WO2010097891A1 - Plant optimum-operation control system - Google Patents

Plant optimum-operation control system Download PDF

Info

Publication number
WO2010097891A1
WO2010097891A1 PCT/JP2009/053285 JP2009053285W WO2010097891A1 WO 2010097891 A1 WO2010097891 A1 WO 2010097891A1 JP 2009053285 W JP2009053285 W JP 2009053285W WO 2010097891 A1 WO2010097891 A1 WO 2010097891A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic control
plant
optimum
operating point
optimization
Prior art date
Application number
PCT/JP2009/053285
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 村井
大 村山
礼智 上都
利広 山田
英樹 塚原
博一 大塚
真理 田中
一徳 岩渕
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/053285 priority Critical patent/WO2010097891A1/en
Priority to CN200980121700.3A priority patent/CN102057338B/en
Publication of WO2010097891A1 publication Critical patent/WO2010097891A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance

Definitions

  • the present invention relates to a system for optimal operation control of a plant, and particularly to an operation control system for minimizing the operation cost of the plant.
  • the boiler output and turbine main power are set so as to minimize the operating cost according to the amount of power received from the boiler fuel and the electric power system.
  • the amount of steam, the amount of bleed, and the generator output are determined, and optimum operation control is performed with these values as target values.
  • an automatic control device 100 for controlling the steam pressure / flow rate and generator output of the plant, and the automatic control device 100 and the data input unit 2 are used.
  • the optimization model from the plant model storage unit 4 and its parameters calculates the optimum operation point that minimizes the operation cost of the plant 10, and automatically Some output as a set value of the control device 100 (see, for example, Patent Documents 1 and 2).
  • the present invention has been made in consideration of the above-described points, and an object of the present invention is to provide a plant optimum operation control system capable of minimizing the operation cost while keeping the operation of the plant stable.
  • An optimal operating point calculation means for calculating an optimal operating point that minimizes the operating cost of the private power plant; Automatic control means for automatically controlling the plant based on an optimization model according to the optimum operating point obtained by calculation of the optimum operating point calculating means; Automatic control input means for starting automatic control operation of the private power plant by the automatic control means according to an input; A plant optimum operation control system comprising optimization variable selection means for selecting a variable to be optimized for the private power plant in the optimization model when the automatic control input means performs automatic control operation. , I will provide a.
  • throwing-in means in the plant optimal operation control system which concerns on Example 1 of this invention.
  • throwing-in means in the plant optimal operation control system which concerns on Example 1 of this invention.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention.
  • the plant optimum operation control system 100 as Example 1 includes a data input unit 2, an optimum operation point calculation unit 3, a plant model storage unit 4, an automatic control input unit 5, an optimization variable selection unit 6, and an operation point switching unit 7.
  • the operation point setting unit 8, the automatic control device 9, the optimum operation point display unit 10, and the automatic control exclusion unit 11 are configured.
  • the data input unit 2 is for inputting the state load such as the power load and steam load of the plant 20, the fuel flow rate of the boiler, the steam output, the main steam amount of the turbine generator, the ventilation amount, and the power generation amount.
  • the state quantity is sent to the optimum operating point calculation unit 3.
  • the plant model storage unit 4 stores an optimization model of the plant 20 and its parameters, and these models are sent to the optimum operating point calculation unit 3. The optimization model of the plant 20 will be described later.
  • the automatic control input means 5 is for selecting whether or not to perform automatic control based on the operating point calculated by the optimal operating point calculation unit 3, and the signal indicating whether or not automatic control is selected is optimized. It is sent to the variable selection means 6 and the operating point switching unit 7.
  • FIG. 2 shows a configuration of the automatic control input means 5, and the automatic control input means 5 includes an input unit 50 and a determination unit 51.
  • the input unit 50 inputs an instruction for automatic control input, and the determination unit 51 determines whether automatic control input is possible.
  • optimization variable selection means 6 is input to automatic control by the automatic control input means 5. Thereby, a variable to be optimized is selected according to a predetermined rule, and the selected optimized variable is sent to the optimum operating point calculation unit 3.
  • the optimum operating point calculation unit 3 is based on the plant state quantity sent from the data input unit 2, the optimization model sent from the plant model storage unit 4, and the optimization variable sent from the optimization variable selection unit 6.
  • the operating point at which the operating cost of the plant 20 is minimized is calculated using an optimization method such as the method, and the calculated optimal operating point is sent to the operating point switching unit 7 and is also displayed by the optimal operating point display unit 10. It is displayed on the screen.
  • the operating point setting unit 8 manually sets the target operating point of the plant 20, and the set operating point is sent to the operating point switching unit 7.
  • the operating point switching unit 7 changes the operating point to be sent to the automatic control device 9 from the operating point set by the operating point setting unit 8 to the optimum operating point calculation unit 3.
  • switching to the optimum operating point calculated in step 1 switching to automatic control at the optimum operating point is performed.
  • the automatic control exclusion means 11 is for releasing the automatic control based on the operation point calculated by the optimum operation point calculation unit 3, and the automatic control release signal is sent to the operation point switching unit 7.
  • the private power plant 20 includes boilers 21 and 22, turbines 23 and 24, generators 25 and 26, steam pipes and electric buses that connect them, and an electric load 27, an intermediate-pressure steam load 28, and A low-pressure steam load 29 is supplied.
  • the power load PL, the medium pressure steam load SML, and the low pressure steam load SLL are sent from the data input unit 2, and the other parameters are sent from the plant model storage unit 4.
  • linear programming can be applied by approximating the input / output characteristic function of each device with a linear model, and nonlinear programming can also be applied to a nonlinear model.
  • FIG. 3 is a flowchart illustrating an example of a processing procedure according to the first embodiment of the present invention. As shown in FIG. 3, the plant optimum operation control system 100 first determines whether or not automatic control input by the automatic control input means 5 has been performed (S201).
  • the optimization variable selection unit 6 selects an optimization variable in the above equations (1) to (10) of the optimization model according to a predetermined procedure (S202). That is, immediately after automatic control is turned on, no variable is selected as an optimization variable, and the state quantity of each variable is used as a constraint condition as it is. At this time, the upper and lower limit constraint equation (10) of each variable may be ignored.
  • the optimization variable selection unit 6 selects the optimization variables in a predetermined order for each control cycle, and finally selects all the optimization variables selected immediately before the automatic control is input.
  • the selection order of the optimization variables the current optimization variable state quantities may be selected in ascending order of difference from the optimum operating point before the automatic control is turned on.
  • the optimization variable selection unit 6 may select an optimization variable by being set by an operator.
  • the operation point switching unit 7 switches the operation point to be sent to the automatic control device 9 to use the optimum operation point calculated by the optimum operation point calculation unit 3. (S203).
  • step S202 and S203 are not executed. Then, the plant optimum operation control system 100 inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the plant model storage unit 4 to obtain the optimum operation point calculation unit. Data to be processed in step 3 is prepared (S204).
  • the optimum operating point calculation unit 3 performs optimization calculation on the models of the above formulas (1) to (10) (S205).
  • the calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 20 (S206).
  • the plant optimum operation control system 100 outputs an operation point to the automatic control device 9 (S207).
  • the optimum operating point calculated by the optimum operating point calculation unit 3 is output to the automatic control device 9 by the operating point switching unit 7, and otherwise, The operating point set by the operating point setting unit 8 is output.
  • FIG. 4 is a flowchart showing a processing procedure in the automatic control input means 5 of the plant optimum operation control system 100. As shown in FIG. 4, the automatic control input means 5 first determines whether or not an automatic control execution signal is input by the input unit 50 (S401).
  • the determination unit 51 of the automatic control input means 5 determines whether automatic control input is possible according to a predetermined condition (S402). Examples of conditions that do not apply to automatic control include “there is an alarm signal from the plant”, “the state quantity is an abnormal value”, and “the deviation from the upper and lower limit constraints of the optimization variable”. If automatic control input is possible, the automatic control input means 5 outputs an automatic control execution signal (S403).
  • the automatic control exclusion means 11 determines whether or not to cancel the automatic control according to a predetermined condition, and outputs an automatic control cancellation signal to the operating point switching unit 7 when it is determined to cancel the automatic control. And prevent automatic control input from continuing. As conditions for not entering automatic control, the same conditions as the automatic control entry determination can be considered.
  • Embodiment 2 of the present invention will be described with reference to FIGS.
  • symbol is attached
  • FIG. 5 is a block diagram showing the configuration of the plant optimum operation control system according to the second embodiment of the present invention.
  • the optimization variable selection unit 6 is removed from the plant optimum operation control system 1 of the first embodiment, and a target operation point creation unit 31 is added instead of the operation point switching unit 7. Is.
  • the target operating point creation unit 31 and the optimal operating point calculated by the optimal operating point calculator 3 and the optimal operating point calculated by the optimal operating point calculator 3 are displayed. Then, a target operating point obtained by interpolating these is created, and the created target operating point is sent to the automatic control device 9.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure according to the second embodiment.
  • the plant optimum operation control system 30 first inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the plant model storage unit 4.
  • the data to be processed by the optimum operating point calculation unit 3 is prepared (S401).
  • the plant optimum operation control system 30 performs an optimization calculation on the models of the above formulas (1) to (9) by the optimum operation point calculation unit 3 (S402).
  • the calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 10 (S403).
  • the plant optimum operation control system 30 determines whether or not automatic control is turned on (S404).
  • a target operating point is created from the current operating point (S405).
  • the operating point set by the operating point setting unit 8 is set as the target operating point.
  • the plant optimum operation control system outputs an operation point to the automatic control device 9 (S406).
  • the operating point created by the above equation (11) is output to the automatic control device 9, and when the automatic control is not turned on, the operating point setting unit 8 The operating point set by is output.
  • Embodiment 3 of the present invention will be described with reference to FIGS.
  • symbol is attached
  • FIG. 8 is a block diagram showing the configuration of the third embodiment of the present invention.
  • the plant optimum operation control system 40 includes a data input unit 2, an optimum operation point calculation unit 3, a plant model storage unit 4, an optimum operation point display unit 10, a demand prediction unit 41, a demand prediction model storage unit 42, An optimum operating point determination unit 43 and an alarm notification unit 44 are included.
  • the demand prediction unit 41 predicts future power demand and steam demand using the power load and steam load data input from the data input unit 2 based on the demand prediction model of the demand prediction model storage unit 42.
  • the predicted demand data is output to the optimum operating point calculation unit 3.
  • the demand prediction model stored in the demand prediction model storage unit 42 includes a multiple regression model and a neural network model, but other prediction models can also be applied.
  • the optimum operating point calculation unit 3 is based on the power demand prediction value and the steam demand prediction value output from the demand prediction unit 41 and the optimization model output from the plant model storage unit 4 and is an optimization method such as mathematical programming. Is used to calculate the operating point at which the operating cost of the plant is minimized, and the calculated optimal operating point is displayed on the screen by the optimal operating point display unit 10.
  • the optimum operation point determination unit 43 When the optimum operation point calculated by the optimum operation point calculation unit 3 satisfies a predetermined condition, the optimum operation point determination unit 43, for example, has no optimum solution or the optimization variable is set to the upper and lower limit values. It is determined whether or not it has been reached, and the determination result is output to the alarm notification unit 44.
  • the alarm notification unit 44 issues an alarm when the optimum operating point determination unit 43 determines that the condition is satisfied.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure according to the third embodiment.
  • the plant optimum operation control system 40 first inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the demand prediction model storage unit 42.
  • data to be processed by the demand prediction unit 41 is prepared (S901).
  • the demand prediction unit 41 predicts future demand using a multiple regression model or a neural network model (S902).
  • the plant optimum operation control system 40 uses the demand predicted by the demand prediction unit 41 by the optimum operation point calculation unit 3 and the optimization model stored in the optimization model storage unit 4.
  • the future optimum operating point is calculated (S903).
  • the calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 10 (S904).
  • the plant optimum operation control system 40 determines whether or not the optimum operation point calculated by the optimum operation point calculation unit 3 satisfies a predetermined condition by the optimum operation point determination unit 43 (S905). If so, an alarm is issued by the alarm issuing unit 44 (S906).
  • the future optimum operating point of the plant can be predicted based on the demand prediction of the plant, and whether or not the predicted optimum operating point deviates from the stable operating range of the plant. Can be predicted and notified to the operator. Thereby, in order to minimize the operation cost of the plant, it is possible to predict in advance whether or not stable operation can be maintained.
  • the present invention selects the variable to be optimized in the optimization model as described above, even if the optimal operating point of the plant is greatly different from the current operating point, the variable to be optimized is added little by little. Operating costs can be minimized without compromising the stable operation of the plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

