WO2010095687A1 - Carbon traceability management system - Google Patents

Carbon traceability management system Download PDF

Info

Publication number
WO2010095687A1
WO2010095687A1 PCT/JP2010/052458 JP2010052458W WO2010095687A1 WO 2010095687 A1 WO2010095687 A1 WO 2010095687A1 JP 2010052458 W JP2010052458 W JP 2010052458W WO 2010095687 A1 WO2010095687 A1 WO 2010095687A1
Authority
WO
WIPO (PCT)
Prior art keywords
greenhouse gas
lot
production
equipment
gas emissions
Prior art date
Application number
PCT/JP2010/052458
Other languages
French (fr)
Japanese (ja)
Inventor
良和 石井
和信 森田
節雄 河上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010095687A1 publication Critical patent/WO2010095687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a carbon traceability management system used for manufacturing management for the industrial field.
  • Patent Document 2 there is a technique for managing the energy usage status in the production process in real time. By using this technology, it is said that greenhouse gas emissions due to fuel, received power, etc. used in the product production process can be suppressed.
  • Patent Document 1 In order to calculate the carbon footprint, etc., [Patent Document 1], [Patent Document 2] and production management information are used to allocate greenhouse gas emissions as emissions per unit amount of each product. There is a need to. This must include contributions from procurement raw materials, etc., but the greenhouse gas emissions equivalent to 50% that are not managed as described above are based on macro information such as input-output tables and raw material usage. It will be determined.
  • greenhouse gas emissions management in this way can be realized in a closed form at each manufacturing plant, it does not reflect the company's efforts in terms of purchasing and inventory management. As a result, greenhouse gas emission reduction results are not transmitted to upstream (upstream) materials and parts companies through the supply chain. Conversely, efforts to reduce greenhouse gas emissions in the parts and materials industries do not have the effect of making transactions between companies advantageous.
  • An object of the present invention is to provide a management apparatus capable of grasping greenhouse gas emissions related to production in product units.
  • the carbon traceability management system of the present invention includes a means for recording and managing externally received power, received cold / heat quantity, in-house facility operation results, cold / heat facility operation results, material receipt / payment results, A means of managing production results, a means of calculating greenhouse gas emissions from each result, a means of allocating the calculated greenhouse gas emissions to a single unit quantity of product, and distribution to production lots Means for managing greenhouse gas emission data as specific data for lots is provided.
  • the means for calculating the greenhouse gas emission from each result is to calculate the greenhouse gas emission using the highest efficiency value of the equipment and the purchaser.
  • the means for recording and managing the payment results is to record the basic unit of greenhouse gas emissions of the received materials together with the price and delivery date.
  • the means for recording and managing the receipt and payment results is to record the inventory period of the materials and raw materials that have been issued.
  • Means for calculating greenhouse gas emissions when calculating greenhouse gas emissions per unit for any lot that manufactures any product, or the calculated greenhouse gas emissions per unit of product The method of allocating to the greenhouse is based on the operating results of the individual manufacturing equipment used in the production lot, the use of cold / hot heat, the storage period of the raw materials used, the amount of raw materials used, etc. Distribute gas emissions to the product concerned, apportion greenhouse gas emissions associated with the operation of cold / hot facilities according to the use of cold / hot energy, and apportion greenhouse gas emissions generated during production and storage of raw materials used In addition, greenhouse gas emissions associated with cleaning, disposal, paperwork, etc. are apportioned in proportion to the production time of the production lot for a certain period.
  • the amount of greenhouse gas discharged to produce a unit quantity of the product, the electric power received and used or the electric power generated by private power generation Not only greenhouse gas emissions associated with energy used directly in production activities, such as steam consumption, but also greenhouse gas emissions generated during the production of raw materials and greenhouses emitted during the preservation process You can also grasp the effect gas.
  • the block diagram of the carbon traceability management system by Embodiment 1 of this invention Flow chart of processing to distribute greenhouse gas emissions to each production lot.
  • the figure which shows the structural example of the stock condition management data of material and raw material The figure which shows the structural example of the energy usage condition data of a facility installation.
  • 10 is a flowchart of an algorithm for interpreting policy reading processing and processing settings for a discarded lot according to the second embodiment of the present invention. Flow chart of the algorithm that interprets the policy reading process and process settings for the cleaning lot.
  • FIG. 1 is a diagram showing a configuration of a carbon traceability management system according to Embodiment 1 of the present invention.
  • the system according to the present embodiment manages a utility management apparatus 102 that supervises or manages generation facilities such as a power receiving / transforming facility 110, a private power generation facility 123, a cooling / heating facility 122, and a hydraulic / pneumatic facility 121, and manufacturing facilities 131, 132.
  • a facility management device 105 for managing the computer and the communication equipment 153, and the like.
  • the driving system equipment operation results obtained from the utility management device 102, the equipment use results of each production lot obtained from the manufacturing execution management device 103, the materials and raw material use results, the equipment use results and the materials and raw material use associated with cleaning, etc.
  • Actual results storage period of used materials and raw materials obtained from the material management device 104, greenhouse gas emission basic unit required for the production, actual use of air conditioning and lighting required for storage of materials and storage facilities
  • Use results energy use results of facility equipment obtained from the facility management device 105, allocation policies 106 of greenhouse gas emissions by cleaning and lot disposal, and greenhouse gases for each facility according to the operating state of each equipment Emission equivalent data 107 and the amount of greenhouse gas emissions associated with manufacturing out of materials and raw materials
  • use greenhouse gas emission data 108 for each material and raw material prepared in advance using an input-output table, etc. and allocate greenhouse gas emissions for each production lot of products and intermediate products.
  • a greenhouse gas emission management device 101 for each lot for calculation is provided.
  • the manufacturing execution management device 103 records the usage results of the input materials and raw materials and the equipment used for each lot. For materials and raw materials, record the lot number and amount used, and for facilities, record the power used in the lot and the amount of heat and cold energy.
  • the amount of cold / hot heat is the amount and temperature in the case of hot water and cold water, and the amount, temperature, and pressure in the case of steam.
  • the material management device 104 manages the storage status and stocking status of materials and raw materials. Information on the period from warehousing to unloading is managed for the lots of materials and raw materials allocated by the manufacturing execution management apparatus 103. In addition, it manages the power consumption of the transportation equipment that accompanies loading and unloading and the results of air conditioning usage.
  • the facility management device 105 manages the energy used by the facility equipment during the manufacturing period of the lot recorded by the manufacturing execution management device 103.
  • the greenhouse gas emission equivalent data 107 of the power generation equipment used and the greenhouse gas emission data 108 of the materials and raw materials are used.
  • the greenhouse gas emission equivalent data 107 for each facility refers to the amount of greenhouse gas emissions generated per unit time or unit output in the operation state of the facility.
  • the greenhouse gas emission data 108 from the production of materials and raw materials is used if there is greenhouse gas emission basic unit information 160 of the relevant materials and raw material lots at the time of arrival. Use to calculate.
  • the greenhouse gas emissions generated by the production of the related cleaning operations and waste lots may be apportioned based on the allocation policy 106.
  • the greenhouse gas emission management device 101 for each lot records and manages the greenhouse gas emission for each lot calculated by the above-described method in addition to the management items such as the production amount and the raw materials used for each lot.
  • FIG. 2 is a flowchart showing an example of processing executed by the greenhouse gas emission distribution means for the product and intermediate product lots
  • FIG. 3 is a diagram showing an example of greenhouse gas emission equivalent data 107 for each facility. is there.
  • the data 401 of the utility facility 120 is an example of data for a facility whose greenhouse gas emission amount per unit time is determined in accordance with the operation state of the facility.
  • the data 402 of the utility facility 120 is an example of data for a facility whose greenhouse gas emission rate with respect to the amount of raw material used is determined in accordance with the operation state of the facility.
  • the data 403 of the utility facility 120 is an example of data targeted for a utility that changes the amount of greenhouse gas generated with respect to the unit amount of energy used by the provider (electric power company), such as purchased power from the electric power company.
  • the data 404 of the utility facility 120 is an example of data targeted for utilities that can be managed appropriately by changing the distribution of greenhouse gas emissions according to the quality (pressure) of the utility used like air pressure.
  • FIG. 4 is an example of data indicating the operating status of each lot or each facility.
  • the production lot data 500 records the process included in the production lot, its start time, end time, equipment used, amount of utility used, and the like. Further, the data 501 records the used material and the lot number and the amount of the raw material.
  • the usage record 701 of the utility facility 120 shown in FIG. 6 is the usage of the facility that can be recorded by a combination of a proportional scale (received power) and a nominal scale (provider) with respect to time, such as the amount of power received and the provider, such as the power receiving facility 110. It is an example of situation data.
  • the usage status data of the facility that records the operation state on one proportional scale. For example, if the time change of the tank pressure is recorded as a record in a compressor or the like, the greenhouse gas emission amount can be obtained using the equivalent data 404. In the facility usage record 901 shown in FIG. 8, the amount of power used at each time is recorded.
  • the stock status of materials and raw materials is recorded.
  • the arrival date (receipt date), the place of receipt, record the inventory amount and the greenhouse gas emission intensity.
  • the stock quantity is updated every time a shipment is issued.
  • Greenhouse gas emission basic unit (manufacturing basic unit) is recorded when data is obtained from the purchase source at the time of purchase of the material and raw materials.
  • the transport unit obtained by dividing the greenhouse gas emissions associated with transport from the purchase source to the establishment using the management system of the present embodiment by the amount received at the time of arrival is added to the production unit. It may be recorded.
  • data such as the emission equivalent 405 related to the transportation of materials is prepared in advance, and a method of calculating the amount of emissions according to the actual transportation distance can be adopted. good.
  • the facility energy usage record 1101 shown in FIG. 10 includes divisions that can be linked to production lots such as the warehouse facility 140 and the production site 130 in addition to divisions that do not depend directly on production lots such as the office 150. , Records energy consumption with respect to time for each category such as warehouses A and B.
  • FIG. 11 shows an example of greenhouse gas emission equivalent data 108 for each material and raw material. This can be created from an input-output table. This data indicates that when 1 kg of item AA is consumed, it is regarded as 0.12 kg of greenhouse gas emissions. When there is no basic unit data in the inventory information, this data is used for the greenhouse effect associated with raw material production and transportation. Estimates of gas emissions can be obtained.
  • FIG. 12 shows a description example of a greenhouse gas emission allocation policy 106 for cleaning and lot disposal.
  • the description method of the allocation policy 106 depends on an algorithm for processing the allocation policy 106.
  • a disposal lot is a production lot of the same item that is manufactured within 60 hours in any item manufacturing process. Apportion in 1/3 increments. If three or more lots of the same item are not manufactured within the time, the greenhouse gas emissions from the waste lot remaining when the time has elapsed are Error processing such as assigning to a production lot of the same item executed is described.
  • step 312 While looping in step 302 for each equipment used in the lot, the loop in step 303 is rotated for each utility therein, in which, first, in step 311, for each utility used there. Acquire usage records.
  • step 312 the utility operating status 601, 701, 801 for the time period is acquired.
  • step 313 greenhouse gas emission equivalent data 401 to 404 of the utility is acquired.
  • step 314 the utility uses the utility. Calculate and apportion the amount related to the lot of the greenhouse gas emissions.
  • step 320 inventory information is acquired regarding the materials and raw materials used in the lot, and a loop is performed for each stock.
  • step 321 the presence or absence of purchase unit data is first confirmed, and the purchase source is obtained. If there is unit data from, the value is acquired in step 323, and if not, the value of greenhouse gas emission data 108 for each material and raw material is acquired in step 324.
  • step 325 in step 320, the amount of greenhouse gas emissions associated with the manufacture and transportation of the material and raw material is calculated using the used amount of the material and raw material and the obtained basic unit. Also, in step 326, the greenhouse gas emissions due to the use of energy at the facility of the warehouse during the inventory period of the material and the raw material are prorated according to the weight ratio or heat capacity ratio of the other raw materials that use the same warehouse, and the greenhouse accompanying the storage is stored. Calculate effect gas emissions.
  • step 330 if there is a track record of waste lots or cleaning operations for which emissions are not yet completed, a loop is performed for each of the waste lots or cleaning operations that have not been counted.
  • step 331 it is determined whether or not it is necessary to apportion the discharges of those lots to the lots. If apportioning is necessary, in step 332, the target waste lot or cleaning operation is performed. Calculate greenhouse gas emissions associated with the use of materials and raw materials and utility use.
  • step 333 the emission amount is apportioned to the lot according to the allocation policy 106, and in step 334, the emission amount value is updated.
  • step 340 a loop is made for a time zone that has not yet been accounted for in the amount of emissions generated by the facility.
  • step 341 it is determined whether or not the time zone falls within the time zone in which the production lot was implemented. If so, in step 342, the balance is equally distributed with other production lots executed in that time zone. If not, in step 343, a certain proportion of the emission amount due to the facility in the time period is apportioned, and in step 344, the emission amount value is updated.
  • step 14-101 the policy file is read and its contents are stored in the memory.
  • step 14-207 If it is determined in step 14-207 that it is the allocation target, the start date of the allocation target production lot is checked in step 14-208, and this is the allocation child acquired in step 14-204 from the production end date of the discarded lot. Check whether it is within the period specified by element time attribute and time_unit attribute.
  • step 14-210 In the processing of (A) within the period, in step 14-210, the rate attribute of the bunkatsu child element acquired in step 14-205 and the total discharge amount of the disposal lot (in the case of the disposal lot, depending on the utility usage and the material / raw material) Using this method, the apportionment amount for the allocation lot is determined. In step 14-211, the apportioned amount and apportioned amount of the disposal lot are updated, and in step 14-212, the apportioned amount obtained in step 14-210 is returned as the calculation result.
  • the return value is zero in the example of FIG. 14, but other proportional methods may be used.
  • step 14-225 the apportioned amount of the discarded lot is updated, and in step 14-226, the return value is returned.
  • step 15-101 the used equipment and manufacturing period of the allocation target manufacturing lot are first acquired.
  • step 15-104 the allocation child element of the cleaning element thus obtained is acquired, and in step 15-105, the bunkatsu child element is acquired.
  • step 15-202 it is obtained in step 15-105 how to apportion the generated amount generated in the cleaning lot to the production lot immediately before searched in step 15-201 and the production lot to be allocated.
  • rate attribute product_quantity_depend
  • x is calculated in the same manner as in the case of x: y, where x is the product manufacturing amount (weight) of the allocation target lot and y is the product manufacturing amount (weight) of the immediately preceding manufacturing lot.
  • rate attribute material_quantity_depend
  • x is the material and raw material usage (weight) of the allocation target lot
  • y is the raw material and raw material usage (weight) of the previous production lot, as in the case of x: y described above calculate.
  • step 15-203 the apportioned amount and the incomplete amount of the actual cleaning lot are updated, and the apportioning process is completed.
  • step 15-204 the value obtained in Equation 2 is added to the discharge amount of the previous lot, and the record is updated.
  • step 15-205 the value obtained in equation 1 is returned.
  • the emission equivalents in each facility and utility are defined in advance in a table as shown in FIG. 4, and the table is directly searched from the facilities and utilities used in the production lot, and the emission amount is determined in this table. It is calculated using the value of.
  • the output 1601 of the primary power equipment and the greenhouse gas emission amount 1602 are proportional.
  • the amount of emissions varies depending on the configuration of the power generation equipment or when the power is supplied from multiple power providers.
  • the output 1601 of the primary power equipment and the greenhouse gas emissions 1602 may not be proportional.
  • FIG. 16 shows the state of the secondary power facility of this embodiment.
  • Reference numeral 1701 in FIG. 16A shows a situation where the secondary power equipment uses the primary power equipment shown in FIG.
  • Reference numeral 1702 in FIG. 16B indicates the energy stored in the secondary power facility. If the secondary energy is liquid, it can be grasped by a value proportional to the product of temperature and mass, and if it is a compressible gas, it is proportional to the product of pressure and volume.
  • the contribution of 1703 in FIG. 16C to the discharge amount of the primary power by the secondary power is the ratio of the amount 1701 of the primary power used by the secondary power to the output 1601 of the primary power, and the discharge amount by the primary power. Is allocated at this value to allocate secondary power emissions.
  • Reference numeral 1704 in FIG. 16D indicates an integrated value obtained by integrating the discharge amount by the secondary power in the time direction.
  • FIG. 18 shows the state of the tertiary power equipment of this embodiment.
  • Reference numeral 1801 in FIG. 17A indicates the usage status of secondary power by the tertiary equipment.
  • the energy usage status x of the secondary power by the tertiary equipment can be grasped.
  • 1802 in FIG. 17B is a ratio of this value and the state of the secondary power unit at each time point, and shows the distribution ratio of greenhouse gas emissions to the tertiary equipment.
  • c) 1803 calculates the integrated value of the discharge amount indicated by p of 1803 by taking the product of this value and the integrated discharge amount 1704 allocated to the secondary power equipment and integrating it. By subtracting from the emission amount 1704, the unallocated emission amount excluding the emission amount by the secondary equipment indicated by Z ′ in FIG.
  • FIG. 19 shows an example of the equipment state management screen.
  • changes over time such as the tank pressure and discharge amount of the compressor are displayed as results.
  • FIG. 20 shows an example of a lot state management screen.
  • the utility management apparatus 102 manages the usage status of the power receiving / transforming equipment and the operating status of the cold / hot heat generation equipment in units of seconds, minutes, or hours, and records the lot recorded in the manufacturing execution management unit 103. It manages the operation of equipment related to manufacturing.
  • This screen displays the start-to-end time and the utilization status of utility equipment during that period for the production lot.
  • the amount of greenhouse gas emitted to produce a unit quantity of the product is received and used, or the power and steam used by private power generation.
  • greenhouse gases associated with energy directly used in production activities, etc. greenhouse gases associated with cleaning of equipment used for manufacturing, manufacturing execution failures, cleaning waste liquids, etc. are also included. Can be grasped.
  • the amount of greenhouse gas emitted to produce a unit quantity of the product is received and used, or the power and steam used by private power generation. As shown above, it is possible to grasp not only greenhouse gas emissions associated with energy directly used in production activities but also greenhouse gases associated with office work.
  • Each embodiment can be used in an information processing system that manages manufacturing processes, material receipt and ordering, and ordering in assembly processing factories, chemical factories, food factories, and the like.
  • Greenhouse gas emission management device 101
  • Utility management device 102
  • Manufacturing execution management device 104
  • Material management device 105
  • Facility management device 106
  • Allocation policy 107
  • Greenhouse gas emission equivalent data 108
  • Greenhouse gas emission data 110
  • Power receiving / transforming equipment 120
  • Utility equipment 130
  • Production site 140
  • Warehouse equipment 150 Office

