WO2010095479A1 - Dielectric laminate, laminated glass, process for producing dielectric laminate, and process for producing laminated glass - Google Patents

Dielectric laminate, laminated glass, process for producing dielectric laminate, and process for producing laminated glass Download PDF

Info

Publication number
WO2010095479A1
WO2010095479A1 PCT/JP2010/050444 JP2010050444W WO2010095479A1 WO 2010095479 A1 WO2010095479 A1 WO 2010095479A1 JP 2010050444 W JP2010050444 W JP 2010050444W WO 2010095479 A1 WO2010095479 A1 WO 2010095479A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
dielectric film
dielectric
gas
laminate
Prior art date
Application number
PCT/JP2010/050444
Other languages
French (fr)
Japanese (ja)
Inventor
良孝 後藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010095479A1 publication Critical patent/WO2010095479A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Definitions

  • It has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, and glass is pasted on the front and back surfaces of the dielectric laminate.
  • the dielectric laminate is bonded to the glass with polyvinyl butyral, the resin support is polyethylene naphthalate, and the low refractive index dielectric film and the high refractive index
  • a laminated glass wherein a difference in hardness measured by a nanoindentation method with respect to a dielectric film is 1.4 GPa or more and 3.0 GPa or less.
  • a dielectric laminate manufacturing method for manufacturing a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film having different hardnesses are alternately laminated on a resin support the resin The support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less
  • the dielectric film introduces a gas into the discharge space under atmospheric pressure or pressure near the atmosphere to form a high-frequency electric field in the discharge space, thereby bringing the gas into a plasma state, and A method for producing a dielectric laminate, wherein the dielectric laminate is formed by exposure to a gas in a plasma state.
  • a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more, A dielectric laminate characterized by being 3.0 GPa or less, or a dielectric laminate obtained by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film on a resin support And the dielectric laminate is laminated to the glass with polyvinyl butyral, and the resin support is polyethylene naphthalate.
  • the low refractive index dielectric film and the high refractive index dielectric film according to the present invention have different hardnesses between the dielectric films. Therefore, after stacking a plurality of dielectric films, polyvinyl butyral It was found that there was a failure that caused cracks in the interface of the dielectric film and in the film when it was bonded to the glass using a glass, and there was a failure that deteriorated the performance.
  • the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film formed on the resin support and the high refractive index dielectric film on the resin support is 1.4 GPa or more. It has been found that the above-mentioned problem can be achieved by setting the pressure to 0.0 GPa or less.
  • the resin support is a support for laminating dielectric films.
  • polyethylene naphthalate hereinafter abbreviated as PEN
  • PEN polyethylene naphthalate
  • the surface of the resin support on which the dielectric film is laminated may be subjected to easy contact treatment, or may be subjected to easy contact treatment on the opposite surface side where the dielectric film is not laminated.
  • PEN which is a resin support body is transparent, high light resistance, and high weather resistance.
  • the PEN that is the resin support may be an unstretched film or a stretched film.
  • fillers applicable to the PEN according to the present invention include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, carbon black, silicon carbide, tin oxide, crosslinked acrylic resin particles, and crosslinked polystyrene resin particles. , Melamine resin particles, crosslinked silicon resin particles, and the like.
  • the average particle size of the filler is 0.01 to 10 ⁇ m, and the content is within the range in which the PEN film maintains transparency, and is preferably 0.0001 to 5% by mass.
  • a material mainly composed of calcium, barium, lithium and magnesium fluorides can be used for the low refractive index film.
  • at least one layer can have a graded configuration.
  • the dielectric laminate of the present invention is characterized by being formed by alternately laminating low refractive index dielectric films and high refractive index dielectric films.
  • the dielectric film is defined as a film having a refractive index of 1.60 or more with respect to light having a wavelength of 633 nm, preferably a dielectric film having a refractive index of 1.70 or more.
  • the refractive index of the dielectric film the reflectance is measured under the condition of regular reflection at 5 degrees using, for example, a spectrophotometer 1U-4000 type (manufactured by Hitachi, Ltd.).
  • examples of the optical film thickness measuring apparatus include a USB simplified film thickness measuring apparatus, Solid Lambda Thickness (manufactured by Spectra Corp.). Or the cross-sectional part of the formed dielectric film laminated body is cut out using a microtome etc., The cross-sectional part is observed using an electron microscope etc., and the total film thickness of a dielectric film can be calculated
  • a dielectric film is an oxide or nitride oxide containing Si or Al by selecting conditions such as an organometallic compound, a decomposition gas, a decomposition temperature, and an input power as a raw material (also referred to as a raw material) in an atmospheric pressure plasma method.
  • a dielectric film having a refractive index different from that of a ceramic layer containing nitride as a main component can be formed.
  • silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide
  • the dielectric film is formed by mixing the discharge gas and the reactive gas and supplying the mixed gas as a dielectric film forming (mixed) gas to a plasma discharge generator (plasma generator).
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
  • the high frequency referred to in the present invention means one having a frequency of at least 0.5 kHz.
  • the present invention is not limited to this, and both pulse waves may be used, one may be continuous waves and the other may be pulse waves. Further, it may have a third electric field having a different frequency.
  • a first filter that makes it difficult to pass a high-frequency electric field current from the second power source between the first electrode and the first power source or between them, and the second electrode, the second power source, or between them It is preferable to connect a 2nd filter to either.
  • the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. And an electrode temperature adjusting means.
  • the dielectric film forming gas G described above is introduced into the gap (discharge space) 13 between the first electrode 11 and the second electrode 12 from the gas supply means as shown in FIG.
  • a power source 21 and a second power source 22 form the above-described high-frequency electric field between the first electrode 11 and the second electrode 12 to generate a discharge.
  • the substrate is blown out in the form of a jet on the lower side (the lower side of the paper), and the processing space created by the lower surface of the counter electrode and the base material F is filled with a gas G ° in a plasma state.
  • a dielectric film is formed in the vicinity of the processing position 14 on the base material F that is unwound and transported or transported from the previous process.
  • the atmospheric pressure plasma discharge treatment apparatus is an apparatus having at least a plasma discharge treatment apparatus 30, an electric field application means 40 having two power supplies, a gas supply means 50, and an electrode temperature adjustment means 60.
  • the roll rotating electrode 35 receives a high-frequency electric field having a frequency ⁇ 1 from the first power source 41, and the fixed electrode group 36 has a second power source 42.
  • a second high-frequency electric field having a frequency ⁇ 2 is applied.
  • the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is sent to both electrodes via the pipe 61 by the liquid feed pump P, Adjust the temperature from the inside of the electrode.
  • Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
  • the shape of the fixed electrode 36a shown in FIG. 4 is not particularly limited, and may be a cylindrical electrode or a rectangular tube electrode.
  • a roll electrode 35a and an electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then using a sealing material of an inorganic compound. Sealed.
  • the ceramic dielectric may be covered by about 1 mm with a single wall.
  • As the ceramic material used for thermal spraying alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed.
  • the dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
  • SPG5-4500 5 kHz
  • Shinko Electric Co., Ltd. AGI-023 (15 kHz) manufactured by Kasuga Electric Co., Ltd.
  • PHF-6k manufactured by HEIDEN Laboratory (100 kHz *)
  • commercially available products such as CF-2000-200k (200 kHz) manufactured by Pearl Industry, and any of them can be used.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the film quality can be further improved by supplying power (power density) of 1 W / cm 2 or more to the first electrode (first high-frequency electric field). Preferably it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called a continuous mode
  • an intermittent oscillation mode called ON / OFF intermittently called a pulse mode
  • the second electrode side second
  • the high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
  • the discharge gas is nitrogen gas
  • the high-frequency electric field applied to the discharge space is a superposition of the first high-frequency electric field and the second high-frequency electric field, and the frequency ⁇ 1 of the first high-frequency electric field
  • the frequency ⁇ 2 of the second high-frequency electric field is high, and the relationship among the first high-frequency electric field strength V1, the second high-frequency electric field strength V2, and the discharge start electric field strength IV is V1 ⁇ IV> V2.
  • the glass material used for the laminated glass of the present invention is a transparent glass substrate, and there is no particular limitation other than that as long as it has high light transmissivity, its raw material, manufacturing method, shape, structure, thickness, hardness, etc. Can be appropriately selected from known ones.
  • quartz glass, soda lime glass, silicate glass, aluminosilicate glass, borosilicate glass, phosphate glass, and fluorophosphate glass can be used.
  • the nanoindentation probe is a Berkovich indenter in which a diamond triangular pyramid with a tip radius of curvature of 25 nm or less, a ridge angle of 60 degrees, and a height of 100 ⁇ m is fixed to a base having a length of 350 ⁇ m, a width of 100 ⁇ m, a thickness of 13 ⁇ m, and a spring constant of 263 N / m. Was used.
  • a polyvinyl butyral film (ST type, manufactured by Sekisui Chemical Co., Ltd.) having a thickness of 0.38 mm is bonded to both surfaces of the obtained dielectric film laminate 1, and the pressure is 9.8 N / cm 2 at room temperature.
  • a laminate was obtained by laminating with a roller. It was 300 g / cm when the adhesive force between the dielectric film laminated body 1 of the obtained laminated body and polyvinyl butyral was measured.
  • the laminate was stored for 2 weeks in an environment of 25 ° C. and 10% RH, and then left for 5 hours in an environment of 25 ° C. and 80% RH. Then, bending was performed and a peel test was performed.
  • the laminated body is squeezed with a glass plate having a thickness of 3 mm, laminated with a roller, put in a vacuum bag, reduced in pressure with a vacuum pump so that the laminated glass is subjected to atmospheric pressure, After heat-processing at 90 degreeC for 40 minutes, it put into the autoclave, the pressure of 1.3 MPa was applied under 130 degreeC, and it processed for 40 minutes, and the laminated glass 1 was produced.
  • Sample 5 was obtained in the same manner except that three layers (thickness: 190 nm, refractive index 1.46) were alternately provided in the layer configuration shown below, and a dielectric film laminate having a total film thickness of 430 nm was formed. .
  • Sample 8 In the production of the dielectric film laminate 1 of Sample 1, the resin support was changed to a triacetylcellulose film (thickness: 100 ⁇ m, abbreviated as TAC) instead of a PEN (polyethylene naphthalate) film (thickness: 100 ⁇ m). Sample 8 was produced in the same manner as Sample 1 except that.
  • TAC triacetylcellulose film
  • PEN polyethylene naphthalate

Abstract

A dielectric laminate which has high adhesive force when bonded to a polyvinyl butyral sheet and which, when used in a laminated glass, attains improvements in quality evenness (crack resistance, freedom from air bubble inclusions, and blush resistance) and shows excellent heat-insulating properties; a laminated glass; and processes for producing the laminate and the glass. The dielectric laminate comprises a resin support and, superposed thereon, low-refractive-index dielectric films alternating with high-refractive-index dielectric films, and is characterized in that the resin support is polyethylene naphthalate, and the difference in hardness measured by a nanoindentation method between the low-refractive-index dielectric films and the high-refractive-index dielectric films is 1.4-3.0 GPa.

