WO2010095686A1 - Method for driving dot-matrix display using bistable nematic liquid crystal - Google Patents

Method for driving dot-matrix display using bistable nematic liquid crystal Download PDF

Info

Publication number
WO2010095686A1
WO2010095686A1 PCT/JP2010/052457 JP2010052457W WO2010095686A1 WO 2010095686 A1 WO2010095686 A1 WO 2010095686A1 JP 2010052457 W JP2010052457 W JP 2010052457W WO 2010095686 A1 WO2010095686 A1 WO 2010095686A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
segment
common
voltage
nematic liquid
Prior art date
Application number
PCT/JP2010/052457
Other languages
French (fr)
Japanese (ja)
Inventor
真一 野川
雅文 星野
ジャン-デニス、ラフィット
Original Assignee
セイコーインスツル株式会社
ネモプティック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社, ネモプティック filed Critical セイコーインスツル株式会社
Publication of WO2010095686A1 publication Critical patent/WO2010095686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0482Use of memory effects in nematic liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms

Definitions

  • the present invention relates to an electrical drive signal and a drive device for controlling the display of a liquid crystal display.
  • a bistable liquid crystal display has two kinds of stable states in a state where an electric signal is cut off, and the two kinds of stable states can be switched by applying an appropriate electric signal.
  • an image can be displayed in combination with a polarizing element, and the image can be changed by adding a specific electric signal. Since the display image is in a stable state even when the electric signal is turned off, it becomes a stored image and is useful for many applications. Since no power is required to maintain the display, it is effective in reducing the power consumption of the portable device.
  • Such a bistable liquid crystal panel having two kinds of stable states has been proposed as a screen called BiNem (registered trademark).
  • BiNem registered trademark
  • Patent Document 1 a method for adding an electric signal when changing a stored display is also disclosed. It is disclosed.
  • the driving voltage amplitude to be switched is large (for example, about 40 volts) at a low temperature, and conversely, the driving voltage amplitude is small (for example, 10 volts or less) at a high temperature.
  • a bistable liquid crystal panel has a larger equivalent load capacity than a normal monostable STN liquid crystal panel, so the charge / discharge charge amount is large, and the drive device requires a high current supply capability.
  • the segment signal output transistor is required to have a low ON resistance even when the drive voltage amplitude is small, such as at high temperatures. For this reason, the driving device needs to have a high driving capability and quickly charge and discharge charges between the common and the segment.
  • the bistable liquid crystal panel displays the switching voltage change on the negative side of the terminal voltage.
  • the characteristics differ between the case of control and the case of control on the positive electrode side, and a difference in drive voltage necessary for switching, a certainty of switching, that is, a difference in display image quality, and the like occur.
  • control on the negative electrode side enables efficient drive control with a small voltage amplitude, and the display quality is good, but in the drive device, the majority of the charge transfer during switching occurs at a high potential, so panel consumption The current increases.
  • control on the positive electrode side in the driving device, the majority of charge transfer during switching occurs at a low potential, so that the current consumption of the panel can be reduced.
  • the present invention provides an optimum driving means for the characteristics of such a bistable liquid crystal panel.
  • a signal for selecting two stable alignment states is selectively applied to the nematic liquid crystal from the segment drive unit connected to the segment electrode, and the common electrode and the segment
  • a dot matrix display using a bistable nematic liquid crystal that displays an image by a common-segment voltage, which is the electric field between the electrodes, the output of all common electrodes and all segment electrodes when scanning each common electrode is the same potential
  • a dot matrix display using a bistable nematic liquid crystal having a mode in which all common electrodes and all segment electrodes output the same potential to GND in a drive mode whose potential is not GND Driving method and driving means.
  • the dot display when the voltage between the terminals of the common electrode and the segment electrode holding the dot pixel is VCOM-VSEG, the dot display is in the first orientation state or the second orientation.
  • a driving method and driving means when the voltage between the terminals of the common electrode and the segment electrode holding the dot pixel is VCOM-VSEG, the dot display is in the first orientation state or the second orientation.
  • the output potential of each terminal of the common and the segment holding the dot pixel is avoided with a small amplitude while avoiding the central potential of the maximum amplitude that can be output for both the common and the segment.
  • a driving method and a driving means including a driving mode for shifting and driving VCOM-VSEG which is a voltage between both terminals with a smaller amplitude.
  • the positive side drive mode for controlling the voltage change that determines whether the dot display is white or black on the positive side of the terminal voltage.
  • a negative side drive mode that is controlled on the negative side and by selecting either of them, the negative side drive mode can be selected at low temperatures where a large drive voltage amplitude is required. Efficient drive control is performed with a small voltage amplitude, and a positive-side drive mode that is controlled on the positive side is selected except when the temperature is low to achieve driving with lower current consumption.
  • the common segment is driven and shifted with the maximum amplitude that can be output, and the voltage between both terminals: VCOM-VSEG is driven with a larger amplitude, while high temperature
  • the ON resistance of the drive transistor generally increases, so the common potential of each terminal of the common and segment is set to the center potential of the maximum amplitude that can be output for both the common and segment.
  • the negative side drive mode is selected at low temperatures where a large drive voltage amplitude is required, and drive control with higher voltage efficiency is performed, and the positive side drive mode is selected at times other than low temperatures, resulting in lower current consumption. Realization of driving.
  • the output amplitude of the segment decreases and the ON resistance of the output transistor generally increases.
  • a high temperature can be obtained. It is possible to minimize an increase in the ON resistance of the driving transistor when driving with a smaller amplitude.
  • FIG. 6 is a diagram illustrating an example of a waveform of a specific mode (Mode-D) for driving a bistable liquid crystal panel. It is a figure which shows the example of the waveform of the specific mode (Mode-H) which drives a bistable liquid crystal panel.
  • the driving method and driving device of the bistable liquid crystal display panel of the present invention can be implemented without changing the hardware of the driving device of the bistable liquid crystal display panel and by partially changing the conventional driving method. is there.
  • bistable liquid crystal display panel Before describing the embodiment of the present invention, the structure of the bistable liquid crystal display panel will be described.
  • FIG. 1 is a general functional block diagram for controlling the display of the bistable liquid crystal display panel 10.
  • the bistable liquid crystal display panel 10 generates a common drive unit 11 that drives a horizontal common line, a segment drive unit 12 that drives a vertical segment line, and drive potentials (V0, V12, V34, V5, and VCX). It is driven by a drive device comprising a power supply circuit 13, a common drive unit 11, a segment drive unit 12, and a control unit 14 that controls the power supply circuit 13.
  • the signal and role for the control unit 14 to control the common drive unit 11 and the segment drive unit 12 are the same as those of a normal STN drive driver circuit.
  • FIG. 2 is a diagram for explaining switching which is switching of the state of the bistable nematic liquid crystal.
  • a pair of substrates 1 arranged substantially opposite to each other, and an electrode 2 and an alignment film 3 are arranged in layers on a substrate on the opposite surface side of the substrate 1, and nematic liquid crystal molecules 4 are sandwiched by the substrate 1. ing.
  • the molecules 4 of the nematic liquid crystal are aligned in a predetermined direction by fine grooves carved in the alignment film 3.
  • a polarizing plate 5 is provided outside the substrate 1 on the upper surface side of the drawing.
  • a state is shown in which a specific signal is applied to the common electrode and the segment electrode of the bistable liquid crystal display panel 10 to switch the twist direction of the nematic liquid crystal molecules between two states, a twist state and a uniform state.
  • One of the write signals to be applied to the pair of electrodes 2 arranged opposite to each other in parallel is the selection COM signal shown in FIGS. 2 (a) and 2 (d), and the other is shown in FIG. 2 (b).
  • SEG signals for twist or uniform SEG signals shown in FIG.
  • the voltage between the common terminal and the segment terminal applied to the liquid crystal is of two types: a twist COM-SEG signal shown in FIG. 2C and a uniform COM-SEG signal shown in FIG.
  • the bistable liquid crystal display panel 10 When receiving the twist COM-SEG signal, the bistable liquid crystal display panel 10 can display white by the orientation of the polarizing plate 5, and can receive black by receiving the uniform COM-SEG signal. Moreover, white display and black display can be reversed by changing the state of the polarizing plate 5.
  • the common electrode and the segment electrode are substantially synonymous with the common terminal and the segment terminal, respectively.
  • the voltage waveform of the selection COM signal applied to the common terminal is such that the first time interval a of the selection period T is level 0, the time intervals b and c are negative levels ⁇ V, and the following time
  • the intervals d and e are waveforms having a positive level + V, the following time interval f is a positive level + V ⁇ v, and the remaining time interval g is a level 0 waveform.
  • the voltage waveform of the twisted SEG signal applied to the segment terminals is level 0 for the first time interval a to e of the selection period T, and negative level ⁇ v for the subsequent time interval f.
  • the remaining time interval g is a waveform at level 0.
  • the waveform of the twist COM-SEG signal which is the voltage difference between the common terminal and the segment terminal, changes with time. It becomes. That is, as shown in FIG. 2 (c), the waveform of the twisting COM-SEG signal is such that the first time interval a of the selection period T is level 0, the subsequent time intervals b and c are negative level -V, and the subsequent time.
  • the interval d to f is a waveform having a positive level + V, and the remaining time interval g is level 0.
  • the waveform of the twisting COM-SEG signal causes a voltage transition between the negative level ⁇ V volts and the positive level + V.
  • the twisted COM-SEG signal having such a waveform is applied to the nematic liquid crystal by first destroying the stable state of the alignment of the nematic liquid crystal molecules with a negative level ⁇ V voltage and a positive level + V voltage.
  • the nematic liquid crystal molecules 4 are lifted in the vertical direction (see the schematic diagram in FIG. 2 (g)), and then opened to a level 0 voltage to lay the nematic liquid crystal molecules 4 in the alignment direction (see FIG. 2). (Refer to the schematic diagram of (h)).
  • the intersection pixel of the bistable liquid crystal display panel 10 to which the twisting COM-SEG signal having the waveform shown in FIG. 2C is applied displays white in this example.
  • FIG. 2D showing the voltage waveform of the selection COM signal applied to the common terminal is the same as the waveform of FIG.
  • the voltage waveform of the uniform SEG signal is such that the first time interval a to c of the selection period T is level 0, the subsequent time interval d is a negative level ⁇ v, and the remaining time interval.
  • e to g are waveforms having a level 0.
  • the uniform COM-SEG signal which is the voltage difference between the common terminal and the segment terminal, has a waveform that changes with time. . That is, as shown in FIG. 2 (f), the waveform of the uniform COM-SEG signal is such that the first time interval a of the selection period T is level 0, the subsequent time intervals b and c are negative level -V, and the subsequent time.
  • the interval d is a positive level + (V + v)
  • the following time interval e is a positive level + V
  • the following time interval f is a positive level + V ⁇ v
  • the remaining time interval g is a level 0 waveform.
  • the uniform COM-SEG signal makes a voltage transition between ⁇ V and + (V + v).
  • FIG. 3 shows a general electrode configuration of the bistable liquid crystal display panel 10.
  • Each intersection of the common terminal arranged in the horizontal direction and the segment terminal arranged in the vertical direction is a pixel that determines display black and white, and the display is determined by applying a specific common waveform and a specific segment waveform.
  • FIG. 3 a waveform that sets the intersection pixel of the m-th column and the n-th row to a uniform state, the intersection pixel of the m-th column and the (n + 1) -th row to a twisted state, and the intersection pixel of the m-th column and the (n + 2) -th row to a uniform state.
  • An example of this is shown in FIG. 3
  • FIG. 4 shows an example of voltage waveforms applied to the common terminal and the segment terminal of the bistable liquid crystal display panel 10.
  • 4A shows a voltage waveform applied to the n-th row common terminal COM [n] arranged in the horizontal direction in the bistable liquid crystal display panel 10 shown in FIG.
  • FIG. 4B shows the voltage waveform applied to the common terminal COM [n + 1] in the (n + 1) th row
  • FIG. 4C shows the voltage waveform applied to the common terminal COM [n + 2] in the (n + 2) th row.
  • FIG. 4D shows a voltage waveform of the segment terminal SEG [m] in the m-th column arranged in the vertical direction in the bistable liquid crystal display panel 10 shown in FIG.
  • the voltage waveform of the selection COM signal 31 applied to the common terminal is as shown in the portion surrounded by the broken-line circle in FIGS. 4A to 4C, and the first time interval a of the selection period T is level 0.
  • the following time interval b is a positive level + V2
  • the following time intervals c and d are level 0
  • the following time interval e is + VCX
  • the remaining time interval f is level 0.
  • the voltage waveform of the non-selection COM signal 32 applied to the common terminal is as follows.
  • the first time intervals a and b of the selection period T are level 0 and the subsequent time interval c.
  • e is a waveform with a positive level + V2, and the remaining time interval f is level 0.
  • the voltage waveform of the signal applied to the common terminal is greatly different between FIG. 2 and FIG.
  • the voltage waveform of the selection COM signal shown in (a) and (d) of FIG. 2 is a voltage waveform that changes greatly between positive and negative, whereas the voltage waveform of the selection COM signal 31 shown in FIG.
  • the waveform changes greatly only in FIG.
  • the non-selection COM signal 32 shown in FIG. 4 also has a waveform that changes greatly only on the positive side.
  • the selection COM signal 31 is applied to the n-th common terminal COM [n] in the scan time interval t1, and the non-selection COM signal 32 is applied in the scan time intervals t2 and t3.
  • the non-selection COM signal 32 is applied to the subsequent common terminal COM [n + 1] in the (n + 1) th row, and the selection COM signal 31 is supplied in the scan time interval t2. Further, the non-selection COM signal 32 is applied in the scan time interval t3.
  • non-selection COM signal 32 is applied to the subsequent common terminal COM [n + 2] in the (n + 2) th row in the scan time intervals t1 and t2, as shown in FIG. 4C, and in the scan time interval t3. Each signal 31 is applied.
  • the segment voltage applied to the segment terminals that is, the voltage waveforms SEG [m] of the uniform SEG signal 34 and the twist SEG signal 35 are as shown in FIG.
  • the uniform SEG signal 34 is applied in the scan time interval t1
  • the twist SEG signal 35 is applied in the scan time interval t2
  • the uniform SEG signal 34 is applied in the scan time interval t3.
  • the voltage waveform of the uniform SEG signal 34 shows that the first time intervals a and b of the selection period T are level 0, the subsequent time intervals c and d are positive level + V2, the subsequent time interval e is positive level + V1, and the rest The time interval f is a waveform at level 0.
  • the voltage waveform of the twist SEG signal 35 is such that the first time intervals a and b of the selection period T are level 0, the subsequent time interval c is positive level + V1, the subsequent time intervals d and e are positive level + V2, and The remaining time interval f is a waveform having level 0.
  • the selection COM signal 31 or the non-selection COM signal 32 is applied to the common terminal, and the uniform SEG signal 34 and the twist SEG signal 35 are applied to the segment terminal, the common signal between the common terminal and the segment terminal.
  • the voltage between segments, that is, the uniform COM-SEG signal 36 and the twist COM-SEG signal 37 are as shown in FIGS.
  • the first time intervals a and b are level 0, the subsequent time interval c is negative level ⁇ V5, and the remaining time intervals d to f are level 0. Applied.
  • the parasitic signal 39 by the uniform SEG signal in which the first time interval a to d is level 0, the subsequent time interval e is negative level ⁇ V5, and the remaining time interval f is level 0 is Applied.
  • the uniform COM-SEG signal 36 and the parasitic signals 38 and 39 are applied to the intersection pixel of the common terminal in the n-th row and the segment terminal in the m-th column at the times t1, t2, and t3. Since the voltage amplitude is small, it does not affect the switching of the intersection pixel. Therefore, the intersection pixel is switched to the uniform state by the uniform COM-SEG signal 36.
  • an intersection SEG signal between the common terminal COM [n + 1] in the (n + 1) -th row and the segment terminal SEG [m] in the m-th column has a uniform SEG signal in the time interval t1, as shown in FIG.
  • the parasitic signal 39 is applied to the twist COM-SEG signal 37 in the time interval t2, and the parasitic signal 39 is applied to the uniform SEG signal in the time interval t3.
  • the twisted COM-SEG signal 37 has an initial time interval a of level 0, a subsequent time interval b of a positive level + V2, a subsequent time interval c of a negative level ⁇ V1, and a subsequent time interval d of a negative level ⁇ V2.
  • the subsequent time interval e is a negative level ⁇ V4, and the remaining time interval f is a voltage having a waveform of level 0.
  • the parasitic signal 39 does not affect the switching of the intersection pixel because the voltage amplitude is small. Therefore, the intersection pixel is switched to the twist state by the twist COM-SEG signal 37.
  • intersection pixel of the (n + 2) -th row common terminal COM [n + 2] and the m-th column segment terminal SEG [m] is subjected to the uniform SEG signal in the time interval t1, as shown in FIG.
  • the parasitic signal 39 is applied with the parasitic signal 38 by the twist SEG signal in the scan time interval t2, and the uniform COM-SEG signal 36 is applied in the scan time interval t3.
  • the uniform COM-SEG signal 36 indicates that the first time interval a of the selection period T is level 0, the subsequent time interval b is positive level + V2, the subsequent time intervals c to d are negative level ⁇ V2, and the subsequent time interval e is The negative level ⁇ V3, and the remaining time interval f is a voltage having a waveform of level 0.
  • the parasitic signals 38 and 39 do not affect the switching of the intersection pixel because the voltage amplitude is small. Therefore, the intersection pixel is switched to the uniform state by the uniform COM-SEG signal 36.
  • FIG. 6 shows an example of two types of voltage waveforms applied to the common terminal, two types of voltage waveforms applied to the segment terminals, and four types of COM-SEG waveforms generated by a combination thereof.
  • the time interval indicated by T is a unit of one output waveform.
  • four kinds of voltages applied to the intersection pixel of the common terminal and the segment terminal, uniform COM-SEG signal 65, twist COM-SEG signal 66, parasitic signal 67 by uniform SEG signal, and parasitic by twist SEG signal Signal 68 is shown.
  • the voltage waveform shown in FIG. 6 differs from that shown in FIG. 4 in the waveform applied to the segment terminals.
  • the Mode-G shown in FIG. 6 shows a voltage change (a broken line surrounded by a circle) that determines whether the dot display is white or black when the voltage between the terminals of the common and the segment, for example, the COM-SEG signal 65 for uniform is viewed.
  • a voltage change (a broken line surrounded by a circle) that determines whether the dot display is white or black when the voltage between the terminals of the common and the segment, for example, the COM-SEG signal 65 for uniform is viewed.
  • the parasitic signal when the common is not selected is generated at a high potential (V0, V12) of the segment waveform. That is, since charge and discharge of charges are performed on the pixel electrodes between the common and segment from a high potential (V0, V12), it is necessary to inject charges from a high voltage power source, and current consumption as a driving device increases.
  • the numbers “1” and “0” shown in FIG. 6D are control signals for the waveform of the common voltage applied to the common terminal and the waveform of the segment voltage applied to the segment terminal.
  • the waveform of the common voltage is controlled by four signals of CCX, C-Data, FR, and DispOffx. It is controlled by three signals of the segment voltage waveform S-Data, FR, and DispOffx.
  • Table 1 below shows the segment drive driver (SEG-Drv.) For a segment drive device that uses a driver (not the SA drive method) for driving a typical STN liquid crystal that is already commercially available. It is a truth table of an input / output table. Since the output voltage is controlled by three control signals, the correspondence between the segment control signal and the segment voltage waveform as shown in FIG.
  • the control signal for outputting the potential is CCX.
  • Table 2 shown below is a truth table of the input / output table of the common drive driver (COM-Drv.). In Table 2, if the common output is controlled as shown in the column of driving mode G (Mode-G), four common control signals (CCX, C-Data, FR, DispOffx) shown in FIG. And the correspondence of the common voltage waveform as shown in FIG.
  • the bistable liquid crystal display panel when a COM signal for selection is applied to one common terminal arranged in the horizontal direction, whether the signal of each segment terminal intersecting in the vertical direction is a signal for twisting or not.
  • the display of one pixel in the horizontal direction is determined depending on whether it is a signal.
  • Applying (scanning) selection COM signals to all common terminals while sequentially shifting the selection COM signals one by one, and applying the signals of all segment terminals each time determines the display of the entire screen.
  • a non-selection COM signal is applied to the majority of other common terminals, and a parasitic signal is applied to the intersecting segment terminals.
  • the parasitic signal greatly contributes to the charge / discharge charge amount for driving the liquid crystal panel, and affects the current consumption.
  • FIG. 7A shows a common drive waveform of Mode-E, the left two waveforms are the selection COM signals and the right two waveforms are the non-selection COM signals.
  • FIG. 7B shows a uniform SEG signal 73 and a twist SEG signal 74. Looking at the voltage between the terminals of the Mode-E common and the segment, for example, the uniform COM-SEG signal 75, first the negative side drive is followed by the positive side drive, and whether the positive side drive is twisted or uniform? A voltage change (a broken line part surrounded by a circle) is given. Driving to both sides of the negative electrode and the positive electrode is a general consideration for preventing and balancing DC bias to the liquid crystal. The same applies to the twisted COM-SEG signal 76.
  • the positive side drive mode means that the voltage change (the broken line part circled) that determines whether the pixel display is twist or uniform is controlled on the positive side.
  • a parasitic signal generated when the common is not selected, for example, a parasitic signal 77 by the uniform SEG signal is generated at a low potential (V34, V5) of the segment waveform. That is, since charge and discharge are performed on the pixel electrode between the common and the segment from a low potential (V34, V5), it is not necessary to use a high voltage power supply, and current consumption as a driving device can be suppressed small.
  • the parasitic signal 78 by the twisted SEG signal since charge and discharge are performed on the pixel electrode between the common and the segment from a low potential (V34, V5), it is not necessary to use a high voltage power supply, and current consumption as a driving device can be suppressed small.
  • the parasitic signal 78 by the twisted SEG signal since charge and discharge are performed on the pixel electrode between the common and the segment from a
  • the Mode-F shown in FIG. 8 is also the positive electrode side drive mode like the Mode-E.
  • a uniform SEG signal 83 and a twist SEG signal 84 are shown.
  • Signal 88 is shown.
  • the parasitic signal generated when the common is not selected is generated at a low potential (V34, V5) of the segment waveform.
  • the waveform of Mode-D shown in FIG. 9 is the negative side drive mode, similar to Mode-G of FIG.
  • the waveform of the selection COM signal 111 will be described.
  • the first time interval a is positive level + V34
  • the subsequent time interval b is positive level + V12
  • the subsequent time intervals c and d are positive level + V34
  • the subsequent time interval e is positive.
  • Level + VCX and the last time interval f is positive level + V34.
  • the first time intervals a and b are positive level + V34
  • the subsequent time intervals c to e are positive level + V12
  • the last time interval f is positive level + V34.
  • the first time intervals a and b are positive level + V34
  • the following time intervals c and d are positive level + V12
  • the following time interval e is positive level + V0
  • the last time interval f is a positive level + V34.
  • the first time intervals a and b are positive level + V34
  • the following time interval c is positive level + V0
  • the following time intervals d and e are positive level + V12
  • the last time is a positive level + V34.
  • the waveform of the uniform COM-SEG signal 115 will be described.
  • the first time interval a is positive level +0
  • the following time interval b is positive level +3
  • the following time intervals c and d are negative level -3, and so on.
  • the time interval e is negative level -2
  • the last time interval f is positive level +0.
  • the first time interval a is positive level +0
  • the following time interval b is positive level +3
  • the following time interval c is negative level -4
  • the following time interval d is Negative level -3
  • the following time interval e is negative level -1
  • the last time interval f is positive level +0.
  • the waveform of the parasitic signal 117 based on the uniform SEG signal is described as follows.
  • the first time interval a to d is positive level +0
  • the subsequent time interval e is negative level ⁇ 1
  • the last time interval f is positive level +0.
  • the first time intervals a and b are positive level +0
  • the subsequent time interval c is negative level ⁇ 1
  • the last time intervals d to f are positive level +0.
  • the COM signal 111 for selection, the COM signal 112 for non-selection, the SEG signal 113 for uniform, and the SEG signal 114 for twist are shown.
  • the COM-SEG signal 115 for uniform, the COM-SEG signal 116 for twist, and the uniform A parasitic signal 117 by the SEG signal and a parasitic signal 118 by the twist SEG signal are shown.
  • the common amplitude is from V12 to V34, which is two steps smaller than the maximum amplitude from V0 to V5.
  • the segment also has a basic amplitude from V12 to V34, which is two steps less than the maximum amplitude from V0 to V5.
  • Mode-H shown in FIG. 10 is also a negative electrode side drive mode.
  • the COM signal for selection 121, the COM signal for non-selection 122, the SEG signal for uniform 123, and the SEG signal for twist 124 are shown.
  • the uniform COM-SEG signal 125, the COM-SEG signal for twist 126, and the uniform A parasitic signal 127 based on the SEG signal and a parasitic signal 128 based on the twisted SEG signal are shown.
  • the waveform of the selection COM signal 121 will be described.
  • the first time interval a is positive level + V5
  • the subsequent time interval b is positive level + V12
  • the subsequent time intervals c and d are positive level + V34
  • the subsequent time interval e is positive.
  • Level + VCX and the last time interval f is a positive level V5.
  • the first time interval a is positive level + V5
  • the following time interval b is positive level + V34
  • the following time intervals c to e are positive level + V12
  • the last time interval f becomes a positive level V5.
  • the first time interval a is positive level + V5
  • the following time interval b is positive level + V34
  • the following time intervals c and d are positive level + V12
  • e is a positive level + V0
  • the last time interval f is a positive level + V5.
  • the waveform of the twisted SEG signal 124 will be described.
  • the first time interval a is positive level + V5
  • the following time interval b is positive level + V34
  • the following time interval c is +0 V
  • the following time intervals d and e are positive level + V12.
  • the last time interval f becomes a positive level + V5.
  • First time interval a is positive level +0
  • subsequent time interval b is positive level +3
  • subsequent time intervals c and d are negative level -3, and so on.
  • the time interval e is negative level -2
  • the last time interval f is positive level +0.
  • the first time interval a is positive level +0
  • the following time interval b is positive level +3
  • the following time interval c is negative level -4
  • the following time interval d is Negative level -3
  • the following time interval e is negative level -1
  • the last time interval f is positive level +0.
  • the waveform of the parasitic signal 127 based on the uniform SEG signal is described as follows.
  • the first time interval a to d is positive level +0
  • the subsequent time interval e is negative level ⁇ 1
  • the last time interval f is positive level +0.
  • the first time intervals a and b are positive level +0
  • the subsequent time interval c is negative level ⁇ 1
  • the last time intervals d to f are positive level +0.
  • the parasitic signal generated when the common is not selected is generated at a high potential (V0, V12) of the segment waveform.
  • the ON resistance of the output transistor is most increased due to the substrate effect when the central potential (1/2 potential) of the maximum amplitude that can be output by the transistor is output. When a lower ON resistance is required, Output should be avoided.
  • both the common and segment are output at the maximum amplitude (V0-V5), one stage from the upper limit, When output with a potential (V12-V34) with one stage lower than the lower limit and a total of two stages of amplitude reduced, the COM-SEG voltage is driven with an amplitude that is four stages smaller than when the maximum amplitude (V0-V5) is output. Is done.
  • V0 and V5 when the voltage between V0 and V5 is about 10V, if both the common and segment are output with the maximum amplitude (V0-V5), the COM-SEG voltage will have an amplitude of ⁇ 10V, but the potentials of V12 and V34 will be If the common and segment are output with amplitudes of V12 and V34 by setting 2V inside from the upper and lower limits, the COM-SEG voltage has an amplitude of ⁇ 6V.
  • a small amplitude drive of ⁇ 6 V can be realized without significantly increasing the ON resistance of.
  • the COM-SEG voltage can be driven with a smaller amplitude without increasing the ON resistance of the output transistor. it can.
  • Mode-F is a small amplitude waveform of the positive side drive mode as opposed to Mode-H in FIG.
  • the end of COM and SEG is changed to V5 (GND) instead of V34, and it is possible to drive without using the output amplifier capability of V34 at the end of voltage transition. is doing.
  • Mode-E in FIG. 7 and Mode-G in FIG. 6 are both driven at the maximum amplitude, although there are differences between the positive side and negative side drive modes.
  • the output of the common and the segment changes with the maximum amplitude of V0-V5, and the voltage waveform between COM and SEG also has the maximum amplitude.
  • Mode-E or Mode-G is selected, and when driving with a smaller voltage amplitude, Mode-F or Mode-H is selected.
  • Each potential (V0, V12, VCX, V34, V5) of the drive waveform shown in FIG. 7 is optimum according to the size of the liquid crystal panel, the number of pixels, the ambient temperature, and the like, similar to the drive potential of a general-purpose STN driver.
  • Set to voltage Since a high driving voltage is required for the liquid crystal at a low temperature, the voltage between V0 and V5 is increased and the liquid crystal is driven in the negative side driving mode (Mode-G) with good voltage efficiency.
  • Mode-G negative side driving mode
  • Mode-E drive with positive side drive mode
  • reduce voltage between V0 and V5 and drive with Mode-F or Mode-H At high temperature, reduce voltage between V0 and V5 and drive with Mode-F or Mode-H.
  • the drive amplitude between COM and SEG is small, the voltage between V0 and V5 is kept as large as possible to minimize the increase in the ON resistance of the output transistor.
  • the present invention can be used for all liquid crystal displays.
  • the industrial applicability is particularly high particularly in the use of electronic shelf labels and electronic paper.

Abstract

Provided is a method for driving a dot-matrix display using a bistable nematic liquid crystal. At a low temperature, a negative side drive mode (Mode-G) is selected to perform a drive control with a higher voltage efficiency, and at room temperature or a high temperature, a positive side drive mode (Mode-E) is selected to perform a drive with a lower current consumption. When driving at a small amplitude at a high temperature, modes (Mode-F, Mode-H) in which the output voltages of common terminals and segment terminals change at a small amplitude are selected to minimize an increase of the resistance in saturation of the output transistor. The selective use of the drive modes makes it possible to carry out rational drive in accordance with the characteristics of a bistable manetic liquid crystal panel.

Description

[規則37.2に基づきISAが決定した発明の名称] 双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法[Name of invention determined by ISA based on Rule 37.2] Method for driving dot matrix display using bistable nematic liquid crystal
 本発明は、液晶ディスプレイの表示を制御するための電気的駆動信号と駆動デバイスに関する。 The present invention relates to an electrical drive signal and a drive device for controlling the display of a liquid crystal display.
 現在製造されている液晶ディスプレイのほとんどは単安定タイプであり、液晶を狭持する電極に電気信号を与えて何らかの表示をさせた後、その電気信号を切ると液晶は特定の状態に戻り、表示は消える。一方双安定の液晶ディスプレイは、電気信号が切れた状態で2種類の安定状態を有し、その2種類の安定状態は適当な電気信号を加える事によってスイッチングする事ができる。 Most of the liquid crystal displays currently manufactured are monostable, and after an electrical signal is given to the electrode that holds the liquid crystal to display something, the liquid crystal returns to a specific state when the electrical signal is turned off. Disappears. On the other hand, a bistable liquid crystal display has two kinds of stable states in a state where an electric signal is cut off, and the two kinds of stable states can be switched by applying an appropriate electric signal.
 2種類の安定状態は、それぞれ光の透過状態が異なるので偏光素子と組み合わせて画像を表示する事ができ、特定の電気信号を加える事によって画像を変更することができる。その表示画像は電気信号を切っても安定状態にあるので記憶画像となり多くの用途に対して有益である。表示を維持するのに電力が不要なので、携帯デバイスの消費電力を抑えるのに有効である。 Since the two kinds of stable states have different light transmission states, an image can be displayed in combination with a polarizing element, and the image can be changed by adding a specific electric signal. Since the display image is in a stable state even when the electric signal is turned off, it becomes a stored image and is useful for many applications. Since no power is required to maintain the display, it is effective in reducing the power consumption of the portable device.
 そのような2種類の安定状態を持つ双安定液晶パネルがBiNem(登録商標)と呼ばれるスクリ-ンとして提唱され、特許文献1において、記憶された表示を変更するときの電気信号の加え方についても開示されている。 Such a bistable liquid crystal panel having two kinds of stable states has been proposed as a screen called BiNem (registered trademark). In Patent Document 1, a method for adding an electric signal when changing a stored display is also disclosed. It is disclosed.
特開2004-4552号公報Japanese Patent Laid-Open No. 2004-4552
 このような双安定液晶パネルの表示画像を変更する為には、2種類の安定状態をスイッチングする必要があり、一般的に大きな駆動電圧による制御が求められる。さらに、その液晶は、温度によって粘性が大きく変わるので、例えば低温時にはスイッチングする駆動電圧振幅は大きく(例えば40ボルト程度)、逆に高温時には駆動電圧振幅は小さく(例えば10ボルト以下に)なる。 In order to change the display image of such a bistable liquid crystal panel, it is necessary to switch between two types of stable states, and control with a large drive voltage is generally required. Further, since the viscosity of the liquid crystal changes greatly depending on the temperature, for example, the driving voltage amplitude to be switched is large (for example, about 40 volts) at a low temperature, and conversely, the driving voltage amplitude is small (for example, 10 volts or less) at a high temperature.
 高温時のように駆動電圧振幅が小さい場合は、コモン・セグメントの駆動デバイスの電源電圧を下げて駆動するか、あるいは電源電圧を高くしたままで小さい電圧振幅の波形を出力するかのいずれかとなる。駆動デバイスの電源電圧を下げて駆動する場合は、電圧が低いほど出力トランジスタのON抵抗が大きくなると共に、また駆動デバイスの動作電圧範囲以下には下げられないという制限がある。 When the drive voltage amplitude is small, such as when the temperature is high, either the drive of the common segment drive device is driven down, or the waveform of small voltage amplitude is output with the power supply voltage kept high. . When driving with the power supply voltage of the drive device lowered, there is a restriction that the lower the voltage, the greater the ON resistance of the output transistor, and the lower the operation voltage range of the drive device.
 また、電源電圧を高くしたままで小さい電圧振幅の波形を出力する場合には、出力トランジスタの基板効果によってON抵抗が大きくなるという特性がある。 Also, when a waveform with a small voltage amplitude is output while the power supply voltage is kept high, there is a characteristic that the ON resistance increases due to the substrate effect of the output transistor.
 一般的に、双安定液晶パネルは通常の単安定STN液晶パネルに比べて等価負荷容量が大きいので充放電電荷量が大きく、駆動デバイスは高い電流供給能力が必要であり、駆動信号となるコモン・セグメント信号の出力トランジスタは、高温時のような駆動電圧振幅が小さい場合でも低いON抵抗である事が求められる。このために駆動デバイスは高い駆動能力を備えて、コモンとセグメント間の電荷の充放電を速やかに行なわせる必要がある。 In general, a bistable liquid crystal panel has a larger equivalent load capacity than a normal monostable STN liquid crystal panel, so the charge / discharge charge amount is large, and the drive device requires a high current supply capability. The segment signal output transistor is required to have a low ON resistance even when the drive voltage amplitude is small, such as at high temperatures. For this reason, the driving device needs to have a high driving capability and quickly charge and discharge charges between the common and the segment.
 また、駆動信号となるコモンとセグメントの端子間電圧をVCOM-VSEG(VCOM電位からVSEG電位を減算した電圧)とする時、双安定液晶パネルは、スイッチングする電圧変化を端子間電圧の負極側で制御する場合と正極側で制御する場合で特性が異なり、スイッチングに必要な駆動電圧の差や、スイッチングの確実性、つまり表示画質の差などが発生する。 In addition, when the voltage between the common and segment terminals serving as the drive signal is VCOM-VSEG (the voltage obtained by subtracting the VSEG potential from the VCOM potential), the bistable liquid crystal panel displays the switching voltage change on the negative side of the terminal voltage. The characteristics differ between the case of control and the case of control on the positive electrode side, and a difference in drive voltage necessary for switching, a certainty of switching, that is, a difference in display image quality, and the like occur.
 一般的には負極側で制御する方が小さい電圧振幅で効率的な駆動制御ができ、表示画質も良好だが、駆動デバイスではスイッチング時の大多数の電荷移動が高い電位で発生するのでパネルの消費電流は大きくなる。一方正極側の制御では、駆動デバイスにおいてはスイッチング時の大多数の電荷移動が低い電位で発生するので、パネルの消費電流を小さくできる。 In general, control on the negative electrode side enables efficient drive control with a small voltage amplitude, and the display quality is good, but in the drive device, the majority of the charge transfer during switching occurs at a high potential, so panel consumption The current increases. On the other hand, in the control on the positive electrode side, in the driving device, the majority of charge transfer during switching occurs at a low potential, so that the current consumption of the panel can be reduced.
 本発明は、このような双安定液晶パネルの特性に対し、最適な駆動手段を提供するものである。 The present invention provides an optimum driving means for the characteristics of such a bistable liquid crystal panel.
 第一の発明として、略平行に対向して配置された一対の基板と、基板の対向面側の面上にマトリックス状に形成された複数のコモン電極と複数のセグメント電極と、コモン電極と前記セグメント電極の上に形成された配向膜と、配向膜によって狭持される2つの安定した配向状態をもち電界を切ってもその配向状態を保持する双安定性を有するネマチック液晶の分子と、ネマチック液晶の分子の外側に配置される少なくとも1枚の偏光板から構成され、コモン電極に接続するコモン駆動部から液晶の書き換えを行う選択信号および非選択信号のいずれか1つを前記ネマチック液晶へ印加し、セグメント電極に接続するセグメント駆動部から2つの安定した配向状態を選択する信号を前記ネマチック液晶へ選択式に印加し、コモン電極とセグメント電極間の電界であるコモン・セグメント間電圧により画像を表示させる双安定ネマチック液晶を用いたドットマトリクスディスプレイにおいて、各コモン電極のスキャン時における全コモン電極と全セグメント電極の出力が同電位であり、かつその電位がGNDではない駆動モ-ドに対して、全コモン電極と全セグメント電極が同電位を出力する箇所をGNDに変更したモ-ドを備える双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法及び駆動手段。 As a first invention, a pair of substrates arranged to face each other substantially in parallel, a plurality of common electrodes and a plurality of segment electrodes formed in a matrix on the surface on the opposite surface side of the substrate, the common electrode, An alignment film formed on the segment electrode, a nematic liquid crystal molecule having two stable alignment states sandwiched by the alignment film and having bistability even when the electric field is cut off, and a nematic liquid crystal Consists of at least one polarizing plate arranged outside the liquid crystal molecules, and applies either a selection signal or non-selection signal for rewriting the liquid crystal to the nematic liquid crystal from a common driving unit connected to the common electrode. Then, a signal for selecting two stable alignment states is selectively applied to the nematic liquid crystal from the segment drive unit connected to the segment electrode, and the common electrode and the segment In a dot matrix display using a bistable nematic liquid crystal that displays an image by a common-segment voltage, which is the electric field between the electrodes, the output of all common electrodes and all segment electrodes when scanning each common electrode is the same potential In addition, a dot matrix display using a bistable nematic liquid crystal having a mode in which all common electrodes and all segment electrodes output the same potential to GND in a drive mode whose potential is not GND Driving method and driving means.
 第二の発明として、前述した第一の発明において、ドット画素を狭持するコモン電極とセグメント電極の端子間電圧をVCOM-VSEGとした時、ドット表示が第1の配向状態か第2の配向状態かを決定する電圧変化を端子間電圧の正極側で制御する正極側駆動モ-ドと、逆に負極側で制御する負極側駆動モ-ドと、を備え、そのいずれをも選択可能である駆動方法及び駆動手段。 As a second invention, in the first invention described above, when the voltage between the terminals of the common electrode and the segment electrode holding the dot pixel is VCOM-VSEG, the dot display is in the first orientation state or the second orientation. There is a positive side drive mode that controls the voltage change that determines the state on the positive side of the voltage across the terminals, and a negative side drive mode that controls the voltage on the negative side, both of which can be selected A driving method and driving means.
 第三の発明として、前述した第一の発明において、ドット画素を狭持するコモンとセグメントの各端子の出力電位を、コモン・セグメント共に出力可能な最大振幅の中央電位を避け、かつ小さい振幅で変移させ、両端子間電圧であるVCOM-VSEGをより小さい振幅で駆動する駆動モ-ドを備える駆動方法及び駆動手段。 As a third invention, in the first invention described above, the output potential of each terminal of the common and the segment holding the dot pixel is avoided with a small amplitude while avoiding the central potential of the maximum amplitude that can be output for both the common and the segment. A driving method and a driving means including a driving mode for shifting and driving VCOM-VSEG which is a voltage between both terminals with a smaller amplitude.
 つまり、ドット画素を狭持するコモンとセグメントの端子間電圧をVCOM-VSEGとした時、ドット表示が白か黒かを決定する電圧変化を端子間電圧の正極側で制御する正極側駆動モ-ドと、逆に負極側で制御する負極側駆動モ-ドを備え、そのいずれをも選択可能とする事によって、大きい駆動電圧振幅が求められる低温時には負極側駆動モ-ドを選択してより小さい電圧振幅で効率的な駆動制御を行い、低温時以外では正極側で制御する正極側駆動モ-ドを選択して、より低消費電流な駆動を実現する。 In other words, when the voltage between the common and segment terminals holding the dot pixel is VCOM-VSEG, the positive side drive mode for controlling the voltage change that determines whether the dot display is white or black on the positive side of the terminal voltage. And a negative side drive mode that is controlled on the negative side, and by selecting either of them, the negative side drive mode can be selected at low temperatures where a large drive voltage amplitude is required. Efficient drive control is performed with a small voltage amplitude, and a positive-side drive mode that is controlled on the positive side is selected except when the temperature is low to achieve driving with lower current consumption.
 低温時のような大きな駆動電圧振幅が必要なときは、コモン・セグメント共に出力可能な最大振幅で駆動して変移させ、両端子間電圧:VCOM-VSEGをより大きな振幅で駆動し、一方、高温時のような小さな駆動電圧振幅が必要なときは、一般的に駆動トランジスタのON抵抗は大きくなるので、コモンとセグメントの各端子の電位を、コモン・セグメント共に出力可能な最大振幅の中央電位を避け、かつ小さい振幅で変移させ、両端子間電圧:VCOM-VSEGをより小さい振幅で駆動する事により、出力トランジスタのON抵抗増加を最小限に抑えながら、より小さな電圧振幅駆動を実現する。 When a large drive voltage amplitude is required, such as at low temperatures, the common segment is driven and shifted with the maximum amplitude that can be output, and the voltage between both terminals: VCOM-VSEG is driven with a larger amplitude, while high temperature When a small drive voltage amplitude is required, the ON resistance of the drive transistor generally increases, so the common potential of each terminal of the common and segment is set to the center potential of the maximum amplitude that can be output for both the common and segment. By avoiding and shifting with a small amplitude and driving the voltage between both terminals: VCOM-VSEG with a smaller amplitude, it is possible to realize a smaller voltage amplitude drive while minimizing an increase in the ON resistance of the output transistor.
 コモンとセグメントの両端子間電圧:VCOM-VSEGをより小さい振幅で駆動する場合などで、各COMラインのスキャン時における全コモンと全セグメントの出力が同電位であり、かつその電位がGNDではない駆動モ-ドに対して、全コモンと全セグメントが同電位を出力する箇所をGND電位に変更し、特定の出力アンプ能力を使わないようにする。 Voltage between both terminals of common and segment: When VCOM-VSEG is driven with smaller amplitude, all common and segment outputs are the same potential when scanning each COM line, and the potential is not GND For the drive mode, the location where all commons and all segments output the same potential is changed to the GND potential so that a specific output amplifier capability is not used.
 本発明により、駆動モ-ドを選択して双安定液晶パネルの特性に合わせた合理的な駆動が可能となる。 According to the present invention, it is possible to rationally drive according to the characteristics of the bistable liquid crystal panel by selecting the drive mode.
 つまり、大きな駆動電圧振幅が求められる低温時には負極側駆動モ-ドを選択してより電圧効率の良い駆動制御を行い、低温時以外では正極側駆動モ-ドを選択して、より低消費電流な駆動を実現する。 In other words, the negative side drive mode is selected at low temperatures where a large drive voltage amplitude is required, and drive control with higher voltage efficiency is performed, and the positive side drive mode is selected at times other than low temperatures, resulting in lower current consumption. Realization of driving.