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

Disclosed is a management device that can determine the greenhouse gas emissions per product unit associated with the production of said product, said management device being equipped with a utility management device (102), which records and manages an incoming power from outside, cooling/heating input, private power generation equipment operation results, and cooling-heating equipment operation results, a materials management device (104), which records and manages materials and starting material usage results, a facilities management device (105), which records and manages energy used by facilities and equipment during a production period, a manufacturing execution management device (103), which manages product production results, an emissions computation means, which computes the greenhouse gas emissions from the various results recorded and managed by the utility management device (102), materials management device (104), facilities management device (105), and manufacturing execution management device (103), an emission allocation means, which allocates in product units the greenhouse gas emissions computed by the emission computation means, and an emission management device (101), which manages the greenhouse gas emissions data allocated to a manufacturing lot as intrinsic data of the lot.

Description

カーボントレーサビリティ管理システムCarbon traceability management system
 本発明は、産業分野向けの製造管理に用いられるカーボントレーサビリティ管理システムに関する。 The present invention relates to a carbon traceability management system used for manufacturing management for the industrial field.
 温室効果ガスの排出量削減は、企業の社会貢献の面や、排出規制や排出枠といった観点から重要性が増している。 Reducing greenhouse gas emissions is becoming increasingly important from the perspective of corporate social contribution, emission regulations, and emission limits.
 このような動向から、〔特許文献1〕に記載のように、生産時の温室効果ガス原単位が異なるエネルギーのベストミックスを提供するシステムが提案されている。このシステムを用いることにより、製品の生産プロセスで使用する燃料,受電電力などによる温室効果ガス排出を抑制することができるとされている。 From such trends, as described in [Patent Document 1], a system that provides the best mix of energy with different greenhouse gas intensity during production has been proposed. By using this system, it is said that greenhouse gas emissions due to fuel, received power, etc. used in the production process of products can be suppressed.
 また、〔特許文献2〕に記載のように、生産プロセスでのエネルギー使用状況をリアルタイムで管理する技術がある。この技術を用いることで、製品の生産プロセスで使用する燃料,受電電力などによる温室効果ガス排出を抑制することができるとされている。 Also, as described in [Patent Document 2], there is a technique for managing the energy usage status in the production process in real time. By using this technology, it is said that greenhouse gas emissions due to fuel, received power, etc. used in the product production process can be suppressed.
特開2005-25206号公報JP 2005-25206 A 特開2007-264704号公報JP 2007-264704 A
 パルプや鉄,合成ゴムといった素材を除く多くの産業では、製品の製造プロセスでの温室効果ガスの排出量は、素材や輸送などで50%前後を占めている。 In many industries except materials such as pulp, iron, and synthetic rubber, greenhouse gas emissions in product manufacturing processes account for around 50% of materials and transportation.
 自家発電や事業用電力の占める割合は40%程度である。このように確かに自家発電や事業用電力は、主要な排出源であるが、〔特許文献1〕に記載の従来技術により最適化されるのは、これらの自家発電や事業用電力での排出のみである。 The proportion of private power generation and business power is about 40%. In this way, private power generation and business power are certainly the main sources of emissions. However, what is optimized by the conventional technology described in [Patent Document 1] is the emissions from these private power generation and business power. Only.
 例えば電力の場合、温室効果ガスの排出原単位が低いプロバイダから電力を調達することにより、製造プロセスおよびそれを支える業務を通して生成される温室効果ガスの排出を抑制できるが、当然のことながら、前述の占める割合40%が0になるわけではない。また、実際には蒸気,温熱などの需要をまかなう必要もあり、単純に温室効果ガス原単位だけを基準にして、エネルギー供給源を切り替えることができるわけでもない。 For example, in the case of electricity, by procuring electricity from a provider with a low greenhouse gas emission intensity, greenhouse gas emissions generated through the manufacturing process and operations that support it can be suppressed. The percentage of 40% is not 0. Moreover, in reality, it is necessary to meet the demand for steam, heat, etc., and it is not possible to simply switch the energy supply source based on only the greenhouse gas intensity.
 自産業の寄与は自家発電を除くと、食薬化学といった産業で10~20%程度、組み立て産業では、数%~10%程度となっている。自家発電を入れても組み立て産業の場合10%程度、食品,薬品では15%程度、化学では25%程度である。 Excluding in-house power generation, the contribution of own industry is about 10-20% in industries such as medicinal chemistry, and about several to 10% in the assembly industry. Even with in-house power generation, it is about 10% for the assembly industry, about 15% for food and medicine, and about 25% for chemistry.
 このため、製品が生産されるために、資材や電力といった取引先で発生した温室効果ガスも含めて、製品が生産されることによるトータルに排出された温室効果ガスを把握する上で、或いは削減する上で、自家発電や事業用電力だけを対象にする方法で、大きな効果が期待できるのは、素材などの特定の産業に限られてしまう。 For this reason, in order to produce products, it is necessary to grasp or reduce the total greenhouse gas emissions from product production, including greenhouse gases generated by suppliers such as materials and electricity. On the other hand, a method that targets only private power generation and business power can be expected to have a great effect only in specific industries such as materials.
 又、〔特許文献2〕に記載の従来の技術では、リアルタイムで監視するのは、事務所などのファシリティでのエネルギー消費も含めた、生産活動、ならびに事業用電力の受電状況であり、〔特許文献1〕の技術と組み合わせることで、より高度な温室効果ガス排出削減を実施できる見込みがある。しかしこの場合でも、素材や輸送などで排出される残り50%前後の温室効果ガスの把握や削減には寄与できない。 Further, in the conventional technology described in [Patent Document 2], what is monitored in real time is the production activity including the energy consumption in facilities such as offices, and the power reception status of business power. Combining with the technology of [Literature 1], there is a possibility that more advanced greenhouse gas emission reduction can be implemented. However, even in this case, it is not possible to contribute to grasping or reducing the remaining 50% of greenhouse gases emitted from materials and transportation.
 CO2取引などでは、事業所で排出される温室効果ガスを管理できればよく、〔特許文献1〕と〔特許文献2〕の組合せにより、排出量を管理したり、排出量を削減したりすることで対応できる。 For CO 2 trading, etc., it is only necessary to be able to manage greenhouse gases emitted at business establishments. To manage emissions or reduce emissions by combining [Patent Document 1] and [Patent Document 2]. It can respond.
 一方、カーボンフットプリントなどを計算するためには、〔特許文献1〕と〔特許文献2〕と生産管理情報とを用いて温室効果ガス排出量を各製品1単位量当りの排出量として配賦する必要がある。この中には調達原料などによる寄与も含まれる必要があるが、前述のように管理されていない50%相当の温室効果ガス排出量は、産業連関表などのマクロな情報と原料使用量などから割り出すこととなる。 On the other hand, in order to calculate the carbon footprint, etc., [Patent Document 1], [Patent Document 2] and production management information are used to allocate greenhouse gas emissions as emissions per unit amount of each product. There is a need to. This must include contributions from procurement raw materials, etc., but the greenhouse gas emissions equivalent to 50% that are not managed as described above are based on macro information such as input-output tables and raw material usage. It will be determined.
 このような方法の温室効果ガスの排出量管理は、各製造工場に閉じた形では実現できるが、購買や在庫管理などの面での企業努力などが反映された数値とはならない。結果的にサプライチェーンを通して温室効果ガスの排出削減結果が川上(上流)の素材や部品を供給する企業へ伝わらない。また逆に、部品産業や素材産業での温室効果ガス排出削減努力が、企業間取引を有利にする効果とならない。 Although greenhouse gas emissions management in this way can be realized in a closed form at each manufacturing plant, it does not reflect the company's efforts in terms of purchasing and inventory management. As a result, greenhouse gas emission reduction results are not transmitted to upstream (upstream) materials and parts companies through the supply chain. Conversely, efforts to reduce greenhouse gas emissions in the parts and materials industries do not have the effect of making transactions between companies advantageous.
 すなわち、温室効果ガス排出権取引では、各産業セクタあるいは個別の企業としての削減努力が求められ、それぞれ個別に削減の努力は行われ、〔特許文献1〕と〔特許文献2〕を組み合わせるような方法は、そのような温室効果ガス削減に有用なシステムとなるが、そのような削減努力を企業間の取引に活用し、価格同様に取引を有利にする材料として活用することはできない。 In other words, greenhouse gas emissions trading requires reduction efforts by each industrial sector or individual company, and each reduction effort is made individually, and [Patent Literature 1] and [Patent Literature 2] are combined. While the method is a useful system for reducing such greenhouse gases, such a reduction effort cannot be used for business-to-business transactions and as a material to make transactions as advantageous as price.
 本発明の目的は、製品単位でその生産にかかわる温室効果ガス排出を把握できる管理装置を提供することにある。 An object of the present invention is to provide a management apparatus capable of grasping greenhouse gas emissions related to production in product units.
 上記目的を達成するため、本発明のカーボントレーサビリティ管理システムは、外部からの受電電力,受入冷温熱量,自家発設備運転実績,冷温熱設備運転実績,資材受け払い実績を記録管理する手段と、製品の生産実績を管理する手段と、各実績から温室効果ガス排出量を計算する手段と、算出した温室効果ガス排出量を製品一単位量に配賦する手段と、製造ロットに対して配賦した温室効果ガス排出量データを、ロットの固有データとして管理する手段を備えたものである。 In order to achieve the above object, the carbon traceability management system of the present invention includes a means for recording and managing externally received power, received cold / heat quantity, in-house facility operation results, cold / heat facility operation results, material receipt / payment results, A means of managing production results, a means of calculating greenhouse gas emissions from each result, a means of allocating the calculated greenhouse gas emissions to a single unit quantity of product, and distribution to production lots Means for managing greenhouse gas emission data as specific data for lots is provided.
 また、各実績から温室効果ガス排出量を計算する手段は、機器や購買元の最高効率の値を用いて温室効果ガス排出量の計算を行うものである。 In addition, the means for calculating the greenhouse gas emission from each result is to calculate the greenhouse gas emission using the highest efficiency value of the equipment and the purchaser.
 また、受け払い実績を記録管理する手段は、受入資材の温室効果ガス排出量の原単位を価格や納入日などとともに記録するものである。 In addition, the means for recording and managing the payment results is to record the basic unit of greenhouse gas emissions of the received materials together with the price and delivery date.
 また、受け払い実績を記録管理する手段は、出庫した資材及び原材料の在庫期間を記録するものである。 Also, the means for recording and managing the receipt and payment results is to record the inventory period of the materials and raw materials that have been issued.
 任意の製品を製造する任意の一ロットについて、製品一単位当りの温室効果ガス排出量を計算する場合に、温室効果ガス排出量を計算する手段、または算出した温室効果ガス排出量を製品一単位に配賦する手段は、製造ロットで使用した個々の製造設備の運転実績や冷温熱の使用実績,使用原料の保存期間,使用原料の使用量などを使用して、当該設備の運転による温室効果ガス排出量を当該製品に按分し、冷温熱使用実績に応じて冷温熱設備運転に伴う温室効果ガス排出量を按分し、使用原料の生産と保管に伴って発生する温室効果ガス排出量を按分し、洗浄や廃棄,事務処理などに伴う温室効果ガス排出量を一定期間の製造ロットの製造時間の割合で按分し、配賦を行うものである。 Means for calculating greenhouse gas emissions when calculating greenhouse gas emissions per unit for any lot that manufactures any product, or the calculated greenhouse gas emissions per unit of product The method of allocating to the greenhouse is based on the operating results of the individual manufacturing equipment used in the production lot, the use of cold / hot heat, the storage period of the raw materials used, the amount of raw materials used, etc. Distribute gas emissions to the product concerned, apportion greenhouse gas emissions associated with the operation of cold / hot facilities according to the use of cold / hot energy, and apportion greenhouse gas emissions generated during production and storage of raw materials used In addition, greenhouse gas emissions associated with cleaning, disposal, paperwork, etc. are apportioned in proportion to the production time of the production lot for a certain period.
 本発明によれば、任意の製品の製造を行う任意の一ロットについて、製品を一単位量生産するために排出された温室効果ガスの量を、受電して使用した電力や自家発電による電力,蒸気使用量などのように、その生産活動で直接使用したエネルギーなどに伴う温室効果ガス排出だけでなく、原材料の生産過程で生成された温室効果ガス排出量や、その保存過程で排出された温室効果ガスも合わせて把握する事ができる。 According to the present invention, for an arbitrary lot for manufacturing an arbitrary product, the amount of greenhouse gas discharged to produce a unit quantity of the product, the electric power received and used or the electric power generated by private power generation, Not only greenhouse gas emissions associated with energy used directly in production activities, such as steam consumption, but also greenhouse gas emissions generated during the production of raw materials and greenhouses emitted during the preservation process You can also grasp the effect gas.