Disclosed is a plant optimum-operation control system capable of minimizing an operation cost while keeping the operation of a plant stable.  The plant optimum-operation control system comprises an optimum operation-point calculating means (3) for calculating an optimum operation-point to minimize the operation cost of a non-utility generation plant (20), an automatic control means (9) for automatically controlling the plant on the basis of an optimization model in accordance with the optimum operation-point determined by the calculation of the optimum operation-point calculating means, an automatic control making means (5) for starting the automatically controlled operation of the non-utility generation plant by the automatic control means in response to an input, and an optimization variable selecting means (6) for selecting the variable of an optimization subject of the non-utility generation plant in the optimization model, when the automatic control making means performs the automatic control operation.

Description

プラント最適運転制御システムPlant optimum operation control system
 本発明は、プラントを最適運転制御するシステムに係わり、とくにプラントの運転コストを最小化する運転制御システムに関する。 The present invention relates to a system for optimal operation control of a plant, and particularly to an operation control system for minimizing the operation cost of the plant.
 一般に、工場内に電力および蒸気を供給する自家用発電プラントの最適運転制御システムにおいては、ボイラー燃料や電力系統からの受電量に応じてかかる運転コストを最小化するように、ボイラー出力や、タービン主蒸気量、抽気量、発電機出力を決定し、これを目標値とした最適運転制御が行われる。 In general, in an optimal operation control system for a private power plant that supplies electric power and steam to the factory, the boiler output and turbine main power are set so as to minimize the operating cost according to the amount of power received from the boiler fuel and the electric power system. The amount of steam, the amount of bleed, and the generator output are determined, and optimum operation control is performed with these values as target values.
 このようなプラント最適運転制御システムとしては、図10に示すように、プラントの蒸気圧力・流量や発電機出力を制御する自動制御装置100と、この自動制御装置100およびデータ入力部2を介して入力されるプラント10の状態量と、プラントモデル記憶部4からの最適化モデルおよびそのパラメータとから、最適運転点計算部3がプラント10の運転コストを最小化する最適運転点を計算し、自動制御装置100の設定値として出力するものがある(例えば、特許文献1および2参照)。
特開2000-78749号公報 特開2004-190620号公報
As such a plant optimum operation control system, as shown in FIG. 10, an automatic control device 100 for controlling the steam pressure / flow rate and generator output of the plant, and the automatic control device 100 and the data input unit 2 are used. From the input state quantity of the plant 10, the optimization model from the plant model storage unit 4 and its parameters, the optimum operation point calculation unit 3 calculates the optimum operation point that minimizes the operation cost of the plant 10, and automatically Some output as a set value of the control device 100 (see, for example, Patent Documents 1 and 2).
JP 2000-78749 A JP 2004-190620 A
 上述したプラント最適運転制御システムにおいては、最適運転点が現在の運転点と大きく違った場合、最適運転点をそのまま制御目標値として設定してしまうと、目標値が大きく変化するため、プラントの安定運転を損なうという問題がある。 In the plant optimum operation control system described above, if the optimum operation point is significantly different from the current operation point, setting the optimum operation point as it is as the control target value results in a large change in the target value. There is a problem of impairing driving.
 本発明は上述の点を考慮してなされたものであり、プラントの運転を安定に保ったまま運転コストを最小化することのできるプラント最適運転制御システムを提供することを目的とする。 The present invention has been made in consideration of the above-described points, and an object of the present invention is to provide a plant optimum operation control system capable of minimizing the operation cost while keeping the operation of the plant stable.
 上記目的達成のため、本発明では、
 自家用発電プラントの運転コストを最小化する最適運転点を計算する最適運転点計算手段と、
 前記最適運転点計算手段の計算により求めた前記最適運転点に応じて最適化モデルに基きプラントを自動制御する自動制御手段と、
 入力に応じて前記自動制御手段による前記自家用発電プラントの自動制御運転を開始する自動制御投入手段と、
 前記自動制御投入手段が自動制御運転を行うに際し、前記最適化モデルにおける前記自家用発電プラントの最適化対象の変数を選択する最適化変数選択手段と
を備えたことを特徴とするプラント最適運転制御システム、
 を提供する。
In order to achieve the above object, in the present invention,
An optimal operating point calculation means for calculating an optimal operating point that minimizes the operating cost of the private power plant;
Automatic control means for automatically controlling the plant based on an optimization model according to the optimum operating point obtained by calculation of the optimum operating point calculating means;
Automatic control input means for starting automatic control operation of the private power plant by the automatic control means according to an input;
A plant optimum operation control system comprising optimization variable selection means for selecting a variable to be optimized for the private power plant in the optimization model when the automatic control input means performs automatic control operation. ,
I will provide a.
本発明の実施例1に係るプラント最適運転制御システムの構成を示すブロック線図。The block diagram which shows the structure of the plant optimal operation control system which concerns on Example 1 of this invention. 本発明の実施例1に係るプラント最適運転制御システムにおける自動制御投入手段の構成を示すブロック線図。The block diagram which shows the structure of the automatic control injection | throwing-in means in the plant optimal operation control system which concerns on Example 1 of this invention. 本発明の実施例1に係るプラント最適運転制御システムの処理手順を示すフローチャート。The flowchart which shows the process sequence of the plant optimal operation control system which concerns on Example 1 of this invention. 本発明の実施例1に係るプラント最適運転制御システムにおける自動制御投入手段の処理手順の一例を示すフローチャート。The flowchart which shows an example of the process sequence of the automatic control injection | throwing-in means in the plant optimal operation control system which concerns on Example 1 of this invention. 本発明の実施例2に係るプラント最適運転制御システムの構成を示すブロック線図。The block diagram which shows the structure of the plant optimal operation control system which concerns on Example 2 of this invention. 本発明の実施例2に係るプラント最適運転制御システムの処理手順を示すフローチャート。The flowchart which shows the process sequence of the plant optimal operation control system which concerns on Example 2 of this invention. 本発明の実施例2に係るプラント最適運転制御システムの目標運転点作成方法を説明する図。The figure explaining the target operating point creation method of the plant optimal operation control system concerning Example 2 of the present invention. 本発明の実施例3に係るプラント最適運転制御システムの構成を示すブロック線図。The block diagram which shows the structure of the plant optimal operation control system which concerns on Example 3 of this invention. 本発明の実施例3に係るプラント最適運転制御システムの処理手順を示すフローチャート。The flowchart which shows the process sequence of the plant optimal operation control system which concerns on Example 3 of this invention. 従来のプラント最適運転制御システムの一例を示す図。The figure which shows an example of the conventional plant optimal operation control system.