 セグメントの駆動デバイスとして汎用のSTNドライバを用いた時などは、セグメントの出力振幅が小さくなると共に出力トランジスタのON抵抗が一般的に増加するが、本発明の駆動モ-ドを用いる事で、高温時により小さな振幅で駆動する時などに駆動トランジスタのON抵抗の増加を最小限に抑える事が可能となる。 When a general-purpose STN driver is used as a segment drive device, the output amplitude of the segment decreases and the ON resistance of the output transistor generally increases. However, by using the drive mode of the present invention, a high temperature can be obtained. It is possible to minimize an increase in the ON resistance of the driving transistor when driving with a smaller amplitude.
 またコモンとセグメントの両端子間電圧:VCOM-VSEGをより小さい振幅で駆動する場合などで、各COMラインのスキャン時における全コモンと全セグメントの出力が同電位であり、かつその電位がGNDではない駆動モ-ドに対して、全コモンと全セグメントが同電位を出力する箇所をGND電位に変更し、特定の出力アンプ能力を使わずに済み、直接GNDにスイッチングするだけなので、最大の駆動力で電位推移が可能となる。 In addition, when the voltage between both terminals of the common and the segment: VCOM-VSEG is driven with a smaller amplitude, the output of all commons and all segments during scanning of each COM line is the same potential, and the potential is GND No drive mode, all common and all segments output the same potential to GND potential, no need to use a specific output amplifier capability, only switching directly to GND, maximum drive Potential transition is possible with force.
双安定液晶パネルを表示制御するための一般的な機能ブロック図である。It is a general functional block diagram for display control of a bistable liquid crystal panel. 双安定液晶のスイッチングを説明する図である。It is a figure explaining switching of a bistable liquid crystal. 双安定液晶パネルの模式図である。It is a schematic diagram of a bistable liquid crystal panel. 双安定液晶パネルに印加するコモンとセグメントの波形の例を示す図である。It is a figure which shows the example of the waveform of the common and segment applied to a bistable liquid crystal panel. 双安定液晶パネルに印加するコモンとセグメントの波形の例を示す図である。It is a figure which shows the example of the waveform of the common and segment applied to a bistable liquid crystal panel. 双安定液晶パネルを駆動する特定モ-ド(Mode-G)の波形の例を示す図である。It is a figure which shows the example of the waveform of the specific mode (Mode-G) which drives a bistable liquid crystal panel. 双安定液晶パネルを駆動する特定モ-ド(Mode-E)の波形の例を示す図である。It is a figure which shows the example of the waveform of the specific mode (Mode-E) which drives a bistable liquid crystal panel. 双安定液晶パネルを駆動する特定モ-ド(Mode-F)の波形の例を示す図である。It is a figure which shows the example of the waveform of the specific mode (Mode-F) which drives a bistable liquid crystal panel. 双安定液晶パネルを駆動する特定モ-ド(Mode-D) の波形の例を示す図である。FIG. 6 is a diagram illustrating an example of a waveform of a specific mode (Mode-D) for driving a bistable liquid crystal panel. 双安定液晶パネルを駆動する特定モ-ド(Mode-H) の波形の例を示す図である。It is a figure which shows the example of the waveform of the specific mode (Mode-H) which drives a bistable liquid crystal panel.
 本発明の双安定液晶表示パネルの駆動方法および駆動デバイスは、双安定液晶表示パネルの駆動デバイスのハードウエアを変更することなく、且つ従来の駆動方法を部分的に変更することで実施できるものである。 The driving method and driving device of the bistable liquid crystal display panel of the present invention can be implemented without changing the hardware of the driving device of the bistable liquid crystal display panel and by partially changing the conventional driving method. is there.
 本発明の実施例を説明する前に、双安定液晶表示パネルの構造について説明を行う。 Before describing the embodiment of the present invention, the structure of the bistable liquid crystal display panel will be described.
 図1は、双安定液晶表示パネル10を表示制御するための一般的な機能ブロック図である。双安定液晶表示パネル10は、水平方向のコモンラインを駆動するコモン駆動部11、垂直方向のセグメントラインを駆動するセグメント駆動部12、駆動電位(V0、V12、V34、V5、VCX)を生成する電源回路13、及びコモン駆動部11とセグメント駆動部12及び電源回路13を制御する制御部14から構成される駆動デバイスで駆動される。 FIG. 1 is a general functional block diagram for controlling the display of the bistable liquid crystal display panel 10. The bistable liquid crystal display panel 10 generates a common drive unit 11 that drives a horizontal common line, a segment drive unit 12 that drives a vertical segment line, and drive potentials (V0, V12, V34, V5, and VCX). It is driven by a drive device comprising a power supply circuit 13, a common drive unit 11, a segment drive unit 12, and a control unit 14 that controls the power supply circuit 13.
 制御部14がコモン駆動部11とセグメント駆動部12を制御するための信号と役割は、通常のSTN駆動ドライバ回路と同様である。コモン駆動部11に対しては、初期化信号RESETXがあり、スキャンタイミングを決めるC-Dataと書き込み用クロックのCLがあり、交流化信号FRCOMや表示消去のDispOffx、CCXがある。セグメント駆動部12に対しては、初期化信号RESETXがあり、表示画像データを与えるS-Dataと書き込み用クロックXCKがあり、交流化信号FRSEGや表示消去のDispOffxがある。電源回路13をコモン駆動部11の中に取り込む事、さらにセグメント駆動部12をも取り込んで1つのICにする事は当然可能である。 The signal and role for the control unit 14 to control the common drive unit 11 and the segment drive unit 12 are the same as those of a normal STN drive driver circuit. For the common drive unit 11, there is an initialization signal RESETX, C-Data for determining scan timing and CL for writing, and an AC signal FRCOM and DispOffx for display erasure and CCX. For the segment driver 12, there is an initialization signal RESETX, there are S-Data for giving display image data and a writing clock XCK, and there are an alternating signal FRSEG and a display erasing DispOffx. It is naturally possible to incorporate the power supply circuit 13 into the common drive unit 11 and further incorporate the segment drive unit 12 into one IC.
 図2は、双安定ネマチック液晶の状態の切り替えであるスイッチングを説明する図である。ほぼ平行に対向して配置された一対の基板1と、基板1の対向面側の基板上に電極2と配向膜3とが層状に配置され、基板1によってネマチック液晶の分子4が狭持されている。ネマチック液晶の分子4は配向膜3に刻まれた微細な溝により、所定の方向に配向している。また、紙面上面側の基板1の外側に偏光板5が設けられる。双安定液晶表示パネル10のコモン電極とセグメント電極に特定の信号を印加して、ネマチック液晶分子のねじれ方向をツイスト状態とユニフォーム状態の2種類の状態に切り替える様子を示している。平行に対向して配置された一対の電極2に印加する書込み信号は、一方は図2(a)と(d)に示す選択用COM信号であり、他の一方は図2(b)に示すツイスト用SEG信号、あるいは図2(e)に示すユニフォーム用SEG信号の2種類である。液晶にかかるコモン端子とセグメント端子の間の電圧は、図2(c)に示すツイスト用COM-SEG信号と図2(f)に示すユニフォーム用COM-SEG信号の2種類である。ツイスト用COM-SEG信号を受けると、双安定液晶表示パネル10は偏光板5の配向によって白色表示し、ユニフォーム用COM-SEG信号を受けると黒色表示することができる。また、偏光板5の状態を変えることにより白色表示、黒色表示を反転させることができる。 FIG. 2 is a diagram for explaining switching which is switching of the state of the bistable nematic liquid crystal. A pair of substrates 1 arranged substantially opposite to each other, and an electrode 2 and an alignment film 3 are arranged in layers on a substrate on the opposite surface side of the substrate 1, and nematic liquid crystal molecules 4 are sandwiched by the substrate 1. ing. The molecules 4 of the nematic liquid crystal are aligned in a predetermined direction by fine grooves carved in the alignment film 3. A polarizing plate 5 is provided outside the substrate 1 on the upper surface side of the drawing. A state is shown in which a specific signal is applied to the common electrode and the segment electrode of the bistable liquid crystal display panel 10 to switch the twist direction of the nematic liquid crystal molecules between two states, a twist state and a uniform state. One of the write signals to be applied to the pair of electrodes 2 arranged opposite to each other in parallel is the selection COM signal shown in FIGS. 2 (a) and 2 (d), and the other is shown in FIG. 2 (b). There are two types of SEG signals for twist or uniform SEG signals shown in FIG. The voltage between the common terminal and the segment terminal applied to the liquid crystal is of two types: a twist COM-SEG signal shown in FIG. 2C and a uniform COM-SEG signal shown in FIG. When receiving the twist COM-SEG signal, the bistable liquid crystal display panel 10 can display white by the orientation of the polarizing plate 5, and can receive black by receiving the uniform COM-SEG signal. Moreover, white display and black display can be reversed by changing the state of the polarizing plate 5.
 先ず、双安定液晶表示パネル10のコモン電極とセグメント電極の交点画素で白を表示する場合について説明する。このコモン電極とセグメント電極は、それぞれコモン端子とセグメント端子と略同義である。図2の(a)において、コモン端子に印加される選択用COM信号の電圧波形は、選択期間Tの最初の時間間隔aはレベル0、時間間隔bとcは負のレベル-V、続く時間間隔dとeは正のレベル+V、続く時間間隔fは正のレベル+V-v、そして残りの時間間隔gはレベル0となる波形である。 First, the case where white is displayed by the intersection pixel of the common electrode and the segment electrode of the bistable liquid crystal display panel 10 will be described. The common electrode and the segment electrode are substantially synonymous with the common terminal and the segment terminal, respectively. In FIG. 2A, the voltage waveform of the selection COM signal applied to the common terminal is such that the first time interval a of the selection period T is level 0, the time intervals b and c are negative levels −V, and the following time The intervals d and e are waveforms having a positive level + V, the following time interval f is a positive level + V−v, and the remaining time interval g is a level 0 waveform.
 セグメント端子に印加されるツイスト用SEG信号の電圧波形は、図2の(b)に示す如く、選択期間Tの最初の時間間隔aからeはレベル0、続く時間間隔fは負のレベル-v、そして残りの時間間隔gはレベル0となる波形である。 As shown in FIG. 2B, the voltage waveform of the twisted SEG signal applied to the segment terminals is level 0 for the first time interval a to e of the selection period T, and negative level −v for the subsequent time interval f. , And the remaining time interval g is a waveform at level 0.
 上述の如く時間と共に変移する選択用COM信号とツイスト用SEG信号が印加されると、コモン端子とセグメント端子の間の差の電圧であるツイスト用COM-SEG信号の波形は、時間と共に変移する波形となる。即ち、図2の(c)に示す如く、ツイスト用COM-SEG信号の波形は、選択期間Tの最初の時間間隔aはレベル0、続く時間間隔bとcは負のレベル-V、続く時間間隔dからfは正のレベル+V、そして残りの時間間隔gはレベル0となる波形である。このように、ツイスト用COM-SEG信号の波形は、負のレベル-Vボルトと正のレベル+Vの間で電圧遷移を行うものである。 When the selection COM signal and the twist SEG signal that change with time are applied as described above, the waveform of the twist COM-SEG signal, which is the voltage difference between the common terminal and the segment terminal, changes with time. It becomes. That is, as shown in FIG. 2 (c), the waveform of the twisting COM-SEG signal is such that the first time interval a of the selection period T is level 0, the subsequent time intervals b and c are negative level -V, and the subsequent time. The interval d to f is a waveform having a positive level + V, and the remaining time interval g is level 0. Thus, the waveform of the twisting COM-SEG signal causes a voltage transition between the negative level −V volts and the positive level + V.
 このような波形のツイスト用COM-SEG信号をネマチック液晶に印加するのは、まず負のレベル-Vの電圧、及び正のレベル+Vの電圧でネマチック液晶の分子の配向の安定状態を破壊し、ネマチック液晶の分子4を縦方向に吊り上げ(図2の(g)の模式図を参照。)、その後にレベル0の電圧へと開放してネマチック液晶の分子4を配向方向へ寝かし(図2の(h)の模式図を参照。)、ツイスト状態にするためである。このようにして、図2の(c)に示す波形のツイスト用COM-SEG信号が印加された双安定液晶表示パネル10の交点画素は本例において白を表示する。 The twisted COM-SEG signal having such a waveform is applied to the nematic liquid crystal by first destroying the stable state of the alignment of the nematic liquid crystal molecules with a negative level −V voltage and a positive level + V voltage. The nematic liquid crystal molecules 4 are lifted in the vertical direction (see the schematic diagram in FIG. 2 (g)), and then opened to a level 0 voltage to lay the nematic liquid crystal molecules 4 in the alignment direction (see FIG. 2). (Refer to the schematic diagram of (h)). In this way, the intersection pixel of the bistable liquid crystal display panel 10 to which the twisting COM-SEG signal having the waveform shown in FIG. 2C is applied displays white in this example.
 次に、双安定液晶表示パネル10のコモン電極とセグメント電極の交点画素で黒を表示する場合について説明する。コモン端子に印加される選択用COM信号の電圧波形を示す図2の(d)は、図2の(a)の波形と同じである。 Next, the case where black is displayed by the intersection pixel of the common electrode and the segment electrode of the bistable liquid crystal display panel 10 will be described. FIG. 2D showing the voltage waveform of the selection COM signal applied to the common terminal is the same as the waveform of FIG.
 ユニフォーム用SEG信号の電圧波形は、図2の(e)に示す如く、選択期間Tの最初の時間間隔aからcはレベル0、続く時間間隔dは負のレベル-v、そして残りの時間間隔eからgはレベル0となる波形である。 As shown in FIG. 2 (e), the voltage waveform of the uniform SEG signal is such that the first time interval a to c of the selection period T is level 0, the subsequent time interval d is a negative level −v, and the remaining time interval. e to g are waveforms having a level 0.
 上述の如く時間と共に変移する選択用COM信号とユニフォーム用SEG信号が印加されると、コモン端子とセグメント端子の間の差の電圧であるユニフォーム用COM-SEG信号は、時間と共に変移する波形となる。即ち、図2の(f)に示す如く、ユニフォーム用COM-SEG信号の波形は、選択期間Tの最初の時間間隔aはレベル0、続く時間間隔bとcは負のレベル-V、続く時間間隔dは正のレベル+(V+v)、続く時間間隔eは正のレベル+V、続く時間間隔fは正のレベル+V-v、そして残りの時間間隔gはレベル0となる波形である。このように、ユニフォーム用COM-SEG信号は、-Vと+(V+v)の間で電圧遷移を行うものである。 As described above, when the selection COM signal and the uniform SEG signal that change with time are applied, the uniform COM-SEG signal, which is the voltage difference between the common terminal and the segment terminal, has a waveform that changes with time. . That is, as shown in FIG. 2 (f), the waveform of the uniform COM-SEG signal is such that the first time interval a of the selection period T is level 0, the subsequent time intervals b and c are negative level -V, and the subsequent time. The interval d is a positive level + (V + v), the following time interval e is a positive level + V, the following time interval f is a positive level + V−v, and the remaining time interval g is a level 0 waveform. As described above, the uniform COM-SEG signal makes a voltage transition between −V and + (V + v).
 このような波形のユニフォーム用COM-SEG信号をネマチック液晶に印加するのは、まず負のレベル-Vの電圧、及び正のレベル+(V+v)の電圧でネマチック液晶の分子の配向の安定状態を破壊し、ネマチック液晶の分子4を縦方向に吊り上げ(図2の(i)の模式図を参照。)、その後に正のレベル+(V+v)を正のレベル+Vに、正のレベル+Vを正のレベル+V-vに、最後に正のレベル+V-vをレベル0へと順に段階的に低下させてネマチック液晶の分子4をほぼ平行に配向し(図2の(j)の模式図を参照。)、ユニフォーム状態とするためである。このようにして、図2の(f)に示すユニフォーム用COM-SEG信号が印加された双安定液晶表示パネル10の交点画素は本例において黒を表示する。 Applying the COM-SEG signal for uniforms having such a waveform to the nematic liquid crystal first causes the stable state of the molecular alignment of the nematic liquid crystal at a negative level −V voltage and a positive level + (V + v) voltage. The nematic liquid crystal molecules 4 are lifted in the vertical direction (see the schematic diagram of (i) in FIG. 2), and then the positive level + (V + v) is set to the positive level + V and the positive level + V is set to positive. The nematic liquid crystal molecules 4 are oriented almost in parallel by gradually decreasing the positive level + Vv to the level 0 in the order of the level + V−v and finally the positive level + V−v (see the schematic diagram of FIG. 2 (j)). ), To make the uniform state. In this way, the intersection pixel of the bistable liquid crystal display panel 10 to which the uniform COM-SEG signal shown in (f) of FIG. 2 is applied displays black in this example.
 図3は、双安定液晶表示パネル10の一般的な電極構成を示している。水平方向に配置されるコモン端子と垂直方向に配置されるセグメント端子の各交点が表示の白黒を決定する画素であり、特定のコモン波形と特定のセグメント波形を印加する事で表示が決定する。 FIG. 3 shows a general electrode configuration of the bistable liquid crystal display panel 10. Each intersection of the common terminal arranged in the horizontal direction and the segment terminal arranged in the vertical direction is a pixel that determines display black and white, and the display is determined by applying a specific common waveform and a specific segment waveform.
 図3において、m列目とn行目の交点画素をユニフォーム状態に、m列目とn+1行目の交点画素をツイスト状態に、m列目とn+2行目の交点画素をユニフォーム状態にする波形の例が図4に示されている。 In FIG. 3, a waveform that sets the intersection pixel of the m-th column and the n-th row to a uniform state, the intersection pixel of the m-th column and the (n + 1) -th row to a twisted state, and the intersection pixel of the m-th column and the (n + 2) -th row to a uniform state. An example of this is shown in FIG.
 図4は、双安定液晶表示パネル10のコモン端子とセグメント端子に印加される電圧波形の例を示す。図4の(a)に示すのは、図3に示す双安定液晶表示パネル10において水平方向に配置されるn行目のコモン端子COM[n]に印加する電圧波形であり、図4の(b)に示すのは(n+1)行目のコモン端子COM[n+1]に印加する電圧波形であり、図4の(c)に示すのは(n+2)行目のコモン端子COM[n+2]に印加する電圧波形である。図4の(d)に示すのは、図3に示す双安定液晶表示パネル10において垂直方向に配置されるm列目のセグメント端子SEG[m]の電圧波形を示している。 FIG. 4 shows an example of voltage waveforms applied to the common terminal and the segment terminal of the bistable liquid crystal display panel 10. 4A shows a voltage waveform applied to the n-th row common terminal COM [n] arranged in the horizontal direction in the bistable liquid crystal display panel 10 shown in FIG. FIG. 4B shows the voltage waveform applied to the common terminal COM [n + 1] in the (n + 1) th row, and FIG. 4C shows the voltage waveform applied to the common terminal COM [n + 2] in the (n + 2) th row. This is a voltage waveform. FIG. 4D shows a voltage waveform of the segment terminal SEG [m] in the m-th column arranged in the vertical direction in the bistable liquid crystal display panel 10 shown in FIG.
 コモン端子に印加する選択用COM信号31の電圧波形は、図4の(a)~(c)の破線の円で囲った部分に示す如くで、選択期間Tの最初の時間間隔aはレベル0、続く時間間隔bは正のレベル+V2、続く時間間隔cとdはレベル0、続く時間間隔eは+VCX、そして残りの時間間隔fはレベル0となる波形である。但し、V2>VCXである。 The voltage waveform of the selection COM signal 31 applied to the common terminal is as shown in the portion surrounded by the broken-line circle in FIGS. 4A to 4C, and the first time interval a of the selection period T is level 0. The following time interval b is a positive level + V2, the following time intervals c and d are level 0, the following time interval e is + VCX, and the remaining time interval f is level 0. However, V2> VCX.
 コモン端子に印加する非選択用COM信号32の電圧波形は、図4の(a)~(c)に示す如く、選択期間Tの最初の時間間隔aとbはレベル0、続く時間間隔cからeは正のレベル+V2、そして残りの時間間隔fはレベル0となる波形である。 As shown in FIGS. 4A to 4C, the voltage waveform of the non-selection COM signal 32 applied to the common terminal is as follows. The first time intervals a and b of the selection period T are level 0 and the subsequent time interval c. e is a waveform with a positive level + V2, and the remaining time interval f is level 0.
 コモン端子に印加される信号の電圧波形は、図2と図4では大きく異なっている。図2の(a)や(d)に示す選択用COM信号の電圧波形は、正負に大きく変移する電圧波形であるのに対して、図4に示す選択用COM信号31の電圧波形は正側のみにおいて大きく変移する波形である。なお、図4に示す非選択用COM信号32も正側のみにおいて大きく変移する波形である。 The voltage waveform of the signal applied to the common terminal is greatly different between FIG. 2 and FIG. The voltage waveform of the selection COM signal shown in (a) and (d) of FIG. 2 is a voltage waveform that changes greatly between positive and negative, whereas the voltage waveform of the selection COM signal 31 shown in FIG. The waveform changes greatly only in FIG. Note that the non-selection COM signal 32 shown in FIG. 4 also has a waveform that changes greatly only on the positive side.
 n行目のコモン端子COM[n]には、図4の(a)に示す如く、スキャン時間区間t1において選択用COM信号31が印加され、スキャン時間区間t2とt3において非選択用COM信号32がそれぞれ印加されている。続くn+1行目のコモン端子COM[n+1]には、図4の(b)に示す如く、スキャン時間区間t1において非選択用COM信号32が印加され、スキャン時間区間t2において選択用COM信号31が印加され、更にスキャン時間区間t3において非選択用COM信号32がそれぞれ印加されている。更にそれに続くn+2行目のコモン端子COM[n+2]には、図4の(c)に示す如くスキャン時間区間t1とt2において非選択用COM信号32が印加され、スキャン時間区間t3において選択用COM信号31がそれぞれ印加されている。 As shown in FIG. 4A, the selection COM signal 31 is applied to the n-th common terminal COM [n] in the scan time interval t1, and the non-selection COM signal 32 is applied in the scan time intervals t2 and t3. Are respectively applied. As shown in FIG. 4B, the non-selection COM signal 32 is applied to the subsequent common terminal COM [n + 1] in the (n + 1) th row, and the selection COM signal 31 is supplied in the scan time interval t2. Further, the non-selection COM signal 32 is applied in the scan time interval t3. Further, the non-selection COM signal 32 is applied to the subsequent common terminal COM [n + 2] in the (n + 2) th row in the scan time intervals t1 and t2, as shown in FIG. 4C, and in the scan time interval t3. Each signal 31 is applied.
 セグメント端子に印加されるセグメント電圧、即ち、ユニフォーム用SEG信号34とツイスト用SEG信号35の電圧波形SEG[m]は、図4の(d)に示す如くである。ここでは、スキャン時間区間t1においてユニフォーム用SEG信号34が、スキャン時間区間t2においてツイスト用SEG信号35が、そして、スキャン時間区間t3においてユニフォーム用SEG信号34がそれぞれ印加されている。ここで、V1>V2である。 The segment voltage applied to the segment terminals, that is, the voltage waveforms SEG [m] of the uniform SEG signal 34 and the twist SEG signal 35 are as shown in FIG. Here, the uniform SEG signal 34 is applied in the scan time interval t1, the twist SEG signal 35 is applied in the scan time interval t2, and the uniform SEG signal 34 is applied in the scan time interval t3. Here, V1> V2.
 ユニフォーム用SEG信号34の電圧波形は、選択期間Tの最初の時間間隔aとbはレベル0、続く時間間隔cとdは正のレベル+V2、続く時間間隔eは正のレベル+V1、そして残りの時間間隔fはレベル0となる波形である。 The voltage waveform of the uniform SEG signal 34 shows that the first time intervals a and b of the selection period T are level 0, the subsequent time intervals c and d are positive level + V2, the subsequent time interval e is positive level + V1, and the rest The time interval f is a waveform at level 0.
 また、ツイスト用SEG信号35の電圧波形は、選択期間Tの最初の時間間隔aとbはレベル0、続く時間間隔cは正のレベル+V1、続く時間間隔dとeは正のレベル+V2、そして残りの時間間隔fはレベル0となる波形である。 Further, the voltage waveform of the twist SEG signal 35 is such that the first time intervals a and b of the selection period T are level 0, the subsequent time interval c is positive level + V1, the subsequent time intervals d and e are positive level + V2, and The remaining time interval f is a waveform having level 0.
 上述の如く、コモン端子に選択用COM信号31または非選択用COM信号32が、セグメント端子にユニフォーム用SEG信号34とツイスト用SEG信号35が印加されると、コモン端子とセグメント端子間のコモン・セグメント間電圧、即ちユニフォーム用COM-SEG信号36とツイスト用COM-SEG信号37は、図3の(a)~(c)にそれぞれ示す如くとなる。 As described above, when the selection COM signal 31 or the non-selection COM signal 32 is applied to the common terminal, and the uniform SEG signal 34 and the twist SEG signal 35 are applied to the segment terminal, the common signal between the common terminal and the segment terminal The voltage between segments, that is, the uniform COM-SEG signal 36 and the twist COM-SEG signal 37 are as shown in FIGS.
 n行目のコモン端子COM[n]とm列目のセグメント端子SEG[m]の交点画素には、図4の(a)に示す如く、時間区間t1においては、最初の時間間隔aはレベル0、続く時間間隔bは正のレベル+V2、続く時間間隔cとdは負のレベル-V2、続く時間間隔eは負のレベル-V3、そして残りの時間間隔fの時間はレベル0となる波形のユニフォーム用COM-SEG信号36が印加される。 At the intersection pixel of the common terminal COM [n] in the n-th row and the segment terminal SEG [m] in the m-th column, as shown in FIG. A waveform in which 0, the following time interval b is positive level + V2, the following time intervals c and d are negative level −V2, the following time interval e is negative level −V3, and the remaining time interval f is level 0 The uniform COM-SEG signal 36 is applied.
 時間区間t2においては、最初の時間間隔aとbはレベル0、続く時間間隔cは負のレベル-V5、そして残りの時間間隔dからfはレベル0となるツイスト用SEG信号による寄生信号38が印加される。更に、時間区間t3においては、最初の時間間隔aからdはレベル0、続く時間間隔eは負のレベル-V5、そして残りの時間間隔fはレベル0となるユニフォーム用SEG信号による寄生信号39が印加される。n行目のコモン端子とm列目のセグメント端子の交点画素には、時間t1、t2、t3においてユニフォーム用COM-SEG信号36と寄生信号38,39が印加されるが、寄生信号38,39は電圧の振幅が小さいので、交点画素のスイッチングに影響しない。従って、交点画素はユニフォーム用COM-SEG信号36によるユニフォーム状態へのスイッチングが行われる。 In the time interval t2, the first time intervals a and b are level 0, the subsequent time interval c is negative level −V5, and the remaining time intervals d to f are level 0. Applied. Further, in the time interval t3, the parasitic signal 39 by the uniform SEG signal in which the first time interval a to d is level 0, the subsequent time interval e is negative level −V5, and the remaining time interval f is level 0 is Applied. The uniform COM-SEG signal 36 and the parasitic signals 38 and 39 are applied to the intersection pixel of the common terminal in the n-th row and the segment terminal in the m-th column at the times t1, t2, and t3. Since the voltage amplitude is small, it does not affect the switching of the intersection pixel. Therefore, the intersection pixel is switched to the uniform state by the uniform COM-SEG signal 36.
 次に(n+1)行目のコモン端子COM[n+1]とm列目のセグメント端子SEG[m]の交点画素には、図5の(b)に示す如く、時間区間t1においてはユニフォーム用SEG信号による寄生信号39が、時間区間t2においてはツイスト用COM-SEG信号37が、そして時間区間t3においてはユニフォーム用SEG信号による寄生信号39がそれぞれ印加されている。ツイスト用COM-SEG信号37は、最初の時間間隔aはレベル0、続く時間間隔bは正のレベル+V2、続く時間間隔cは負のレベル-V1、続く時間間隔dは負のレベル-V2、続く時間間隔eは負のレベル-V4、そして残りの時間間隔fの時間はレベル0となる波形の電圧である。(n+1)行目のコモン端子とm列目のセグメント端子の交点画素においても同様に、寄生信号39は電圧の振幅が小さいので、交点画素のスイッチングに影響しない。従って、交点画素はツイスト用COM-SEG信号37によるツイスト状態へのスイッチングが行われる。 Next, an intersection SEG signal between the common terminal COM [n + 1] in the (n + 1) -th row and the segment terminal SEG [m] in the m-th column has a uniform SEG signal in the time interval t1, as shown in FIG. The parasitic signal 39 is applied to the twist COM-SEG signal 37 in the time interval t2, and the parasitic signal 39 is applied to the uniform SEG signal in the time interval t3. The twisted COM-SEG signal 37 has an initial time interval a of level 0, a subsequent time interval b of a positive level + V2, a subsequent time interval c of a negative level −V1, and a subsequent time interval d of a negative level −V2. The subsequent time interval e is a negative level −V4, and the remaining time interval f is a voltage having a waveform of level 0. Similarly, at the intersection pixel of the common terminal in the (n + 1) th row and the segment terminal in the m-th column, the parasitic signal 39 does not affect the switching of the intersection pixel because the voltage amplitude is small. Therefore, the intersection pixel is switched to the twist state by the twist COM-SEG signal 37.
 更に(n+2)行目のコモン端子COM[n+2]とm列目のセグメント端子SEG[m]の交点画素には、図5の(c)に示す如く、時間区間t1においてはユニフォーム用SEG信号による寄生信号39が、スキャン時間区間t2においてはツイスト用SEG信号による寄生信号38が、そしてスキャン時間区間t3においてはユニフォーム用COM-SEG信号36がそれぞれ印加されている。ユニフォーム用COM-SEG信号36は、選択期間Tの最初の時間間隔aはレベル0、続く時間間隔bは正のレベル+V2、続く時間間隔cからdは負のレベル-V2、続く時間間隔eは負のレベル-V3、そして残りの時間間隔fの時間はレベル0となる波形の電圧である。(n+2)行目のコモン端子とm列目のセグメント端子の交点画素においても同様に、寄生信号38、39は電圧の振幅が小さいので、交点画素のスイッチングに影響しない。従って、交点画素はユニフォーム用COM-SEG信号36によるユニフォーム状態へのスイッチングが行われる。 Further, the intersection pixel of the (n + 2) -th row common terminal COM [n + 2] and the m-th column segment terminal SEG [m] is subjected to the uniform SEG signal in the time interval t1, as shown in FIG. The parasitic signal 39 is applied with the parasitic signal 38 by the twist SEG signal in the scan time interval t2, and the uniform COM-SEG signal 36 is applied in the scan time interval t3. The uniform COM-SEG signal 36 indicates that the first time interval a of the selection period T is level 0, the subsequent time interval b is positive level + V2, the subsequent time intervals c to d are negative level −V2, and the subsequent time interval e is The negative level −V3, and the remaining time interval f is a voltage having a waveform of level 0. Similarly, in the intersection pixel of the common terminal in the (n + 2) th row and the segment terminal in the m-th column, the parasitic signals 38 and 39 do not affect the switching of the intersection pixel because the voltage amplitude is small. Therefore, the intersection pixel is switched to the uniform state by the uniform COM-SEG signal 36.