Description

誘電体積層体、合わせガラス、誘電体積層体の製造方法及び合わせガラスの製造方法Dielectric laminate, laminated glass, method for producing dielectric laminate, and method for producing laminated glass
 本発明は、新規な構成からなる誘電体積層体及び合わせガラスと、誘電体積層体の製造方法及び合わせガラスの製造方法に関するものである。 The present invention relates to a dielectric laminate and laminated glass having a novel configuration, a dielectric laminate manufacturing method, and a laminated glass manufacturing method.
 安全性が要求される透明な開口部、例えば、建物窓の一部には合わせガラス窓が用いられている。合わせガラス窓の基本構成は、ガラス板等の透明板で熱可塑性樹脂、例えば一般に広く用いられているポリビニルブチラールシートを挾んだものであるが、合わせガラス窓に更に機能性を付与する目的から、機能性フィルムを介在させる試みがなされている。例えば、安全性を高めるために機械的強度に優れたフィルムを介在させる方法、結露防止効果のために透明な導電膜付フィルムを介在させる方法等が提案されている。 Laminated glass windows are used for transparent openings that require safety, for example, part of building windows. The basic structure of the laminated glass window is made of a transparent plate such as a glass plate and a thermoplastic resin, for example, a generally used polyvinyl butyral sheet, but for the purpose of imparting further functionality to the laminated glass window. Attempts have been made to interpose a functional film. For example, a method of interposing a film having excellent mechanical strength to enhance safety, a method of interposing a transparent film with a conductive film to prevent condensation, and the like have been proposed.
 また、他の例として、熱可塑性樹脂層の中間に機能性フィルムを設けず、粘着性を有する層でその機能性フィルムを直接、透明なガラス板の一方に貼りつけ、その機能性フィルムの他の面に熱可塑性樹脂層を設ける方法も提案されている。 As another example, a functional film is not provided in the middle of the thermoplastic resin layer, and the functional film is directly attached to one of the transparent glass plates with an adhesive layer. A method of providing a thermoplastic resin layer on the surface has also been proposed.
 近年、窓ガラスを通して侵入する太陽光を遮光して、室内温度上昇を抑えるのに有効な熱線遮断材が開示され、注目されている(例えば、特許文献1参照。)。夏場の冷房による電気代低減、CO削減等、環境的にも有効であることが注目されている。 In recent years, a heat ray blocking material effective for shielding sunlight entering through a window glass and suppressing an increase in room temperature has been disclosed and attracted attention (for example, see Patent Document 1). Electricity bill reduction by summer cooling, CO 2 reduction and the like, it has been noted environmentally and effective.
 従来のガラスと樹脂支持体との積層体においては、一般に、熱可塑性樹脂層の吸湿性や熱伸縮性、あるいは取扱い作業に起因して、機能性フィルムと熱可塑性樹脂層との間で剥離が生じたりする場合があり、保存方法、取扱い方法等に注意を要した。特に、熱可塑性樹脂としてのポリビニルブチラールシートを用いて、機能性フィルムと積層体を作製した場合には、保存方法、取扱い方法により繊細な注意を要する。すなわち、合わせガラス窓用に使われるポリビニルブチラールシートは、熱軟化温度が低く、雰囲気温度に応じて伸び縮みし、更には、非常に高い吸湿性を有する為、湿度に応じて膨潤したりする。その結果、機能性フィルムとポリビニルブチラールシートとの積層体を保存しておくと、フィルムとシートとの界面で剥離現象が生じ、この様な積層体を用いて合わせガラスを作製する際には、剥離部分を再度接着させるため多大の労力を要する上に、かくしても消失しがたいフィルムとポリビニルブチラールシートとの間の部分的な剥離現象の為、作製した合わせガラスは、光学的に凹凸斑が生じる結果を招く。 In a conventional laminate of glass and resin support, generally, there is no separation between the functional film and the thermoplastic resin layer due to the hygroscopicity, thermal stretchability, or handling operation of the thermoplastic resin layer. It was necessary to pay attention to the storage method and handling method. In particular, when a functional film and a laminate are produced using a polyvinyl butyral sheet as a thermoplastic resin, delicate attention is required depending on the storage method and the handling method. That is, the polyvinyl butyral sheet used for a laminated glass window has a low heat softening temperature, expands and contracts according to the ambient temperature, and further has a very high hygroscopic property, and therefore swells according to humidity. As a result, if the laminate of the functional film and the polyvinyl butyral sheet is stored, a peeling phenomenon occurs at the interface between the film and the sheet, and when producing a laminated glass using such a laminate, In order to re-adhere the peeled part, it takes a lot of labor, and because of the partial peeling phenomenon between the film and the polyvinyl butyral sheet that is difficult to disappear, the laminated glass produced has optically uneven spots. Incurs the consequences.
特開2003-267755号公報JP 2003-267755 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、ポリビニルブチラールシートとの接着力が強く、合わせガラスとして適用した際の品質(クラック耐性、気泡の残り耐性、白化耐性)が向上し、遮熱性に優れた誘電体積層体、合わせガラスと、それらの製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to have strong adhesive strength with a polyvinyl butyral sheet and to improve the quality (crack resistance, bubble residual resistance, whitening resistance) when applied as a laminated glass. And it is providing the dielectric laminated body excellent in heat-shielding property, a laminated glass, and those manufacturing methods.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体において、該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする誘電体積層体。 1. In a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, the resin support is polyethylene naphthalate, and the low refractive index A dielectric laminate, wherein a difference in hardness measured by a nanoindentation method between a dielectric film having a high refractive index and the dielectric film having a high refractive index is 1.4 GPa or more and 3.0 GPa or less.
 2.前記誘電体膜の総厚が、500nm以上であることを特徴とする前記1に記載の誘電体積層体。 2. 2. The dielectric laminate according to 1 above, wherein the total thickness of the dielectric film is 500 nm or more.
 3.樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスにおいて、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする合わせガラス。 3. It has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, and glass is pasted on the front and back surfaces of the dielectric laminate. In the laminated glass, the dielectric laminate is bonded to the glass with polyvinyl butyral, the resin support is polyethylene naphthalate, and the low refractive index dielectric film and the high refractive index A laminated glass, wherein a difference in hardness measured by a nanoindentation method with respect to a dielectric film is 1.4 GPa or more and 3.0 GPa or less.
 4.樹脂支持体上に、硬さの異なる低屈折率の誘電体膜と高屈折率の誘電体膜が交互に積層されてなる誘電体積層体を製造する誘電体積層体の製造方法において、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ前記誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、該樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする誘電体積層体の製造方法。 4. In a dielectric laminate manufacturing method for manufacturing a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film having different hardnesses are alternately laminated on a resin support, the resin The support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less And the dielectric film introduces a gas into the discharge space under atmospheric pressure or pressure near the atmosphere to form a high-frequency electric field in the discharge space, thereby bringing the gas into a plasma state, and A method for producing a dielectric laminate, wherein the dielectric laminate is formed by exposure to a gas in a plasma state.
 5.前記誘電体膜の総厚が、500nm以上であることを特徴とする前記4に記載の誘電体積層体の製造方法。 5. 5. The method for manufacturing a dielectric laminate according to 4, wherein the total thickness of the dielectric film is 500 nm or more.
 6.樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスの製造方法において、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ該誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、前記樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする合わせガラスの製造方法。 6. It has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, and glass is pasted on the front and back surfaces of the dielectric laminate. In the laminated glass manufacturing method, the dielectric laminate is bonded to glass with polyvinyl butyral, the resin support is polyethylene naphthalate, the low refractive index dielectric film and the high refractive index The difference in hardness measured by the nanoindentation method with respect to the dielectric film having a rate of 1.4 GPa or more and 3.0 GPa or less, and the dielectric film is a gas under atmospheric pressure or pressure near the atmosphere. Of the laminated glass formed by exposing the resin support to the plasma gas by introducing a gas into the discharge space and forming a high-frequency electric field in the discharge space to bring the gas into a plasma state. Production method.
 本発明により、ポリビニルブチラールシートとの接着力が強く、合わせガラスとして適用した際の品質(クラック耐性、気泡の残り耐性、白化耐性)が向上し、遮熱性に優れた誘電体積層体、合わせガラスと、それらの製造方法を提供することができた。 According to the present invention, the dielectric laminate and the laminated glass have excellent adhesion to the polyvinyl butyral sheet, improved quality (crack resistance, bubble residual resistance, whitening resistance) when applied as a laminated glass, and excellent thermal insulation. And a manufacturing method thereof.
ジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。It is the schematic which showed an example of the jet-type atmospheric pressure plasma discharge processing apparatus. 対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。It is the schematic which shows an example of the atmospheric pressure plasma discharge processing apparatus of the system which processes a base material between counter electrodes. ロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal base material of a roll rotating electrode, and the dielectric material coat | covered on it. 角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal preform | base_material of a rectangular tube type electrode, and the dielectric material coat | covered on it.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体において、該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする誘電体積層体、あるいは樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスにおいて、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、かつ該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする合わせガラスにより、ポリビニルブチラールシートとの接着力が強く、合わせガラスとして適用した際の品質(クラック耐性、気泡の残り耐性、白化耐性)が向上し、遮熱性に優れた誘電体積層体、合わせガラスを実現できることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventors have found that a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support. The resin support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more, A dielectric laminate characterized by being 3.0 GPa or less, or a dielectric laminate obtained by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film on a resin support And the dielectric laminate is laminated to the glass with polyvinyl butyral, and the resin support is polyethylene naphthalate. And A laminated glass characterized in that the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less. , With strong adhesion to polyvinyl butyral sheet, improved quality (crack resistance, bubble residual resistance, whitening resistance) when applied as laminated glass, and can realize a dielectric laminate and laminated glass with excellent heat insulation As a result, the present invention has been achieved.
 更には、樹脂支持体上に、硬さの異なる低屈折率の誘電体膜と高屈折率の誘電体膜が交互に積層されてなる誘電体積層体を製造する誘電体積層体の製造方法において、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ前記誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、該樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする誘電体積層体の製造方法、あるいは樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスの製造方法において、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ該誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、前記樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする合わせガラスの製造方法により、ポリビニルブチラールシートとの接着力が強く、合わせガラスとして適用した際の品質均一性(クラック耐性、気泡の残り耐性、白化耐性)が向上し、遮熱性に優れた誘電体積層体、合わせガラスを製造することができることを見出した次第である。 Further, in a dielectric laminate manufacturing method for manufacturing a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film having different hardnesses are alternately laminated on a resin support The resin support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more, 3 0.0 GPa or less, and the dielectric film introduces a gas into the discharge space under an atmospheric pressure or a pressure in the vicinity of the atmosphere to form a high-frequency electric field in the discharge space, thereby bringing the gas into a plasma state. A method for manufacturing a dielectric laminate, wherein the support is formed by exposing the plasma to a gas in a plasma state, or a low refractive index dielectric film and a high refractive index dielectric film on a resin support And dielectric In a method for producing a laminated glass having a laminate and bonding glass to the front and back surfaces of the dielectric laminate, the dielectric laminate is bonded to glass with polyvinyl butyral, and the resin support Is a polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less. And the dielectric film introduces a gas into the discharge space under atmospheric pressure or a pressure in the vicinity of the atmosphere to form a high-frequency electric field in the discharge space, thereby bringing the resin support into the plasma state. Adhesive strength with polyvinyl butyral sheet is applied by the laminated glass manufacturing method, which is characterized by being formed by exposing to a state gas. Quality uniformity when the (crack resistance, the remaining resistance of the bubble, whitening resistance) is improved, excellent dielectric stack in thermal barrier is up the finding that it is possible to produce a laminated glass.
 すなわち、本発明においては、低屈折率の誘電体膜と高屈折率の誘電体膜とを交互に積層された誘電体積層膜と、樹脂支持体としてポリエチレンナフタレートを用い、さらに低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下とすることにより、凹凸斑の発生なく、しわ、気泡発生ない極めて均質性の高い合わせガラスを得ることができたものである。 That is, in the present invention, a dielectric laminated film in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated, and polyethylene naphthalate is used as a resin support. When the difference in hardness measured by the nanoindentation method between the dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less, wrinkles and bubbles are generated without uneven spots. It was possible to obtain a laminated glass with extremely high homogeneity.
 本発明に係る低屈折率の誘電体膜と高屈折率の誘電体膜とは、一般的には、誘電体膜間での硬さが異なるため、複数の誘電体膜を積層後に、ポリビニルブチラールを用いてガラスと貼り合わせる際に、誘電体膜の界面や膜中にクラックが生じ、性能を劣化させる故障があることが判明したが、本発明で規定する様に、樹脂支持体としてポリエチレンナフタレートを適用し、加えて樹脂支持体上の形成する低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下とすることにより、上記課題を達成することができることを見出した。 In general, the low refractive index dielectric film and the high refractive index dielectric film according to the present invention have different hardnesses between the dielectric films. Therefore, after stacking a plurality of dielectric films, polyvinyl butyral It was found that there was a failure that caused cracks in the interface of the dielectric film and in the film when it was bonded to the glass using a glass, and there was a failure that deteriorated the performance. The difference in hardness measured by the nanoindentation method between the low refractive index dielectric film formed on the resin support and the high refractive index dielectric film on the resin support is 1.4 GPa or more. It has been found that the above-mentioned problem can be achieved by setting the pressure to 0.0 GPa or less.
 本発明において、低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差を、1.4GPa以上、3.0GPa以下とすることにより、本発明の目的とする効果が発現する理由として、以下の様に推測している。 In the present invention, the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is set to 1.4 GPa or more and 3.0 GPa or less. The reason why the intended effect is exhibited is presumed as follows.
 すなわち、低屈折率と高屈折率の誘電体の硬さの差が1.4GPa未満であると、樹脂支持体としてポリエチレンナフタレートを適用し、ポリビニルブチラールを用いてガラスと貼り合わせる際に低屈折率と高屈折率の誘電体膜同士の硬さの差が少ないために、低屈折率の誘電体膜と高屈折率の誘電体膜の界面に応力が多大に集中発生し、その結果クラックが発生する。様々な形状のクラックが発生する事で膜内にミクロなクラック空間が生じることで目視での外観が劣化したり、遮熱性能が劣化する事が分かった。 That is, when the difference in hardness between the low refractive index and the high refractive index dielectric is less than 1.4 GPa, low refractive index is applied when polyethylene naphthalate is applied as a resin support and bonded to glass using polyvinyl butyral. Since there is little difference in hardness between the dielectric film having a high refractive index and a high refractive index, stress is concentrated at the interface between the dielectric film having a low refractive index and the dielectric film having a high refractive index, resulting in cracks. appear. It was found that the appearance of micro cracks in the film due to the occurrence of cracks of various shapes deteriorates the visual appearance and the heat shielding performance.
 また、低屈折率と高屈折率の誘電体の硬さの差が3.0GPa以上であると、樹脂支持体としてポリエチレンナフタレートを適用し、ポリビニルブチラールを用いてガラスと貼り合わせる際に低屈折率と高屈折率の誘電体膜同士の硬さの差が大きいために、樹脂支持体にポリエチレンナフタレートを使用した低屈折率と高屈折率の誘電体積層膜全体の中での硬さの差が生じガラスに均一に追従して貼り合わせできず、誘電体積層膜全体で局部的に応力が発生、その結果、クラックが発生することが分かった。 Also, when the difference in hardness between the low refractive index and high refractive index dielectric is 3.0 GPa or more, low refractive index is applied when polyethylene naphthalate is applied as a resin support and bonded to glass using polyvinyl butyral. The difference in hardness between the dielectric film of high refractive index and high refractive index is large, so the hardness of the entire low-refractive index and high-refractive index dielectric laminated film using polyethylene naphthalate as the resin support It was found that a difference was generated and the glass could not be followed and adhered uniformly, and stress was locally generated in the entire dielectric laminated film, resulting in cracks.
