WO2010097553A2 - Procédé de diagnostic d'une vascularite - Google Patents

Procédé de diagnostic d'une vascularite Download PDF

Info

Publication number
WO2010097553A2
WO2010097553A2 PCT/FR2010/050331 FR2010050331W WO2010097553A2 WO 2010097553 A2 WO2010097553 A2 WO 2010097553A2 FR 2010050331 W FR2010050331 W FR 2010050331W WO 2010097553 A2 WO2010097553 A2 WO 2010097553A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
precursor
antibody
vasculitis
subunit
Prior art date
Application number
PCT/FR2010/050331
Other languages
English (en)
Other versions
WO2010097553A3 (fr
Inventor
Luc Mouthon
Hanadi Dib
Alexis Regent
Original Assignee
Assistance Publique - Hôpitaux De Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assistance Publique - Hôpitaux De Paris filed Critical Assistance Publique - Hôpitaux De Paris
Priority to ES10710087.7T priority Critical patent/ES2436547T3/es
Priority to EP10710087.7A priority patent/EP2401620B1/fr
Priority to US13/203,098 priority patent/US20120088257A1/en
Publication of WO2010097553A2 publication Critical patent/WO2010097553A2/fr
Publication of WO2010097553A3 publication Critical patent/WO2010097553A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/328Vasculitis, i.e. inflammation of blood vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Definitions