 図6は、コモン端子に印加する2種類の電圧波形と、セグメント端子に印加する2種類の電圧波形と、その組み合わせによって生成される4種類のCOM-SEG波形の例を示す。Tで示される時間間隔が一つの出力波形の単位となっている。選択用COM信号61、非選択用COM信号62および、セグメント端子から印加するユニフォーム用SEG信号63、ツイスト用SEG信号64がある。また、コモン端子とセグメント端子の交点画素に印加される4種類の電圧、ユニフォーム用COM-SEG信号65、ツイスト用COM-SEG信号66、ユニフォーム用SEG信号による寄生信号67及びツイスト用SEG信号による寄生信号68が示されている。図6の電圧波形は、図4に示したものと比べるとセグメント端子に印加する波形が異なる。 FIG. 6 shows an example of two types of voltage waveforms applied to the common terminal, two types of voltage waveforms applied to the segment terminals, and four types of COM-SEG waveforms generated by a combination thereof. The time interval indicated by T is a unit of one output waveform. There are a selection COM signal 61, a non-selection COM signal 62, a uniform SEG signal 63 applied from a segment terminal, and a twist SEG signal 64. In addition, four kinds of voltages applied to the intersection pixel of the common terminal and the segment terminal, uniform COM-SEG signal 65, twist COM-SEG signal 66, parasitic signal 67 by uniform SEG signal, and parasitic by twist SEG signal Signal 68 is shown. The voltage waveform shown in FIG. 6 differs from that shown in FIG. 4 in the waveform applied to the segment terminals.
 また、この図6に示すMode-Gは、コモンとセグメントの端子間電圧、例えばユニフォーム用COM-SEG信号65を見ると、ドット表示が白か黒かを決定する電圧変化(丸で囲った破線部)は負極側で発生制御されている。これを負極側駆動モ-ドとする。Mode-Gの波形では、コモンが非選択の時の寄生信号はセグメント波形の高い電位(V0、V12)で発生している。つまりコモンとセグメント間の画素電極には高い電位(V0、V12)から電荷の充放電が行われるので、高電圧電源からの電荷注入が必要であり、駆動デバイスとしての消費電流は大きくなる。 Further, the Mode-G shown in FIG. 6 shows a voltage change (a broken line surrounded by a circle) that determines whether the dot display is white or black when the voltage between the terminals of the common and the segment, for example, the COM-SEG signal 65 for uniform is viewed. Are controlled on the negative electrode side. This is defined as a negative side drive mode. In the Mode-G waveform, the parasitic signal when the common is not selected is generated at a high potential (V0, V12) of the segment waveform. That is, since charge and discharge of charges are performed on the pixel electrodes between the common and segment from a high potential (V0, V12), it is necessary to inject charges from a high voltage power source, and current consumption as a driving device increases.
 図6の(d)に記した「1」と「0」の数字は、コモン端子に印加されるコモン電圧の波形とセグメント端子に印加されるセグメント電圧の波形の制御信号である。コモン電圧の波形はCCX、C-Data、FR、DispOffxの4つの信号で制御される。セグメント電圧の波形S-Data、FR、DispOffxの3つの信号で制御される。セグメント駆動デバイスとして、既に市販されている一般的なSTN液晶を通常駆動するための(SA駆動方式ではない。)ドライバを用いた場合、下記の表1はセグメント駆動ドライバ(SEG-Drv.)の入出力テーブルの真理値表である。出力電圧は3つの制御信号により制御されるので、図6の(d)に示すようなセグメント制御信号とセグメント電圧波形の対応が成立する。 The numbers “1” and “0” shown in FIG. 6D are control signals for the waveform of the common voltage applied to the common terminal and the waveform of the segment voltage applied to the segment terminal. The waveform of the common voltage is controlled by four signals of CCX, C-Data, FR, and DispOffx. It is controlled by three signals of the segment voltage waveform S-Data, FR, and DispOffx. Table 1 below shows the segment drive driver (SEG-Drv.) For a segment drive device that uses a driver (not the SA drive method) for driving a typical STN liquid crystal that is already commercially available. It is a truth table of an input / output table. Since the output voltage is controlled by three control signals, the correspondence between the segment control signal and the segment voltage waveform as shown in FIG.
Figure JPOXMLDOC01-appb-T000001
 双安定液晶表示パネル10を駆動するコモン電圧の波形には、一般的なSTN液晶の通常駆動には存在しないVCXなる電位があるので、その電位を出力させるための制御信号をCCXとしている。下記に示す表2はコモン駆動ドライバ(COM-Drv.)の入出力テーブルの真理値表である。この表2において、駆動モードG(Mode-G)の欄に示すようにコモン出力を制御すれば、図6の(d)に示す4つのコモン制御信号(CCX,C-Data,FR,DispOffx)と図6の(a)に示すようなコモン電圧波形の対応が成立する。
Figure JPOXMLDOC01-appb-T000001
Since the waveform of the common voltage for driving the bistable liquid crystal display panel 10 has a potential of VCX that does not exist in normal driving of a general STN liquid crystal, the control signal for outputting the potential is CCX. Table 2 shown below is a truth table of the input / output table of the common drive driver (COM-Drv.). In Table 2, if the common output is controlled as shown in the column of driving mode G (Mode-G), four common control signals (CCX, C-Data, FR, DispOffx) shown in FIG. And the correspondence of the common voltage waveform as shown in FIG.
Figure JPOXMLDOC01-appb-T000002
 双安定液晶表示パネルは、水平方向に配置される1本のコモン端子に選択用COM信号が印加される時に、垂直方向に交差する各セグメント端子の信号がユニフォーム用の信号であるかツイスト用の信号であるか、によって水平方向1本分の画素の表示が決定する。全コモン端子に対して、1本ずつ順番に選択用COM信号をシフトしながら全コモン端子に印加(スキャン)するとともに、その都度全セグメント端子の信号を印加する事で全画面の表示が決定する。
選択用COM信号が1本のコモン端子に印加されるとき、他の大多数のコモン端子は非選択用COM信号が印加されると共に、交差するセグメント端子との間に寄生信号が印加される。パネルの充放電電荷量を考える時は、コモン端子の大多数に印加される非選択用COM信号とセグメント波形の電位差に着目する必要がある。つまり、寄生信号(Parasite Signal)が液晶パネルを駆動する上での充放電電荷量に大きく寄与し、消費電流の大きさに影響を与える。
Figure JPOXMLDOC01-appb-T000002
In the bistable liquid crystal display panel, when a COM signal for selection is applied to one common terminal arranged in the horizontal direction, whether the signal of each segment terminal intersecting in the vertical direction is a signal for twisting or not. The display of one pixel in the horizontal direction is determined depending on whether it is a signal. Applying (scanning) selection COM signals to all common terminals while sequentially shifting the selection COM signals one by one, and applying the signals of all segment terminals each time determines the display of the entire screen. .
When the selection COM signal is applied to one common terminal, a non-selection COM signal is applied to the majority of other common terminals, and a parasitic signal is applied to the intersecting segment terminals. When considering the charge / discharge charge amount of the panel, it is necessary to pay attention to the potential difference between the non-selection COM signal applied to the majority of the common terminals and the segment waveform. That is, the parasitic signal greatly contributes to the charge / discharge charge amount for driving the liquid crystal panel, and affects the current consumption.
 図7から図10はそれぞれ4種類の駆動モ-ド(Mode-E、F、D、H)の例を示している。 7 to 10 show examples of four types of drive modes (Mode-E, F, D, and H), respectively.
 図7の(a)に示すのはMode-Eのコモン駆動波形であり、左側2つの波形が選択用COM信号、右側2つの波形が非選択用COM信号の波形である。図7の(b)にはユニフォーム用SEG信号73、ツイスト用SEG信号74が示されている。Mode-Eのコモンとセグメントの端子間電圧、例えばユニフォーム用COM-SEG信号75を見ると、まず負極側の駆動に続いて正極側の駆動がなされ、その正極側の駆動にてツイストかユニフォームかを決定する電圧変化 (丸で囲った破線部)を与えている。負極と正極の両側への駆動は、液晶への直流バイアスを防ぎ平衡させるための一般的な配慮である。ツイスト用COM-SEG信号76においても同様である。画素表示がツイストかユニフォームかを決定する電圧変化(丸で囲った破線部)を正極側で制御している事をここでは正極側駆動モ-ドとする。正極側駆動モ-ドであるMode-Eの波形では、コモンが非選択の時に発生する寄生信号、例えばユニフォーム用SEG信号による寄生信号77はセグメント波形の低い電位(V34、V5)で発生する。つまりコモンとセグメント間の画素電極には低い電位(V34、V5)から電荷の充放電が行われるので、高電圧電源を使う必要が無く、駆動デバイスとしての消費電流は小さく抑えられる。ツイスト用SEG信号による寄生信号78においても同様である。 FIG. 7A shows a common drive waveform of Mode-E, the left two waveforms are the selection COM signals and the right two waveforms are the non-selection COM signals. FIG. 7B shows a uniform SEG signal 73 and a twist SEG signal 74. Looking at the voltage between the terminals of the Mode-E common and the segment, for example, the uniform COM-SEG signal 75, first the negative side drive is followed by the positive side drive, and whether the positive side drive is twisted or uniform? A voltage change (a broken line part surrounded by a circle) is given. Driving to both sides of the negative electrode and the positive electrode is a general consideration for preventing and balancing DC bias to the liquid crystal. The same applies to the twisted COM-SEG signal 76. In this case, the positive side drive mode means that the voltage change (the broken line part circled) that determines whether the pixel display is twist or uniform is controlled on the positive side. In the waveform of Mode-E which is the positive side drive mode, a parasitic signal generated when the common is not selected, for example, a parasitic signal 77 by the uniform SEG signal is generated at a low potential (V34, V5) of the segment waveform. That is, since charge and discharge are performed on the pixel electrode between the common and the segment from a low potential (V34, V5), it is not necessary to use a high voltage power supply, and current consumption as a driving device can be suppressed small. The same applies to the parasitic signal 78 by the twisted SEG signal.
 図8に示すMode-Fも、Mode-Eと同様に正極側駆動モ-ドである。ユニフォーム用SEG信号83、ツイスト用SEG信号84が示されており、それに伴うユニフォーム用COM-SEG信号85、ツイスト用COM-SEG信号86、ユニフォーム用SEG信号による寄生信号87、ツイスト用SEG信号による寄生信号88が示されている。コモンが非選択の時に発生する寄生信号はセグメント波形の低い電位(V34、V5)で発生している。 The Mode-F shown in FIG. 8 is also the positive electrode side drive mode like the Mode-E. A uniform SEG signal 83 and a twist SEG signal 84 are shown. A uniform COM-SEG signal 85, a twist COM-SEG signal 86, a parasitic signal 87 due to the uniform SEG signal, and a parasitic signal due to the twist SEG signal. Signal 88 is shown. The parasitic signal generated when the common is not selected is generated at a low potential (V34, V5) of the segment waveform.
 図9に示すMode-Dの波形は図6のMode-Gと同様に負極側駆動モ-ドである。 The waveform of Mode-D shown in FIG. 9 is the negative side drive mode, similar to Mode-G of FIG.
 選択用COM信号111の波形を説明すると、最初の時間間隔aは正のレベル+V34、続く時間間隔bは正のレベル+V12、続く時間間隔cとdは正のレベル+V34、続く時間間隔eは正のレベル+VCX、そして最後の時間間隔fは正のレベル+V34となる。 The waveform of the selection COM signal 111 will be described. The first time interval a is positive level + V34, the subsequent time interval b is positive level + V12, the subsequent time intervals c and d are positive level + V34, and the subsequent time interval e is positive. Level + VCX, and the last time interval f is positive level + V34.
 非選択用COM信号112の波形を説明すると、最初の時間間隔aとbは正のレベル+V34、続く時間間隔cからeは正のレベル+V12、そして最後の時間間隔fは正のレベル+V34となる。 Explaining the waveform of the non-selection COM signal 112, the first time intervals a and b are positive level + V34, the subsequent time intervals c to e are positive level + V12, and the last time interval f is positive level + V34. .
 同様に、ユニフォーム用SEG信号113の波形を説明すると、最初の時間間隔aとbは正のレベル+V34、続く時間間隔cとdは正のレベル+V12、続く時間間隔eは正のレベル+V0、そして最後の時間間隔fは正のレベル+V34となる。 Similarly, the waveform of the uniform SEG signal 113 will be described. The first time intervals a and b are positive level + V34, the following time intervals c and d are positive level + V12, the following time interval e is positive level + V0, and The last time interval f is a positive level + V34.
 ツイスト用SEG信号114の波形を説明すると、最初の時間間隔aとbは正のレベル+V34、続く時間間隔cは正のレベル+V0、続く時間間隔dとeは正のレベル+V12、そして最後の時間間隔fは正のレベル+V34となる。 Explaining the waveform of the twisted SEG signal 114, the first time intervals a and b are positive level + V34, the following time interval c is positive level + V0, the following time intervals d and e are positive level + V12, and the last time. The interval f is a positive level + V34.
 さらに、ユニフォーム用COM-SEG信号115の波形を説明すると、最初の時間間隔aは正のレベル+0、続く時間間隔bは正のレベル+3、続く時間間隔cとdは負のレベル-3、続く時間間隔eは負のレベル-2、そして最後の時間間隔fは正のレベル+0となる。 Further, the waveform of the uniform COM-SEG signal 115 will be described. The first time interval a is positive level +0, the following time interval b is positive level +3, the following time intervals c and d are negative level -3, and so on. The time interval e is negative level -2, and the last time interval f is positive level +0.
 ツイスト用COM-SEG信号116の波形を説明すると、最初の時間間隔aは正のレベル+0、続く時間間隔bは正のレベル+3、続く時間間隔cは負のレベル-4、続く時間間隔dは負のレベル-3、続く時間間隔eは負のレベル-1、そして最後の時間間隔fは正のレベル+0となる。 Explaining the waveform of the twisted COM-SEG signal 116, the first time interval a is positive level +0, the following time interval b is positive level +3, the following time interval c is negative level -4, and the following time interval d is Negative level -3, the following time interval e is negative level -1, and the last time interval f is positive level +0.
 ユニフォーム用SEG信号による寄生信号117の波形を説明すると、最初の時間間隔aからdまでは正のレベル+0、続く時間間隔eは負のレベル-1、最後の時間間隔fは正のレベル+0となる。 The waveform of the parasitic signal 117 based on the uniform SEG signal is described as follows. The first time interval a to d is positive level +0, the subsequent time interval e is negative level −1, and the last time interval f is positive level +0. Become.
 ツイスト用SEG信号による寄生信号118は最初の時間間隔aとbは正のレベル+0、続く時間間隔cは負のレベル-1、最後の時間間隔dからfは正のレベル+0となる。 In the parasitic signal 118 by the twist SEG signal, the first time intervals a and b are positive level +0, the subsequent time interval c is negative level −1, and the last time intervals d to f are positive level +0.
 選択用COM信号111、非選択用COM信号112、ユニフォーム用SEG信号113、ツイスト用SEG信号114が示されており、それに伴うユニフォーム用COM-SEG信号115、ツイスト用COM-SEG信号116、ユニフォーム用SEG信号による寄生信号117、ツイスト用SEG信号による寄生信号118が示されている。しかし、コモン振幅はV12からV34までであり、最大振幅V0からV5までの大きさに比べると2段少ない振幅である。セグメントもV12からV34までが基本振幅であり、最大振幅V0からV5までの大きさに比べると2段少ない振幅である。このように、コモンとセグメントが共に最大振幅より2段小さいと、その合成波形COM-SEGの振幅は4段小さくなる。 The COM signal 111 for selection, the COM signal 112 for non-selection, the SEG signal 113 for uniform, and the SEG signal 114 for twist are shown. The COM-SEG signal 115 for uniform, the COM-SEG signal 116 for twist, and the uniform A parasitic signal 117 by the SEG signal and a parasitic signal 118 by the twist SEG signal are shown. However, the common amplitude is from V12 to V34, which is two steps smaller than the maximum amplitude from V0 to V5. The segment also has a basic amplitude from V12 to V34, which is two steps less than the maximum amplitude from V0 to V5. Thus, if the common and segment are both two steps smaller than the maximum amplitude, the amplitude of the combined waveform COM-SEG will be four steps smaller.
 図10に示すMode-HもMode-Gと同様に負極側駆動モ-ドである。選択用COM信号121、非選択用COM信号122、ユニフォーム用SEG信号123、ツイスト用SEG信号124が示されており、それに伴うユニフォーム用COM-SEG信号125、ツイスト用COM-SEG信号126、ユニフォーム用SEG信号による寄生信号127、ツイスト用SEG信号による寄生信号128が示されている。 Similarly to Mode-G, Mode-H shown in FIG. 10 is also a negative electrode side drive mode. The COM signal for selection 121, the COM signal for non-selection 122, the SEG signal for uniform 123, and the SEG signal for twist 124 are shown. The uniform COM-SEG signal 125, the COM-SEG signal for twist 126, and the uniform A parasitic signal 127 based on the SEG signal and a parasitic signal 128 based on the twisted SEG signal are shown.
 選択用COM信号121の波形を説明すると、最初の時間間隔aは正のレベル+V5、続く時間間隔bは正のレベル+V12、続く時間間隔cとdは正のレベル+V34、続く時間間隔eは正のレベル+VCX、そして最後の時間間隔fは正のレベルV5となる。 The waveform of the selection COM signal 121 will be described. The first time interval a is positive level + V5, the subsequent time interval b is positive level + V12, the subsequent time intervals c and d are positive level + V34, and the subsequent time interval e is positive. Level + VCX and the last time interval f is a positive level V5.
 非選択用COM信号122の波形を説明すると、最初の時間間隔aは正のレベル+V5、続く時間間隔bは正のレベル+V34、続く時間間隔cからeは正のレベル+V12、そして最後の時間間隔fは正のレベルV5となる。 Explaining the waveform of the non-selection COM signal 122, the first time interval a is positive level + V5, the following time interval b is positive level + V34, the following time intervals c to e are positive level + V12, and the last time interval f becomes a positive level V5.
 同様に、ユニフォーム用SEG信号123の波形を説明すると、最初の時間間隔aは正のレベル+V5、続く時間間隔bは正のレベル+V34、続く時間間隔cとdは正のレベル+V12、続く時間間隔eは正のレベル+V0、そして最後の時間間隔fは正のレベル+V5となる。 Similarly, the waveform of the uniform SEG signal 123 will be described. The first time interval a is positive level + V5, the following time interval b is positive level + V34, the following time intervals c and d are positive level + V12, and the following time interval. e is a positive level + V0 and the last time interval f is a positive level + V5.
 ツイスト用SEG信号124の波形を説明すると、最初の時間間隔aは正のレベル+V5、続く時間間隔bは正のレベル+V34、続く時間間隔cは+0V、続く時間間隔dと
eは正のレベル+V12、そして最後の時間間隔fは正のレベル+V5となる。
The waveform of the twisted SEG signal 124 will be described. The first time interval a is positive level + V5, the following time interval b is positive level + V34, the following time interval c is +0 V, and the following time intervals d and e are positive level + V12. , And the last time interval f becomes a positive level + V5.
 さらに、ユニフォーム用COM-SEG信号125の波形を説明すると、最初の時間間隔aは正のレベル+0、続く時間間隔bは正のレベル+3、続く時間間隔cとdは負のレベル-3、続く時間間隔eは負のレベル-2、そして最後の時間間隔fは正のレベル+0となる。 Further, the waveform of the uniform COM-SEG signal 125 will be described. First time interval a is positive level +0, subsequent time interval b is positive level +3, subsequent time intervals c and d are negative level -3, and so on. The time interval e is negative level -2, and the last time interval f is positive level +0.
 ツイスト用COM-SEG信号126の波形を説明すると、最初の時間間隔aは正のレベル+0、続く時間間隔bは正のレベル+3、続く時間間隔cは負のレベル-4、続く時間間隔dは負のレベル-3、続く時間間隔eは負のレベル-1、そして最後の時間間隔fは正のレベル+0となる。 To explain the waveform of the twisted COM-SEG signal 126, the first time interval a is positive level +0, the following time interval b is positive level +3, the following time interval c is negative level -4, and the following time interval d is Negative level -3, the following time interval e is negative level -1, and the last time interval f is positive level +0.
 ユニフォーム用SEG信号による寄生信号127の波形を説明すると、最初の時間間隔aからdまでは正のレベル+0、続く時間間隔eは負のレベル-1、最後の時間間隔fは正のレベル+0となる。 The waveform of the parasitic signal 127 based on the uniform SEG signal is described as follows. The first time interval a to d is positive level +0, the subsequent time interval e is negative level −1, and the last time interval f is positive level +0. Become.
 ツイスト用SEG信号による寄生信号128は最初の時間間隔aとbは正のレベル+0、続く時間間隔cは負のレベル-1、最後の時間間隔dからfは正のレベル+0となる。 In the parasitic signal 128 by the twist SEG signal, the first time intervals a and b are positive level +0, the subsequent time interval c is negative level −1, and the last time intervals d to f are positive level +0.
 コモンが非選択の時に発生する寄生信号はセグメント波形の高い電位(V0、V12)で発生している。 The parasitic signal generated when the common is not selected is generated at a high potential (V0, V12) of the segment waveform.
 出力トランジスタのON抵抗が基板効果により最も増大するのは、トランジスタが出力できる最大振幅の中央電位(1/2電位)を出力する時であり、より低いON抵抗が求められる場合はその中央電位の出力を避けるべきである。 The ON resistance of the output transistor is most increased due to the substrate effect when the central potential (1/2 potential) of the maximum amplitude that can be output by the transistor is output. When a lower ON resistance is required, Output should be avoided.
 コモンやセグメントの駆動デバイスとして、市販されている一般的なSTN通常駆動のドライバを用いた場合にコモンとセグメントを共に最大振幅(V0-V5)で出力させる場合の他に、上限から1段、下限から1段、合計2段振幅を小さくした電位(V12-V34)で出力させると、COM-SEG間電圧は最大振幅(V0-V5)で出力させた場合に比べて4段小さな振幅で駆動される。例えばV0-V5間の電圧が10V程度の時、コモンとセグメントを共に最大振幅(V0-V5)で出力させると、COM-SEG間電圧は±10Vの振幅となるが、V12とV34の電位を上限下限から2Vずつ内側に設定して、コモンとセグメントを共にV12とV34の振幅で出力させると、COM-SEG間電圧は±6Vの振幅となる。 In addition to the case where a common STN normal drive driver that is commercially available is used as a common or segment drive device, both the common and segment are output at the maximum amplitude (V0-V5), one stage from the upper limit, When output with a potential (V12-V34) with one stage lower than the lower limit and a total of two stages of amplitude reduced, the COM-SEG voltage is driven with an amplitude that is four stages smaller than when the maximum amplitude (V0-V5) is output. Is done. For example, when the voltage between V0 and V5 is about 10V, if both the common and segment are output with the maximum amplitude (V0-V5), the COM-SEG voltage will have an amplitude of ± 10V, but the potentials of V12 and V34 will be If the common and segment are output with amplitudes of V12 and V34 by setting 2V inside from the upper and lower limits, the COM-SEG voltage has an amplitude of ± 6V.
 コモンやセグメントの駆動デバイスの最低駆動電圧(V0-V5間電圧)が10Vの場合でも、基板効果でON抵抗が大きくなる中央電位(=10V/2=5V)付近を用いてないので、出力トランジスタのON抵抗をさほど大きくする事無く±6Vという小さな振幅駆動を実現できる。コモン・セグメント共に出力可能な最大振幅の中央電位を避け、かつ小さい振幅で変移させる事によって、出力トランジスタのON抵抗をさほど大きくする事無く、COM-SEG間電圧をより小さい振幅で駆動することができる。 Even if the minimum drive voltage (voltage between V0 and V5) of the drive device for common or segment is 10V, the output transistor is not used near the central potential (= 10V / 2 = 5V) where the ON resistance increases due to the substrate effect. A small amplitude drive of ± 6 V can be realized without significantly increasing the ON resistance of. By avoiding the central potential of the maximum amplitude that can be output for both the common segment and shifting with a small amplitude, the COM-SEG voltage can be driven with a smaller amplitude without increasing the ON resistance of the output transistor. it can.
 図9に示すMode-Dでは、選択用COM信号111、非選択用COM信号112のいずれにおいても波形を出力する時間間隔Tのはじめと終わりがV34の電位であり、セグメント信号においてもV34の電位である。つまり、全コモン全セグメントがV34を出力する箇所を、図10の丸印に示すように、V5(=GND)に電位を変更してもCOM-SEG間の電圧波形は変わらない。COMとSEGの波形を出力する時間間隔Tのはじめと終わりをV34ではなくV5(=GND)に変更すると、V34の出力アンプ能力を使わずに済み、直接V5(=GND)にスイッチングするだけなので、最大の駆動力でV5(=GND)への電位推移が可能となる。これをMode-Hとして図10に示した。 In Mode-D shown in FIG. 9, the beginning and end of the time interval T at which the waveform is output in both the selection COM signal 111 and the non-selection COM signal 112 are the potential of V34, and the potential of V34 is also in the segment signal. It is. In other words, the voltage waveform between COM and SEG does not change even if the potential is changed to V5 (= GND) as shown by a circle in FIG. If the beginning and end of the time interval T for outputting the COM and SEG waveforms is changed to V5 (= GND) instead of V34, the output amplifier capability of V34 is not used, and only switching to V5 (= GND) is performed directly. The potential transition to V5 (= GND) is possible with the maximum driving force. This is shown as Mode-H in FIG.
 図8のMode-Fは、図10のMode-Hとは対照的な正極側駆動モ-ドの小振幅波形である。このMode-FもMode-Hと同様に、COMとSEGの最後をV34ではなくV5(GND)に変更して、電圧変移の最後でV34の出力アンプ能力を使わずに済むような駆動を実現している。 8 Mode-F is a small amplitude waveform of the positive side drive mode as opposed to Mode-H in FIG. In Mode-F, as in Mode-H, the end of COM and SEG is changed to V5 (GND) instead of V34, and it is possible to drive without using the output amplifier capability of V34 at the end of voltage transition. is doing.
 図7のMode-Eと図6のMode-Gは、それぞれ正極側・負極側駆動モ-ドの違いはあるが、共に最大振幅で駆動するモ-ドである。コモンもセグメントもV0-V5の最大振幅で出力推移し、COM-SEG間の電圧波形も最大振幅となる。より大きな電圧振幅で駆動する場合はMode-EかMode-Gを選択し、より小さな電圧振幅で駆動する場合はMode-FかMode-Hを選択する。 Mode-E in FIG. 7 and Mode-G in FIG. 6 are both driven at the maximum amplitude, although there are differences between the positive side and negative side drive modes. The output of the common and the segment changes with the maximum amplitude of V0-V5, and the voltage waveform between COM and SEG also has the maximum amplitude. When driving with a larger voltage amplitude, Mode-E or Mode-G is selected, and when driving with a smaller voltage amplitude, Mode-F or Mode-H is selected.
 将来的に双安定液晶パネルの特性が改善され、正極側駆動モ-ドで良好な表示画質が確保できるなら、Mode-EかMode-Fを選択して消費電流の小さな駆動を実現する。 If the characteristics of the bistable liquid crystal panel are improved in the future and a good display image quality can be secured in the positive drive mode, select Mode-E or Mode-F to achieve low current consumption drive.
 図7に示す駆動波形の各電位(V0、V12、VCX、V34、V5)は、通常の汎用STNドライバの駆動電位と同様に、液晶パネルのサイズや画素数、周囲温度などに応じて最適な電圧に設定する。低温時には液晶に高い駆動電圧が必要になるのでV0-V5間電圧を大きくし、電圧効率の良い負極側駆動モ-ド(Mode-G)で駆動する。その他、常温時や高温時には正極側駆動モ-ド(Mode-E)で駆動して消費電流をより小さくし、高温時にはV0-V5間電圧を小さくすると共にMode-FやMode-Hで駆動し、COM-SEG間の駆動振幅が小さいながらもV0-V5間電圧を少しでも大きく保って出力トランジスタのON抵抗の増加を最小限に抑えるようにする。 Each potential (V0, V12, VCX, V34, V5) of the drive waveform shown in FIG. 7 is optimum according to the size of the liquid crystal panel, the number of pixels, the ambient temperature, and the like, similar to the drive potential of a general-purpose STN driver. Set to voltage. Since a high driving voltage is required for the liquid crystal at a low temperature, the voltage between V0 and V5 is increased and the liquid crystal is driven in the negative side driving mode (Mode-G) with good voltage efficiency. In addition, at normal temperature or high temperature, drive with positive side drive mode (Mode-E) to reduce current consumption. At high temperature, reduce voltage between V0 and V5 and drive with Mode-F or Mode-H. Although the drive amplitude between COM and SEG is small, the voltage between V0 and V5 is kept as large as possible to minimize the increase in the ON resistance of the output transistor.
 このように、環境に合わせて駆動モ-ドを自由に選択する駆動方法、および駆動デバイスを用いる事により、双安定液晶パネルの特性に合わせた合理的な駆動が可能となる。 As described above, by using a driving method and a driving device that freely select a driving mode according to the environment, rational driving according to the characteristics of the bistable liquid crystal panel becomes possible.
産業上の利用の可能性Industrial applicability
 本発明をもってすることで、液晶表示に用いるものすべてにおいて利用可能である。その中でも特に電子棚札や電子ペーパーの用途において特に産業上の利用可能性が高い。 By using the present invention, it can be used for all liquid crystal displays. Among them, the industrial applicability is particularly high particularly in the use of electronic shelf labels and electronic paper.
 1 基板
 2 電極
 3 配向膜
 4 ネマチック液晶の分子
 5 偏光板
10 双安定液晶表示パネル
11 コモン駆動部
12 セグメント駆動部
13 電源回路
14 制御部
31、61、111、121 選択用COM信号
32、62、112、122 非選択用COM信号
34、63、73、83、113、123 ユニフォーム用SEG信号
35、64、74、84、114、124 ツイスト用SEG信号
36、65、75、85、115、125 ユニフォーム用COM-SEG信号
37、66、76、86、116、126 ツイスト用COM-SEG信号
38、39、67、68、77、78、87、88、117、118、127、128 寄生信号
DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3 Alignment film 4 Nematic liquid crystal molecule 5 Polarizing plate 10 Bistable liquid crystal display panel 11 Common drive unit 12 Segment drive unit 13 Power supply circuit 14 Control unit 31, 61, 111, 121 COM signal 32, 62 for selection, 112, 122 Non-selection COM signal 34, 63, 73, 83, 113, 123 Uniform SEG signal 35, 64, 74, 84, 114, 124 Twist SEG signal 36, 65, 75, 85, 115, 125 Uniform COM- SEG signal 37, 66, 76, 86, 116, 126 COM-SEG signal for twist 38, 39, 67, 68, 77, 78, 87, 88, 117, 118, 127, 128 Parasitic signal

Claims (5)

  1.  略平行に対向して配置された一対の基板と、
     前記基板の対向面側の面上にマトリックス状に形成された複数のコモン電極と複数のセグメント電極と、
     前記コモン電極と前記セグメント電極の上に形成された配向膜と、
     前記配向膜によって狭持される2つの安定した配向状態をもち電界を切ってもその配向状態を保持する双安定性を有するネマチック液晶の分子と、
     前記ネマチック液晶の分子の外側に配置される少なくとも1枚の偏光板から構成され、
     前記コモン電極に接続するコモン駆動部から液晶の書き換えを行う選択信号および非選択信号のいずれか1つを前記ネマチック液晶へ印加し、
     前記セグメント電極に接続するセグメント駆動部から2つの安定した配向状態を選択する信号を前記ネマチック液晶へ選択式に印加し、
     前記コモン電極とセグメント電極間の電界であるコモン・セグメント間電圧により画像を表示させる双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法において、
     各コモン電極のスキャン時における全コモン電極と全セグメント電極の出力が同電位であり、かつその電位がGNDではない駆動モ-ドに対して、全コモン電極と全セグメント電極が同電位を出力する箇所をGNDに変更したモ-ドを備える双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法。
    A pair of substrates disposed substantially parallel to each other;
    A plurality of common electrodes and a plurality of segment electrodes formed in a matrix on the opposite surface of the substrate;
    An alignment film formed on the common electrode and the segment electrode;
    Bistability nematic liquid crystal molecules having two stable alignment states held by the alignment film and maintaining the alignment states even when the electric field is cut off;
    Composed of at least one polarizing plate disposed outside the molecule of the nematic liquid crystal,
    Applying one of a selection signal and a non-selection signal for rewriting liquid crystal to the nematic liquid crystal from a common driving unit connected to the common electrode;
    A signal for selecting two stable alignment states is selectively applied to the nematic liquid crystal from a segment driver connected to the segment electrode,
    In a method of driving a dot matrix display using a bistable nematic liquid crystal that displays an image by a common-segment voltage that is an electric field between the common electrode and the segment electrode,
    When scanning each common electrode, all common electrodes and all segment electrodes output the same potential, and all common electrodes and all segment electrodes output the same potential to a drive mode in which the potential is not GND. A method for driving a dot matrix display using a bistable nematic liquid crystal having a mode in which the location is changed to GND.
  2.  前記駆動方法において、
     ドット画素を狭持する前記コモン電極と前記セグメント電極の端子間電圧をVCOM-VSEGとした時、ドット表示が第1の配向状態か第2の配向状態かを決定する電圧変化を端子間電圧の正極側で制御する正極側駆動モ-ドと、
     逆に負極側で制御する負極側駆動モ-ドと、を備え、そのいずれをも選択可能である請求項1に記載の双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法。
    In the driving method,
    When the voltage between the terminals of the common electrode and the segment electrode holding the dot pixel is VCOM-VSEG, the voltage change that determines whether the dot display is in the first alignment state or the second alignment state is the voltage of the terminal voltage. A positive side drive mode controlled on the positive side;
    2. The method for driving a dot matrix display using a bistable nematic liquid crystal according to claim 1, comprising: a negative electrode side drive mode controlled on the negative electrode side, and any of which can be selected.
  3.  前記駆動方法において、
    ドット画素を狭持するコモンとセグメントの各端子の出力電位を、コモン・セグメント共に出力可能な最大振幅の中央電位を避け、かつ小さい振幅で変移させ、両端子間電圧であるVCOM-VSEGをより小さい振幅で駆動する駆動モ-ドを備える請求項1に記載の双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動方法。
    In the driving method,
    The output potential of each terminal of the common and segment that holds the dot pixel is shifted with a small amplitude while avoiding the central potential of the maximum amplitude that can be output for both the common and segment, and the VCOM-VSEG that is the voltage between both terminals is further increased. 2. The method for driving a dot matrix display using a bistable nematic liquid crystal according to claim 1, further comprising a drive mode driven with a small amplitude.
  4.  略平行に対向して配置された一対の基板と、
     前記基板の対向面側の面上にマトリックス状に形成された複数のコモン電極と複数のセグメント電極と、
     前記コモン電極と前記セグメント電極の上に形成された配向膜と、
     前記配向膜によって狭持される2つの安定した配向状態をもち電界を切ってもその配向状態を保持する双安定性を有するネマチック液晶の分子と、
     前記ネマチック液晶の分子の外側に配置される少なくとも1枚の偏光板から構成され、
     前記コモン電極に接続するコモン駆動部から液晶の書き換えを行う選択信号および非選択信号のいずれか1つを前記ネマチック液晶へ印加し、
     前記セグメント電極に接続するセグメント駆動部から2つの安定した配向状態を選択する信号を前記ネマチック液晶へ選択式に印加し、
     前記コモン電極とセグメント電極間の電界であるコモン・セグメント間電圧により画像を表示させる双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動デバイスにおいて、
     ドット画素を狭持する前記コモン電極と前記セグメント電極の端子間電圧をVCOM-VSEGとした時、ドット表示が第1の配向状態か第2の配向状態かを決定する電圧変化を端子間電圧の正極側で制御する正極側駆動モ-ドと、
     逆に負極側で制御する負極側駆動モ-ドと、を備え、そのいずれをも選択可能である双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動デバイス。
    A pair of substrates disposed substantially parallel to each other;
    A plurality of common electrodes and a plurality of segment electrodes formed in a matrix on the opposite surface of the substrate;
    An alignment film formed on the common electrode and the segment electrode;
    Bistability nematic liquid crystal molecules having two stable alignment states held by the alignment film and maintaining the alignment states even when the electric field is cut off;
    Composed of at least one polarizing plate disposed outside the molecule of the nematic liquid crystal,
    Applying one of a selection signal and a non-selection signal for rewriting liquid crystal to the nematic liquid crystal from a common driving unit connected to the common electrode;
    A signal for selecting two stable alignment states is selectively applied to the nematic liquid crystal from a segment driver connected to the segment electrode,
    In a drive device for a dot matrix display using a bistable nematic liquid crystal that displays an image by a common-segment voltage that is an electric field between the common electrode and the segment electrode,
    When the voltage between the terminals of the common electrode and the segment electrode holding the dot pixel is VCOM-VSEG, the voltage change that determines whether the dot display is in the first alignment state or the second alignment state is the voltage of the terminal voltage. A positive side drive mode controlled on the positive side;
    On the other hand, a drive device for a dot matrix display using a bistable nematic liquid crystal that includes a negative electrode side drive mode that is controlled on the negative electrode side, and can select either of them.
  5.  略平行に対向して配置された一対の基板と、
     前記基板の対向面側の面上にマトリックス状に形成された複数のコモン電極と複数のセグメント電極と、
     前記コモン電極と前記セグメント電極の上に形成された配向膜と、
     前記配向膜によって狭持される2つの安定した配向状態をもち電界を切ってもその配向状態を保持する双安定性を有するネマチック液晶の分子と、
     前記ネマチック液晶の分子の外側に配置される少なくとも1枚の偏光板から構成され、
     前記コモン電極に接続するコモン駆動部から液晶の書き換えを行う選択信号および非選択信号のいずれか1つを前記ネマチック液晶へ印加し、
     前記セグメント電極に接続するセグメント駆動部から2つの安定した配向状態を選択する信号を前記ネマチック液晶へ選択式に印加し、
     前記コモン電極とセグメント電極間の電界であるコモン・セグメント間電圧により画像を表示させる双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動デバイスにおいて、
     ドット画素を狭持するコモンとセグメントの各端子の出力電位を、コモン・セグメント共に出力可能な最大振幅の中央電位を避け、かつ小さい振幅で変移させ、両端子間電圧であるVCOM-VSEGをより小さい振幅で駆動する駆動モ-ドを備える双安定ネマチック液晶を用いたドットマトリクスディスプレイの駆動デバイス。
    A pair of substrates disposed substantially parallel to each other;
    A plurality of common electrodes and a plurality of segment electrodes formed in a matrix on the opposite surface of the substrate;
    An alignment film formed on the common electrode and the segment electrode;
    Bistability nematic liquid crystal molecules having two stable alignment states held by the alignment film and maintaining the alignment states even when the electric field is cut off;
    Composed of at least one polarizing plate disposed outside the molecule of the nematic liquid crystal,
    Applying one of a selection signal and a non-selection signal for rewriting liquid crystal to the nematic liquid crystal from a common driving unit connected to the common electrode;
    A signal for selecting two stable alignment states is selectively applied to the nematic liquid crystal from a segment driver connected to the segment electrode,
    In a drive device for a dot matrix display using a bistable nematic liquid crystal that displays an image by a common-segment voltage that is an electric field between the common electrode and the segment electrode,
    The output potential of each terminal of the common and segment that holds the dot pixel is shifted with a small amplitude while avoiding the central potential of the maximum amplitude that can be output for both the common and segment, and the VCOM-VSEG that is the voltage between both terminals is further increased. A drive device for a dot matrix display using a bistable nematic liquid crystal having a drive mode driven with a small amplitude.
PCT/JP2010/052457 2009-02-19 2010-02-18 Method for driving dot-matrix display using bistable nematic liquid crystal WO2010095686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009036586 2009-02-19
JP2009-036586 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010095686A1 true WO2010095686A1 (en) 2010-08-26