符号の説明Explanation of symbols
 2… データ入力部、3… 最適運転点計算部、4… プラントモデル記憶部、
5… 自動制御投入手段、6… 最適化変数選択部、7… 運転点切り替え部、
8… 運転点設定部、9… 自動制御装置、10… 最適運転点表示部、
11… 自動制御除外手段、20… 自家用発電プラント、
30,40,100… プラント最適運転制御システム。
2 ... Data input unit, 3 ... Optimal operating point calculation unit, 4 ... Plant model storage unit,
5 ... Automatic control input means, 6 ... Optimization variable selection unit, 7 ... Operating point switching unit,
8 ... Operating point setting unit, 9 ... Automatic control device, 10 ... Optimal operating point display unit,
11 ... Automatic control exclusion means, 20 ... Private power plant,
30, 40, 100 ... Plant optimum operation control system.
 以下、添付図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1に基いて、図2ないし図4を参照しつつ本発明の実施例1を説明する。 Based on FIG. 1, Embodiment 1 of the present invention will be described with reference to FIGS.
 (構成)
 図1は、本発明の実施例1の構成を示すブロック線図である。この実施例1としてのプラント最適運転制御システム100は、データ入力部2、最適運転点計算部3、プラントモデル記憶部4、自動制御投入手段5、最適化変数選択部6、運転点切り替え部7、運転点設定部8、自動制御装置9、最適運転点表示部10、および自動制御除外手段11により構成されている。
(Constitution)
FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention. The plant optimum operation control system 100 as Example 1 includes a data input unit 2, an optimum operation point calculation unit 3, a plant model storage unit 4, an automatic control input unit 5, an optimization variable selection unit 6, and an operation point switching unit 7. The operation point setting unit 8, the automatic control device 9, the optimum operation point display unit 10, and the automatic control exclusion unit 11 are configured.
 データ入力部2は、プラント20の電力負荷や蒸気負荷、ボイラーの燃料流量、蒸気出力や、タービン発電機の主蒸気量、換気量、発電量などの状態量を入力するものであり、入力された状態量は最適運転点計算部3へ送られる。プラントモデル記憶部4は、プラント20の最適化モデルおよびそのパラメータを記憶するものであり、これらのモデルは最適運転点計算部3へ送られる。プラント20の最適化モデルについては後述する。 The data input unit 2 is for inputting the state load such as the power load and steam load of the plant 20, the fuel flow rate of the boiler, the steam output, the main steam amount of the turbine generator, the ventilation amount, and the power generation amount. The state quantity is sent to the optimum operating point calculation unit 3. The plant model storage unit 4 stores an optimization model of the plant 20 and its parameters, and these models are sent to the optimum operating point calculation unit 3. The optimization model of the plant 20 will be described later.
 自動制御投入手段5は、最適運転点計算部3で計算された運転点に基づいて自動制御を行うかどうかを選択するためのものであり、自動制御が選択されたかどうかの信号は、最適化変数選択手段6および運転点切り替え部7へ送られる。 The automatic control input means 5 is for selecting whether or not to perform automatic control based on the operating point calculated by the optimal operating point calculation unit 3, and the signal indicating whether or not automatic control is selected is optimized. It is sent to the variable selection means 6 and the operating point switching unit 7.
 図2は、自動制御投入手段5の構成を示しており、自動制御投入手段5は、入力部50と判定部51とにより構成されている。入力部50は、自動制御投入の指示を入力するものであり、判定部51は、自動制御投入の可否を判定するものである。 FIG. 2 shows a configuration of the automatic control input means 5, and the automatic control input means 5 includes an input unit 50 and a determination unit 51. The input unit 50 inputs an instruction for automatic control input, and the determination unit 51 determines whether automatic control input is possible.
 ここで再び図1に戻り、最適化変数選択手段6が、自動制御投入手段5によって自動制御に投入されるとする。これにより、最適化する変数を予め定められた規則にしたがって選択し、選択された最適化変数は、最適運転点計算部3へ送られる。 Here, let us return to FIG. 1 again, and it is assumed that the optimization variable selection means 6 is input to automatic control by the automatic control input means 5. Thereby, a variable to be optimized is selected according to a predetermined rule, and the selected optimized variable is sent to the optimum operating point calculation unit 3.
 最適運転点計算部3は、データ入力部2から送られるプラントの状態量、プラントモデル記憶部4から送られる最適化モデル、および最適化変数選択部6から送られる最適化変数に基づき、数理計画法などの最適化手法を用いて、プラント20の運転コストが最小となる運転点を計算し、計算された最適運転点は、運転点切り替え部7へ送られるとともに、最適運転点表示部10によって画面などに表示される。 The optimum operating point calculation unit 3 is based on the plant state quantity sent from the data input unit 2, the optimization model sent from the plant model storage unit 4, and the optimization variable sent from the optimization variable selection unit 6. The operating point at which the operating cost of the plant 20 is minimized is calculated using an optimization method such as the method, and the calculated optimal operating point is sent to the operating point switching unit 7 and is also displayed by the optimal operating point display unit 10. It is displayed on the screen.
 運転点設定部8は、プラント20の目標運転点を手動で設定するものであり、設定された運転点は運転点切り替え部7へ送られる。運転点切り替え部7は、自動制御投入手段5によって自動制御への投入が行われると、自動制御装置9へ送る運転点を運転点設定部8で設定された運転点から最適運転点計算部3で計算された最適運転点へ切り替えることにより、最適運転点での自動制御への切り替えが行われる。 The operating point setting unit 8 manually sets the target operating point of the plant 20, and the set operating point is sent to the operating point switching unit 7. When the automatic control input means 5 performs automatic control input, the operating point switching unit 7 changes the operating point to be sent to the automatic control device 9 from the operating point set by the operating point setting unit 8 to the optimum operating point calculation unit 3. By switching to the optimum operating point calculated in step 1, switching to automatic control at the optimum operating point is performed.
 自動制御除外手段11は、最適運転点計算部3で計算された運転点に基づいた自動制御を解除するためのものであり、自動制御解除信号は、運転点切り替え部7へ送られる。 The automatic control exclusion means 11 is for releasing the automatic control based on the operation point calculated by the optimum operation point calculation unit 3, and the automatic control release signal is sent to the operation point switching unit 7.
 次に、最適運転点計算部3において計算される最適化モデルについて説明する。 Next, the optimization model calculated in the optimum operating point calculation unit 3 will be described.
 自家用発電プラント20は、ボイラー21,22、タービン23,24、発電機25,26、およびこれらを接続する蒸気配管や電気母線などをそなえ、工場内へ、電力負荷27、中圧蒸気負荷28および低圧蒸気負荷29を供給している。 The private power plant 20 includes boilers 21 and 22, turbines 23 and 24, generators 25 and 26, steam pipes and electric buses that connect them, and an electric load 27, an intermediate-pressure steam load 28, and A low-pressure steam load 29 is supplied.
 ボイラーおよびタービン発電機の入出力特性と、電力および蒸気の需給バランスを制約条件とし、ボイラーの燃料コストを最小化するようなボイラーおよびタービン発電機の運転点は、次式のような最適化モデルを解くことによって計算することができる。
 目的関数:C1*F1 + C2*F2 (燃料コスト)               (1)
 制約条件:
    P1 + P2 = PL    (電力需給バランス)            (2)
    SH1 + SH2 = S1 + S2(高圧蒸気バランス)            (3)
    SM1 + SM2 = SML  (中圧蒸気需給バランス)          (4)
    SL1 + SL2 = SLL  (低圧蒸気需給バランス)          (5)
    S1 = f1(F1)    (ボイラー21の入出力特性)        (6)
    S2 = f2(F2)    (ボイラー22の入出力特性)        (7)
    SH1 = g1(P1,SM1,SL1)(タービン23・発電機25の入出力特性) (8)