  • the invention relates to an in vitro method for detecting vasculitis, or a risk of developing vasculitis, comprising determining the presence and / or amount of endothelial anti-cell (AEC) antibodies (Ac). or vascular smooth muscle cells (VSMCs) in a biological sample from a patient.
  • AEC endothelial anti-cell
  • VSMCs vascular smooth muscle cells
  • Vasculitis is an orphan disease whose prevalence is low, ranging from 24 to 150 per million inhabitants. They represent a group of diseases characterized by the presence of inflammatory lesions on the walls of the vessels. Vasculitis is classified according to the size of the affected vessels and responds to different dominant pathogenic mechanisms: proinflammatory cytokine production and macrophage activation in vasculitis involving large vessels, such as Horton's disease (giant cell arteritis).
  • ANCA neutrophil anti-cytoplasmic Ac
  • Horton's disease is manifested by headaches due to temporal artery involvement, associated with an impairment of the general condition, rhizomelic pseudo-arthritis in one out of two cases, and in the vast majority of cases with Inflammatory syndrome, Wegener's granulomatosis is a granulomatous vasculitis mainly affecting the sinuses of the face, lung and kidney, associated in the systemic forms, in 90% of cases, with anti-proteinase 3 Ab.
  • the microscopic polyangiitis is necrotizing vasculitis which is of interest to small vessels and may cause glomerular pulmonary capillary causing pneumoneural syndrome in addition to systemic manifestations related to vasculitis.
  • Churg and Strauss syndrome is a late-onset, severe-onset asthma associated with eosinophilia and necrotizing vasculitis.
  • ANCA-positive vasculitis is always based on a biopsy, whether it is a skin biopsy, a renal biopsy, a neuromuscular biopsy or other.
  • ANCAs are an important aid in the diagnosis of systemic vasculitis.
  • MPO myeloperoxidase
  • a significant proportion of patients have no ANCA, which makes diagnosis, prognosis, and management difficult.
  • Horton's disease there is no biological marker identified today. In most cases, the diagnosis of Horton's disease is based on a temporal artery biopsy, which is positive in 80% of cases of Horton's disease.
  • AECAs are detected and appear to play a key role in the pathogenesis of vasculitis (Guilpain and Mouthon, Clinic Rev Allerg Imunol, 2008 Oct; 35 (1-2): 59-65).
  • ADCC Ac-dependent cellular cytotoxicity mechanism
  • AECA anti-endothelial cell antibodies
  • VSMCs anti-vascular smooth muscle cell antibodies
  • the invention provides an in vitro method of detecting vasculitis in a subject, or a risk of developing vasculitis, comprising determining the presence and / or amount of at least one AECA. or an anti-VSMC, directed against an antigen selected from the group consisting of Vinculin, FUbp2 (Far upstream element-binding protein 2), Caldesmone, 78kDa precursor protein regulated by glucose (78 kDa glucose-regulated protein precursor ), Heat shock cognate 71 kDa protein, Mitochondrial precursor of Stress-70 protein, Lamine-A / C, heterogeneous nuclear ribonucleoprotein K, Epsilon subunit of T-protein 1, Mitochondrial precursor of protein 60 kDa heat shock, protein primer of disulfide-isomerase A1, protein precursor of disulfide-isomerase A3, theta subunit of protein 1 of complex T, beta-subunit of protein 1 of complex T, precursor mitochondria ATP synthase alpha
  • the beta subunit of protein 1 of the T complex in a biological sample from a patient, the presence of said at least one antibody being indicative of vasculitis or a risk of developing vasculitis.
  • the vasculitis may include Wegener granulomatosis, microscopic polyangiitis, or Churg and Strauss syndrome.
  • Said vasculitis may also be Horton's disease.
  • the presence of said at least one antibody in the biological sample is compared with a control value, the presence of said at least one antibody in an amount greater than the control value being indicative of a vasculitis or a risk of developing vasculitis.
  • Another subject of the invention is an in vitro method for prognosis or monitoring vasculitis, comprising determining the presence and / or the quantity of at least one antibody as defined above, in a sample At different times, the increase in the amount of said at least one antibody over time is indicative of worsening vasculitis.
  • Another subject of the invention is an in vitro method for evaluating the efficacy of a treatment against vasculitis, comprising the determination of the presence and / or amount of at least one antibody as defined above. above, in a biological sample from a patient, at different times before, during or after treatment, decreasing the amount of said at least one antibody over time being indicative of an improvement in vasculitis.
  • the inventors used normal human umbilical vein endothelial cells (HUVEC) as the source of antigens and tested the sera of patients with Horton's disease, or systemic vasculitis associated with antineutrophil cytoplasmic antibodies (ANCA) and healthy subjects.
  • HBVEC normal human umbilical vein endothelial cells
  • ANCA systemic vasculitis associated with antineutrophil cytoplasmic antibodies
  • the inventors used two-dimensional immunoblotting to identify antigens by mass spectrometry. The inventors have also tested the sera of patients with Horton's disease.
  • biological sample refers to any biological sample from a patient.
  • Sample samples include body fluids, tissue biopsies.
  • the sample may be blood, serum, saliva, urine, sperm. More preferably, the biological sample is a sample of blood or serum.
  • patient refers to any subject that can be tested. Preferably it is a human, but the term includes any other mammal, such as dogs, cats, rodents, cattle, horses, monkeys etc. The patient can be tested regardless of gender or age. The patient may be at risk, asymptomatic, or have early or advanced signs of vasculitis.
  • diagnosis means the identification of the pathology or the evaluation of the state of severity of the pathology.
  • control value refers to a basal value corresponding to the average of the values obtained with the biological sample of healthy subjects, not affected by vasculitis or a disease likely to cause vasculitis. It can be a reference statistical value.
  • control value refers to a basal value corresponding to the average of the values obtained with the biological sample of healthy subjects, not affected by vasculitis or a disease likely to cause vasculitis. It can be a reference statistical value.
  • To evaluate the evolution of the pathology it may be useful to test a patient and control the effect of a treatment or the evolution of the pathology, by testing the patient again, for example several months apart . In this case, the results of the second test are compared with the results of the first test, as well as often with the so-called "control” value.
  • An amount of antibody “greater than the control value” generally means a statistically significant increase, for example, of at least two standard deviations above the average optical densities of the IgG reactivities of all healthy subjects.
  • capture antigen an antigen, preferably fixed on a solid phase, which is capable of retaining said at least one antibody present in a biological sample by affine binding.
  • the capture antigen can be labeled.
  • labeled refers both to direct labeling (via enzymes, radioisotopes, fluorochromes, luminescent compounds, etc.) to indirect labeling (for example, by means of antibodies themselves). same marked directly or with reagents of a labeled "affinity pair", such as, but not limited to, the labeled avidin-biotin pair, etc.
  • affinity pair such as, but not limited to, the labeled avidin-biotin pair, etc.
  • vaculitis is meant any systemic primary vasculitis as well as secondary vasculitis, in particular drug vasculitis, vasculitis associated with connectivity, or vasculitis of infectious origin.
  • vasculitis include vasculitis affecting small vessels, such as Wegener's granulomatosis, microscopic polyangiitis and Churg and Strauss syndrome, vasculitis reaching medium-sized vessels, such as polyarteritis nodosa, vasculitis reaching vessels large caliber, such as Horton's disease.
  • AECAs endothelial cell antibodies
  • VSMCs vascular smooth muscle cells
  • antigenic targets are involved notably in oxidative stress, cellular metabolism and the maintenance of cellular homeostasis.
  • Detection and / or quantification of these antibodies can be carried out to detect a vasculitis, to make the prognosis or the follow-up of these pathologies, or to evaluate the effectiveness of a treatment against these pathologies.
  • the antigens recognized by the identified antibodies are listed below (see also Tables 1 to 9 in the "Examples” section). A listing of these protein sequences is further appended.
  • FUbp2 (Far upstream element-binding protein 2) (Swiss-Prot: Q92945, SEQ ID NO: 1
  • Mitochondrial precursor of the 60 kDa heat shock protein (Swiss-Prot: P10809, SEQ ID NO: 10)
  • Protein precursor of disulphide-isomerase A1 (Swiss-Prot: P07237, SEQ ID NO:
  • Protein precursor of the disulfide-isomerase A3 (Swiss-Prot: P30101, SEQ ID NO:
  • beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO: 13) beta subunit of T complex protein 1 (Swiss-Prot: P78371, SEQ ID NO:
  • Mitochondrial precursor of the alpha subunit of ATP synthase (Swiss-Prot: P25705, SEQ ID NO: 15)
  • heterogeneous nuclear ribonucleoprotein H (Swiss-Prot: P31943, SEQ ID NO: 16)
  • Tubulin beta chain (Swiss-Prot: P07437, SEQ ID NO: 17)
  • Fructose-bisphosphate aldolase A (Swiss-Prot: P04075, SEQ ID NO: 18)
  • Calumenin precursor (Swiss-Prot: 043852, SEQ ID NO: 19)
  • Reticulocalbin-3 (Swiss-Prot: Q96D15, SEQ ID NO: 20)
  • Annexin A5 (Swiss-Prot: P08758, SEQ ID NO: 23) 14-3-3 epsilon protein (Swiss-Prot: P62258, SEQ ID NO: 24)
  • Galectin-1 (Swiss-Prot: P09382, SEQ ID NO: 26)
  • Protease subunit 7 of protease 26S (Swiss-Prot: P35998, SEQ ID NO: 29)
  • Heme oxygenase 2 (Swiss-Prot: P30519, SEQ ID NO: 30)
  • Histone H2B type FS (Swiss-Prot: P57053, SEQ ID NO: 31) Proteasome alpha-5 subunit (Swiss-Prot: P28066, SEQ ID NO: 32) beta-type beta subunit of Proteasome (Swiss-Prot: P49721, SEQ ID NO: 33)
  • Plastin-3 (Swiss-Prot: P13797, SEQ ID NO: 38) growth factor receptor-related protein 2 (Swiss-Prot: P62993, SEQ ID NO: 38) growth factor receptor-related protein 2 (Swiss-Prot: P62993, SEQ ID NO: 38)
  • Serpine B9 (Swiss-Prot: P50453, SEQ ID NO: 42)
  • GMP synthase [hydrolyzing glutamine] (Swiss-Prot: P49915, SEQ ID NO: 44) Zeta subunit of T complex protein 1 (Swiss-Prot: P40227, SEQ ID NO: 44)
  • Cofilin-1 (Swiss-Prot: P23528, SEQ ID NO: 46)
  • Alcohol dehydrogenase [NADP +] (Swiss-Prot: P14550, SEQ ID NO: 51)
  • Sialic acid synthase (Swiss-Prot: Q9NR45, SEQ ID NO: 52)
  • S-formylglutathione hydrolase (Swiss-Prot: P10768, SEQ ID NO: 53) beta-2-like 1 subunit of the guanine nucleotide binding protein (Swiss-Prot: P63244, SEQ ID NO: 54) Purine nucleoside phosphorylase (Swiss-Prot: P00491, SEQ ID NO: 55)
  • FUbpi Fluorescence-Activated protein 1
  • mitochondrial precursor of dihydrolipoiyl dehydrogenase (Swiss-Prot: P09622, SEQ ID NO: 63).
  • Inosine-5'-monophosphate dehydrogenase 2 (Swiss-Prot: P12268, SEQ ID NO: 63).
  • Protein 1 of PDZ and LIM domains (Swiss-Prot: O00151, SEQ ID NO: 67).
  • 6OS acidic ribosomal protein PO (Swiss-Prot: P05388, SEQ ID NO: 68).
  • protein 2 of the voltage-gated anion-selective channel (Swiss-Prot: P45880,
  • DJ-1 protein (Swiss-Prot: Q99497, SEQ ID NO: 70).
  • peptidyl-prolyl cis-trans isomerase A (Swiss-Prot: P62937, SEQ ID NO: 71).
  • mitochondrial precursor of thioredoxin-dependent peroxide reductase (Swiss-Prot: P30048, SEQ ID NO: 72).
  • the precursor member 11 subfamily B homologous DNAJ (Swiss-Prot: Q9UBS4,
  • Coatomer alpha subunit (Swiss-Prot: P53621, SEQ ID NO: 79). UDP-glucose 6-dehydrogenase (Swiss-Prot: O60701, SEQ ID NO: 80). Actin, cytoplasmic 1 (Swiss-Prot: P60709, SEQ ID NO: 81). member E POTE ankyrin domain family (Swiss-Prot: Q6S8J3, SEQ ID NO: 82). Nucleophosine (Swiss-Prot: P06748, SEQ ID NO: 83). Elongation factor 2 (Swiss-Prot: P13639, SEQ ID NO: 84).
  • Precursor of Calumenin and especially the antibodies directed against vinculin or lamin.
  • the first six antigens are recognized by more than 60% of the pools of the three sera of patients with Wegener granulomatosis tested, two of them (caldesmone and precursor of calumenin) being further recognized by the pools of three sera of patients having a syndrome of Churg and Strauss without ANCA.
  • the antibodies identified by the inventors can be used in the processes according to the invention alone or in combination.
  • the detection and / or the quantification can be carried out vis-à-vis only one of the identified antibodies, or may concern a plurality of antibodies.
  • a solid support for example a microplate, on which are arranged in a defined and ordered manner the antigens corresponding to the plurality of antibodies to be detected and / or quantified.
  • the methods described implement the detection of an antibody directed against an antigen identified in Table 1, 8 or 9, for the diagnosis, prognosis or follow-up of a granulomatosis of Wegener.
  • the invention relates to a method for the diagnosis, prognosis or monitoring of Wegener's granulomatosis, said method comprising detecting an antibody directed against an antigen selected from Caldesmone, a 78kDa precursor protein regulated by glucose, heat shock cognate 71 kDa protein, epsilon subunit of protein 1 of the T complex, protein precursor of the disulfide-isomerase A3, or Calumenin precursor.