本発明の実施形態1によるカーボントレーサビリティ管理システムの構成図。The block diagram of the carbon traceability management system by Embodiment 1 of this invention. 温室効果ガス排出量を各製造ロットへ配賦する処理の流れ図。Flow chart of processing to distribute greenhouse gas emissions to each production lot. 設備やユーティリティ,輸送における温室効果ガス排出当量を説明する図。The figure explaining the greenhouse gas emission equivalent in facilities, utilities, and transportation. ロットの状態管理データの構成例を示す図。The figure which shows the structural example of the state management data of a lot. 二つの比例尺度で状態が記述されるユーティリティ設備の状態管理データの構成例を示す図。The figure which shows the structural example of the state management data of the utility installation in which a state is described by two proportional scales. 一つの比例尺度と一つの名義尺度で状態が記述されるユーティリティ設備の状態管理データの構成例を示す図。The figure which shows the structural example of the state management data of the utility facility by which a state is described by one proportional scale and one nominal scale. 一つの比例尺度で状態が記述されるユーティリティ設備の状態管理データの構成例を示す図。The figure which shows the structural example of the state management data of the utility installation in which a state is described by one proportional scale. 製造設備の電力使用状況管理データの構成例を示す図。The figure which shows the structural example of the electric power usage condition management data of a manufacturing facility. 資材及び原材料の在庫状態管理データの構成例を示す図。The figure which shows the structural example of the stock condition management data of material and raw material. ファシリティ設備のエネルギー使用状態データの構成例を示す図。The figure which shows the structural example of the energy usage condition data of a facility installation. 資材及び原材料の原料毎の温室効果ガス排出の構成例を示す図。The figure which shows the structural example of greenhouse gas discharge | emission for every raw material of raw materials and raw materials. 洗浄作業や廃棄ロットによる温室効果ガス排出の製造ロットへの配賦ポリシーの記述例を示す図。The figure which shows the example of description of the allocation policy to the manufacturing lot of the greenhouse gas emission by a cleaning operation | work or a disposal lot. 本発明の実施形態2であるポリシーの読み込み処理と廃棄ロットに対する処理設定を解釈するアルゴリズムの流れ図。10 is a flowchart of an algorithm for interpreting policy reading processing and processing settings for a discarded lot according to the second embodiment of the present invention. ポリシーの読み込み処理と洗浄ロットに対する処理設定を解釈するアルゴリズムの流れ図。Flow chart of the algorithm that interprets the policy reading process and process settings for the cleaning lot. 一次動力設備の温室効果ガス排出データと出力(状態)データの一例を示す図。The figure which shows an example of the greenhouse gas emission data and output (state) data of a primary power installation. 二次動力設備の温室効果ガス排出データと状態データの一例を示す図。The figure which shows an example of the greenhouse gas emission data and state data of a secondary power installation. 三次設備の温室効果ガス排出データと状態データの比較を示す図。The figure which shows the comparison of the greenhouse gas emission data and state data of a tertiary installation. 本発明の実施形態3である資材及び原材料の在庫状態管理画面の例を示す図。The figure which shows the example of the stock condition management screen of the material which is Embodiment 3 of this invention, and a raw material. 設備状態管理画面の例を示す図。The figure which shows the example of an equipment state management screen. ロット状態管理画面の例を示す図。The figure which shows the example of a lot state management screen. 温室効果ガス排出状況表示画面の例を示す図。The figure which shows the example of a greenhouse gas discharge | emission status display screen. 製造ロットの温室効果ガス排出状況の表示画面の例を示す図。The figure which shows the example of the display screen of the greenhouse gas discharge | emission status of a production lot. 設備や原材料の温室効果ガス排出当量データの定義及び編集用画面の例を示す図。The figure which shows the example of the screen for the definition and edit of the greenhouse gas emission equivalent data of an installation or a raw material.
 本発明の各実施形態について、図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
実施形態1 Embodiment 1
 図1は本発明の実施形態1によるカーボントレーサビリティ管理システムの構成を示す図である。本実施形態のシステムは、受変電設備110や自家発電設備123,冷温熱設備122や油空圧設備121などの生成設備を上位制御あるいは管理するユーティリティ管理装置102と、製造設備131,132を管理する製造実行管理装置103と、資材及び原材料の受け払いを行う入出庫業務141や資材及び原材料を保管する保管設備142を管理する資材管理装置104と、事務所などの空調設備151,照明設備152,計算機及び通信設備153を管理するファシリティ管理装置105などを備えている。 FIG. 1 is a diagram showing a configuration of a carbon traceability management system according to Embodiment 1 of the present invention. The system according to the present embodiment manages a utility management apparatus 102 that supervises or manages generation facilities such as a power receiving / transforming facility 110, a private power generation facility 123, a cooling / heating facility 122, and a hydraulic / pneumatic facility 121, and manufacturing facilities 131, 132. Manufacturing execution management device 103, material management device 104 for managing storage facilities 142 for storing materials and raw materials, storage / acquisition work 141 for receiving and receiving materials and raw materials, air conditioning equipment 151 for offices, and lighting equipment 152 , A facility management device 105 for managing the computer and the communication equipment 153, and the like.
 又、ユーティリティ管理装置102から得られる原動力系設備運転実績と、製造実行管理装置103から得られる各製造ロットの設備使用実績,資材及び原材料使用実績,洗浄などにともなう設備使用実績と資材及び原材料使用実績と、資材管理装置104から得られる使用した資材及び原材料の保管期間や、その製造に要した温室効果ガスの排出量原単位,資材の保管に要した空調及び照明の使用実績と保管施設の使用実績と、ファシリティ管理装置105から得られるファシリティ設備のエネルギー使用実績と、洗浄およびロット廃棄による温室効果ガスの排出量の割り当てポリシー106と、設備毎の運転状態に応じた設備別の温室効果ガスの排出当量データ107と、資材及び原材料のうち製造に伴う温室効果ガスの排出量がわからないものに関しては予め、産業連関表などを用いて作成した資材・原材料別の温室効果ガスの排出量データ108とを用い、製品および中間品の製造ロット毎に温室効果ガスの排出量の配賦計算を行うロット毎の温室効果ガスの排出量管理装置101を備えている。 In addition, the driving system equipment operation results obtained from the utility management device 102, the equipment use results of each production lot obtained from the manufacturing execution management device 103, the materials and raw material use results, the equipment use results and the materials and raw material use associated with cleaning, etc. Actual results, storage period of used materials and raw materials obtained from the material management device 104, greenhouse gas emission basic unit required for the production, actual use of air conditioning and lighting required for storage of materials and storage facilities Use results, energy use results of facility equipment obtained from the facility management device 105, allocation policies 106 of greenhouse gas emissions by cleaning and lot disposal, and greenhouse gases for each facility according to the operating state of each equipment Emission equivalent data 107 and the amount of greenhouse gas emissions associated with manufacturing out of materials and raw materials For items that do not exist, use greenhouse gas emission data 108 for each material and raw material prepared in advance using an input-output table, etc., and allocate greenhouse gas emissions for each production lot of products and intermediate products. A greenhouse gas emission management device 101 for each lot for calculation is provided.
 製造実行管理装置103は、各ロットについて、投入した資材及び原材料や使用した設備の使用実績を記録する。資材及び原材料については、そのロット番号と使用量を、設備に関しては当該ロットで使用した電力,冷温熱量などを記録する。ここで、冷温熱量は、温水,冷水の場合は量と温度,蒸気の場合は量,温度,圧力である。 The manufacturing execution management device 103 records the usage results of the input materials and raw materials and the equipment used for each lot. For materials and raw materials, record the lot number and amount used, and for facilities, record the power used in the lot and the amount of heat and cold energy. Here, the amount of cold / hot heat is the amount and temperature in the case of hot water and cold water, and the amount, temperature, and pressure in the case of steam.
 資材管理装置104は、資材及び原材料の保管状況,入出庫状況を管理する。製造実行管理装置103で引き当てられた資材及び原材料のロットについて、入庫から出庫に至る期間の情報を管理する。また入出庫に伴う搬送設備の使用電力ならびに、空調使用実績を管理する。 The material management device 104 manages the storage status and stocking status of materials and raw materials. Information on the period from warehousing to unloading is managed for the lots of materials and raw materials allocated by the manufacturing execution management apparatus 103. In addition, it manages the power consumption of the transportation equipment that accompanies loading and unloading and the results of air conditioning usage.
 ユーティリティ管理装置102は、受変電設備の利用状況や冷温熱生成設備の運転状況を秒単位あるいは分単位、あるいは時単位で管理し、製造実行管理装置103で記録した当該ロットの製造にかかわる設備の運用に伴うユーティリティ設備の利用状況を管理する。ここで、ロットの製造にかかわる設備の運用は、開始~終了の時間、その期間での冷温熱や電力,蒸気,油空圧の使用量である。 The utility management device 102 manages the usage status of the power receiving / transforming equipment and the operating status of the cold / hot heat generation equipment in units of seconds, minutes, or hours, and records the equipment related to the production of the lot recorded by the production execution management device 103. Manage the usage status of utility facilities during operation. Here, the operation of equipment related to the production of a lot is the time from start to end, and the amount of use of cold / hot energy, electric power, steam, and hydraulic pressure in that period.
 ファシリティ管理装置105は、製造実行管理装置103で記録した当該ロットの製造期間中のファシリティ設備の使用エネルギーを管理する。 The facility management device 105 manages the energy used by the facility equipment during the manufacturing period of the lot recorded by the manufacturing execution management device 103.
 ロット毎の温室効果ガスの排出量管理装置101は、製品及び中間品ロットの温室効果ガスの排出量の配賦手段を用いて、製造実行管理装置103の記録した特定のロットの製造実績に基づき、そのロットの生産に伴い発生したと想定されるユーティリティや資材及び原材料,ファシリティによる温室効果ガスの排出量を計算する。 The greenhouse gas emission management device 101 for each lot is based on the manufacturing results of a specific lot recorded by the manufacturing execution management device 103 using the greenhouse gas emission allocation means of the product and intermediate product lots. Calculate the amount of greenhouse gas emissions from utilities, materials, raw materials, and facilities that are assumed to be generated during the production of the lot.
 温室効果ガスの排出量の計算に当たっては、使用した発電設備などの温室効果ガスの排出当量データ107や資材及び原材料の温室効果ガスの排出量データ108を用いる。ここで、設備別の温室効果ガスの排出当量データ107は、当該設備の運転状態で単位時間或いは単位出力あたりに生成する温室効果ガスの排出量のことを言う。また資材及び原材料の生産による温室効果ガスの排出量データ108は、入荷時に当該資材及び原材料ロットの温室効果ガス排出量原単位情報160があればこれを用い、無ければ産業連関など固定のデータを用いて計算する。 In calculating the greenhouse gas emissions, the greenhouse gas emission equivalent data 107 of the power generation equipment used and the greenhouse gas emission data 108 of the materials and raw materials are used. Here, the greenhouse gas emission equivalent data 107 for each facility refers to the amount of greenhouse gas emissions generated per unit time or unit output in the operation state of the facility. In addition, the greenhouse gas emission data 108 from the production of materials and raw materials is used if there is greenhouse gas emission basic unit information 160 of the relevant materials and raw material lots at the time of arrival. Use to calculate.
 温室効果ガス排出量の計算に当たっては、関連する洗浄作業や廃棄ロットの生産により生成された温室効果ガスの排出量を割り当てポリシー106に基づいて按分しても良い。 In calculating the greenhouse gas emissions, the greenhouse gas emissions generated by the production of the related cleaning operations and waste lots may be apportioned based on the allocation policy 106.
 ロット毎の温室効果ガスの排出量管理装置101は、ロットごとに製造量や使用原料などの管理項目に加え、前述の方法で算出したロット毎の温室効果ガスの排出量も記録管理する。 The greenhouse gas emission management device 101 for each lot records and manages the greenhouse gas emission for each lot calculated by the above-described method in addition to the management items such as the production amount and the raw materials used for each lot.
 図2から図13を用いて、ロット毎の温室効果ガスの排出量管理装置101の製品及び中間品ロットの温室効果ガスの排出量配賦手段で実施する処理を説明する。図2は、製品及び中間品ロットの温室効果ガスの排出量配賦手段で実施する処理の一例を表すフローチャート、図3は、設備別の温室効果ガスの排出当量データ107の例を示す図である。 2 to 13 will be used to explain the processing performed by the greenhouse gas emission management device 101 for each lot and the greenhouse gas emission distribution means for the intermediate product lot. FIG. 2 is a flowchart showing an example of processing executed by the greenhouse gas emission distribution means for the product and intermediate product lots, and FIG. 3 is a diagram showing an example of greenhouse gas emission equivalent data 107 for each facility. is there.