    SH2 = g2(P2,SM2,SL2)(タービン23・発電機25の入出力特性) (9)
    (各変数の上下限制約)                   (10)
 ここで、
 (最適化変数)
    F1, F2:ボイラー21,22の燃料流量
    S1, S2:ボイラー21,22の蒸気圧力
    SH1, SH2:タービン23,24の主蒸気流量
    SM1, SM2:タービン23,24の中圧蒸気の抽気流量
    SL1, SL2:タービン23,24の低圧蒸気の抽気流量
    P1, P2:発電機25,26の発電機出力
 (パラメータ)
    C1, C2:ボイラー21,22の燃料コスト
    f1, f2:ボイラーの入出力特性関数
    g1, g2:タービン発電機の入出力特性関数
    PL, SML, SLL:電力、中圧蒸気、低圧蒸気の各負荷
である。
The operating point of the boiler and turbine generator that minimizes the fuel cost of the boiler, with the input / output characteristics of the boiler and the turbine generator and the supply and demand balance of electric power and steam as constraints, is an optimization model as follows: Can be calculated by solving
Objective function: C1 * F1 + C2 * F2 (Fuel cost) (1)
Restrictions:
P1 + P2 = PL (Power supply / demand balance) (2)
SH1 + SH2 = S1 + S2 (high pressure steam balance) (3)
SM1 + SM2 = SML (Medium pressure steam supply-demand balance) (4)
SL1 + SL2 = SLL (Low-pressure steam supply / demand balance) (5)
S1 = f1 (F1) (Input / output characteristics of boiler 21) (6)
S2 = f2 (F2) (Input / output characteristics of boiler 22) (7)
SH1 = g1 (P1, SM1, SL1) (Input / output characteristics of turbine 23 and generator 25) (8)
SH2 = g2 (P2, SM2, SL2) (I / O characteristics of turbine 23 / generator 25) (9)
(Upper and lower limits of each variable) (10)
here,
(Optimization variable)
F1, F2: Fuel flow rate of boilers 21, 22 S1, S2: Steam pressure of boilers 21, 22 SH1, SH2: Main steam flow rate of turbines 23, 24 SM1, SM2: Extraction flow rate of medium pressure steam of turbines 23, 24 SL1 , SL2: Extraction flow rate of low-pressure steam of turbines 23, 24 P1, P2: Generator output of generators 25, 26 (parameters)
C1, C2: Fuel cost of boilers 21 and 22 f1, f2: Boiler input / output characteristic functions g1, g2: Turbine generator input / output characteristic functions PL, SML, SLL: Loads of electric power, medium pressure steam, and low pressure steam It is.
 これらのパラメータのうち、電力負荷PL、中圧蒸気負荷SML、低圧蒸気負荷SLLは、データ入力部2から、他のパラメータは、プラントモデル記憶部4から送られてくる。 Among these parameters, the power load PL, the medium pressure steam load SML, and the low pressure steam load SLL are sent from the data input unit 2, and the other parameters are sent from the plant model storage unit 4.
 最適化手法としては、各機器の入出力特性関数を線形モデルで近似することにより、線形計画法が適用できるほか、非線形モデルに対しても非線形計画法を適用することができる。 As an optimization method, linear programming can be applied by approximating the input / output characteristic function of each device with a linear model, and nonlinear programming can also be applied to a nonlinear model.
 (作用)
 図3は、本発明の実施例1による処理手順の一例を示すフローチャートである。この図3に示すように、プラント最適運転制御システム100は、まず自動制御投入手段5による自動制御投入がなされているかどうかを判断する(S201)。
(Function)
FIG. 3 is a flowchart illustrating an example of a processing procedure according to the first embodiment of the present invention. As shown in FIG. 3, the plant optimum operation control system 100 first determines whether or not automatic control input by the automatic control input means 5 has been performed (S201).
 自動制御が投入されている場合には、最適化変数選択部6によって、予め定められた手順により、最適化モデルの上記式(1)~(10)における最適化変数を選択する(S202)。すなわち、自動制御が投入された直後は、最適化変数としていずれの変数も選択せず、各変数の状態量をそのまま制約条件とする。このとき、各変数の上下限制約式(10)を無視してもよい。 When automatic control is turned on, the optimization variable selection unit 6 selects an optimization variable in the above equations (1) to (10) of the optimization model according to a predetermined procedure (S202). That is, immediately after automatic control is turned on, no variable is selected as an optimization variable, and the state quantity of each variable is used as a constraint condition as it is. At this time, the upper and lower limit constraint equation (10) of each variable may be ignored.
 そして、最適化変数選択部6は、制御周期ごとに予め定められた順序によって最適化変数を選択し、最終的に自動制御が投入される直前に選択されていた最適化変数をすべて選択する。このとき、最適化変数の選択順序として、現在の最適化変数の状態量で、自動制御投入前の最適運転点との差が小さいものから順に選択するようにしてもよい。あるいは、最適化変数選択部6は、オペレータによって設定されることにより、最適化変数を選択するようにしてもよい。 Then, the optimization variable selection unit 6 selects the optimization variables in a predetermined order for each control cycle, and finally selects all the optimization variables selected immediately before the automatic control is input. At this time, as the selection order of the optimization variables, the current optimization variable state quantities may be selected in ascending order of difference from the optimum operating point before the automatic control is turned on. Alternatively, the optimization variable selection unit 6 may select an optimization variable by being set by an operator.
 次に、自動制御が投入されている場合には、運転点切り替え部7により、自動制御装置9へ送られる運転点として、最適運転点計算部3によって計算された最適運転点を使うように切り替える(S203)。 Next, when automatic control is turned on, the operation point switching unit 7 switches the operation point to be sent to the automatic control device 9 to use the optimum operation point calculated by the optimum operation point calculation unit 3. (S203).
 他方、自動制御が投入されていない場合には、これらのステップS202,S203は実行されない。そして、プラント最適運転制御システム100は、データ入力部2によって、自動制御装置9を介してプラントの状態量を入力し、また、プラントモデル記憶部4からデータを読み込むことによって、最適運転点計算部3で処理するデータを用意する(S204)。 On the other hand, when automatic control is not input, these steps S202 and S203 are not executed. Then, the plant optimum operation control system 100 inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the plant model storage unit 4 to obtain the optimum operation point calculation unit. Data to be processed in step 3 is prepared (S204).
 このデータに基き、最適運転点計算部3は、上記式(1)~(10)のモデルに対して最適化計算を行う(S205)。計算された最適運転点は、最適運転点表示部20によって、画面などに表示される(S206)。 Based on this data, the optimum operating point calculation unit 3 performs optimization calculation on the models of the above formulas (1) to (10) (S205). The calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 20 (S206).
 最後に、プラント最適運転制御システム100は、自動制御装置9へ運転点を出力する(S207)。ここで、自動制御が投入されている場合には、運転点切り替え部7によって、最適運転点計算部3により計算された最適運転点が、自動制御装置9へ出力され、そうでない場合には、運転点設定部8によって設定された運転点が出力されることになる。 Finally, the plant optimum operation control system 100 outputs an operation point to the automatic control device 9 (S207). Here, when the automatic control is turned on, the optimum operating point calculated by the optimum operating point calculation unit 3 is output to the automatic control device 9 by the operating point switching unit 7, and otherwise, The operating point set by the operating point setting unit 8 is output.
 図4は、プラント最適運転制御システム100の自動制御投入手段5における処理手順を示すフローチャートである。この図4に示すように、自動制御投入手段5は、まず入力部50によって自動制御実施信号が入力されたかどうかを判定する(S401)。 FIG. 4 is a flowchart showing a processing procedure in the automatic control input means 5 of the plant optimum operation control system 100. As shown in FIG. 4, the automatic control input means 5 first determines whether or not an automatic control execution signal is input by the input unit 50 (S401).
 自動制御実施信号が入力されると、自動制御投入手段5の判定部51は、予め定められた条件により、自動制御投入の可否を判定する(S402)。自動制御に投入しない条件としては、例えば、「プラントからアラーム信号あり」、「状態量が異常値」、「最適化変数の上下限制約逸脱」、などがある。そして、自動制御投入可能であれば、自動制御投入手段5は、自動制御実行信号を出力する(S403)。 When the automatic control execution signal is input, the determination unit 51 of the automatic control input means 5 determines whether automatic control input is possible according to a predetermined condition (S402). Examples of conditions that do not apply to automatic control include “there is an alarm signal from the plant”, “the state quantity is an abnormal value”, and “the deviation from the upper and lower limit constraints of the optimization variable”. If automatic control input is possible, the automatic control input means 5 outputs an automatic control execution signal (S403).
 また、自動制御除外手段11は、予め定められた条件により、自動制御を解除するか否かを判定し、自動制御を解除すると判定した場合は、自動制御解除信号を運転点切り替え部7へ出力し、自動制御投入が継続しないようにする。自動制御に投入しない条件としては、自動制御投入判定と同様の条件が考えられる。 Further, the automatic control exclusion means 11 determines whether or not to cancel the automatic control according to a predetermined condition, and outputs an automatic control cancellation signal to the operating point switching unit 7 when it is determined to cancel the automatic control. And prevent automatic control input from continuing. As conditions for not entering automatic control, the same conditions as the automatic control entry determination can be considered.
 (効果)
 この実施例1によれば、プラントの最適運転点が現在の運転点と大きく異なっている場合でも、最適化すべき変数を少しずつ加えて最適化することができるので、プラントの安定な運転を損なうことなく、運転コストを最小化することができる。
(effect)
According to the first embodiment, even when the optimum operating point of the plant is greatly different from the current operating point, the optimization can be performed by adding the variables to be optimized little by little, so that the stable operation of the plant is impaired. Without this, the operating cost can be minimized.
 また、自動制御投入手段5および自動制御除外手段11により、プラントが安定に運転できているときだけ最適運転点での自動運転を実行するので、プラントの運転安定性を損なう可能性を小さくできる。 Further, since the automatic operation at the optimum operating point is executed only when the plant is stably operated by the automatic control input means 5 and the automatic control exclusion means 11, the possibility of impairing the operation stability of the plant can be reduced.
 図5ないし図7を参照して本発明の実施例2を説明する。なお、実施例1と同一の構成要素には同一の符号を付し、重複する説明は省略する。 Embodiment 2 of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the component same as Example 1, and the overlapping description is abbreviate | omitted.
 (構成)
 図5は、本発明の実施例2のプラント最適運転制御システムの構成を示すブロック線図である。この実施例2のプラント最適運転制御システム30は、実施例1のプラント最適運転制御システム1から最適化変数選択部6を取り除き、運転点切り替え部7の代わりに目標運転点作成部31を付加したものである。
(Constitution)
FIG. 5 is a block diagram showing the configuration of the plant optimum operation control system according to the second embodiment of the present invention. In the plant optimum operation control system 30 of the second embodiment, the optimization variable selection unit 6 is removed from the plant optimum operation control system 1 of the first embodiment, and a target operation point creation unit 31 is added instead of the operation point switching unit 7. Is.
 目標運転点作成部31は、自動制御投入手段5による自動制御への投入が行われると、運転点設定部8で設定された運転点と、最適運転点計算部3で計算された最適運転点とから、これらを補間した目標運転点を作成し、作成された目標運転点を自動制御装置9に送る。 When the automatic control input means 5 performs the automatic control, the target operating point creation unit 31 and the optimal operating point calculated by the optimal operating point calculator 3 and the optimal operating point calculated by the optimal operating point calculator 3 are displayed. Then, a target operating point obtained by interpolating these is created, and the created target operating point is sent to the automatic control device 9.
 (作用)
 図6は、実施例2による処理手順の一例を示すフローチャートである。この図6に示すように、プラント最適運転制御システム30は、まずデータ入力部2によって、自動制御装置9を介してプラントの状態量を入力し、またプラントモデル記憶部4からデータを読み込むことによって、最適運転点計算部3で処理するデータを用意する(S401)。
(Function)
FIG. 6 is a flowchart illustrating an example of a processing procedure according to the second embodiment. As shown in FIG. 6, the plant optimum operation control system 30 first inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the plant model storage unit 4. The data to be processed by the optimum operating point calculation unit 3 is prepared (S401).
 そして、プラント最適運転制御システム30は、最適運転点計算部3によって、上記式(1)~(9)のモデルに対して最適化計算を行う(S402)。計算された最適運転点は、最適運転点表示部10によって、画面などに表示される(S403)。 The plant optimum operation control system 30 performs an optimization calculation on the models of the above formulas (1) to (9) by the optimum operation point calculation unit 3 (S402). The calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 10 (S403).
 次に、プラント最適運転制御システム30は、自動制御が投入されているかどうかを判断する(S404)。 Next, the plant optimum operation control system 30 determines whether or not automatic control is turned on (S404).
 自動制御投入手段5によって自動制御が投入されている場合には、目標運転点作成部31により、自動制御装置9へ送られる目標運転点として、最適運転点計算部3によって計算された最適運転点と現在の運転点とから目標運転点を作成する(S405)。 When automatic control is turned on by the automatic control turning-on means 5, the optimum operating point calculated by the optimum operating point calculation unit 3 as a target operating point sent to the automatic control device 9 by the target operating point creation unit 31. A target operating point is created from the current operating point (S405).
 図7は、最適運転点および現在の運転点から目標運転点を作成する方法を示す図である。図7に示すように、目標運転点を、現在の運転点から、例えば5制御周期後に最適運転点へと移動するものとすると、目標運転点は、制御周期ごとに、
    Xt+1 = Xt +ΔX,  ΔX = (Xo - Xt)/5             (11)
    Xo:最適運転点、Xt:現在の運転点、Xt+1:目標運転点
として計算される。
FIG. 7 is a diagram illustrating a method of creating a target operating point from the optimal operating point and the current operating point. As shown in FIG. 7, if the target operating point is moved from the current operating point to the optimal operating point after 5 control cycles, for example, the target operating point is
Xt + 1 = Xt + ΔX, ΔX = (Xo-Xt) / 5 (11)
Xo: Calculated as the optimal operating point, Xt: Current operating point, Xt + 1: Target operating point.
 自動制御が投入されていない場合には、運転点設定部8によって設定された運転点が、目標運転点として設定される。 If the automatic control is not turned on, the operating point set by the operating point setting unit 8 is set as the target operating point.
 最後に、プラント最適運転制御システムは、自動制御装置9へ運転点を出力する(S406)。ここで、自動制御が投入されている場合には、上記式(11)で作成された運転点が自動制御装置9へ出力され、自動制御が投入されていない場合には、運転点設定部8によって設定された運転点が出力されることになる。 Finally, the plant optimum operation control system outputs an operation point to the automatic control device 9 (S406). Here, when the automatic control is turned on, the operating point created by the above equation (11) is output to the automatic control device 9, and when the automatic control is not turned on, the operating point setting unit 8 The operating point set by is output.