  • the methods described implement the detection of an antibody directed against an antigen identified in Table 2 or Table 5, for the diagnosis, prognosis or monitoring of polyangiitis. microscopic. More particularly, the methods described can use the detection of an antibody directed against an antigen identified in Table 2, 8 or 9, for the diagnosis, prognosis or monitoring of a microscopic polyangiitis with ANCA anti-MPO. Moreover, the methods described can use the detection of an antibody directed against an antigen identified in Table 5, 8 or 9, for the diagnosis, prognosis or monitoring of a microscopic polyangiitis without ANCA anti-MPO.
  • the methods described implement the detection of an antibody directed against an antigen identified in Table 3 or 4, 8 or 9, for the diagnosis, prognosis or monitoring of a syndrome of Churg and Strauss.
  • the described methods involve the detection of an antibody directed against an antigen identified in Table 3, 8 or 9, for the diagnosis, prognosis or follow-up of Churg and Strauss syndrome with anti-ANCA. DFO. Furthermore, the methods described can use the detection of an antibody directed against an antigen identified in Table 4, for the diagnosis, prognosis or follow-up of Churg and Strauss syndrome without ANCA anti-MPO.
  • the methods described implement the detection of an antibody directed against an antigen identified in one of Tables 6, 7, 8 or 9, for the diagnosis, prognosis or followed by Horton's disease, the antigen preferably being vinculin or lamin.
  • the biological sample is preferably a serum sample, preferably diluted to 1 / 100th, or more, for example to 1 / 200th or 1 / 400th.
  • the amount of antibody can be determined by an immunoassay.
  • the biological sample may be optionally treated in a previous step, or directly in the presence of at least one capture antigen.
  • the process according to the invention can be carried out according to various formats well known to those skilled in the art: in the solid phase or in the homogeneous phase; in a time or in two stages; in competitive method, by way of non-limiting examples.
  • the capture antigen is immobilized on a solid phase.
  • solid phase microplates, in particular polystyrene microplates, such as those sold by the company Nunc, Denmark, may be used. It is also possible to use solid particles or beads, paramagnetic beads, such as those supplied by Dynal or Merck-Eurolab (France) (under the trademark EstaporTM), or also test tubes made of polystyrene or polypropylene, etc.
  • An immunoassay format for antibody detection by competition is also possible.
  • Other immunoassay modalities are still conceivable and well known to those skilled in the art.
  • ELISA, radioimmunoassay, or other detection techniques can be used to reveal the presence of the antigen-antibody complexes formed.
  • the capture antigen corresponds to an entire protein or to a fragment of said protein.
  • the method of the invention comprises contacting a biological sample with an entire protein recognized by the antibody to be detected and / or quantified.
  • the capture antigen can be coupled to a glutathione S transferase (GST), before being deposited on a microplate.
  • GST glutathione S transferase
  • the serum samples to be tested for example diluted 1 / 100th, are incubated on the microplate.
  • labeled human anti-Fc ⁇ antibodies for example with alkaline phosphatase
  • the complexes being revealed (for example by adding a phosphatase substrate whose cleavage can be detected by reading the absorbance) .
  • Targeted patients The affected patients have vasculitis, suspected vasculitis or are susceptible to vasculitis.
  • the methods of the invention make it possible to diagnose, prognose or follow the evolution of any type of vasculitis, and particularly a granulomatosis of
  • Another object of the invention is an in vitro method for evaluating the efficacy of a treatment against vasculitis, comprising the determination of the presence and / or amount of at least one antibody as defined above in a biological sample from a patient, at different times before, during or after the treatment, decreasing the amount of said at least one antibody over time being indicative of an improvement in vasculitis.
  • Example 1 Characterization of antigenic targets of AECA antibodies in ANC A-positive vasculitis
  • the sera of 45 patients with ANCA-positive vasculitis (15 with Wegener's granulomatosis (WG), 12 with microscopic polyangiitis (MPA), 12 with Churg Strauss Syndrome (CSS) were tested in pools of three and compared to a pool of sera from 12 healthy subjects
  • Serum IgG reactivities were analyzed using two-dimensional electrophoresis gels followed by immunoblots using human normal umbilical vein endothelial cell antigens (HUVEC) (cf Servettaz et al, Proteomics, 2008 Mar; 8 (5): 1000-8).
  • HAVEC human normal umbilical vein endothelial cell antigens
  • MPA with ANCA anti-myeloperoxidase (MPO) (n 2)
  • MPA without ANCA anti-MPO (n 2)
  • ANCA anti-MPO ANCA 1
  • ANCA-free anti-MPO ANC 2
  • Target antigens were involved in oxidative stress, cell metabolism, and other key cell biological functions.
  • Two-dimensional electrophoresis The inventors used a pH of 3 to 10 and an acrylamide gradient of 7% to 18% in all the experiments, which made it possible to study a large amount of antigens of 10 to 20 kDa.
  • the proteins were subjected to isoelectrofocusing on the Protean IEF CeII System, as described in (G ⁇ rg et al., 2000, Electrophoresis, 21 (6): 1037-53).
  • the bands were equilibrated for 15 min in 10 ml of the first equilibration solution (51 mM Tris [Amersham Biosciences], 6 mM urea, 40% (v / v) glycerol, 52 mM SDS [Amersham Biosciences], 32.4mM DTT), then for 20 min in a second equilibration solution (51 mM Tris, 6mM urea, 40% [v / v] glycerol, 52mM SDS, 86.5mM iodoacetamide). Balanced bands were transferred to the 7% -18% gradient gel of polyacrylamide.
  • the first equilibration solution 51 mM Tris [Amersham Biosciences], 6 mM urea, 40% (v / v) glycerol, 52 mM SDS, 86.5mM iodoacetamide.
  • the balanced IPG gels were sealed on top of the polyacrylamide gels with 1% agarose containing bromophenol blue, and electrophoresis buffer (24.8mM Tris, 192mM glycine, and 0.1% SDS) was added .
  • the gels were submitted electrophoresis initially at 40V (constant) for 1 h and then at 15mA / gel for 21 h 15 min.
  • Electro-transfer and immunoblot The gels were transferred to membranes of PVDF membranes (Millipore, Bedford, MA, USA) by semi-dry transfer (Bio-Rad) at 32OmA for 1 h 30 min. After blocking with PBS-0.2% Tween for 90 min, the membranes were incubated overnight at 4 ° C with pooled sera from 3 phenotypically identical patients (Wegener granulomatosis, microscopic polyangiitis or Churg and Strauss syndrome) and pools of sera from 14 healthy blood donors at a dilution of 1: 100.
  • the membranes were washed before incubation with a second anti-human Fc ⁇ rabbit Ac coupled to alkaline phosphatase (Dako, Glostrup, Denmark) for 90 min at room temperature. Immunoreactivities were revealed using a NBT-BCIP substrate substrate (Sigma). Specific reactivities were determined by densitometer (GS-800, Bio-Rad) using Quantity one software (Bio-Rad). The membranes were then stained with colloidal gold (Protogold, British Biocell International, Edinburgh, UK) and subjected to a second densitometric analysis to record the labeled protein spots for each gel.
  • Analytical gels were stained with ammoniacal silver nitrate.
  • the digestion of the gel was carried out by the Freedom EVO 100 digester / spotter robot (Tecan, Mennedorf, CH).
  • the stains were decolorized twice with a mixture of 100mM ammonium bicarbonate (ABC) and 50% ACN for 45 min at 22 ° C and then dried with 100% ACN for 15 min. They were then subjected to a 25mM ABC treatment containing 1 OmM DTT for 1 h at 60 0 C and then alkylated with 55mM iodoacetamide in 25mM ABC for 30 min in the dark at 22 ° C.
  • the gel pieces were washed twice in 25mM ABC and reduced twice in 100% ACN for 15 min and dried in 100% ACN for 10 min.
  • the bands were completely dehydrated after 1 h at 60 ° C.
  • the pieces of gel were incubated in 13 ⁇ l of trypsin (Sequencing Grade Modified Trypsin from Promega, Wl, USA, 12.5 ⁇ g / ml in 40mM ABC-10% ACN pH 8.0). overnight at 40 ° C.
  • trypsin Sequencing Grade Modified Trypsin from Promega, Wl, USA, 12.5 ⁇ g / ml in 40mM ABC-10% ACN pH 8.0.
  • the peptides were washed with 30 ⁇ l of 25mM ABC, reduced with 100% ACN and extracted twice with a mixture of 50% ACN-5% formic acid (FA).
  • the extracts were then dried by vacuum centrifugation (Eppendorf, Hamburg, Germany).
  • peptides were desalted using C18-ZipTips (Millipore) and two elutions, the first with 50% ACN-5% FA and then with 80% ACN-5% FA. The pooled elutions were allowed to dry at room temperature.
  • MS and MS / MS analyzes the peptides were redissolved in 4 ⁇ l CHCA (5mg / ml in 50% ACN-0.1% TFA). One microliter and a half of each sample was directly deposited on a MALDI plate (Applied Biosystems, Foster City, CA, USA). The drops were allowed to dry at room temperature. Sample analysis used a MALDI-TOF-TOF 4800 mass spectrometer (Applied Biosystems). The acquisition of the spectra and their processing were carried out by the software 4000 series explorer (Applied Biosystems) version 3.5.28193.
  • the external calibration of the plate was performed by 4 points deposited at the 4 corners of the plate with a mixture of 5 external standards (PepMix 1, LaserBio Labs, Sophia Antipolis, France).
  • the peptide masses were acquired in steps of 50 spectra from 900 to 4000 Da.
  • the MS spectra were added from 1000 laser shots with an Nd-YAG laser operating at 355nm and 200Hz. After filtration of trypsin, keratin and matrix contaminant peaks, up to 15 parent ions were selected for fragmentation Subsequent MS / MS, depending on their mass, the signal strength, the signal-to-noise ratio, and the absence of neighboring masses in the MS spectrum.
  • the MS / MS spectra were acquired in 1 kV positive mode, and 1000 strokes were added 50 by 50.
  • the database search was conducted using the Mascot 2.2 software (MatrixScience, London, UK) via GPS explore (Applied Biosystems) version 3.6 combining the MS and MS / MS queries on human proteins from the Swissprot 54.5 bank (www.expasy.org).
  • the research parameters were as follows: possible carbamidomethylation of cysteines and possible oxidation of methionines. Up to missed tryptic cleavage was allowed, and a tolerance of 30ppm for mass accuracy for precursors, and 0.3Da for fragments was allowed for all tryptic mass searches.
  • the identification was based on a Mascot score above the level of significance (i.e. ⁇ 5%). In the case where peptides correspond to multiple members of a family of proteins, the reported protein is that with the greatest number of matches ("peptide matches").
  • the inventors have identified 37 protein tasks corresponding to 28 different target antigens recognized specifically by IgG of at least 20% of patients with Wegener's granulomatosis, 15 protein tasks corresponding to 14 target antigens recognized specifically by patients with microscopic polyangiitis without Anti-MPO Ab, 5 target antigens specifically recognized by patients with microscopic polyangiitis with anti-MPO Ab, 15 protein tasks corresponding to 10 target antigens recognized specifically by patients with Churg and Strauss syndrome without anti-MPO Ab, and 7 target antigens recognized specifically by patients with Churg and Strauss syndrome with anti-MPO Ab.
  • All spots in this table are recognized by patients with Wegener's granulomatosis and not by healthy subjects, star spots are recognized specifically by patients with Wegener's granulomatosis and not by patients with other vasculitis.
  • the antigen in fat is recognized by serum IgG of more than 60% of pools of 3 sera of patients with Wegener's granulomatosis
  • AECA antibody targets were tested in the sera of 9 patients with Horton's disease, 12 healthy subjects, and pools of sera from patients with thrombotic microangiopathy (4 pools of 3) or vasculitis (microscopic polyangiitis-4). pools of three, Wegener's disease - 5 pools of three, and Churg and Strauss's disease - 3 pools of three).
  • Serum IgG reactivities were analyzed using two-dimensional electrophoresis gels followed by immunoblotting using the endothelial cell antigens of the UVEC, as described in Example 1.
  • Serum IgG from patients with Horton's disease recognized ⁇ 3 protein spots in extracts of UVEC, while those of healthy subjects recognized 79 protein spots.
  • 28 protein spots were recognized by at least 2/3 of the pools of patients with Horton's disease and not by healthy subjects of which 15 were identified.
  • 26 UVEC protein spots were recognized by at least one pool of sera from patients with Horton's disease and not by control sera or by healthy subjects of which 9 were identified.
  • Serum IgG reactivities were analyzed using two-dimensional electrophoresis gels followed by immunoblot, essentially as described in Example 1, but using immortalized vascular smooth muscle cell (VSMC) antigens from the artery. mammère.
  • VSMC immortalized vascular smooth muscle cell
  • PR3 ANCA anti-proteinase 3
  • MPA with or without anti-myeloperoxidase 3
  • Several antigens were specifically recognized by at least 60% of the patient groups and other antigens were more intensively recognized by patients than by healthy subjects.
  • Table 9 Antigens recognized more intensively by patients than by healthy subjects.

Abstract

L'invention concerne un procédé in vitro de détection d'une vascularite, ou d'un risque de développer une vascularite, comprenant la détermination de la présence et/ou de la quantité d'anticorps anti-cellules endothéliales (AECA) ou anti-cellules musculaires lisses vasculaires (CMLV) dans un échantillon biologique provenant d'un patient.

Description

Procédé de diagnostic d'une vascularite
L'invention concerne un procédé in vitro de détection d'une vascularite, ou d'un risque de développer une vascularite, comprenant la détermination de la présence et/ou de la quantité d'anticorps (Ac) anti-cellules endothéliales (AECA) ou anticellules musculaires lisses vasculaires (CMLV) dans un échantillon biologique provenant d'un patient.
Etat de la technique
Les vascularites sont des pathologies orphelines dont la prévalence est faible, de l'ordre de 24 à 150 par million d'habitants. Elles représentent un groupe de maladies caractérisées par la présence de lésions inflammatoires au niveau des parois des vaisseaux. Les vascularites sont classées selon la taille des vaisseaux atteints et répondent à différents mécanismes pathogéniques dominants : une production de cytokines proinflammatoires et une activation des macrophages dans les vascularites intéressant les vaisseaux de gros calibre, comme que la maladie de Horton (ou artérite à cellules géantes) ; le dépôt de complexes immuns circulants responsables de l'activation de la voie classique du complément, et le recrutement de neutrophiles dans les vascularites intéressant les vaisseaux de taille moyenne, telles que la périartérite noueuse associée à une infection par le virus de l'hépatite B ; et une activation des neutrophiles par les Ac anti-cytoplasme de polynucléaires neutrophiles (ANCA), préférentiellement dans les vascularites intéressant les vaisseaux de petit calibre, telles que la granulomatose de Wegener et la polyangéite microscopique.
La maladie de Horton se manifeste par des céphalées dues à l'atteinte de l'artère temporale, associées à une altération de l'état général, à une pseudo-polyarthrite rhizomélique dans un cas sur deux et dans la très grande majorité des cas à un syndrome inflammatoire, La granulomatose de Wegener est une vascularite granulomateuse intéressant surtout les sinus de la face, le poumon et le rein, associée dans les formes systémiques, dans 90 % des cas, à des Ac anti-protéinase 3. La polyangéite microscopique est une vascularite nécrosante qui intéresse les vaisseaux de petit calibre et peut être à l'origine d'une atteinte glomérulaire et capillaire pulmonaire à l'origine d'un syndrome pneumo-rénal en plus des manifestations systémiques en rapport avec la vascularite.
Le syndrome de Churg et Strauss correspond à un asthme à début tardif d'évolution sévère associé à une hyperéosinophilie et une vascularite nécrosante.
Actuellement le diagnostic de vascularite ANCA-positive repose toujours sur une biopsie, qu'il s'agisse d'une biopsie cutanée, d'une biopsie rénale, d'une biopsie neuromusculaire ou autre. Les ANCA constituent une aide importante au diagnostic de vascularite systémique. Des ANCA anti-myéloperoxydase (MPO) sont ainsi présents chez 60 à 75% des malades atteints de polyangéite microscopique et 38% des malades atteints du syndrome de Churg et Strauss. En corollaire, une proportion notable de patients n'a pas d'ANCA, ce qui rend difficile le diagnostic, l'évaluation du pronostic, et la prise en charge thérapeutique. Au cours de la maladie de Horton il n'y a pas aujourd'hui de marqueur biologique identifié. Le diagnostic d'une maladie de Horton repose dans la majorité des cas sur une biopsie de l'artère temporale, positive dans 80% des cas de maladie de Horton.
Il existe donc un besoin d'identifier des marqueurs immunologiques d'intérêt diagnostique et/ou pronostique au cours de la maladie de Horton et d'autres marqueurs immunologiques d'intérêt que les ANCA au cours des vascularites ANCA positives. La demande internationale WO2004/094638, en langue japonaise, fait mention d'une recherche d'anticorps anti-peroxirédoxine 2 dans le sérum de patients atteints de vascularite, mais reste semble-t-il isolée dans ce domaine. Dans cette perspective, les inventeurs se sont intéressés aux anticorps (Ac) anticellules endothéliales (AECA), anticorps anti-cellules musculaires lisses vasculaires (CMLV). En particulier les AECA sont détectés et semblent jouer un rôle clé dans la pathogénie des vascularites (Guilpain et Mouthon, Clinic Rev Allerg Imunol, 2008 Oct;35(1 -2):59-65). Ainsi, la fixation des AECA aux cellules endothéliales peut entraîner une destruction de la cellule cible par un mécanisme de cytotoxicité cellulaire dépendant des Ac (ADCC), peut induire l'apoptose et augmenter l'expression des molécules d'adhésion. Cependant, les cibles antigéniques de ces anticorps n'avaient jusqu'à présent pas été identifiées. Résumé de l'invention
Les inventeurs ont maintenant identifié des cibles antigéniques des anticorps anti- cellules endothéliales (AECA) et des anticorps anti-cellules musculaires lisses vasculaires (CMLV) dans les vascularites, en particulier dans la maladie de Horton et les vascularites ANCA-positives.
Sur cette base, l'invention fournit un procédé in vitro de détection d'une vascularite chez un sujet, ou d'un risque de développer une vascularite, comprenant la détermination de la présence et/ou de la quantité d'au moins un AECA ou d'un Ac anti-CMLV, dirigé contre un antigène choisi parmi le groupe constitué de Vinculine, FUbp2 (Far upstream element-binding protein 2), Caldesmone , protéine précurseur de 78kDa régulée par le glucose (78 kDa glucose-regulated protein precursor), Heat shock cognate 71 kDa protein, Précurseur mitochondrial de la protéine de Stress-70, Lamine-A/C, ribonucléoprotéine K nucléaire hétérogène, sous-unité epsilon de la protéine 1 du complexe T, Précurseur mitochondrial de la protéine 60 kDa heat shock, Précuseur protéique de la disulfure-isomérase A1 , Précurseur protéique de la disulfure-isomérase A3, sous- unité thêta de la protéine 1 du complexe T, sous-unité beta de la protéine 1 du complexe T, Précurseur mitochondrial de la sous-unité alpha de l'ATP synthase, ribonucléoprotéine H nucléaire hétérogène, Chaîne beta Tubuline, Fructose- bisphosphate aldolase A, Précurseur mitochondrial de la sous-unité alpha de l'ATP synthase, Précurseur de Calumenine, Reticulocalbine-3, Sous-unité 13 régulatrice non-ATPase du protéasome 26S, pyrophosphatase inorganique, Annexine A5, 14-3-3 protéine epsilon, 6-phosphogluconolactonase, Galectine-1 , Précurseur mitochondrial de la Succinyl-CoA:3-ketoacid-coenzyme A transférase 1 , ribonucléoprotéine DO nucléaire hétérogène, Sous-unité 7 régulatrice de la protéase 26S , Heme oxygénase 2, Histone H2B type F-S, sous-unité alpha type-5 du Protéasome, sous-unité beta type-2 du Protéasome, Protéine 4 associée au cytosquelette, Uroporphyrinogen decarboxylase, Adénine phosphoribosyltransferase, Profiline-1 , Plastine-3, protéine 2 liée au récepteur du facteur de croissance, ribonucléoprotéine L nucléaire hétérogène, Précurseur de la Reticulocalbin-1 , Précurseur de la Calumenine, Serpine B9, Précuseur mitochondrial de la sous-unité alpha de la Isocitrate dehydrogenase [NAD], GMP synthase [hydrolysant la glutamine], Sous-unité zêta de la protein 1 du complexe T Cofiline-1 , Précurseur mitochondrial de l'aconitate hydratase, Protéine de la membrane interne des mitochondhes, ribonucleoprotéine K nucléaire hétérogène, Précurseur mitochondrial du facteur d'élongation Tu, Alcool dehydrogenase [NADP+], Sialic acid synthase, S-formylglutathione hydrolase, sous-unité beta-2- like 1 de la protéine de liaison au nucleotide guanine, Purine nucleoside phosphorylase, Prohibitine, Précurseur mitochondrial de la protéine de liaison au C1 q, ATPase du réticulum endoplasmique transitionnel, Nucleoside diphosphate kinase A, alpha-enolase, nucléophosmine, annexine A2, protéine 4 d'interaction avec la protéine 6 ADP-ribosylation factor-like, FUbpi (Far upstream element- binding protein 1 ), précurseur mitochondrial de la dihydrolipoiyl déshydrogénase, inosine-5'-monophosphate déshydrogénase 2, le précurseur 1 de la tripeptidy- peptidase, le précurseur mitochondrial de la fumarate hydratase, la ribonucleoprotéine DO nucléaire hétérogène, la protéine 1 des domaines PDZ et LIM, la protéine ribosomique PO acide 6OS, la protéine 2 du canal anion-sélectif voltage-dépendant, protéine DJ-1 , peptidyl-prolyl cis-trans isomérase A, précurseur mitochondrial de la peroxyde réductase thioredoxine-dépendante.la sous-unité beta de la protéine 1 du complexe T, le précurseur membre 11 sou- famille B homologue DNAJ, la glutaredoxine-3, la protéine inhibitrice 2 de dissociation Rho GDP, et la glutathione S-transférase P, dans un échantillon biologique provenant d'un patient, la présence dudit au moins un anticorps étant indicatrice d'une vascularite ou d'un risque de développer une vascularite.
Ladite vascularite peut être notamment une granulomatose de Wegener, une polyangéite microscopique, ou un syndrome de Churg et Strauss.
Ladite vascularite peut être aussi une maladie de Horton.
De préférence, la présence dudit au moins un anticorps dans l'échantillon biologique est comparée à une valeur contrôle, la présence dudit au moins un anticorps en une quantité supérieure à la valeur contrôle étant indicatrice d'une vascularite ou d'un risque de développer une vascularite. Un autre objet de l'invention est un procédé in vitro de pronostic ou de suivi d'une vascularite, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps tel que défini ci-dessus, dans un échantillon biologique provenant d'un patient, à différents temps, l'augmentation de la quantité dudit au moins un anticorps au cours du temps étant indicative d'une aggravation de la vascularite.
Un autre objet de l'invention est un procédé in vitro d'évaluation de l'efficacité d'un traitement envers une vascularite, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps tel que défini ci-dessus, dans un échantillon biologique provenant d'un patient, à différents temps avant, au cours ou après le traitement, la diminution de la quantité dudit au moins un anticorps au cours du temps étant indicative d'une amélioration de la vascularite.
Description détaillée de l'invention
Les inventeurs ont utilisé des cellules endothéliales de veines ombilicales humaines normales (HUVEC) comme source d'antigènes et testé les sérums de patients ayant de maladie de Horton, ou une vascularite systémique associée à des anticorps anti-cytoplasme de polynucléaires neutrophiles (ANCA) et des sujets sains.
Pour identifier les cibles des anticorps, les inventeurs ont utilisé un immunotransfert en deux dimensions l'identification des antigènes se faisant par spectrométrie de masse. Les inventeurs ont également testé les sérums de patients atteints d'une maladie de Horton.
Définitions :
Le terme « échantillon biologique » se réfère à tout échantillon biologique provenant d'un patient. Des exemples d'échantillons incluent des liquides biologiques, des biopsies tissulaires. De manière préférentielle, l'échantillon peut être du sang, du sérum, de la salive, de l'urine, du sperme. De manière davantage préférée, l'échantillon biologique est un échantillon de sang ou de sérum. Le terme « patient » se réfère à tout sujet susceptible d'être testé. De préférence il s'agit d'un humain, mais le terme inclut tout autre mammifère, tel que des chiens, chats, rongeurs, bétail, chevaux, singes etc. Le patient peut être testé quel que soit son sexe ou son âge. Le patient peut être un sujet à risque, être asymptomatique ou présenter des signes précoces ou avancés d'une vascularite. Le terme « diagnostic » signifie l'identification de la pathologie ou l'évaluation de l'état de sévérité de la pathologie.
Le terme « pronostic » signifie l'évaluation du risque d'aggravation, et de ses conséquences. Le terme « valeur contrôle » se réfère à une valeur basale correspondant à la moyenne des valeurs obtenues avec l'échantillon biologique de sujets sains, non affectés par une vascularite ou une maladie susceptible d'entraîner une vascularite. Il peut s'agir d'une valeur statistique de référence. Pour évaluer l'évolution de la pathologie, il peut être utile de tester un patient et de contrôler l'effet d'un traitement ou l'évolution de la pathologie, en testant de nouveau le patient, par exemple à plusieurs mois d'intervalle. Dans ce cas, les résultats du second test sont comparés aux résultats du premier test, ainsi que souvent à la valeur dite « contrôle ». Une quantité d'anticorps « supérieure à la valeur contrôle » signifie généralement une augmentation statistiquement significative, par exemple d'au moins deux déviations standards au dessus de la moyenne des densités optiques des réactivités IgG de l'ensemble des sujets sains.
Par « antigène de capture », on entend un antigène, de préférence fixé sur une phase solide, qui est capable de retenir ledit au moins un anticorps présent dans un échantillon biologique, par liaison affine. L'antigène de capture peut être marqué.