 ユーティリティ設備120のデータ401は、設備の運転状態に対応して単位時間当たりの温室効果ガスの排出量が決まる設備を対象としたデータの一例である。ユーティリティ設備120のデータ402は、設備の運転状態に対応して原料使用量に対する温室効果ガスの排出割合が決まる設備を対象としたデータの一例である。ユーティリティ設備120のデータ403は、電力会社からの購入電力のようにプロバイダ(電力会社)によって使用エネルギー単位量に対して発生する温室効果ガスの量が変わるユーティリティを対象としたデータの一例である。ユーティリティ設備120のデータ404は、空気圧のように使用するユーティリティの質(圧力)によって、温室効果ガス排出量の配分を変えた方が適切に管理できるユーティリティを対象としたデータの一例である。 The data 401 of the utility facility 120 is an example of data for a facility whose greenhouse gas emission amount per unit time is determined in accordance with the operation state of the facility. The data 402 of the utility facility 120 is an example of data for a facility whose greenhouse gas emission rate with respect to the amount of raw material used is determined in accordance with the operation state of the facility. The data 403 of the utility facility 120 is an example of data targeted for a utility that changes the amount of greenhouse gas generated with respect to the unit amount of energy used by the provider (electric power company), such as purchased power from the electric power company. The data 404 of the utility facility 120 is an example of data targeted for utilities that can be managed appropriately by changing the distribution of greenhouse gas emissions according to the quality (pressure) of the utility used like air pressure.
 図4は、各ロットや各設備の運転状況を示すデータの一例である。製造ロットのデータ500には当該製造ロットに含まれる工程とその開始時刻,終了時刻,使用設備,使用ユーティリティの量などが記録される。また、データ501には、使用した資材及び原材料のロット番号と使用量が記録されている。 FIG. 4 is an example of data indicating the operating status of each lot or each facility. The production lot data 500 records the process included in the production lot, its start time, end time, equipment used, amount of utility used, and the like. Further, the data 501 records the used material and the lot number and the amount of the raw material.
 図5に示すユーティリティ設備120の使用実績601は、2つの比例尺度で運転状態を記録する設備の使用状況データである。たとえばボイラなどは運転状態と、その運転状態での燃料使用量などを記録しておき、ユーティリティ設備120のデータ402の形式の当量データを用いて、運転状態に対して温室効果ガス排出当量のデータを定義しておけば、当該時間帯での温室効果ガス排出量を求めることができる。 The usage history 601 of the utility equipment 120 shown in FIG. 5 is equipment usage status data that records the operating state on two proportional scales. For example, a boiler or the like records the operating state and the amount of fuel used in the operating state, and uses equivalent data in the form of data 402 of the utility facility 120 to record greenhouse gas emission equivalent data for the operating state. Is defined, it is possible to determine the amount of greenhouse gas emissions during that time period.
 図6に示すユーティリティ設備120の使用実績701は、例えば受電設備110のように受電量とプロバイダのように、時間に対する比例尺度(受電電力)と名義尺度(プロバイダ)の組合せで記録できる設備の使用状況データの一例である。 The usage record 701 of the utility facility 120 shown in FIG. 6 is the usage of the facility that can be recorded by a combination of a proportional scale (received power) and a nominal scale (provider) with respect to time, such as the amount of power received and the provider, such as the power receiving facility 110. It is an example of situation data.
 図7に示すユーティリティ設備120の使用実績801は、1つの比例尺度で運転状態を記録する設備の使用状況データである。例えばコンプレッサなどではタンク圧力の時間変化を実績として記録しておけば、当量データ404を用いて温室効果ガス排出量を求めることができる。図8に示す設備の使用実績901では、各時刻における電力使用量などを記録しておく。 7 is the usage status data of the facility that records the operation state on one proportional scale. For example, if the time change of the tank pressure is recorded as a record in a compressor or the like, the greenhouse gas emission amount can be obtained using the equivalent data 404. In the facility usage record 901 shown in FIG. 8, the amount of power used at each time is recorded.
 図9に示す在庫情報1001では、資材及び原材料の在庫状況を記録する。資材及び原材料のロット番号とその品目情報,入荷(入庫日),入庫場所の他,在庫量,温室効果ガス排出原単位も記録する。在庫量は出庫の都度更新する。温室効果ガス排出原単位(製造原単位)は、当該資材及び原材料の購入時に購入元からデータが得られる場合に記録する。また、当該購入元から本実施形態の管理システムを使う事業所までの輸送に伴う温室効果ガス排出量を、入荷時の入荷量で除して得られる輸送原単位を製造原単位に加算して記録しても良い。このような輸送に伴う温室効果ガスの排出は、素材の輸送に係わる排出当量405のようなデータを予め用意しておいて、実際の輸送距離に応じた排出量を計算する方式を採っても良い。 In the inventory information 1001 shown in FIG. 9, the stock status of materials and raw materials is recorded. In addition to the lot number and item information of materials and raw materials, the arrival date (receipt date), the place of receipt, record the inventory amount and the greenhouse gas emission intensity. The stock quantity is updated every time a shipment is issued. Greenhouse gas emission basic unit (manufacturing basic unit) is recorded when data is obtained from the purchase source at the time of purchase of the material and raw materials. In addition, the transport unit obtained by dividing the greenhouse gas emissions associated with transport from the purchase source to the establishment using the management system of the present embodiment by the amount received at the time of arrival is added to the production unit. It may be recorded. For the greenhouse gas emissions associated with such transportation, data such as the emission equivalent 405 related to the transportation of materials is prepared in advance, and a method of calculating the amount of emissions according to the actual transportation distance can be adopted. good.
 図10に示すファシリティのエネルギー使用実績記録1101は、事務所150などの製造ロットに直接依存しない区分のほか、倉庫設備140や製造現場130など、製造ロットと紐付けできる区分もあるため、事務所,倉庫A,Bなどといった区分ごとに時間に対するエネルギー消費量を記録する。 The facility energy usage record 1101 shown in FIG. 10 includes divisions that can be linked to production lots such as the warehouse facility 140 and the production site 130 in addition to divisions that do not depend directly on production lots such as the office 150. , Records energy consumption with respect to time for each category such as warehouses A and B.
 図11には、資材及び原材料別の温室効果ガスの排出当量データ108の例を示す。これは産業連関表などから作成することができる。品目AAを1kg消費した場合、0.12kgの温室効果ガス排出とみなすということを表すデータで、在庫情報に原単位データが無い場合に、このデータを使用して原料製造及び輸送に伴う温室効果ガス排出量の推定値を得ることができる。 FIG. 11 shows an example of greenhouse gas emission equivalent data 108 for each material and raw material. This can be created from an input-output table. This data indicates that when 1 kg of item AA is consumed, it is regarded as 0.12 kg of greenhouse gas emissions. When there is no basic unit data in the inventory information, this data is used for the greenhouse effect associated with raw material production and transportation. Estimates of gas emissions can be obtained.
 図12には、洗浄およびロット廃棄による温室効果ガス排出量の割り当てポリシー106の一記載例を示した。割り当てポリシー106の記述方法は、それを処理するアルゴリズムに依存するが、例えば、ここでは、廃棄ロットは、どの品目の製造プロセスであっても、60時間以内に製造される同一品目の製造ロットに1/3ずつの量で按分する。また、当該時間内に同一品目の製品が3ロット以上製造されなかった場合には、当該時間が経過した時点で残っている当該廃棄ロットによる温室効果ガス排出量を、当該時間経過後、最初に実施された同一品目の製造ロットに引き当てするといったエラー処理が記載されている。 FIG. 12 shows a description example of a greenhouse gas emission allocation policy 106 for cleaning and lot disposal. The description method of the allocation policy 106 depends on an algorithm for processing the allocation policy 106. For example, here, a disposal lot is a production lot of the same item that is manufactured within 60 hours in any item manufacturing process. Apportion in 1/3 increments. If three or more lots of the same item are not manufactured within the time, the greenhouse gas emissions from the waste lot remaining when the time has elapsed are Error processing such as assigning to a production lot of the same item executed is described.
 また、品目ITEM1についてだけは、15週以内に製造される同一品目の製造ロットに対して1/10ずつ按分すると記載されている。洗浄作業に関しては、全てのセルに関して直前と直後のロットに1:1で按分するが、セルCELL1については、当該セルを使用する次のロットに全て引き当てる。装置の洗浄に関しては、基本的に全ての装置に対して、それを使用した最初のロットに全ての排出量を割り当て、装置EQUIPMENT11ついては、洗浄直前にその装置を使用したロットに排出量を割り当てると記載してある。 In addition, it is described that only the item ITEM1 is apportioned by 1/10 of the production lot of the same item manufactured within 15 weeks. As for the cleaning operation, all the cells are equally divided into the immediately preceding and immediately following lots at a ratio of 1: 1, but the cell CELL1 is allotted to the next lot using the cells. With regard to cleaning of equipment, basically, for all equipment, all emissions are assigned to the first lot that uses the equipment, and for equipment EQIPMENT 11, the emissions are assigned to the lot using the equipment immediately before cleaning. It is described.
 このようなデータを予め定義しておき、図2のフローチャートに従って、製造ロットに対して温室効果ガス排出量を配賦し、温室効果ガスの排出量を計算する。 Such data is defined in advance, greenhouse gas emissions are allocated to production lots according to the flowchart of FIG. 2, and greenhouse gas emissions are calculated.
 まず、製造が終了しているが、まだ温室効果ガス排出量配賦がされていない製造ロットを製造ロットの実績501の情報を用いて抽出する。抽出した製造ロットに関して、ステップ301で、実績データ501から使用した設備とユーティリティ,資材及び原材料ロットを識別し、その実績データを取得する。 First, manufacturing lots that have been manufactured but have not yet been allocated for greenhouse gas emissions are extracted using information on the production lot results 501. Regarding the extracted production lot, in step 301, the used equipment and utilities, materials, and raw material lots are identified from the actual data 501 and the actual data is acquired.
 当該ロットの各使用設備に対して、ステップ302でループを回しながら、その中で各ユーティリティに対して、ステップ303のループを回し、その中で、初めにステップ311で、そこで使用した各ユーティリティの使用実績を取得する。ステップ312で、当該時間帯の当該ユーティリティの運用状態601,701,801を取得し、ステップ313で、当該ユーティリティの温室効果ガス排出当量データ401~404の取得を行い、ステップ314で、当該ユーティリティで排出された温室効果ガス排出のうち、当該ロットに係わる量を計算して按分する。 While looping in step 302 for each equipment used in the lot, the loop in step 303 is rotated for each utility therein, in which, first, in step 311, for each utility used there. Acquire usage records. In step 312, the utility operating status 601, 701, 801 for the time period is acquired. In step 313, greenhouse gas emission equivalent data 401 to 404 of the utility is acquired. In step 314, the utility uses the utility. Calculate and apportion the amount related to the lot of the greenhouse gas emissions.
 ステップ320で、当該ロットで使用した資材及び原材料に関して、在庫情報を取得し、各在庫に対してループを回し、その中で、初めにステップ321で仕入れ原単位データの有無を確認し、仕入れ元からの原単位データがある場合は、ステップ323で、その値を取得し、無い場合は、ステップ324で、資材及び原材料別の温室効果ガスの排出量データ108の値を取得する。 In step 320, inventory information is acquired regarding the materials and raw materials used in the lot, and a loop is performed for each stock. In step 321, the presence or absence of purchase unit data is first confirmed, and the purchase source is obtained. If there is unit data from, the value is acquired in step 323, and if not, the value of greenhouse gas emission data 108 for each material and raw material is acquired in step 324.
 続いてステップ320の中のステップ325で、当該資材及び原材料の使用量と取得した原単位を用いて、資材及び原材料の製造および輸送に伴う温室効果ガス排出量を計算する。また、ステップ326で、当該資材及び原材料の在庫期間の当該倉庫のファシリティでのエネルギー使用による温室効果ガス排出を同じ倉庫を使用する他の原材料の重量比あるいは熱容量比で按分し、保管に伴う温室効果ガス排出量を計算する。 Subsequently, in step 325 in step 320, the amount of greenhouse gas emissions associated with the manufacture and transportation of the material and raw material is calculated using the used amount of the material and raw material and the obtained basic unit. Also, in step 326, the greenhouse gas emissions due to the use of energy at the facility of the warehouse during the inventory period of the material and the raw material are prorated according to the weight ratio or heat capacity ratio of the other raw materials that use the same warehouse, and the greenhouse accompanying the storage is stored. Calculate effect gas emissions.
 ステップ330で、排出量の計上が未完了の廃棄ロットや洗浄作業の実績がある場合、それに対してループを回し、計上未完了の廃棄ロットや洗浄作業の各々に対して、そのループの中で、割り当てポリシー106に従って、ステップ331で、それらのロットによる排出を、当該ロットに按分する必要があるかどうかを判定し、按分が必要な場合は、ステップ332で、対象となる廃棄ロット或いは洗浄作業の資材及び原材料使用ならびにユーティリティ使用に伴う温室効果ガス排出量を計算する。ステップ333で、割り当てポリシー106に従って排出量を当該ロットに按分し、ステップ334で、排出量計上値を更新する。 In step 330, if there is a track record of waste lots or cleaning operations for which emissions are not yet completed, a loop is performed for each of the waste lots or cleaning operations that have not been counted. In accordance with the allocation policy 106, in step 331, it is determined whether or not it is necessary to apportion the discharges of those lots to the lots. If apportioning is necessary, in step 332, the target waste lot or cleaning operation is performed. Calculate greenhouse gas emissions associated with the use of materials and raw materials and utility use. In step 333, the emission amount is apportioned to the lot according to the allocation policy 106, and in step 334, the emission amount value is updated.
 ステップ340で、ファシリティによる排出量の内、計上が未完了の時間帯に関してループを回し、ステップ341で、その時間帯が、当該製造ロットの実施された時間帯に掛かっているか否かを判定し、掛かっていれば、ステップ342で、その時間帯に実施された他の製造ロットとの間で均等に按分する。掛かっていなければ、ステップ343で、当該時間帯のファシリティによる排出量の一定割合を按分し、ステップ344で、排出量計上値を更新する。 In step 340, a loop is made for a time zone that has not yet been accounted for in the amount of emissions generated by the facility. In step 341, it is determined whether or not the time zone falls within the time zone in which the production lot was implemented. If so, in step 342, the balance is equally distributed with other production lots executed in that time zone. If not, in step 343, a certain proportion of the emission amount due to the facility in the time period is apportioned, and in step 344, the emission amount value is updated.