 よって、本発明は、ナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることが重要である。 Therefore, in the present invention, it is important that the difference in hardness measured by the nanoindentation method is 1.4 GPa or more and 3.0 GPa or less.
 以下、本発明の誘電体積層体、それを用いる合わせガラスと、それぞれの製造方法の詳細について説明する。 Hereinafter, the dielectric laminate of the present invention, the laminated glass using the dielectric laminate, and the details of each manufacturing method will be described.
 《樹脂支持体》
 本発明の誘電体積層体において、樹脂支持体とは誘電体膜を積層させるための支持体であり、本発明においては、樹脂支持体としてポリエチレンナフタレート(以下、PENと略記する)を用いることを特徴の1つとする。
<Resin support>
In the dielectric laminate of the present invention, the resin support is a support for laminating dielectric films. In the present invention, polyethylene naphthalate (hereinafter abbreviated as PEN) is used as the resin support. Is one of the features.
 樹脂支持体の誘電体膜を積層させる面側には、易接処理を施してあってもよく、また、誘電体膜を積層させない反対側の面側に易接処理を施してあってもよく、特に制限はない。また、樹脂支持体であるPENは、透明、高耐光性、高耐候性であることが好ましい。また、樹脂支持体であるPENは、未延伸フィルムでも、延伸フィルムでもよい。 The surface of the resin support on which the dielectric film is laminated may be subjected to easy contact treatment, or may be subjected to easy contact treatment on the opposite surface side where the dielectric film is not laminated. There is no particular limitation. Moreover, it is preferable that PEN which is a resin support body is transparent, high light resistance, and high weather resistance. The PEN that is the resin support may be an unstretched film or a stretched film.
 本発明に係る樹脂支持体であるPENは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂基材を製造することができる。また、未延伸の樹脂基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することができるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 PEN that is a resin support according to the present invention can be manufactured by a conventionally known general method. For example, an unstretched resin base material that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding with an annular die or a T die, and quenching. In addition, the unstretched resin base material is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods, such as the base material flow (vertical axis) direction, Alternatively, a stretched substrate can be produced by stretching in a direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 具体的なPENの製造方法としては、例えば、2,6-ナフタレンジカルボン酸ジメチル、エチレングリコールに、エステル交換触媒として酢酸カルシウム水和物を添加し、常法に従ってエステル交換を行う。次いで、得られた生成物に重縮合触媒として三酸化アンチモン、燐酸トリメチルエステルを添加し、徐々に昇温、減圧して285℃・66Paで重縮合を行い、ポリエチレンナフタレート(PEN)を得ることができる。 As a specific method for producing PEN, for example, calcium acetate hydrate is added as a transesterification catalyst to dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol, and transesterification is performed according to a conventional method. Subsequently, antimony trioxide and phosphoric acid trimethyl ester are added to the obtained product as a polycondensation catalyst, and the temperature is gradually raised and reduced, and polycondensation is performed at 285 ° C. and 66 Pa to obtain polyethylene naphthalate (PEN). Can do.
 得られたポリエチレンナフタレートのマスターチップを溶融・混練し、T-ダイから300℃でフィルム状に溶融押出しして静電印加させ、約30℃の冷却ドラム上で急冷し、未延伸フィルムが得られる。この未延伸フィルムを135℃に予熱し、縦方向に延伸した後、250℃で熱処理を行うことにより、2軸延伸ポリエチレンナフタレートフィルムを得ることができる。 The obtained polyethylene naphthalate master chip is melted and kneaded, melt-extruded into a film form at 300 ° C from a T-die, electrostatically applied, and rapidly cooled on a cooling drum at about 30 ° C to obtain an unstretched film. It is done. A biaxially stretched polyethylene naphthalate film can be obtained by preheating this unstretched film to 135 ° C. and stretching it in the longitudinal direction, followed by heat treatment at 250 ° C.
 本発明に係る樹脂支持体であるPENには、必要により、適当なフィラーを含有させることができる。 The PEN that is the resin support according to the present invention can contain an appropriate filler, if necessary.
 本発明に係るPENに適用可能なフィラーとしては、例えば、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、カーボンブラック、炭化珪素、酸化錫、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコン樹脂粒子等が挙げられる。フィラーの平均粒径は、0.01~10μm、含有量は、PENフィルムが透明性を保持する量の範囲であって、0.0001~5質量%であることが好ましい。 Examples of fillers applicable to the PEN according to the present invention include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, carbon black, silicon carbide, tin oxide, crosslinked acrylic resin particles, and crosslinked polystyrene resin particles. , Melamine resin particles, crosslinked silicon resin particles, and the like. The average particle size of the filler is 0.01 to 10 μm, and the content is within the range in which the PEN film maintains transparency, and is preferably 0.0001 to 5% by mass.
 また、本発明に係るPENにおいては、誘電体膜を形成する前に、コロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の表面処理を行ってもよい。また、樹脂支持体であるPENは、ロール状に巻き上げられた長尺品が便利である。樹脂支持体であるPENの厚さは、特に制限はされない。本発明においては、必要に応じて樹脂支持体であるPENに紫外線吸収剤を含有させて用いても良い。 In the PEN according to the present invention, surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. may be performed before forming the dielectric film. In addition, the PEN that is a resin support is conveniently a long product wound up in a roll shape. The thickness of PEN that is a resin support is not particularly limited. In the present invention, a PEN that is a resin support may contain an ultraviolet absorber as necessary.
 《誘電体膜》
 本発明の誘電体膜積層体は、樹脂支持体であるPENの少なくとも片面に、低屈折率の誘電体膜と高屈折率の誘電体膜とを交互に積層させて形成したものであることを特徴とする。本発明に係る誘電体膜は、屈折率の異なる誘電体膜を交互に積層して、赤外線を反射できるように光学設計された積層体が代表的な構成である。
<Dielectric film>
The dielectric film laminate of the present invention is formed by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film on at least one surface of the resin support PEN. Features. A typical dielectric film according to the present invention is a laminated body optically designed so that dielectric films having different refractive indexes are alternately laminated to reflect infrared rays.
 本発明に係る誘電体膜の形成材料としては、金属酸化物、窒酸化物、窒化物を主成分とする材料を好適に使用できる。屈折率1.60以上の高屈折率の誘電体膜としては、少なくともZn、Ti、Sn、In、Nb、Si、TaまたはAlを含む酸化物、窒酸化物、窒化物を主成分として構成することが好ましい。また、屈折率1.60未満の低屈折率の誘電体膜としては、少なくともSiまたはAlを含む酸化物、窒酸化物、窒化物を主成分とし、特に、酸化珪素から構成されることが好ましい。その誘電体膜の形成方法としては気相成長法が好ましく、さらに真空蒸着法、スパッタ法、イオンプレーティング法、触媒化学気相成長(Cat-CVD)法、またはプラズマCVD法が挙げられるが、本発明においては、特に、大気圧もしくはその近傍の圧力下、放電空間にガスを導入し、該放電空間に高周波電界を形成することにより該ガスを励起し、樹脂支持体をプラズマ状態に励起したガスに晒すことにより、該樹脂支持体上に誘電体膜を形成する大気圧プラズマ処理方法により形成することを特徴とする。大気圧プラズマ処理方法により形成される誘電体膜は、低残留応力であり好ましい。 As the material for forming the dielectric film according to the present invention, a material mainly composed of metal oxide, nitride oxide, or nitride can be preferably used. The high refractive index dielectric film having a refractive index of 1.60 or more is composed mainly of an oxide, nitride oxide or nitride containing at least Zn, Ti, Sn, In, Nb, Si, Ta or Al. It is preferable. Further, the low refractive index dielectric film having a refractive index of less than 1.60 is preferably composed mainly of an oxide, nitride oxide or nitride containing at least Si or Al, and particularly composed of silicon oxide. . As a method for forming the dielectric film, a vapor phase growth method is preferable, and a vacuum vapor deposition method, a sputtering method, an ion plating method, a catalytic chemical vapor deposition (Cat-CVD) method, or a plasma CVD method may be mentioned. In the present invention, in particular, a gas is introduced into the discharge space under atmospheric pressure or a pressure in the vicinity thereof, and the gas is excited by forming a high-frequency electric field in the discharge space, and the resin support is excited into a plasma state. It is formed by an atmospheric pressure plasma treatment method in which a dielectric film is formed on the resin support by exposure to gas. A dielectric film formed by the atmospheric pressure plasma processing method is preferable because of its low residual stress.
 低屈折率膜には、カルシウム、バリウム、リチウム、マグネシウムのフッ化物を主成分とする材料も用いる事ができる。また、本発明において、屈折率の異なる層のうち、少なくとも1層はグレイティッド構成とすることができる。 For the low refractive index film, a material mainly composed of calcium, barium, lithium and magnesium fluorides can be used. In the present invention, among the layers having different refractive indexes, at least one layer can have a graded configuration.
 更に、本発明に係る誘電体膜の詳細について説明する。 Further, details of the dielectric film according to the present invention will be described.
 本発明の誘電体積層体においては、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されて形成されていることを特徴とするが、本発明でいう高屈折率の誘電体膜とは、波長が633nmの光に対する屈折率が、1.60以上である膜と定義し、好ましくは屈折率が1.70以上の誘電体膜である。誘電体膜の屈折率は、例えば、分光光度計1U-4000型(日立製作所製)を用いて、5度正反射の条件にて反射率の測定を行う。測定は、観察側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏面での光の反射を防止して、反射率(400nm-700nmの波長について)の測定を行った。該スペクトルのλ/4値より光学膜厚を算出し、それを基に、633nmにおける屈折率を算出する方法、あるいは自動複屈折率計(王子計測機器(株)製、KOBRA-21ADH)を用いて、23℃、55%RHの環境下で、590nmの波長において10カ所測定し3次元屈折率測定を行い、屈折率を測定する方法を用いることができ、本発明においては、後者の方法に従って測定した屈折率値を用いた。 The dielectric laminate of the present invention is characterized by being formed by alternately laminating low refractive index dielectric films and high refractive index dielectric films. The dielectric film is defined as a film having a refractive index of 1.60 or more with respect to light having a wavelength of 633 nm, preferably a dielectric film having a refractive index of 1.70 or more. As for the refractive index of the dielectric film, the reflectance is measured under the condition of regular reflection at 5 degrees using, for example, a spectrophotometer 1U-4000 type (manufactured by Hitachi, Ltd.). In the measurement, the back surface on the observation side is roughened and then light absorption processing is performed using a black spray to prevent reflection of light on the back surface of the film and reflectivity (for wavelengths of 400 nm to 700 nm). Measurements were made. The optical film thickness is calculated from the λ / 4 value of the spectrum, and based on this, a method of calculating the refractive index at 633 nm or an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH) is used. Thus, under the environment of 23 ° C. and 55% RH, it is possible to use a method of measuring 10 points at a wavelength of 590 nm and performing a three-dimensional refractive index measurement to measure the refractive index. The measured refractive index value was used.
 本発明に係る高屈折率の誘電体膜の主成分としては、具体的には、例えば、チタンの酸化物、亜鉛の酸化物、インジウムの酸化物、スズの酸化物、インジウムとスズとの酸化物、マグネシウムの酸化物、アルミニウムの酸化物、ジルコニウムの酸化物、ニオブの酸化物、セリウムの酸化物などの金属酸化物を例示することができる。これらは1種または2種以上含まれていても良い。また、これら金属酸化物は、2種以上の金属酸化物が複合した複酸化物であっても良い。 Specific examples of the main component of the high refractive index dielectric film according to the present invention include titanium oxide, zinc oxide, indium oxide, tin oxide, and indium and tin oxide. Metal oxides such as oxides, magnesium oxide, aluminum oxide, zirconium oxide, niobium oxide, and cerium oxide. These may be contained alone or in combination of two or more. Further, these metal oxides may be double oxides in which two or more metal oxides are combined.
 上記金属酸化物としては、とりわけ、高屈折率が得られやすいなどの観点から、酸化チタン(IV)(TiO)、チタン酸塩、ITO、酸化亜鉛(ZnO)、酸化スズ(SnO)などを好適なものとして例示することができる。これらは1種または2種以上含まれていても良い。 As the metal oxide, titanium oxide (IV) (TiO 2 ), titanate, ITO, zinc oxide (ZnO), tin oxide (SnO 2 ), etc., in particular, from the viewpoint of easily obtaining a high refractive index. Can be illustrated as suitable. These may be contained alone or in combination of two or more.
 また本発明でいう低屈折率の誘電体膜とは、波長が633nmの光に対する屈折率が、1.60未満である膜と定義し、好ましくは屈折率が1.45以下の誘電体膜である。 The low refractive index dielectric film as used in the present invention is defined as a film having a refractive index of less than 1.60 with respect to light having a wavelength of 633 nm, preferably a dielectric film having a refractive index of 1.45 or less. is there.
 本発明に係る低屈折率の誘電体膜を形成する主成分としては、例えば、フッ素含有(メタ)アクリレート、シリコーンレジン、SiOなどのケイ素の酸化物などを例示することができる。これらは1種または2種以上含まれていても良い。 Examples of the main component for forming the low refractive index dielectric film according to the present invention include fluorine-containing (meth) acrylate, silicone resin, and silicon oxide such as SiO 2 . These may be contained alone or in combination of two or more.
 本発明の誘電体膜積層体は、低屈折率の誘電体膜と高屈折率の誘電体膜とからなる一組のユニットを、一組以上、樹脂支持体であるPEN上に形成したものであるが、二ユニット、あるいはそれ以上のユニットが形成されていてもよい。 The dielectric film laminate of the present invention is formed by forming one or more sets of units composed of a low refractive index dielectric film and a high refractive index dielectric film on a PEN which is a resin support. However, two units or more units may be formed.
 本発明の誘電体膜積層体においては、低屈折率の誘電体膜と高屈折率の誘電体膜の総膜厚が500nm以上であることが好ましく、更に好ましくは500nm以上、2000nm以下である。また、誘電体膜積層体を構成する低屈折率の誘電体膜の膜厚としては、概ね100~500nmであり、高屈折率の誘電体膜の膜厚としては、概ね50~300nmである。 In the dielectric film laminate of the present invention, the total thickness of the low refractive index dielectric film and the high refractive index dielectric film is preferably 500 nm or more, more preferably 500 nm or more and 2000 nm or less. The film thickness of the low refractive index dielectric film constituting the dielectric film stack is approximately 100 to 500 nm, and the film thickness of the high refractive index dielectric film is approximately 50 to 300 nm.
 本発明において、誘電体膜の膜厚測定は、光学式膜厚測定装置としては、例えば、USB簡易型膜厚測定装置 Solid Lambda Thickness((株)スペクトラ・コープ製)が挙げられる。あるいは、形成した誘電体膜積層体の断面部を、ミクロトーム等を用いて切り出し、その断面部を、電子顕微鏡等を用いて観察して、誘電体膜の総膜厚を求めることができる。本発明においては、後者の方法を用いて測定した。 In the present invention, for measuring the thickness of the dielectric film, examples of the optical film thickness measuring apparatus include a USB simplified film thickness measuring apparatus, Solid Lambda Thickness (manufactured by Spectra Corp.). Or the cross-sectional part of the formed dielectric film laminated body is cut out using a microtome etc., The cross-sectional part is observed using an electron microscope etc., and the total film thickness of a dielectric film can be calculated | required. In this invention, it measured using the latter method.
 本発明においては、低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴の1つとする。 In the present invention, the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less. One.
 本発明においては、各誘電体膜の硬さはナノインデンテーション法で測定した値を用いるが、ナノインデンテーション法による硬度の測定方法は、試料に対して超微小な荷重で微小なダイヤモンド圧子を誘電体膜に押し込みながら荷重と押し込み深さ(変位量)の関係を測定し、得られた荷重-変位曲線から硬さ(Hardness)や弾性率(Reduced Modulus)を測定する方法である。 In the present invention, the hardness of each dielectric film is a value measured by the nanoindentation method, but the hardness measurement method by the nanoindentation method uses a minute diamond indenter with an extremely small load on the sample. In this method, the relationship between the load and the indentation depth (displacement amount) is measured while the material is pressed into the dielectric film, and the hardness and the elastic modulus (Reduced Modulus) are measured from the obtained load-displacement curve.
 〈ナノインデンテーション法の測定原理〉
 ナノインデンテーション法とは、原子間力顕微鏡(AFM)に、押し込み硬度測定用モジュール(トランスデューサーと押し込みチップにて構成)を付加することにより、ナノレベルでの押し込み硬度測定を行うことができるようになった最新の測定方法である。μN以下の荷重を加えながら、試料にダイヤモンド圧子を押し込み、ナノメートルの精度で押し込み深さを測定する。この測定から荷重-変位曲線図が得られ、材料の硬さ特性を定量的に測定することができる。
<Measurement principle of nanoindentation method>
The nanoindentation method can be used to measure indentation hardness at the nano level by adding an indentation hardness measurement module (configured with a transducer and an indentation tip) to an atomic force microscope (AFM). This is the latest measurement method. While applying a load of μN or less, a diamond indenter is pushed into the sample, and the indentation depth is measured with nanometer accuracy. From this measurement, a load-displacement curve diagram can be obtained, and the hardness characteristics of the material can be quantitatively measured.
 《大気圧プラズマ法》
 本発明に係る誘電体膜を、樹脂支持体であるPEN上に形成する方法においては、大気圧プラズマ法により製造することを特徴とするが、本発明に係る大気圧プラズマ法で用いられる誘電体膜の原料化合物について、更に説明する。
<Atmospheric pressure plasma method>
In the method of forming the dielectric film according to the present invention on the PEN which is the resin support, the dielectric film is manufactured by the atmospheric pressure plasma method. The dielectric used in the atmospheric pressure plasma method according to the present invention The raw material compound for the film will be further described.
 誘電体膜は、大気圧プラズマ法において、原料(原材料ともいう)である有機金属化合物、分解ガス、分解温度、投入電力等の条件を選ぶことで、SiまたはAlを含む酸化物、窒化酸化物、窒化物を主成分とするセラミック層で、かつ屈折率の異なる誘電体膜を形成することができる。 A dielectric film is an oxide or nitride oxide containing Si or Al by selecting conditions such as an organometallic compound, a decomposition gas, a decomposition temperature, and an input power as a raw material (also referred to as a raw material) in an atmospheric pressure plasma method. A dielectric film having a refractive index different from that of a ceramic layer containing nitride as a main component can be formed.
