WO2010095611A1 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
WO2010095611A1
WO2010095611A1 PCT/JP2010/052261 JP2010052261W WO2010095611A1 WO 2010095611 A1 WO2010095611 A1 WO 2010095611A1 JP 2010052261 W JP2010052261 W JP 2010052261W WO 2010095611 A1 WO2010095611 A1 WO 2010095611A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
optical glass
optical
alkali metal
Prior art date
Application number
PCT/JP2010/052261
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 中村
達雄 日高
拓朗 池田
英和 橋間
直之 北村
幸平 福味
準治 西井
Original Assignee
日本山村硝子株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社, 独立行政法人産業技術総合研究所 filed Critical 日本山村硝子株式会社
Priority to JP2011500608A priority Critical patent/JPWO2010095611A1/en
Publication of WO2010095611A1 publication Critical patent/WO2010095611A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus

Definitions

  • the present invention relates to an optical glass, and more particularly to an optical glass having a high refractive index, a high transmittance, and a material characteristic of a low yield point, which is suitable for molding an optical lens by precision molding or the like.
  • aspherical lenses are increasingly used as optical devices are remarkably reduced in size and weight. This is because aspherical lenses can easily correct light aberration, reduce the number of lenses, and make the device compact.
  • an optical element that exhibits a light wave control function that is, a light wave control element, by forming a nano-fine structure having a light wavelength level period on the glass surface. With the light wave control function, structural birefringence, prevention of surface reflection, and the like can be obtained.
  • a wide application range can be expected by manufacturing such a light wave control element with glass.
  • An aspherical lens or the like is manufactured by heat-softening a glass preform and precision molding it into a desired shape.
  • the optical glass constituting the preform can be molded at a relatively low temperature, and therefore has a low yield point (At).
  • a phosphate optical glass mainly composed of phosphate can be raised.
  • Patent Document 1 P 2 O 5 —B 2 O 3 —R 2 O—WO 3 —Nb 2 O 5 —TiO 2 glass disclosed in Patent Document 1
  • R is an alkali metal element and R ′ is an alkaline earth metal element.
  • Some of these glasses have a refractive index (n d ) of 1.75 to 2.0.
  • Patent Document 3 discloses a high-refractive index, high-dispersion optical glass for precision press molding of P 2 O 5 —Nb 2 O 5 —Bi 2 O 3 glass.
  • Patent Document 4 is an optical glass for glass imprinting, has a low yield point in the range of 340 ° C. to 450 ° C., has a good transmittance at 400 nm, has no color appearance, and causes surface discoloration during molding using a mold. There is no, and moldability is good.
  • the optical glass described in Patent Document 5 is obtained by adding fluorine F to the glass composition described in Comparative Examples 1 to 4 of Patent Document 4, that is, a glass composition having a high refractive index (n d ) exceeding 1.82. As a result, it was found out that there is an effect in improving the transmittance and lowering the yield point (At), and was completed.
  • JP 2002-173336 A JP 2006-131480 A JP 2001-58845 A JP 2009-184900 A JP 2009-256170 A
  • the optical glass disclosed in Patent Document 1 and Patent Document 2 described above has a yield point (At) as high as 492 ° C. or higher in Patent Document 1 and 526 ° C. or higher in Patent Document 2, and the life of the mold is increased. There were many cases that could not be expected. Further, in the optical glass of Patent Document 3 which can be expected to have a lower yield point and a higher refractive index, absorption of light on the short wavelength side due to Bi 2 O 3 is large, light transmittance at a wavelength of 400 nm is low, and appearance Many of them were quite yellow.
  • the light transmittance at 400 nm is 55%, which is less than 70%, and there is a problem that the applicable range as an optical member becomes narrow.
  • the glass imprint optical glass described in Patent Document 4 refractive index (n d) it is difficult 1.77 or more high refractive index.
  • the optical glass described in Patent Document 5 contains fluorine F, a toxic fluorine component is easily volatilized at the time of melting the glass, and the environment of the melting operation is not preferable.
  • the optical properties and thermal properties of the glass change according to the volatilization amount of the fluorine component, it is not easy to manage the melting conditions for suppressing variations in these properties.
  • the present invention solves the drawbacks of the above-mentioned conventional phosphate optical glass, has a high refractive index, a high transmittance, and a low yield point, and is suitable for molding general lenses and aspheric lenses.
  • it is an object to provide an optical glass suitable for molding a lens having a light wave control function having a nano-order level microstructure by precision mold press molding and other optical elements.
  • the inventors of the present invention considered the composition of the P 2 O 5 —Bi 2 O 3 —ZnO system in the production of glass, and antimony oxide Sb 2 O. 3 and alkali metal oxide R 2 O were added and contained, and it was found that the above problems could be solved without containing fluorine F, and the present invention was completed.
  • the optical glass of the present invention contains phosphorus, bismuth and zinc in terms of oxides, P 2 O 5 : 15 to 30 mol%, Bi 2 O 3 : 5 to 35 mol%, ZnO: 40 to 75 mol%.
  • the first feature is that antimony is contained in an oxide equivalent of Sb 2 O 3 : 0.05 to 0.50 mol% and fluorine F is not contained.
  • the optical glass of the present invention contains one or two or more alkali metal elements R in a total amount, in terms of oxide, R 2 O: 2 to 15 mol%. This is the second feature.
  • the alkali metal element R lithium, sodium, and potassium are representative elements.
  • the optical glass of the present invention contains, as the alkali metal element R, lithium, sodium or potassium when the alkali metal element R is contained in an amount of more than 7 mol% in terms of oxide.
  • a third feature is that it contains at least two alkali metal elements selected from the group consisting of:
  • the optical glass of the present invention has one or more of boron, silicon, and germanium in a total amount of 0.5 to 5 moles in terms of oxide, in addition to any of the first to third features.
  • % Content is the fourth feature.
  • the optical glass of the present invention has, as a fifth feature, in addition to any of the first to fourth features described above, the preform is a gob preform formed by dripping a glass melt. Yes.
  • the yield point can be lowered without containing fluorine F.
  • the present inventors have found that, at a high refractive index, the degree of coloring of the glass is improved and the transmittance is increased. Furthermore, it has been found that the stability of the glass is improved and the occurrence of devitrification can be prevented by making the alkali metal element R at least two elements selected from lithium, sodium and potassium. . Further, it has been found that by containing an appropriate amount of one or more of boron, silicon, and germanium, the stability of the glass is further improved, and devitrification is less likely to occur.
  • the yield point (At) is the maximum point at which the expansion curve changes from rising to falling due to softening of the glass when the thermal expansion is measured by a thermomechanical analyzer (TMA).
  • TMA thermomechanical analyzer
  • the refractive index (n d ) refers to the refractive index of helium for the 587.6 nm emission line.
  • an optical glass suitable for mold press molding including a precision mold press having a high refractive index, a high transmittance, and a low yield point is provided. It became possible to provide. Accordingly, it becomes possible to provide a lens having excellent optical characteristics, an aspherical lens, a lens having a nano-order level fine structure having an excellent light wave control function, and other optical elements. Further, since fluorine F is not contained, the highly toxic fluorine component does not volatilize, and the environment for melting work is safer. Furthermore, the management of melting conditions is easier than when fluorine F is added.
  • the optical glass according to claim 2 in addition to the effects by the configuration described in claim 1, in a total amount of one or more of the alkali metal element R, in terms of oxide, R 2 O : Since 2 to 15 mol% is contained, it is possible to make a glass having a lower yield point.
  • the optical glass of Claim 3 in addition to the effect by the structure of the said Claim 2, when the alkali metal element R is contained more than 7 mol% in terms of oxide, the alkali metal element Since R includes at least two or more kinds of alkali metal elements selected from lithium, sodium, and potassium, it is possible to provide a glass having further excellent stability and resistance to devitrification.
  • the total amount of one or more of boron, silicon, and germanium is added to the oxide. Since it is contained in an amount of 0.5 to 5 mol% in terms of conversion, it is possible to obtain a glass having further improved stability and further excellent devitrification resistance.
  • the preform has a gob preform formed by dropping a glass melt. As a result, the reaction with the mold surface can be more effectively suppressed during precision molding, and a good and stable molded glass can be obtained without discoloring the glass surface by molding.
  • the component P 2 O 5 is a component for forming a glass network structure, and is an essential component for imparting stability that can be produced to glass.