 図13と図14を用いて、割り当てポリシー106に基づく按分処理の例を説明する。初期化シーケンスでは、ステップ14-101で、ポリシーファイルを読み込みその内容をメモリー上に記憶する。 An example of a distribution process based on the allocation policy 106 will be described with reference to FIGS. In the initialization sequence, in step 14-101, the policy file is read and its contents are stored in the memory.
 図13に示すように、ステップ332の廃棄ロットの配賦処理では、ステップ14-201で、初めに配賦対象製造ロットの製造品目と製造期間を取得する。ステップ14-202で、初期化シーケンスで読み込み記憶してあるポリシーから、haiki-lot要素でtarget属性がステップ14-201で取得した製造品目である要素を検索する。これが無い場合には、ステップ14-203で、target属性=‘all_item’となっているhaiki-lot要素を選択する。ステップ14-204で、このようにして得たhaiki-lot要素のalloction子要素を取得し、ステップ14-205でbunkatsu子要素を取得し、ステップ14-206で、exception子要素を取得する。 As shown in FIG. 13, in the disposal process of the discarded lot in step 332, first in step 14-201, the production item and the production period of the production lot to be allocated are acquired. In step 14-202, the element that is the manufactured item acquired in step 14-201 with the target attribute in the haiki-lot element is searched from the policy read and stored in the initialization sequence. If this does not exist, a haiki-lot element with target attribute = 'all_item' is selected in step 14-203. In step 14-204, the alloction child element of the haiki-lot element obtained in this way is acquired. In step 14-205, the bunkatsu child element is acquired. In step 14-206, the exception child element is acquired.
 ステップ14-207では、ステップ14-204で取得したallocation子要素のhanni属性=all_productの場合、またはhanni属性=same_productで、配賦対象ロットの品目=廃棄対象ロットの品目の場合かどうかを判定し、一致する場合は、配賦処理を実施する。 In step 14-207, it is determined whether the allocation child element hanni attribute = all_product acquired in step 14-204 or hanni attribute = same_product and the allocation lot item = discarded lot item. If they match, the allocation process is performed.
 ステップ14-207で配賦対象と判定された場合、ステップ14-208で、配賦対象製造ロットの開始日をチェックし、それが廃棄ロットの製造終了日からステップ14-204で取得したallocation子要素のtime属性とtime_unit属性で指定された期間内にあるか否かをチェックする。 If it is determined in step 14-207 that it is the allocation target, the start date of the allocation target production lot is checked in step 14-208, and this is the allocation child acquired in step 14-204 from the production end date of the discarded lot. Check whether it is within the period specified by element time attribute and time_unit attribute.
 期間内に配賦対象ロットが終了していれば、これを通常の配賦対象とみなし、(A)の処理に進む。期間を超えている場合は、(B)の異常処理に進む。 If the allocation target lot is completed within the period, this is regarded as a normal allocation target, and the process proceeds to (A). If the period is exceeded, the process proceeds to (B).
 期間内の(A)の処理では、ステップ14-210で、ステップ14-205で取得したbunkatsu子要素のrate属性と、廃棄ロットの総排出量(廃棄ロットの場合、ユーティリティ使用と資材・原材料による寄与のみを排出量として計算する)を用いて、配賦対象ロットへの排出量の按分量を決定する。ステップ14-211で、廃棄ロットの実績の按分済み量と按分未済み量を更新し、ステップ14-212で、ステップ14-210で得た按分量を計算結果としてリターンする。 In the processing of (A) within the period, in step 14-210, the rate attribute of the bunkatsu child element acquired in step 14-205 and the total discharge amount of the disposal lot (in the case of the disposal lot, depending on the utility usage and the material / raw material) Using this method, the apportionment amount for the allocation lot is determined. In step 14-211, the apportioned amount and apportioned amount of the disposal lot are updated, and in step 14-212, the apportioned amount obtained in step 14-210 is returned as the calculation result.
 期限を越えている場合(B)の処理では、ステップ14-221で、ステップ14-206で取得したexception子要素のtime_span_exception属性を取得し、ステップ14-223で、time_span_exception属性=allocate_to_firstであれば、廃棄ロットの按分未済み排出量を戻り値にセットする。それ以外の場合、図14の例では戻り値をゼロとしているが他の按分方法をとっても良い。ステップ14-225で、廃棄ロットの按分済み量を更新し、ステップ14-226で、戻り値をリターンする。 In the process of (B) when the time limit is exceeded, in step 14-221, the time_span_exception attribute of the exception child element acquired in step 14-206 is acquired, and in step 14-223, if time_span_exception attribute = allocate_to_first, Set the apportioned amount of waste lot to the return value. In other cases, the return value is zero in the example of FIG. 14, but other proportional methods may be used. In step 14-225, the apportioned amount of the discarded lot is updated, and in step 14-226, the return value is returned.
 図14に示すように、ステップ332の洗浄ロットの配賦処理では、ステップ15-101で、初めに配賦対象製造ロットの使用設備と製造期間を取得する。ステップ15-102で、初期化シーケンスで読み込み記憶してあるポリシーから、cleaning要素でtarget属性が洗浄ロットの使用設備(洗浄ロットの使用対象設備は、洗浄される設備で一意に決まる)である要素を検索する。これが無い場合には、ステップ15-103で、target属性=‘all_cells’となっているcleaning要素を選択する。ステップ15-104で、このようにして得たcleaning要素のallocation子要素を取得し、ステップ15-105で、bunkatsu子要素を取得する。 As shown in FIG. 14, in the cleaning lot allocation process in step 332, in step 15-101, the used equipment and manufacturing period of the allocation target manufacturing lot are first acquired. In the step 15-102, an element whose target attribute in the cleaning element is the equipment used in the cleaning lot (the equipment used in the cleaning lot is uniquely determined by the equipment to be cleaned) from the policy read and stored in the initialization sequence Search for. If not, a cleaning element having target attribute = 'all_cells' is selected in step 15-103. In step 15-104, the allocation child element of the cleaning element thus obtained is acquired, and in step 15-105, the bunkatsu child element is acquired.
 ステップ15-106で、配賦対象製造ロットの使用設備の中に、当該洗浄ロットの対象設備が含まれているかチェックする。含まれている場合は、ステップ15-107で、ステップ15-104で取得したallocation子要素のhanni属性をチェックする。hanni属性=prior_and_next_lotの場合は(A)の処理を、prior_lotの場合は(B)の処理を、next_lotの場合は(C)の処理を実施する。 In step 15-106, it is checked whether the equipment used for the production lot to be allocated includes the equipment for the cleaning lot. If it is included, in step 15-107, the hanni attribute of the allocation child element acquired in step 15-104 is checked. In the case of hanni attribute = prior_and_next_lot, the process of (A) is performed, in the case of prior_lot, the process of (B) is performed, and in the case of next_lot, the process of (C) is performed.
 hanni属性=prior_and_next_lotとなる(A)の処理では、初めに、当該洗浄ロットより前に終了した製造ロットを検索し、ステップ15-201で、その中で当該洗浄ロットの使用設備を使用し、かつ最も製造終了時刻が新しい製造ロットを検索する。ステップ15-202で、ステップ15-201で検索した直前の製造ロットと、配賦対象製造ロットとに、洗浄ロットで生成された排出量をどのように按分するかを、ステップ15-105で取得したbunkatsu子要素を用いて決定する。例えば、bunkatsu子要素のrate属性=x:yの場合、数1のようにして配賦対象ロットへの按分量を決定する。この場合、直前の製造ロットへは、数2のように按分量を決定する。 In the process of (A) where hanni attribute = prior_and_next_lot, first, a production lot that ended before the cleaning lot is searched, and in step 15-201, the equipment used for the cleaning lot is used, and Search for the production lot with the newest production end time. In step 15-202, it is obtained in step 15-105 how to apportion the generated amount generated in the cleaning lot to the production lot immediately before searched in step 15-201 and the production lot to be allocated. Determined using the bunkatsu child element. For example, when the rate attribute of the bunkatsu child element = x: y, the apportioning amount to the allocation target lot is determined as shown in Equation 1. In this case, the apportioning amount is determined as shown in Equation 2 for the immediately preceding production lot.
〔数1〕
  配賦対象ロットへの按分量=洗浄ロットの排出量×y/(x+y)   …(1)
[Equation 1]
Apportioned amount to allocation target lot = discharge amount of cleaning lot x y / (x + y) (1)
〔数2〕
  直前製造ロットへの按分量=洗浄ロットの排出量×x/(x+y)   …(2)
[Equation 2]
Apportioned amount to the immediately preceding production lot = discharge amount of the cleaning lot x x / (x + y) (2)
 rate属性=product_quantity_dependの場合は、xを配賦対象ロットの製品製造量(重量)、yを直前製造ロットの製品製造量(重量)として、前述のx:yの場合と同様に計算する。rate属性=material_quantity_dependの場合は、xを配賦対象ロットの資材及び原材料使用量(重量)、yを直前製造ロットの資材及び原材料使用量(重量)として、前述のx:yの場合と同様に計算する。 When the rate attribute = product_quantity_depend, x is calculated in the same manner as in the case of x: y, where x is the product manufacturing amount (weight) of the allocation target lot and y is the product manufacturing amount (weight) of the immediately preceding manufacturing lot. When rate attribute = material_quantity_depend, x is the material and raw material usage (weight) of the allocation target lot, and y is the raw material and raw material usage (weight) of the previous production lot, as in the case of x: y described above calculate.
 ステップ15-203で、洗浄ロットの実績の按分済み量,未済み量を更新し、按分処理が完了した状態にする。ステップ15-204で、直前ロットの排出量に数2で得た値を加算し、実績を更新する。ステップ15-205で、数1で得た値をリターンする。 In step 15-203, the apportioned amount and the incomplete amount of the actual cleaning lot are updated, and the apportioning process is completed. In step 15-204, the value obtained in Equation 2 is added to the discharge amount of the previous lot, and the record is updated. In step 15-205, the value obtained in equation 1 is returned.
 hanni属性=prior_lotとなる(B)の処理では、ステップ15-201と同様に、ステップ15-301で、直前の製造ロットを検索する。ステップ15-302で、その製造ロットの実績に当該洗浄ロットの排出量を加算し、実績を更新する。ステップ15-303で、洗浄ロット自体の実績を更新し按分処理が完了した(未済み=0の状態)とし、ステップ15-304で、配賦対象ロットへの按分量としては0をリターンする。 In the process of (B) where hanni attribute = prior_lot, the previous production lot is searched in step 15-301 as in step 15-201. In step 15-302, the discharge amount of the cleaning lot is added to the actual result of the manufacturing lot, and the actual result is updated. In step 15-303, the actual result of the cleaning lot itself is updated and the apportioning process is completed (not completed = 0), and in step 15-304, 0 is returned as the apportioning amount to the allocation target lot.
 hanni属性=next_lotとなる(C)の処理では、ステップ15-401で、洗浄ロットでの排出量を記録し、ステップ15-402で、洗浄ロットの実績を更新し按分処理が完了した(未済み=0の状態)とする。ステップ15-403で、ステップ15-401で取得した値を配賦対象ロットへの按分量としてリターンする。 In the process of (C) where hanni attribute = next_lot, the discharge amount in the cleaning lot is recorded in step 15-401, and the result of the cleaning lot is updated in step 15-402, and the apportioning process is completed (not completed). = 0). In step 15-403, the value acquired in step 15-401 is returned as the apportioning amount to the allocation target lot.
実施形態2 Embodiment 2
 実施形態1では、各設備やユーティリティにおける排出当量を、図4に示すようなテーブルに予め定義しておき、製造ロットで使用した設備やユーティリティから、直接テーブルを検索して、排出量をこのテーブルの値を用いて計算している。 In the first embodiment, the emission equivalents in each facility and utility are defined in advance in a table as shown in FIG. 4, and the table is directly searched from the facilities and utilities used in the production lot, and the emission amount is determined in this table. It is calculated using the value of.
 本発明の実施形態2では、ボイラや受電設備,自家発電設備,水道といった設備を一次動力設備と分類し、これら一次動力設備からエネルギーの供給を受けて動く動力設備を二次動力設備と分類し、一次動力設備と二次動力設備からのエネルギーの供給を受けて動く非動力設備を三次設備と分類し、一次動力設備については、実施形態1と同様にルックアップテーブルを用意する。二次動力設備と三次設備については、各動力の供給関係と計算モデルを用いて、排出量の配賦行う。 In Embodiment 2 of the present invention, equipment such as boilers, power receiving equipment, private power generation equipment, and water is classified as primary power equipment, and power equipment that moves by receiving energy supply from these primary power equipment is classified as secondary power equipment. The non-powered equipment that moves in response to the supply of energy from the primary power equipment and the secondary power equipment is classified as the tertiary equipment, and the lookup table is prepared for the primary power equipment as in the first embodiment. For secondary power equipment and tertiary equipment, the amount of emissions will be allocated using the power supply relationship and calculation model.
 図15は、本実施形態の一次動力設備の出力の変化と、一次動力設備の出力による温室効果ガス排出量の時間変化を示す図である。図15(a)の縦軸は一次動力設備の出力を表し、横軸は時間を表す。図15(b)の縦軸は温室効果ガス排出量を表し、横軸は時間を表す。すなわち、図15は、一次動力設備の出力1601と、その生成に伴い発生した温室効果ガスの排出量1602の時間変化を示している。 FIG. 15 is a diagram showing a change in the output of the primary power equipment according to the present embodiment and a time change in the amount of greenhouse gas emission due to the output of the primary power equipment. In FIG. 15A, the vertical axis represents the output of the primary power facility, and the horizontal axis represents time. In FIG. 15B, the vertical axis represents greenhouse gas emissions, and the horizontal axis represents time. That is, FIG. 15 shows temporal changes in the output 1601 of the primary power equipment and the greenhouse gas emission 1602 generated along with the output 1601.