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、シラザン等を原料化合物として用いれば、酸化窒化珪素が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. Further, if silazane or the like is used as a raw material compound, silicon oxynitride is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
 このような誘電体膜の形成原料としては、珪素化合物であれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。また、溶媒によって希釈して使用してもよく、溶媒は、メタノール、エタノール、n-ヘキサン等の有機溶媒及びこれらの混合溶媒が使用できる。なお、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響はほとんど無視することができる。 As a raw material for forming such a dielectric film, as long as it is a silicon compound, it may be in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. Further, it may be used after being diluted with a solvent. As the solvent, an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof can be used. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
 このような珪素化合物としては、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。 Examples of such silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, die Ruaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane , Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, pro Rugyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethyl Examples thereof include cyclotetrasiloxane, hexamethylcyclotetrasiloxane, M silicate 51, and the like.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウム-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. It is done.
 また、これら珪素またアルミニウムを含む原料ガスを分解して酸化珪素、または酸化アルミニウム膜を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガス等が挙げられる。 In addition, as a decomposition gas for decomposing the source gas containing silicon or aluminum to obtain silicon oxide or an aluminum oxide film, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, Ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas, etc. Can be mentioned.
 例えば、珪素を含む原料ガスと、分解ガスを適宜選択することで、酸化珪素、また、窒化物、炭化物等を含有する誘電体膜を得ることができる。 For example, a dielectric film containing silicon oxide, nitride, carbide, or the like can be obtained by appropriately selecting a source gas containing silicon and a decomposition gas.
 本発明に係る大気圧プラズマ法においては、これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガスまたは周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが好ましく用いられる。 In the atmospheric pressure plasma method according to the present invention, these reactive gases are mixed mainly with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator. As such a discharge gas, nitrogen gas or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon or the like is used. Among these, nitrogen, helium, and argon are preferably used.
 上記放電ガスと反応性ガスを混合し、誘電体膜形成(混合)ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで誘電体膜の形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。 The dielectric film is formed by mixing the discharge gas and the reactive gas and supplying the mixed gas as a dielectric film forming (mixed) gas to a plasma discharge generator (plasma generator). Although the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
 本発明に係る誘電体膜においては、例えば、上記有機珪素化合物に、さらに酸素ガスや窒素ガスを所定割合で組み合わせて、O原子とN原子の少なくともいずれかと、Si原子とを含む酸化珪素を主体とした誘電体膜を得ることができる。 In the dielectric film according to the present invention, for example, the organic silicon compound is further combined with oxygen gas and nitrogen gas at a predetermined ratio, and silicon oxide containing at least one of O atom and N atom and Si atom is mainly used. A dielectric film can be obtained.
 次に大気圧プラズマ法について詳細に説明する。 Next, the atmospheric pressure plasma method will be described in detail.
 本発明の誘電体膜積層体の製造方法においては、本発明に係る誘電体膜の形成には、大気圧プラズマ法を用いることを特徴とする。 In the method for producing a dielectric film laminate according to the present invention, an atmospheric pressure plasma method is used for forming the dielectric film according to the present invention.
 大気圧プラズマ法は、例えば、特開平10-154598号公報や特開2003-49272号公報、WO02/048428号パンフレット等に記載されているが、大気圧もしくはその近傍の圧力下、放電空間に誘電体膜形成ガス及び放電ガスを含有するガスを供給し、該放電空間に高周波電界を形成することにより該ガスを励起し、励起したガスに晒すことにより、誘電体膜を形成する。 The atmospheric pressure plasma method is described in, for example, Japanese Patent Laid-Open Nos. 10-154598, 2003-49272, and WO 02/048428. A dielectric film is formed by supplying a gas containing a body film forming gas and a discharge gas, exciting the gas by forming a high-frequency electric field in the discharge space, and exposing the gas to the excited gas.
 特に、特開2004-68143号公報に記載されている薄膜形成方法が、緻密な誘電体膜を形成するには好ましい。また、ロール状の元巻きからウエブ状の樹脂支持体であるPENを繰り出して、屈折率の異なる誘電体膜を連続的に形成することができる。 In particular, the thin film forming method described in JP-A-2004-68143 is preferable for forming a dense dielectric film. In addition, PEN, which is a web-like resin support, is drawn out from a roll-shaped original winding, so that dielectric films having different refractive indexes can be continuously formed.
 本発明でいう高周波とは、少なくとも0.5kHzの周波数を有するものをいう。 The high frequency referred to in the present invention means one having a frequency of at least 0.5 kHz.
 本発明に係る誘電体膜の形成に用いられる上記の大気圧プラズマ法は、大気圧もしくはその近傍の圧力下で行われるプラズマCVD法であり、大気圧もしくはその近傍の圧力とは20~110kPa程度であり、本発明に記載の良好な効果を得るためには、93~104kPaが好ましい。 The above atmospheric pressure plasma method used for forming the dielectric film according to the present invention is a plasma CVD method performed under atmospheric pressure or a pressure in the vicinity thereof, and the atmospheric pressure or the pressure in the vicinity thereof is about 20 to 110 kPa. In order to obtain the good effects described in the present invention, 93 to 104 kPa is preferable.
 本発明における放電条件としては、高周波電界の周波数が1kHz~2500MHzで、かつ供給電力が1~50W/cmであることが好ましく、周波数が50kHz以上で、かつ供給電力が5W/cm以上であることがより好ましい。さらに、放電空間に異なる周波数の電界を2つ以上印加し、重畳したものがより好ましい。 As discharge conditions in the present invention, the frequency of the high-frequency electric field is preferably 1 kHz to 2500 MHz and the supplied power is preferably 1 to 50 W / cm 2. The frequency is 50 kHz or more and the supplied power is 5 W / cm 2 or more. More preferably. Furthermore, it is more preferable that two or more electric fields having different frequencies are applied to the discharge space and superimposed.
 上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であっても構わない。また、さらに周波数の異なる第3の電界を有していてもよい。 Although the superposition of continuous waves such as sine waves has been described above, the present invention is not limited to this, and both pulse waves may be used, one may be continuous waves and the other may be pulse waves. Further, it may have a third electric field having a different frequency.
 上記本発明の高周波電界を、同一放電空間に印加する具体的な方法としては、例えば、対向電極を構成する第1の電極に周波数ω1の高畳周波電界を印加する第1電源を接続し、第2電極に周波数ω2の高周波電界を形成する第2電源を接続した大気圧プラズマ放電処理装置を用いる。 As a specific method for applying the high-frequency electric field of the present invention to the same discharge space, for example, a first power source that applies a high-frequency electric field having a frequency ω1 is connected to the first electrode constituting the counter electrode, An atmospheric pressure plasma discharge processing apparatus in which a second power source that forms a high-frequency electric field having a frequency ω2 is connected to the second electrode is used.
 ここで、第1電源の周波数としては、1kHz~1MHzであり、200kHz以下が好ましく用いることができる。またこの電界波形としては、連続波でもパルス波でもよい。 Here, the frequency of the first power source is 1 kHz to 1 MHz, and 200 kHz or less can be preferably used. The electric field waveform may be a continuous wave or a pulse wave.
 一方、第2電源の周波数としては、1MHz~2500MHzが好ましく800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な誘電体膜が得られる。 On the other hand, the frequency of the second power source is preferably 1 MHz to 2500 MHz, and more preferably 800 kHz or more. The higher the frequency of the second power source, the higher the plasma density, and a dense and high-quality dielectric film can be obtained.
 また、第1電極、第1電源またはそれらの間のいずれかには第2電源からの高周波電界の電流を通過しにくくする第1フィルタを、また第2電極、第2電源またはそれらの間のいずれかには第2フィルタを接続することが好ましい。 In addition, a first filter that makes it difficult to pass a high-frequency electric field current from the second power source between the first electrode and the first power source or between them, and the second electrode, the second power source, or between them It is preferable to connect a 2nd filter to either.
 本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成等)及び反応条件(ガス条件等)において放電を起こすことのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間距離等によって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。 In the present invention, the strength of the electric field at which discharge starts is the lowest electric field intensity that can cause discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method. Point to. The discharge start electric field strength varies somewhat depending on the gas type supplied to the discharge space, the dielectric type of the electrode, the distance between the electrodes, and the like, but is controlled by the discharge start electric field strength of the discharge gas in the same discharge space.
 ここで、本発明でいう印加電界強度と放電開始電界強度は、下記の方法で測定されたものをいう。 Here, the applied electric field strength and the discharge starting electric field strength referred to in the present invention are those measured by the following method.
 印加電界強度V1及びV2(単位:kV/mm)の測定方法:
 各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、所定の時点の電界強度を測定する。
Measuring method of applied electric field strengths V1 and V2 (unit: kV / mm):
A high-frequency voltage probe (P6015A) is installed in each electrode portion, and an output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
 放電開始電界強度IV(単位:kV/mm)の測定方法:
 電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記印加電界強度測定と同じである。
Measuring method of electric discharge starting electric field intensity IV (unit: kV / mm):
A discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which discharge starts is defined as a discharge starting electric field strength IV. The measuring instrument is the same as the applied electric field strength measurement.
 上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと誘電体膜形成ガスとを供給するガス供給手段を備える。さらに、電極の温度を制御する電極温度制御手段を有することが好ましい。 The above atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a dielectric film forming gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
 本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される樹脂支持体を該プラズマ状態のガスに晒すことによって、該樹脂支持体の上に誘電体膜を形成させるものである。また他の方式として、大気圧プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹き出し、該対向電極の近傍にある樹脂支持体(静置していても移送されていてもよい)を晒すことによって該樹脂支持体の上に誘電体膜を形成させるジェット方式の装置がある。 As described above, the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes, puts the gas introduced between the counter electrodes into a plasma state, and places the gas between the counter electrodes or between the electrodes. By exposing the transferred resin support to the plasma state gas, a dielectric film is formed on the resin support. As another method, the atmospheric pressure plasma discharge treatment apparatus discharges between the counter electrodes similar to the above, excites the gas introduced between the counter electrodes or puts it in a plasma state, and excites or jets the gas outside the counter electrode. A jet system in which a dielectric film is formed on a resin support by blowing out gas in a plasma state and exposing a resin support (which may be stationary or transferred) in the vicinity of the counter electrode There is a device.
 図1は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。 FIG. 1 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
 ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図1では図示してない(後述の図2に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。 In addition to the plasma discharge processing apparatus and the electric field application means having two power sources, the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. And an electrode temperature adjusting means.
 プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω2の高周波電界が印加されるようになっている。 The plasma discharge processing apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 has a frequency ω1 from the first power source 21 between the counter electrodes. A high frequency electric field is applied, and a high frequency electric field having a frequency ω2 from the second power source 22 is applied from the second electrode 12.
 第1電極11と第2電極12との対向電極間(放電空間)13に、後述の図3に図示してあるようなガス供給手段から前述した誘電体膜形成ガスGを導入し、第1電源21と第2電源22により第1電極11と第2電極12間に、前述した高周波電界を形成して放電を発生させ、前述した誘電体膜形成ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で誘電体膜を形成させる。誘電体膜形成中、後述の図2に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる誘電体膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、基材の幅手方向あるいは長手方向での温度ムラができるだけ生じないように電極の内部の温度を均等に調節することが望まれる。 The dielectric film forming gas G described above is introduced into the gap (discharge space) 13 between the first electrode 11 and the second electrode 12 from the gas supply means as shown in FIG. A power source 21 and a second power source 22 form the above-described high-frequency electric field between the first electrode 11 and the second electrode 12 to generate a discharge. The substrate is blown out in the form of a jet on the lower side (the lower side of the paper), and the processing space created by the lower surface of the counter electrode and the base material F is filled with a gas G ° in a plasma state. A dielectric film is formed in the vicinity of the processing position 14 on the base material F that is unwound and transported or transported from the previous process. During the formation of the dielectric film, the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG. Depending on the temperature of the base material during the plasma discharge treatment, the physical properties, composition, etc. of the obtained dielectric film may change, and it is desirable to appropriately control this. As the temperature control medium, an insulating material such as distilled water or oil is preferably used. During the plasma discharge treatment, it is desirable to uniformly adjust the temperature inside the electrode so that temperature unevenness in the width direction or longitudinal direction of the substrate does not occur as much as possible.
 ジェット方式の大気圧プラズマ放電処理装置を、樹脂支持体Fの搬送方向と平行に複数台並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置に複数層の誘電体膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また樹脂支持体Fの搬送方向と平行に複数台並べ、各装置に異なる誘電体膜形成ガスを供給して異なったプラズマ状態のガスをジェット噴射すれば、異なる屈折率を有する誘電体膜の積層誘電体膜を形成することもできる。 By arranging a plurality of jet-type atmospheric pressure plasma discharge treatment devices in parallel with the transport direction of the resin support F and simultaneously discharging the gas in the same plasma state, a plurality of dielectric films can be formed at the same position. Thus, a desired film thickness can be formed in a short time. Also, a plurality of dielectric films having different refractive indexes can be stacked by arranging a plurality of units parallel to the transport direction of the resin support F, supplying different dielectric film forming gases to each device, and jetting different plasma states of the gas. A dielectric film can also be formed.
 図2は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge processing apparatus for processing a substrate between counter electrodes useful for the present invention.
 大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。 The atmospheric pressure plasma discharge treatment apparatus is an apparatus having at least a plasma discharge treatment apparatus 30, an electric field application means 40 having two power supplies, a gas supply means 50, and an electrode temperature adjustment means 60.
 ロール回転電極(第1電極)35と固定電極群(第2電極)36との対向電極間32(以下対向電極間を放電空間32とも記す)で、樹脂支持体Fをプラズマ放電処理して誘電体膜を形成するものである。 Between the opposing electrodes 32 of the roll rotating electrode (first electrode) 35 and the fixed electrode group (second electrode) 36 (hereinafter, the interval between the opposing electrodes is also referred to as the discharge space 32), the resin support F is subjected to plasma discharge treatment to generate a dielectric. A body membrane is formed.
 ロール回転電極35と固定電極群36との間に形成された放電空間32に、ロール回転電極35には第1電源41から周波数ω1の高周波電界を、また固定電極群36には第2電源42から周波数ω2の第2の高周波電界をかけるようになっている。 In the discharge space 32 formed between the roll rotating electrode 35 and the fixed electrode group 36, the roll rotating electrode 35 receives a high-frequency electric field having a frequency ω1 from the first power source 41, and the fixed electrode group 36 has a second power source 42. A second high-frequency electric field having a frequency ω2 is applied.