  • P 2 O 5 is contained in an amount of 15 to 30 mol%. If it is less than 15 mol%, it becomes difficult to obtain a stable and good glass. On the other hand, when it exceeds 30 mol%, it is difficult to obtain a stable and good glass.
  • P 2 O 5 is preferably contained in an amount of 16.5 to 28.5 mol%, more preferably 18 to 27 mol%.
  • the component Bi 2 O 3 is a component for forming a glass network structure of the glass, and is essential for providing stability that can be produced to the glass, increasing the refractive index of the glass, and lowering the yield point.
  • Bi 2 O 3 is contained in an amount of 5 to 35 mol%. If Bi 2 O 3 is less than 5 mol%, it is difficult to obtain a stable and good glass, and if it exceeds 35 mol%, it is difficult to obtain a stable and good glass.
  • Bi 2 O 3 is preferably contained in an amount of 7.5 to 32.5 mol%, more preferably 10 to 30 mol%.
  • ZnO is an essential component effective for stabilizing the glass and lowering the yield point of the glass.
  • ZnO is contained in an amount of 40 to 75 mol%. If it is less than 40 mol%, it will be difficult to obtain a stable and good glass, and if it exceeds 75 mol%, it will be difficult to obtain a stable and good glass.
  • ZnO is preferably contained in an amount of 42.5 to 72.5 mol%, more preferably 45 to 70 mol%.
  • Sb 2 O 3 is effective and essential for improving the transmittance of glass.
  • Sb 2 O 3 is contained in an amount of 0.05 to 0.50 mol%.
  • Sb 2 O 3 is used in combination with nitrate or the like as a so-called clarifier, which usually removes fine bubbles in glass.
  • Sb 2 O 3 plays a role of removing the factor of lowering the transmittance of the glass at a wavelength of 400 nm due to Bi 2 O 3 . This effect is also apparent from examples described later. The reason why Sb 2 O 3 prevents a decrease in the transmittance of the glass is not always clear.
  • Sb 2 O 3 is preferably contained in an amount of 0.07 to 0.47 mol%, more preferably 0.1 to 0.45 mol%.
  • R 2 O is an effective component for lowering the yield point of glass.
  • R is at least one alkali metal element selected from alkali metal elements such as lithium, sodium, and potassium.
  • R 2 O is contained in an amount of 2 to 15 mol%. If it is 2 mol% or less, the effect of lowering the yield point of the glass cannot be obtained sufficiently. If it exceeds 15 mol%, the stability of the glass is impaired, and it becomes difficult to obtain a stable and good glass.
  • R 2 O is preferably contained in an amount of 3 to 12 mol%, more preferably 4 to 11 mol%.
  • R 2 O is, in case of content exceeds 7 mol% of the R 2 O, lithium, sodium, by the consist of at least two or more types of alkali metal element selected from among potassium, alkali metal elements The stability of the glass due to the mixing effect is improved, and a good glass can be obtained.
  • R 2 O when contained in excess of 6.5 mol% of the R 2 O, R 2 O is set to be at least two or more types of alkali metal element selected lithium, sodium, from potassium, more preferably When the R 2 O content exceeds 6 mol%, the R 2 O is composed of at least two kinds of alkali metal elements selected from lithium, sodium and potassium.
  • R 2 O is more preferably composed of three kinds of alkali metal elements lithium, sodium, and potassium, so that the alkali mixing effect is further enhanced, the stability of the glass is further improved, and a good glass is obtained. be able to.
  • Components B 2 O 3 , SiO 2 , and GeO 2 are components for forming a glass network structure, and are effective for imparting further stability to the glass. These are contained alone or in a total amount of 0.5 to 5 mol% in terms of oxide. If it is less than 0.5 mol%, it is difficult to obtain the effect of further stabilizing the glass. On the other hand, if the content exceeds 5 mol%, the glass becomes unstable and causes crystallization.
  • B 2 O 3 , SiO 2 , and GeO 2 are preferably contained in an amount of 0.75 to 4 mol%, more preferably 1 to 3 mol% in a total amount of one kind or two or more kinds.
  • fluorine F it is preferable not to contain fluorine F.
  • fluorine F the fluorine component having toxicity at the time of melting the glass is likely to volatilize, so that the environment of the melting operation is not preferable, and variations in the optical properties and thermal properties of the glass are likely to occur.
  • the fluorine concentration of the gob surface layer portion decreases due to the volatilization of the fluorine component, and this causes the yield point of the surface layer portion to be higher than that inside, and the mold If this is molded using a material, a problem of cracking from the surface layer portion is likely to occur.
  • the optical glass of this invention can make the form of the preform into the gob preform by dripping shaping
  • this gob preform it is possible to produce a preform without polishing using water.
  • a hydrated layer is formed on the surface of the preform during the polishing process. This hydration layer causes Bi 2 O 3 in the glass to be reduced during molding, and component volatilization from the glass tends to occur. This has an adverse effect on aspherical molds or molds having nano-structures, and is one cause of discoloration of the molded glass surface.
  • the component P 2 O 5 Zn (PO 3 ) 2 , R (PO 3 ), P 2 O 5 , H 3 PO 4, etc. are used.
  • Bi 2 O 3 Bi 2 O 3 , Bi (NO 3 ) 3 .5H 2 O, or the like can be used.
  • ZnO, ZnO and Zn (PO 3 ) 2 can be used.
  • Sb 2 O 3 and Sb 2 O 5 can be used for the component Sb 2 O 3 .
  • R 2 O R 2 CO 3 , R (NO 3 ), R (PO 3 ) and the like can be used.
  • the component B 2 O 3 H 2 BO 3 , B 2 O 3 , BPO 4 and the like can be used.
  • SiO 2 SiO 2 or the like can be used.
  • GeO 2 GeO 2 or the like can be used.
  • the above raw materials are prepared and mixed so as to be in the component range described above, melted at 850 to 1200 ° C., homogenized through the steps of clarification (gas removal) and stirring, and then poured into a mold. After forming into a gob preform by molding or a dropping method, a homogeneous glass can be obtained by slow cooling.
  • the present invention will be further described below with reference to examples.
  • the present invention is not limited in any way by these examples.
  • the raw materials were prepared and mixed so as to have the component compositions of Examples 1 to 11 and Comparative Examples 1 to 7 shown in Tables 1 to 3, and then put into a platinum crucible, and 1000 ° C. to 1200 ° C. in an electric furnace. After melting at a temperature of 0 ° C. and then holding at a temperature of 850 ° C. to 1000 ° C., it was poured into a mold and slowly cooled to obtain an optical glass. About each obtained optical glass, the yield point (At) and the refractive index ( nd ) were measured. Moreover, the transmission spectrum of glass was measured and the transmittance
  • the yield point (At) was measured by heating a rod-shaped sample having a length of 15 to 20 mm and a diameter (side) of 3 to 5 mm at a constant rate of 10 ° C. per minute. It calculated
  • the refractive index (n d ) was measured using the V block method.
  • the transmission spectrum of the glass was measured with a spectrophotometer. The measurement results are shown in Tables 1 to 3.
  • the liquidus temperature is an equilibrium temperature between the melt state and the initial phase of the crystal. The lower the temperature, the more stable the glass melt, the less likely it is to devitrify, and the easier it is to obtain glass.
  • the liquid phase temperature was measured using a melting furnace, and after raising the glass melt to the melting temperature, holding it at the evaluation temperature for 30 minutes or more, and then quickly removing it to check whether the glass melt was devitrified. This was done by observing.
  • the glass of each of the examples of the present invention has a yield point in a relatively low temperature range of 431 to 493 ° C., molding is easy. Furthermore, it has a high refractive index (n d ) in the range of 1.79 to 1.89, a transmittance at a wavelength of 400 nm is 70% or more, and has a sufficient optical constant as an optical glass for precision molding. ing. From these, it can be seen that the glass of the present invention is a glass suitable for precision molding.
  • Comparative Examples 1 to 6 have any problems such as high yield point (At), low transmittance, and low refractive index.
  • the comparative example 1 is substantially equivalent to Example 1, it does not contain Sb 2 O 3 and the transmittance is less than 60%.
  • Comparative Example 2 is one containing no Sb 2 O 3 in Example 3, but the sag is lower, the transmittance is 60% or less. The effects of containing Sb 2 O 3 and R 2 O can be seen from Examples 1 and 3 and Comparative Examples 1 and 2 .
  • Comparative Example 3 is an example in which the content of Sb 2 O 3 exceeds 0.50 mol%, and when Sb 2 O 3 exceeds 0.50 mol%, the transmittance is less than 70%, and the transmission It can be seen that the effect of improving the rate is not fully exhibited.