 例えば電力の場合、電力会社からの受電電力は、電力量に比例する温室効果ガスが排出するため、一次動力設備の出力1601と温室効果ガス排出量1602が比例するが、一部の電力を自家発電設備で補った場合や、複数の電力プロバイダから供給を受けている場合などには、それらをどのような構成で織り交ぜるかにより、排出量が変わってくるため、図15に示すように一次動力設備の出力1601と温室効果ガス排出量1602が比例しない場合もある。 For example, in the case of electric power, since the greenhouse gas proportional to the amount of electric power is emitted from the electric power company, the output 1601 of the primary power equipment and the greenhouse gas emission amount 1602 are proportional. As shown in FIG. 15, the amount of emissions varies depending on the configuration of the power generation equipment or when the power is supplied from multiple power providers. The output 1601 of the primary power equipment and the greenhouse gas emissions 1602 may not be proportional.
 図16は、本実施形態の二次動力設備の状態を示している。図16(a)の1701は、二次動力設備が図16に示した一次動力設備を使用する状況を示している。図16(b)の1702は、二次動力設備の蓄えているエネルギーを示している。二次エネルギーが液体なら温度と質量の積、圧縮性の気体なら圧力と体積の積に比例する値で把握することができる。図16(c)の1703の、二次動力による一次動力の排出量への寄与は、一次動力の出力1601に対する二次動力が一次動力を使用する量1701の比であり、一次動力による排出量を、この値で配賦する事により、二次動力の排出量を割り当てる。図16(d)の1704は、二次動力による排出量を時間方向に積分した積分値を示す。 FIG. 16 shows the state of the secondary power facility of this embodiment. Reference numeral 1701 in FIG. 16A shows a situation where the secondary power equipment uses the primary power equipment shown in FIG. Reference numeral 1702 in FIG. 16B indicates the energy stored in the secondary power facility. If the secondary energy is liquid, it can be grasped by a value proportional to the product of temperature and mass, and if it is a compressible gas, it is proportional to the product of pressure and volume. The contribution of 1703 in FIG. 16C to the discharge amount of the primary power by the secondary power is the ratio of the amount 1701 of the primary power used by the secondary power to the output 1601 of the primary power, and the discharge amount by the primary power. Is allocated at this value to allocate secondary power emissions. Reference numeral 1704 in FIG. 16D indicates an integrated value obtained by integrating the discharge amount by the secondary power in the time direction.
 図18は、本実施形態の三次動力設備の状態を示している。図17(a)の1801は、三次設備による二次動力の使用状況を示す。使用側で計測した流量と温度や流量と圧力の積の時間変化を記録することで、三次設備による二次動力のエネルギー使用状況xを把握することができる。図17(b)の1802は、この値と、二次動力装置が各時点での状態の比を取ったもので、三次設備への温室効果ガス排出量の配賦割合を示し、図17(c)の1803は、この値を当該二次動力設備に配賦され積分された排出量1704との積をとり、積分することで、1803のpで示す排出量の積分値を求め、これを排出量1704から減算することで、図17(c)にZ′示した二次設備による排出量を除いた未配賦の排出量を求める。 FIG. 18 shows the state of the tertiary power equipment of this embodiment. Reference numeral 1801 in FIG. 17A indicates the usage status of secondary power by the tertiary equipment. By recording the time change of the product of the flow rate, temperature, flow rate and pressure measured on the use side, the energy usage status x of the secondary power by the tertiary equipment can be grasped. 1802 in FIG. 17B is a ratio of this value and the state of the secondary power unit at each time point, and shows the distribution ratio of greenhouse gas emissions to the tertiary equipment. c) 1803 calculates the integrated value of the discharge amount indicated by p of 1803 by taking the product of this value and the integrated discharge amount 1704 allocated to the secondary power equipment and integrating it. By subtracting from the emission amount 1704, the unallocated emission amount excluding the emission amount by the secondary equipment indicated by Z ′ in FIG.
 同一時間帯に複数の製造ロットが実行され、複数のロットで同一の二次動力装置が使用される場合、或いは同時に実行される複数の工程下で、同一の二次動力装置が同時に使用される場合などは複数のロット或いは工程下の複数の三次設備で同時に消費する使用量を合計した値を、図17(a)のxで示される三次設備による二次動力の使用量とし、これを元に、全三次設備での消費による二次動力設備の排出量を求め、これを各三次設備の消費エネルギーの比で各ロット,工程に按分すればよい。 When multiple production lots are executed in the same time period and the same secondary power unit is used in multiple lots, or under the same process, the same secondary power unit is used simultaneously In some cases, the total amount of consumption simultaneously consumed by multiple lots or multiple tertiary facilities under the process is used as the secondary power consumption by the tertiary facility indicated by x in FIG. 17 (a). In addition, the discharge amount of the secondary power equipment due to the consumption of all the tertiary equipment may be obtained, and this may be distributed to each lot and process by the ratio of the energy consumption of each tertiary equipment.
 なお、ここで説明した二次動力設備のようにエネルギーを蓄積して三次設備に提供するタイプの動力ではなく、一次エネルギーで供給されたエネルギーを変換して三次設備に提供するタイプの動力設備の場合、一次動力の出力と二次動力で当該一次動力の使用量の各時刻での比を用いて一次動力での排出量を按分すればよい。 It is not the type of power that accumulates energy and provides it to the tertiary equipment like the secondary power equipment described here, but the type of power equipment that converts the energy supplied by the primary energy and provides it to the tertiary equipment. In this case, it is only necessary to apportion the discharge amount of the primary power by using the ratio of the usage amount of the primary power at each time with the output of the primary power and the secondary power.
実施形態3 Embodiment 3
 本発明の実施形態3では、温室効果ガス排出量計算の際、各設備について、運転点の違い,原料ロットの違いなどによって差が生じる排出当量の内、0を除く最小値も用いて排出量を推定する。これによれば、実際の運転状態や原料ロットでの排出量推定値だけでなく、最も効率の良い(排出が少ない)、運転状態で最も効率良く(排出が少なく)生産された原料ロットを使った場合の排出量推定値を同時に得る事ができる。 In Embodiment 3 of the present invention, when calculating greenhouse gas emissions, emissions are also calculated using the minimum value excluding zero among the emission equivalents that differ due to differences in operating points, raw material lots, etc. for each facility. Is estimated. According to this, not only the estimated amount of emissions in the actual operating state and raw material lot, but also the raw material lot produced most efficiently (low emission) and most efficient (low emission) in the operating state is used. The estimated emission amount can be obtained at the same time.
 図18~図23は、本実施形態のカーボントレーサビリティ管理システムの画面例を示す図であり、図18は、資材及び原材料の管理情報の表示画面の例を示している。前述したように、在庫情報1001では、資材及び原材料の在庫状況を記録しており、この画面では、資材及び原材料のロット番号とその品目情報,入荷(入庫日),入庫場所の他、在庫量,温室効果ガス排出原単位を表示している。 18 to 23 are diagrams showing examples of screens of the carbon traceability management system of the present embodiment, and FIG. 18 shows examples of display screens for management information of materials and raw materials. As described above, the stock information 1001 records the stock status of materials and raw materials. On this screen, in addition to the lot numbers and material information of materials and raw materials, the arrival (receipt date), the place of receipt, the stock quantity , Greenhouse gas emission intensity is displayed.
 図19は、設備状態の管理画面の例を示している。図19では、コンプレッサのタンク圧力,排出量などの時間変化を実績として表示している。図20は、ロット状態管理画面の例を示している。前述したように、ユーティリティ管理装置102は、受変電設備の利用状況や冷温熱生成設備の運転状況を秒単位あるいは分単位、あるいは時単位で管理し、製造実行管理装置103で記録した当該ロットの製造にかかわる設備の運用を管理している。この画面では、製造ロットに関して、開始~終了の時間、その期間でのユーティリティ設備の利用状況を表示している。 FIG. 19 shows an example of the equipment state management screen. In FIG. 19, changes over time such as the tank pressure and discharge amount of the compressor are displayed as results. FIG. 20 shows an example of a lot state management screen. As described above, the utility management apparatus 102 manages the usage status of the power receiving / transforming equipment and the operating status of the cold / hot heat generation equipment in units of seconds, minutes, or hours, and records the lot recorded in the manufacturing execution management unit 103. It manages the operation of equipment related to manufacturing. This screen displays the start-to-end time and the utilization status of utility equipment during that period for the production lot.
 図21は、設備による温暖化効果ガスの排出量変化の表示画面を示している。前述したように、一次動力設備の出力による温室効果ガス排出量の時間変化、すなわち一次動力設備の出力に伴い発生した温室効果ガスの排出量の時間変化を表示している。 FIG. 21 shows a display screen of a change in the amount of greenhouse gas emissions caused by the facility. As described above, the time change of the greenhouse gas emission amount due to the output of the primary power equipment, that is, the time change of the greenhouse gas emission amount generated with the output of the primary power equipment is displayed.
 図22は、製造ロットに関連する温暖化ガス排出量の分布を示す画面を示している。この画面では、図4から図10に示した設備やユーティリティ,ロットの状態データから原因別,工程別に温暖化ガス排出量の割合を示している。 FIG. 22 shows a screen showing the distribution of greenhouse gas emissions related to the production lot. This screen shows the ratio of greenhouse gas emissions by cause and process based on the state data of the equipment, utilities, and lots shown in FIGS.
 また、図23は、設備や原材料の温室効果ガス排出当量データの定義及び編集用画面の例を示している。設備や原材料の温室効果ガス排出当量データの定義や編集のため、この画面を表示して入力を行う。 FIG. 23 shows an example of a screen for defining and editing greenhouse gas emission equivalent data of equipment and raw materials. Display and input this screen to define and edit greenhouse gas emission equivalent data for equipment and raw materials.
 以上、説明したように、本発明の各実施形態によれば、任意の製品の製造を行う任意の一ロットについて、該製品を一単位量生産するために排出された温室効果ガスの量を、受電して使用した電力や自家発電による電力,蒸気使用量などのように、その生産活動で直接使用したエネルギーなどに伴う温室効果ガス排出だけでなく、原材料の生産過程で生成された温室効果ガス排出量や、その保存過程で排出された温室効果ガスも合わせて把握する事ができる。 As described above, according to each embodiment of the present invention, the amount of greenhouse gas discharged to produce one unit amount of the product for an arbitrary lot for manufacturing an arbitrary product, Greenhouse gas generated during the production process of raw materials, as well as greenhouse gas emissions associated with energy used directly in its production activities, such as power used by receiving power, power generated by private power generation, and steam consumption The amount of emissions and greenhouse gases emitted during the preservation process can also be grasped together.
 又、任意の製品の製造を行う任意の一ロットについて、該製品を一単位量生産するために排出された温室効果ガスの量を、受電して使用した電力や自家発電による電力,蒸気使用量などのように、その生産活動で直接使用したエネルギーなどに伴う温室効果ガス排出だけでなく、製造に使用した設備の洗浄や、製造実行の失敗,洗浄廃液などの処理にともなう温室効果ガスも合わせて把握する事ができる。 In addition, for any one lot that manufactures any product, the amount of greenhouse gas emitted to produce a unit quantity of the product is received and used, or the power and steam used by private power generation. In addition to greenhouse gas emissions associated with energy directly used in production activities, etc., greenhouse gases associated with cleaning of equipment used for manufacturing, manufacturing execution failures, cleaning waste liquids, etc. are also included. Can be grasped.
 又、任意の製品の製造を行う任意の一ロットについて、該製品を一単位量生産するために排出された温室効果ガスの量を、受電して使用した電力や自家発電による電力,蒸気使用量などのように、その生産活動で直接使用したエネルギーなどに伴う温室効果ガス排出だけでなく、事務処理などに伴う温室効果ガスも合わせて把握する事ができる。 In addition, for any one lot that manufactures any product, the amount of greenhouse gas emitted to produce a unit quantity of the product is received and used, or the power and steam used by private power generation. As shown above, it is possible to grasp not only greenhouse gas emissions associated with energy directly used in production activities but also greenhouse gases associated with office work.
 又、当該製品の当該ロットを製造する上で排出された温室効果ガス排出量を原料の寄与まで含め把握することができ、調達などにおいて温室効果ガス排出の少ない製造業者や製造プラントで製造された原料を選択することで、当該製品の製造にかかわる温室効果ガス排出量を削減できる。 In addition, the amount of greenhouse gas emissions emitted in manufacturing the lot of the product, including the contribution of raw materials, can be grasped, and it was manufactured by manufacturers and manufacturing plants with low greenhouse gas emissions during procurement. By selecting raw materials, greenhouse gas emissions related to the production of the product can be reduced.
 又、任意のロットの製造で生成された温室効果ガスの量を出荷ラベルに含めることができるので、温室効果ガス原単位を低減した企業努力を顧客の調達活動に反映させることができるようになる。 In addition, since the amount of greenhouse gas generated in the production of an arbitrary lot can be included in the shipping label, corporate efforts to reduce greenhouse gas intensity can be reflected in customer procurement activities. .
 各実施形態は、組み立て加工工場,化学工場,食品工場などで行われる製造工程,資材受け払いと受発注を管理する情報処理システムに活用できる。 Each embodiment can be used in an information processing system that manages manufacturing processes, material receipt and ordering, and ordering in assembly processing factories, chemical factories, food factories, and the like.
101 温室効果ガスの排出量管理装置
102 ユーティリティ管理装置
103 製造実行管理装置
104 資材管理装置
105 ファシリティ管理装置
106 割り当てポリシー
107 温室効果ガスの排出当量データ
108 温室効果ガスの排出量データ
110 受変電設備
120 ユーティリティ設備
130 製造現場
140 倉庫設備
150 事務所
101 Greenhouse gas emission management device 102 Utility management device 103 Manufacturing execution management device 104 Material management device 105 Facility management device 106 Allocation policy 107 Greenhouse gas emission equivalent data 108 Greenhouse gas emission data 110 Power receiving / transforming equipment 120 Utility equipment 130 Production site 140 Warehouse equipment 150 Office

Claims (7)

  1.  外部からの受電電力,受入冷温熱量,自家発設備運転実績,冷温熱設備運転実績を記録管理するユーティリティ管理手段と、資材及び原料使用実績を記録管理する資材管理手段と、製造期間中のファシリティ設備の使用エネルギーを管理記録するファシリティ管理手段と、製品の生産実績を管理する製造実行管理手段と、前記ユーティリティ管理手段,資材管理手段,ファシリティ管理手段,製造実行管理手段に記録管理された各実績から温室効果ガス排出量を計算する排出量算出手段と、該排出量算出手段で算出した温室効果ガス排出量を製品一単位量に配賦する排出量配賦手段と、製造ロットに対して配賦した温室効果ガス排出量データを、ロットの固有データとして管理する排出量管理手段を備えたカーボントレーサビリティ管理システム。 Utility management means to record and manage externally received power, received cooling / heating quantity, in-house equipment operation results, cooling / heating equipment operation results, material management means to record and manage materials and raw material usage results, and facility equipment during the manufacturing period Facility management means for managing and recording energy usage, manufacturing execution management means for managing product production results, utility management means, material management means, facility management means, and production performance management means, Emission calculation means for calculating greenhouse gas emissions, emission distribution means for allocating greenhouse gas emissions calculated by the emission calculation means to one unit quantity of product, and allocation to production lots Carbon traceability management system equipped with emission management means to manage the greenhouse gas emissions data as lot specific data Temu.
  2.  前記ユーティリティ管理手段が、製品ロットの製造プロセスを管理する装置から各製造ロットで使用した個々のユーティリティの使用量および時間と、製造プラントのユーティリティ設備運用を管理する装置から各ユーティリティ設備の運転状況とを管理記録するものであり、前記資材管理手段が資材及び原材料の入出庫状況を管理する装置から、ロットの製品製造で使用した資材及び原材料の保管期間と冷暖房,搬送に伴うファシリティ設備運用状況とを管理記録するものであり、前記ファシリティ管理手段が、ファシリティ設備の使用状況を管理する設備から事務所や生産現場の冷暖房や照明,計算機やドア開閉設備などに伴う電力使用状況とを管理記録するものであり、前記排出量算出手段が、製造ロットにおける、各ユーティリティ設備の運転や購入電力,資材及び原材料の生産などに伴う温室効果ガス排出量を計算するものである請求の範囲第1項に記載のカーボントレーサビリティ管理システム。 The utility management means uses the amount and time of each utility used in each production lot from the device that manages the production process of the product lot, and the operation status of each utility facility from the device that manages the utility facility operation of the production plant. The equipment management means manages the storage status of materials and raw materials, the storage period of materials and raw materials used in the production of lot products, the facility equipment operating status associated with air conditioning and transportation, The facility management means manages and records the usage status of the facility equipment from the equipment that manages the usage status of the facility equipment, such as the air conditioning and lighting of offices and production sites, and the power usage status associated with computers and door opening / closing equipment. The emission amount calculating means is configured to output each utility in the production lot. Equipment operation and purchased electricity, carbon traceability management system according to claim 1 is to calculate the greenhouse gas emissions from such production of materials and raw materials.
  3.  前記ユーティリティ設備の運転や電力購買による温室効果ガス排出量を、使用電力や蒸気量に対する換算データにより換算して算出する請求の範囲第1項又は第2項に記載のカーボントレーサビリティ管理システム。 The carbon traceability management system according to claim 1 or 2, wherein a greenhouse gas emission amount due to operation of the utility facility or electric power purchase is calculated based on conversion data for electric power used or steam amount.
  4.  前記資材及び原材料の入荷時に前記資材及び原材料の生産において生成された温室効果ガス排出量を仕入れ元より受取り、これを各資材及び原材料ロットごとに記録し、製品の製造過程で該資材及び原材料を使用した際、この情報を用いて、資材及び原材料分の温室効果ガス排出量を算出する請求の範囲第1項又は第2項のいずれかに記載のカーボントレーサビリティ管理システム。 The amount of greenhouse gas emissions generated in the production of the material and raw material at the time of arrival of the material and raw material is received from the supplier, and this is recorded for each material and raw material lot, and the material and raw material are recorded in the manufacturing process of the product. The carbon traceability management system according to any one of claims 1 and 2, wherein, when used, the information is used to calculate a greenhouse gas emission amount for the material and the raw material.
  5.  前記資材及び原材料分の温室効果ガス排出量を算出する際、産業連関表のような特定製品やロットに基づかない、資材及び原材料生産時の温室効果ガス排出量データを使用して、温暖化ガス排出量を算出する請求の範囲第4項に記載のカーボントレーサビリティ管理システム
    When calculating greenhouse gas emissions for the above materials and raw materials, greenhouse gas emissions data based on greenhouse gas emissions during production of materials and raw materials that are not based on specific products or lots such as input-output tables are used. The carbon traceability management system according to claim 4, wherein the emission amount is calculated.
  6.  廃棄した製造ロットや洗浄作業に伴う温室効果ガス排出を、一定のルールに従って、製品ロットの排出量として配賦する請求の範囲第1項又は第2項又は第5項のいずれかに記載のカーボントレーサビリティ管理システム。 Carbon according to any one of claims 1, 2, or 5, wherein greenhouse gas emissions associated with discarded production lots and cleaning operations are distributed as product lot emissions in accordance with certain rules. Traceability management system.
  7.  受電電力やボイラ,自家発電設備など直接、温室効果ガスを排出して動力を生成する設備について使用電力および使用燃料の量に対する温室効果ガス排出量の計算を行い、それらの設備を用いて二次的なユーティリティを生産する装置や最終的に製品の製造に直接関与する設備の運転データを用いて、算出した温室効果ガス排出量を配賦する請求の範囲第1項又は第2項又は第5項のいずれかに記載のカーボントレーサビリティ管理システム。 Calculate the amount of greenhouse gas emissions relative to the amount of power used and fuel used for facilities that directly generate greenhouse gas and generate power, such as received power, boilers, and private power generation facilities. Claims 1 or 2 or 5 in which the calculated greenhouse gas emissions are allocated using the operation data of the equipment that produces a typical utility or the equipment that is ultimately directly involved in the production of the product The carbon traceability management system according to any one of the items.
PCT/JP2010/052458 2009-02-20 2010-02-18 Carbon traceability management system WO2010095687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009037327A JP5097728B2 (en) 2009-02-20 2009-02-20 Carbon traceability management system
JP2009-037327 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095687A1 true WO2010095687A1 (en) 2010-08-26