Le terme « marqué » se réfère aussi bien à un marquage direct (par le biais d'enzymes, radioisotopes, fluorochromes, composés luminescents, etc ..) qu'à un marquage indirect (par exemple, par le biais d'anticorps eux-mêmes marqués de manière directe ou à l'aide de réactifs d'une "paire d'affinité " marquée, telle que, mais non exclusivement, la paire avidine marquée-biotine, etc. Par « vascularite », on entend toute vascularite systémique primitive ainsi que des vascularites secondaires en particulier une vascularite médicamenteuse, vascularite associée à une connectivité, ou vascularite d'origine infectieuse. Les vascularites visées comprennent ainsi les vascularites atteignant les vaisseaux de petit calibre, comme la granulomatose de Wegener, la polyangéite microscopique et le syndrome de Churg et Strauss, les vascularites atteignant les vaisseaux de calibre moyen, telles que la périartérite noueuse, les vascularites atteignant les vaisseaux de gros calibre, telles que la maladie de Horton.
Anticorps identifiés :
Comme indiqué dans la partie « exemples », les inventeurs ont identifié plusieurs anticorps anti-cellules endothéliales (AECA) ou anti-cellules musculaires lisses vasculaires (CMLV) chez des malades ayant une vascularite.
Ces cibles antigéniques sont impliquées notamment dans le stress oxydatif, le métabolisme cellulaire et la maintenance de l'homéostasie cellulaire.
La détection et/ou la quantification de ces anticorps peut être mise en oeuvre pour détecter une vascularite, pour réaliser le pronostic ou le suivi de ces pathologies, ou pour évaluer l'efficacité d'un traitement envers ces pathologies.
Les antigènes reconnus par les anticorps identifiés sont listés ci-dessous (cf aussi les tableaux 1 à 9, de la partie « Exemples »). Un listing de ces séquences protéiques est en outre annexé.
Les numéros d'accès dans la base de données SwissProt et les séquences correspondantes sont donnés à titre indicatif.
Vinculine (Swiss-Prot: P18206, SEQ ID NO:1 )
FUbp2 (Far upstream element-binding protein 2) (Swiss-Prot: Q92945, SEQ ID
NO:2)
Caldesmone (Swiss-Prot: Q92945, SEQ ID NO:3) protéine précurseur de 78kDa régulée par le glucose (78 kDa glucose-regulated protein precursor) (Swiss-Prot: P11021 , SEQ ID NO:4)
Heat shock cognate 71 kDa protein (Swiss-Prot: P11142, SEQ ID NO:5)
Précurseur mitochondrial de la protéine de Stress-70 (Swiss-Prot: P38646, SEQ
ID NO:6)
Lamine-A/C (Swiss-Prot: P02545, SEQ ID NO:7) ribonucleoproteine K nucléaire hétérogène (Swiss-Prot: P61978, SEQ ID NO:8) sous-unité epsilon de la protéine 1 du complexe T (Swiss-Prot: P48643, SEQ ID
NO:9)
Précuseur mitochondrial de la protéine 60 kDa heat shock (Swiss-Prot: P10809, SEQ ID NO:10)
Précuseur protéique de la disulfure-isomérase A1 (Swiss-Prot: P07237, SEQ ID
NO:11 )
Précurseur protéique de la disulfure-isomérase A3 (Swiss-Prot: P30101 , SEQ ID
NO:12) sous-unité thêta de la protéine 1 du complexe T (Swiss-Prot: P50990, SEQ ID
NO:13) sous-unité beta de la protéine 1 du complexe T (Swiss-Prot: P78371 , SEQ ID
NO:14)
Précurseur mitochondrial de la sous-unité alpha de l'ATP synthase (Swiss-Prot: P25705, SEQ ID NO:15) ribonucleoproteine H nucléaire hétérogène (Swiss-Prot: P31943, SEQ ID NO:16)
Chaîne beta Tubuline (Swiss-Prot: P07437, SEQ ID NO:17)
Fructose-bisphosphate aldolase A (Swiss-Prot: P04075, SEQ ID NO:18)
Précurseur de Calumenine (Swiss-Prot: 043852, SEQ ID NO:19) Réticulocalbine-3 (Swiss-Prot: Q96D15, SEQ ID NO:20)
Sous-unité 13 régulatrice non-ATPase du protéasome 26S (Swiss-Prot:
Q9UNM6, SEQ ID NO:21 ) pyrophosphatase inorganique (Swiss-Prot: Q15181 , SEQ ID NO:22)
Annexine A5 (Swiss-Prot: P08758, SEQ ID NO:23) 14-3-3 protéine epsilon (Swiss-Prot: P62258, SEQ ID NO:24)
6-phosphogluconolactonase (Swiss-Prot: 095336, SEQ ID NO:25)
Galectine-1 (Swiss-Prot: P09382, SEQ ID NO:26)
Précurseur mitochondrial de la Succinyl-CoA:3-ketoacid-coenzyme A transférase
1 (Swiss-Prot: P55809, SEQ ID NO:27) ribonucleoproteine DO nucléaire hétérogène (Swiss-Prot: Q14103, SEQ ID NO:28)
Sous-unité 7 régulatrice de la protéase 26S (Swiss-Prot: P35998, SEQ ID NO:29)
Hème oxygénase 2 (Swiss-Prot: P30519, SEQ ID NO:30)
Histone H2B type F-S (Swiss-Prot: P57053, SEQ ID NO:31 ) sous-unité alpha type-5 du Protéasome (Swiss-Prot: P28066, SEQ ID NO:32) sous-unité béta type-2 du Protéasome (Swiss-Prot: P49721 , SEQ ID NO:33)
Protéine 4 associée au cytosquelette (Swiss-Prot: Q07065, SEQ ID NO:34)
Uroporphyrinogen decarboxylase (Swiss-Prot: P06132, SEQ ID NO:35)
Adénine phosphoribosyltransferase (Swiss-Prot: P07741 , SEQ ID NO:36) Profiline-1 (Swiss-Prot: P07737, SEQ ID NO:37)
Plastine-3 (Swiss-Prot: P13797, SEQ ID NO:38) protéine 2 liée au récepteur du facteur de croissance (Swiss-Prot: P62993, SEQ
ID NO:39) ribonucléoprotéine L nucléaire hétérogène (Swiss-Prot: P14866, SEQ ID NO:40) Précurseur de la Reticulocalbin-1 (Swiss-Prot: Q15293, SEQ ID NO:41 )
Serpine B9 (Swiss-Prot: P50453, SEQ ID NO:42)
Précuseur mitochondrial de la sous-unité alpha de la Isocitrate déshydrogenase
[NAD] (Swiss-Prot: P50213, SEQ ID NO:43)
GMP synthase [hydrolysant la glutamine] (Swiss-Prot: P49915, SEQ ID NO:44) Sous-unité zêta de la protéine 1 du complexe T (Swiss-Prot: P40227, SEQ ID
NO:45)
Cofiline-1 (Swiss-Prot: P23528, SEQ ID NO:46)
Précurseur mitochondrial de l'aconitate hydratase (Swiss-Prot: Q99798, SEQ ID
NO:47) Protéine de la membrane interne des mitochondhes (Swiss-Prot: Q16891 , SEQ ID
NO:48) ribonucléoprotéine K nucléaire hétérogène (Swiss-Prot: P61978, SEQ ID NO :49)
Précurseur mitochondrial du facteur d'élongation Tu (Swiss-Prot: P49411 , SEQ ID
NO:50) Alcool déshydrogenase [NADP+] (Swiss-Prot: P14550, SEQ ID NO:51 )
Sialic acid synthase (Swiss-Prot: Q9NR45, SEQ ID NO:52)
S-formylglutathion hydrolase (Swiss-Prot: P10768, SEQ ID NO:53) sous-unité beta-2-like 1 de la protéine de liaison au nucleotide guanine (Swiss- Prot: P63244, SEQ ID NO:54) Purine nucleoside phosphorylase (Swiss-Prot: P00491 , SEQ ID NO:55)
Prohibitine (Swiss-Prot: P35232, SEQ ID NO:56)
Précurseur mitochondrial de la protéine de liaison au C1q (Swiss-Prot: Q07021 ,
SEQ ID NO:57) ATPase du réticulum endoplasmique transitionnel (Swiss-Prot: P55072, SEQ ID
NO:58) et Nucleoside diphosphate kinase A (Swiss-Prot: P15531 , SEQ ID NO:59). ainsi que annexine A2 (Swiss-Prot: P07355, SEQ ID NO:60). alpha-énolase (Swiss-Prot: P06733, SEQ ID NO:61 ).
FUbpi (Far upstream element-binding protein 1 ) (Swiss-Prot: Q96AE4, SEQ ID
NO:62). précurseur mitochondrial de la dihydrolipoiyl déshydrogénase (Swiss-Prot: P09622, SEQ ID NO:63). inosine-5'-monophosphate déshydrogénase 2 (Swiss-Prot: P12268, SEQ ID
NO:64). le précurseur 1 de la tripeptidy-peptidase (Swiss-Prot: PO14773, SEQ ID NO:88). le précurseur mitochondrial de la fumarate hydratase (Swiss-Prot: P07954, SEQ ID NO:65). la ribonucléoprotéine DO nucléaire hétérogène (Swiss-Prot: Q14103, SEQ ID
NO:66). la protéine 1 des domaines PDZ et LIM (Swiss-Prot: O00151 , SEQ ID NO:67). la protéine ribosomique PO acide 6OS (Swiss-Prot: P05388, SEQ ID NO:68). la protéine 2 du canal anion-sélectif voltage-dépendant (Swiss-Prot: P45880,
SEQ ID NO:69). protéine DJ-1 (Swiss-Prot: Q99497, SEQ ID NO:70). peptidyl-prolyl cis-trans isomérase A (Swiss-Prot: P62937, SEQ ID NO:71 ). précurseur mitochondrial de la peroxyde réductase thioredoxine-dépendante (Swiss-Prot: P30048, SEQ ID NO:72). le précurseur membre 11 sous-famille B homologue DNAJ (Swiss-Prot: Q9UBS4,
SEQ ID NO:73). la glutaredoxine-3 (Swiss-Prot: PO76003, SEQ ID NO:74). la protéine inhibitrice 2 de dissociation Rho GDP (Swiss-Prot: P52566, SEQ ID NO:75). la glutathion S-transférase P (Swiss-Prot: P09211 , SEQ ID NO:76). et la peroxyrédoxine (Swiss-Prot: P32119, SEQ ID NO:77). et encore la protéine putative heat shock HSP 90-alpha A2 (Swiss-Prot: Q14568, SEQ ID NO:78).
Coatomer sous-unité alpha (Swiss-Prot: P53621 , SEQ ID NO:79). UDP-glucose 6-deshydrogénase (Swiss-Prot: O60701 , SEQ ID NO:80). Actine, cytoplasmique 1 (Swiss-Prot: P60709, SEQ ID NO:81 ). membre E POTE ankyrin domain family (Swiss-Prot: Q6S8J3, SEQ ID NO:82). Nucléophosmine (Swiss-Prot: P06748, SEQ ID NO:83). Facteur d'élongation 2 (Swiss-Prot: P13639, SEQ ID NO:84). Member 1 sous-famille A, DnaJ homolog (Swiss-Prot: P31689, SEQ ID NO:85). Actine, cytoplasmique 2 (Swiss-Prot: P63261 , SEQ ID NO:86). sous-unité 8 régulatrice de la protéase 26S (Swiss-Prot: P62195, SEQ ID NO:87).
Parmi les auto-anticorps détectés, plusieurs sont particulièrement pertinents. Il s'agit des anticorps dirigés contre les antigènes suivants : Caldesmone protéine précurseur de 78kDa régulée par le glucose
Heat shock cognate 71 kDa protein sous-unité epsilon de la protéine 1 du complexe T
Précurseur protéique de la disulfure-isomérase A3 ou
Précurseur de Caluménine, et surtout les anticorps dirigés contre la vinculine ou la lamine.
Les six premiers antigènes sont reconnus par plus de 60% des pools des trois sérums de patients atteints de granulomatose de Wegener testés, deux d'entre eux (caldesmone et précurseur de caluménine) étant en outre reconnus par les pools de trois sérums de patients ayant un syndrome de Churg et Strauss sans ANCA.
Les anticorps identifiés par les inventeurs peuvent être mis en oeuvre dans les procédés selon l'invention seuls ou en combinaison. La détection et/ou la quantification peut être réalisée vis-à-vis d'un seul des anticorps identifiés, ou peut concerner une pluralité d'anticorps. On ainsi peut imaginer la réalisation du procédé sur un support solide, par exemple une microplaque, sur lequel sont disposés de manière définie et ordonnée les antigènes correspondant à la pluralité d'anticorps à détecter et/ou quantifier.
Selon un mode de réalisation de l'invention, les procédés décrits mettent en oeuvre la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 1 , 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'une granulomatose de Wegener.
Plus particulièrement, l'invention a trait à un procédé pour le diagnostic, le prognostic ou le suivi d'une granulomatose de Wegener, ledit procédé comprenant la détection d'un anticorps dirigé contre un antigène choisi parmi Caldesmone, protéine précurseur de 78kDa régulée par le glucose, Heat shock cognate 71 kDa protein , sous-unité epsilon de la protéine 1 du complexe T, Précurseur protéique de la disulfure-isomérase A3 , ou Précurseur de Calumenine.
Selon un autre mode de réalisation de l'invention, les procédés décrits mettent en oeuvre la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 2 ou le tableau 5, pour le diagnostic, le pronostic ou le suivi d'une polyangéite microscopique. Plus particulièrement les procédés décrits peuvent utiliser la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 2, 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'une polyangéite microscopique avec ANCA anti-MPO. Par ailleurs, les procédés décrits peuvent utiliser la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 5, 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'une polyangéite microscopique sans ANCA anti-MPO.
Selon un autre mode de réalisation de l'invention, les procédés décrits mettent en oeuvre la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 3 ou 4, 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'un syndrome de Churg et Strauss.
Plus particulièrement, les procédés décrits mettent en oeuvre la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 3, 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'un syndrome de Churg et Strauss avec ANCA anti-MPO. Par ailleurs, les procédés décrits peuvent utiliser la détection d'un anticorps dirigé contre un antigène identifié dans le tableau 4, pour le diagnostic, le pronostic ou le suivi d'un syndrome de Churg et Strauss sans ANCA anti-MPO.
Selon un autre mode de réalisation de l'invention, les procédés décrits mettent en oeuvre la détection d'un anticorps dirigé contre un antigène identifié dans l'un des tableaux 6, 7, 8 ou 9, pour le diagnostic, le pronostic ou le suivi d'une maladie de Horton, l'antigène étant de préférence la vinculine ou la lamine.
Dosage des anticorps :
L'échantillon biologique est de préférence un échantillon de sérum, de préférence dilué au 1/100ème, ou plus, par exemple au 1/200ème ou 1/400ème.
De manière avantageuse, la quantité d'anticorps peut être déterminée par un immunoessai.
L'échantillon biologique peut être éventuellement traité dans une étape préalable, ou mis directement en présence d'au moins un antigène de capture.
Le procédé selon l'invention peut être réalisé selon divers formats bien connus de l'homme du métier: en phase solide ou en phase homogène; en un temps ou en deux temps; en méthode compétitive, à titre d'exemples non limitatifs.
Selon un mode de réalisation préféré, l'antigène de capture est immobilisé sur une phase solide. On peut utiliser, à titre d'exemples non limitatifs de phase solide, des microplaques, en particulier des microplaques de polystyrène, telles que celles commercialisées par la société Nunc, Danemark. On peut également utiliser des particules ou des billes solides, des billes paramagnétiques, telles que celles fournies par Dynal ou Merck-Eurolab (France) (sous la marque EstaporTM), ou encore des tubes à essai en polystyrène ou polypropylène, etc.
Un format d'immunoessai de détection des anticorps par compétition est également possible. D'autres modalités d'immunoessai sont encore envisageables et bien connues de l'homme du métier. Dosages ELISA, radioimnnunoessais, ou toute autre technique de détection peuvent être mis en oeuvre pour révéler la présence des complexes antigènes- anticorps formés.
Selon un mode particulier de réalisation préféré, l'antigène de capture correspond à une protéine entière ou à un fragment de ladite protéine. Par exemple, le procédé de l'invention comprend la mise en contact d'un échantillon biologique avec une protéine entière reconnue par l'anticorps à détecter et/ou quantifier.
Dans un exemple particulier, l'antigène de capture peut être couplé à une glutathion S transférase (GST), avant d'être déposé sur une microplaque. A titre illustratif, les échantillons de sérum à tester, par exemple dilués au 1/100ème, sont mis à incuber sur la microplaque. Après lavage, des anticorps anti-Fcγ humain marqués (par exemple avec une phosphatase alcaline) sont ajoutés, les complexes étant révélés (par exemple par ajout d'un substrat de la phosphatase dont le clivage peut être détecté par lecture de l'absorbance).
Patients visés : Les patients visés sont atteints d'une vascularite, suspectés d'être atteints d'une vascularite ou sont susceptibles de développer une vascularite.
Il peut s'agir de vascularites chez des patients ANCA-positifs, ou chez des patients qui n'ont pas d'auto-anticorps ANCA.
Les méthodes de l'invention permettent de diagnostiquer, pronostiquer ou de suivre l'évolution de tout type de vascularite, et particulier une granulomatose de
Wegener, une polyangéite microscopique, un syndrome de Churg et Strauss, ou une maladie de Horton.
Evaluation de l'efficacité d'un traitement : Un autre objet de l'invention est un procédé in vitro d'évaluation de l'efficacité d'un traitement envers une vascularite, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps tel que défini ci-dessus dans un échantillon biologique provenant d'un patient, à différents temps avant, au cours ou après le traitement, la diminution de la quantité dudit au moins un anticorps au cours du temps étant indicative d'une amélioration de la vascularite.
Les exemples suivants illustrent l'invention sans en limiter la portée.
Exemples
Exemple 1 : Caractérisation des cibles antigéniques des anticorps AECA dans les vascularites AN C A-positives Les sérums de 45 patients ayant une vascularite ANCA-positive (15 ayant une granulomatose de Wegener (WG), 12 ayant une polyangéite microscopique (MPA), 12 ayant un syndrome de Churg Strauss (CSS) ont été testés par pools de trois et comparés à un pool de sérums de 12 sujets sains. Les réactivités IgG sériques étaient analysées à l'aide de gels d'électrophorèse en deux dimensions suivis d'immunotransferts utilisant des antigènes de cellules endothéliales de veines ombilicales humaines normales (HUVEC) (cf Servettaz et al, Proteomics. 2008 Mar;8(5): 1000-8).
Les IgG sériques des pools de patients atteints de WG avec ANCA anti-protéinase 3 (PR3) (n=5), MPA avec ANCA anti-myeloperoxydase (MPO) (n=2), MPA sans ANCA anti-MPO (n=2), CSS avec ANCA anti-MPO (n=1 ) et CSS sans ANCA anti- MPO (n=2), reconnaissaient 107±17, 148, 211 , 128, et 101 spots protéiques, respectivement, tandis que les IgG sériques de sujets sains reconnaissaient 79 tâches protéiques. Les IgG sériques de patients atteints de WG avec anti-PR3, MPA avec anti-MPO, MPA sans anti-MPO, CSS avec anti-MPO et CSS sans anti- MPO reconnaissaient spécifiquement 37, 12, 22, 15 et 23 tâches protéiques, respectivement. Les antigènes cibles étaient impliqués dans le stress oxydatif, le métabolisme cellulaire et d'autres fonctions biologiques cellulaires clés.
Méthode d'identification :
Electrophorèse à deux dimensions Les inventeurs ont utilisé un pH de 3 à 10 et un gradient d'acrylamide de 7% à 18% dans toutes les expériences, ce qui a permis d'étudier une grande quantité d'antigènes de 10 à 20OkDa.
Les protéines ont été soumises à une iso-électrofocalisation sur le Protean IEF CeII System, comme décrit dans (Gόrg et al, 2000, Electrophoresis, 21 (6):1037- 53).
Brièvement, immédiatement après l' iso-électrofocalisation, les échantillons ont été décongelés et dilués dans du tampon IPG contenant de l'urée ultra-pure 7M (VWR, Fontenay-Sous-Bois, France), 2M thiourée (Sigma), 4% CHAPS (Sigma), 0.002% Triton X100 (Sigma), 60μl de véhicule ampholyte pH 3-10 (Pharmalytes 3- 10, Amersham Biosciences, Uppsala, Sweden) et du bleu de bromophénol (Sigma). Pour la préparation des gels 2-D, 100μg de protéines d'HUVEC ont été chargés sur les bandes IPG. Celles-ci ont été réhydratées et soumises à une électrophorèse automatisée pendant 12 h à 50V, 1 h à 200V, 1 h à 1000V, et 7 h à 10,000V (6 h linéaire et 1 h rapide).
Avant la deuxième dimension, les bandes ont été équilibrées pendant 15 min dans 10ml de la première solution d'équilibrage (51 mM Tris [Amersham Biosciences], 6mM urée, 40% (v/v) glycérol, 52mM SDS [Amersham Biosciences], 32.4mM DTT), puis pendant 20 min dans une seconde solution d'équilibrage (51 mM Tris, 6mM urée, 40% [v/v] glycérol, 52mM SDS, 86.5mM iodoacétamide). Les bandes équilibrées ont été transféré sur le gel de gradient 7%-18% de polyacrylamide. Dix microlitres de marqueurs de poids moléculaire (PM) Précision Plus Protein Unstained Standards (Bio-Rad) ont été chargés sur chaque gel. La seconde dimension a été menée sur un système Laemmli sur gels de gradients linéaires 7%-18% polyacrylamide (20cm x 20cm x 1.5mm): d'une solution à 18.5% d'acrylamide PAGE (Amersham Biosciences) 2.5M, piperazine diacrylamide/diacrylyl (PDA) (Bio-Rad) 24.7mM, 0.375M Tris-HCI (Amersham Biosciences) pH 8.8, glycérol (Sigma) 15% (v/v), SDS 3.5mM, TEMED (Bio-Rad) 0.05% (v/v), et ammonium persulfate (APS) (Bio-Rad) 1.6mM, et une solution à 7% d'acrylamide 1.0M, PDA 1 OmM, 0.375M Tris-HCI pH 8.8, SDS 3.5mM, eau bidistillée, TEMED 0.06% (v/v), et APS 2.4mM ont été mélangées. Les gels d'IPG équilibrés ont été scellés sur le dessus des gels de polyacrylamide avec 1 % d'agarose contenant du bleu de bromophénol, et du tampon d'électrophorèse (24.8mM Tris, 192mM glycine, et 0.1 % SDS) a été ajouté. Les gels ont été soumis à une électrophorèse initialement à 40V (constant) pendant 1 h puis à 15mA/gel pendant 21 h 15 min.
Electro-transfert et immunoblot Les gels ont été transférés sur membranes de PVDF membranes (Millipore, Bedford, MA, USA) par transfert semi-sec (Bio-Rad) à 32OmA pendant 1 h 30 min. Après blocage avec de PBS-0.2% Tween pendant 90 min, les membranes ont été incubées une nuit at 4°C avec les pools de serums de 3 patients phénotypiquement identiques (granulomatose de Wegener, polyangéite microscopique ou syndrome de Churg et Strauss) et les pools de sérums de 14 donneurs de sang sains, à une dilution de 1 :100. Les membranes ont été lavées avant incubation avec un second Ac de lapin anti-Fcγ humain couplé à la phosphatase alkaline (Dako, Glostrup, Denmark) pendant 90 min à température ambiante. Les immunoréactivités ont été révélées en utilisation un substrat NBT- BCIP substrate (Sigma). Les réactivités spécifiques ont été déterminées par densitomètre (GS-800, Bio-Rad) à l'aide du logiciel Quantity one (Bio-Rad). Les membranes ont ensuite été colorées à l'or colloïdal (Protogold, British Biocell International, Cardiff, UK) et soumises à une seconde analyse densitométrique pour enregistrer les spots des protéines marquées pour chaque gel.
Marquage des gels
Les gels analytiques ont été colorés avec du nitrate d'argent ammoniacal.
Analyse des images des gels et transferts 2-D Les images des gels et des membranes obtenues à l'aide du densitomètre GS- 800 (Bio-Rad) ont été analysées par le système Image Master 2-D Platinum 6 (Amersham Biosciences), avant et après coloration à l'or colloïdal. Les marquages spécifiques ont été reliés manuellement aux tâches protéiques sondées IgG sur les deux images. L'algorithme transférait automatiquement ces marquages de l'image du blot 2-D coloré à l'or colloïdal aux images des gels colorés au nitrate d'argent.
Digestion du gel par la trypsine La digestion du gel a été menée par le robot Freedom EVO 100 digester/spotter (Tecan, Mànnedorf, CH). Les tâches ont été décolorées deux fois avec un mélange de 10OmM ammonium bicarbonate (ABC) et 50% ACN pendant 45 min à 22°C puis séchées avec 100% ACN pendant 15 min. Elles ont ensuite été soumises à un traitement de 25mM ABC contenant 1 OmM DTT pendant 1 h à 600C puis ensuite alkylées avec 55mM iodoacétamide dans 25mM ABC pendant 30 min dans le noir à 22°C. Les morceaux de gel ont été lavés deux fois dans 25mM ABC et réduits deux fois dans 100% ACN pendant 15 min et séchés dans 100% ACN pendant 10 min. Les bandes étaient complètement déshydratées après 1 h à 600C. Les morceaux de gel ont été incubés dans 13μl de trypsine (Sequencing Grade Modified Trypsin de Promega, Wl, USA; 12.5μg/ml dans 4OmM ABC-10% ACN pH 8.0) une nuit à 400C. Après digestion, les peptides ont été lavés avec 30μl de 25mM ABC, réduits avec 100% ACN et extraits deux fois avec un mélange de 50% ACN-5% d'acide formique (FA). Les extraits ont ensuite été séchés par centrifugation sous vide (Eppendorf, Hamburg, Germany). Finalement les peptides ont été désalés à l'aide de C18-ZipTips (Millipore) et deux élutions, la première avec 50% ACN-5% FA puis avec 80% ACN-5% FA. Les élutions regroupées ont été mises à sécher à température ambiante.
Identification des protéines par spectrométrie de masse (MS)
Pour les analyses MS et MS/MS, les peptides ont été redissous dans 4μl CHCA (5mg/ml dans 50% ACN-0.1 % TFA). Un microlitre et demi de chaque échantillon a été déposé directement sur une plaque MALDI (Applied Biosystems, Foster City, CA, USA). Les gouttes ont été mises à sécher à température ambiante. L'analyse des échantillons a utilisé un spectromètre de masse MALDI-TOF-TOF 4800 (Applied Biosystems). L'acquisition des spectres et leur processing ont été réalisés par le logiciel 4000 séries explorer (Applied Biosystems) version 3.5.28193. Le calibrage externe de la plaque a été réalisé par 4 points déposés aux 4 coins de la plaque avec un mélange de 5 standards externes (PepMix 1 , LaserBio Labs, Sophia Antipolis, France). Les masses de peptides ont été acquises par étapes de 50 spectres de 900 à 4000Da. Les spectres MS ont été additionnés à partir de 1000 coups de laser avec un laser Nd-YAG opérant à 355nm et 200Hz. Après filtration des pics contaminants de trypsine, kératine et de matrice, jusqu'à 15 ions parents ont été sélectionnés pour une fragmentation MS/MS subséquente, selon leur masse, l'intensité du signal, le rapport signal sur bruit, et l'absence de masses voisines dans le spectre MS. Les spectres MS/MS ont été acquis en mode 1 kV positif, et 1000 coups ont été additionnés 50 par 50. La recherche sur bases de données a été menée à l'aide du logiciel Mascot 2.2 (MatrixScience, London, UK) via GPS explorer (Applied Biosystems) version 3.6 combinant les interrogations MS et MS/MS sur les protéines humaines de la banque Swissprot 54.5 (www.expasy.org). Les paramètres de recherche étaient les suivants: carbamidomethylation possible des cystéines et oxydation possible des méthionines. Jusqu'à un clivage trypsique manqué était permis, et une tolérance de 30ppm pour l'exactitude de la masse pour les précurseurs, et 0.3Da pour les fragments a été permise pour toutes les recherches de masses trypsiques.
L'identification a été basée sur un score Mascot au dessus du niveau de significativité (i.e. < 5%). Dans le cas où des peptides correspondent à des membres multiples d'une famille de protéines, la protéine rapportée est celle avec le plus grande nombre de correspondances (« peptide matches »).
Résultats :
Les inventeurs ont identifié 37 tâches protéiques correspondant à 28 antigènes cibles différents reconnus spécifiquement par les IgG d'au moins 20% des patients ayant une granulomatose de Wegener, 15 tâches protéiques correspondant à 14 antigènes cibles reconnus spécifiquement par les patients ayant une polyangéite microscopique sans Ac anti-MPO, 5 antigènes cibles reconnus spécifiquement par les patients ayant une polyangéite microscopique avec Ac anti-MPO, 15 tâches protéiques correspondant à 10 antigènes cibles reconnus spécifiquement par les patients ayant un syndrome de Churg et Strauss sans Ac anti-MPO, et 7 antigènes cibles reconnus spécifiquement par les patients ayant un syndrome de Churg et Strauss avec Ac anti-MPO.
Les résultats détaillés sont présentés dans les tableaux 1 à 5 ci-dessous. Tableau 1. Antigènes cibles des AECA des patients atteints de spectrométrie de masse Granulomatose de Wegener
Nombre de
Pl score Meilleur Couverture
N° sur le PM théorique/ peptides
Protéine Numéro d'accès SwissProt théorique ion score de la gel estimé (kDa) identifies séquence /estimé total ion uniques* (%)
228 Vinculine VINCJHUMAN 124/116 5.5/6.6 3/13 53 34 15
382 Far upstream elernent-binding proteiπ 2 FUBP2 JHlIMAN 73/92 6.8/7.3 6/9 174 59 16
387 Far upstream elernent-binding protein 2 FUBP2 HUMAN 73/91 6.8/7.1 2/9 90 53 17
438 Caldesmone CALD1_HUMAN 93/83 5.6/6.6 2/9 58 44 13
518 78 kDa glucose-regulated protein precursor GRP78_HUMAN 72/75 5.1/5.4 13/21 1210 144 42
546 Heat shock cognate 71 kDa protein HSP7C HUMAN 71/75 5.4/5.9 9/13 284 73 29
575* Heat shock cognate 71 kDa protein HSP7CJHUMAN 71/75 5.4/5.7 9/10 308 77 21
579* Précurseur mitochondπal de la protéine de Stress-70 GRP75 HUMAN 73/75 5.9/64 9/23 849 192 46
631 Lamine-A/C LMNA_HUMAN 74/71 6.6/6.9 6/10 184 48 15
646 Lamine- A/C LMNAJHUMAN 74/70 6.6/7 12/28 482 71 46
712* Heat shock cognate 71 kDa protein HSP7C HUMAN 71 /64 5.4/5.4 8/13 298 53 26 K)
738 πbonucleoproteine K nucléaire hétérogène HNRPK HUMAN 51/62 5.4/58 6/10 224 54 31 O
740 sous-unité epsilon de la protéine 1 du complexe T TCPE_HUMAN 60/61 5.5/5.8 10/16 264 64 36
747* Précuseur mitochondnal de la protéine 60 kDa heat shock CH60JHUMAN 61/62 5.7/56 7/7 509 123 21
776* Précuseur protéique de la disulfure-isomérase A1 PDIA1 HUMAN 57/59 4.8/5 10/20 769 119 52
797 Précurseur protéique de la disulfure-isomérase A3 PDIA3JHUMAN 57/57 6/6.3 10/15 782 163 38
809 Précurseur protéique de la disulfure-isomérase A3 PDIA3JHUMAN 57/56 6/6.1 12/15 785 145 40
813 sous-unite thêta de la protéine 1 du complexe T TCPQ HU MAN 60/57 5.4/6 2/2 67 33 3
814 Précurseur protéique de la disulfure-isomérase A3 PDIA3JHUMAN 57/56 6/6.0 6/14 318 80 36
820 sous-unité beta de la protéine 1 du complexe T TCPB_HUMAN 57/55 6/6.6 11 /12 421 92 38
821 sous-unite thêta de la protéine 1 du complexe T TCPBJHUMAN 57/56 6/6.6 12/17 608 89 51
Précurseur mitochondπal de la sous-unité alpha de l'ATP
844 synthase ATPA_HUMAN 60/54 9.2/9.3 7/12 288 75 32
874* ribonucleoprotéine H nucléaire hétérogène HNRH1 HUMAN 49/52 5.9/64 9/12 649 124 40
910* Chaîne beta Tubuline TBB5 HUMAN 50/50 4.8/5.4 11 /18 578 91 56
966* Fructose-bisphosphate aldolase A ALDOA HUMAN 39/50 8.3/9.7 2/2 68 50 6
Précurseur mitochondrial de la sous-unité alpha de l'ATP
1031* synthase ATPA_HUMAN 60/47 9.2/9.5 5/6 276 96 15
1050* Précurseur de Calumenine CALU HU MAN 37/46 4.5/5.0 2/2 51 35 5
1113 Retιculocalbιne-3 RCN3JHUMAN 37/43 4.7/51 4/9 147 60 49
1165 Sous-unité 13 régulatrice non-ATPase du protéasome 26S PSD13JHUMAN 43/40 5.5/6.3 4/6 59 27 18
1328 pyrophosphatase inorganique IPYR HUMAN 33/34 5.5/6 9/11 359 82 47
1359 Aππexine A5 ANXA5JHUMAN 36/33 4.9/5.3 10/12 538 86 52
1480 14-3-3 protéine epsilon 1433EJHUMAN 29/28 4.6/5.2 4/4 276 115 26
1514* 6-phosphogluconolactonase 6PGL_HUMAN 28/26 5.7/6.1 6/7 214 62 36
1860* Galectine-1 LEG1_HUMAN 15/15 5.3/5.3 4/4 156 49 34
2137 Caldesmone CALD1_HUMAN 93/75 5.6/6.9 2/2 113 69 4
Précurseur mitochondrial de la Succinyl-CoA:3-ketoacid-
2151* coenzyme A transferase 1 SCOT_HUMAN 56/60 7.1/68 5/6 200 68 21
2161* ribonucléoprotéine DO nucléaire hétérogène HNRPD HUMAN 38/46 7.6/9.3 3/3 158 77 11
MSMS et MS+MSMS
Tous les spots dans ce tableau sont reconnus par les patients atteints de granulomatose de Wegener et pas par les sujets sains, les spots avec une étoile sont reconnus spécifiquement par les patients atteints de granulomatose de Wegener et pas par les patients atteints d'autres vascularites. Les antigènes en gras sont reconnus par les IgG sériques de plus de 60% des pools de 3 serums de patients atteints de granulomatose de Wegener
Tableau 2. Antigènes cibles des AECA chez les patients ayant une polyangéite microscopique avec ANCA anti-MPO
Figure imgf000022_0001
Tableau 3. Antigènes cibles des AECA chez les patients ayant un syndrome de Churg et Strauss avec ANCA anti-MPO
Spectométrie de masse
Nombre de Couverture
N°sur Numéro d'accès PM théorique / Pl théorique peptides score ion Meilleur de la ri ULcIlIc le gel SwissProt estimé (kDa) /estimé identifies total score ion séquence uniques* (%)
671 Protéine 4 associée au cytosquelette CKAP4_HUMAN 5.6/5.2 66/67 3/6 80 32 12
1123 Uroporphyπnogen decarboxylase DCUPJHUMAN 41 /43 5.8/5.7 3/3 45 16 7
1669 Adénine phosphoribosyltransferase APTJHUMAN 20/20 5.8/5.9 6/6 251 62 55
1836 Profiline-1 PROF1 HUMAN 15/15 8.4/8.3 5/9 284 78 72
2083 Plastιne-3 PLSTJHUMAN 70/73 5.5/6.3 9/17 388 91 34
Growth factor receptor-bound protein 2 protéine 2
2146 liée au récepteur du facteur de croissance GRB2JHUMAN 25/25 5.9/6.4 5/7 104 37 32
2152 ribonucléoproteine L nucléaire hétérogène HNRPL HUMAN 64/69 8.5/7.3 4/10 52 19 24
K)
Tableau 4. Antigènes cibles des AECA chez les patients ayant un syndrome de Churg et Strauss κ> sans ANCA anti-MPO
Spectrométrie de masse
Nombre de Couverture
N° sur Numéro d'accès PM théorique / Pl théorique peptides score ion Meilleur de la le gel SwissProt estimé (kDa) /estimé identifies total score ion séquence uniques* (%)
370 Far upstream element-binding protein 2 FUBP2JHUMAN 73/91 6.8/7.1 4/8 151 64 16
382 Far upstream element-binding protein 2 FUBP2JHUMAN 73/91 6.8/7.1 6/9 174 59 16
382 Far upstream element-binding protein 2 FUBP2 HUMAN 73/92 68/73 6/9 174 59 16
387 Far upstream element-binding protein 2 FUBP2JHUMAN 73/91 6.8/7.1 2/9 90 53 17
387 Far upstream element-binding protein 2 FUBP2JHUMAN 73/91 6.8/7.1 2/9 90 53 17
1049 Précurseur de la Reticulocalbιn-1 RCN1JHUMAN 39/46 4.9/4.4 5/8 143 98 30
1077 Précurseur de la Calumenine CALU_HUMAN 37/45 4.5/4.4 6/10 148 32 41
1105 Serpine B9 SPB9 HUMAN 42/43 5.6/6.2 6/12 182 64 31
Précuseur mitochondπal de la sous unité alpha de
1281 la Isocitrate dehydrogenase [NAD] I DH 3A HUMAN 40/37 6.5/6.1 3/5 119 59 15
1808 Prof Ni ne- 1 PROF1 HUMAN 15/15 8.4/8.9 2/3 39 23 27
2108 GMP synthase [hydrolysant la glutamine] GUAAJHUMAN 77/75 6.4/7.1 7/11 172 45 23
2132 Sous-unité zêta de la protein 1 du complexe T TCPZ JHUMAN 58/88 6.2/7.5 2/3 39 20 6
2137 Caldesmone CALD1 HUMAN 93/75 5.6 /6.9 2/2 113 69 4
2141 Cofiline-1 COF1 HUMAN 18/17 8.2/8.2 4/6 242 68 40
* les antigènes en gras sont également reconnus par les IgG sériques de plus de 60% des pools de 3 serums de patients atteints de granulomatose de Wegener
Tableau 5. Antigènes cibles des AECA chez les patients ayant une polyangéite microscopique sans ANCA anti-MPO
Spectrométrie de masse
Nombre de Couverture
N° sur Numéro d'accès PM théorique / Pl théorique peptides score ion Meilleur de la le gel SwissProt estimé (kDa) /estimé identifies total score ion séquence uniques* (%)
359 Précurseur mitochondπal de l'aconitate hydratase ACON H UMAN 85/96 74/76 10/18 385 56 31
457 Protéine de la membrane interne des mitochondπes IMMTJHUMAN 84/81 6.1 /7.4 4/8 85 40 14
497 Heat shock cognate 71 kDa protein HSP7CJHUMAN 71 /76 5.4/6.2 4/9 68 31 20
741 ribonucleoprotéine K nucléaire hétérogène HNRPKJHUMAN 51 /62 5.4/6.2 7/14 298 75 39
994 Précurseur mitochondπal du facteur d'élongation Tu EFTUJHUMAN 50/50 7.3/7.2 6/8 218 60 25
1033 Alcohol dehydrogenase [NADP+] AK1A1 HUMAN 37/47 6.3/6.0 5/5 175 66 18
1156 Alcohol dehydrogenase [NADP+] AK1A1 HUMAN 37/41 6.3/7.0 4/4 125 54 14
1171 Sialic acid synthase SIAS HUMAN 40/40 6.3/7.1 6/7 214 61 31
1391 S-formylglutathione hydrolase ESTD HUMAN 31/31 6.5/6.9 6 167 53 39 sous-unité beta-2-like 1 de la protéine de liaison au
1394 nucleotide guanine GBLPJHUMAN 35/31 7.6/5.3 2/2 94 67 5
1398 Puπne nucleoside phosphorylase PNPHJHUMAN 32/31 6.5/6.6 6/7 363 106 32
1439 Prohibitine PHB_HUMAN 30/29 5.6/6 9/13 451 75 64
1505 Précurseur mitochondπal de la protéine de liaison au C1q C1QBP_HUMAN 31 /27 47/64 3/4 99 45 29
2130 ATPase du réticulum endoplasmique transitionnel TERAJHUMAN 89/75 5.1 /6.1 5/12 144 57 20
2162 Nucleoside diphosphate kinase A NDKA HUMAN 17/16 5.8/6.2 4/5 170 81 36
MSMS et MS+MSMS
Exemple 2 : Caractérisation des cibles antigéniques des anticorps AECA dans la maladie de Horton :
On a recherché les cibles des anticorps AECA dans les sérums de 9 patients ayant une maladie de Horton, de 12 sujets sains, et des pools de sérums de patients atteints de microangiopathie thrombotique (4 pools de trois) ou de vascularites (polyangéite microscopique - 4 pools de trois, maladie de Wegener - 5 pools de trois, et maladie de Churg et Strauss- 3 pools de trois).
Les réactivités IgG sériques étaient analysées à l'aide de gels d'électrophorèse à deux dimensions suivis d'immunoblot utilisation des antigènes de cellules endothéliales dΗUVEC, comme décrit à l'exemple 1. Les IgG sériques de patients atteints de maladie de Horton reconnaissaient 162±3 taches protéiques au sein d'extraits dΗUVEC, tandis que ceux des sujets sains reconnaissaient 79 taches protéiques. 28 taches protéiques étaient reconnues par au moins 2/3 des pools de malades atteints de maladie de Horton et pas par les sujets sains dont 15 ont été identifiées. 26 taches protéiques dΗUVEC étaient reconnues par au moins un pool de sérums de patients atteints de maladie de Horton et non par les sérums de contrôle ni par ceux des sujets sains dont 9 ont été identifiés.
Les résultats détaillés sont présentés dans les tableaux 6 et 7.
Tableau 6. Spots protéiques reconnus par au moins 2/3 des pools de sérums de patients atteints de maladie de Horton, et non reconnus par les sujets sains.
Spectrométπe de masse
PM Nombre de Couverture
N°surle Numéro d'accès théronque/ Pl théronquel/ peptides Score meilleur de là gel SwissProt estime estimé identifies ion total score ion séquence
(kDa) uniques # (%)
557 Far upstream element-binding protein 1 FUBP1 HUMAN 67/75 72/72 3/7 114 47 13
631 Lamine- A/C LMNA_HUMAN 74/71 66/69 6/10 184 48 15
646 Lamme-A/C LM NAJH U MAN 74/70 66/7 12/28 482 71 46
784 Précurseur mitochondπal de la dihydrohpoyl deshydrogénase, DLDH_HUMAN 54/59 76/73 2/2 42 22 5
789 lnosιne-5'-monophosphate deshydrogénase 2 IMDH2_HUMAN 56/58 64/71 4/7 169 94 17
950 Précurseur de la Tnpeptidyl-peptidase 1 TPP1_HUMAN 61/50 6/64 3/5 89 34 15
1017 Précurseur mitochondnal de la Fumarate hydratase FUMHJHUMAN 55/48 89/8 6/7 243 71 24
1085 πbonucléoprotéine DO nucléaire hétérogène HNRPD_HUMAN 38/43 76/78 3/3 122 69 11
1214 PDZ et LIM domain protéine 1 PDLI1_HUMAN 36/37 66/74 5/10 269 62 44 K) Ul
1249 proteéne πbosomique acide 6OS PO RLA0_HUMAN 34/37 57/6 2/5 56 35 21
1352 Protéine 2 du canal anion-selectif voltage-dépendant VDAC2_HUMAN 32/33 75/74 4/4 155 75 18
1359 Aπnexine A5 ANXA5_HUMAN 36/33 49/53 10/ 12 538 86 52
1614 Protéine DJ-1 PARK7_HUMAN 20/25 63/66 5/5 202 75 51
1734 Peptidyl-prolyl cis-trans isomerase A PPIA_HUMAN 18/18 77/8 3/5 78 48 36
1817 précurseur mitochondπal de la Thioredoxin-dependeπt peroxide reductase, PRDX3 HUMAN 28/15 77/68 5/6 211 61 44 nombre de peptides identifies unique lors des recherche MSMS et MS+MSMS
Tableau 7- Spots protéiques reconnus par au moins 1 pool de sérums de patients atteints de maladie de Horion, non reconnus par les sujets sains, ni par les sujets atteints d'autres vascularites ou de microangiopathies thrombotiques
Spectrométπe de masse
PM Nombre de Couverture
N° sur le Numéro d'accès théroπque Pl theronque / peptides Score meilleur de la
Protéine gel SwissProt / estimé estimé identifies ion total score ion séquence (kDa) uniques # (%)
228 Viπculine VINC_HUMAN 124/116 5 5/6 6 3 / 13 53 34 15
407 Far upstream element-binding protein 2 FUBP2JHUMAN 73/89 6 8/7 9 5 / 11 86 33 17
820 sous-unité beta de la protéine 1 du complexe T TCPB_HUMAN 57/55 6/6 6 11 / 12 421 92 38
11 15 Précurseur membre 11 sousfamille B DnaJ homologue DJB11JHUMAN 40/43 5 8/6 5 7 / 8 316 116 34
1174 Glutarédoxιne-3 GLRX3 HUMAN 37/39 5 3/5 9 4 / 5 173 69 18
1328 pyrophosphatase inorganique IPYRJH UMAN 33/S4 5 5/6 9 / 11 359 82 47 K)
1493 Rho GDP-dissociation inhibiteur 2 GDIR2 J-IUMAN 23/27 5 1/5 7 5 / 10 246 77 58
1607 Glutathione S-transferase P GSTP1 HUMAN 23/25 5 4/6 8 / 10 602 117 63
1633 Peroxιrédoxιne-2 PRDX2 HUMAN 22/23 5 7/6 6 / 10 367 95 50 nombre de peptides identifies unique lors des recherche MSMS et MS+MSMS
Exemple 3 : Caractérisation des cibles antigéniques des anticorps anti-cellules musculaires lisses vasculaires dans la maladie de Horton et des vascularites associées
Les sérums de 15 patients atteints d'une maladie de Horton (MH) et de 33 patients atteints d'une vasculahte associées aux ANCA (15 ayant une granulomatose de Wegener GW, 9 une polyangéite microscopique MPA, 9 un syndrome de Churg et Strauss CSS), ont été testés par pools de trois et comparés à un pool de sérums de 12 sujets sains. Les réactivités IgG sériques étaient analysées à l'aide de gels d'électrophorèse à deux dimensions suivis d'immunoblot, pratiquement comme décrit à l' exemple 1 , mais en utilisant des antigènes de cellules musculaires lisses vasculaires (CMLV) immortalisées issues d'artère mammère. Les IgG sériques des pools de trois patients atteints de maladie de Horton (n=5), de GW avec ANCA anti-protéinase 3 (PR3) (n=5), MPA sans ou avec anti- myeloperoxydase (n=3), CSS sans ou avec ANCA anti-MPO (n=3) reconnaissaient 89±28, 94±34, 56±12, 42±16, spots protéiques, respectivement. Plusieurs antigènes étaient reconnus de façon spécifique par au moins 60% des groupes de patients et d'autres antigènes étaient reconnus de façon plus intense par les patients que par les sujets sains.
Les résultats détaillés sont présentés dans les Tableaux 8 et 9.
K)
Figure imgf000029_0001
nombre ds peptides identifies unique lors des recherche MSMS et MS+MSMS
Tableau 9 : Antigènes reconnus plus intensément par les patients que par les sujets sains.
Figure imgf000030_0001
nombre de peptides identifies unique lors des recherché MSMS et MS+MSMS
K)

Claims

REVENDICATIONS
1. Procédé in vitro de détection d'une vascularite choisie parmi une granulomatose de Wegener, une polyangéite microscopique, un syndrome de
Churg et Strauss, et une maladie de Horton, chez un sujet, ou d'un risque de développer ladite vascularite, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps anti-cellules endothéliales (AECA) ou anti-cellules musculaires lisses vasculaires (CMLV).
2. Procédé selon la revendication 1 , de détection d'une granulomatose de Wegener, ou d'un risque de développer une granulomatose de Wegener, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre un antigène choisi parmi le groupe constitué de Vinculine, FUbp2 (Far upstream element-binding protein 2), Caldesmone , protéine précurseur de 78kDa régulée par le glucose, Heat shock cognate 71 kDa protein, Précurseur mitochondhal de la protéine de Stress-70, Lamine- A/C, ribonucléoprotéine K nucléaire hétérogène, sous-unité epsilon de la protéine 1 du complexe T, Précurseur mitochondrial de la protéine 60 kDa heat shock, Précurseur protéique de la disulfure-isomérase A1 , Précurseur protéique de la disulfure-isomérase A3, sous-unité thêta de la protéine 1 du complexe T, sous-unité beta de la protéine 1 du complexe T, Précurseur mitochondrial de la sous-unité alpha de l'ATP synthase, ribonucléoprotéine H nucléaire hétérogène, Chaîne bêta Tubuline, Fructose-bisphosphate aldolase A, Précurseur mitochondrial de la sous-unité alpha de l'ATP synthase,
Précurseur de Calumenine, Reticulocalbine-3, Sous-unité 13 régulatrice non- ATPase du protéasome 26S, pyrophosphatase inorganique, Annexine A5, 14-3-3 protéine epsilon, 6-phosphogluconolactonase, Galectine-1 , Précurseur mitochondrial de la Succinyl-CoA:3-ketoacid-coenzyme A transférase 1 , et la ribonucléoprotéine DO nucléaire hétérogène, dans un échantillon biologique provenant d'un patient, la présence dudit au moins un anticorps étant indicatrice d'une granulomatose de Wegener ou d'un risque de développer une granulomatose de Wegener.
3. Procédé selon la revendication 1 , de détection d'une polyangéite microscopique, ou d'un risque de développer une polyangéite microscopique, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre un antigène choisi parmi le groupe constitué de laSous-unité 7 régulatrice de la protéase 26S , Heme oxygénase 2, Histone
H2B type F-S, sous-unité alpha type-5 du Protéasome, sous-unité beta type-2 du Protéasome, Précurseur mitochondrial de l'aconitate hydratase, Protéine de la membrane interne des mitochondries, ribonucleoprotéine K nucléaire hétérogène, Précurseur mitochondrial du facteur d'élongation Tu, Alcool dehydrogenase [NADP+], Sialic acid synthase, S-formylglutathione hydrolase, sous-unité beta-2-like 1 de la protéine de liaison au nucleotide guanine, Purine nucleoside phosphorylase, Prohibitine, Précurseur mitochondrial de la protéine de liaison au C1 q, ATPase du réticulum endoplasmique transitionnel, et Nucleoside diphosphate kinase A, dans un échantillon biologique provenant d'un patient, la présence dudit au moins un anticorps étant indicatrice d'une polyangéite microscopique ou d'un risque de développer une polyangéite microscopique.
4. Procédé selon la revendication 1 , de détection d'un syndrome de Churg et
Strauss, ou d'un risque de développer un syndrome de Churg et Strauss, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre un antigène choisi parmi le groupe constitué de la Protéine 4 associée au cytosquelette, Uroporphyrinogen decarboxylase, Adénine phosphoribosyltransferase, Profiline-1 , Plastine-3, protéine 2 liée au récepteur du facteur de croissance, ribonucleoprotéine L nucléaire hétérogène, FUbp2 (Far upstream element-binding protein 2), Précurseur de la Reticulocalbin-1 , Précurseur de la Calumenine, Serpine B9, Précuseur mitochondrial de la sous-unité alpha de la Isocitrate dehydrogenase [NAD], GMP synthase [hydrolysant la glutamine], Sous-unité zêta de la protein 1 du complexe T, caldesmone, et Cofiline-1 , dans un échantillon biologique provenant d'un patient, la présence dudit au moins un anticorps étant indicatrice d'un syndrome de Churg et Strauss ou d'un risque de développer un syndrome de Churg et Strauss.
5. Procédé selon la revendication 1 , de détection d'une maladie de Horton, ou d'un risque de développer une maladie de Horton, comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre un antigène choisi parmi le groupe constitué de vinculine, caldesmone, lamin A/C, alpha-enolase, actine, nucléophosmine, annexine A2, FUbp2 (Far upstream element-binding protein 2), FUbpi (Far upstream element-binding protein 1 ), précurseur mitochondrial de la dihydrolipoiyl déshydrogénase, inosine-5'-monophosphate déshydrogénase 2, le précurseur 1 de la tripeptidy-peptidase, le précurseur mitochondrial de la fumarate hydratase, la protéine 1 des domaines PDZ et LIM, la protéine ribosomique PO acide 6OS, la protéine 2 du canal anion-sélectif voltage-dépendant, protéine
DJ-1 , peptidyl-prolyl cis-trans isomérase A, précurseur mitochondrial de la peroxyde réductase thioredoxine-dépendante, la sous-unité beta de la protéine 1 du complexe T, le précurseur membre 11 sous-famille B homologue DNAJ, la glutaredoxine-3, la pyrophosphatase inorganique, la protéine inhibitrice 2 de dissociation Rho GDP, et la glutathione S-transférase
P, dans un échantillon biologique provenant d'un patient, la présence dudit au moins un anticorps étant indicatrice d'une maladie de Horton ou d'un risque de développer une maladie de Horton.
6. Procédé selon la revendication 1 , comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre la vinculine ou la lamine.
7. Procédé selon la revendication 1 , comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps dirigé contre un antigène choisi parmi le groupe constitué de Caldesmone, protéine précurseur de 78kDa régulée par le glucose, Heat shock cognate 71 kDa protein , sous-unité epsilon de la protéine 1 du complexe T, Précurseur protéique de la disulfure-isomérase A3 , et Précurseur de Calumenine.
8. Procédé selon l'une des revendications 1 à 7, dans lequel l'échantillon biologique est un échantillon de sang ou de sérum.
9. Procédé selon l'une des revendications 1 à 8, dans lequel la présence dudit au moins un anticorps dans l'échantillon biologique est comparée à une valeur contrôle, la présence dudit au moins un anticorps en une quantité supérieure à la valeur contrôle étant indicatrice d'une vascularite ou d'un risque de développer une vascularite.
10. Procédé selon l'une des revendications 1 à 9, dans lequel la quantité dudit au moins un anticorps est déterminée par un immunoessai.
11. Procédé selon la revendication 10, dans lequel l'immunoessai est un dosage ELISA.
12. Procédé selon l'une des revendications 1 à 11 , dans lequel le patient est un humain.
13. Procédé selon l'une des revendications 1 à 12, dans lequel le patient n'a pas d'auto-anticorps ANCA.
14. Procédé in vitro de pronostic ou de suivi d'une vascularite choisie parmi une granulomatose de Wegener, polyangéite microscopique, syndrome de Churg et Strauss, et maladie de Horton , comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps tel que défini à la revendication 1 , dans un échantillon biologique provenant d'un patient, à différents temps, l'augmentation de la quantité dudit au moins un anticorps au cours du temps étant indicative d'une aggravation de la vascularite.
15. Procédé in vitro d'évaluation de l'efficacité d'un traitement envers une vascularite choisie parmi une granulomatose de Wegener, polyangéite microscopique, syndrome de Churg et Strauss, et maladie de Horton , comprenant la détermination de la présence et/ou de la quantité d'au moins un anticorps tel que défini à la revendication 1 , dans un échantillon biologique provenant d'un patient, à différents temps avant, au cours ou après le traitement, la diminution de la quantité dudit au moins un anticorps au cours du temps étant indicative d'une amélioration de la vascularite.
PCT/FR2010/050331 2009-02-25 2010-02-25 Procédé de diagnostic d'une vascularite WO2010097553A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES10710087.7T ES2436547T3 (es) 2009-02-25 2010-02-25 Procedimiento para el diagnóstico de una granulomatosis de Wegener
EP10710087.7A EP2401620B1 (fr) 2009-02-25 2010-02-25 Procédé de diagnostic d'une granulomatose de wegener
US13/203,098 US20120088257A1 (en) 2009-02-25 2010-02-25 Method for diagnosing vasculitis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951205A FR2942541A1 (fr) 2009-02-25 2009-02-25 Procede de diagnostic d'une vascularite
FR0951205 2009-02-25

Publications (2)

Publication Number Publication Date
WO2010097553A2 true WO2010097553A2 (fr) 2010-09-02
WO2010097553A3 WO2010097553A3 (fr) 2010-10-21

Family

ID=41011840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050331 WO2010097553A2 (fr) 2009-02-25 2010-02-25 Procédé de diagnostic d'une vascularite

Country Status (6)

Country Link
US (1) US20120088257A1 (fr)
EP (2) EP2653869B1 (fr)
ES (1) ES2436547T3 (fr)
FR (1) FR2942541A1 (fr)
PT (1) PT2401620E (fr)
WO (1) WO2010097553A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290535A (zh) * 2017-08-09 2017-10-24 四川农业大学 疥螨无机焦磷酸酶的应用以及诊断疥螨病的试剂盒

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693009B2 (en) 2009-02-11 2023-07-04 Cedars-Sinai Medical Center Methods for detecting post-infectious irritable bowel syndrome
US10132814B2 (en) 2014-10-09 2018-11-20 Cedars-Sinai Medical Center Methods for distinguishing irritable bowel syndrome from inflammatory bowel disease and celiac disease
US9702884B2 (en) * 2012-09-17 2017-07-11 Cedars-Sinai Medical Center Methods for detecting the presence of irritable bowel syndrome and system for diagnosing same
MX2016004167A (es) 2013-10-09 2016-06-24 Cedars Sinai Medical Center Diagnostico y tratamiento del sindrome del intestino irritable y la enfermedad inflamatoria intestinal.
WO2017055248A1 (fr) * 2015-09-28 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Méthodes et compositions pharmaceutiques pour le traitement d'une insuffisance cardiaque

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094638A1 (fr) 2003-04-21 2004-11-04 St. Marianna University, School Of Medicine Antigene de la vasculite et technique de diagnostic de vasculite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091303A (en) * 1989-10-27 1992-02-25 The General Hospital Corporation Diagnosis of wegener's granulomatosis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094638A1 (fr) 2003-04-21 2004-11-04 St. Marianna University, School Of Medicine Antigene de la vasculite et technique de diagnostic de vasculite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GÔRG ET AL., ELECTROPHORESIS, vol. 21, no. 6, 2000, pages 1037 - 53
GUILPAIN; MOUTHON, CLINIC REV ALLERG IMUNOL, vol. 35, no. 1-2, October 2008 (2008-10-01), pages 59 - 65
SERVETTAZ ET AL., PROTEOMICS, vol. 8, no. 5, March 2008 (2008-03-01), pages 1000 - 8

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290535A (zh) * 2017-08-09 2017-10-24 四川农业大学 疥螨无机焦磷酸酶的应用以及诊断疥螨病的试剂盒
CN107290535B (zh) * 2017-08-09 2019-03-08 四川农业大学 疥螨无机焦磷酸酶的应用以及诊断疥螨病的试剂盒

Also Published As

Publication number Publication date
EP2653869A3 (fr) 2013-12-11
FR2942541A1 (fr) 2010-08-27
EP2401620B1 (fr) 2013-10-02
EP2653869A2 (fr) 2013-10-23
US20120088257A1 (en) 2012-04-12
WO2010097553A3 (fr) 2010-10-21
ES2436547T3 (es) 2014-01-02
EP2653869B1 (fr) 2015-08-05
PT2401620E (pt) 2013-11-29
EP2401620A2 (fr) 2012-01-04

Similar Documents

Publication Publication Date Title
Safronova et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii
EP2653869B1 (fr) Procédé de diagnostic d&#39;une vascularite
Nagarkatti et al. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice
US20160109462A1 (en) Tuberculosis Biomarkers and Uses Thereof
Farias et al. Ten years of proteomics in multiple sclerosis
Peng et al. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis
Xiong et al. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection
Rukmangadachar et al. Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients
Pešić et al. Identification and validation of six proteins as marker for endemic nephropathy
Bi et al. Proteomics investigations of potential protein biomarkers in sera of rabbits infected with schistosoma japonicum
Takizawa et al. Urinary extracellular vesicles signature for diagnosis of kidney disease
Yu et al. iTRAQ-based quantitative proteomics study in patients with refractory Mycoplasma pneumoniae pneumonia
Mascibroda et al. INTS13 mutations causing a developmental ciliopathy disrupt integrator complex assembly
Bilić et al. Serum and urine profiling by high-throughput TMT-based proteomics for the investigation of renal dysfunction in canine babesiosis
ES2394152T3 (es) Huella proteómica para el diagnóstico de la esteatohepatitis no alcohólica (EHNA) y/o esteatosis
Zhao et al. Quantitative proteomics of the endothelial secretome identifies RC0497 as diagnostic of acute rickettsial spotted fever infections
Muñoz-Antoli et al. Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection
Lu et al. Identification and profiling of circulating antigens by screening with the sera from schistosomiasis japonica patients
Kardoush et al. Identification of candidate serum biomarkers for Schistosoma mansoni infected mice using multiple proteomic platforms
Mol et al. Proteomic profile of Brucella abortus-infected bovine chorioallantoic membrane explants
Hussain et al. Moesin expression is correlated with its involvement in patients with Behcet’s disease
mehra Soleyman et al. Proteomic analysis of soluble protein extract of adult Toxocara cati
Matsunaga et al. Identification of 4-trimethylaminobutyraldehyde Dehydrogenase (TMABA-DH) as a candidate serum autoantibody target for Kawasaki disease
Bergemalm et al. Elevated fecal peptidase D at onset of colitis in Galphai2-/-mice, a mouse model of IBD
Vadaq et al. High-throughput proteomic analysis reveals systemic dysregulation in virally suppressed people living with HIV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10710087

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010710087

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203098

Country of ref document: US