 なお、本発明においては、ロール回転電極35を第2電極、また固定電極群36を第1電極としてもよい。いずれにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。 In the present invention, the roll rotation electrode 35 may be the second electrode, and the fixed electrode group 36 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
 ガス供給手段50のガス発生装置51で発生させた誘電体膜形成ガスGは、不図示のガス流量調整手段により流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。 The dielectric film forming gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge treatment vessel 31 from the air supply port 52 while controlling the flow rate by a gas flow rate adjusting means (not shown).
 樹脂支持体Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から矢印方向に搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら固定電極群36との間に移送する。 The resin support F is unwound from the original winding (not shown) and conveyed, or is conveyed in the direction of the arrow from the previous process, and accompanied by the nip roll 65 via the guide roll 64 and the substrate. The air or the like is shut off and transferred to the fixed electrode group 36 while being wound while being in contact with the roll rotating electrode 35.
 移送中にロール回転電極35と固定電極群36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。樹脂支持体Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより誘電体膜を形成する。 During transfer, an electric field is applied from both the roll rotating electrode 35 and the fixed electrode group 36 to generate discharge plasma between the counter electrodes (discharge space) 32. The resin support F forms a dielectric film with gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
 なお、固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されており、該電極の放電面積はロール回転電極35に対向している全ての固定電極のロール回転電極35と対向する面の面積の和で表される。 A plurality of fixed electrodes are installed along a circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes is a roll of all the fixed electrodes facing the roll rotating electrode 35. It is represented by the sum of the areas of the surfaces facing the rotating electrode 35.
 樹脂支持体Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。 The resin support F passes through the nip roll 66 and the guide roll 67 and is taken up by a winder (not shown) or transferred to the next process.
 放電処理済みの処理排ガスG′は排気口53より排出する。 Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
 誘電体膜形成中、ロール回転電極35及び固定電極群36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。 During the formation of the dielectric film, in order to heat or cool the roll rotating electrode 35 and the fixed electrode group 36, the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is sent to both electrodes via the pipe 61 by the liquid feed pump P, Adjust the temperature from the inside of the electrode. Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
 図3は、図2に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 FIG. 3 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 2 and the dielectric material coated thereon.
 図3において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御し、また、樹脂支持体Fの表面温度を所定値に保つため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。 In FIG. 3, a roll electrode 35a has a conductive metallic base material 35A and a dielectric 35B coated thereon. In order to control the electrode surface temperature during the plasma discharge treatment and to keep the surface temperature of the resin support F at a predetermined value, a temperature adjusting medium (water or silicon oil or the like) can be circulated.
 図4は、電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。該電極の構造は図示しないが、ジャケット構造となっており、放電中の温度調節が行えるようになっている。 FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the electrode and the dielectric material coated thereon. Although the structure of the electrode is not shown, it has a jacket structure so that the temperature during discharge can be adjusted.
 図4において、固定電極36aは、導電性の金属質母材36Aに対し、図3同様の誘電体36Bの被覆を有している。 In FIG. 4, the fixed electrode 36a has a coating of a dielectric 36B similar to that shown in FIG. 3 on the conductive metallic base material 36A.
 図4に示した固定電極36aの形状は、特に限定されず、円筒型電極でも角筒型電極でも良い。 The shape of the fixed electrode 36a shown in FIG. 4 is not particularly limited, and may be a cylindrical electrode or a rectangular tube electrode.
 図3及び図4において、ロール電極35a及び電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。 3 and 4, a roll electrode 35a and an electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then using a sealing material of an inorganic compound. Sealed. The ceramic dielectric may be covered by about 1 mm with a single wall. As the ceramic material used for thermal spraying, alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed. The dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
 導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることができる。 Examples of the conductive metal base materials 35A and 36A include titanium metal or titanium alloy, metal such as silver, platinum, stainless steel, aluminum, and iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Can be mentioned.
 対向する第1電極及び第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことをいう。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことをいう。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1~20mmが好ましく、特に好ましくは0.5~5mmである。 The distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metallic base material of the other electrode when a dielectric is provided on one of the electrodes. That means. When a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces. The distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out, 0.1 to 20 mm is preferable, and 0.5 to 5 mm is particularly preferable.
 プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けてもよく、該金属フレームにセラミックス溶射を行い、絶縁性をとってもよい。図2において、平行した両電極の両側面(基材面近くまで)を上記のような材質のもので覆うことが好ましい。 The plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes. For example, polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and ceramic spraying may be performed on the metal frame to achieve insulation. In FIG. 2, it is preferable to cover both side surfaces (up to the vicinity of the base material surface) of both parallel electrodes with a material as described above.
 本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、神鋼電機社製SPG5-4500(5kHz)、春日電機製AGI-023(15kHz)、ハイデン研究所製PHF-6k(100kHz*)、パール工業製CF-2000-200k(200kHz)等の市販のものを挙げることができ、何れも使用することができる。 As the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention, SPG5-4500 (5 kHz) manufactured by Shinko Electric Co., Ltd., AGI-023 (15 kHz) manufactured by Kasuga Electric Co., Ltd. and PHF-6k manufactured by HEIDEN Laboratory (100 kHz *), commercially available products such as CF-2000-200k (200 kHz) manufactured by Pearl Industry, and any of them can be used.
 また、第2電源(高周波電源)としては、パール工業製CF-2000-800k(800kHz)、同CF-5000-13M(13.56MHz)、同CF-2000-150M(150MHz)等の市販のものを挙げることができ、いずれも好ましく使用できる。 As the second power source (high frequency power source), commercially available products such as CF-2000-800k (800 kHz), CF-5000-13M (13.56 MHz), CF-2000-150M (150 MHz) manufactured by Pearl Industries, Ltd. Any of these can be preferably used.
 なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。 Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
 本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。 In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
 本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを誘電体膜形成ガスに与え、誘電体膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.0W/cmである。なお、放電面積(cm)は、電極間において放電が起こる範囲の面積のことを指す。 In the present invention, the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. The energy is applied to the dielectric film forming gas to form the dielectric film. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.0 W / cm 2 . The discharge area (cm 2 ) refers to an area in a range where discharge occurs between the electrodes.
 また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、さらなる膜質を向上させることができる。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。 Further, the film quality can be further improved by supplying power (power density) of 1 W / cm 2 or more to the first electrode (first high-frequency electric field). Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
 ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。 Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, an intermittent oscillation mode called ON / OFF intermittently called a pulse mode, and either of them may be adopted, but at least the second electrode side (second The high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
 本発明においては、屈折率の異なる誘電体膜が、大気圧もしくはその近傍の圧力下、放電空間に誘電体膜形成ガス及び放電ガスを含有するガスを供給し、該放電空間に高周波電界を形成することにより該ガスを励起し、励起したガスに晒すことにより、誘電体膜を形成する誘電体膜形成方法により形成されることが好ましい。 In the present invention, dielectric films having different refractive indexes supply a dielectric film forming gas and a gas containing a discharge gas to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, thereby forming a high-frequency electric field in the discharge space. Preferably, the dielectric film is formed by a dielectric film forming method in which the gas is excited and exposed to the excited gas.
 また、前記放電ガスが窒素ガスであり、放電空間に印加される高周波電界は、第1の高周波電界及び第2の高周波電界を重畳したものであり、該第1の高周波電界の周波数ω1より該第2の高周波電界の周波数ω2が高く、該第1の高周波電界の強さV1、該第2の高周波電界の強さV2及び放電開始電界の強さIVとの関係が、V1≧IV>V2またはV1>IV≧V2の関係を満たし、該第2の高周波電界の出力密度が1W/cm以上であることが好ましい。 The discharge gas is nitrogen gas, and the high-frequency electric field applied to the discharge space is a superposition of the first high-frequency electric field and the second high-frequency electric field, and the frequency ω1 of the first high-frequency electric field The frequency ω2 of the second high-frequency electric field is high, and the relationship among the first high-frequency electric field strength V1, the second high-frequency electric field strength V2, and the discharge start electric field strength IV is V1 ≧ IV> V2. Alternatively, it is preferable that the relationship of V1> IV ≧ V2 is satisfied and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
 《合わせガラス》
 本発明の合わせガラスは、樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスにおいて、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、かつ該樹脂支持体がポリエチレンナフタレートであることを特徴とする。
<Laminated glass>
The laminated glass of the present invention has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support. In the laminated glass in which glass is bonded to the front and back surfaces, the dielectric laminate is bonded to glass with polyvinyl butyral, and the resin support is polyethylene naphthalate.
 本発明の合わせガラスに用いるガラス材料としては、透明ガラス基材で、高い光透過性を有していればそれ以外に特に制限はなく、その原料、製法、形状、構造、厚み、硬度等については公知のものの中から適宜選択することができる。例えば、石英ガラス、ソーダライムガラス、ケイ酸塩ガラス、アルミノケイ酸塩ガラス、ホウケイ酸塩ガラス、リン酸塩ガラス、フツリン酸塩ガラス等を用いることができる。 The glass material used for the laminated glass of the present invention is a transparent glass substrate, and there is no particular limitation other than that as long as it has high light transmissivity, its raw material, manufacturing method, shape, structure, thickness, hardness, etc. Can be appropriately selected from known ones. For example, quartz glass, soda lime glass, silicate glass, aluminosilicate glass, borosilicate glass, phosphate glass, and fluorophosphate glass can be used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《合わせガラスの作製》
 [試料1の作製]
 〔誘電体積層体1の作製〕
 (樹脂支持体1の作製)
 樹脂支持体としてPEN(ポリエチレンナフタレート)フィルム(厚さ100μm)を用い、このPEN上に、下記組成の光安定剤として紫外線吸収剤を含有した塗布液1を調製し、硬化後の膜厚が5μmとなるようにマイクログラビアコーターを用いて塗布し、次いで、乾燥工程において80℃/110℃/125℃(各ゾーンは30sec)と段階的に熱風乾燥し、ポリマー層1を設けた。
<Production of laminated glass>
[Preparation of Sample 1]
[Preparation of dielectric laminate 1]
(Preparation of resin support 1)
Using a PEN (polyethylene naphthalate) film (thickness: 100 μm) as a resin support, a coating liquid 1 containing an ultraviolet absorber as a light stabilizer having the following composition was prepared on this PEN, and the film thickness after curing was Coating was performed using a micro gravure coater so as to have a thickness of 5 μm, and then, in a drying process, hot air drying was performed stepwise at 80 ° C./110° C./125° C. (each zone was 30 sec) to provide a polymer layer 1.
 〈塗布液1の調製〉
 メチルメタクリレート65質量%、2-ヒドロキシエチルメタクリレート35質量%を共重合し、平均分子量50000の水酸基導入メタクリル酸エステル樹脂を得た。この樹脂に対して、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ペンチルフェノール(TINUVIN328;チバ・ジャパン(株)製)を5質量%、光安定剤としてヒンダードアミン系光安定剤であるデカン二酸ビス[2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル]エステル(TINUVIN123;チバ・ジャパン(株)製)を5質量%配合し、粘度調整のためメチルエチルケトンにて希釈し、固形分が20質量%となるよう調整した主剤(a)を得た。一方、架橋剤(硬化剤)となるポリイソシアネート化合物として、アダクト型のヘキサメチレンジイソシアネートをメチルエチルケトンで固形分が75質量%となるように調整した硬化剤(b)を得た。上記主剤(a)に対して、上記硬化剤(b)を15質量%添加して、塗布液1を調製した。
<Preparation of coating solution 1>
65% by mass of methyl methacrylate and 35% by mass of 2-hydroxyethyl methacrylate were copolymerized to obtain a hydroxyl group-introduced methacrylate resin having an average molecular weight of 50000. For this resin, 2- (2H-benzotriazol-2-yl) -4,6-di-t-pentylphenol (TINUVIN328; Ciba Japan Co., Ltd.), which is a benzotriazole-based ultraviolet absorber as an ultraviolet absorber. 5% by weight of decanedioic acid bis [2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl] ester (TINUVIN123; Ciba (Made by Japan Co., Ltd.) was blended in an amount of 5% by mass, diluted with methyl ethyl ketone to adjust the viscosity, and the main component (a) adjusted to a solid content of 20% by mass was obtained. On the other hand, as a polyisocyanate compound serving as a cross-linking agent (curing agent), a curing agent (b) obtained by adjusting adduct-type hexamethylene diisocyanate with methyl ethyl ketone so that the solid content was 75% by mass was obtained. The coating agent 1 was prepared by adding 15% by mass of the curing agent (b) to the main agent (a).
 上記樹脂支持体1のポリマー層1上に、下記条件で高屈折率層(厚み:120nm、屈折率:2.1)、低屈折率層(厚み:190nm、屈折率1.46)を下記に示す層構成で交互に7層設け、7層からなる誘電体膜積層体を形成し、試料1を得た。 On the polymer layer 1 of the resin support 1, a high refractive index layer (thickness: 120 nm, refractive index: 2.1) and a low refractive index layer (thickness: 190 nm, refractive index 1.46) are as follows: Seven layers were alternately provided in the layer structure shown, and a dielectric film laminate composed of seven layers was formed to obtain Sample 1.
 層構成:樹脂支持体/ポリマー層1/高屈折率層/低屈折率層/高屈折率層/低屈折率層/高屈折率層/低屈折率層/高屈折率層
 (誘電体膜の形成)
 〈高屈折率層の作製〉
 [高屈折率層形成混合ガス組成物]
   放電ガス:窒素                 97.9体積%
   薄膜形成ガス:テトライソプロポキシチタン     0.1体積%
   添加ガス:水素                  2.0体積%
 [高屈折率層成膜条件]
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 5W/cm(この時の電圧Vpは1kVであった)
    電極温度 90℃
 (低屈折率層の作製)
 〈低屈折率層混合ガス組成物〉
   放電ガス:窒素                 98.9体積%
   薄膜形成ガス:ヘキサメチルジシロキサン      0.1体積%
   添加ガス:酸素                  1.0体積%
 〈低屈折率層成膜条件〉
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 10W/cm(この時の電圧Vpは2kVであった)
    電極温度 90℃
 〈各誘電体膜の硬さの測定〉
 上記の方法で形成した低屈折率の誘電体膜と高屈折率の誘電体膜の硬さをナノインデンテーション法により測定した。
Layer structure: resin support / polymer layer 1 / high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer / high refractive index layer (dielectric film Formation)
<Preparation of high refractive index layer>
[High refractive index layer forming mixed gas composition]
Discharge gas: Nitrogen 97.9% by volume
Thin film forming gas: tetraisopropoxy titanium 0.1% by volume
Additive gas: 2.0% by volume of hydrogen
[High refractive index layer deposition conditions]
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
(Preparation of low refractive index layer)
<Low refractive index layer mixed gas composition>
Discharge gas: Nitrogen 98.9% by volume
Thin film forming gas: Hexamethyldisiloxane 0.1% by volume
Addition gas: Oxygen 1.0% by volume
<Low refractive index layer deposition conditions>
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 10 W / cm 2 (the voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
<Measurement of hardness of each dielectric film>
The hardness of the low refractive index dielectric film and the high refractive index dielectric film formed by the above method was measured by the nanoindentation method.
 エリオニクス社製のENT1100aを用いて、20μNの加重で測定した際の硬度を測定した。ナノインデンテーションの探針は、長さ350μm、幅100μm、厚さ13μm、バネ定数263N/mのベースに先端曲率半径25nm以下、対稜角60度、高さ100μmのダイヤモンド三角錐を固定したバーコビッチ圧子を用いた。 Using ENT1100a manufactured by Elionix, the hardness when measured with a load of 20 μN was measured. The nanoindentation probe is a Berkovich indenter in which a diamond triangular pyramid with a tip radius of curvature of 25 nm or less, a ridge angle of 60 degrees, and a height of 100 μm is fixed to a base having a length of 350 μm, a width of 100 μm, a thickness of 13 μm, and a spring constant of 263 N / m. Was used.
 上記方法で測定した誘電体積層体1の低屈折率の誘電体膜と高屈折率の誘電体膜の硬さ差は、1.5GPaであった。 The hardness difference between the low refractive index dielectric film and the high refractive index dielectric film of the dielectric laminate 1 measured by the above method was 1.5 GPa.
 〔合わせガラス1の作製〕