Family

ID=42633967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052458 WO2010095687A1 (en) 2009-02-20 2010-02-18 Carbon traceability management system

Country Status (2)

Country Link
JP (1) JP5097728B2 (en)
WO (1) WO2010095687A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409665A (en) * 2018-09-21 2019-03-01 江中药业股份有限公司 Chinese medicinal tablet unit product comprehensive energy consumption measuring method
CN111324866A (en) * 2020-02-24 2020-06-23 云南电网有限责任公司电力科学研究院 Method for calculating discharge capacity of power system
JP7044936B1 (en) 2021-10-20 2022-03-30 東京瓦斯株式会社 Carbon Neutral Management System, Carbon Neutral Management Program
WO2023058171A1 (en) * 2021-10-06 2023-04-13 株式会社日立製作所 Gas reduction assistance device, gas reduction assistance system, and gas reduction assistance method
EP4160515A4 (en) * 2020-05-26 2023-11-15 NTT Communications Corporation Information processing device, information processing method, and program
EP4160333A4 (en) * 2020-05-26 2023-11-22 NTT Communications Corporation Information processing device, information processing method, and program therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012113512A (en) * 2010-11-25 2012-06-14 Hitachi Ltd Environmental load determination system and device of product with life cycle managed on joint use process by multiple users
JPWO2012104925A1 (en) * 2011-02-04 2014-07-03 三菱電機株式会社 Numerically controlled machine tool system
CN111247544B (en) * 2017-10-03 2024-01-02 戴内瑟特股份公司 System and method for tracking greenhouse gas emissions associated with an entity
JP7114038B1 (en) 2021-11-26 2022-08-08 booost technologies株式会社 GHG emission amount derivation device, GHG emission amount derivation method, and program
JP7446045B2 (en) * 2021-12-28 2024-03-08 康範 藤田 Systems, methods and programs for recording environmental values
JP2023161831A (en) * 2022-04-26 2023-11-08 株式会社デンソー Discarded material management system
WO2023209934A1 (en) * 2022-04-28 2023-11-02 ロジスティード株式会社 Co2 emission amount calculation system, co2 emission amount calculation method, and program
JP7121216B1 (en) 2022-06-10 2022-08-17 グンゼ株式会社 Management system, management method and management program
US20240037590A1 (en) * 2022-06-10 2024-02-01 Gunze Limited Management system
JP7178064B6 (en) 2022-06-22 2022-12-16 booost technologies株式会社 Derivation device, derivation method and program
JP7297997B1 (en) 2022-08-05 2023-06-26 ユニ・チャーム株式会社 Information processing device, information processing method and information processing program
EP4369263A1 (en) * 2022-11-10 2024-05-15 ATS Automation Tooling Systems GmbH Method and apparatus for monitoring product carbon footprint
CN117575635B (en) * 2024-01-16 2024-03-29 四川绿豆芽信息技术有限公司 Carbon index tracing method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235245A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Method and device for automatically calculating environmental load level for each product
JP2001142528A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Process assessment tool and process assessment processing method
JP2002117103A (en) * 2000-10-10 2002-04-19 Ricoh Co Ltd Method and system for calculating environmental load of product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160457B2 (en) * 2003-07-07 2008-10-01 株式会社日立製作所 Life cycle environment evaluation system and life cycle environment evaluation method
JP2007109148A (en) * 2005-10-17 2007-04-26 Hitachi Ulsi Systems Co Ltd External storage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235245A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Method and device for automatically calculating environmental load level for each product
JP2001142528A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Process assessment tool and process assessment processing method
JP2002117103A (en) * 2000-10-10 2002-04-19 Ricoh Co Ltd Method and system for calculating environmental load of product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409665A (en) * 2018-09-21 2019-03-01 江中药业股份有限公司 Chinese medicinal tablet unit product comprehensive energy consumption measuring method
CN111324866A (en) * 2020-02-24 2020-06-23 云南电网有限责任公司电力科学研究院 Method for calculating discharge capacity of power system
CN111324866B (en) * 2020-02-24 2023-05-12 云南电网有限责任公司电力科学研究院 Method for calculating discharge amount of electric power system
EP4160515A4 (en) * 2020-05-26 2023-11-15 NTT Communications Corporation Information processing device, information processing method, and program
EP4160333A4 (en) * 2020-05-26 2023-11-22 NTT Communications Corporation Information processing device, information processing method, and program therefor
WO2023058171A1 (en) * 2021-10-06 2023-04-13 株式会社日立製作所 Gas reduction assistance device, gas reduction assistance system, and gas reduction assistance method
JP7044936B1 (en) 2021-10-20 2022-03-30 東京瓦斯株式会社 Carbon Neutral Management System, Carbon Neutral Management Program
JP2023061778A (en) * 2021-10-20 2023-05-02 東京瓦斯株式会社 Carbon neutral management system and carbon neutral management program

Also Published As

Publication number Publication date
JP2010191832A (en) 2010-09-02
JP5097728B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5097728B2 (en) Carbon traceability management system
Zhen et al. Green and sustainable closed-loop supply chain network design under uncertainty
Arampantzi et al. A new model for designing sustainable supply chain networks and its application to a global manufacturer
Benjaafar et al. Carbon footprint and the management of supply chains: Insights from simple models
Lalmazloumian et al. A robust optimization model for agile and build-to-order supply chain planning under uncertainties
Lee et al. Quality uncertainty and quality-compensation contract for supply chain coordination
Bagchi et al. Experience using the IBM supply chain simulator
Zampou et al. Towards a framework for energy-aware information systems in manufacturing
WO2008154734A1 (en) An investment analysis and planning system and method
Mohammadi et al. Design of mathematical models for the integration of purchase and production lot-sizing and scheduling problems under demand uncertainty
Silitonga et al. A multi-item probabilistic inventory model that considers expiration factor, all unit discount policy and warehouse capacity constraints
CN116342026A (en) Information processing system of logistics storage goods shelf based on industrial Internet
Azadeh et al. A computer simulation model for analysing performance of inventory policy in multi-product mode in two-echelon supply chain
Alkhayyal et al. The impact of carbon emissions policies on reverse supply chain network design
Gupta et al. Inventory Selection Criteria: A Proposed Classification.
Kreipl et al. Scheduling coordination problems in supply chain planning
Stickles et al. Jobs Created by Appliance Standards
Rezakhanlou et al. A dual-channel multi-objective green supply chain network design considering pricing and transportation mode choice under fuzzy uncertainty
JP7369984B1 (en) GHG emissions derivation device, GHG emissions derivation method, and program
Seifbarghy et al. Coordination of a single-supplier multi-retailer supply chain via joint ordering policy considering incentives for retailers and utilizing economies of scale
Aylı A network design problem for a post sale services distribution system
Vidal et al. Deterministic ınventory models with non-perishable product: a comparative study
Sutrisno et al. The Integrated Decision-Making Support for Integrated Supplier Selection and Production Planning Problems with Discounted Prices
Shah et al. Buyer-Seller Coordination Model for fuzzy deteriorating items
KR20020063958A (en) goods in stock management system and operation method for this system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743813

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743813

Country of ref document: EP

Kind code of ref document: A1