 (効果)
 この実施例2によれば、プラントの最適運転点が現在の運転点と大きく異なっている場合でも、自動制御装置に設定される目標運転点を、現在の運転点から最適運転点まで、少しずつ変更することができるので、プラントの安定な運転を損なうことなく、運転コストを最小化することができる。
(effect)
According to the second embodiment, even when the optimal operating point of the plant is greatly different from the current operating point, the target operating point set in the automatic control device is gradually changed from the current operating point to the optimal operating point. Since the change can be made, the operation cost can be minimized without impairing the stable operation of the plant.
 図8および図9を参照して本発明の実施例3を説明する。なお、実施例1、実施例2と同一の構成要素には同一の符号を付し、重複する説明は省略する。 Embodiment 3 of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the component same as Example 1 and Example 2, and the overlapping description is abbreviate | omitted.
 (構成)
 図8は、本発明の実施例3の構成を示すブロック線図である。この実施例3におけるプラント最適運転制御システム40は、データ入力部2、最適運転点計算部3、プラントモデル記憶部4、最適運転点表示部10、需要予測部41、需要予測モデル記憶部42、最適運転点判定部43およびアラーム発報部44により構成されている。
(Constitution)
FIG. 8 is a block diagram showing the configuration of the third embodiment of the present invention. The plant optimum operation control system 40 according to the third embodiment includes a data input unit 2, an optimum operation point calculation unit 3, a plant model storage unit 4, an optimum operation point display unit 10, a demand prediction unit 41, a demand prediction model storage unit 42, An optimum operating point determination unit 43 and an alarm notification unit 44 are included.
 需要予測部41は、需要予測モデル記憶部42の需要予測モデルに基づき、データ入力部2から入力された電力負荷および蒸気負荷データを用いて、将来の電力需要、蒸気需要を予測するものであり、予測された需要データは、最適運転点計算部3へ出力される。 The demand prediction unit 41 predicts future power demand and steam demand using the power load and steam load data input from the data input unit 2 based on the demand prediction model of the demand prediction model storage unit 42. The predicted demand data is output to the optimum operating point calculation unit 3.
 需要予測モデル記憶部42に記憶される需要予測モデルには、重回帰モデルや、ニューラルネットワークモデルなどがあるが、他の予測モデルを適用することも可能である。 The demand prediction model stored in the demand prediction model storage unit 42 includes a multiple regression model and a neural network model, but other prediction models can also be applied.
 最適運転点計算部3は、需要予測部41から出力される電力需要予測値および蒸気需要予測値と、プラントモデル記憶部4から出力される最適化モデルに基づき、数理計画法などの最適化手法を用いて、プラントの運転コストが最小となる運転点を計算し、計算された最適運転点は、最適運転点表示部10によって画面などに表示される。 The optimum operating point calculation unit 3 is based on the power demand prediction value and the steam demand prediction value output from the demand prediction unit 41 and the optimization model output from the plant model storage unit 4 and is an optimization method such as mathematical programming. Is used to calculate the operating point at which the operating cost of the plant is minimized, and the calculated optimal operating point is displayed on the screen by the optimal operating point display unit 10.
 最適運転点判定部43は、最適運転点計算部3で計算された最適運転点が、定められた条件を満たしている場合、例えば、最適解が存在しない、あるいは最適化変数が上下限値に達しているかどうかなどを判定し、判定結果をアラーム発報部44へ出力する。 When the optimum operation point calculated by the optimum operation point calculation unit 3 satisfies a predetermined condition, the optimum operation point determination unit 43, for example, has no optimum solution or the optimization variable is set to the upper and lower limit values. It is determined whether or not it has been reached, and the determination result is output to the alarm notification unit 44.
 アラーム発報部44は、最適運転点判定部43で条件を満たしていると判定された場合、アラームを発報する。 The alarm notification unit 44 issues an alarm when the optimum operating point determination unit 43 determines that the condition is satisfied.
 (作用)
 図9は、実施例3による処理手順の一例を示すフローチャートである。この図9に示すように、プラント最適運転制御システム40は、まずデータ入力部2によって、自動制御装置9を介してプラントの状態量を入力し、また需要予想モデル記憶部42からデータを読み込むことによって、需要予測部41で処理するデータを用意する(S901)。
(Function)
FIG. 9 is a flowchart illustrating an example of a processing procedure according to the third embodiment. As shown in FIG. 9, the plant optimum operation control system 40 first inputs the state quantity of the plant via the automatic control device 9 by the data input unit 2 and reads the data from the demand prediction model storage unit 42. Thus, data to be processed by the demand prediction unit 41 is prepared (S901).
 そして、需要予測部41は、重回帰モデル、あるいはニューラルネットワークモデルを用いて将来の需要を予測する(S902)。 Then, the demand prediction unit 41 predicts future demand using a multiple regression model or a neural network model (S902).
 次に、プラント最適運転制御システム40は、最適運転点計算部3によって、需要予測部41で予測された需要と、最適化モデル記憶部4に記憶されている最適化モデルとを用いて、プラントの将来の最適運転点を計算する(S903)。計算された最適運転点は、最適運転点表示部10によって画面などに表示される(S904)。 Next, the plant optimum operation control system 40 uses the demand predicted by the demand prediction unit 41 by the optimum operation point calculation unit 3 and the optimization model stored in the optimization model storage unit 4. The future optimum operating point is calculated (S903). The calculated optimum operating point is displayed on the screen or the like by the optimum operating point display unit 10 (S904).
 また、プラント最適運転制御システム40は、最適運転点判定部43によって、最適運転点計算部3によって計算された最適運転点が、定められた条件を満たしているかどうかを判定し(S905)、満たしている場合は、アラーム発報部44によって、アラームが発報される(S906)。 The plant optimum operation control system 40 determines whether or not the optimum operation point calculated by the optimum operation point calculation unit 3 satisfies a predetermined condition by the optimum operation point determination unit 43 (S905). If so, an alarm is issued by the alarm issuing unit 44 (S906).
 (効果)
 この実施例3によれば、プラントの将来の最適運転点を、プラントの需要予測に基づいて予測することができ、予測された最適運転点が、プラントの安定な運転範囲から逸脱しているかどうかを予測し、運転員に知らせることができる。これにより、プラントの運転コストを最小化するために、安定運転を維持できるかどうかを事前に予測することができる。
(effect)
According to the third embodiment, the future optimum operating point of the plant can be predicted based on the demand prediction of the plant, and whether or not the predicted optimum operating point deviates from the stable operating range of the plant. Can be predicted and notified to the operator. Thereby, in order to minimize the operation cost of the plant, it is possible to predict in advance whether or not stable operation can be maintained.
 本発明は上述のように、最適化モデルにおける最適化対象の変数を選択するようにしたため、プラントの最適運転点が現在の運転点と大きく異なっている場合でも、最適化すべき変数を少しずつ加えて最適化し、プラントの安定な運転を損なうことなく、運転コストを最小化することができる。 Since the present invention selects the variable to be optimized in the optimization model as described above, even if the optimal operating point of the plant is greatly different from the current operating point, the variable to be optimized is added little by little. Operating costs can be minimized without compromising the stable operation of the plant.

Claims (10)

  1.  自家用発電プラントの運転コストを最小化する最適運転点を計算する最適運転点計算手段と、
     前記最適運転点計算手段の計算により求めた前記最適運転点に応じて最適化モデルに基きプラントを自動制御する自動制御手段と、
     入力に応じて前記自動制御手段による前記自家用発電プラントの自動制御運転を開始する自動制御投入手段と、
     前記自動制御投入手段が自動制御運転を行うに際し、前記最適化モデルにおける前記自家用発電プラントの最適化対象の変数を選択する最適化変数選択手段と
     を備えたことを特徴とするプラント最適運転制御システム。
    An optimal operating point calculation means for calculating an optimal operating point that minimizes the operating cost of the private power plant;
    Automatic control means for automatically controlling the plant based on an optimization model according to the optimum operating point obtained by calculation of the optimum operating point calculating means;
    Automatic control input means for starting automatic control operation of the private power plant by the automatic control means according to an input;
    Optimum variable selection means for selecting a variable to be optimized for the private power plant in the optimization model when the automatic control input means performs automatic control operation. .
  2.  前記最適運転点計算手段は、
     前記自動制御投入手段により自動制御が選択されると、最適化対象の変数が選択されていない状態として最適運転点を計算することを特徴とする請求項1記載のプラント最適運転制御システム。
    The optimum operating point calculation means includes
    2. The plant optimum operation control system according to claim 1, wherein when automatic control is selected by the automatic control input means, an optimum operation point is calculated in a state where a variable to be optimized is not selected.
  3.  前記最適運転点計算手段は、最適化変数の制約条件を無視することを特徴とする請求項1記載のプラント最適運転制御システム。 The plant optimum operation control system according to claim 1, wherein the optimum operation point calculation means ignores the constraint condition of the optimization variable.
  4.  前記自動制御投入手段により自動制御が選択されると、最適化対象の変数が選択されていない状態として最適運転点を計算した後、前記最適化変数選択手段は、予め選択されていた最適化変数を1つずつあるいは複数個ずつ選択することを特徴とする請求項1記載のプラント最適運転制御システム。 When automatic control is selected by the automatic control input unit, after calculating the optimum operating point in a state in which the optimization target variable is not selected, the optimization variable selection unit selects the optimization variable selected in advance. The plant optimum operation control system according to claim 1, wherein one or more are selected.
  5.  前記最適化変数選択手段は、予め選択されていた最適化変数のうち、変化量の小さいものから順に1つずつあるいは複数個ずつ選択することを特徴とする請求項4記載のプラント最適運転制御システム。 5. The plant optimum operation control system according to claim 4, wherein the optimization variable selection unit selects one or a plurality of optimization variables selected in advance in order from the smallest change amount. .
  6.  前記最適運転点計算手段は、前記自動制御投入手段により自動制御が選択されると、予め選択されていたすべての最適化変数を、現在値から一定の割合で最適運転点まで変化させることを特徴とする請求項1記載のプラント最適運転制御システム。 The optimum operating point calculation means, when automatic control is selected by the automatic control input means, changes all the previously selected optimization variables from the current value to the optimum operating point at a certain rate. The plant optimum operation control system according to claim 1.
  7.  前記自動制御投入手段は、予め定められた条件によって自動制御投入の可否を判定する自動制御投入判定手段を備えたことを特徴とする請求項1記載のプラント最適運転制御システム。 2. The plant optimum operation control system according to claim 1, wherein the automatic control input means comprises automatic control input determination means for determining whether automatic control input is possible according to a predetermined condition.
  8.  予め定められた条件によって自動制御を解除する自動制御除外手段を備えたことを特徴とする請求項1記載のプラント最適運転制御システム。 2. The plant optimum operation control system according to claim 1, further comprising automatic control exclusion means for canceling automatic control according to a predetermined condition.
  9.  自家用発電プラントの将来の需要を予測する需要予測手段と、
     予測された需要に対して最適運転点を計算する最適運転点計算手段と、
     計算された最適運転点が予め定められた条件を満たしている場合に警報を出す、予報手段と
     を備えたことを特徴とするプラント最適運転制御システム。
    Demand forecasting means for forecasting future demand for private power plants,
    An optimal operating point calculation means for calculating an optimal operating point for the predicted demand;
    A plant optimum operation control system comprising: a forecasting unit that issues a warning when the calculated optimum operation point satisfies a predetermined condition.
  10.  自家用発電プラントの運転コストを最小化する最適化モデルに基き自家用発電プラントを自動運転するプラント最適運転制御方法において、
     自家用発電プラントの運転コストを最小化する最適運転点を計算し、
     計算により求めた前記最適運転点に基づいて前記最適化モデルに基きプラントを自動制御するとき、前記最適化モデルにおける前記自家用発電プラントの最適化対象の変数を選択する
     ことを特徴とするプラント最適運転制御方法。
    In a plant optimum operation control method for automatically operating a private power plant based on an optimization model that minimizes the operation cost of the private power plant,
    Calculate the optimal operating point that minimizes the operating costs of private power plants,
    A plant optimum operation characterized by selecting a variable to be optimized for the private power plant in the optimization model when automatically controlling the plant based on the optimization model based on the optimum operation point obtained by calculation. Control method.
PCT/JP2009/053285 2009-02-24 2009-02-24 Plant optimum-operation control system WO2010097891A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/053285 WO2010097891A1 (en) 2009-02-24 2009-02-24 Plant optimum-operation control system
CN200980121700.3A CN102057338B (en) 2009-02-24 2009-02-24 Plant optimum-operation control system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053285 WO2010097891A1 (en) 2009-02-24 2009-02-24 Plant optimum-operation control system