Family

ID=42633966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052457 WO2010095686A1 (en) 2009-02-19 2010-02-18 Method for driving dot-matrix display using bistable nematic liquid crystal

Country Status (1)

Country Link
WO (1) WO2010095686A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491972A (en) * 2011-06-14 2012-12-19 Knorr Bremse Rail Systems Uk Ltd Brake information module having a bistable display to display operational data, even without power
CN102855847A (en) * 2012-08-28 2013-01-02 无锡威峰科技有限公司 Waveform debugging method applied to EPD (electrophoretic display) screen
CN114067761A (en) * 2020-07-29 2022-02-18 精工爱普生株式会社 Integrated circuit device, liquid crystal display device, electronic apparatus, and moving object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194206A (en) * 1995-01-13 1996-07-30 Nippondenso Co Ltd Matrix type liquid crystal display device
JPH10115822A (en) * 1996-10-14 1998-05-06 Seiko Epson Corp Drive method for liquid crystal display body
JPH10197846A (en) * 1997-01-10 1998-07-31 Ricoh Co Ltd Driving method of liquid crystal panel
JP2006518479A (en) * 2003-02-20 2006-08-10 ネモプティック Improved bistable nematic liquid crystal display methods and devices
JP2007256608A (en) * 2006-03-23 2007-10-04 Citizen Holdings Co Ltd Memory liquid crystal panel
WO2010021206A1 (en) * 2008-08-19 2010-02-25 セイコーインスツル株式会社 Method and device for driving a bistable nematic dot-matrix liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194206A (en) * 1995-01-13 1996-07-30 Nippondenso Co Ltd Matrix type liquid crystal display device
JPH10115822A (en) * 1996-10-14 1998-05-06 Seiko Epson Corp Drive method for liquid crystal display body
JPH10197846A (en) * 1997-01-10 1998-07-31 Ricoh Co Ltd Driving method of liquid crystal panel
JP2006518479A (en) * 2003-02-20 2006-08-10 ネモプティック Improved bistable nematic liquid crystal display methods and devices
JP2007256608A (en) * 2006-03-23 2007-10-04 Citizen Holdings Co Ltd Memory liquid crystal panel
WO2010021206A1 (en) * 2008-08-19 2010-02-25 セイコーインスツル株式会社 Method and device for driving a bistable nematic dot-matrix liquid crystal display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491972A (en) * 2011-06-14 2012-12-19 Knorr Bremse Rail Systems Uk Ltd Brake information module having a bistable display to display operational data, even without power
GB2491972B (en) * 2011-06-14 2018-05-09 Knorr Bremse Rail Systems Uk Ltd A Brake System for a Vehicle with an Electrically Powered Brake Control Unit
CN102855847A (en) * 2012-08-28 2013-01-02 无锡威峰科技有限公司 Waveform debugging method applied to EPD (electrophoretic display) screen
CN102855847B (en) * 2012-08-28 2014-09-24 无锡威峰科技有限公司 Waveform debugging method applied to EPD (electrophoretic display) screen
CN114067761A (en) * 2020-07-29 2022-02-18 精工爱普生株式会社 Integrated circuit device, liquid crystal display device, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
KR100593765B1 (en) LCD and its driving method
KR100201429B1 (en) Liquid crystal display device
US7079103B2 (en) Scan-driving circuit, display device, electro-optical device, and scan-driving method
US6597119B2 (en) Method for driving an electro-optical device, driving circuit for driving an electro-optical device, electro-optical device, and electronic apparatus
JP4985020B2 (en) Liquid crystal device, driving method thereof, and electronic apparatus
KR20040090470A (en) Method for driving electro-optical apparatus, electro-optical apparatus, and electronic equipment
KR20050092779A (en) Driving a bi-stable matrix display device
JP2007530999A (en) Display unit
US20080316162A1 (en) Liquid crystal display and driving method thereof
JP5432149B2 (en) Driving method and driving device for bistable nematic dot matrix liquid crystal display
KR20080059854A (en) Lcd and drive method thereof
WO2010095686A1 (en) Method for driving dot-matrix display using bistable nematic liquid crystal
CN102087838A (en) Video rate ChLCD driving with active matrix backplanes
US20070030227A1 (en) Optically compensated bend (OCB) liquid crystal display and method of operating same
JP4049192B2 (en) Electro-optical device driving method, electro-optical device, and electronic apparatus
WO2010137216A1 (en) Method for driving electro-optical device, electro-optical device, and electronic device
WO2010095539A1 (en) Bistable liquid crystal display panel driving method and driving device
WO2011158552A1 (en) Method of driving bi-stable liquid crystal panel and driving device
US20090059106A1 (en) Liquid crystal device, driving method of liquid crystal device, integrated circuit device for driving liquid crystal device, and electronic apparatus
JP2011013420A (en) Electro-optical device, method for driving the same, and electronic apparatus
WO2011021409A1 (en) Bistable liquid crystal display panel and method for driving same
JP2009175278A (en) Electro-optical device, drive circuit and electronic equipment
US10643562B2 (en) Display device and method for driving the same
JP2004240408A (en) Driving circuit of stn liquid crystal display panel
JP4591258B2 (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP