
WO2022172696A1 (en) Method for producing molded body
WO2023026782A1 (en) Latex composition and dip-molded body
JP2016132761A (en) Method for producing dip molding and dip molding
EP4238734A1 (en) Latex composition and dip molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501467

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745897

Country of ref document: EP

Kind code of ref document: A1