 得られた誘電体膜積層体1の両面に、厚さ0.38mmのポリビニルブチラールフィルム(積水化学工業(株)製、STタイプ)を貼り合わせ、常温下、9.8N/cmの圧力でローラーにより積層して積層体を得た。得られた積層体の誘電体膜積層体1とポリビニルブチラールとの間の接着力を測定したところ300g/cmであった。その積層体を25℃、10%RHの環境下で2週間保存した後、25℃、80%RHの環境下に5時間放置した後、屈曲を加え剥離試験を行ったが剥離を生ぜず、更に手で剥離しようとしても容易に剥離できなかった。また、合わせガラスにするため、その積層体を厚さ3mmのガラス板で挾み、ローラーでラミネート後、真空袋の中に入れ、真空ポンプで減圧にして合わせガラスに大気圧がかかる様にし、90℃で40分間加熱処理した後、オートクレーブ中に入れ130℃下、1.3MPaの圧力をかけ40分間処理して、合わせガラス1を作製した。
[Preparation of laminated glass 1]
A polyvinyl butyral film (ST type, manufactured by Sekisui Chemical Co., Ltd.) having a thickness of 0.38 mm is bonded to both surfaces of the obtained dielectric film laminate 1, and the pressure is 9.8 N / cm 2 at room temperature. A laminate was obtained by laminating with a roller. It was 300 g / cm when the adhesive force between the dielectric film laminated body 1 of the obtained laminated body and polyvinyl butyral was measured. The laminate was stored for 2 weeks in an environment of 25 ° C. and 10% RH, and then left for 5 hours in an environment of 25 ° C. and 80% RH. Then, bending was performed and a peel test was performed. Further, even if it was attempted to peel by hand, it could not be easily peeled. In order to make a laminated glass, the laminated body is squeezed with a glass plate having a thickness of 3 mm, laminated with a roller, put in a vacuum bag, reduced in pressure with a vacuum pump so that the laminated glass is subjected to atmospheric pressure, After heat-processing at 90 degreeC for 40 minutes, it put into the autoclave, the pressure of 1.3 MPa was applied under 130 degreeC, and it processed for 40 minutes, and the laminated glass 1 was produced.
 [試料2の作製]
 上記試料1の作製において、誘電体膜を形成する際の高屈折率層の形成条件及び低屈折率層の形成条件を下記の記載の条件に変更した以外は同様にして、低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が1.2GPaである試料2を作製した。
[Preparation of Sample 2]
In the preparation of the above sample 1, a low refractive index dielectric was similarly formed except that the formation conditions of the high refractive index layer and the low refractive index layer when forming the dielectric film were changed to the conditions described below. A sample 2 having a hardness difference of 1.2 GPa measured by the nanoindentation method between the body film and the high refractive index dielectric film was prepared.
 〈高屈折率層の作製〉
 [高屈折率層形成混合ガス組成物]
   放電ガス:窒素                 97.9体積%
   薄膜形成ガス:テトライソプロポキシチタン     0.1体積%
   添加ガス:水素                  2.0体積%
 [高屈折率層成膜条件]
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 5W/cm(この時の電圧Vpは1kVであった)
    電極温度 90℃
 (低屈折率層の作製)
 〈低屈折率層混合ガス組成物〉
   放電ガス:窒素                 83.9体積%
   薄膜形成ガス:ヘキサメチルジシロキサン      0.1体積%
   添加ガス:酸素                 16.0体積%
 〈低屈折率層成膜条件〉
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 10W/cm(この時の電圧Vpは2kVであった)
    電極温度 90℃
 [試料3の作製]
 上記試料1の作製において、誘電体膜を形成する際の高屈折率層の形成条件及び低屈折率層の形成条件を下記の記載の条件に変更した以外は同様にして、低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が2.9GPaである試料3を作製した。
<Preparation of high refractive index layer>
[High refractive index layer forming mixed gas composition]
Discharge gas: Nitrogen 97.9% by volume
Thin film forming gas: tetraisopropoxy titanium 0.1% by volume
Additive gas: 2.0% by volume of hydrogen
[High refractive index layer deposition conditions]
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
(Preparation of low refractive index layer)
<Low refractive index layer mixed gas composition>
Discharge gas: Nitrogen 83.9 vol%
Thin film forming gas: Hexamethyldisiloxane 0.1% by volume
Addition gas: oxygen 16.0% by volume
<Low refractive index layer deposition conditions>
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 10 W / cm 2 (the voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
[Preparation of Sample 3]
In the preparation of the above sample 1, a low refractive index dielectric was similarly formed except that the formation conditions of the high refractive index layer and the low refractive index layer when forming the dielectric film were changed to the conditions described below. A sample 3 having a difference in hardness measured by the nanoindentation method between the body film and the dielectric film having a high refractive index of 2.9 GPa was produced.
 〈高屈折率層の作製〉
 [高屈折率層形成混合ガス組成物]
   放電ガス:窒素                 97.9体積%
   薄膜形成ガス:テトライソプロポキシチタン     0.1体積%
   添加ガス:水素                  2.0体積%
 [高屈折率層成膜条件]
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 5W/cm(この時の電圧Vpは1kVであった)
    電極温度 90℃
 (低屈折率層の作製)
 〈低屈折率層混合ガス組成物〉
   放電ガス:窒素                 99.6体積%
   薄膜形成ガス:ヘキサメチルジシロキサン      0.1体積%
   添加ガス:酸素                  0.3体積%
 〈低屈折率層成膜条件〉
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 10W/cm(この時の電圧Vpは2kVであった)
    電極温度 90℃
 [試料4の作製]
 上記試料1の作製において、誘電体膜を形成する際の高屈折率層の形成条件及び低屈折率層の形成条件を下記の記載の条件に変更した以外は同様にして、低屈折率の誘電体膜と高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が3.3GPaである試料4を作製した。
<Preparation of high refractive index layer>
[High refractive index layer forming mixed gas composition]
Discharge gas: Nitrogen 97.9% by volume
Thin film forming gas: tetraisopropoxy titanium 0.1% by volume
Additive gas: 2.0% by volume of hydrogen
[High refractive index layer deposition conditions]
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
(Preparation of low refractive index layer)
<Low refractive index layer mixed gas composition>
Discharge gas: Nitrogen 99.6% by volume
Thin film forming gas: Hexamethyldisiloxane 0.1% by volume
Addition gas: Oxygen 0.3% by volume
<Low refractive index layer deposition conditions>
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 10 W / cm 2 (the voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
[Preparation of Sample 4]
In the preparation of the above sample 1, a low refractive index dielectric was similarly formed except that the formation conditions of the high refractive index layer and the low refractive index layer when forming the dielectric film were changed to the conditions described below. A sample 4 having a difference in hardness measured by the nanoindentation method between the body film and the dielectric film having a high refractive index of 3.3 GPa was produced.
 〈高屈折率層の作製〉
 [高屈折率層形成混合ガス組成物]
   放電ガス:窒素                 97.9体積%
   薄膜形成ガス:テトライソプロポキシチタン     0.1体積%
   添加ガス:水素                  2.0体積%
 [高屈折率層成膜条件]
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 5W/cm(この時の電圧Vpは1kVであった)
    電極温度 90℃
 (低屈折率層の作製)
 〈低屈折率層混合ガス組成物〉
   放電ガス:窒素                 99.8体積%
   薄膜形成ガス:ヘキサメチルジシロキサン      0.1体積%
   添加ガス:酸素                  0.1体積%
 〈低屈折率層成膜条件〉
   第1電極側
    電源種類 ハイデン研究所 100kHz(連続モード)
         PHF-6k
    周波数  100kHz
    出力密度 10W/cm(この時の電圧Vpは7kVであった)
    電極温度 120℃
   第2電極側
    電源種類 パール工業 13.56MHz
         CF-5000-13M
    周波数  13.56MHz
    出力密度 10W/cm(この時の電圧Vpは2kVであった)
    電極温度 90℃
 [試料5の作製]
 上記試料1の作製において、樹脂支持体1のポリマー層1上に、試料1の作製に用いたのと同様にして高屈折率層(厚み:120nm、屈折率:2.1)、低屈折率層(厚み:190nm、屈折率1.46)を下記に示す層構成で交互に3層設け、総膜厚が430nmの誘電体膜積層体を形成した以外は同様にして、試料5を得た。
<Preparation of high refractive index layer>
[High refractive index layer forming mixed gas composition]
Discharge gas: Nitrogen 97.9% by volume
Thin film forming gas: tetraisopropoxy titanium 0.1% by volume
Additive gas: 2.0% by volume of hydrogen
[High refractive index layer deposition conditions]
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
(Preparation of low refractive index layer)
<Low refractive index layer mixed gas composition>
Discharge gas: Nitrogen 99.8% by volume
Thin film forming gas: Hexamethyldisiloxane 0.1% by volume
Addition gas: Oxygen 0.1% by volume
<Low refractive index layer deposition conditions>
1st electrode side Power supply type HEIDEN Laboratory 100 kHz (continuous mode)
PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz
CF-5000-13M
Frequency 13.56MHz
Output density 10 W / cm 2 (the voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
[Preparation of Sample 5]
In the preparation of the sample 1, a high refractive index layer (thickness: 120 nm, refractive index: 2.1), low refractive index is formed on the polymer layer 1 of the resin support 1 in the same manner as in the preparation of the sample 1. Sample 5 was obtained in the same manner except that three layers (thickness: 190 nm, refractive index 1.46) were alternately provided in the layer configuration shown below, and a dielectric film laminate having a total film thickness of 430 nm was formed. .
 層構成:樹脂支持体/ポリマー層1/高屈折率層/低屈折率層/高屈折率層
 [試料6の作製]
 上記試料1の作製において、樹脂支持体1の両面にポリマー層1を形成した後、一方の面には試料1の作製に用いたのと同様の高屈折率層(厚み:120nm、屈折率:2.1)、低屈折率層(厚み:190nm、屈折率1.46)を下記に示す層構成で交互に3層設け、他方の面にも同じく高屈折率層(厚み:120nm、屈折率:2.1)、低屈折率層(厚み:190nm、屈折率1.46)を下記に示す層構成で交互に3層設けた以外は同様にして、試料6を作製した。
Layer structure: resin support / polymer layer 1 / high refractive index layer / low refractive index layer / high refractive index layer [Preparation of Sample 6]
In the preparation of Sample 1, after the polymer layer 1 was formed on both surfaces of the resin support 1, the same high refractive index layer (thickness: 120 nm, refractive index: same as that used for the preparation of Sample 1 on one surface). 2.1), three low-refractive index layers (thickness: 190 nm, refractive index 1.46) are alternately provided in the layer configuration shown below, and a high refractive index layer (thickness: 120 nm, refractive index) is also provided on the other surface. : Sample 2.1 was prepared in the same manner except that three low-refractive index layers (thickness: 190 nm, refractive index 1.46) were alternately provided in the layer configuration shown below.
 層構成:高屈折率層/低屈折率層/高屈折率層/ポリマー層1/樹脂支持体/ポリマー層1/高屈折率層/低屈折率層/高屈折率層
 [試料7の作製]
 上記試料1の作製において、誘電体膜積層体1を除いた以外は同様にして、試料2を作製した。
Layer structure: high refractive index layer / low refractive index layer / high refractive index layer / polymer layer 1 / resin support / polymer layer 1 / high refractive index layer / low refractive index layer / high refractive index layer [Preparation of Sample 7]
Sample 2 was prepared in the same manner as in the preparation of Sample 1, except that the dielectric film laminate 1 was omitted.
 [試料8の作製]
 上記試料1の誘電体膜積層体1の作製において、樹脂支持体としてPEN(ポリエチレンナフタレート)フィルム(厚さ100μm)に代えて、トリアセチルセルロースフィルム(厚さ100μm、TACと略記する)に変更した以外は試料1と同様にして、試料8を作製した。
[Preparation of Sample 8]
In the production of the dielectric film laminate 1 of Sample 1, the resin support was changed to a triacetylcellulose film (thickness: 100 μm, abbreviated as TAC) instead of a PEN (polyethylene naphthalate) film (thickness: 100 μm). Sample 8 was produced in the same manner as Sample 1 except that.
 [試料9の作製]
 上記試料1の誘電体膜積層体1の作製において、樹脂支持体としてPEN(ポリエチレンナフタレート)フィルム(厚さ100μm)に代えて、ポリプロピレンフィルム(厚さ100μm、PPと略記する)に変更した以外は試料1と同様にして、試料9を作製した。
[Preparation of Sample 9]
In the production of the dielectric film laminate 1 of the sample 1, the resin support was changed to a polypropylene film (thickness: 100 μm, abbreviated as PP) instead of a PEN (polyethylene naphthalate) film (thickness: 100 μm). A sample 9 was prepared in the same manner as sample 1.
 [試料10の作製]
 上記試料1の誘電体膜積層体1の作製において、樹脂支持体としてPEN(ポリエチレンナフタレート)フィルム(厚さ100μm)に代えて、ポリスルホンフィルム(厚さ100μm、PSFと略記する)に変更した以外は試料1と同様にして、試料10を作製した。
[Preparation of Sample 10]
In the production of the dielectric film laminate 1 of the sample 1, the resin support was changed to a polysulfone film (thickness 100 μm, abbreviated as PSF) instead of a PEN (polyethylene naphthalate) film (thickness 100 μm). A sample 10 was prepared in the same manner as sample 1.
 《合わせガラスの評価》
 〔クラック耐性の評価〕
 各合わせガラスの誘電体膜面を、100倍ルーペを用いて目視観察し、下記評価ランクに従って、クラック耐性を評価した。
<Evaluation of laminated glass>
[Evaluation of crack resistance]
The dielectric film surface of each laminated glass was visually observed using a 100-fold magnifier, and crack resistance was evaluated according to the following evaluation rank.
 5:クラック発生がまったく認められない
 4:クラックの発生が僅かに認められるが、使用上許容される品質である
 3:クラックの発生が認められ、実用上懸念がある品質である
 2:クラックの発生が多く、実用上問題となる品質である
 1:多数のクラックの発生が認められ、実用に耐えない品質である
 〔外観の評価〕
 貼り合わせ後の合わせガラスの外観を目視観察し、下記の基準に従って外観の評価を行った。
5: No occurrence of cracks is observed at all. 4: Generation of cracks is slightly recognized, but the quality is acceptable for use. 3: The generation of cracks is recognized and the quality is of concern for practical use. It is a quality that causes a lot of occurrence and is a problem in practical use. 1: Many cracks are observed, and the quality cannot withstand practical use. [Evaluation of appearance]
The appearance of the laminated glass after bonding was visually observed, and the appearance was evaluated according to the following criteria.
 5:極めて良好な貼り合わせ状態である
 4:貼り合わせ部の見ばえは若干悪いが、使用上許容される品質である
 3:貼り合わせ部に凹凸斑の発生が若干認められ、実用上懸念がある品質である
 2:貼り合わせ部に凹凸斑あり、実用上問題となる品質である
 1:貼り合わせ部に強い凹凸斑の発生が認められ、実用に耐えない品質である
 〔気泡の残り耐性の評価〕
 作製した各合わせガラス試料の気泡残り状態を目視観察し、下記の基準に従って気泡残り耐性を評価した。
5: Very good bonded state 4: Although the appearance of the bonded part is slightly bad, it is acceptable quality 3: Some unevenness is observed in the bonded part, and there are practical concerns There is a certain quality 2: There are uneven spots in the bonded part, and it is a quality that is a problem in practical use 1: Strong uneven spots are observed in the bonded part, and it is a quality that cannot withstand practical use [Resistance of remaining bubbles] Evaluation of〕
The bubble remaining state of each of the produced laminated glass samples was visually observed, and the bubble remaining resistance was evaluated according to the following criteria.
 5:気泡の残留がまったく認められない
 4:気泡の残留が僅かに認められるが、使用上許容される品質である
 3:若干の気泡の残留が認められ、実用上懸念がある品質である
 2:明らかな気泡の残留が認められ、実用上問題となる品質である
 1:多量の気泡の残留が認められ、実用に耐えない品質である
 〔白化耐性の評価〕
 作製した各合わせガラス試料の白化故障の発生の有無を目視観察し、下記の基準に従って白化耐性を評価した。
5: Residual air bubbles are not observed at all 4: Residual air bubbles are slightly observed, but the quality is acceptable for use 3: Residual air bubbles are observed, and there is a practical concern 2 : Obvious residual bubbles are observed, and this is a quality that is a problem in practical use. 1: A large amount of residual bubbles is observed, and the quality is not practical. [Evaluation of whitening resistance]
The produced laminated glass samples were visually observed for occurrence of whitening failure, and the whitening resistance was evaluated according to the following criteria.
 5:白化の発生が全く認められない
 4:僅かに白化の発生が認められるが、使用上許容される品質である
 3:若干の白化の発生が認められ、実用上懸念がある品質である
 2:明らかな白化の発生が認められ、実用上問題となる品質である
 1:多数の白化の発生が認められ、実用に耐えない品質である
 〔遮熱性の評価〕
 各合わせガラスを太陽光下に置き、その下に手をかざして手への熱の伝わり度合いを20人のモニターにより評価し、下記の基準に従ってランク付を行い、その合計点より遮熱性を評価した。満点は100点、最低点は20点である。
5: Generation of whitening is not observed at all. 4: Generation of whitening is slightly observed, but the quality is acceptable for use. 3: The occurrence of slight whitening is observed, and there is a practical concern 2 : Appearance of obvious whitening is observed and is a quality that is a problem in practical use. 1: Appearance of many whitenings is observed, and the quality is unacceptable for practical use [Evaluation of heat shielding properties]
Place each laminated glass under sunlight, hold your hand under it, evaluate the degree of heat transfer to the hand with a monitor of 20 people, rank according to the following criteria, and evaluate the heat shielding performance from the total score did. The perfect score is 100 points, and the minimum score is 20 points.
 5:非常に涼しく感じる
 4:涼しく感じる
 3:やや涼しく感じる
 2:直接太陽光を受けた状態との差があまり感じられない
 1:直接太陽光を受けた状態との差が全く感じられない
 以上により得られた各評価結果を、表1に示す。
5: Feels very cool 4: Feels cool 3: Feels a little cool 2: Doesn't feel much difference from the state that received direct sunlight 1: Cannot feel the difference from the state that received direct sunlight Table 1 shows the evaluation results obtained by the above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかな様に、本発明の構成からなる誘電体積層体を備えた合わせガラスは、比較例に対し、クラック耐性、合わせガラスの外観、気泡の残り耐性、白化耐性及び遮熱性に優れていることが分かる。 As is clear from the results shown in Table 1, the laminated glass provided with the dielectric laminate having the structure of the present invention has a crack resistance, the appearance of the laminated glass, the residual resistance of bubbles, the whitening resistance and the comparative example. It turns out that it is excellent in thermal insulation.
 10 プラズマ放電処理装置
 11 第1電極
 12 第2電極
 21 第1電源
 22 第2電源
 24 第2フィルタ
 30 プラズマ放電処理装置
 32 放電空間
 35 ロール回転電極
 35a ロール電極
 35A 金属質母材
 35B 誘電体
 36 角筒型固定電極群
 40 電界印加手段
 41 第1電源
 42 第2電源
 43 第1フィルタ
 44 第2フィルタ
 50 ガス供給手段
 51 ガス発生装置
 52 給気口
 53 排気口
 60 電極温度調節手段
 G 薄膜形成ガス
 G° プラズマ状態のガス
 G′ 処理排ガス
 F 樹脂支持体
DESCRIPTION OF SYMBOLS 10 Plasma discharge processing apparatus 11 1st electrode 12 2nd electrode 21 1st power supply 22 2nd power supply 24 2nd filter 30 Plasma discharge processing apparatus 32 Discharge space 35 Roll rotation electrode 35a Roll electrode 35A Metal base material 35B Dielectric 36 Angle Cylindrical fixed electrode group 40 Electric field applying means 41 1st power supply 42 2nd power supply 43 1st filter 44 2nd filter 50 Gas supply means 51 Gas generator 52 Air supply port 53 Exhaust port 60 Electrode temperature adjusting means G Thin film forming gas G ° Gas in plasma G 'treated exhaust gas F Resin support