Publications (1)

Publication Number Publication Date
WO2010097891A1 true WO2010097891A1 (en) 2010-09-02

Family

ID=42665117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053285 WO2010097891A1 (en) 2009-02-24 2009-02-24 Plant optimum-operation control system

Country Status (2)

Country Link
CN (1) CN102057338B (en)
WO (1) WO2010097891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110060476A1 (en) * 2009-09-09 2011-03-10 Yutaka Iino Energy management system and energy management method
US10205322B1 (en) 2015-03-09 2019-02-12 Cummins Power Generation Ip, Inc. Economically efficient operation of a power generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298371B (en) * 2011-06-28 2014-06-25 中国能源建设集团广东省电力设计研究院 Distributed combined cooling and power supply system control method
WO2015093262A1 (en) * 2013-12-16 2015-06-25 Jfeスチール株式会社 Energy supply/demand management guidance device and ironworks energy supply/demand management method
JP6199203B2 (en) * 2014-02-28 2017-09-20 アズビル株式会社 Optimization system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249904A (en) * 1988-08-10 1990-02-20 Mitsubishi Heavy Ind Ltd Turbine control device
JPH04302301A (en) * 1991-03-29 1992-10-26 Babcock Hitachi Kk Set signal variable controller
JPH11265201A (en) * 1998-03-17 1999-09-28 Hitachi Ltd Multivariable process control system
JP2000097001A (en) * 1998-09-18 2000-04-04 Mitsubishi Chemicals Corp Optimum driving control method of optimum driving control device for turbine
JP2001182903A (en) * 1999-12-22 2001-07-06 Kawasaki Heavy Ind Ltd Electric power plant and method for distributing its load
JP2002197402A (en) * 2000-10-05 2002-07-12 Ns Solutions Corp Device, system and method for simulation, recording medium and program
JP2002257915A (en) * 2001-02-27 2002-09-11 National Institute Of Advanced Industrial & Technology Magnetic field uniformity coefficient adjusting method and adjusting device, and program
JP2004005250A (en) * 2002-05-31 2004-01-08 Toshiba Corp Process optimization control system
JP2004066119A (en) * 2002-08-07 2004-03-04 Yaskawa Electric Corp Operation support apparatus
JP2004171531A (en) * 2002-10-28 2004-06-17 Toshiba Corp Plant-wide optimum process control apparatus
JP2007504540A (en) * 2003-08-29 2007-03-01 ティティアイ・テクノロジーズ・インコーポレーテッド Method and apparatus for optimizing a steam boiler system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249904A (en) * 1988-08-10 1990-02-20 Mitsubishi Heavy Ind Ltd Turbine control device
JPH04302301A (en) * 1991-03-29 1992-10-26 Babcock Hitachi Kk Set signal variable controller
JPH11265201A (en) * 1998-03-17 1999-09-28 Hitachi Ltd Multivariable process control system
JP2000097001A (en) * 1998-09-18 2000-04-04 Mitsubishi Chemicals Corp Optimum driving control method of optimum driving control device for turbine
JP2001182903A (en) * 1999-12-22 2001-07-06 Kawasaki Heavy Ind Ltd Electric power plant and method for distributing its load
JP2002197402A (en) * 2000-10-05 2002-07-12 Ns Solutions Corp Device, system and method for simulation, recording medium and program
JP2002257915A (en) * 2001-02-27 2002-09-11 National Institute Of Advanced Industrial & Technology Magnetic field uniformity coefficient adjusting method and adjusting device, and program
JP2004005250A (en) * 2002-05-31 2004-01-08 Toshiba Corp Process optimization control system
JP2004066119A (en) * 2002-08-07 2004-03-04 Yaskawa Electric Corp Operation support apparatus
JP2004171531A (en) * 2002-10-28 2004-06-17 Toshiba Corp Plant-wide optimum process control apparatus
JP2007504540A (en) * 2003-08-29 2007-03-01 ティティアイ・テクノロジーズ・インコーポレーテッド Method and apparatus for optimizing a steam boiler system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110060476A1 (en) * 2009-09-09 2011-03-10 Yutaka Iino Energy management system and energy management method
US8612062B2 (en) * 2009-09-09 2013-12-17 Kabushiki Kaisha Toshiba Energy management system and energy management method
US10205322B1 (en) 2015-03-09 2019-02-12 Cummins Power Generation Ip, Inc. Economically efficient operation of a power generator

Also Published As

Publication number Publication date
CN102057338B (en) 2014-10-08
CN102057338A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
EP2737374B1 (en) Integrated linear/non-linear hybrid process controller
US10190766B2 (en) Model-based load demand control
CN106325066B (en) Control parameter optimization system and operation control optimization device provided with same
WO2010097891A1 (en) Plant optimum-operation control system
JP2013109711A (en) Plant model creation device and plant operation support system
EP3263985B1 (en) System and method for drum level control with transient compensation
JP5017019B2 (en) Plant optimum operation control system
EP2875411B1 (en) Systems and methods for configuring analog process alarms in control devices
US10557457B2 (en) Method and system for controlling the active power output of a wind farm
JP2016008725A (en) Equipment operation setting device and equipment operation setting value determination program
EP2867735B1 (en) A method for optimization of control and fault analysis in a thermal power plant
JP2009146145A (en) Plant optimum operating system, optimum operational point calculating method, and optimum operational point calculating program
JP2009225641A (en) Power receiving point power operation controller and power receiving point power operation control method
JP2012155427A (en) Optimal operation system of utility facility
JP4296140B2 (en) Plant optimum operation support system and method, program
JP2017026292A (en) Boiler system
JP2007255198A (en) Optimal operation system, method and program of energy plant
US11591955B2 (en) Method for operating a power plant
KR101675676B1 (en) Controlling method for driving of fuel cell power generation system
CZ290525B6 (en) Method for the diagnosis and prognosis of the operating behavior of a turbine plant and device for making the same
US20100298996A1 (en) Method for operating a power station
KR20180032085A (en) Apparatus and method for calculating supply capability of thermal power plant generator
US20220284108A1 (en) Security assessment apparatus, security assessment method, and non-transitory computer readable medium
JP4944831B2 (en) Self-sustained operation transition method and apparatus
JP2005240655A (en) Operation control device for hydraulic power plant and its method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121700.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09840745

Country of ref document: EP

Kind code of ref document: A1