  • Comparative Example 4 and Comparative Example 5 correspond to Example 54 of Patent Document 1 and Example 3 of Patent Document 2, respectively. It can be seen that the yield point (At) is 492 ° C. or higher.
  • Example 1 has a yield point (At) of 493 ° C., which is substantially the same as Comparative Example 4. However, the refractive index in Example 1 is 1.89, which is higher than that in Comparative Example 4, and is more preferable.
  • the comparative example 6 is corresponded to Example 9 of patent document 3, it turns out that a yield point (At) is as high as 520 degreeC and the transmittance
  • the comparative example 7 contains the alkali metal element exceeding 7 mol% in terms of oxide, it is composed of only one kind of Na 2 O, and devitrification occurs because the glass is unstable. It turns out that good glass cannot be obtained. It can be seen that the glass shown in the above examples satisfies the three conditions of high refractive index, high transmittance, and low yield point.
  • the optical glass of the present invention is industrially applicable as an optical glass suitable for precision molding such as an aspherical lens and a light wave control glass with a high refractive index, a high transmittance, and a low yield point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is an optical glass that has a high refractive index and high transmittivity, as well as being suitable for forming general lenses and aspherical lenses, and that additionally is suitable for forming lenses and other optical elements with light wave controlling functions that have a nano-order level microstructure produced by molding with a precision molding press. The optical glass contains, as oxide equivalents of phosphorus, bismuth, and zinc, P2O5: 15‑30 mol%, Bi2O3: 5‑35 mol%, and ZnO: 40‑75 mol%, contains, as oxide equivalent of antimony, Sb2O3: 0.05‑0.50 mol%, and contains no fluorine F. Furthermore, the glass may also contain, as the total amount of one, two, or more alkaline metal elements R, as oxide equivalent, R2O: 2‑15 mol%, as required.

Description

光学ガラスOptical glass
 本発明は光学ガラスに関し、特に高屈折率・高透過率で、且つ低屈伏点の材料的特質を備え、精密モールド成形等による光学レンズ等の成形にも適した光学ガラスに関する。 The present invention relates to an optical glass, and more particularly to an optical glass having a high refractive index, a high transmittance, and a material characteristic of a low yield point, which is suitable for molding an optical lens by precision molding or the like.
 近年、光学機器の小型軽量化が著しく進展している中で、非球面レンズが多く用いられるようになってきている。これは、非球面レンズは光線収差の補正が容易であり、レンズの枚数を少なくし、機器をコンパクトにすることができるためである。
 またガラス表面に光の波長レベルの周期を持つナノ微細構造を形成することにより、光波制御機能を発現させた光学素子、つまり光波制御素子への要求が高まってきている。光波制御機能により、構造性複屈折や、表面反射の防止等が得られる。また、このような光波制御素子をガラスで作製することにより、広い適用範囲が期待できる。
 非球面レンズ等の製造は、ガラスのプリフォームを加熱軟化させ、これを所望形状に精密モールド成形することによってなされている。
 また光波制御素子の作製についても、低コストの点から100nm~10μmレベルの周期を持つナノ微細構造が形成された耐熱モールドを用いた精密モールド法によるガラスインプリントの研究開発がなされている。
 精密モールド成形によってガラス成形品を得るためには、プリフォームの加圧成形を屈伏点(At)近傍の温度で行うことが必要である。このため、プリフォームの屈伏点(At)が高いほど、これに接する金型(モールド)が一層の高温に曝されることとなり、モールド表面が酸化消耗し、モールドのメンテナンスが必要となり、低コストでの大量生産が実現できなくなる。このため、プリフォームを構成する光学ガラスは、比較的低温で成形できること、従って屈伏点(At)が低いことが望まれている。
 屈伏点(At)の低いガラス系としては、リン酸塩を主体としたリン酸塩系光学ガラスを上げることができる。
In recent years, aspherical lenses are increasingly used as optical devices are remarkably reduced in size and weight. This is because aspherical lenses can easily correct light aberration, reduce the number of lenses, and make the device compact.
In addition, there is an increasing demand for an optical element that exhibits a light wave control function, that is, a light wave control element, by forming a nano-fine structure having a light wavelength level period on the glass surface. With the light wave control function, structural birefringence, prevention of surface reflection, and the like can be obtained. Moreover, a wide application range can be expected by manufacturing such a light wave control element with glass.
An aspherical lens or the like is manufactured by heat-softening a glass preform and precision molding it into a desired shape.
As for the production of the light wave control element, research and development of a glass imprint by a precision molding method using a heat-resistant mold in which a nano-fine structure having a period of 100 nm to 10 μm is formed has been made from the viewpoint of low cost.
In order to obtain a glass molded product by precision molding, it is necessary to perform pressure molding of the preform at a temperature in the vicinity of the yield point (At). For this reason, the higher the yield point (At) of the preform, the more the mold (mold) in contact with it is exposed to a higher temperature, the mold surface is oxidized and consumed, and the mold maintenance is required. Mass production cannot be realized. For this reason, it is desired that the optical glass constituting the preform can be molded at a relatively low temperature, and therefore has a low yield point (At).
As a glass system having a low yield point (At), a phosphate optical glass mainly composed of phosphate can be raised.
 一方、モールドレンズをはじめとする光学部材に用いられるガラスとして、その用途に応じて種々の光学特性を有するものが求められており、中でも高屈折率、高透過率を有するものへの要求が高まっている。 On the other hand, as glass used for optical members including mold lenses, those having various optical properties are required depending on the application, and in particular, there is an increasing demand for those having high refractive index and high transmittance. ing.
 上記の光学特性への要求を満たす従来のガラスとして、例えば特許文献1に開示されているP-B-RO-WO-Nb-TiO系ガラスや、特許文献2に開示されているP-B-RO-R’O-WO-Nb-Bi系ガラスがある。但し、Rはアルカリ金属元素、R’はアルカリ土類金属元素のことである。
 これらのガラスでは屈折率(n)が1.75~2.0といったものもある。
 また特許文献3にはP-Nb-Bi系ガラスの高屈折率、高分散の精密プレス成形用光学ガラスが開示されている。
As a conventional glass that satisfies the requirements for the above optical properties, for example, P 2 O 5 —B 2 O 3 —R 2 O—WO 3 —Nb 2 O 5 —TiO 2 glass disclosed in Patent Document 1 And P 2 O 5 —B 2 O 3 —R 2 O—R′O—WO 3 —Nb 2 O 5 —Bi 2 O 3 glass disclosed in Patent Document 2. However, R is an alkali metal element and R ′ is an alkaline earth metal element.
Some of these glasses have a refractive index (n d ) of 1.75 to 2.0.
Patent Document 3 discloses a high-refractive index, high-dispersion optical glass for precision press molding of P 2 O 5 —Nb 2 O 5 —Bi 2 O 3 glass.
 ところで本発明者らは、リン酸塩を主体としたリン酸塩系光学ガラス、特にリン酸亜鉛ビスマス系ガラスに関して、精力的に研究を実施しており、例えば非特許文献1により外部発表を行っている。
 また特許文献4及び特許文献5により特許出願も行っている。特許文献4はガラスインプリント用光学ガラスで、340℃~450℃の範囲の低い屈伏点を有し、400nmにおける透過率が良好で外観上着色がなく、モールドを用いた成形において表面変色の発生がなく、成形性が良好である。更に特許文献5に記載された光学ガラスは、特許文献4の比較例1~4に記載のガラス組成、即ち1.82を超える高屈折率(n)を有するガラス組成に、フッ素Fを添加すると透過率向上、低屈伏点(At)化に効果があることを見出し、完成させたものである。
By the way, the present inventors are energetically conducting research on phosphate-based optical glasses mainly composed of phosphate, particularly zinc bismuth phosphate-based glasses. ing.
Patent applications are also filed according to Patent Document 4 and Patent Document 5. Patent Document 4 is an optical glass for glass imprinting, has a low yield point in the range of 340 ° C. to 450 ° C., has a good transmittance at 400 nm, has no color appearance, and causes surface discoloration during molding using a mold. There is no, and moldability is good. Further, the optical glass described in Patent Document 5 is obtained by adding fluorine F to the glass composition described in Comparative Examples 1 to 4 of Patent Document 4, that is, a glass composition having a high refractive index (n d ) exceeding 1.82. As a result, it was found out that there is an effect in improving the transmittance and lowering the yield point (At), and was completed.
特開2002-173336号公報JP 2002-173336 A 特開2006-131480号公報JP 2006-131480 A 特開2001-58845号公報JP 2001-58845 A 特開2009-184900号公報JP 2009-184900 A 特開2009-256170号公報JP 2009-256170 A
 ところがこのような上記特許文献1及び特許文献2に開示された光学ガラスは、屈伏点(At)が、特許文献1では492℃以上、特許文献2では526℃以上と高く、モールドの長寿命化が期待できない場合が多かった。
 更に低屈伏点化、高屈折率化が期待できる上記特許文献3の光学ガラスでは、Biに起因する短波長側の光の吸収が大きく、波長400nmにおける光の透過率が低く、外観上かなりの黄色を呈するものが多かった。即ち特許文献3に開示された光学ガラスでは、400nmにおける光の透過率は55%で、70%を下回っており、光学部材として適用範囲が狭くなるという問題があった。
 また特許文献4に記載されたガラスインプリント用光学ガラスは、屈折率(n)が1.77以上の高屈折率化が難しかった。更に特許文献5に記載された光学ガラスは、フッ素Fを添加しているため、ガラス溶融時に毒性を有するフッ素成分が揮発し易く、溶融作業の環境が好ましくない。またフッ素成分の揮発量に応じてガラスの光学特性、熱物性が変化するので、これらの物性のバラツキを抑えるための溶融条件の管理も容易ではない。
However, the optical glass disclosed in Patent Document 1 and Patent Document 2 described above has a yield point (At) as high as 492 ° C. or higher in Patent Document 1 and 526 ° C. or higher in Patent Document 2, and the life of the mold is increased. There were many cases that could not be expected.
Further, in the optical glass of Patent Document 3 which can be expected to have a lower yield point and a higher refractive index, absorption of light on the short wavelength side due to Bi 2 O 3 is large, light transmittance at a wavelength of 400 nm is low, and appearance Many of them were quite yellow. That is, in the optical glass disclosed in Patent Document 3, the light transmittance at 400 nm is 55%, which is less than 70%, and there is a problem that the applicable range as an optical member becomes narrow.
The glass imprint optical glass described in Patent Document 4, refractive index (n d) it is difficult 1.77 or more high refractive index. Furthermore, since the optical glass described in Patent Document 5 contains fluorine F, a toxic fluorine component is easily volatilized at the time of melting the glass, and the environment of the melting operation is not preferable. In addition, since the optical properties and thermal properties of the glass change according to the volatilization amount of the fluorine component, it is not easy to manage the melting conditions for suppressing variations in these properties.
 そこで本発明は上記従来のリン酸塩系光学ガラスの欠点を解決し、高屈折率、高透過率を有し、且つ低屈伏点で、一般的なレンズ、非球面レンズの成形に適することは勿論、精密モールドプレス成形によるナノオーダーレベルの微細構造をもつ光波制御機能を有するレンズ、その他の光学素子の成形にも適した光学ガラスの提供を課題とする。 Therefore, the present invention solves the drawbacks of the above-mentioned conventional phosphate optical glass, has a high refractive index, a high transmittance, and a low yield point, and is suitable for molding general lenses and aspheric lenses. Of course, it is an object to provide an optical glass suitable for molding a lens having a light wave control function having a nano-order level microstructure by precision mold press molding and other optical elements.
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、ガラス製造にあたって、その組成を、P-Bi-ZnO系で考慮すると共に、これに酸化アンチモンSbやアルカリ金属酸化物ROを添加含有させることで、フッ素Fを含まずに上記の課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention considered the composition of the P 2 O 5 —Bi 2 O 3 —ZnO system in the production of glass, and antimony oxide Sb 2 O. 3 and alkali metal oxide R 2 O were added and contained, and it was found that the above problems could be solved without containing fluorine F, and the present invention was completed.
 即ち、本発明の光学ガラスは、リン、ビスマス、亜鉛を酸化物換算で、P:15~30モル%、Bi:5~35モル%、ZnO:40~75モル%含有させ、且つアンチモンを酸化物換算で、Sb:0.05~0.50モル%含有させてあり、且つフッ素Fを含有させないことを第1の特徴としている。
 また本発明の光学ガラスは、上記第1の特徴に加えて、アルカリ金属元素Rの1種又は2種以上を総量で、酸化物換算で、RO:2~15モル%含有させてあることを第2の特徴としている。
 ここでアルカリ金属元素Rとしては、リチウム、ナトリウム、カリウムがその代表的元素とされる。しかし、その他にルビジウム、セシウムを含むものとし、第1属の金属元素Rをその範疇とする。
 また本発明の光学ガラスは、上記第2の特徴に加えて、アルカリ金属元素Rを酸化物換算で7モル%超含有させる場合には、前記アルカリ金属元素Rとして、リチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種以上のアルカリ金属元素を含むことを第3の特徴としている。
 また本発明の光学ガラスは、上記第1~第3の何れかの特徴に加えて、ホウ素、ケイ素、ゲルマニウムの1種又は2種以上を総量で、酸化物換算で、0.5~5モル%含有させてあることを第4の特徴としている。
 また本発明の光学ガラスは、上記第1~第4の何れかの特徴に加えて、プリフォームの形態が、ガラス融液を滴下成形してなるゴブプリフォームであることを第5の特徴としている。
That is, the optical glass of the present invention contains phosphorus, bismuth and zinc in terms of oxides, P 2 O 5 : 15 to 30 mol%, Bi 2 O 3 : 5 to 35 mol%, ZnO: 40 to 75 mol%. The first feature is that antimony is contained in an oxide equivalent of Sb 2 O 3 : 0.05 to 0.50 mol% and fluorine F is not contained.
In addition to the first feature, the optical glass of the present invention contains one or two or more alkali metal elements R in a total amount, in terms of oxide, R 2 O: 2 to 15 mol%. This is the second feature.
Here, as the alkali metal element R, lithium, sodium, and potassium are representative elements. However, it contains rubidium and cesium in addition, and the metal element R of the first group is included in the category.
Further, in addition to the second feature, the optical glass of the present invention contains, as the alkali metal element R, lithium, sodium or potassium when the alkali metal element R is contained in an amount of more than 7 mol% in terms of oxide. A third feature is that it contains at least two alkali metal elements selected from the group consisting of:
The optical glass of the present invention has one or more of boron, silicon, and germanium in a total amount of 0.5 to 5 moles in terms of oxide, in addition to any of the first to third features. % Content is the fourth feature.
Further, the optical glass of the present invention has, as a fifth feature, in addition to any of the first to fourth features described above, the preform is a gob preform formed by dripping a glass melt. Yes.
 このように、P-Bi-ZnO系ガラスの組成を調整し、これに更にアンチモン、アルカリ金属元素Rを適量含有させることにより、フッ素Fを含有させることなく低屈伏点化し、高屈折率で、ガラスの着色度合いが改善されて高透過率化することを見出した。更にアルカリ金属元素Rをリチウム、ナトリウム、カリウムの中から選ばれる少なくとも2つ以上の元素からなることとすることにより、ガラスの安定性が向上し、失透の発生を防ぐことができることを見出した。またホウ素、ケイ素、ゲルマニウムの1種又は2種以上を適量含有させることにより、更にガラスの安定性が向上し、より失透が発生し難くできることを見出した。この結果、屈伏点(At)が431℃~493℃、屈折率(n)が1.79~1.89、波長400nmにおける光の透過率が70%以上である光学ガラスを完成させた。
 なお、上記において屈伏点(At)とは、熱機械分析装置(TMA)で熱膨張測定をしたとき、ガラスの軟化によって膨張曲線が上昇から下降に転じる極大点である。また屈折率(n)とは、ヘリウムの587.6nmの輝線に対する屈折率を言う。
Thus, by adjusting the composition of the P 2 O 5 —Bi 2 O 3 —ZnO-based glass and further containing appropriate amounts of antimony and alkali metal element R, the yield point can be lowered without containing fluorine F. The present inventors have found that, at a high refractive index, the degree of coloring of the glass is improved and the transmittance is increased. Furthermore, it has been found that the stability of the glass is improved and the occurrence of devitrification can be prevented by making the alkali metal element R at least two elements selected from lithium, sodium and potassium. . Further, it has been found that by containing an appropriate amount of one or more of boron, silicon, and germanium, the stability of the glass is further improved, and devitrification is less likely to occur. As a result, an optical glass having a yield point (At) of 431 ° C. to 493 ° C., a refractive index (n d ) of 1.79 to 1.89, and a light transmittance at a wavelength of 400 nm of 70% or more was completed.
In the above description, the yield point (At) is the maximum point at which the expansion curve changes from rising to falling due to softening of the glass when the thermal expansion is measured by a thermomechanical analyzer (TMA). The refractive index (n d ) refers to the refractive index of helium for the 587.6 nm emission line.
 請求項1に記載の光学ガラスによれば、そこに記載された組成としたので、高屈折率、高透過率、しかも低屈伏点の、精密モールドプレスを含むモールドプレス成形に適した光学ガラスを提供することが可能となった。これにより、光学特性に優れたレンズ、非球面レンズ、光波制御機能に優れたナノオーダーレベルの微細構造をもつレンズ、その他の光学素子の提供がより可能となる。
 またフッ素Fを含有させないので、毒性の強いフッ素成分の揮発がなく、溶融作業の環境がより安全なものとなる。更に溶融条件の管理も、フッ素Fを添加する場合よりも容易となる。
 また請求項2に記載の光学ガラスによれば、上記請求項1に記載の構成による効果に加えて、アルカリ金属元素Rの1種又は2種以上を総量で、酸化物換算で、RO:2~15モル%含有させてあるので、更に低屈伏点のガラスとすることが可能となった。
 また請求項3に記載の光学ガラスによれば、上記請求項2に記載の構成による効果に加えて、アルカリ金属元素Rを酸化物換算で7モル%超含有させる場合には、前記アルカリ金属元素Rとして、リチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種以上のアルカリ金属元素を含むこととしたので、更に安定性に優れ、耐失透性に優れたガラスの提供が可能となった。
 また請求項4に記載の光学ガラスによれば、上記請求項1~3の何れかに記載の構成による効果に加えて、ホウ素、ケイ素、ゲルマニウムの1種又は2種以上を総量で、酸化物換算で、0.5~5モル%含有させてあるので、より安定性が向上し、耐失透性に更に優れたガラスとすることが可能となった。
 また請求項5に記載の光学ガラスによれば、上記請求項1~4の何れかに記載の構成による効果に加えて、プリフォームの形態が、ガラス融液を滴下成形してなるゴブプリフォームであることにより、精密モールド成形の際にモールド表面との反応をより効果的に抑制することができ、成形によりガラス表面が変色することなく、良好で安定した成形ガラス得ることができる。
According to the optical glass of claim 1, since the composition described therein is used, an optical glass suitable for mold press molding including a precision mold press having a high refractive index, a high transmittance, and a low yield point is provided. It became possible to provide. Accordingly, it becomes possible to provide a lens having excellent optical characteristics, an aspherical lens, a lens having a nano-order level fine structure having an excellent light wave control function, and other optical elements.
Further, since fluorine F is not contained, the highly toxic fluorine component does not volatilize, and the environment for melting work is safer. Furthermore, the management of melting conditions is easier than when fluorine F is added.
According to the optical glass according to claim 2, in addition to the effects by the configuration described in claim 1, in a total amount of one or more of the alkali metal element R, in terms of oxide, R 2 O : Since 2 to 15 mol% is contained, it is possible to make a glass having a lower yield point.
Moreover, according to the optical glass of Claim 3, in addition to the effect by the structure of the said Claim 2, when the alkali metal element R is contained more than 7 mol% in terms of oxide, the alkali metal element Since R includes at least two or more kinds of alkali metal elements selected from lithium, sodium, and potassium, it is possible to provide a glass having further excellent stability and resistance to devitrification.
According to the optical glass of claim 4, in addition to the effect of the structure of any of claims 1 to 3, the total amount of one or more of boron, silicon, and germanium is added to the oxide. Since it is contained in an amount of 0.5 to 5 mol% in terms of conversion, it is possible to obtain a glass having further improved stability and further excellent devitrification resistance.
According to the optical glass of claim 5, in addition to the effect of the structure according to any one of claims 1 to 4, the preform has a gob preform formed by dropping a glass melt. As a result, the reaction with the mold surface can be more effectively suppressed during precision molding, and a good and stable molded glass can be obtained without discoloring the glass surface by molding.
 本発明の光学ガラスにおける成分とその含有量について説明する。
 成分Pはガラスの網目構造形成成分であり、ガラスに製造可能な安定性をもたせるための必須成分である。
 Pは15~30モル%含有させる。15モル%未満では安定して良好なガラスを得難くなる。一方、30モル%を超えると、やはり安定して良好なガラスが得難くなる。
 Pは、好ましくは16.5~28.5モル%、更に好ましくは18~27モル%含有させるのがよい。
The components and their contents in the optical glass of the present invention will be described.
The component P 2 O 5 is a component for forming a glass network structure, and is an essential component for imparting stability that can be produced to glass.
P 2 O 5 is contained in an amount of 15 to 30 mol%. If it is less than 15 mol%, it becomes difficult to obtain a stable and good glass. On the other hand, when it exceeds 30 mol%, it is difficult to obtain a stable and good glass.
P 2 O 5 is preferably contained in an amount of 16.5 to 28.5 mol%, more preferably 18 to 27 mol%.
 成分Biはガラスの網目構造形成成分であり、ガラスに製造可能な安定性をもたらし、ガラスの屈折率を高め、且つ屈伏点を低下させるために必須である。
 Biは5~35モル%含有させる。Biが5モル%未満では安定して良好なガラスが得難くなり、また35モル%を超えても安定して良好なガラスが得難くなる。
 Biは、好ましくは7.5~32.5モル%、更に好ましくは、10~30モル%含有させるのがよい。
The component Bi 2 O 3 is a component for forming a glass network structure of the glass, and is essential for providing stability that can be produced to the glass, increasing the refractive index of the glass, and lowering the yield point.
Bi 2 O 3 is contained in an amount of 5 to 35 mol%. If Bi 2 O 3 is less than 5 mol%, it is difficult to obtain a stable and good glass, and if it exceeds 35 mol%, it is difficult to obtain a stable and good glass.
Bi 2 O 3 is preferably contained in an amount of 7.5 to 32.5 mol%, more preferably 10 to 30 mol%.
 ZnOは、ガラスの安定化、ガラスの低屈伏点化に有効で、必須の成分である。ZnOは40~75モル%含有させる。
 40モル%未満では安定して良好なガラスが得難くなり、75モル%を超えても安定して良好なガラスが得難くなる。
 ZnOは、好ましくは42.5~72.5モル%、更に好ましくは45~70モル%含有させるのがよい。
ZnO is an essential component effective for stabilizing the glass and lowering the yield point of the glass. ZnO is contained in an amount of 40 to 75 mol%.
If it is less than 40 mol%, it will be difficult to obtain a stable and good glass, and if it exceeds 75 mol%, it will be difficult to obtain a stable and good glass.
ZnO is preferably contained in an amount of 42.5 to 72.5 mol%, more preferably 45 to 70 mol%.
 なおPとBiとZnOとの何れもが上記の範囲にあることにより、三元系としてガラス化が可能となる。 Note by any of P 2 O 5 to Bi 2 O 3 and ZnO is within the above range, vitrification becomes possible as a three-way system.
 Sbは、ガラスの透過率を向上させるのに有効で、必須の成分である。Sbは0.05~0.50モル%含有させる。
 Sbは、通常はガラス中の微細な泡を抜く、いわゆる清澄剤として硝酸塩などと併せて使用する例が多い。しかしながら本発明では、Sbには、Biによる波長400nmにおけるガラスの透過率低下の要因を取り除く役割を行わせている。この効果は後述する実施例からも明らかである。
 なぜSbがガラスの透過率低下を防止するのかについての理由は、必ずしも明確ではない。しかしSbの存在によって、Biがより高い酸化状態になり易く、これによって400nmにおけるBiに起因する透過率低下原因が取り除かれることによると考えられる。
 なお、アンチモンSbはSbの形で添加しても、同様の効果を期待できる。
 Sbは、0.05モル%未満ではガラスの透過率を向上させる効果が十分得られず、0.50モル%を超えて含有させるとガラスの安定性が損われ、安定して良好なガラスが得難くなると共に、ガラスの透過率を向上させる効果も少なくなる。
 Sbは、好ましくは0.07~0.47モル%、更に好ましくは0.1~0.45モル%含有させるのがよい。
Sb 2 O 3 is effective and essential for improving the transmittance of glass. Sb 2 O 3 is contained in an amount of 0.05 to 0.50 mol%.
In many cases, Sb 2 O 3 is used in combination with nitrate or the like as a so-called clarifier, which usually removes fine bubbles in glass. However, in the present invention, Sb 2 O 3 plays a role of removing the factor of lowering the transmittance of the glass at a wavelength of 400 nm due to Bi 2 O 3 . This effect is also apparent from examples described later.
The reason why Sb 2 O 3 prevents a decrease in the transmittance of the glass is not always clear. But the presence of Sb 2 O 3, likely is Bi 2 O 3 becomes higher oxidation state, whereby the transmittance decreases due due to the Bi 2 O 3 in the 400nm is attributed to the fact that removal.
Even when antimony Sb is added in the form of Sb 2 O 5 , the same effect can be expected.
If Sb 2 O 3 is less than 0.05 mol%, the effect of improving the transmittance of the glass cannot be sufficiently obtained, and if it exceeds 0.50 mol%, the stability of the glass is impaired and stable and good. In addition, it is difficult to obtain a clear glass, and the effect of improving the transmittance of the glass is reduced.
Sb 2 O 3 is preferably contained in an amount of 0.07 to 0.47 mol%, more preferably 0.1 to 0.45 mol%.
 ROは、ガラスの低屈伏点化に有効な成分である。ここでRは、リチウム、ナトリウム、カリウムなどのアルカリ金属元素の中から選ばれる少なくとも1種以上のアルカリ金属元素である。
 ROは2~15モル%含有させる。2モル%以下では、ガラスを低屈伏点化させる効果が十分に得られず、15モル%を超えて含有させると、ガラスの安定性が損われ、安定して良好なガラスが得難くなる。
 ROは、好ましくは3~12モル%、更に好ましくは4~11モル%含有させるのがよい。
R 2 O is an effective component for lowering the yield point of glass. Here, R is at least one alkali metal element selected from alkali metal elements such as lithium, sodium, and potassium.
R 2 O is contained in an amount of 2 to 15 mol%. If it is 2 mol% or less, the effect of lowering the yield point of the glass cannot be obtained sufficiently. If it exceeds 15 mol%, the stability of the glass is impaired, and it becomes difficult to obtain a stable and good glass.
R 2 O is preferably contained in an amount of 3 to 12 mol%, more preferably 4 to 11 mol%.
 ROは、該ROを7モル%を超えて含有させる場合、リチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種類以上のアルカリ金属元素からなるようにすることにより、アルカリ金属元素の混合効果によるガラスの安定性が向上し、良好なガラスを得ることができる。
 好ましくは、該ROを6.5モル%を超えて含有させる場合、ROはリチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種類以上のアルカリ金属元素からなるようにし、更に好ましくは、該ROを6モル%を超えて含有させる場合、ROはリチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種類以上のアルカリ金属元素からなるようにする。
 またROは、更に好ましくはリチウム、ナトリウム、カリウムの3種類のアルカリ金属元素からなるようにすることにより、アルカリ混合効果が更に高まり、よりガラスの安定性が向上し、良好なガラスを得ることができる。
R 2 O is, in case of content exceeds 7 mol% of the R 2 O, lithium, sodium, by the consist of at least two or more types of alkali metal element selected from among potassium, alkali metal elements The stability of the glass due to the mixing effect is improved, and a good glass can be obtained.
Preferably, when contained in excess of 6.5 mol% of the R 2 O, R 2 O is set to be at least two or more types of alkali metal element selected lithium, sodium, from potassium, more preferably When the R 2 O content exceeds 6 mol%, the R 2 O is composed of at least two kinds of alkali metal elements selected from lithium, sodium and potassium.
R 2 O is more preferably composed of three kinds of alkali metal elements lithium, sodium, and potassium, so that the alkali mixing effect is further enhanced, the stability of the glass is further improved, and a good glass is obtained. be able to.
 成分B、SiO、GeOはガラスの網目構造形成成分であり、ガラスに更なる安定性を持たせるために有効である。
 これらは、1種単独又は2種以上を総量で、酸化物換算で0.5~5モル%含有させる。0.5モル%未満では、ガラスをより安定化させる効果が得難い。また5モル%を超えて含有させると、逆にガラスが不安定になり、結晶化が引き起こされる。
 B、SiO、GeOは、好ましくは1種又は2種以上を総量で、0.75~4モル%、更に好ましくは1~3モル%含有させるのがよい。
Components B 2 O 3 , SiO 2 , and GeO 2 are components for forming a glass network structure, and are effective for imparting further stability to the glass.
These are contained alone or in a total amount of 0.5 to 5 mol% in terms of oxide. If it is less than 0.5 mol%, it is difficult to obtain the effect of further stabilizing the glass. On the other hand, if the content exceeds 5 mol%, the glass becomes unstable and causes crystallization.
B 2 O 3 , SiO 2 , and GeO 2 are preferably contained in an amount of 0.75 to 4 mol%, more preferably 1 to 3 mol% in a total amount of one kind or two or more kinds.
 なお本発明においては、フッ素Fを含まないことが好ましい。フッ素Fを含むと、ガラス溶融時に毒性を有するフッ素成分が揮発し易いため、溶融作業の環境が好ましくない上、ガラスの光学特性、熱物性等のバラツキが発生し易い。更に成形用プリフォームとして液滴成形によるゴブを作製する場合、フッ素成分の揮発によるゴブ表層部のフッ素濃度の低下が発生し、これにより表層部の屈伏点が内部のそれよりも高くなり、モールドを用いてこれを成形すると表層部からヒビが発生する問題も生じ易い。 In the present invention, it is preferable not to contain fluorine F. When fluorine F is contained, the fluorine component having toxicity at the time of melting the glass is likely to volatilize, so that the environment of the melting operation is not preferable, and variations in the optical properties and thermal properties of the glass are likely to occur. Furthermore, when producing a gob by droplet forming as a preform for molding, the fluorine concentration of the gob surface layer portion decreases due to the volatilization of the fluorine component, and this causes the yield point of the surface layer portion to be higher than that inside, and the mold If this is molded using a material, a problem of cracking from the surface layer portion is likely to occur.
 なお、本発明の目的を満たすために特に好ましい範囲の具体例としては、各成分酸化物換算で、
   P   :20~26モル%
   Bi  :12~18モル%
   ZnO   :47~53モル%
   Sb  :0.1~0.4モル%
   LiO   :2~5モル%
   NaO   :2~5モル%
   KO    :2~5モル%
   (但し、LiO、NaO、KO :合計で6~10モル%)
   B   :1~3モル%
がある。
In addition, as a specific example of a particularly preferable range in order to satisfy the object of the present invention, in terms of each component oxide,
P 2 O 5 : 20 to 26 mol%
Bi 2 O 3 : 12 to 18 mol%
ZnO: 47 to 53 mol%
Sb 2 O 3 : 0.1 to 0.4 mol%
Li 2 O: 2 to 5 mol%
Na 2 O: 2 to 5 mol%
K 2 O: 2 to 5 mol%
(However, Li 2 O, Na 2 O, K 2 O: 6 to 10 mol% in total)
B 2 O 3 : 1 to 3 mol%
There is.
 ところで本発明の光学ガラスは、そのプリフォームの形態を、ガラス融液の滴下成形によるゴブプリフォームとすることができる。このゴブプリフォームでは、水を用いる研磨加工を行うことなくプリフォームの作製ができる。
 研磨加工工程を経るプリフォームの場合は、研磨加工の際にプリフォーム表面に水和層が形成されることになる。この水和層はモールド成形時にガラス中のBiを還元する原因となり、またガラスからの成分揮発が発生し易くなる。これが非球面モールド、又はナノ微細構造を形成したモールドに悪影響を与え、成形されたガラス表面が変色する1つの原因となっていた。
 研磨加工を行わないゴブプリフォームでは、表面に水和層を形成しないので、ガラス中のBiの還元反応を抑制することができる。このため、精密モールド成形の際にモールド表面との反応をより制限することができ、よってガラス表面の変色を防ぎ、安定して所望の形状を得ることができる。
By the way, the optical glass of this invention can make the form of the preform into the gob preform by dripping shaping | molding of a glass melt. With this gob preform, it is possible to produce a preform without polishing using water.
In the case of a preform that undergoes a polishing process, a hydrated layer is formed on the surface of the preform during the polishing process. This hydration layer causes Bi 2 O 3 in the glass to be reduced during molding, and component volatilization from the glass tends to occur. This has an adverse effect on aspherical molds or molds having nano-structures, and is one cause of discoloration of the molded glass surface.
In gob preforms that are not polished, a hydration layer is not formed on the surface, so that the reduction reaction of Bi 2 O 3 in the glass can be suppressed. For this reason, the reaction with the mold surface can be more limited during the precision molding, so that the glass surface can be prevented from being discolored and a desired shape can be stably obtained.
 本発明の実施形態における光学ガラスの製造原料について、例えば成分Pのためには、Zn(PO、R(PO)、P、HPO等を用いることができる。
 成分Biのためには、Bi、Bi(NO・5HO等を用いることができる。
 成分ZnOのためには、ZnO、Zn(POを用いることができる。
 成分Sbのためには、Sb、Sbを用いることができる。
 成分ROのためには、RCO、R(NO)、R(PO)等を用いることができる。
 成分Bのためには、HBO、B、BPO等を用いることができる。
 成分SiOのためには、SiO等を用いることができる。
 成分GeOのためには、GeO等を用いることができる。
 上記原料を、既述した成分範囲となるように調合、混合し、850~1200℃で溶融し、清澄(ガス抜き)、攪拌の各工程を経て均質化させた後、金型に流し込み板材を成形、又は滴下法によりゴブプリフォームに成形した後、徐冷することで均質なガラスを得ることができる。
Regarding the raw material for producing the optical glass in the embodiment of the present invention, for example, for the component P 2 O 5 , Zn (PO 3 ) 2 , R (PO 3 ), P 2 O 5 , H 3 PO 4, etc. are used. Can do.
For the component Bi 2 O 3 , Bi 2 O 3 , Bi (NO 3 ) 3 .5H 2 O, or the like can be used.
For the component ZnO, ZnO and Zn (PO 3 ) 2 can be used.
Sb 2 O 3 and Sb 2 O 5 can be used for the component Sb 2 O 3 .
For the component R 2 O, R 2 CO 3 , R (NO 3 ), R (PO 3 ) and the like can be used.
For the component B 2 O 3 , H 2 BO 3 , B 2 O 3 , BPO 4 and the like can be used.
For the component SiO 2 , SiO 2 or the like can be used.
For the component GeO 2 , GeO 2 or the like can be used.
The above raw materials are prepared and mixed so as to be in the component range described above, melted at 850 to 1200 ° C., homogenized through the steps of clarification (gas removal) and stirring, and then poured into a mold. After forming into a gob preform by molding or a dropping method, a homogeneous glass can be obtained by slow cooling.
 以下に、実施例をあげて本発明を更に説明する。本発明は、これらの実施例により何ら限定されるものではない。
 表1~表3に示した実施例1~11、比較例1~7の成分組成となるように、原料を調合、混合し、これを白金ルツボに入れて、電気炉中で1000℃~1200℃の温度で溶融し、その後850℃~1000℃の温度で保持した後、金型に流し込んで徐冷することで光学ガラスを得た。
 得られた各光学ガラスについて、屈伏点(At)、屈折率(n)の測定を行った。またガラスの透過スペクトルを測定し、波長400nmにおける透過率を求めた。
The present invention will be further described below with reference to examples. The present invention is not limited in any way by these examples.
The raw materials were prepared and mixed so as to have the component compositions of Examples 1 to 11 and Comparative Examples 1 to 7 shown in Tables 1 to 3, and then put into a platinum crucible, and 1000 ° C. to 1200 ° C. in an electric furnace. After melting at a temperature of 0 ° C. and then holding at a temperature of 850 ° C. to 1000 ° C., it was poured into a mold and slowly cooled to obtain an optical glass.
About each obtained optical glass, the yield point (At) and the refractive index ( nd ) were measured. Moreover, the transmission spectrum of glass was measured and the transmittance | permeability in wavelength 400nm was calculated | required.
 また実施例、比較例において、屈伏点(At)の測定は、長さ15~20mm、直径(辺)3~5mmの棒状試料を毎分10℃の一定速度で昇温加熱しつつ、試料の伸びと温度を測定して得られた熱膨張曲線から求めた。屈折率(n)の測定は、Vブロック法を用いて行った。ガラスの透過スペクトルは、分光光度計で測定した。
 これらの測定結果を表1~表3に示す。
In the examples and comparative examples, the yield point (At) was measured by heating a rod-shaped sample having a length of 15 to 20 mm and a diameter (side) of 3 to 5 mm at a constant rate of 10 ° C. per minute. It calculated | required from the thermal expansion curve obtained by measuring elongation and temperature. The refractive index (n d ) was measured using the V block method. The transmission spectrum of the glass was measured with a spectrophotometer.
The measurement results are shown in Tables 1 to 3.
 また実施例3、6~11、比較例7について液相温度を測定した結果を表4に示す。ここで液相温度とは、融液状態と結晶の初相との平衡温度のことで、この温度が低いほどガラス融液が安定で、失透し難く、ガラスが得易くなる。なお、液相温度の測定は溶融炉を用い、ガラス融液を一旦、溶融温度まで上げた後、評価温度にて30分以上保持した後、すばやく取り出して、ガラス融液に失透発生の有無を観察することにより行った。 The results of measuring the liquid phase temperature for Examples 3, 6 to 11, and Comparative Example 7 are shown in Table 4. Here, the liquidus temperature is an equilibrium temperature between the melt state and the initial phase of the crystal. The lower the temperature, the more stable the glass melt, the less likely it is to devitrify, and the easier it is to obtain glass. The liquid phase temperature was measured using a melting furnace, and after raising the glass melt to the melting temperature, holding it at the evaluation temperature for 30 minutes or more, and then quickly removing it to check whether the glass melt was devitrified. This was done by observing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表3により明らかなように、本発明の実施例のガラスは、何れも屈伏点が431~493℃と比較的低い温度範囲にあるため、モールド成形が容易である。
 更に1.79~1.89の範囲の高い屈折率(n)を有し、波長400nmにおける透過率が70%以上であり、精密モールド成形用の光学ガラスとして十分な光学恒数を有している。これらのことから、本発明のガラスは、精密モールド成形に好適なガラスであることが判る。
As is apparent from Tables 1 to 3, since the glass of each of the examples of the present invention has a yield point in a relatively low temperature range of 431 to 493 ° C., molding is easy.
Furthermore, it has a high refractive index (n d ) in the range of 1.79 to 1.89, a transmittance at a wavelength of 400 nm is 70% or more, and has a sufficient optical constant as an optical glass for precision molding. ing. From these, it can be seen that the glass of the present invention is a glass suitable for precision molding.
 一方、比較例1~6のガラスは、何れも屈伏点(At)が高いか、透過率が低いか、或いは屈折率が高くない等の何れかの問題があることが判る。
 なお比較例1は、実施例1に略相当するが、Sbを含有しないものであり、透過率は60%を下回っている。
 比較例2は、実施例3においてSbを含有しないものであり、屈伏点は低くなっているが、透過率が60%以下である。
 実施例1、3と比較例1、2とにより、Sb、ROの含有の効果が判る。
 比較例3は、Sbの含有量が0.50モル%を超えている例であり、これよりSbが0.50モル%を超えると透過率が70%を下回り、透過率向上のための効果が十分発揮されなくなることが判る。
 また比較例4、比較例5は、それぞれ特許文献1の実施例54、及び特許文献2の実施例3に相当する。屈伏点(At)が492℃以上であることが判る。
 また実施例1は、屈伏点(At)が493℃で、比較例4と略同じである。しかし実施例1では屈折率が1.89であり、比較例4に比べて屈折率が高く、より好ましい。
 また比較例6は特許文献3の実施例9に相当するが、屈伏点(At)が520℃と高く、また透過率が60%以下であることが判る。
 更に比較例7は、アルカリ金属元素を酸化物換算で7モル%を超えて含有させているが、NaOのみの1種類からなるものであり、ガラスが不安定なため失透が発生していまい、良好なガラスを得ることができないことが判る。
 以上の実施例に示すガラスは、高屈折率・高透過率、且つ低屈伏点の3つの条件を満たす好ましいものであることが判る。
On the other hand, it can be seen that the glasses of Comparative Examples 1 to 6 have any problems such as high yield point (At), low transmittance, and low refractive index.
In addition, although the comparative example 1 is substantially equivalent to Example 1, it does not contain Sb 2 O 3 and the transmittance is less than 60%.
Comparative Example 2 is one containing no Sb 2 O 3 in Example 3, but the sag is lower, the transmittance is 60% or less.
The effects of containing Sb 2 O 3 and R 2 O can be seen from Examples 1 and 3 and Comparative Examples 1 and 2 .
Comparative Example 3 is an example in which the content of Sb 2 O 3 exceeds 0.50 mol%, and when Sb 2 O 3 exceeds 0.50 mol%, the transmittance is less than 70%, and the transmission It can be seen that the effect of improving the rate is not fully exhibited.
Comparative Example 4 and Comparative Example 5 correspond to Example 54 of Patent Document 1 and Example 3 of Patent Document 2, respectively. It can be seen that the yield point (At) is 492 ° C. or higher.
Example 1 has a yield point (At) of 493 ° C., which is substantially the same as Comparative Example 4. However, the refractive index in Example 1 is 1.89, which is higher than that in Comparative Example 4, and is more preferable.
Moreover, although the comparative example 6 is corresponded to Example 9 of patent document 3, it turns out that a yield point (At) is as high as 520 degreeC and the transmittance | permeability is 60% or less.
Furthermore, although the comparative example 7 contains the alkali metal element exceeding 7 mol% in terms of oxide, it is composed of only one kind of Na 2 O, and devitrification occurs because the glass is unstable. It turns out that good glass cannot be obtained.
It can be seen that the glass shown in the above examples satisfies the three conditions of high refractive index, high transmittance, and low yield point.
 また表4より、比較例7では液相温度が825℃と高く不安定であるが、実施例ではアルカリ混合効果により液相温度が低下し、ガラスとして安定になっていることが判る。更に実施例の中でも、B、又はSiO、又はGeOを含有させたものは、より液相温度を下げることができ、より安定なガラスを得ることができることが判る。 Further, from Table 4, it can be seen that in Comparative Example 7, the liquidus temperature is as high as 825 ° C. and unstable, but in the Examples, the liquidus temperature is lowered due to the alkali mixing effect and the glass is stable. Further, it can be seen that, among the examples, those containing B 2 O 3 , SiO 2 , or GeO 2 can further lower the liquidus temperature and obtain a more stable glass.
 本発明の光学ガラスは、高屈折率・高透過率、且つ低屈伏点で、非球面レンズ、光波制御ガラス等の精密モールド成形に適した光学ガラスとして、産業上に利用性がある。 The optical glass of the present invention is industrially applicable as an optical glass suitable for precision molding such as an aspherical lens and a light wave control glass with a high refractive index, a high transmittance, and a low yield point.

Claims (5)

  1.  リン、ビスマス、亜鉛を酸化物換算で、
       P   :15~30モル%
       Bi  :5~35モル%
       ZnO   :40~75モル%
    含有させ、且つアンチモンを酸化物換算で、
       Sb  :0.05~0.50モル%
    含有させてあり、且つフッ素Fを含有させないことを特徴とする光学ガラス。
    Phosphorus, bismuth and zinc in terms of oxides
    P 2 O 5 : 15-30 mol%
    Bi 2 O 3 : 5 to 35 mol%
    ZnO: 40 to 75 mol%
    And antimony in terms of oxide,
    Sb 2 O 3 : 0.05 to 0.50 mol%
    An optical glass which is contained and does not contain fluorine F.
  2.  アルカリ金属元素Rの1種又は2種以上を総量で、酸化物換算で、
       RO    :2~15モル%
    含有させてあることを特徴とする請求項1に記載の光学ガラス。
    1 type or 2 types or more of alkali metal elements R in total amount, in terms of oxides,
    R 2 O: 2 to 15 mol%
    The optical glass according to claim 1, wherein the optical glass is contained.
  3.  アルカリ金属元素Rを酸化物換算で7モル%超含有させる場合には、前記アルカリ金属元素Rとして、リチウム、ナトリウム、カリウムの中から選ばれる少なくとも2種以上のアルカリ金属元素を含むことを特徴とする請求項2に記載の光学ガラス。 When the alkali metal element R is contained in excess of 7 mol% in terms of oxide, the alkali metal element R includes at least two or more kinds of alkali metal elements selected from lithium, sodium, and potassium. The optical glass according to claim 2.
  4.  ホウ素、ケイ素、ゲルマニウムの1種又は2種以上を総量で、酸化物換算で、
       B、SiO、GeO :0.5~5モル%
    含有させてあることを特徴とする請求項1~3の何れかに記載の光学ガラス。
    One or more of boron, silicon, and germanium in total amount, in terms of oxide,
    B 2 O 3 , SiO 2 , GeO 2 : 0.5 to 5 mol%
    The optical glass according to any one of claims 1 to 3, wherein the optical glass is contained.
  5.  プリフォームの形態が、ガラス融液を滴下成形してなるゴブプリフォームであることを特徴とする請求項1~4の何れかに記載の光学ガラス。 5. The optical glass according to claim 1, wherein the preform is a gob preform formed by dropping a glass melt.
PCT/JP2010/052261 2009-02-17 2010-02-16 Optical glass WO2010095611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500608A JPWO2010095611A1 (en) 2009-02-17 2010-02-16 Optical glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-033515 2009-02-17
JP2009033515 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095611A1 true WO2010095611A1 (en) 2010-08-26

Family

ID=42633891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052261 WO2010095611A1 (en) 2009-02-17 2010-02-16 Optical glass

Country Status (2)

Country Link
JP (1) JPWO2010095611A1 (en)
WO (1) WO2010095611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130413A (en) * 2011-11-24 2013-06-05 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217513A (en) * 2002-12-27 2004-08-05 Hoya Corp Optical glass, preform for press molding and optical element
JP2006111499A (en) * 2004-10-15 2006-04-27 Hoya Corp Optical glass, preform for precision press molding, and their manufacturing method, optical element and its manufacturing method
JP2006131480A (en) * 2004-11-09 2006-05-25 Konica Minolta Opto Inc Optical glass and optical element
JP2007197258A (en) * 2006-01-26 2007-08-09 Ohara Inc Manufacturing method for optical element
JP2007210870A (en) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd Bismuth-based glass composition and bismuth-based sealing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217513A (en) * 2002-12-27 2004-08-05 Hoya Corp Optical glass, preform for press molding and optical element
JP2006111499A (en) * 2004-10-15 2006-04-27 Hoya Corp Optical glass, preform for precision press molding, and their manufacturing method, optical element and its manufacturing method
JP2006131480A (en) * 2004-11-09 2006-05-25 Konica Minolta Opto Inc Optical glass and optical element
JP2007210870A (en) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd Bismuth-based glass composition and bismuth-based sealing material
JP2007197258A (en) * 2006-01-26 2007-08-09 Ohara Inc Manufacturing method for optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130413A (en) * 2011-11-24 2013-06-05 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste
CN103130413B (en) * 2011-11-24 2015-05-27 比亚迪股份有限公司 Glass raw material composition, inorganic glass powder, crystalline silicon solar battery aluminum conductive paste and preparation method of the crystalline silicon solar battery aluminum conductive paste

Also Published As

Publication number Publication date
JPWO2010095611A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP4429295B2 (en) Optical glass
JP5108209B2 (en) Optical glass
TWI396674B (en) Lead and arsenic free optical niobium phosphate glass
TWI382967B (en) Lead and arsenic free optical glass with high refractive index
KR101298373B1 (en) Lead and arsenic free optical lanthanum borate glass
JP5712502B2 (en) Optical glass
JP5766002B2 (en) Optical glass, glass material for press molding, optical element and manufacturing method thereof, and bonded optical element
KR20070095786A (en) Lead free optical glasses of the hard flint position
JP5729550B2 (en) Optical glass
JP7233844B2 (en) Optical glass, preforms and optical elements
NL1024931C2 (en) Optical glass with Tg <500, which is preferably Pb-free and As-free.
JP4373688B2 (en) Optical glass, precision press-molding preform, and optical element
JP2008266122A (en) Method for producing glass, preform for precision press molding formed from the glass and optical device
JP7268606B2 (en) Method for manufacturing ultraviolet transmitting glass
WO2014057584A1 (en) Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element
JP5825412B2 (en) Optical glass
JP5979455B2 (en) Optical glass
JP2016041635A (en) Optical glass
JP4053810B2 (en) Optical glass with anomalous dispersion
JP2024019356A (en) Optical glass and optical element
JP2015193538A (en) optical glass, preform and optical element
WO2014161358A1 (en) High-refraction optical glass and method of fabricating same
JP2018002520A (en) Optical glass, optical element blank and optical element
TW202114956A (en) Optical glass and optical element
WO2010095611A1 (en) Optical glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743737

Country of ref document: EP

Kind code of ref document: A1