Claims (6)

  1.  樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体において、該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする誘電体積層体。 In a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, the resin support is polyethylene naphthalate, and the low refractive index A dielectric laminate, wherein a difference in hardness measured by a nanoindentation method between a dielectric film having a high refractive index and the dielectric film having a high refractive index is 1.4 GPa or more and 3.0 GPa or less.
  2.  前記誘電体膜の総厚が、500nm以上であることを特徴とする請求項1に記載の誘電体積層体。 The dielectric laminate according to claim 1, wherein a total thickness of the dielectric film is 500 nm or more.
  3.  樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスにおいて、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、該樹脂支持体がポリエチレンナフタレートであり、かつ該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であることを特徴とする合わせガラス。 It has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, and glass is pasted on the front and back surfaces of the dielectric laminate. In the laminated glass, the dielectric laminate is bonded to the glass with polyvinyl butyral, the resin support is polyethylene naphthalate, and the low refractive index dielectric film and the high refractive index A laminated glass, wherein a difference in hardness measured by a nanoindentation method with respect to a dielectric film is 1.4 GPa or more and 3.0 GPa or less.
  4.  樹脂支持体上に、硬さの異なる低屈折率の誘電体膜と高屈折率の誘電体膜が交互に積層されてなる誘電体積層体を製造する誘電体積層体の製造方法において、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ前記誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、該樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする誘電体積層体の製造方法。 In a dielectric laminate manufacturing method for manufacturing a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film having different hardnesses are alternately laminated on a resin support, the resin The support is polyethylene naphthalate, and the difference in hardness measured by the nanoindentation method between the low refractive index dielectric film and the high refractive index dielectric film is 1.4 GPa or more and 3.0 GPa or less And the dielectric film introduces a gas into the discharge space under atmospheric pressure or pressure near the atmosphere to form a high-frequency electric field in the discharge space, thereby bringing the gas into a plasma state, and A method for producing a dielectric laminate, wherein the dielectric laminate is formed by exposure to a gas in a plasma state.
  5.  前記誘電体膜の総厚が、500nm以上であることを特徴とする請求項4に記載の誘電体積層体の製造方法。 The method for manufacturing a dielectric laminate according to claim 4, wherein the total thickness of the dielectric film is 500 nm or more.
  6.  樹脂支持体上に、低屈折率の誘電体膜と高屈折率の誘電体膜とが交互に積層されてなる誘電体積層体を有し、該誘電体積層体の表面と裏面にガラスを貼り合わせた合わせガラスの製造方法において、該誘電体積層体は、ポリビニルブチラールによりガラスに貼り合わせられており、該樹脂支持体がポリエチレンナフタレートであり、該低屈折率の誘電体膜と該高屈折率の誘電体膜とのナノインデンテーション法で測定した硬さの差が、1.4GPa以上、3.0GPa以下であり、かつ該誘電体膜は、大気圧または大気近傍の圧力下で、ガスを放電空間に導入し、該放電空間に高周波電界を形成することによりガスをプラズマ状態とし、前記樹脂支持体を該プラズマ状態のガスに晒すことによって形成されたことを特徴とする合わせガラスの製造方法。 It has a dielectric laminate in which a low refractive index dielectric film and a high refractive index dielectric film are alternately laminated on a resin support, and glass is pasted on the front and back surfaces of the dielectric laminate. In the laminated glass manufacturing method, the dielectric laminate is bonded to glass with polyvinyl butyral, the resin support is polyethylene naphthalate, the low refractive index dielectric film and the high refractive index The difference in hardness measured by the nanoindentation method with respect to the dielectric film having a rate of 1.4 GPa or more and 3.0 GPa or less, and the dielectric film is a gas under atmospheric pressure or pressure near the atmosphere. Laminated glass formed by introducing gas into a discharge space, forming a high-frequency electric field in the discharge space, bringing the gas into a plasma state, and exposing the resin support to the plasma state gas Manufacturing method.
PCT/JP2010/050444 2009-02-20 2010-01-16 Dielectric laminate, laminated glass, process for producing dielectric laminate, and process for producing laminated glass WO2010095479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009037650 2009-02-20
JP2009-037650 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095479A1 true WO2010095479A1 (en) 2010-08-26

Family

ID=42633766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050444 WO2010095479A1 (en) 2009-02-20 2010-01-16 Dielectric laminate, laminated glass, process for producing dielectric laminate, and process for producing laminated glass

Country Status (1)

Country Link
WO (1) WO2010095479A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412603B1 (en) * 2013-07-31 2014-02-12 株式会社クラレ Polyvinyl acetal film with excellent transparency and thermal cracking suppression
JP2015030850A (en) * 2013-11-11 2015-02-16 株式会社クラレ Polyvinyl acetal film excellent in transparency and heat breaking phenomenon suppression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355701A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Coating member made of composite material
JP2005002457A (en) * 2003-06-13 2005-01-06 Fuji Kihan:Kk Compound surface reforming method and compound surface reformed article
JP2008062460A (en) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc Optical film and image display element using it
JP2009035438A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Infrared ray reflective laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355701A (en) * 1999-06-10 2000-12-26 Honda Motor Co Ltd Coating member made of composite material
JP2005002457A (en) * 2003-06-13 2005-01-06 Fuji Kihan:Kk Compound surface reforming method and compound surface reformed article
JP2008062460A (en) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc Optical film and image display element using it
JP2009035438A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Infrared ray reflective laminated glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412603B1 (en) * 2013-07-31 2014-02-12 株式会社クラレ Polyvinyl acetal film with excellent transparency and thermal cracking suppression
WO2015015601A1 (en) * 2013-07-31 2015-02-05 株式会社クラレ Polyvinyl acetal film with outstanding transparency and resistance to heat-cracking phenomenon
CN105452350A (en) * 2013-07-31 2016-03-30 株式会社可乐丽 Polyvinyl acetal film with outstanding transparency and resistance to heat-cracking phenomenon
JP2015030850A (en) * 2013-11-11 2015-02-16 株式会社クラレ Polyvinyl acetal film excellent in transparency and heat breaking phenomenon suppression

Similar Documents

Publication Publication Date Title
US8846187B2 (en) Transparent gas barrier film and method for producing transparent gas barrier film
JP6638182B2 (en) Laminated films and flexible electronic devices
JP2004205773A (en) Polarizing plate and its manufacturing method, and liquid crystal display device using the same
US20100009147A1 (en) Transparent gas barrier film
JPWO2007026545A1 (en) Plasma discharge treatment apparatus and method for producing gas barrier film
WO2009150992A1 (en) Weather-resistant resin base material and optical member
US10780675B2 (en) Gas barrier film, optical film, and flexible display
JPWO2006033268A1 (en) Transparent conductive film
JP2011000723A (en) Heat shielding article, method for manufacturing heat shielding article, and outdoor building member
TW565709B (en) Half mirror film producing method and optical element comprising a half mirror film
WO2006075490A1 (en) Transparent gas barrier film
WO2010095479A1 (en) Dielectric laminate, laminated glass, process for producing dielectric laminate, and process for producing laminated glass
JP2011036778A (en) Method for producing barrier film
JP5012745B2 (en) Laminate with hard coat layer
WO2010106866A1 (en) Dielectric film laminate and method for producing same
WO2010024143A1 (en) Heat-insulating article, process for producing heat-insulating article, and building member
JP4572499B2 (en) Optical film and method for producing the same, polarizing plate using the same, and display device
JP2008132643A (en) Substrate for liquid crystal cell and liquid crystal display apparatus
WO2010082581A1 (en) Heat insulating article, method for producing heat insulating article, and building member
WO2009147928A1 (en) Heat shielding resin film and building construction member to which the film is bonded
JP3835261B2 (en) Method for forming functional thin film, functional thin film laminate, optical film, and image display element
WO2009148045A1 (en) Heat shielding resin base and construction member using the same
WO2009131136A1 (en) Heat insulation resin base and architectural member using the same
JP2011104830A (en) Dielectric film laminate and method of manufacturing dielectric film laminate
JP2010137400A (en) Laminate with hard coat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP