WO2010095384A1 - Electronic thermometer and display control method - Google Patents

Electronic thermometer and display control method Download PDF

Info

Publication number
WO2010095384A1
WO2010095384A1 PCT/JP2010/000676 JP2010000676W WO2010095384A1 WO 2010095384 A1 WO2010095384 A1 WO 2010095384A1 JP 2010000676 W JP2010000676 W JP 2010000676W WO 2010095384 A1 WO2010095384 A1 WO 2010095384A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electronic thermometer
shake
light emission
light
Prior art date
Application number
PCT/JP2010/000676
Other languages
French (fr)
Japanese (ja)
Inventor
萩浩司
相馬孝博
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009037041A external-priority patent/JP5260352B2/en
Priority claimed from JP2009037042A external-priority patent/JP5260353B2/en
Priority claimed from JP2009058662A external-priority patent/JP5260363B2/en
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2010095384A1 publication Critical patent/WO2010095384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D7/00Indicating measured values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D7/00Indicating measured values
    • G01D7/005Indication of measured value by colour change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Definitions

  • the present invention relates to an electronic thermometer that measures the body temperature of a subject.
  • an electronic thermometer has been provided with a display unit such as an LCD, and configured to display information such as measured body temperature of a subject to a user (for example, Japanese Patent Application Laid-Open No. 2007-24530). See the official gazette).
  • the display unit tends to be limited in size as the electronic thermometer becomes lighter and smaller, and the display is not always easy for the user to see. In particular, when the surrounding environment is dark, it is difficult to read the displayed information.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to realize an easy-to-see display without impairing user convenience in an electronic thermometer.
  • an electronic thermometer for measuring the temperature of a subject, A light emitting means comprising a plurality of light emitting elements arranged; Shake detection means for detecting that the electronic thermometer is shaken; A light emission control means for controlling light emission of each light emitting element provided in the light emission means, The light emission control means includes Creating means for creating a luminescent dot pattern based on the measured body temperature information of the subject; Based on the shake time in the predetermined direction of the electronic thermometer calculated based on the detection result by the shake detection means, and the number of dot rows of the light emitting elements in the predetermined direction necessary to express the light emitting dot pattern Calculating means for calculating a light emission time per dot row of the light emitting element, When the shake detecting means detects that the electronic thermometer is shaken, the light emission of each light emitting element is based on the created light emitting dot pattern and the calculated light emission time per dot row. It is,
  • an electronic thermometer can realize a display that is easier to see without impairing user convenience.
  • FIG. 6 is a diagram for explaining the contents of signal processing in a signal processing unit 232; It is a figure which shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a flowchart which shows the flow of the body temperature measurement process of the electronic thermometer 100.
  • FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252.
  • FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the signal processing in the signal processing part 232 of the electronic thermometer which concerns on the 4th Embodiment of this invention.
  • FIG. 24 It is a figure which shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252.
  • FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. 24 It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252.
  • FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. 2700 shows an example of the light emission dot pattern produced in the display control part 244.
  • FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244.
  • FIG. It is a figure which shows an example of an external appearance structure of the electronic thermometer 2700 which concerns on the 8th Embodiment of this invention.
  • FIG. shows the system configuration
  • FIG. 244 It is a figure which shows an example of the table used when selecting luminescent color according to the body temperature of the measured subject. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG.
  • FIG. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852. It is a figure which shows an example of an external appearance structure of the electronic thermometer 3700 which concerns on the 9th Embodiment of this invention. It is a figure which shows the cross-sectional structure of the light emission part of the electronic thermometer 3700. FIG. It is a figure which shows the relationship between body temperature and luminescent color used when selecting luminescent color according to the body temperature of the measured subject.
  • FIG. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG.
  • FIG. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852.
  • FIG. 1 is a diagram illustrating an example of an external configuration of an electronic thermometer 100 according to the first embodiment of the present invention.
  • reference numeral 101 denotes a display unit that displays information related to the body temperature of the subject, and is composed of, for example, an LCD or the like.
  • 102 is a light emitting unit, and light emitting elements such as LEDs are arranged in a line in the longitudinal direction of the electronic thermometer 100.
  • light emitting elements such as LEDs are arranged in a line in the longitudinal direction of the electronic thermometer 100.
  • the case where seven LEDs are arranged as the light emitting unit 102 is illustrated, but the number of LEDs included in the light emitting unit 102 is not limited to seven.
  • a case where LEDs are arranged in one row as the light emitting unit 102 is illustrated, but the number of LEDs arranged is not limited to one row, and may be a plurality of rows.
  • 103 is an end cap, which is made of a metal such as stainless steel so that the body temperature of the subject can be easily conducted to a built-in temperature measurement unit (details will be described later).
  • 104 is an ON / OFF switch that controls the power source of the electronic thermometer 100 when pressed when starting the measurement of the body temperature or after the end of the measurement of the body temperature.
  • FIG. 2 is a diagram showing a system configuration of the electronic thermometer 100 according to the first embodiment of the present invention.
  • the electronic thermometer 100 can be roughly divided into a power supply unit 210, a temperature measurement unit 220, a shake detection unit 230, a calculation control unit 240, an output unit 250, and a buzzer 260.
  • the power supply unit 210 incorporates a conventional disposable or rechargeable battery, and supplies power to each part of the electronic thermometer 100.
  • the temperature measuring unit 220 includes a CR oscillator composed of a thermistor for temperature measurement, a capacitor, a resistor, and a semiconductor, and outputs an oscillation signal whose oscillation frequency changes depending on the temperature.
  • the output oscillation signal counts the oscillation signal per unit time in the counter 245 and generates the oscillation frequency of the CR oscillator as a digital quantity.
  • the configuration of the temperature measurement unit 220 is an example and is not limited to this.
  • the arithmetic control unit 240 includes an EEPROM 241 that stores parameters necessary for body temperature measurement in advance, a RAM 242 that stores measured temperatures in time series, a ROM 243 that stores a predictive body temperature measurement program, etc., and an output unit. 250, a display control unit 244 for controlling 250, a counter 245 for counting oscillation signals output from the temperature measurement unit 220, an arithmetic processing unit 246 for performing calculations according to parameters stored in advance in the EEPROM 241 in accordance with a body temperature measurement program in the ROM 243, a counter 245 and a control circuit 247 for controlling the display control unit 244.
  • the shake detection unit 230 includes a motion sensor 231 and a signal processing unit 232.
  • a motion sensor 231 for example, an acceleration sensor or a tilt sensor is used.
  • the signal processing unit 232 receives the shake of the electronic thermometer 100 detected by the motion sensor 231 as a signal, and based on the signal, the light emission start timing of the light emitting unit 252 and the light emission time per dot row of each light emitting element Is output to the display control unit 244 (a signal indicating the change timing of the shake direction (details will be described later)).
  • the output unit 250 includes a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like), and a light emitting unit 252 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
  • a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like)
  • a light emitting unit 252 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
  • the display unit 251 is configured by an LCD or the like, and displays information related to body temperature output from the display control unit 244.
  • the light emitting unit 252 is a light emitting dot pattern created by the display control unit 244 so that when the electronic thermometer 100 is reciprocally shaken (reciprocated), the user can visually recognize information about the body temperature of the subject.
  • Each light emitting element is caused to emit light at the calculated light emission time, light emission start timing, and light emission end timing (details will be described later). That is, the display control unit 244 has a display control function for controlling display on the display unit 251 and a light emission control function for controlling light emission of each light emitting element of the light emitting unit 252.
  • each light emitting element of the light emitting unit 252 emits light
  • the user shakes the electronic thermometer 100 in a reciprocating manner, so that the user visually recognizes information on the body temperature of the subject in the space due to the afterimage effect of the eyes. can do.
  • the display part 251 is not necessarily provided, and the display part 251 may be omitted. In this manner, by omitting the display unit 251, the electronic thermometer 100 does not need to secure a housing space for mounting the display unit, and thus the outer dimensions can be further reduced.
  • the buzzer 260 informs the subject by ringing that the body temperature measurement has been completed.
  • FIG. 3 shows the light emission of each light-emitting element of the light-emitting unit 252 when the electronic thermometer 100 is shaken back and forth in a direction substantially orthogonal to the longitudinal direction (hereinafter referred to as a lateral direction) while maintaining the posture of the electronic thermometer 100. It is the figure which showed an example of the display content visually recognized by the user.
  • Each light emitting element is caused to emit light based on a light emitting dot pattern corresponding to information on the body temperature and a light emitting time per one dot row described later. Thereby, the user who sees the luminescence can visually recognize the information on the body temperature of the subject by the afterimage effect of the eyes.
  • FIG. 3 shows a state where the display of “38.5 ° C.” appears to appear in the space within the shake range by shaking the electronic thermometer 100 in the horizontal direction.
  • each LED 252 ⁇ / b> A constituting the light emitting unit 252 of the electronic thermometer 100 emits light at a corresponding light emission timing until the right shake of the electronic thermometer 100 ends.
  • the LED 252A does not emit light during the shake from the right side to the left side of the paper (hereinafter referred to as the left shake).
  • each LED 252A only emits light for an instant (emission time per dot row) at the corresponding light emission timing, but it emits light at each light emission timing due to the afterimage effect of the user's retina. Since the light remains as an afterimage, the user sees it as a continuous character.
  • the signal processing unit 232 and the display control unit 244 when the electronic thermometer 100 is shaken back and forth in the horizontal direction will be described.
  • FIG. 4 is a diagram for explaining the contents of signal processing in the signal processing unit 232.
  • 4A-1 is a diagram illustrating an output of the motion sensor 231 when the electronic thermometer 100 is reciprocated by the user when the motion sensor 231 is a tilt sensor.
  • 4A-2 is a diagram showing an output of the motion sensor 231 when the electronic thermometer 100 is reciprocated by the user when the motion sensor 231 is an acceleration sensor.
  • the electronic thermometer 100 performs control so that each light-emitting element of the light-emitting unit 252 emits light only during the right-side swing among the reciprocal shakes in the horizontal direction.
  • the signal processing unit 232 detects the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake (the change timing of the shake direction).
  • the signal processing unit 232 detects the ON signal output from the tilt sensor and outputs it to the display control unit 244 (see 4B in FIG. 4).
  • the signal processing unit 232 differentiates the signal output from the acceleration sensor, and detects the timing when the result of the differentiation processing becomes zero (that is, the timing when the slope of the signal output from the acceleration sensor becomes zero). To do.
  • the timing at which the inclination of the signal output from the acceleration sensor becomes zero is the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and the electronic thermometer 100 that has been shaken to the right.
  • the signal processing unit 232 extracts only the timing when the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and outputs it to the display control unit 244 (see 4B in FIG. 4).
  • the present invention is not limited to the use of the tilt sensor or the acceleration sensor as described above as the motion sensor 231.
  • the shake of the electronic thermometer 100 can be detected like an angular velocity sensor (gyroscope). Other sensors may be used.
  • FIG. 5 is a diagram illustrating an example of a light emitting dot pattern created in the display control unit 244.
  • the light emitting dot pattern is a display form in a virtual display area visualized by each light emitting element of the light emitting unit 252 and is swung in a predetermined direction with the number of light emitting elements arranged. It is defined by the number of dot rows, which is the number of times the light emitting element emits light during
  • black circles indicate no light and white circles indicate light.
  • 5 dots 5 light emitting elements) in the horizontal direction and 7 dots (7 light emitting elements) in the vertical direction are used to represent one character (excluding “dot”). Also, it is assumed that there are blanks of light emitting elements for the number of two dot rows between characters in the horizontal direction.
  • the light emitting element outputs a light emitting dot pattern consisting of 33 dot rows from the start to the end of the electronic thermometer 100 swinging right.
  • the light emission time corresponding to the number of dot rows (that is, the light emission time t per dot row of each light-emitting element) is T as the shake time taken from the start of the electronic thermometer 100 to the end thereof. Then, T / 33.
  • the shake time T required from the start to the end of the right shake of the electronic thermometer 100 is based on the detection result (the change timing of the shake direction) detected by the signal processing unit 232 based on the output of the motion sensor 231. Can be calculated based on this.
  • the shake direction of the electronic thermometer 100 shaken in the left direction is changed to the shake direction in which the shake direction is changed to the shake in the right direction, and the electron shaken in the right direction. Since the interval between the change direction of the shake direction in which the shake direction of the thermometer 100 is changed to the shake in the left direction can be calculated, the calculation may be performed based on this.
  • the display control unit 244 operates as follows in order to visualize information related to body temperature.
  • Information on the body temperature to be visualized is input in the light emitting unit 252 and a light emitting dot pattern for expressing this is created.
  • the light emission time t per dot row is calculated.
  • the output of the signal (shake direction change timing) from the signal processing unit 232 is used as the light emission start timing, and each light emitting element is set to the generated light emission dot pattern and the calculated light emission time t per dot row number. Based on the light emission.
  • FIG. 6 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 6A shows a state in which light emission is started at the change timing of the shake direction.
  • 6B and 6C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed.
  • 6D shows a state in which the shake time T has elapsed and the light emission has ended.
  • each light emitting element is controlled to emit light based on a dot row corresponding to an elapsed time from the light emission start timing in the light emitting dot pattern.
  • FIG. 7 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 6 is that, in the case of FIG. 7, the shake time T is smaller than the shake time T of FIG.
  • FIG. 7 shows a case where the shake speed is the same and the shake width is small.
  • the shake width is the same and the shake speed is large, the light emission time t is shorter than the light emission time of FIG. 6, but the distance moved during the short light emission time is increased by the increase of the shake speed.
  • the size of the represented character is the same as in the case of FIG.
  • FIG. 8 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 6 is that, in the case of FIG. 8, the shake time T is longer than the shake time T of FIG.
  • FIG. 8 shows a case where the shake speed is the same and the shake width is small.
  • the shake width is the same and the shake speed is low, the light emission time t is longer than the light emission time of FIG. 6, but the distance that can be moved during a long light emission time is also reduced because the shake speed is low.
  • the size of the displayed character is the same as in the case of FIG.
  • each light emitting element calculates a light emitting dot pattern to be emitted at each timing by using the output of the signal from the signal processing unit 232 (a signal indicating the change timing of the shake direction) as the light emission start timing.
  • the electronic thermometer 100 can visualize the characters “38.5 ° C.” until the right shake ends. That is, the character can be visualized in consideration of variation in each shake time when the user shakes.
  • FIG. 9 is a flowchart showing the flow of the body temperature measurement process of the electronic thermometer 100.
  • the body temperature is measured using a predictive body temperature measuring method disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-24530.
  • step S901 When the ON / OFF switch 104 is pressed, the electronic thermometer 100 is turned on, and the process proceeds to step S901.
  • step S901 the electronic thermometer 100 is initialized, and the temperature measurement unit 220 starts detecting the temperature value.
  • the temperature value is detected using the temperature measurement unit 220 every 0.5 seconds.
  • a predetermined value for example, 1 degree
  • Steps S903 to S907 are processes for predicting body temperature using a well-known predictive body temperature measurement method, and details thereof are described in, for example, Japanese Patent Application Laid-Open No. 2007-24530. Then, I will explain briefly.
  • step S903 it is determined whether or not a decrease in measured temperature is observed during measurement. If the predetermined temperature decrease is observed, the process proceeds to step S912. If the predetermined temperature decrease is not observed, the process proceeds to step S904.
  • step S912 the measured data is corrected. If the correction process is normally performed, the process returns to step S902. On the other hand, if the correction process does not end normally, the process proceeds to step S913. In step S913, the buzzer 260 reporting an error is sounded, and the body temperature measurement process is terminated.
  • step S904 using the data stored in step S902, a predicted value is derived sequentially (for example, at intervals of 0.5 seconds) using the predictive temperature measuring method described above.
  • step S906 operations other than the group determined in step S905 are stopped, and the predicted value is continuously derived for a predetermined time in the determined group.
  • step S907 If it is determined in step S907 that the prediction establishment condition is satisfied, the process proceeds to step S908. On the other hand, if the prediction establishment condition is not satisfied, the process proceeds to step S914.
  • step S914 for example, a timer or the like is used to monitor whether or not a predetermined time (for example, 45 seconds) has elapsed from the start of measurement. If it has elapsed, prediction is forcibly established, and the process proceeds to step S908. That is, the prediction value derived at that time is regarded as the final prediction value as it is.
  • a predetermined time for example, 45 seconds
  • step S908 the buzzer 260 that announces the prediction is sounded, and the process proceeds to step S909.
  • step S909 the derived predicted value of the body temperature is displayed on the display unit 251 of the output unit 250 as a measurement result.
  • step S910 it is determined whether the electronic thermometer 100 is swung in the horizontal direction. If it is determined that it is reciprocated in the horizontal direction, the process proceeds to step S915. If it is determined that it is not reciprocated in the horizontal direction, the process proceeds to step S911.
  • step S915 the display control unit 244 executes a visualization process (details of the flow of the visualization process will be described later) for visualizing the measured predicted body temperature value in the light emitting unit 252.
  • step S911 it is determined whether an instruction to end the body temperature measurement has been received.
  • the instruction to end the body temperature measurement may be determined based on, for example, whether or not the power ON / OFF switch 104 has been pressed, or the body temperature measurement is instructed when a certain time has elapsed from the display in step S909. It may be considered. Through the above steps, the body temperature measurement process is terminated and the power is turned off.
  • step S910 in FIG. 9 If it is determined in step S910 in FIG. 9 that the electronic thermometer 100 is swung in the horizontal direction, the visualization process shown in FIG. 10 is started.
  • step S1001 based on the output interval of the signal from the signal processing unit 232, the shake time T of the electronic thermometer 100 is calculated.
  • step S1002 a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 252 is created based on the calculated predicted body temperature value.
  • step S1003 one dot is calculated based on the right shake time T calculated in step S1001 and the number of dot rows of light emitting elements in the right shake direction necessary to express the light emitting dot pattern created in step S1002.
  • the light emission time t per column is calculated.
  • step S1004 at the timing when the output of the signal from the signal processing unit 232 is received, the light emission of each light emitting element is controlled based on the created light emitting dot pattern and the calculated light emission time t per dot row. Start.
  • step S1005 it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S1001. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
  • the light emitting unit 252 including a plurality of light emitting elements arranged, the motion sensor 231 that detects the shake of the electronic thermometer 100, and the light emitting unit 252. And a display control unit 244 for controlling the light emission.
  • thermometer when the electronic thermometer was shaken back and forth in the horizontal direction, it was configured so that the user could visually recognize the measured body temperature of the subject by appropriately controlling the light emission of the light emitting element.
  • the characters are visualized in consideration of the variation in each shake time when the user shakes the electronic thermometer 100.
  • the shake speed of the electronic thermometer 100 is not varied and is configured to be constant.
  • the shake speed during one shake varies.
  • the shake speed decreases before and after the change timing of the shake direction.
  • the information regarding the body temperature visually recognized by the user is that the character is shrunk in the horizontal direction before and after the change timing of the shake direction (that is, first and last in the character string), and the character is distorted as a whole. Become.
  • the light emission of each light-emitting element for visualizing information related to body temperature is controlled by using a time zone in which the change in shake speed is small, and the distortion of characters is eliminated.
  • FIG. 11 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
  • FIG. 11 in addition to providing a space for light emitting elements corresponding to the number of 2 dot rows between characters in the horizontal direction, in addition to the first character in the character string, , There are provided blanks of light emitting elements corresponding to the number of 6 dot rows. Further, the light-emitting element space corresponding to the number of 6-dot columns is provided after the last character of the character string.
  • the light emitting element outputs a light emitting dot pattern consisting of 45 dot rows from the start to the end of the electronic thermometer 100.
  • the light emission time corresponding to the number of dot rows (that is, the light emission time t per dot row of each light-emitting element) is T as the shake time taken from the start of the electronic thermometer 100 to the end thereof. Then, T / 45.
  • FIG. 12 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • 12A shows a state in which light emission is started at the change timing of the shake direction.
  • 12B and 12C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed.
  • 12D shows a state in which the shake time T has elapsed and the light emission has ended.
  • each light emitting element is controlled to emit light based on a dot row corresponding to an elapsed time from the light emission start timing in the light emitting dot pattern. Since the light-emitting dot pattern used in this embodiment includes blanks at the beginning and end of the character string, immediately after the change timing of the shake direction, each light-emitting element does not emit light, and is equal to the number of blank strings. After a lapse of time, the light emission for the first character is started. In addition, immediately before the change timing of the shake direction, each light emitting element does not emit light, and light emission for the last character ends by the number of blank columns.
  • the character is distorted by using the time zone in which the change in the shaking speed is small to emit light for visualizing information related to body temperature. It became possible to eliminate.
  • the present invention is not limited to this, and in eliminating the distortion of characters, the time from the change direction of the shake direction to the time when the first character is made visible and the time from the last character being visualized to the change timing of the shake direction.
  • This time may be set as a fixed time or a predetermined time based on the shake time T.
  • a predetermined time (Ti) based on the fixed time (Th) or the shake time T has elapsed from the change timing of the shake direction, it becomes the light emission start timing and is based on the fixed time (Th) or the shake time T from the light emission end timing.
  • You may comprise so that it may control so that it may become the change timing of a shake direction, after predetermined time (Ti) passes.
  • FIG. 13 is a diagram for explaining the contents of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment.
  • 13A shows a state in which light emission is started after a predetermined time Ti based on the fixed time Th or the shake time T has elapsed from the change timing of the shake direction.
  • 13B and 13C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed.
  • 13D shows a state in which the shake time T has elapsed and the light emission has already ended.
  • a fixed time Th or a predetermined time Ti based on the shake time T is set before and after the change direction of the shake direction, thereby using a time zone in which the change in shake speed is small. And it was set as the structure which performs light emission for visualizing the information regarding body temperature. As a result, it became possible to eliminate the distortion of characters.
  • the light emission of each light emitting element is controlled according to the shake time.
  • the present invention is not limited to this, and the light emission of each light emitting element is performed according to the shake width. You may comprise so that it may control.
  • the electronic thermometer 100 is shaken, the position of the electronic thermometer 100 is detected, the light emission start position is defined, and the light emitting elements are controlled to emit light according to the distance from the light emission start position. It is good also as composition to do. Details of this embodiment will be described below.
  • FIG. 14 is a diagram for explaining the contents of signal processing in the signal processing unit 232.
  • 14A of FIG. 14 is a diagram illustrating an output of the motion sensor 231 when the electronic thermometer 100 is shaken reciprocally by the user when the motion sensor 231 is an acceleration sensor.
  • the signal processing unit 232 detects a position where the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to a right shake (change position of the shake direction). Further, the distance from the change position of the shake direction during the right shake is calculated.
  • a sinusoidal signal is output from the acceleration sensor in accordance with the reciprocal shake of the electronic thermometer 100.
  • the signal processing unit 232 detects the timing at which the slope of the signal output from the acceleration sensor becomes zero (that is, the timing at which the shake speed becomes zero).
  • the timing at which the inclination of the signal output from the acceleration sensor becomes zero is the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and the electronic thermometer 100 that has been shaken to the right.
  • There are two types of timing that is, the timing at which the direction of movement is changed to leftward.
  • the signal processing unit 232 extracts these two types of timings and outputs the signals (signals indicating the shake position change position) to the display control unit 244.
  • the signal output from the acceleration sensor is 2 with the position of the electronic thermometer 100 (the change direction 1401 of the shake direction) at the timing when the shake direction of the electronic thermometer 100 that has been shaken to the right is changed to the right shake.
  • the reference position from the reference position up to the change position 1402 of the other shake direction (the position of the electronic thermometer 100 at the timing when the shake direction of the electronic thermometer 100 that has been shaken to the right is changed to the left shake) is obtained. Is calculated (see 14B in FIG. 14).
  • a signal indicating the calculated distance from the reference position is output to the display control unit 244.
  • the present invention is not limited to the acceleration sensor as described above as the motion sensor 231, and other sensors may be used as long as the distance from the change direction of the shake direction can be detected. Good.
  • FIG. 15 is a diagram illustrating an example of a light emitting dot pattern created in the display control unit 244.
  • the light emitting dot pattern is a display in a virtual display area visualized by each light emitting element of the light emitting unit 252 and is swung in a predetermined direction with the number of light emitting elements arranged. It is defined by the number of dot rows, which is the number of times of light emission between the light emitting elements, and the distance from the change position 1401 of the shake direction of each dot row.
  • black circles are turned off, and white circles are turned on.
  • 5 dots (5 light emitting elements) in the horizontal direction and 7 dots (7 light emitting elements) in the vertical direction are used to represent one character (excluding “dot”). Further, it is assumed that a space of light emitting elements corresponding to the number of 2 dot rows is provided between characters in the horizontal direction.
  • the light emitting element outputs a light emitting dot pattern consisting of 33 dot rows from the start to the end of the right shake of the electronic thermometer 100.
  • the light emission position of each dot row is defined by distances x1, x2,..., X33 from the change position of the shake direction of each dot row.
  • the display control unit 244 in the present embodiment operates as follows in order to visualize information related to body temperature. -The information regarding the body temperature which should be visualized in the light emission part 252 is received, and the light emission dot pattern for expressing this is produced. -Specify the distance from the change position of the shake direction of each dot row in the light emitting dot pattern.
  • the control is started with the output of the signal indicating the change direction of the shake direction output from the signal processing unit 232 as the light emission start position, and the signal indicating the distance from the change position of the shake direction output from the signal processing unit 232 is Each light emitting element is caused to emit light according to the corresponding dot row when the distance from the change position of the shake direction of each prescribed dot row coincides.
  • FIG. 16 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 16A shows a state in which light emission is started at the change position of the shake direction.
  • 16B and 16C respectively show a state in which the distance x from the change position of the shake direction has reached x10 and a state in which it has reached x22.
  • 16D indicates a state where x33 has been reached and light emission has ended.
  • each light emitting element is controlled to emit light based on a dot row corresponding to the distance from the change position of the shake direction.
  • FIG. 17 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 16 is that, in the case of FIG. 17, the deflection width L is larger than the deflection width L of FIG.
  • each light emitting element emits light sequentially when the distance from the change direction of the shake direction reaches a predetermined distance. .
  • the size of the character to be visualized (the size in the horizontal direction) is constant regardless of the shake width and the shake speed. That is, it is possible to absorb variations in the swing width and the swing speed that occur when the user shakes the electronic thermometer.
  • the control is started with the output of the signal (shake direction change position) from the signal processing unit 232 as the light emission start position, and each time the distance from the specified shake direction change position is reached, the corresponding dot
  • the characters “38.5 ° C.” can be visualized until the right shake is completed.
  • step S910 in FIG. 9 If it is determined in step S910 in FIG. 9 that the electronic thermometer 100 is shaken back and forth in the lateral direction, the processing shown in FIG. 18 is started.
  • step S1801 a light emitting dot pattern for expressing information related to the body temperature value to be visualized in the light emitting unit 252 is created based on the measured predicted body temperature value.
  • step S1802 the change position of the shake direction of the electronic thermometer 100 is identified based on the signal from the signal processing unit 232.
  • step S1803 control is started based on the change position of the shake direction identified in step S1802. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the shake direction change position) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S1801. In this case, each light emitting element is caused to emit light according to a corresponding dot row.
  • step S1804 it is determined whether or not the signal output from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S1802. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
  • the light emitting unit 252 including a plurality of light emitting elements arranged, the motion sensor 231 that detects the shake of the electronic thermometer 100, and the light emitting unit 252. And a display control unit 244 for controlling the light emission.
  • the electronic thermometer when the electronic thermometer is swung back and forth in the horizontal direction, the user can determine the measured temperature value of the subject in space (that is, the conventional display unit) by appropriately controlling the light emission of the light emitting element. (In a larger area than the display area).
  • the light emission of each light emitting element is controlled so that a character string of a predetermined size can be visually recognized at a predetermined position regardless of the fluctuation width, but the present invention is not limited to this.
  • the character size and position may be changed according to the shake width.
  • FIG. 19 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
  • FIG. 19A in FIG. 19 shows a light-emitting dot pattern when the fluctuation width is smaller than that in FIG. 15 (L1 ⁇ L).
  • 19B in FIG. 19 shows a light-emitting dot pattern when the deflection width is larger than that in FIG. 15 (L2> L).
  • FIG. 20 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 20A shows a state in which light emission is started at the change position of the shake direction.
  • 20B and 20C show a state where the position has reached 1/3 of the runout width L1 and a state where the position has reached 2/3, respectively.
  • 20D shows a state in which light emission is completed after reaching the position of the swing width L1.
  • each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the change position of the shake direction.
  • the character to be expressed is compared with the case of FIG.
  • the size size in the horizontal direction
  • the character strings to be expressed are arranged uniformly over the entire swing width L1.
  • FIG. 21 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 21A shows a state in which light emission is started at the change position of the shake direction.
  • 21B and 21C show a state in which the position has reached 1/3 of the runout width L2 and a state in which the position has reached 2/3, respectively.
  • 21D shows a state where the light emission has been completed after reaching the position of the swing width L2.
  • each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the change position of the shake direction.
  • the character dot to be expressed is compared with the case of FIG.
  • the size (the size in the horizontal direction) increases.
  • the character string to be expressed is arranged uniformly over the entire swing width L2.
  • step S910 in FIG. 9 the electronic thermometer 100 is swung back and forth in a direction (lateral direction) substantially orthogonal to the longitudinal direction of the thermometer when the front surface of the electronic thermometer is viewed, the processing shown in FIG. Is started.
  • step S2201 based on a signal from the signal processing unit 232 (a signal indicating a change position in the shake direction), the shake width of the electronic thermometer 100 is calculated.
  • step S2202 a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 252 is created based on the calculated predicted body temperature value.
  • the distance from the change position of the shake direction of each dot row is defined based on the shake width calculated in step S2201.
  • step S2203 the change position of the shake direction of the electronic thermometer 100 is identified based on the signal from the signal processing unit 232.
  • step S2204 control is started based on the change position of the shake direction identified in step S2203. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the shake direction change position) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S2202. In this case, each light emitting element is caused to emit light according to a corresponding dot row.
  • step S2205 it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S2201. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
  • thermometer 100 it is possible to change the size and position of the character to be visualized according to the swing width.
  • the control is performed so that the character string is arranged over the entire swing width, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • a configuration may be adopted in which light emission is not performed in the vicinity of the shake direction change position.
  • thermometer configured to control light emission of each light emitting element using only a time zone with a high shake speed
  • FIG. 23 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
  • FIG. 15 The difference from FIG. 15 is that, in the case of FIG. 23, in addition to providing a blank of light emitting elements corresponding to the number of 2-dot columns between characters in the horizontal direction, in addition to the first character of the character string, , There are provided blanks of light emitting elements corresponding to the number of 6 dot rows. Further, the light-emitting element space corresponding to the number of 6-dot columns is provided after the last character of the character string.
  • the character string indicating the information on the body temperature is not visualized in the vicinity of the position where the shake direction is changed, and only when the temperature is relatively high, The character string indicating the information on is visualized.
  • FIG. 24 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 24A shows a state in which light emission is started at the change position of the shake direction.
  • 24B and 24C respectively show a state where the position has reached 1/3 of the swing width L and a state where the position has reached 2/3.
  • 24D shows a state in which light emission is completed after reaching the position of the swing width L.
  • each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the shake direction change position.
  • each light-emitting element Since the light-emitting dot pattern used in the present embodiment includes blanks at the beginning and end of the character string, each light-emitting element does not emit light in the vicinity of the change position in the shake direction, and is at the position corresponding to the number of blank lines. After reaching, the first character will emit light. In addition, each light emitting element does not emit light in the vicinity of the other change direction of the shake direction, and the light emission of the last character ends at a position that is the number of blank lines before.
  • the information related to the body temperature is visualized using only the time zone with a large shake speed, it is possible to realize a more easily visible display.
  • a blank row is inserted at the beginning and end of the light emitting dot pattern in order to realize a more easily visible display.
  • the present invention is not limited to this, and the distance from the change position of the shake direction until the first character is emitted and the distance from the emission of the last character to the change position of the shake direction are fixed.
  • a predetermined distance based on the distance or runout width may be used.
  • a position that is a fixed distance (Lh) or a predetermined distance (Li) based on the swing width from the change direction of the swing direction becomes a light emission start position, and a predetermined distance based on the fixed distance (Lh) or the swing width from the light emission end position.
  • FIG. 25 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
  • a predetermined distance Li based on the fixed distance Lh or the fluctuation width is used instead of providing a blank of light emitting elements for the number of 6 dot lines before the first character of the character string. Is in the point of providing. Furthermore, a predetermined distance Li based on a fixed distance Lh or a swing width is provided instead of providing a blank of light emitting elements for the number of 6 dot lines after the last character of the character string.
  • FIG. 26 is a diagram for explaining the contents of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment.
  • 26A shows a state in which the light emission direction has not yet started at the change position of the shake direction.
  • 26B and 26C have already passed through the position of the predetermined distance Li based on the fixed distance Lh or the swing width, and have reached the position of 1/3 of the swing width L and the state of having reached the position of 2/3 Respectively.
  • 26D shows a state in which the light emission has already ended after reaching the position of the swing width L.
  • the present embodiment by setting the fixed distance Lh or the predetermined distance Li based on the swing width in the vicinity of the change position of the swing direction, only the time zone in which the swing speed is high is used. Thus, the information on the body temperature is visualized. As a result, it is possible to realize a display that is easier to see.
  • the light emission color of each light emitting element is not particularly mentioned, but the electronic thermometer according to the present invention is configured to change the light emission color of each light emitting element according to a predetermined condition, for example. It is good.
  • FIG. 27 is a diagram showing an example of an external configuration of an electronic thermometer 2700 according to the eighth embodiment of the present invention.
  • reference numeral 101 denotes a display unit that displays information related to the body temperature of the subject, and includes, for example, an LCD or the like.
  • the 2702 is a light emitting unit, and three rows of light emitting elements (light emitting element rows) such as LEDs arranged in the longitudinal direction of the electronic thermometer 2700 are arranged in the width direction of the electronic thermometer 2700.
  • the light emitting element rows are configured to emit light of different emission colors.
  • the first row (side closer to the display unit 101) is a light emitting element row that emits red light
  • the second row is a light emitting element row that emits green light
  • the third row is blue. It is assumed that the light emitting element array emits light.
  • the emission color of each light emitting element array is not limited to this, and other emission colors may be used.
  • the number of light emitting element arrays is not limited to three, and may be two or more. Any number of rows may be used.
  • 103 is an end cap, which is made of a metal such as stainless steel so that the body temperature of the subject can be easily conducted to a built-in temperature measuring unit (details will be described later).
  • 104 is an ON / OFF switch that controls the power source of the electronic thermometer 2700 by pressing when starting the measurement of the body temperature or after finishing the measurement of the body temperature.
  • FIG. 28 is a diagram showing a system configuration of the electronic thermometer 2700 according to the first embodiment of the present invention.
  • the electronic thermometer 2700 can be roughly divided into a power supply unit 210, a temperature measurement unit 220, a shake detection unit 230, a calculation control unit 240, an output unit 250, and a buzzer 260.
  • the power supply unit 210 incorporates a conventional disposable or rechargeable battery, and supplies power to each part of the electronic thermometer 2700.
  • the temperature measuring unit 220 includes a thermistor, a capacitor, a temperature measuring CR oscillation circuit, and the like, and outputs the temperature detected by the thermistor as an oscillation signal.
  • the output oscillation signal is counted by the counter 245 and output as a digital quantity.
  • the configuration of the temperature measurement unit 220 is an example and is not limited to this.
  • the arithmetic control unit 240 includes an EEPROM 241 that stores parameters necessary for body temperature measurement in advance, a RAM 242 that stores measured temperatures in time series, a ROM 243 that stores a predictive body temperature measurement program, etc., and an output unit. 250, a display control unit 244 for controlling 250, a counter 245 that counts the oscillation signal output from the temperature measurement unit 220, an arithmetic processing unit 246 that performs calculations according to parameters stored in advance in the EEPROM 241 in accordance with a body temperature measurement program in the ROM 243, A control circuit 247 for controlling the counter 245 and the display control unit 244 is provided.
  • the buzzer 260 informs the subject by ringing that the body temperature measurement has been completed.
  • the shake detection unit 230 includes a motion sensor 231 and a signal processing unit 232.
  • a motion sensor 231 for example, an acceleration sensor or a tilt sensor is used.
  • the signal processing unit 232 receives the shake of the electronic thermometer 100 detected by the motion sensor 231 as a signal, and based on the signal, the light emission start timing of the light emitting unit 252 and the light emission time per dot row of each light emitting element Is output to the display control unit 244 (a signal indicating the change timing of the shake direction (details will be described later)).
  • the output unit 250 includes a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like), and a light emitting unit 2852 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
  • a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like)
  • a light emitting unit 2852 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
  • Display unit 251 (corresponding to display unit 101 in FIG. 27) is configured by an LCD or the like, and displays information related to body temperature received from display control unit 244.
  • the light emitting unit 2852 (corresponding to the light emitting unit 2702 in FIG. 27) includes light emitting element arrays 2852A to 2852C composed of a plurality (seven in this embodiment) of light emitting elements.
  • the light emitting element array 2852A emits red light
  • the light emitting element array 2852B emits green light
  • the light emitting element array 2852C emits blue light.
  • Each light-emitting element array has a light-emitting dot pattern created by the display control unit 244 so that the user can visually recognize information about the body temperature of the subject when the electronic thermometer 2700 is reciprocally shaken (reciprocated). Then, light is emitted based on the light emission time and the light emission start timing / light emission end timing calculated by the display control unit 244 (details will be described later).
  • control target is switched to only one of the three light emitting element arrays 2852A to 2852C according to the measured body temperature, and light emission is performed by the switched light emitting element array. Shall be.
  • the display control unit 244 has a display control function for controlling the display of the display unit 251, a switching function for switching light emission of one of the light emitting element columns of the light emitting unit 2852, and light emission of the switched light emitting element column. And a light emission control function for controlling the light emission.
  • the user when the user reciprocates the electronic thermometer 2700 in a state where any one of the light emitting element rows of the light emitting unit 252 emits light, the user can obtain information on the body temperature of the subject by the afterimage effect of the eyes. Can be visually recognized as red, green, or blue characters in space.
  • the display unit 2851 is not necessarily provided, and the display unit 251 may be omitted. In this manner, by omitting the display unit 251, the electronic thermometer 2700 does not need to maintain the width or size for arranging the display unit, and thus the outer dimensions can be further reduced.
  • FIG. 29 shows a display visually recognized by the user by light emission of the light emitting element array of the light emitting unit 2852 when the electronic thermometer 2700 is reciprocally shaken in the horizontal direction while maintaining the posture of the electronic thermometer 2700. It is the figure which showed an example of the content.
  • the subject during the swing of the electronic thermometer 2700 that is reciprocated in the lateral direction (herein, the swing from the left side to the right side of the paper, hereinafter referred to as the right swing), the subject.
  • One of the light emitting element rows emits light based on the light emitting dot pattern corresponding to the information related to the body temperature and the light emission time per one dot row to be described later. Thereby, the user who sees the emitted light can visually recognize the information on the body temperature of the subject as red, green, or blue characters by the afterimage effect of the eyes.
  • FIG. 29 shows a state where “38.5 ° C.” appears to appear in the space within the shake range by shaking the electronic thermometer 2700 in the horizontal direction.
  • any one of the light emitting element arrays constituting the light emitting unit 2852 of the electronic thermometer 2700 emits light at the corresponding light emission timing until the right shake of the electronic thermometer 2700 is completed.
  • the light emitting element arrays emit light for a moment (equivalent to the light emission time per dot line) at the corresponding light emission timing, but the light emitted at each light emission timing is caused by the afterimage effect of the user's eyes. Since it remains as an afterimage, it is visually recognized by the user as a continuous character.
  • the signal processing unit 232 and the display control unit 244 when the electronic thermometer 2700 is shaken back and forth in the horizontal direction will be described.
  • FIG. 30 is a table defining the relationship between measured body temperature and emission color.
  • the table shown in FIG. 30 is stored in advance in the display control unit 244, and the display control unit 244 selects an emission color using the table based on the body temperature of the subject output from the arithmetic processing unit 246. To do.
  • the display control unit 244 switches the control target so that the light emitting element array corresponding to the selected emission color emits light.
  • the light-emitting element array 2852C is switched to emit light
  • the temperature is 36.0 ° C. or more and less than 37.5 ° C.
  • the light emitting element array 2852A is switched to emit light.
  • the table shown in FIG. 30 is an example, and the relationship between the measured body temperature and the emission color is not limited to the table shown in FIG.
  • FIG. 31 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 31A shows a state in which light emission is started at the change timing of the shake direction.
  • 31B and 31C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed.
  • 31D shows a state in which the shake time T has elapsed and the light emission has ended.
  • the light emitting element array 2852A is switched to emit light.
  • the light emitting element array 2852A is controlled to emit red light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
  • FIG. 32 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 31 is that, in the case of FIG. 32, since the measured body temperature is 36.5 ° C., the light emitting element array 2852B is switched to emit light.
  • the light emitting element array 2852B is controlled to emit green light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
  • FIG. 33 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 31 is that, in the case of FIG. 33, the measured body temperature is 35.5 ° C., so that the light-emitting element array 2852C is switched to emit light.
  • the light emitting element array 2852C is controlled to emit blue light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
  • FIG. 34 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 31 is that the shake time T is the shake time of FIG. It is at a point smaller than T.
  • FIG. 34 shows a case where the shake speed is the same and the shake width is small.
  • the shake time T when the shake time T is smaller than the shake time T of FIG. 31, the light emission time t becomes shorter than the light emission time of FIG. 31, and as a result, the size of the expressed character (in the horizontal direction) (Size) becomes smaller.
  • Size the size of the expressed character (in the horizontal direction)
  • the shake width is the same and the shake speed is large, the light emission time t is shorter than the light emission time of FIG. 31, but the distance moved during the short light emission time is increased by the increase of the shake speed.
  • the size of the character to be expressed is the same as in the case of FIG.
  • FIG. 35 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 31 is that, in the case of FIG. 35, the shake time T is longer than the shake time T of FIG.
  • the case where the shake time T is large may be the case where the shake speed is the same and the shake width is large, and the case where the shake width is the same and the shake speed is small. The same. For this reason, FIG. 35 shows a case where the shake speed is the same and the shake width is large.
  • the shake width is the same and the shake speed is small, the light emission time t is longer than the light emission time of FIG. 31, but the distance that can be moved during the long light emission time is reduced by the smaller shake speed.
  • the size of the displayed character is the same as in the case of FIG.
  • each light emitting element of the light emitting element array switched as a control target emits light at each timing with the output of the signal from the signal processing unit 232 (signal indicating the change timing of the shake direction) as the light emission start timing.
  • the electronic thermometer 2700 changes, for example, a character “38.5 ° C.” to the body temperature until the right shake is completed. It can be visualized by the emission color selected accordingly. That is, the character can be visualized in consideration of the variation of each shake time when the user shakes, and the character visualized at that time can be made a color corresponding to the measured body temperature.
  • step S910 in FIG. 9 If it is determined in step S910 in FIG. 9 that the electronic thermometer 2700 is shaken back and forth in the lateral direction, the processing shown in FIG. 36 is started.
  • step S3601 a light emission color corresponding to the calculated predicted body temperature value is selected with reference to the table shown in FIG.
  • step S3602 the light emitting element array corresponding to the light emission color selected in step S3601 is switched as a control target.
  • step S3603 based on the output interval of the signal from the signal processing unit 232, the shake time T of the right shake of the electronic thermometer 2700 is calculated.
  • step S3604 a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 2852 is created based on the calculated predicted body temperature value.
  • step S3605 based on the right shake time T calculated in step S3603 and the number of dot rows of light emitting elements in the right shake direction necessary to express the light emitting dot pattern created in step S3604, 1 is obtained.
  • the light emission time t per dot row is calculated.
  • step S3606 for the light emitting element array switched in step S3602, at the timing of receiving the signal output from the signal processing unit 232, the generated light emitting dot pattern and the calculated light emission time t per dot array are calculated. Based on the above, control of light emission of each light emitting element is started.
  • step S3607 it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S3603. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
  • a plurality of light emitting element arrays each including a plurality of light emitting elements are arranged, and light emission configured to emit light with different emission colors for each light emitting element array.
  • a display control unit 244 that controls light emission is provided.
  • the electronic thermometer when the electronic thermometer is swung back and forth in the horizontal direction, by appropriately controlling the light emission of the light-emitting element array to be controlled, the measured body temperature of the subject is displayed by the color corresponding to the body temperature. Is configured to be visible in space.
  • the electronic thermometer can realize a display that is easier to understand for the user without impairing the convenience of measuring the body temperature.
  • the electronic thermometer since the emission color changes according to the body temperature, the user can recognize at a glance whether or not the subject has heat and the like.
  • the light emitting element arrays 2852A to 2852C having different emission colors are arranged separately, and light is emitted by switching according to the measured body temperature, so that characters of a color corresponding to the measured body temperature are displayed.
  • the configuration is made visible, the present invention is not limited to this.
  • a light emitting element group consisting of a plurality of light emitting elements having different emission colors may be arranged in a common opening (light emitting window), and a plurality of the light emitting element groups may be arranged to form a light emitting element group row.
  • light emitted from each light emitting element constituting the light emitting element group is mixed and emitted from each light emitting window. That is, by adjusting the light emission amount of each light emitting element constituting the light emitting element group, light of any color can be emitted from the light emitting window. Details of this embodiment will be described below.
  • FIG. 37 is a diagram illustrating an example of an external configuration of an electronic thermometer 3700 according to the ninth embodiment of the present invention. Since reference numerals 101, 103, and 104 have already been described in the eighth embodiment, description thereof is omitted here.
  • reference numeral 3702 denotes a light emitting unit, and a plurality of light emitting windows, in which light emitted from a light emitting element group in which a plurality of light emitting elements such as LEDs are arranged, are mixed and emitted in the longitudinal direction of the electronic thermometer 3700. It is arranged. That is, a light emitting element group row in which a plurality of light emitting element groups each including a plurality of light emitting elements are arranged in the longitudinal direction is formed.
  • FIG. 37 a case where seven light emitting element groups are arranged in the longitudinal direction of the electronic thermometer 3700 as the light emitting unit 3702 is illustrated, but the light emitting element group arranged in the longitudinal direction of the electronic thermometer 3700 is illustrated.
  • the number is not limited to seven.
  • FIG. 38 is a cross-sectional view taken along the line AA in FIG.
  • a plurality of light emitting elements such as LEDs are arranged inside the light emitting window 3801 (3802A, 3802B, 3803C) to form a light emitting element group.
  • Each light emitting element has a different emission color.
  • the light emitting element 3802A emits red light
  • the light emitting element 1502B emits green light
  • the light emitting element 1502C emits blue light. To do.
  • the combination of light emission colors of the light emitting elements forming the light emitting element group is not limited to this, and light emitting elements that emit other light emission colors may be included.
  • the number of light emitting elements forming the light emitting element group is not limited to three, and may be any number as long as it is two or more.
  • one of the plurality of light emitting elements constituting the light emitting element row 2852A in FIG. 28 corresponds to the light emitting element 3802A in FIG. 38
  • one of the plurality of light emitting elements constituting the light emitting element row 2852B is shown in FIG. It corresponds to the light emitting element 3802B
  • one of the plurality of light emitting elements constituting the light emitting element array 2852C corresponds to the light emitting element 3802C in FIG.
  • the display control unit 244 has a switching function of switching to any one of the three light emitting element arrays 2852A to 2852C according to the measured body temperature. It was.
  • the display control unit 244 applies each of the light emitting element arrays 2852A to 2852C so that a color corresponding to the measured body temperature is emitted from the light emitting window.
  • An adjustment function for adjusting the current value is provided.
  • the user shakes the electronic thermometer 3700 in a reciprocating manner while each light emitting element of the light emitting unit 3702 emits light with the adjusted current value, so that the user can perform Information on the body temperature can be visually recognized as characters of a color corresponding to the body temperature in the space.
  • FIG. 39 is a diagram showing the relationship between the measured body temperature and the emission color.
  • the table defining the relationship shown in FIG. 39 is stored in advance in the display control unit 244.
  • the display control unit 244 emits light based on the relationship based on the body temperature of the subject output from the arithmetic processing unit 246. Select a color.
  • a strong blue color is selected as the luminescent color
  • a strong green color is selected as the luminescent color
  • a strong red color is selected as the emission color.
  • the emission color continuously changes according to the change in the measured body temperature. That is, the emission color corresponding to the measured body temperature is defined as a gradation of three colors of blue ⁇ green ⁇ red.
  • the display control unit 244 adjusts the current value applied to each light emitting element constituting each light emitting element group so that the selected emission color is emitted from the light emitting window.
  • the relationship shown in FIG. 39 is an example, and the continuous relationship between the measured body temperature and the emission color is not limited to the relationship shown in FIG.
  • step S910 in FIG. 9 If it is determined in step S910 in FIG. 9 that the electronic thermometer 3700 is being swung back and forth in the lateral direction, the processing shown in FIG. 40 is started.
  • step S4001 with reference to the relationship shown in FIG. 39, an emission color corresponding to the predicted value of the measured body temperature is selected.
  • step S4002 a current value to be applied to each light emitting element constituting each light emitting element group is determined so that the light emission color selected in step S4001 is obtained.
  • steps S4003 to S4005 Since the processing shown in steps S4003 to S4005 is the same as the processing shown in steps S3603 to S3605 of FIG. 36, description thereof is omitted here.
  • step S4006 the current determined in step S4002 based on the generated light emission dot pattern and the calculated light emission time t per dot row at the timing when the signal output from the signal processing unit 232 is received. Control is started so that each light emitting element emits light according to the value.
  • step S4007 is the same as the process shown in step S3607 of FIG.
  • a plurality of light emitting element groups including a plurality of light emitting elements arranged so that emitted light is mixed and emitted from the light emitting window are arranged in a plurality.
  • the light emitting element group row is provided, and the current value applied to each light emitting element included in each light emitting element group is adjusted according to the measured body temperature.
  • the electronic thermometer when the electronic thermometer is swung back and forth in the lateral direction, the measured body temperature of the subject according to the body temperature is appropriately controlled by appropriately controlling the light emission of each light emitting element whose current value is adjusted.
  • the configuration is such that the user can visually recognize the color characters in space.
  • the light emission of each light emitting element is controlled according to the shake time.
  • the present invention is not limited to this, and each of the light emitting elements according to the shake width as in the fifth embodiment. You may comprise so that light emission of a light emitting element may be controlled.
  • FIG. 41 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244.
  • 41A shows a state in which light emission is started at the change position of the shake direction.
  • 41B and 41C respectively show a state where the position has reached 1/3 of the swing width L and a state where the position has reached 2/3.
  • 41D shows a state in which light emission is completed after reaching the position of the swing width L.
  • the light emitting element array 2852A is switched to emit light.
  • the light emitting element array 2852A is controlled to emit red light according to the dot array corresponding to the distance from the shake direction change position.
  • FIG. 42 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 41 is that, in the case of FIG. 42, since the measured body temperature is 36.5 ° C., the light emitting element array 2852B is switched to emit light.
  • the light emitting element row 2852B is controlled to emit light in green according to the dot row corresponding to the distance from the shake direction change position.
  • FIG. 43 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the difference from FIG. 41 is that, in the case of FIG. 43, since the measured body temperature is 35.5 ° C., the light emitting element array 2852C is switched to emit light.
  • the light emitting element row 2852C is controlled to emit blue light according to the dot row corresponding to the distance from the shake direction change position.
  • FIG. 44 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244. Since the light emitting dot pattern used in this embodiment defines the distance from the change position of the shake direction of each dot row according to the shake width (L1), the case of FIG. 44 is compared with the case of FIG. Thus, the size of the represented character (the size in the horizontal direction) becomes smaller.
  • FIG. 45 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244.
  • the light emitting dot pattern used in the present embodiment defines the distance from the change position of the shake direction of each dot row in accordance with the shake width (L2), and therefore is expressed as compared with the case of FIG.
  • the size of the character increases.
  • the control is started with the output of the signal from the signal processing unit 232 (shake direction change position) as the light emission start position, and reaches the distance from the specified shake direction change position.
  • Each of the light-emitting elements constituting any one of the light-emitting element rows is caused to emit light sequentially according to the corresponding dot row, so that it is possible to absorb fluctuations in swing width and shake speed that occur when the user shakes the electronic thermometer. it can.
  • the eighth embodiment since light is emitted with a color corresponding to the measured body temperature, the user can recognize at a glance whether or not the subject has fever.
  • step S4001 with reference to the table shown in FIG. 30, the luminescent color corresponding to the calculated predicted body temperature is selected.
  • step S4002 the light emitting element array corresponding to the light emission color selected in step S4001 is switched as a control target.
  • step S4603 based on a signal from the signal processing unit 232 (a signal indicating a change position of the shake direction), the shake width of the electronic thermometer 3700 is calculated.
  • step S4604 a light emitting dot pattern for expressing information related to body temperature to be visualized in the light emitting unit 2852 is created based on the calculated predicted body temperature value.
  • the distance from the change position of the shake direction of each dot row is defined based on the shake width calculated in step S4603.
  • step S4605 the change position of the shake direction of the electronic thermometer 3700 is identified based on the signal from the signal processing unit 232.
  • step S4606 control is started based on the change position of the shake direction identified in step S4605. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the change position of the shake direction) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S4604. In this case, each light emitting element constituting the light emitting element row switched in step S4002 is caused to emit light according to the corresponding dot row.
  • step S4007 it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S4603. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
  • thermometer in the electronic thermometer according to the present embodiment, a plurality of light emitting element arrays each including a plurality of light emitting elements are arranged, and the light emitting unit 2852 having a different emission color for each light emitting element array, and the electronic thermometer 3700.
  • the electronic thermometer When the electronic thermometer is swung back and forth in the horizontal direction, the measured temperature of the subject is appropriately controlled by appropriately controlling the light emission of the light emitting element array to be controlled. Thus, the user can see in space.
  • the present invention is not limited to this and is actually measured.
  • Body temperature may be used.
  • the information to be visualized is not limited to the body temperature of the subject and may be other information.

Abstract

Provided is an electronic thermometer which achieves display that is easier to see for users without loss of convenience when the body temperature is measured. Specifically provided is an electronic thermometer characterized by being provided with a light emitter (252) in which a plurality of LEDs (252A) are arranged, a shake detection unit (230) which detects that an electronic thermometer (100) has been shaken, and a display controller (244) for controlling the light emission of each of the LEDs (252A), wherein the display controller (244) is provided with a means for creating a light-emission dot pattern, and a means for calculating the light-emission duration per dot column of the LED (252A) on the basis of the shaking duration in a predetermined direction of the electronic thermometer (100), which is calculated on the basis of the result of the detection by the shake detection unit (230), and the number of dot columns necessary to represent the light-emission dot pattern, and controls the light emission of each of the LEDs (252A) on the basis of the created light-emission dot pattern and the calculated light-emission duration per dot column.

Description

電子体温計及び表示制御方法Electronic thermometer and display control method
 本発明は、被検体の体温を測定する電子体温計に関するものである。 The present invention relates to an electronic thermometer that measures the body temperature of a subject.
 従来より、電子体温計にはLCD等の表示部が設けられており、測定された被検体の体温等の情報をユーザに表示することができるよう構成されている(例えば、特開2007-24530号公報参照)。 2. Description of the Related Art Conventionally, an electronic thermometer has been provided with a display unit such as an LCD, and configured to display information such as measured body temperature of a subject to a user (for example, Japanese Patent Application Laid-Open No. 2007-24530). See the official gazette).
 しかしながら、近年、その表示部は、電子体温計の軽量・小型化に伴って、大きさが制約される傾向にあり、ユーザにとっては、必ずしも見やすい表示となっていない。特に、周辺環境が暗い場合にあっては、表示された情報を読み取ることは困難な状況となっている。 However, in recent years, the display unit tends to be limited in size as the electronic thermometer becomes lighter and smaller, and the display is not always easy for the user to see. In particular, when the surrounding environment is dark, it is difficult to read the displayed information.
 一方、寸法を大きくしたり、LCDのバックライトを明るくしたりすることで、ユーザにとってより見やすい表示部を実現することは可能であるが、この場合、電子体温計の外形が大きくなったり、消費電力が増大し電池交換が必要になるなど、ユーザにとっての利便性が損なわれる結果となる。 On the other hand, it is possible to realize a display section that is easier for the user to see by increasing the dimensions or making the backlight of the LCD brighter. However, in this case, the external shape of the electronic thermometer becomes large, power consumption As a result, the convenience for the user is impaired.
 本発明は上記課題に鑑みてなされたものであり、電子体温計において、ユーザの利便性を損なうことなく、より見やすい表示を実現することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to realize an easy-to-see display without impairing user convenience in an electronic thermometer.
 上記の目的を達成するために本発明に係る電子体温計は以下のような構成を備える。即ち、
 被検体の体温を測定する電子体温計であって、
 配列された複数の発光素子を備える発光手段と、
 前記電子体温計が振られたことを検出する振れ検出手段と、
 前記発光手段が備える各発光素子の発光を制御する発光制御手段と、を備え、
 前記発光制御手段は、
  測定された前記被検体の体温に関する情報に基づいて発光ドットパターンを作成する作成手段と、
  前記振れ検出手段による検出結果に基づいて算出された、前記電子体温計の所定方向の振れ時間と、前記発光ドットパターンを表現するのに必要な前記所定方向の発光素子のドット列数とに基づいて、前記発光素子の1ドット列当たりの発光時間を算出する算出手段と、を備え、
 前記振れ検出手段が前記電子体温計が振られたことを検出した場合に、前記作成された発光ドットパターンと、前記算出された1ドット列当たりの発光時間とに基づいて、前記各発光素子の発光を制御することを特徴とする。
In order to achieve the above object, an electronic thermometer according to the present invention has the following configuration. That is,
An electronic thermometer for measuring the temperature of a subject,
A light emitting means comprising a plurality of light emitting elements arranged;
Shake detection means for detecting that the electronic thermometer is shaken;
A light emission control means for controlling light emission of each light emitting element provided in the light emission means,
The light emission control means includes
Creating means for creating a luminescent dot pattern based on the measured body temperature information of the subject;
Based on the shake time in the predetermined direction of the electronic thermometer calculated based on the detection result by the shake detection means, and the number of dot rows of the light emitting elements in the predetermined direction necessary to express the light emitting dot pattern Calculating means for calculating a light emission time per dot row of the light emitting element,
When the shake detecting means detects that the electronic thermometer is shaken, the light emission of each light emitting element is based on the created light emitting dot pattern and the calculated light emission time per dot row. It is characterized by controlling.
 本発明によれば、電子体温計において、ユーザの利便性を損なうことなく、より見やすい表示を実現することが可能となる。 According to the present invention, an electronic thermometer can realize a display that is easier to see without impairing user convenience.
 その他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付すものとする。 Other features and advantages will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same reference numerals are assigned to the same or similar components.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の第1の実施形態に係る電子体温計100の外観構成の一例を示す図である。 本発明の第1の実施形態に係る電子体温計100のシステム構成を示す図である。 電子体温計100を長手方向と略直交する方向に、電子体温計100の姿勢を維持した状態で往復で振られた場合に、発光部252の発光によってユーザに視認される表示内容の一例を示した図である。 信号処理部232における信号処理の内容を説明するための図である。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 電子体温計100の体温測定処理の流れを示すフローチャートである。 測定された体温を発光部252において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 本発明の第4の実施形態に係る電子体温計の信号処理部232における信号処理の内容を説明するための図である。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 測定された体温を発光部252において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 測定された体温を発光部252において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244において作成された発光ドットパターンの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 本発明の第8の実施形態に係る電子体温計2700の外観構成の一例を示す図である。 本発明の第8の実施形態に係る電子体温計2700のシステム構成を示す図である。 電子体温計2700を長手方向と略直交する方向に、電子体温計2700の姿勢を維持した状態で往復で振られた場合に、発光部252の発光によってユーザに視認される表示内容の一例を示した図である。 測定された被検者の体温に応じて、発光色を選択する際に用いられるテーブルの一例を示す図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 測定された体温を発光部2852において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。 本発明の第9の実施形態に係る電子体温計3700の外観構成の一例を示す図である。 電子体温計3700の発光部の断面構成を示す図である。 測定された被検者の体温に応じて、発光色を選択する際に用いられる、体温と発光色との関係を示す図である。 測定された体温を発光部2852において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。 測定された体温を発光部2852において可視化するための、表示制御部244における可視化処理の流れを示すフローチャートである。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is a figure which shows an example of an external appearance structure of the electronic thermometer 100 which concerns on the 1st Embodiment of this invention. It is a figure which shows the system configuration | structure of the electronic thermometer 100 which concerns on the 1st Embodiment of this invention. The figure which showed an example of the display content visually recognized by the user by light emission of the light emission part 252 when the electronic thermometer 100 is shaken reciprocally in the direction substantially orthogonal to the longitudinal direction while maintaining the posture of the electronic thermometer 100 It is. FIG. 6 is a diagram for explaining the contents of signal processing in a signal processing unit 232; It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a flowchart which shows the flow of the body temperature measurement process of the electronic thermometer 100. FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252. FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the signal processing in the signal processing part 232 of the electronic thermometer which concerns on the 4th Embodiment of this invention. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252. FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a flowchart which shows the flow of the visualization process in the display control part 244 for visualizing the measured body temperature in the light emission part 252. FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure which shows an example of the light emission dot pattern produced in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure which shows an example of an external appearance structure of the electronic thermometer 2700 which concerns on the 8th Embodiment of this invention. It is a figure which shows the system configuration | structure of the electronic thermometer 2700 which concerns on the 8th Embodiment of this invention. The figure which showed an example of the display content visually recognized by the user by light emission of the light emission part 252 when the electronic thermometer 2700 is shaken reciprocally in the direction substantially orthogonal to the longitudinal direction while maintaining the posture of the electronic thermometer 2700. It is. It is a figure which shows an example of the table used when selecting luminescent color according to the body temperature of the measured subject. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852. It is a figure which shows an example of an external appearance structure of the electronic thermometer 3700 which concerns on the 9th Embodiment of this invention. It is a figure which shows the cross-sectional structure of the light emission part of the electronic thermometer 3700. FIG. It is a figure which shows the relationship between body temperature and luminescent color used when selecting luminescent color according to the body temperature of the measured subject. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. It is a figure for demonstrating the content of the light emission control processing from the light emission start to the light emission end in the display control part 244. FIG. 12 is a flowchart showing a flow of visualization processing in the display control unit 244 for visualizing measured body temperature in the light emitting unit 2852.
 以下、必要に応じて添付図面を参照しながら本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings as necessary.
 [第1の実施形態]
 <1.電子体温計の外観構成>
 図1は、本発明の第1の実施形態に係る電子体温計100の外観構成の一例を示す図である。
[First Embodiment]
<1. External structure of electronic thermometer>
FIG. 1 is a diagram illustrating an example of an external configuration of an electronic thermometer 100 according to the first embodiment of the present invention.
 図1において、101は、被検体の体温に関する情報を表示する表示部であり、例えば、LCD等により構成されている。 In FIG. 1, reference numeral 101 denotes a display unit that displays information related to the body temperature of the subject, and is composed of, for example, an LCD or the like.
 102は発光部であり、LED等の発光素子が電子体温計100の長手方向に一列に配列されている。なお、図1の例では、発光部102としてLEDが7個配列された場合について図示しているが、発光部102に含まれるLEDの数は7個に限られない。また、図1の例では、発光部102としてLEDを1列に配列した場合について図示しているが、LEDの配列数は1列に限られず、複数列であってもよい。 102 is a light emitting unit, and light emitting elements such as LEDs are arranged in a line in the longitudinal direction of the electronic thermometer 100. In the example of FIG. 1, the case where seven LEDs are arranged as the light emitting unit 102 is illustrated, but the number of LEDs included in the light emitting unit 102 is not limited to seven. In the example of FIG. 1, a case where LEDs are arranged in one row as the light emitting unit 102 is illustrated, but the number of LEDs arranged is not limited to one row, and may be a plurality of rows.
 103はエンドキャップであり、内蔵された温度計測部(詳細は後述)に対して被検体の体温が伝導しやすいように、ステンレスなどの金属により構成されている。 103 is an end cap, which is made of a metal such as stainless steel so that the body temperature of the subject can be easily conducted to a built-in temperature measurement unit (details will be described later).
 104はON/OFFスイッチであり、体温の測定を開始する際、又は体温の測定が終了した後に押すことで、電子体温計100の電源を制御する。 104 is an ON / OFF switch that controls the power source of the electronic thermometer 100 when pressed when starting the measurement of the body temperature or after the end of the measurement of the body temperature.
 <2.電子体温計のシステム構成>
 次に、電子体温計のシステム構成について図2を参照しながら説明する。
<2. System configuration of electronic thermometer>
Next, the system configuration of the electronic thermometer will be described with reference to FIG.
 図2は、本発明の第1の実施形態に係る電子体温計100のシステム構成を示す図である。 FIG. 2 is a diagram showing a system configuration of the electronic thermometer 100 according to the first embodiment of the present invention.
 電子体温計100は、電源部210と温度計測部220と振れ検出部230と演算制御部240と、出力部250と、ブザー260とに大別することができる。 The electronic thermometer 100 can be roughly divided into a power supply unit 210, a temperature measurement unit 220, a shake detection unit 230, a calculation control unit 240, an output unit 250, and a buzzer 260.
 電源部210は、従来の使い捨て式又は充電式の電池を内蔵しており、電子体温計100の各部に電源を供給する。 The power supply unit 210 incorporates a conventional disposable or rechargeable battery, and supplies power to each part of the electronic thermometer 100.
 温度計測部220は、測温用サーミスタとコンデンサと抵抗器と半導体により構成されるCR発振器からなり、温度により発振周波数が変化する発振信号を出力する。出力された発振信号はカウンタ245において単位時間当りの発振信号をカウントしてCR発振器の発振周波数をデジタル量として発生する。なお、温度計測部220の構成は一例であって、これに限定されるものではない。 The temperature measuring unit 220 includes a CR oscillator composed of a thermistor for temperature measurement, a capacitor, a resistor, and a semiconductor, and outputs an oscillation signal whose oscillation frequency changes depending on the temperature. The output oscillation signal counts the oscillation signal per unit time in the counter 245 and generates the oscillation frequency of the CR oscillator as a digital quantity. The configuration of the temperature measurement unit 220 is an example and is not limited to this.
 演算制御部240は、体温測定に必要なパラメータをあらかじめ記憶しているEEPROM241、計測した温度を時系列で記憶するためのRAM242、予測式の体温測定プログラム等をあらかじめ記憶しているROM243、出力部250を制御するための表示制御部244、温度計測部220より出力された発振信号をカウントするカウンタ245、ROM243の体温測定プログラムに従いEEPROM241にあらかじめ記憶されたパラメータに従って演算を行う演算処理部246、カウンタ245や表示制御部244を制御する制御回路247等を備える。 The arithmetic control unit 240 includes an EEPROM 241 that stores parameters necessary for body temperature measurement in advance, a RAM 242 that stores measured temperatures in time series, a ROM 243 that stores a predictive body temperature measurement program, etc., and an output unit. 250, a display control unit 244 for controlling 250, a counter 245 for counting oscillation signals output from the temperature measurement unit 220, an arithmetic processing unit 246 for performing calculations according to parameters stored in advance in the EEPROM 241 in accordance with a body temperature measurement program in the ROM 243, a counter 245 and a control circuit 247 for controlling the display control unit 244.
 振れ検出部230は、モーション・センサ231と、信号処理部232とを備える。モーション・センサ231としては、例えば、加速度センサや傾斜センサ等が用いられるものとする。 The shake detection unit 230 includes a motion sensor 231 and a signal processing unit 232. As the motion sensor 231, for example, an acceleration sensor or a tilt sensor is used.
 信号処理部232は、モーション・センサ231が検出した電子体温計100の振れを信号として受信し、当該信号に基づいて、発光部252の発光開始のタイミングならびに各発光素子の1ドット列当たりの発光時間を規定するための信号(振れ方向の変更タイミングを示す信号(詳細は後述))を表示制御部244に出力する。 The signal processing unit 232 receives the shake of the electronic thermometer 100 detected by the motion sensor 231 as a signal, and based on the signal, the light emission start timing of the light emitting unit 252 and the light emission time per dot row of each light emitting element Is output to the display control unit 244 (a signal indicating the change timing of the shake direction (details will be described later)).
 出力部250は、従来の表示方法(LCD等)で体温に関する情報を表示する表示部251と、ユーザの目の残像効果を利用して体温に関する情報を可視化する発光部252とを含む。 The output unit 250 includes a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like), and a light emitting unit 252 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
 表示部251は、LCD等により構成され、表示制御部244から出力された体温に関する情報を表示する。 The display unit 251 is configured by an LCD or the like, and displays information related to body temperature output from the display control unit 244.
 発光部252は、電子体温計100が往復で振られた(往復運動した)際に、被検体の体温に関する情報をユーザが視認できるように、表示制御部244にて作られた発光ドットパターン、と算出された発光時間と発光開始タイミングと発光終了タイミングにて各発光素子を発光させる(詳細は後述)。つまり、表示制御部244は、表示部251の表示を制御する表示制御機能と、発光部252の各発光素子の発光を制御する発光制御機能とを有している。 The light emitting unit 252 is a light emitting dot pattern created by the display control unit 244 so that when the electronic thermometer 100 is reciprocally shaken (reciprocated), the user can visually recognize information about the body temperature of the subject. Each light emitting element is caused to emit light at the calculated light emission time, light emission start timing, and light emission end timing (details will be described later). That is, the display control unit 244 has a display control function for controlling display on the display unit 251 and a light emission control function for controlling light emission of each light emitting element of the light emitting unit 252.
 これにより、発光部252の各発光素子が発光している状態で、ユーザが電子体温計100を往復で振ることで、ユーザは、目の残像効果により、被検体の体温に関する情報を空間上において視認することができる。 As a result, in a state where each light emitting element of the light emitting unit 252 emits light, the user shakes the electronic thermometer 100 in a reciprocating manner, so that the user visually recognizes information on the body temperature of the subject in the space due to the afterimage effect of the eyes. can do.
 なお、電子体温計100のように発光部102を備える構成の場合、必ずしも表示部251を設ける必要はなく、表示部251は省略しても良い。このように、表示部251を省略することで、電子体温計100では、表示部を実装するための筺体のスペースを確保する必要が無くなるため、外形寸法を更に小さくすることが可能となる。 In addition, in the structure provided with the light emission part 102 like the electronic thermometer 100, the display part 251 is not necessarily provided, and the display part 251 may be omitted. In this manner, by omitting the display unit 251, the electronic thermometer 100 does not need to secure a housing space for mounting the display unit, and thus the outer dimensions can be further reduced.
 ブザー260は、体温測定が終了したことを、鳴動により被検体に知らせる。 The buzzer 260 informs the subject by ringing that the body temperature measurement has been completed.
 <3.発光部の発光により視認される表示内容>
 次に、電子体温計100の発光部252の各発光素子の発光により視認される表示内容について、図面を参照しながら説明する。
<3. Display contents visually recognized by light emission of light emitting unit>
Next, display contents visually recognized by light emission of each light emitting element of the light emitting unit 252 of the electronic thermometer 100 will be described with reference to the drawings.
 図3は電子体温計100を長手方向と略直交する方向(以下、横方向と称す)に、電子体温計100の姿勢を維持した状態で往復で振った場合に、発光部252の各発光素子の発光によってユーザに視認される表示内容の一例を示した図である。 FIG. 3 shows the light emission of each light-emitting element of the light-emitting unit 252 when the electronic thermometer 100 is shaken back and forth in a direction substantially orthogonal to the longitudinal direction (hereinafter referred to as a lateral direction) while maintaining the posture of the electronic thermometer 100. It is the figure which showed an example of the display content visually recognized by the user.
 発光部252では、電子体温計100が横方向に往復で振られているうちの、所定方向の振れ(ここでは、紙面左側から右側への振れ、以下、右振れと称す)の間、被検体の体温に関する情報に対応する発光ドットパターンと、後述する1ドット列あたりの発光時間とに基づいて、各発光素子を発光させる。これにより、その発光を見たユーザは、目の残像効果により、該被検体の体温に関する情報を視認することができる。 In the light emitting unit 252, while the electronic thermometer 100 is reciprocally shaken in the horizontal direction, during a shake in a predetermined direction (here, a shake from the left side to the right side of the paper, hereinafter referred to as a right shake), Each light emitting element is caused to emit light based on a light emitting dot pattern corresponding to information on the body temperature and a light emitting time per one dot row described later. Thereby, the user who sees the luminescence can visually recognize the information on the body temperature of the subject by the afterimage effect of the eyes.
 なお、図3の例は、電子体温計100を横方向に往復で振ることで、振れ範囲内の空間上に、“38.5℃”という表示が浮かび上がって見える様子を示したものである。 In addition, the example of FIG. 3 shows a state where the display of “38.5 ° C.” appears to appear in the space within the shake range by shaking the electronic thermometer 100 in the horizontal direction.
 図3に示すように、電子体温計100の発光部252を構成する各LED252Aは、電子体温計100の右振れが終了するまでの間に、それぞれ対応する発光タイミングにおいて発光する。なお、本実施形態では紙面右側から左側への振れ(以下、左振れと称す)の間は、LED252Aは発光しないものとする。 As shown in FIG. 3, each LED 252 </ b> A constituting the light emitting unit 252 of the electronic thermometer 100 emits light at a corresponding light emission timing until the right shake of the electronic thermometer 100 ends. In the present embodiment, it is assumed that the LED 252A does not emit light during the shake from the right side to the left side of the paper (hereinafter referred to as the left shake).
 このように、それぞれのLED252Aは、対応する発光タイミングにおいて、一瞬(1ドット列当たりの発光時間分)発光するだけであるが、ユーザの網膜がもっている残像効果により、それぞれの発光タイミングで発光した光が残像として残るため、ユーザには、連続した文字として視認されることとなる。以下、電子体温計100を横方向に往復で振った場合の、信号処理部232及び表示制御部244における処理の詳細について説明する。 In this way, each LED 252A only emits light for an instant (emission time per dot row) at the corresponding light emission timing, but it emits light at each light emission timing due to the afterimage effect of the user's retina. Since the light remains as an afterimage, the user sees it as a continuous character. Hereinafter, details of processing in the signal processing unit 232 and the display control unit 244 when the electronic thermometer 100 is shaken back and forth in the horizontal direction will be described.
 <4.信号処理部における信号処理>
 まず、発光部252における発光開始/発光終了のタイミングならびに各素子の発光時間を規定するための信号(振れ方向の変更タイミングを示す信号)を出力する信号処理部232における信号処理の内容について説明する。
<4. Signal Processing in Signal Processing Unit>
First, the contents of signal processing in the signal processing unit 232 that outputs a signal for specifying the light emission start / light emission end timing in the light emission unit 252 and the light emission time of each element (signal indicating the change timing of the shake direction) will be described. .
 図4は、信号処理部232における信号処理の内容を説明するための図である。図4の4A-1は、モーション・センサ231が傾斜センサであった場合に、ユーザによって電子体温計100が往復で振られた際のモーション・センサ231の出力を示した図である。また、図4の4A-2は、モーション・センサ231が加速度センサであった場合に、ユーザによって電子体温計100が往復で振られた際のモーション・センサ231の出力を示した図である。 FIG. 4 is a diagram for explaining the contents of signal processing in the signal processing unit 232. 4A-1 is a diagram illustrating an output of the motion sensor 231 when the electronic thermometer 100 is reciprocated by the user when the motion sensor 231 is a tilt sensor. 4A-2 is a diagram showing an output of the motion sensor 231 when the electronic thermometer 100 is reciprocated by the user when the motion sensor 231 is an acceleration sensor.
 上述したように、電子体温計100では、横方向の往復の振れのうち、右振れの間のみ、発光部252の各発光素子の発光を行うように制御する。これに対応するため、信号処理部232では、左振れしていた電子体温計100の振れ方向が右振れに変更されたタイミング(振れ方向の変更タイミング)を検出する。 As described above, the electronic thermometer 100 performs control so that each light-emitting element of the light-emitting unit 252 emits light only during the right-side swing among the reciprocal shakes in the horizontal direction. In order to cope with this, the signal processing unit 232 detects the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake (the change timing of the shake direction).
 図4の4A-1に示すように、本実施形態に係る傾斜センサでは、左振れしていた電子体温計100の振れ方向が、右振れに変更された場合に、これを検出し、ON信号として出力するよう構成されている。 As shown by 4A-1 in FIG. 4, in the tilt sensor according to the present embodiment, when the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake, this is detected and the ON signal is detected. It is configured to output.
 このため、信号処理部232では、傾斜センサより出力されたON信号を検出し、これを表示制御部244に出力する(図4の4B参照)。 For this reason, the signal processing unit 232 detects the ON signal output from the tilt sensor and outputs it to the display control unit 244 (see 4B in FIG. 4).
 一方、モーション・センサ231が加速度センサであった場合には、図4の4A-2に示すように、電子体温計100の往復の振れに応じて、正弦波状の信号が出力される。 On the other hand, when the motion sensor 231 is an acceleration sensor, a sinusoidal signal is output in accordance with the reciprocal shake of the electronic thermometer 100, as indicated by 4A-2 in FIG.
 このため、信号処理部232では、加速度センサより出力された信号を微分処理し、微分処理の結果がゼロになるタイミング(つまり、加速度センサより出力された信号の傾きがゼロになるタイミング)を検出する。 Therefore, the signal processing unit 232 differentiates the signal output from the acceleration sensor, and detects the timing when the result of the differentiation processing becomes zero (that is, the timing when the slope of the signal output from the acceleration sensor becomes zero). To do.
 ここで、加速度センサより出力された信号の傾きがゼロになるタイミングとしては、左振れしていた電子体温計100の振れ方向が、右振れに変更されたタイミングと、右振れしていた電子体温計100の振れ方向が、左振れに変更されたタイミングの、2種類がある。 Here, the timing at which the inclination of the signal output from the acceleration sensor becomes zero is the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and the electronic thermometer 100 that has been shaken to the right. There are two types of timing, that is, the timing at which the direction of movement is changed to leftward.
 このうち、信号処理部232では、左振れしていた電子体温計100の振れ方向が、右振れに変更されたタイミングのみを抽出して、表示制御部244に出力する(図4の4B参照)。 Among these, the signal processing unit 232 extracts only the timing when the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and outputs it to the display control unit 244 (see 4B in FIG. 4).
 なお、本発明は、モーション・センサ231として上述のような傾斜センサや加速度センサが用いられることに限定するものではなく、例えば角速度センサ(ジャイロスコープ)のように、電子体温計100の振れを検出できる他のセンサが用いられてもよい。 The present invention is not limited to the use of the tilt sensor or the acceleration sensor as described above as the motion sensor 231. For example, the shake of the electronic thermometer 100 can be detected like an angular velocity sensor (gyroscope). Other sensors may be used.
 <5.表示制御部において作成される発光ドットパターン>
 次に、表示制御部244において作成される発光ドットパターンについて説明する。図5は、表示制御部244において作成される発光ドットパターンの一例を示す図である。
<5. Light emitting dot pattern created in display control unit>
Next, the light emission dot pattern created in the display control part 244 is demonstrated. FIG. 5 is a diagram illustrating an example of a light emitting dot pattern created in the display control unit 244.
 図5に示すように、発光ドットパターンは、発光部252の各発光素子により可視化される仮想的な表示領域における表示形態であり、配列された発光素子の数と、所定の方向に振られている間の発光素子の発光回数であるドット列数とにより規定される。 As shown in FIG. 5, the light emitting dot pattern is a display form in a virtual display area visualized by each light emitting element of the light emitting unit 252 and is swung in a predetermined direction with the number of light emitting elements arranged. It is defined by the number of dot rows, which is the number of times the light emitting element emits light during
 図5において、黒丸は消灯、白丸は点灯を示す。本実施形態では、1文字(ただし、「点」は除く)を表現するのに、横方向5ドット(5つの発光素子)と縦方向7ドット(7つの発光素子)とを用いるものとする。また、横方向の文字と文字の間には、2ドット列数分の発光素子の空白が設けられているものとする。 In FIG. 5, black circles indicate no light and white circles indicate light. In the present embodiment, 5 dots (5 light emitting elements) in the horizontal direction and 7 dots (7 light emitting elements) in the vertical direction are used to represent one character (excluding “dot”). Also, it is assumed that there are blanks of light emitting elements for the number of two dot rows between characters in the horizontal direction.
 このため、体温に関する情報として、例えば“38.5℃”の5文字(“3”、“8”、“.”、“5”及び“℃”)を可視化するためには、
(1文字あたりの横方向ドット列数(=5ドット))×4文字
+(「点」の横方向ドット列数(=1ドット))×1文字
+(空白列のドット列数(=2ドット))×(5文字+1)
=33ドット列数が必要となる。
For this reason, as information on body temperature, for example, in order to visualize 5 characters “38.5 ° C.” (“3”, “8”, “.”, “5” and “° C.”),
(Number of horizontal dot rows per character (= 5 dots)) × 4 characters + (number of horizontal dot rows of “dots” (= 1 dot)) × 1 character + (number of blank rows of dots (= 2) Dot)) x (5 characters + 1)
= 33 dot row number is required.
 つまり、電子体温計100の右振れが開始してから終了するまでの間に、発光素子は、33ドット列数からなる発光ドットパターンを出力することとなる。このため、1ドット列数分の発光時間(つまり、各発光素子の1ドット列当たりの発光時間t)は、電子体温計100の右振れが開始してから終了するまでにかかる振れ時間をTとすると、T/33となる。 That is, the light emitting element outputs a light emitting dot pattern consisting of 33 dot rows from the start to the end of the electronic thermometer 100 swinging right. For this reason, the light emission time corresponding to the number of dot rows (that is, the light emission time t per dot row of each light-emitting element) is T as the shake time taken from the start of the electronic thermometer 100 to the end thereof. Then, T / 33.
 ここで、電子体温計100の右振れが開始してから終了するまでにかかる振れ時間Tは、モーション・センサ231の出力に基づいて信号処理部232が検出した検出結果(振れ方向の変更タイミング)に基づいて算出することができる。 Here, the shake time T required from the start to the end of the right shake of the electronic thermometer 100 is based on the detection result (the change timing of the shake direction) detected by the signal processing unit 232 based on the output of the motion sensor 231. Can be calculated based on this.
 具体的には、信号処理部232から出力されたON信号とON信号との間隔の1/2を算出することにより求めることができる。 Specifically, it can be obtained by calculating ½ of the interval between the ON signal output from the signal processing unit 232 and the ON signal.
 なお、モーション・センサ231が加速度センサの場合には、左方向に振られた電子体温計100の振れ方向が、右方向の振れに変更された振れ方向の変更タイミングと、右方向に振られた電子体温計100の振れ方向が左方向の振れに変更された振れ方向の変更タイミングとの間隔を算出することができるため、これに基づいて求めるよう構成してもよい。 In the case where the motion sensor 231 is an acceleration sensor, the shake direction of the electronic thermometer 100 shaken in the left direction is changed to the shake direction in which the shake direction is changed to the shake in the right direction, and the electron shaken in the right direction. Since the interval between the change direction of the shake direction in which the shake direction of the thermometer 100 is changed to the shake in the left direction can be calculated, the calculation may be performed based on this.
 このように、表示制御部244では、体温に関する情報を可視化するために以下のように動作する。
・発光部252において可視化すべき体温に関する情報が入力され、これを表現するための発光ドットパターンを作成する。
・信号処理部232からの出力信号間隔に基づいて算出された振れ時間Tと、体温に関する情報を表現するのに必要な横方向の発光素子のドット列数とに基づいて、次回の右振れにおける1ドット列当たりの発光時間tを算出する。
・信号処理部232からの信号(振れ方向の変更タイミング)の出力を発光開始タイミングとして、各発光素子を、作成された発光ドットパターンと、算出された1ドット列数あたりの発光時間tとに基づいて発光させる。
Thus, the display control unit 244 operates as follows in order to visualize information related to body temperature.
Information on the body temperature to be visualized is input in the light emitting unit 252 and a light emitting dot pattern for expressing this is created.
Based on the shake time T calculated based on the output signal interval from the signal processing unit 232 and the number of dot rows of the light emitting elements in the horizontal direction necessary for expressing information related to body temperature, The light emission time t per dot row is calculated.
The output of the signal (shake direction change timing) from the signal processing unit 232 is used as the light emission start timing, and each light emitting element is set to the generated light emission dot pattern and the calculated light emission time t per dot row number. Based on the light emission.
 <6.発光開始から発光終了までの発光制御処理の内容>
 次に、発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<6. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end will be described.
 図6は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図6において、6Aは振れ方向の変更タイミングにおいて発光を開始した状態を示している。また、6B及び6Cは、振れ時間Tの1/3が経過した状態及び2/3が経過した状態をそれぞれ示している。さらに、6Dは振れ時間Tが経過し、発光を終了した状態を示している。 FIG. 6 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 6, 6A shows a state in which light emission is started at the change timing of the shake direction. 6B and 6C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed. Furthermore, 6D shows a state in which the shake time T has elapsed and the light emission has ended.
 図6に示すように、各発光素子は、発光ドットパターンのうち、発光開始タイミングからの経過時間に対応するドット列に基づく発光を行うように制御される。 As shown in FIG. 6, each light emitting element is controlled to emit light based on a dot row corresponding to an elapsed time from the light emission start timing in the light emitting dot pattern.
 同様に、図7は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図6との違いは、図7の場合、振れ時間Tが図6の振れ時間Tより小さい点である。 Similarly, FIG. 7 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 6 is that, in the case of FIG. 7, the shake time T is smaller than the shake time T of FIG.
 なお、振れ時間Tが小さい場合とは、振れ速度が同じで振れ幅が小さい場合と、振れ幅が同じで振れ速度が大きい場合とが考えられるが、どちらの場合も発光制御処理の内容としては同じである。このため、図7では、振れ速度が同じで振れ幅が小さい場合について示している。 Note that the case where the shake time T is small is considered to be a case where the shake speed is the same and the shake width is small, and a case where the shake width is the same and the shake speed is large. The same. For this reason, FIG. 7 shows a case where the shake speed is the same and the shake width is small.
 図7に示すように、振れ時間Tが図6の振れ時間Tより小さい場合、発光時間tは、図6の発光時間よりも短くなり、結果として、表現される文字の大きさ(横方向の大きさ)は、小さくなる。 As shown in FIG. 7, when the shake time T is smaller than the shake time T of FIG. 6, the light emission time t becomes shorter than the light emission time of FIG. 6, and as a result, the size of the expressed character (in the horizontal direction) (Size) becomes smaller.
 なお、振れ幅が同じで振れ速度が大きい場合には、発光時間tは、図6の発光時間よりも短くなるが、振れ速度が大きい分、短い発光時間の間に移動する距離が大きくなるため、結果として、表現される文字の大きさ(横方向の大きさ)は、図6の場合と同じとなる。 When the shake width is the same and the shake speed is large, the light emission time t is shorter than the light emission time of FIG. 6, but the distance moved during the short light emission time is increased by the increase of the shake speed. As a result, the size of the represented character (the size in the horizontal direction) is the same as in the case of FIG.
 同様に、図8は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図6との違いは、図8の場合、振れ時間Tが図6の振れ時間Tより大きい点である。 Similarly, FIG. 8 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 6 is that, in the case of FIG. 8, the shake time T is longer than the shake time T of FIG.
 なお、振れ時間Tが大きい場合とは、振れ速度が同じで振れ幅が大きい場合と、振れ幅が同じで振れ速度が小さい場合とが考えられるが、どちらの場合も発光制御処理の内容としては同じである。このため、図8では、振れ速度が同じで振れ幅が小さい場合について示している。 Note that the case where the shake time T is large may be the case where the shake speed is the same and the shake width is large, and the case where the shake width is the same and the shake speed is small. The same. For this reason, FIG. 8 shows a case where the shake speed is the same and the shake width is small.
 図8に示すように、振れ時間Tが図6の振れ時間Tより大きい場合、発光時間tは、図6の発光時間よりも長くなり、結果として、表現される文字の大きさ(横方向の大きさ)は、大きくなる。 As shown in FIG. 8, when the shake time T is longer than the shake time T of FIG. 6, the light emission time t becomes longer than the light emission time of FIG. 6, and as a result, the size of the expressed character (in the horizontal direction) (Size) becomes larger.
 なお、振れ幅が同じで振れ速度が小さい場合には、発光時間tは、図6の発光時間よりも長くなるが、振れ速度が小さい分、長い発光時間の間に移動できる距離も小さくなるため、結果として、表示される文字の大きさ(横方向の大きさ)は、図6の場合と同じとなる。 When the shake width is the same and the shake speed is low, the light emission time t is longer than the light emission time of FIG. 6, but the distance that can be moved during a long light emission time is also reduced because the shake speed is low. As a result, the size of the displayed character (the size in the horizontal direction) is the same as in the case of FIG.
 このように、各発光素子は、信号処理部232からの信号(振れ方向の変更タイミングを示す信号)の出力を発光開始タイミングとして、それぞれのタイミングで発光すべき発光ドットパターンを、算出された1ドット列当たりの発光時間分だけ発光させることで、電子体温計100では右振れが終了するまでの間に、“38.5℃”なる文字を可視化させることができる。つまり、ユーザが振った場合の各振れ時間のばらつきを考慮して文字を可視化させることができる。 As described above, each light emitting element calculates a light emitting dot pattern to be emitted at each timing by using the output of the signal from the signal processing unit 232 (a signal indicating the change timing of the shake direction) as the light emission start timing. By emitting light for the light emission time per dot row, the electronic thermometer 100 can visualize the characters “38.5 ° C.” until the right shake ends. That is, the character can be visualized in consideration of variation in each shake time when the user shakes.
 <7.電子体温計の体温測定手順>
 続いて、図9を用いて電子体温計100における体温測定処理の流れを説明する。図9は電子体温計100の体温測定処理の流れを示すフローチャートである。なお、本実施形態の電子体温計100では、例えば、特開2007-24530号公報などに開示された予測式の体温測定方法を用いて体温測定を行うものとする。
<7. Electronic thermometer body temperature measurement procedure>
Next, the flow of the body temperature measurement process in the electronic thermometer 100 will be described with reference to FIG. FIG. 9 is a flowchart showing the flow of the body temperature measurement process of the electronic thermometer 100. In the electronic thermometer 100 of the present embodiment, the body temperature is measured using a predictive body temperature measuring method disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-24530.
 ON/OFFスイッチ104が押下されると、電子体温計100の電源がONとなり、ステップS901に進む。 When the ON / OFF switch 104 is pressed, the electronic thermometer 100 is turned on, and the process proceeds to step S901.
 ステップS901では、電子体温計100の初期化が行われ、温度計測部220による温度値の検出が開始される。例えば、0.5秒おきに温度計測部220を用いて温度値が検出される。 In step S901, the electronic thermometer 100 is initialized, and the temperature measurement unit 220 starts detecting the temperature value. For example, the temperature value is detected using the temperature measurement unit 220 every 0.5 seconds.
 ステップS902では、例えば、前回実測値(つまり0.5秒前の実測値)からの上昇が所定の値(例えば1度)以上となる温度値を計測した時点を、予測式の基準点(t=0)と設定し、RAM242への実測値のデータ(時系列データ)の記憶を開始する。つまり、急激な温度上昇を検出することにより、被検体の所定の測定部位に電子体温計100が装着されたものとみなす。 In step S902, for example, the time point when the temperature value at which the rise from the previous actual measurement value (that is, the actual measurement value before 0.5 seconds) becomes a predetermined value (for example, 1 degree) or more is measured is set as the reference point (t = 0), and storage of measured value data (time-series data) in the RAM 242 is started. That is, it is considered that the electronic thermometer 100 is attached to a predetermined measurement site of the subject by detecting a rapid temperature rise.
 ステップS903からステップS907までは、周知の予測式の体温測定方法を用いて体温を予測する処理であり、その詳細に関しては、例えば、特開2007-24530号公報などに記載されているため、ここでは簡潔に説明することとする。 Steps S903 to S907 are processes for predicting body temperature using a well-known predictive body temperature measurement method, and details thereof are described in, for example, Japanese Patent Application Laid-Open No. 2007-24530. Then, I will explain briefly.
 ステップS903では、測定中に計測温度の低下が観測されたか否かを判断する。所定の温度低下が見られる場合は、ステップS912に進み、所定の温度低下が見られない場合にはステップS904に進む。 In step S903, it is determined whether or not a decrease in measured temperature is observed during measurement. If the predetermined temperature decrease is observed, the process proceeds to step S912. If the predetermined temperature decrease is not observed, the process proceeds to step S904.
 ステップS912では、計測されたデータの補正処理を行う。補正処理が正常に行われた場合にはステップS902に戻る。一方、補正処理が正常に終了しない場合には、ステップS913に進む。ステップS913では、エラーを告げるブザー260を鳴らし、体温測定処理を終了する。 In step S912, the measured data is corrected. If the correction process is normally performed, the process returns to step S902. On the other hand, if the correction process does not end normally, the process proceeds to step S913. In step S913, the buzzer 260 reporting an error is sounded, and the body temperature measurement process is terminated.
 一方、ステップS904では、ステップS902で記憶されたデータを用いて、前述した予測式の体温測定方法を用いて逐次予測値を導出(例えば、0.5秒間隔で導出)する。 On the other hand, in step S904, using the data stored in step S902, a predicted value is derived sequentially (for example, at intervals of 0.5 seconds) using the predictive temperature measuring method described above.
 ステップS905では、基準点(t=0)から所定時間(例えば16秒)だけ経過した後、温度の上昇パターンにより、あらかじめ記憶されている数種類の上昇パターンと比較し、最も相似しているパターンを選別する(群分け判定)。 In step S905, after a lapse of a predetermined time (for example, 16 seconds) from the reference point (t = 0), the temperature increase pattern is compared with several types of increase patterns stored in advance, and the most similar pattern is determined. Sort (grouping judgment).
 ステップS906では、ステップS905によって決定された群以外の演算を停止し、判定された群において予測値を引き続き所定の時間導出する。 In step S906, operations other than the group determined in step S905 are stopped, and the predicted value is continuously derived for a predetermined time in the determined group.
 ステップS907では、基準点(t=0)から所定時間(例えば30秒)だけ経過した時点で、ステップS906における処理の結果導出された一定区間(例えばt=25~30秒)における予測値があらかじめ設定された予測成立条件を満たすかどうかをチェックする。具体的には、所定の範囲(例えば0.1度)に収まっているか否かをチェックする。 In step S907, when a predetermined time (for example, 30 seconds) has elapsed from the reference point (t = 0), the predicted value in a certain section (for example, t = 25 to 30 seconds) derived as a result of the process in step S906 is previously set. Checks whether the set prediction satisfaction condition is met. Specifically, it is checked whether or not it is within a predetermined range (for example, 0.1 degree).
 ステップS907において予測成立条件を満たしたと判定された場合には、ステップS908に進む。一方、予測成立条件を満たさない場合は、ステップS914に進む。 If it is determined in step S907 that the prediction establishment condition is satisfied, the process proceeds to step S908. On the other hand, if the prediction establishment condition is not satisfied, the process proceeds to step S914.
 ステップS914では、例えばタイマーなどで計測開始から所定時間(例えば45秒)が経過したか否かを監視し、経過した場合に、強制的に予測を成立させ、ステップS908に進む。つまり、その時点で導出されている予測値をそのまま最終予測値とみなす。 In step S914, for example, a timer or the like is used to monitor whether or not a predetermined time (for example, 45 seconds) has elapsed from the start of measurement. If it has elapsed, prediction is forcibly established, and the process proceeds to step S908. That is, the prediction value derived at that time is regarded as the final prediction value as it is.
 ステップS908では予測成立を告げるブザー260を鳴らし、ステップS909に進む。ステップS909では、導出された体温の予測値を測定結果として出力部250の表示部251に表示する。 In step S908, the buzzer 260 that announces the prediction is sounded, and the process proceeds to step S909. In step S909, the derived predicted value of the body temperature is displayed on the display unit 251 of the output unit 250 as a measurement result.
 ステップS910では、電子体温計100の横方向に往復で振られているかを判定する。横方向に往復で振られていると判定された場合には、ステップS915に進み、横方向に往復で振られていないと判定された場合には、ステップS911に進む。 In step S910, it is determined whether the electronic thermometer 100 is swung in the horizontal direction. If it is determined that it is reciprocated in the horizontal direction, the process proceeds to step S915. If it is determined that it is not reciprocated in the horizontal direction, the process proceeds to step S911.
 ステップS915では、表示制御部244が、測定された体温の予測値を発光部252において可視化するための可視化処理(可視化処理のフローの詳細については後述)を実行する。 In step S915, the display control unit 244 executes a visualization process (details of the flow of the visualization process will be described later) for visualizing the measured predicted body temperature value in the light emitting unit 252.
 ステップS911では、体温測定終了の指示を受け付けたか否かを判定する。体温測定終了の指示は、例えば、電源ON/OFFスイッチ104が押下されたか否かに基づいて判定してもよいし、ステップS909における表示から一定時間経過した場合に体温測定終了の指示があったとみなすようにしてもよい。以上のステップを経て、体温測定処理を終了し、電源をOFFにする。 In step S911, it is determined whether an instruction to end the body temperature measurement has been received. The instruction to end the body temperature measurement may be determined based on, for example, whether or not the power ON / OFF switch 104 has been pressed, or the body temperature measurement is instructed when a certain time has elapsed from the display in step S909. It may be considered. Through the above steps, the body temperature measurement process is terminated and the power is turned off.
 <8.可視化処理の流れ>
 次に、図10を用いて、測定された体温の予測値を発光部252において可視化するための表示制御部244における可視化処理の流れについて説明する。
<8. Flow of visualization process>
Next, the flow of the visualization process in the display control unit 244 for visualizing the predicted value of the measured body temperature in the light emitting unit 252 will be described with reference to FIG.
 図9のステップS910において、電子体温計100において横方向に往復で振られていると判定されると、図10に示す可視化処理が開始される。 If it is determined in step S910 in FIG. 9 that the electronic thermometer 100 is swung in the horizontal direction, the visualization process shown in FIG. 10 is started.
 ステップS1001では、信号処理部232からの信号の出力間隔に基づいて、電子体温計100の右振れの振れ時間Tを算出する。 In step S1001, based on the output interval of the signal from the signal processing unit 232, the shake time T of the electronic thermometer 100 is calculated.
 ステップS1002では、演算された体温の予測値に基づいて、発光部252において可視化すべき体温に関する情報を表現するための発光ドットパターンを作成する。 In step S1002, a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 252 is created based on the calculated predicted body temperature value.
 ステップS1003では、ステップS1001において算出された右振れの振れ時間Tと、ステップS1002において作成した発光ドットパターンを表現するのに必要な右振れ方向の発光素子のドット列数とに基づいて、1ドット列当たりの発光時間tを算出する。 In step S1003, one dot is calculated based on the right shake time T calculated in step S1001 and the number of dot rows of light emitting elements in the right shake direction necessary to express the light emitting dot pattern created in step S1002. The light emission time t per column is calculated.
 ステップS1004では、信号処理部232からの信号の出力を受信したタイミングで、作成した発光ドットパターンと、算出された1ドット列当たりの発光時間tとに基づいて、各発光素子の発光の制御を開始する。 In step S1004, at the timing when the output of the signal from the signal processing unit 232 is received, the light emission of each light emitting element is controlled based on the created light emitting dot pattern and the calculated light emission time t per dot row. Start.
 ステップS1005では、信号処理部232からの信号の出力が継続しているか否かを判定し、継続していると判定された場合には、ステップS1001に戻る。一方、信号処理部232からの信号の出力がないと判定された場合には、可視化処理を終了する。 In step S1005, it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S1001. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
 以上の説明から明らかなように、本実施形態に係る電子体温計100では、配列された複数の発光素子を備える発光部252と、電子体温計100の振れを検出するモーション・センサ231と、発光部252の発光を制御する表示制御部244とを備える構成とした。 As is clear from the above description, in the electronic thermometer 100 according to the present embodiment, the light emitting unit 252 including a plurality of light emitting elements arranged, the motion sensor 231 that detects the shake of the electronic thermometer 100, and the light emitting unit 252. And a display control unit 244 for controlling the light emission.
 そして、電子体温計が横方向に往復で振られた場合に、発光素子の発光を適切に制御することで、測定された被検体の体温を、ユーザが空間上において視認できるように構成した。 And when the electronic thermometer was shaken back and forth in the horizontal direction, it was configured so that the user could visually recognize the measured body temperature of the subject by appropriately controlling the light emission of the light emitting element.
 この結果、電子体温計において、体温を測定する際の利便性を損なうことなく、ユーザにとってより見やすい表示を実現することが可能となった。特に、当該電子体温計によれば、周辺環境が暗い場合においても、ユーザは、容易に視認することが可能となる。 As a result, it has become possible to realize a display that is easier for the user to see without sacrificing convenience when measuring the body temperature in the electronic thermometer. In particular, according to the electronic thermometer, the user can easily visually recognize even when the surrounding environment is dark.
 [第2の実施形態]
 上記第1の実施形態では、ユーザが電子体温計100を振った場合の各振れ時間にばらつきがあることを考慮したうえで文字を可視化させるように構成したが、1回の振れの間(発光開始タイミングから発光終了タイミングまでの間)には、電子体温計100の振れ速度にはばらつきがなく、一定であるものとして構成した。しかしながら、ユーザが電子体温計100を振る場合、1回の振れの間における振れ速度にはばらつきが生じる。具体的には、ユーザが電子体温計100を往復で振ると、振れ方向の変更タイミング前後において、振れ速度が低下することとなる。
[Second Embodiment]
In the first embodiment, the characters are visualized in consideration of the variation in each shake time when the user shakes the electronic thermometer 100. However, during the single shake (light emission start) Between the timing and the end timing of light emission), the shake speed of the electronic thermometer 100 is not varied and is configured to be constant. However, when the user shakes the electronic thermometer 100, the shake speed during one shake varies. Specifically, when the user reciprocates the electronic thermometer 100, the shake speed decreases before and after the change timing of the shake direction.
 そして、この場合、ユーザによって視認される体温に関する情報は、振れ方向の変更タイミング前後(つまり、文字列のうち最初と最後)において、文字が横方向に縮んでしまい、全体として文字がゆがむこととなる。 In this case, the information regarding the body temperature visually recognized by the user is that the character is shrunk in the horizontal direction before and after the change timing of the shake direction (that is, first and last in the character string), and the character is distorted as a whole. Become.
 そこで、本実施形態では、振れ速度の変化が小さい時間帯を利用して、体温に関する情報を可視化するための各発光素子の発光を制御する構成とし、文字のゆがみを排除することとした。 Therefore, in this embodiment, the light emission of each light-emitting element for visualizing information related to body temperature is controlled by using a time zone in which the change in shake speed is small, and the distortion of characters is eliminated.
 <1.表示制御部において作成された発光ドットパターン>
 図11は、本実施形態において作成された発光ドットパターンの一例を示す図である。
<1. Light emitting dot pattern created in the display controller>
FIG. 11 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
 図5との違いは、図11の場合、横方向の文字と文字との間に2ドット列数分の発光素子の空白を設けることに加えて、文字列の最初の文字の前に、更に、6ドット列数分の発光素子の空白を設けている点にある。更に、文字列の最後の文字の後ろに、6ドット列数分の発光素子の空白が設けている点にある。 The difference from FIG. 5 is that, in the case of FIG. 11, in addition to providing a space for light emitting elements corresponding to the number of 2 dot rows between characters in the horizontal direction, in addition to the first character in the character string, , There are provided blanks of light emitting elements corresponding to the number of 6 dot rows. Further, the light-emitting element space corresponding to the number of 6-dot columns is provided after the last character of the character string.
 このため、体温に関する情報として、例えば“38.5℃”の5文字(“3”、“8”、“.”、“5”及び“℃”)を可視化するために、本実施形態の場合、
(最初の空白列のドット列数(=6ドット)
+(最後の空白列のドット列数(=6ドット))
+(1文字あたりの横方向ドット列数(=5ドット))×4文字
+(「点」の横方向ドット列数(=1ドット))×1文字
+(空白列のドット列数(=2ドット))×(5文字+1)
=45ドット列数が必要となる。
For this reason, for example, in order to visualize 5 characters (“3”, “8”, “.”, “5” and “° C.”) of “38.5 ° C.” ,
(Number of dots in the first blank row (= 6 dots)
+ (Number of dots in the last blank row (= 6 dots))
+ (Number of horizontal dot rows per character (= 5 dots)) × 4 characters + (number of horizontal dot rows of “dots” (= 1 dot)) × 1 character + (number of blank rows of dots (= 2 dots)) x (5 characters + 1)
= 45 dot rows are required.
 つまり、本実施形態の場合、電子体温計100の右振れが開始してから終了するまでの間に、発光素子は、45ドット列数からなる発光ドットパターンを出力することとなる。このため、1ドット列数分の発光時間(つまり、各発光素子の1ドット列当たりの発光時間t)は、電子体温計100の右振れが開始してから終了するまでにかかる振れ時間をTとすると、T/45となる。 That is, in the case of the present embodiment, the light emitting element outputs a light emitting dot pattern consisting of 45 dot rows from the start to the end of the electronic thermometer 100. For this reason, the light emission time corresponding to the number of dot rows (that is, the light emission time t per dot row of each light-emitting element) is T as the shake time taken from the start of the electronic thermometer 100 to the end thereof. Then, T / 45.
 このように、1回の振れの間におけるユーザの振れ速度のばらつきを考慮して、文字列の最初と最後に空白を設けることにより、振れ方向の変更タイミングの前後において、体温に関する情報を示す文字列が可視化されず、比較的振れ速度が安定している時間帯においてのみ、体温に関する情報を示す文字列が可視化されることとなる。この結果、文字のゆがみを排除させることが可能となる。 In this way, in consideration of the variation of the user's shake speed during one shake, by providing a blank at the beginning and end of the character string, characters indicating information on body temperature before and after the shake direction change timing The character string indicating the information on the body temperature is visualized only in the time zone in which the column is not visualized and the shake speed is relatively stable. As a result, it is possible to eliminate character distortion.
 <2.発光開始から発光終了までの発光制御処理の内容>
 次に、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<2. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment will be described.
 図12は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図12において、12Aは振れ方向の変更タイミングにおいて発光を開始した状態を示している。また、12B及び12Cは、振れ時間Tの1/3が経過した状態及び2/3が経過した状態をそれぞれ示している。さらに、12Dは振れ時間Tが経過し、発光を終了した状態を示している。 FIG. 12 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244. In FIG. 12, 12A shows a state in which light emission is started at the change timing of the shake direction. 12B and 12C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed. Further, 12D shows a state in which the shake time T has elapsed and the light emission has ended.
 図12に示すように、各発光素子は、発光ドットパターンのうち、発光開始タイミングからの経過時間に対応するドット列に基づく発光を行うように制御される。そして、本実施形態において用いられる発光ドットパターンには、文字列の最初と最後に空白が含まれているため、振れ方向の変更タイミング直後は、各発光素子は発光せず、空白列数分の時間が経過してから、最初の文字についての発光が開始されることとなる。また、振れ方向の変更タイミング直前も、各発光素子は発光せず、空白列数分前に、最後の文字についての発光が終了することとなる。 As shown in FIG. 12, each light emitting element is controlled to emit light based on a dot row corresponding to an elapsed time from the light emission start timing in the light emitting dot pattern. Since the light-emitting dot pattern used in this embodiment includes blanks at the beginning and end of the character string, immediately after the change timing of the shake direction, each light-emitting element does not emit light, and is equal to the number of blank strings. After a lapse of time, the light emission for the first character is started. In addition, immediately before the change timing of the shake direction, each light emitting element does not emit light, and light emission for the last character ends by the number of blank columns.
 この結果、振れ方向の変更タイミングの前後における振れ速度の低下の影響を受けることなく、体温に関する情報を可視化させることが可能となる。 As a result, it becomes possible to visualize information related to body temperature without being affected by a decrease in the shake speed before and after the change timing of the shake direction.
 以上の説明から明らかなように、本実施形態によれば、振れ速度の変化が小さい時間帯を利用して、体温に関する情報を可視化するための発光を行う構成としたことで、文字のゆがみを排除させることが可能となった。 As is clear from the above description, according to the present embodiment, the character is distorted by using the time zone in which the change in the shaking speed is small to emit light for visualizing information related to body temperature. It became possible to eliminate.
 [第3の実施形態]
 上記第2の実施形態では、文字のゆがみを排除するために、発光ドットパターンの最初と最後に空白列を入れる構成とした。
[Third Embodiment]
In the second embodiment, in order to eliminate the distortion of characters, a blank row is inserted at the beginning and end of the light emitting dot pattern.
 しかしながら、本発明はこれに限定されず、文字のゆがみを排除するにあたり、振れ方向の変更タイミングから最初の文字が可視化されるまでの時間ならびに最後の文字が可視化されてから振れ方向の変更タイミングまでの時間を固定時間または振れ時間Tに基づく所定の時間として設定するよう構成してもよい。 However, the present invention is not limited to this, and in eliminating the distortion of characters, the time from the change direction of the shake direction to the time when the first character is made visible and the time from the last character being visualized to the change timing of the shake direction. This time may be set as a fixed time or a predetermined time based on the shake time T.
 つまり、振れ方向の変更タイミングから固定時間(Th)または振れ時間Tに基づく所定の時間(Ti)経過してから、発光開始タイミングとなり、発光終了タイミングから固定時間(Th)または振れ時間Tに基づく所定の時間(Ti)経過してから、振れ方向の変更タイミングとなるように制御するよう構成してもよい。 That is, after a predetermined time (Ti) based on the fixed time (Th) or the shake time T has elapsed from the change timing of the shake direction, it becomes the light emission start timing and is based on the fixed time (Th) or the shake time T from the light emission end timing. You may comprise so that it may control so that it may become the change timing of a shake direction, after predetermined time (Ti) passes.
 図13は、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容を説明するための図である。図13において、13Aは振れ方向の変更タイミングから固定時間Thまたは振れ時間Tに基づく所定の時間Tiが経過してから発光を開始した状態を示している。また、13B及び13Cは、振れ時間Tの1/3が経過した状態及び2/3が経過した状態をそれぞれ示している。さらに、13Dは振れ時間Tが経過し、発光がすでに終了している状態を示している。 FIG. 13 is a diagram for explaining the contents of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment. In FIG. 13, 13A shows a state in which light emission is started after a predetermined time Ti based on the fixed time Th or the shake time T has elapsed from the change timing of the shake direction. 13B and 13C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed. Further, 13D shows a state in which the shake time T has elapsed and the light emission has already ended.
 なお、本実施形態の場合、各発光素子の発光時間tは、発光ドットパターンのドット列数を33とすると、
t=(T-2×Th)/33 (Thは定数、例えば、Th=50ms)
または、
t=(T-2×Ti)/33 (Ti=α×T、例えば、α=0.25)
となる。
In the case of the present embodiment, the light emission time t of each light emitting element is as follows:
t = (T−2 × Th) / 33 (Th is a constant, for example, Th = 50 ms)
Or
t = (T−2 × Ti) / 33 (Ti = α × T, for example, α = 0.25)
It becomes.
 以上の説明から明らかにように、本実施形態では、振れ方向の変更タイミング前後に固定時間Thまたは振れ時間Tに基づく所定の時間Tiを設定することで、振れ速度の変化が小さい時間帯を利用して、体温に関する情報を可視化するための発光を行う構成とした。この結果、文字のゆがみを排除させることが可能となった。 As is clear from the above description, in this embodiment, a fixed time Th or a predetermined time Ti based on the shake time T is set before and after the change direction of the shake direction, thereby using a time zone in which the change in shake speed is small. And it was set as the structure which performs light emission for visualizing the information regarding body temperature. As a result, it became possible to eliminate the distortion of characters.
 [第4の実施形態]
 上記第1乃至第3の実施形態では、振れ時間に応じて各発光素子の発光を制御することとしたが、本発明はこれに限定されず、振れ幅に応じて、各発光素子の発光を制御するよう構成してもよい。具体的には、電子体温計100が振られた場合に、当該電子体温計100の位置を検出し、発光開始位置を規定したうえで発光開始位置からの距離に応じて各発光素子を発光させるよう制御する構成としてもよい。以下、本実施形態の詳細について説明する。
[Fourth Embodiment]
In the first to third embodiments, the light emission of each light emitting element is controlled according to the shake time. However, the present invention is not limited to this, and the light emission of each light emitting element is performed according to the shake width. You may comprise so that it may control. Specifically, when the electronic thermometer 100 is shaken, the position of the electronic thermometer 100 is detected, the light emission start position is defined, and the light emitting elements are controlled to emit light according to the distance from the light emission start position. It is good also as composition to do. Details of this embodiment will be described below.
 <1.信号処理部における信号処理>
 はじめに、発光部252における発光開始/発光終了の位置を規定するための信号(振れ方向の変更位置を示す信号)ならびに該振れ方向の変更位置からの距離を示す信号を出力する信号処理部232における信号処理の内容について説明する。
<1. Signal Processing in Signal Processing Unit>
First, in the signal processing unit 232 that outputs a signal for defining a light emission start / light emission end position in the light emitting unit 252 (a signal indicating a change position in the shake direction) and a signal indicating a distance from the change position in the shake direction. The contents of the signal processing will be described.
 図14は、信号処理部232における信号処理の内容を説明するための図である。図14の14Aは、モーション・センサ231が加速度センサである場合に、ユーザによって電子体温計100が往復で振られた際のモーション・センサ231の出力を示した図である。 FIG. 14 is a diagram for explaining the contents of signal processing in the signal processing unit 232. 14A of FIG. 14 is a diagram illustrating an output of the motion sensor 231 when the electronic thermometer 100 is shaken reciprocally by the user when the motion sensor 231 is an acceleration sensor.
 上述したように、電子体温計100では、横方向の往復の振れのうち、右振れの間、発光部252の各発光素子の発光を制御している。このため、信号処理部232では、左振れしていた電子体温計100の振れ方向が右振れに変更された位置(振れ方向の変更位置)を検出する。また、右振れ中における振れ方向の変更位置からの距離を算出する。 As described above, in the electronic thermometer 100, light emission of each light emitting element of the light emitting unit 252 is controlled during rightward swinging of the horizontal reciprocal vibration. For this reason, the signal processing unit 232 detects a position where the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to a right shake (change position of the shake direction). Further, the distance from the change position of the shake direction during the right shake is calculated.
 図14の14Aに示すように、電子体温計100の往復の振れに応じて、加速度センサからは正弦波状の信号が出力される。 As shown in 14A of FIG. 14, a sinusoidal signal is output from the acceleration sensor in accordance with the reciprocal shake of the electronic thermometer 100.
 このため、信号処理部232では、加速度センサより出力された信号の傾きがゼロになるタイミング(つまり、振れ速度がゼロになるタイミング)を検出する。 For this reason, the signal processing unit 232 detects the timing at which the slope of the signal output from the acceleration sensor becomes zero (that is, the timing at which the shake speed becomes zero).
 ここで、加速度センサより出力された信号の傾きがゼロになるタイミングとしては、左振れしていた電子体温計100の振れ方向が、右振れに変更されたタイミングと、右振れしていた電子体温計100の振れ方向が、左振れに変更されたタイミングの、2種類がある。信号処理部232では、これら2種類のタイミングを抽出し、その信号(振れ方向の変更位置を示す信号)を表示制御部244に出力する。 Here, the timing at which the inclination of the signal output from the acceleration sensor becomes zero is the timing at which the shake direction of the electronic thermometer 100 that has been shaken to the left is changed to the right shake and the electronic thermometer 100 that has been shaken to the right. There are two types of timing, that is, the timing at which the direction of movement is changed to leftward. The signal processing unit 232 extracts these two types of timings and outputs the signals (signals indicating the shake position change position) to the display control unit 244.
 さらに、左振れしていた電子体温計100の振れ方向が、右振れに変更されたタイミングにおける電子体温計100の位置(振れ方向の変更位置1401)を基準位置として、加速度センサより出力された信号を2回積分することにより、もう一方の振れ方向の変更位置1402(右振れしていた電子体温計100の振れ方向が、左振れに変更されたタイミングにおける電子体温計100の位置)までの、該基準位置からの距離を算出する(図14の14B参照)。算出された基準位置からの距離を示す信号は、表示制御部244に出力される。 Further, the signal output from the acceleration sensor is 2 with the position of the electronic thermometer 100 (the change direction 1401 of the shake direction) at the timing when the shake direction of the electronic thermometer 100 that has been shaken to the right is changed to the right shake. By integrating the number of times, the reference position from the reference position up to the change position 1402 of the other shake direction (the position of the electronic thermometer 100 at the timing when the shake direction of the electronic thermometer 100 that has been shaken to the right is changed to the left shake) is obtained. Is calculated (see 14B in FIG. 14). A signal indicating the calculated distance from the reference position is output to the display control unit 244.
 なお、本発明は、モーション・センサ231として上述のような加速度センサに限定されるものではなく、振れ方向の変更位置からの距離を検出することが可能であれば、他のセンサであってもよい。 The present invention is not limited to the acceleration sensor as described above as the motion sensor 231, and other sensors may be used as long as the distance from the change direction of the shake direction can be detected. Good.
 <2.表示制御部において作成された発光ドットパターン>
 次に、表示制御部244において作成される発光ドットパターンについて説明する。図15は、表示制御部244において作成される発光ドットパターンの一例を示す図である。
<2. Light emitting dot pattern created in the display controller>
Next, the light emission dot pattern created in the display control part 244 is demonstrated. FIG. 15 is a diagram illustrating an example of a light emitting dot pattern created in the display control unit 244.
 図15に示すように、発光ドットパターンは、発光部252の各発光素子により可視化される仮想的な表示領域における表示であり、配列された発光素子の数と、所定の方向に振られている間の発光素子の発光回数であるドット列数と、各ドット列の振れ方向の変更位置1401からの距離とにより規定される。 As shown in FIG. 15, the light emitting dot pattern is a display in a virtual display area visualized by each light emitting element of the light emitting unit 252 and is swung in a predetermined direction with the number of light emitting elements arranged. It is defined by the number of dot rows, which is the number of times of light emission between the light emitting elements, and the distance from the change position 1401 of the shake direction of each dot row.
 図15において、黒丸は消灯、白い丸は点灯を示す。本実施形態では、1文字(ただし、「点」は除く)を表現するのに、横方向5ドット(5つの発光素子)と縦方向7ドット(7つの発光素子)とを用いるものとする。また、横方向の文字と文字の間には、2ドット列数分の発光素子の空白が設けられるものとする。 In FIG. 15, black circles are turned off, and white circles are turned on. In the present embodiment, 5 dots (5 light emitting elements) in the horizontal direction and 7 dots (7 light emitting elements) in the vertical direction are used to represent one character (excluding “dot”). Further, it is assumed that a space of light emitting elements corresponding to the number of 2 dot rows is provided between characters in the horizontal direction.
 このため、体温に関する情報として、例えば“38.5℃”の5文字(“3”、“8”、“.”、“5”及び“℃”)を表現するためには、
(1文字あたりの横方向ドット列数(=5ドット))×4文字
+(「点」の横方向ドット列数(=1ドット))×1文字
+(空白列のドット列数(=2ドット))×(5文字+1)
=33ドット列数が必要となる。
For this reason, as information on body temperature, for example, in order to express five characters “38.5 ° C.” (“3”, “8”, “.”, “5” and “° C.”),
(Number of horizontal dot rows per character (= 5 dots)) × 4 characters + (number of horizontal dot rows of “dots” (= 1 dot)) × 1 character + (number of blank rows of dots (= 2) Dot)) x (5 characters + 1)
= 33 dot row number is required.
 つまり、電子体温計100の右振れが開始してから終了するまでの間に、発光素子は、33ドット列数からなる発光ドットパターンを出力することとなる。このとき各ドット列の発光位置は、各ドット列の振れ方向の変更位置からの距離x1、x2、・・・、x33により規定される。 That is, the light emitting element outputs a light emitting dot pattern consisting of 33 dot rows from the start to the end of the right shake of the electronic thermometer 100. At this time, the light emission position of each dot row is defined by distances x1, x2,..., X33 from the change position of the shake direction of each dot row.
 このように、本実施形態における表示制御部244では、体温に関する情報を可視化するために以下のように動作する。
・発光部252において可視化すべき体温に関する情報を受信し、これを表現するための発光ドットパターンを作成する。
・発光ドットパターンにおいて各ドット列の振れ方向の変更位置からの距離を規定する。
・信号処理部232から出力された振れ方向の変更位置を示す信号の出力を発光開始位置として制御を開始し、信号処理部232から出力された振れ方向の変更位置からの距離を示す信号が、規定された各ドット列の振れ方向の変更位置からの距離と一致した場合に、各発光素子を、対応するドット列に従って発光させる。
Thus, the display control unit 244 in the present embodiment operates as follows in order to visualize information related to body temperature.
-The information regarding the body temperature which should be visualized in the light emission part 252 is received, and the light emission dot pattern for expressing this is produced.
-Specify the distance from the change position of the shake direction of each dot row in the light emitting dot pattern.
The control is started with the output of the signal indicating the change direction of the shake direction output from the signal processing unit 232 as the light emission start position, and the signal indicating the distance from the change position of the shake direction output from the signal processing unit 232 is Each light emitting element is caused to emit light according to the corresponding dot row when the distance from the change position of the shake direction of each prescribed dot row coincides.
 なお、所定のドット列に基づく発光は、電子体温計100が次のドット列に基づく発光が行われる位置に到達するまでの間、継続される。 Note that light emission based on a predetermined dot row is continued until the electronic thermometer 100 reaches a position where light emission based on the next dot row is performed.
 <3.発光開始から発光終了までの発光制御処理の内容>
 次に、発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<3. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end will be described.
 図16は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図16において、16Aは振れ方向の変更位置において発光を開始した状態を示している。また、16B及び16Cは、振れ方向の変更位置からの距離xがx10に到達した状態及びx22に到達した状態をそれぞれ示している。さらに、16Dはx33に到達し、発光を終了した状態を示している。 FIG. 16 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 16, 16A shows a state in which light emission is started at the change position of the shake direction. 16B and 16C respectively show a state in which the distance x from the change position of the shake direction has reached x10 and a state in which it has reached x22. Further, 16D indicates a state where x33 has been reached and light emission has ended.
 図16に示すように、各発光素子は、振れ方向の変更位置からの距離に対応するドット列に基づいて発光するよう制御される。 As shown in FIG. 16, each light emitting element is controlled to emit light based on a dot row corresponding to the distance from the change position of the shake direction.
 同様に、図17は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図16との違いは、図17の場合、振れ幅Lが図16の振れ幅Lより大きい点である。 Similarly, FIG. 17 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 16 is that, in the case of FIG. 17, the deflection width L is larger than the deflection width L of FIG.
 図17に示すように、振れ幅Lが図16の振れ幅より大きい場合であっても、振れ方向の変更位置からの距離が所定の距離に到達すると、順次、各発光素子が発光していく。このため、振れ幅や振れ速度に関わらず、可視化される文字の大きさ(横方向の大きさ)は一定となる。つまり、ユーザが電子体温計を振る場合に生じる、振れ幅や振れ速度のばらつきを吸収することができる。 As shown in FIG. 17, even when the shake width L is larger than the shake width of FIG. 16, each light emitting element emits light sequentially when the distance from the change direction of the shake direction reaches a predetermined distance. . For this reason, the size of the character to be visualized (the size in the horizontal direction) is constant regardless of the shake width and the shake speed. That is, it is possible to absorb variations in the swing width and the swing speed that occur when the user shakes the electronic thermometer.
 このように、信号処理部232からの信号(振れ方向の変更位置)の出力を発光開始位置として制御を開始し、規定された振れ方向の変更位置からの距離に到達するごとに、対応するドット列に従って各発光素子を順次発光させていくことで、右振れが終了するまでの間に、“38.5℃”なる文字を可視化させることができる。 As described above, the control is started with the output of the signal (shake direction change position) from the signal processing unit 232 as the light emission start position, and each time the distance from the specified shake direction change position is reached, the corresponding dot By sequentially causing each light emitting element to emit light according to the sequence, the characters “38.5 ° C.” can be visualized until the right shake is completed.
 <4.可視化処理の流れ>
 次に、図18を用いて、演算された体温の予測値を発光部252において可視化するための表示制御部244における処理の流れについて説明する。
<4. Flow of visualization process>
Next, a processing flow in the display control unit 244 for visualizing the calculated predicted body temperature value in the light emitting unit 252 will be described with reference to FIG.
 図9のステップS910において、電子体温計100において横方向に往復で振られていると判定されると、図18に示す処理が開始される。 If it is determined in step S910 in FIG. 9 that the electronic thermometer 100 is shaken back and forth in the lateral direction, the processing shown in FIG. 18 is started.
 ステップS1801では、測定された体温の予測値に基づいて、発光部252において可視化すべき体温値に関する情報を表現するための発光ドットパターンを作成する。 In step S1801, a light emitting dot pattern for expressing information related to the body temperature value to be visualized in the light emitting unit 252 is created based on the measured predicted body temperature value.
 ステップS1802では、信号処理部232からの信号に基づいて、電子体温計100の振れ方向の変更位置を識別する。 In step S1802, the change position of the shake direction of the electronic thermometer 100 is identified based on the signal from the signal processing unit 232.
 ステップS1803では、ステップS1802において識別された振れ方向の変更位置を基準として制御を開始する。具体的には、信号処理部232からの信号(振れ方向の変更位置からの距離を示す信号)が、ステップS1801において作成された発光ドットパターンを構成する各ドット列について規定された距離に一致した場合に、各発光素子を、対応するドット列に従って発光させる。 In step S1803, control is started based on the change position of the shake direction identified in step S1802. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the shake direction change position) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S1801. In this case, each light emitting element is caused to emit light according to a corresponding dot row.
 ステップS1804では、信号処理部232からの信号の出力が継続しているか否かを判定し、継続していると判定された場合には、ステップS1802に戻る。一方、信号処理部232からの信号の出力がないと判定された場合には、可視化処理を終了する。 In step S1804, it is determined whether or not the signal output from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S1802. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
 以上の説明から明らかなように、本実施形態に係る電子体温計100では、配列された複数の発光素子を備える発光部252と、電子体温計100の振れを検出するモーション・センサ231と、発光部252の発光を制御する表示制御部244とを備える構成とした。 As is clear from the above description, in the electronic thermometer 100 according to the present embodiment, the light emitting unit 252 including a plurality of light emitting elements arranged, the motion sensor 231 that detects the shake of the electronic thermometer 100, and the light emitting unit 252. And a display control unit 244 for controlling the light emission.
 そして、電子体温計が横方向に往復で振られた場合に、発光素子の発光を適切に制御することで、測定された被検体の体温値を、ユーザが空間上において(つまり、従来の表示部による表示領域よりも大きな領域において)視認できる構成とした。 Then, when the electronic thermometer is swung back and forth in the horizontal direction, the user can determine the measured temperature value of the subject in space (that is, the conventional display unit) by appropriately controlling the light emission of the light emitting element. (In a larger area than the display area).
 この結果、電子体温計において、ユーザの利便性を損なうことなくより見やすい表示を実現することが可能となった。特に、当該電子体温計によれば、周辺環境が暗い場合においても、ユーザは、容易に体温に関する情報を視認することが可能となる。 As a result, it has become possible to realize a display that is easier to see without sacrificing user convenience in the electronic thermometer. In particular, according to the electronic thermometer, even when the surrounding environment is dark, the user can easily view information related to body temperature.
 [第5の実施形態]
 上記第4の実施形態では、振れ幅に関わらず、所定の大きさの文字列が所定の位置において視認できるよう各発光素子の発光を制御することとしたが、本発明はこれに限定されず、振れ幅に応じて、文字の大きさおよび位置を変更するよう構成してもよい。
[Fifth Embodiment]
In the fourth embodiment, the light emission of each light emitting element is controlled so that a character string of a predetermined size can be visually recognized at a predetermined position regardless of the fluctuation width, but the present invention is not limited to this. The character size and position may be changed according to the shake width.
 <1.表示制御部において作成される発光ドットパターン>
 図19は、本実施形態において作成される発光ドットパターンの一例を示す図である。
<1. Light emitting dot pattern created in display control unit>
FIG. 19 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
 図15との違いは、図19の場合、振れ幅に応じて、各ドット列の振れ方向の変更位置からの距離を変更している点と、振れ幅全体にわたって、文字列が可視化されるように、各ドット列の振れ方向の変更位置からの距離を規定している点にある。 The difference from FIG. 15 is that, in the case of FIG. 19, the character string is visualized over the entire shake width in that the distance from the change position of the shake direction of each dot row is changed according to the shake width. In addition, the distance from the change position of the shake direction of each dot row is defined.
 図19の19Aは、図15と比べて振れ幅が小さい場合(L1<L)の発光ドットパターンを示している。この場合、各ドット列の振れ方向の変更位置からの距離は、
x1=(L1/33)×0
x2=(L1/33)×1
x3=(L1/33)×2
・・・
x33=(L1/33)×32
となる。
19A in FIG. 19 shows a light-emitting dot pattern when the fluctuation width is smaller than that in FIG. 15 (L1 <L). In this case, the distance from the change position of the shake direction of each dot row is
x1 = (L1 / 33) × 0
x2 = (L1 / 33) × 1
x3 = (L1 / 33) × 2
...
x33 = (L1 / 33) × 32
It becomes.
 一方、図19の19Bは、図15と比べて振れ幅が大きい場合(L2>L)の発光ドットパターンを示している。この場合、各ドット列の振れ方向の変更位置からの距離は、
x1=(L2/33)×0
x2=(L2/33)×1
x3=(L2/33)×2
・・・
x33=(L2/33)×32
となる。
On the other hand, 19B in FIG. 19 shows a light-emitting dot pattern when the deflection width is larger than that in FIG. 15 (L2> L). In this case, the distance from the change position of the shake direction of each dot row is
x1 = (L2 / 33) × 0
x2 = (L2 / 33) × 1
x3 = (L2 / 33) × 2
...
x33 = (L2 / 33) × 32
It becomes.
 このように、振れ幅に応じて、発光ドットパターンを規定することにより、振れ幅に応じた大きさの文字を振れ幅全体にわたって可視化させることが可能となる。 In this way, by defining the light emitting dot pattern according to the shake width, it becomes possible to visualize the character having a size corresponding to the shake width over the entire shake width.
 <2.発光開始から発光終了までの発光制御処理の内容>
 次に、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<2. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment will be described.
 図20は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図20において、20Aは振れ方向の変更位置において発光を開始した状態を示している。また、20B及び20Cは、振れ幅L1の1/3の位置に到達した状態及び2/3の位置に到達した状態をそれぞれ示している。さらに、20Dは振れ幅L1の位置に到達し、発光が終了した状態を示している。 FIG. 20 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 20, 20A shows a state in which light emission is started at the change position of the shake direction. 20B and 20C show a state where the position has reached 1/3 of the runout width L1 and a state where the position has reached 2/3, respectively. Further, 20D shows a state in which light emission is completed after reaching the position of the swing width L1.
 図20に示すように、各発光素子は、振れ方向の変更位置からの距離に対応するドット列に従って発光するよう制御される。 As shown in FIG. 20, each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the change position of the shake direction.
 本実施形態において用いられる発光ドットパターンは、振れ幅L1に応じて各ドット列の振れ方向の変更位置からの距離を規定しているため、図16の場合と比較して、表現される文字の大きさ(横方向の大きさ)は、小さくなる。また、図17の場合とは異なり、表現される文字列が、振れ幅L1全体に均等に配置されることとなる。 Since the light-emitting dot pattern used in the present embodiment defines the distance from the change position of the shake direction of each dot row according to the shake width L1, the character to be expressed is compared with the case of FIG. The size (size in the horizontal direction) becomes smaller. Further, unlike the case of FIG. 17, the character strings to be expressed are arranged uniformly over the entire swing width L1.
 同様に、図21は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図21において、21Aは振れ方向の変更位置において発光を開始した状態を示している。また、21B及び21Cは、振れ幅L2の1/3の位置に到達した状態及び2/3の位置に到達した状態をそれぞれ示している。さらに、21Dは振れ幅L2の位置に到達し、発光が終了した状態を示している。 Similarly, FIG. 21 is a diagram for explaining the content of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 21, 21A shows a state in which light emission is started at the change position of the shake direction. 21B and 21C show a state in which the position has reached 1/3 of the runout width L2 and a state in which the position has reached 2/3, respectively. Further, 21D shows a state where the light emission has been completed after reaching the position of the swing width L2.
 図21に示すように、各発光素子は、振れ方向の変更位置からの距離に対応するドット列に従って発光するよう制御される。 As shown in FIG. 21, each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the change position of the shake direction.
 本実施形態において用いられる発光ドットパターンは、振れ幅L2に応じて各ドット列の振れ方向の変更位置からの距離を規定しているため、図16の場合と比較して、表現される文字の大きさ(横方向の大きさ)は、大きくなる。また、図17の場合とは異なり、表現される文字列が、振れ幅L2全体に均等に配置されることとなる。 Since the light emitting dot pattern used in the present embodiment defines the distance from the change position of the shake direction of each dot row in accordance with the shake width L2, the character dot to be expressed is compared with the case of FIG. The size (the size in the horizontal direction) increases. In addition, unlike the case of FIG. 17, the character string to be expressed is arranged uniformly over the entire swing width L2.
 <3.可視化処理の流れ>
 次に、図22を用いて、本実施形態における可視化処理の流れについて説明する。図9のステップS910において、電子体温計100が電子体温計の正面を見て、体温計の長手方向とほぼ直交する方向(横方向)に往復で振られていると判定されると、図22に示す処理が開始される。
<3. Flow of visualization process>
Next, the flow of visualization processing in this embodiment will be described using FIG. If it is determined in step S910 in FIG. 9 that the electronic thermometer 100 is swung back and forth in a direction (lateral direction) substantially orthogonal to the longitudinal direction of the thermometer when the front surface of the electronic thermometer is viewed, the processing shown in FIG. Is started.
 ステップS2201では、信号処理部232からの信号(振れ方向の変更位置を示す信号)に基づいて、電子体温計100の振れ幅を算出する。 In step S2201, based on a signal from the signal processing unit 232 (a signal indicating a change position in the shake direction), the shake width of the electronic thermometer 100 is calculated.
 ステップS2202では、演算された体温の予測値に基づいて、発光部252において可視化すべき体温に関する情報を表現するための発光ドットパターンを作成する。このとき、各ドット列の振れ方向の変更位置からの距離を、ステップS2201において算出された振れ幅に基づいて規定する。 In step S2202, a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 252 is created based on the calculated predicted body temperature value. At this time, the distance from the change position of the shake direction of each dot row is defined based on the shake width calculated in step S2201.
 ステップS2203では、信号処理部232からの信号に基づいて、電子体温計100の振れ方向の変更位置を識別する。 In step S2203, the change position of the shake direction of the electronic thermometer 100 is identified based on the signal from the signal processing unit 232.
 ステップS2204では、ステップS2203において識別された振れ方向の変更位置を基準として制御を開始する。具体的には、信号処理部232からの信号(振れ方向の変更位置からの距離を示す信号)が、ステップS2202において作成された発光ドットパターンを構成する各ドット列について規定された距離に一致した場合に、各発光素子を、対応するドット列に従って発光させる。 In step S2204, control is started based on the change position of the shake direction identified in step S2203. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the shake direction change position) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S2202. In this case, each light emitting element is caused to emit light according to a corresponding dot row.
 ステップS2205では、信号処理部232からの信号の出力が継続しているか否かを判定し、継続していると判定された場合には、ステップS2201に戻る。一方、信号処理部232からの信号の出力がないと判定された場合には、可視化処理を終了する。 In step S2205, it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S2201. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
 以上の説明から明らかなように、本実施形態に係る電子体温計100では、振れ幅に応じて、可視化する文字の大きさおよび位置を変更させることが可能となった。 As is clear from the above description, in the electronic thermometer 100 according to the present embodiment, it is possible to change the size and position of the character to be visualized according to the swing width.
 [第6の実施形態]
 上記第5の実施形態では、振れ幅全体に文字列が配置されるように制御する構成としたが、本発明はこれに限定されない。例えば、ユーザが電子体温計100を往復で振った場合、振れ方向の変更位置近傍においては、振れ速度が低下することから、ユーザの目の残像効果は小さくなる。そこで、より見やすい表示を行うべく、振れ方向の変更位置近傍においては、発光を行わないよう制御する構成としてもよい。
[Sixth Embodiment]
In the fifth embodiment, the control is performed so that the character string is arranged over the entire swing width, but the present invention is not limited to this. For example, when the user shakes the electronic thermometer 100 in a reciprocating manner, the afterimage effect of the user's eyes is reduced because the shake speed decreases near the change position in the shake direction. Therefore, in order to perform a display that is easier to see, a configuration may be adopted in which light emission is not performed in the vicinity of the shake direction change position.
 以下、振れ速度の大きい時間帯のみを利用して各発光素子の発光を制御する構成とした電子体温計について説明する。 Hereinafter, an electronic thermometer configured to control light emission of each light emitting element using only a time zone with a high shake speed will be described.
 <1.表示制御部において作成される発光ドットパターン>
 図23は、本実施形態において作成される発光ドットパターンの一例を示す図である。
<1. Light emitting dot pattern created in display control unit>
FIG. 23 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
 図15との違いは、図23の場合、横方向の文字と文字との間に2ドット列数分の発光素子の空白を設けることに加えて、文字列の最初の文字の前に、更に、6ドット列数分の発光素子の空白を設けている点にある。更に、文字列の最後の文字の後ろに、6ドット列数分の発光素子の空白が設けている点にある。 The difference from FIG. 15 is that, in the case of FIG. 23, in addition to providing a blank of light emitting elements corresponding to the number of 2-dot columns between characters in the horizontal direction, in addition to the first character of the character string, , There are provided blanks of light emitting elements corresponding to the number of 6 dot rows. Further, the light-emitting element space corresponding to the number of 6-dot columns is provided after the last character of the character string.
 このため、体温に関する情報として、例えば“38.5℃”の5文字(“3”、“8”、“.”、“5”及び“℃”)を表現するために、本実施形態における発光ドットパターンは、
(最初の空白列のドット列数(=6ドット)
+(最後の空白列のドット列数(=6ドット))
+(1文字あたりの横方向ドット列数(=5ドット))×4文字
+(「点」の横方向ドット列数(=1ドット))×1文字
+(空白列のドット列数(=2ドット))×(5文字+1)
=45ドット列数から構成されることとなる。
For this reason, as information relating to body temperature, for example, in order to express five characters “38.5 ° C.” (“3”, “8”, “.”, “5”, and “° C.”) The dot pattern
(Number of dots in the first blank row (= 6 dots)
+ (Number of dots in the last blank row (= 6 dots))
+ (Number of horizontal dot rows per character (= 5 dots)) × 4 characters + (number of horizontal dot rows of “dots” (= 1 dot)) × 1 character + (number of blank rows of dots (= 2 dots)) x (5 characters + 1)
= 45 dot rows.
 つまり、本実施形態の場合、電子体温計100の右振れが開始されてから振る方向が変わるまでの間に、発光素子は、45ドット列数からなる発光ドットパターンを出力することとなる。このため、各ドット列の振れ方向の変更位置からの距離は、
x1=(L/45)×0
x2=(L/45)×1
x3=(L/45)×2
・・・
x45=(L/45)×44
となる。
That is, in the case of the present embodiment, the light emitting element outputs a light emitting dot pattern consisting of 45 dot rows from when the electronic thermometer 100 starts to swing right until the direction of shaking changes. For this reason, the distance from the change position of the shake direction of each dot row is
x1 = (L / 45) × 0
x2 = (L / 45) × 1
x3 = (L / 45) × 2
...
x45 = (L / 45) × 44
It becomes.
 このように、文字列の最初と最後に空白を設けることにより、振れ方向の変更位置近傍においては、体温に関する情報を示す文字列が可視化されず、比較的振れ速度が大きい時間帯においてのみ、体温に関する情報を示す文字列が可視化されることとなる。 Thus, by providing a blank at the beginning and end of the character string, the character string indicating the information on the body temperature is not visualized in the vicinity of the position where the shake direction is changed, and only when the temperature is relatively high, The character string indicating the information on is visualized.
 この結果、より見やすい表示を実現することが可能となる。 As a result, it is possible to realize a display that is easier to see.
 <2.発光開始から発光終了までの発光制御処理の内容>
 次に、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<2. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment will be described.
 図24は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図24において、24Aは振れ方向の変更位置において発光を開始した状態を示している。また、24B及び24Cは、振れ幅Lの1/3の位置に到達した状態及び2/3の位置に到達した状態をそれぞれ示している。さらに、24Dは振れ幅Lの位置に到達し、発光が終了した状態を示している。 FIG. 24 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 24, 24A shows a state in which light emission is started at the change position of the shake direction. Further, 24B and 24C respectively show a state where the position has reached 1/3 of the swing width L and a state where the position has reached 2/3. Further, 24D shows a state in which light emission is completed after reaching the position of the swing width L.
 図24に示すように、各発光素子は、振れ方向の変更位置からの距離に対応するドット列に従って発光するよう制御される。 As shown in FIG. 24, each light emitting element is controlled to emit light according to a dot row corresponding to the distance from the shake direction change position.
 本実施形態において用いられる発光ドットパターンには、文字列の最初と最後に空白が含まれているため、振れ方向の変更位置近傍では、各発光素子は発光せず、空白列数分の位置に到達してから、最初の文字が発光することとなる。また、もう一方の振れ方向の変更位置近傍においても、各発光素子は発光せず、空白列数分前の位置において、最後の文字の発光が終了することとなる。 Since the light-emitting dot pattern used in the present embodiment includes blanks at the beginning and end of the character string, each light-emitting element does not emit light in the vicinity of the change position in the shake direction, and is at the position corresponding to the number of blank lines. After reaching, the first character will emit light. In addition, each light emitting element does not emit light in the vicinity of the other change direction of the shake direction, and the light emission of the last character ends at a position that is the number of blank lines before.
 この結果、振れ方向の変更位置近傍における振れ速度の低下の影響を受けることなく、体温に関する情報を可視化させることが可能となる。 As a result, it becomes possible to visualize the information on the body temperature without being affected by the decrease in the shake speed in the vicinity of the change position of the shake direction.
 以上の説明から明らかなように、本実施形態では、振れ速度の大きい時間帯のみを利用して、体温に関する情報を可視化する構成としたため、より見やすい表示を実現することが可能となった。 As is clear from the above description, in the present embodiment, since the information related to the body temperature is visualized using only the time zone with a large shake speed, it is possible to realize a more easily visible display.
 [第7の実施形態]
 上記第6の実施形態では、より見やすい表示を実現するために、発光ドットパターンの最初と最後に空白列を入れる構成とした。
[Seventh Embodiment]
In the sixth embodiment, a blank row is inserted at the beginning and end of the light emitting dot pattern in order to realize a more easily visible display.
 しかしながら、本発明はこれに限定されず、振れ方向の変更位置から最初の文字が発光されるまでの距離ならびに最後の文字が発光されてから振れ方向の変更位置に到達するまでの距離を、固定距離または振れ幅に基づいた所定の距離とする構成としてもよい。 However, the present invention is not limited to this, and the distance from the change position of the shake direction until the first character is emitted and the distance from the emission of the last character to the change position of the shake direction are fixed. A predetermined distance based on the distance or runout width may be used.
 つまり、振れ方向の変更位置から固定距離(Lh)または振れ幅に基づいた所定の距離(Li)離れた位置が発光開始位置となり、発光終了位置から固定距離(Lh)または振れ幅に基づいた所定の距離(Li)離れた位置が振れ方向の変更位置となるように構成してもよい。 In other words, a position that is a fixed distance (Lh) or a predetermined distance (Li) based on the swing width from the change direction of the swing direction becomes a light emission start position, and a predetermined distance based on the fixed distance (Lh) or the swing width from the light emission end position. You may comprise so that the position which left | separated distance (Li) of this may become the change position of a shake direction.
 <1.表示制御部において作成される発光ドットパターン>
 図25は、本実施形態において作成される発光ドットパターンの一例を示す図である。
<1. Light emitting dot pattern created in display control unit>
FIG. 25 is a diagram illustrating an example of a light emitting dot pattern created in the present embodiment.
 図23との違いは、図25の場合、文字列の最初の文字の前に、6ドット列数分の発光素子の空白を設ける代わりに、固定距離Lhまたは振れ幅に基づいた所定の距離Liを設けている点にある。更に、文字列の最後の文字の後ろに、6ドット列数分の発光素子の空白を設ける代わりに、固定距離Lhまたは振れ幅に基づいた所定の距離Liを設けている点にある。 The difference from FIG. 23 is that, in the case of FIG. 25, a predetermined distance Li based on the fixed distance Lh or the fluctuation width is used instead of providing a blank of light emitting elements for the number of 6 dot lines before the first character of the character string. Is in the point of providing. Furthermore, a predetermined distance Li based on a fixed distance Lh or a swing width is provided instead of providing a blank of light emitting elements for the number of 6 dot lines after the last character of the character string.
 本実施形態の場合、各ドット列の振れ方向の変更位置からの距離は、
x1=Lh+((L-2×Lh)/33)×0
x2=Lh+((L-2×Lh)/33)×1
x3=Lh+((L-2×Lh)/33)×2
・・・
x33=Lh+(L-2×Lh)/33)×32
(ただし、Lhは定数、例えばLh=5cm)
となる。
In the case of this embodiment, the distance from the change position of the shake direction of each dot row is
x1 = Lh + ((L-2 × Lh) / 33) × 0
x2 = Lh + ((L-2 × Lh) / 33) × 1
x3 = Lh + ((L-2 × Lh) / 33) × 2
...
x33 = Lh + (L-2 × Lh) / 33) × 32
(However, Lh is a constant, for example, Lh = 5 cm)
It becomes.
 または、
x1=Li+((L-2×Li)/33)×0
x2=Li+((L-2×Li)/33)×1
x3=Li+((L-2×Li)/33)×2
・・・
x33=Li+(L-2×Li)/33)×32
(ただし、Li=L×α、例えばα=0.25)
となる。
Or
x1 = Li + ((L-2 × Li) / 33) × 0
x2 = Li + ((L-2 × Li) / 33) × 1
x3 = Li + ((L-2 × Li) / 33) × 2
...
x33 = Li + (L-2 × Li) / 33) × 32
(Where Li = L × α, for example α = 0.25)
It becomes.
 <2.発光開始から発光終了までの発光制御処理の内容>
 図26は、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容を説明するための図である。図26において、26Aは振れ方向の変更位置にあって、未だ発光を開始していない状態を示している。また、26B及び26Cは、すでに固定距離Lhまたは振れ幅に基づいた所定の距離Liの位置を通過し、振れ幅Lの1/3の位置に到達した状態及び2/3の位置に到達した状態をそれぞれ示している。さらに、26Dは振れ幅Lの位置に到達し、発光がすでに終了している状態を示している。
<2. Details of the light emission control process from the start to the end of light emission>
FIG. 26 is a diagram for explaining the contents of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment. In FIG. 26, 26A shows a state in which the light emission direction has not yet started at the change position of the shake direction. In addition, 26B and 26C have already passed through the position of the predetermined distance Li based on the fixed distance Lh or the swing width, and have reached the position of 1/3 of the swing width L and the state of having reached the position of 2/3 Respectively. Further, 26D shows a state in which the light emission has already ended after reaching the position of the swing width L.
 以上の説明から明らかにように、本実施形態では、振れ方向の変更位置近傍に固定距離Lhまたは振れ幅に基づいた所定の距離Liを設定することで、振れ速度が大きい時間帯のみを利用して、体温に関する情報を可視化する構成とした。この結果、より見やすい表示を実現することが可能となった。 As is clear from the above description, in the present embodiment, by setting the fixed distance Lh or the predetermined distance Li based on the swing width in the vicinity of the change position of the swing direction, only the time zone in which the swing speed is high is used. Thus, the information on the body temperature is visualized. As a result, it is possible to realize a display that is easier to see.
 [第8の実施形態]
 上記第1乃至7の実施形態では、各発光素子の発光色について特に言及しなかったが、本発明に係る電子体温計は、例えば、所定の条件に応じて各発光素子の発光色を変更する構成としてもよい。
[Eighth Embodiment]
In the first to seventh embodiments, the light emission color of each light emitting element is not particularly mentioned, but the electronic thermometer according to the present invention is configured to change the light emission color of each light emitting element according to a predetermined condition, for example. It is good.
 <1.電子体温計の外観構成>
 図27は、本発明の第8の実施形態に係る電子体温計2700の外観構成の一例を示す図である。
<1. External structure of electronic thermometer>
FIG. 27 is a diagram showing an example of an external configuration of an electronic thermometer 2700 according to the eighth embodiment of the present invention.
 図27において、101は、被検者の体温に関する情報を表示する表示部であり、例えば、LCD等により構成されている。 In FIG. 27, reference numeral 101 denotes a display unit that displays information related to the body temperature of the subject, and includes, for example, an LCD or the like.
 2702は発光部であり、電子体温計2700の長手方向に配列されたLED等の発光素子の列(発光素子列)が、電子体温計2700の幅方向に3列配列されている。発光素子列は、それぞれ異なる発光色の光を発光するように構成されているものとする。本実施形態では、1列目(表示部101に近い側)が、赤色に発光する発光素子列であり、2列目が、緑色に発光する発光素子列であり、3列目が、青色に発光する発光素子列であるものとする。ただし、各発光素子列の発光色はこれに限定されるものではなく他の発光色であってもよい。 2702 is a light emitting unit, and three rows of light emitting elements (light emitting element rows) such as LEDs arranged in the longitudinal direction of the electronic thermometer 2700 are arranged in the width direction of the electronic thermometer 2700. The light emitting element rows are configured to emit light of different emission colors. In the present embodiment, the first row (side closer to the display unit 101) is a light emitting element row that emits red light, the second row is a light emitting element row that emits green light, and the third row is blue. It is assumed that the light emitting element array emits light. However, the emission color of each light emitting element array is not limited to this, and other emission colors may be used.
 また、図27の例では、各発光素子列として発光素子が電子体温計2700の長手方向に7個配列された場合について図示しているが、電子体温計2700の長手方向に配列される発光素子の数は7個に限られない。 In the example of FIG. 27, a case where seven light emitting elements are arranged in the longitudinal direction of the electronic thermometer 2700 as each light emitting element row is illustrated, but the number of light emitting elements arranged in the longitudinal direction of the electronic thermometer 2700 is illustrated. Is not limited to seven.
 更に、図27の例では、発光素子列を、電子体温計2700の幅方向に3列配列した場合について図示しているが、発光素子列の配列数は3列に限られず、2列以上であれば何列であってもよい。 Further, in the example of FIG. 27, the case where three light emitting element arrays are arranged in the width direction of the electronic thermometer 2700 is illustrated, but the number of light emitting element arrays is not limited to three, and may be two or more. Any number of rows may be used.
 103はエンドキャップであり、内蔵された温度計測部(詳細は後述)に対して被検者の体温が伝導しやすいように、ステンレスなどの金属により構成されている。 103 is an end cap, which is made of a metal such as stainless steel so that the body temperature of the subject can be easily conducted to a built-in temperature measuring unit (details will be described later).
 104はON/OFFスイッチであり、体温の測定を開始する際、又は体温の測定を終了した後に押すことで、電子体温計2700の電源を制御する。 104 is an ON / OFF switch that controls the power source of the electronic thermometer 2700 by pressing when starting the measurement of the body temperature or after finishing the measurement of the body temperature.
 <2.電子体温計のシステム構成>
 次に、電子体温計のシステム構成について図28を参照しながら説明する。
<2. System configuration of electronic thermometer>
Next, the system configuration of the electronic thermometer will be described with reference to FIG.
 図28は、本発明の第1の実施形態に係る電子体温計2700のシステム構成を示す図である。 FIG. 28 is a diagram showing a system configuration of the electronic thermometer 2700 according to the first embodiment of the present invention.
 電子体温計2700は、電源部210と温度計測部220と振れ検出部230と演算制御部240と、出力部250と、ブザー260とに大別することができる。 The electronic thermometer 2700 can be roughly divided into a power supply unit 210, a temperature measurement unit 220, a shake detection unit 230, a calculation control unit 240, an output unit 250, and a buzzer 260.
 電源部210は、従来の使い捨て式又は充電式の電池を内蔵しており、電子体温計2700の各部に電源を供給する。 The power supply unit 210 incorporates a conventional disposable or rechargeable battery, and supplies power to each part of the electronic thermometer 2700.
 温度計測部220は、サーミスタ、コンデンサ、測温用CR発振回路等から構成されており、サーミスタにより検出された温度を発振信号として出力する。出力された発振信号はカウンタ245においてカウントされることで、デジタル量として出力される。なお、温度計測部220の構成は一例であって、これに限定されるものではない。 The temperature measuring unit 220 includes a thermistor, a capacitor, a temperature measuring CR oscillation circuit, and the like, and outputs the temperature detected by the thermistor as an oscillation signal. The output oscillation signal is counted by the counter 245 and output as a digital quantity. The configuration of the temperature measurement unit 220 is an example and is not limited to this.
 演算制御部240は、体温測定に必要なパラメータをあらかじめ記憶しているEEPROM241、計測した温度を時系列で記憶するためのRAM242、予測式の体温測定プログラム等をあらかじめ記憶しているROM243、出力部250を制御するための表示制御部244、温度計測部220より出力された発振信号をカウントするカウンタ245、ROM243の体温測定プログラムに従いEEPROM241にあらかじめ記憶しているパラメータに従って演算を行う演算処理部246、カウンタ245や表示制御部244を制御する制御回路247等を備える。 The arithmetic control unit 240 includes an EEPROM 241 that stores parameters necessary for body temperature measurement in advance, a RAM 242 that stores measured temperatures in time series, a ROM 243 that stores a predictive body temperature measurement program, etc., and an output unit. 250, a display control unit 244 for controlling 250, a counter 245 that counts the oscillation signal output from the temperature measurement unit 220, an arithmetic processing unit 246 that performs calculations according to parameters stored in advance in the EEPROM 241 in accordance with a body temperature measurement program in the ROM 243, A control circuit 247 for controlling the counter 245 and the display control unit 244 is provided.
 ブザー260は、体温測定が終了したことを、鳴動により被検者に知らせる。 The buzzer 260 informs the subject by ringing that the body temperature measurement has been completed.
 振れ検出部230は、モーション・センサ231と、信号処理部232とを備える。モーション・センサ231としては、例えば、加速度センサや傾斜センサ等が用いられるものとする。 The shake detection unit 230 includes a motion sensor 231 and a signal processing unit 232. As the motion sensor 231, for example, an acceleration sensor or a tilt sensor is used.
 信号処理部232は、モーション・センサ231が検出した電子体温計100の振れを信号として受信し、当該信号に基づいて、発光部252の発光開始のタイミングならびに各発光素子の1ドット列当たりの発光時間を規定するための信号(振れ方向の変更タイミングを示す信号(詳細は後述))を表示制御部244に出力する。 The signal processing unit 232 receives the shake of the electronic thermometer 100 detected by the motion sensor 231 as a signal, and based on the signal, the light emission start timing of the light emitting unit 252 and the light emission time per dot row of each light emitting element Is output to the display control unit 244 (a signal indicating the change timing of the shake direction (details will be described later)).
 出力部250は、従来の表示方法(LCD等)で体温に関する情報を表示する表示部251と、ユーザの目の残像効果を利用して体温に関する情報を可視化する発光部2852とを含む。 The output unit 250 includes a display unit 251 that displays information related to body temperature using a conventional display method (LCD or the like), and a light emitting unit 2852 that visualizes information related to body temperature using the afterimage effect of the user's eyes.
 表示部251(図27の表示部101に対応する)は、LCD等により構成され、表示制御部244から受信した体温に関する情報を表示する。 Display unit 251 (corresponding to display unit 101 in FIG. 27) is configured by an LCD or the like, and displays information related to body temperature received from display control unit 244.
 発光部2852(図27の発光部2702に対応する)は、複数(本実施形態では7個)の発光素子から構成される発光素子列2852A~2852Cを備える。本実施形態においては、発光素子列2852Aが赤色に発光し、発光素子列2852Bが緑色に発光し、発光素子列2852Cが青色に発光するものとする。 The light emitting unit 2852 (corresponding to the light emitting unit 2702 in FIG. 27) includes light emitting element arrays 2852A to 2852C composed of a plurality (seven in this embodiment) of light emitting elements. In this embodiment, the light emitting element array 2852A emits red light, the light emitting element array 2852B emits green light, and the light emitting element array 2852C emits blue light.
 各発光素子列は、電子体温計2700が往復で振られた(往復運動した)際に、被検者の体温に関する情報をユーザが視認できるように、表示制御部244にて作成された発光ドットパターン、表示制御部244にて算出された発光時間及び発光開始タイミング/発光終了タイミングに基づいて発光する(詳細は後述)。 Each light-emitting element array has a light-emitting dot pattern created by the display control unit 244 so that the user can visually recognize information about the body temperature of the subject when the electronic thermometer 2700 is reciprocally shaken (reciprocated). Then, light is emitted based on the light emission time and the light emission start timing / light emission end timing calculated by the display control unit 244 (details will be described later).
 なお、本実施形態における電子体温計2700では、測定された体温に応じて、制御対象が3つの発光素子列2852A~2852Cのいずれか一列のみに切り替えられ、当該切り替えられた発光素子列によって発光が行われるものとする。 In the electronic thermometer 2700 according to the present embodiment, the control target is switched to only one of the three light emitting element arrays 2852A to 2852C according to the measured body temperature, and light emission is performed by the switched light emitting element array. Shall be.
 つまり、表示制御部244は、表示部251の表示を制御する表示制御機能と、発光部2852のいずれかの発光素子列の発光を制御するよう切り替える切り替え機能と、当該切り替えた発光素子列の発光を制御する発光制御機能とを有している。 That is, the display control unit 244 has a display control function for controlling the display of the display unit 251, a switching function for switching light emission of one of the light emitting element columns of the light emitting unit 2852, and light emission of the switched light emitting element column. And a light emission control function for controlling the light emission.
 このように、発光部252のいずれかの発光素子列が発光している状態で、ユーザが電子体温計2700を往復で振ることで、ユーザは、目の残像効果により、被検者の体温に関する情報を空間上において赤色または緑色または青色の文字として視認することができる。 In this way, when the user reciprocates the electronic thermometer 2700 in a state where any one of the light emitting element rows of the light emitting unit 252 emits light, the user can obtain information on the body temperature of the subject by the afterimage effect of the eyes. Can be visually recognized as red, green, or blue characters in space.
 なお、電子体温計2700のように発光部2702を備える構成の場合、必ずしも表示部2851を設ける必要はなく、表示部251は省略しても良い。このように、表示部251を省略することで、電子体温計2700では、表示部を配するための幅又は大きさを維持する必要が無くなるため、外形寸法を更に小さくすることができる。 Note that in the case of a configuration including the light emitting unit 2702 like the electronic thermometer 2700, the display unit 2851 is not necessarily provided, and the display unit 251 may be omitted. In this manner, by omitting the display unit 251, the electronic thermometer 2700 does not need to maintain the width or size for arranging the display unit, and thus the outer dimensions can be further reduced.
 <3.発光部の発光により視認される表示内容>
 次に、電子体温計2700の発光部2852の発光素子列の発光により視認される表示内容について、図面を参照しながら説明する。
<3. Display contents visually recognized by light emission of light emitting unit>
Next, display contents visually recognized by light emission of the light emitting element array of the light emitting unit 2852 of the electronic thermometer 2700 will be described with reference to the drawings.
 図29は電子体温計2700を、横方向に、電子体温計2700の姿勢を維持した状態で、電子体温計2700を往復で振った場合に、発光部2852の発光素子列の発光によってユーザに視認される表示内容の一例を示した図である。 FIG. 29 shows a display visually recognized by the user by light emission of the light emitting element array of the light emitting unit 2852 when the electronic thermometer 2700 is reciprocally shaken in the horizontal direction while maintaining the posture of the electronic thermometer 2700. It is the figure which showed an example of the content.
 発光部2852では、電子体温計2700が横方向に往復で振られているうちの、所定方向の振れ(ここでは、紙面左側から右側への振れ、以下、右振れと称す)の間、被検者の体温に関する情報に対応する発光ドットパターンと、後述する1ドット列あたりの発光時間とに基づいて、いずれかの発光素子列が発光する。これにより、その発光を見たユーザは、目の残像効果により、該被検者の体温に関する情報を赤色または緑色または青色の文字として視認することができる。 In the light emitting unit 2852, during the swing of the electronic thermometer 2700 that is reciprocated in the lateral direction (herein, the swing from the left side to the right side of the paper, hereinafter referred to as the right swing), the subject. One of the light emitting element rows emits light based on the light emitting dot pattern corresponding to the information related to the body temperature and the light emission time per one dot row to be described later. Thereby, the user who sees the emitted light can visually recognize the information on the body temperature of the subject as red, green, or blue characters by the afterimage effect of the eyes.
 なお、図29の例は、電子体温計2700を横方向に往復で振ることで、振れ範囲内の空間上に、“38.5℃”という表示が浮かび上がって見える様子を示している。 In addition, the example of FIG. 29 shows a state where “38.5 ° C.” appears to appear in the space within the shake range by shaking the electronic thermometer 2700 in the horizontal direction.
 図29に示すように、電子体温計2700の発光部2852を構成するいずれかの発光素子列は、電子体温計2700の右振れが終了するまでの間に、それぞれ対応する発光タイミングにおいて発光する。なお、本実施形態では紙面右側から左側への振れ(以下、左振れと称す)の間は、いずれの発光素子列も発光しないものとする。 As shown in FIG. 29, any one of the light emitting element arrays constituting the light emitting unit 2852 of the electronic thermometer 2700 emits light at the corresponding light emission timing until the right shake of the electronic thermometer 2700 is completed. In the present embodiment, it is assumed that none of the light emitting element arrays emits light during a shake from the right side to the left side of the paper (hereinafter referred to as a left shake).
 このように、発光素子列は、対応する発光タイミングにおいて、一瞬(1ドット列当たりの発光時間分)発光するだけであるが、ユーザの目の残像効果により、それぞれの発光タイミングで発光した光が残像として残るため、ユーザには、連続した文字として視認されることとなる。以下、電子体温計2700を横方向に往復で振った場合の、信号処理部232及び表示制御部244における処理の詳細について説明する。 As described above, the light emitting element arrays emit light for a moment (equivalent to the light emission time per dot line) at the corresponding light emission timing, but the light emitted at each light emission timing is caused by the afterimage effect of the user's eyes. Since it remains as an afterimage, it is visually recognized by the user as a continuous character. Hereinafter, details of processing in the signal processing unit 232 and the display control unit 244 when the electronic thermometer 2700 is shaken back and forth in the horizontal direction will be described.
 <4.測定された体温と発光色との関係>
 次に、可視化する際の発光色の選択方法について説明する。図30は測定された体温と発光色との関係を定義したテーブルである。図30に示すテーブルは、表示制御部244に予め記憶されており、表示制御部244では、演算処理部246より出力された被検者の体温に基づいて、当該テーブルを用いて発光色を選択する。
<4. Relationship between measured body temperature and emission color>
Next, a method for selecting a luminescent color for visualization will be described. FIG. 30 is a table defining the relationship between measured body temperature and emission color. The table shown in FIG. 30 is stored in advance in the display control unit 244, and the display control unit 244 selects an emission color using the table based on the body temperature of the subject output from the arithmetic processing unit 246. To do.
 図30の例では、測定された体温が36.0℃未満の場合には、発光色として青色が選択され、36.0℃以上37.5℃未満の場合には、発光色として緑色が選択され、37.5℃以上の場合には、発光色として赤色が選択される。 In the example of FIG. 30, when the measured body temperature is less than 36.0 ° C., blue is selected as the emission color, and when it is 36.0 ° C. or more and less than 37.5 ° C., green is selected as the emission color. When the temperature is 37.5 ° C. or higher, red is selected as the emission color.
 表示制御部244では、選択した発光色に対応する発光素子列が発光するように、制御対象を切り替える。本実施形態に係る電子体温計2700の場合、測定された体温が36.0℃未満の場合には、発光素子列2852Cが発光するように切り替えられ、36.0℃以上37.5℃未満の場合には、発光素子列2852Bが発光するように切り替えられる。また、37.5℃以上の場合には、発光素子列2852Aが発光するように切り替えられる。 The display control unit 244 switches the control target so that the light emitting element array corresponding to the selected emission color emits light. In the case of the electronic thermometer 2700 according to the present embodiment, when the measured body temperature is less than 36.0 ° C., the light-emitting element array 2852C is switched to emit light, and when the temperature is 36.0 ° C. or more and less than 37.5 ° C. Is switched so that the light emitting element array 2852B emits light. When the temperature is 37.5 ° C. or higher, the light emitting element array 2852A is switched to emit light.
 なお、図30に示すテーブルは一例であり、測定された体温と発光色との関係は図30に示すテーブルに限られるものではない。 It should be noted that the table shown in FIG. 30 is an example, and the relationship between the measured body temperature and the emission color is not limited to the table shown in FIG.
 <5.発光開始から発光終了までの発光制御処理の内容>
 次に、発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<5. Details of the light emission control process from the start to the end of light emission>
Next, the content of the light emission control process in the display control unit 244 from the light emission start to the light emission end will be described.
 図31は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図31において、31Aは振れ方向の変更タイミングにおいて発光を開始した状態を示している。また、31B及び31Cは、振れ時間Tの1/3が経過した状態及び2/3が経過した状態をそれぞれ示している。さらに、31Dは振れ時間Tが経過し、発光が終了した状態を示している。 FIG. 31 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 31, 31A shows a state in which light emission is started at the change timing of the shake direction. 31B and 31C respectively show a state in which 1/3 of the shake time T has elapsed and a state in which 2/3 has elapsed. Further, 31D shows a state in which the shake time T has elapsed and the light emission has ended.
 図31の例では、測定された体温が38.5℃であるため、発光素子列2852Aが発光するように切り替えられている。発光素子列2852Aは、発光ドットパターンのうち、発光開始タイミングからの経過時間に対応するドット列に基づいて赤色の発光を行うよう制御される。 In the example of FIG. 31, since the measured body temperature is 38.5 ° C., the light emitting element array 2852A is switched to emit light. The light emitting element array 2852A is controlled to emit red light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
 同様に、図32は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図31との違いは、図32の場合、測定された体温が36.5℃であるため、発光素子列2852Bが発光するように切り替えられている点である。発光素子列2852Bは、発光ドットパターンのうち、発光開始タイミングからの経過時間に対応するドット列に基づいて緑色の発光を行うよう制御される。 Similarly, FIG. 32 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 31 is that, in the case of FIG. 32, since the measured body temperature is 36.5 ° C., the light emitting element array 2852B is switched to emit light. The light emitting element array 2852B is controlled to emit green light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
 同様に、図33は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図31との違いは、図33の場合、測定された体温が35.5℃であるため、発光素子列2852Cが発光するように切り替えられている点である。発光素子列2852Cは、発光ドットパターンのうち、発光開始タイミングからの経過時間に対応するドット列に基づいて青色の発光を行うよう制御される。 Similarly, FIG. 33 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 31 is that, in the case of FIG. 33, the measured body temperature is 35.5 ° C., so that the light-emitting element array 2852C is switched to emit light. The light emitting element array 2852C is controlled to emit blue light based on the dot array corresponding to the elapsed time from the light emission start timing in the light emitting dot pattern.
 一方、図34は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図であるが、図31との違いは、振れ時間Tが図31の振れ時間Tより小さい点にある。 On the other hand, FIG. 34 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 31 is that the shake time T is the shake time of FIG. It is at a point smaller than T.
 なお、振れ時間Tが小さい場合とは、振れ速度が同じで振れ幅が小さい場合と、振れ幅が同じで振れ速度が大きい場合とが考えられるが、どちらの場合も発光制御処理の内容としては同じである。このため、図34では、振れ速度が同じで振れ幅が小さい場合について示している。 Note that the case where the shake time T is small is considered to be a case where the shake speed is the same and the shake width is small, and a case where the shake width is the same and the shake speed is large. The same. For this reason, FIG. 34 shows a case where the shake speed is the same and the shake width is small.
 図34に示すように、振れ時間Tが図31の振れ時間Tより小さい場合、発光時間tは、図31の発光時間よりも短くなり、結果として、表現される文字の大きさ(横方向の大きさ)は、小さくなる。このように、本実施形態に係る電子体温計2700では、ユーザが小さく振った場合に、それに対応して、より小さい文字により体温に関する情報を可視化させることができる。 As shown in FIG. 34, when the shake time T is smaller than the shake time T of FIG. 31, the light emission time t becomes shorter than the light emission time of FIG. 31, and as a result, the size of the expressed character (in the horizontal direction) (Size) becomes smaller. As described above, in the electronic thermometer 2700 according to the present embodiment, when the user shakes a small amount, information related to the body temperature can be visualized with a smaller character correspondingly.
 なお、振れ幅が同じで振れ速度が大きい場合には、発光時間tは、図31の発光時間よりも短くなるが、振れ速度が大きい分、短い発光時間の間に移動する距離が大きくなるため、結果として、表現される文字の大きさ(横方向の大きさ)は、図31の場合と同じとなる。 When the shake width is the same and the shake speed is large, the light emission time t is shorter than the light emission time of FIG. 31, but the distance moved during the short light emission time is increased by the increase of the shake speed. As a result, the size of the character to be expressed (the size in the horizontal direction) is the same as in the case of FIG.
 同様に、図35は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図31との違いは、図35の場合、振れ時間Tが図31の振れ時間Tより大きい点にある。 Similarly, FIG. 35 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 31 is that, in the case of FIG. 35, the shake time T is longer than the shake time T of FIG.
 なお、振れ時間Tが大きい場合とは、振れ速度が同じで振れ幅が大きい場合と、振れ幅が同じで振れ速度が小さい場合とが考えられるが、どちらの場合も発光制御処理の内容としては同じである。このため、図35では、振れ速度が同じで振れ幅が大きい場合について示している。 Note that the case where the shake time T is large may be the case where the shake speed is the same and the shake width is large, and the case where the shake width is the same and the shake speed is small. The same. For this reason, FIG. 35 shows a case where the shake speed is the same and the shake width is large.
 図35に示すように、振れ時間Tが図31の振れ時間Tより大きい場合、発光時間tは、図31の発光時間よりも長くなり、結果として、表現される文字の大きさ(横方向の大きさ)は、大きくなる。このように、本実施形態に係る電子体温計2700では、ユーザが大きく振った場合に、それに対応して、より大きい文字により体温に関する情報を可視化させることができる。 As shown in FIG. 35, when the shake time T is longer than the shake time T of FIG. 31, the light emission time t becomes longer than the light emission time of FIG. 31, and as a result, the size of the expressed character (in the horizontal direction) (Size) becomes larger. As described above, in the electronic thermometer 2700 according to the present embodiment, when the user shakes greatly, information related to the body temperature can be visualized with larger characters correspondingly.
 なお、振れ幅が同じで振れ速度が小さい場合には、発光時間tは、図31の発光時間よりも長くなるが、振れ速度が小さい分、長い発光時間の間に移動できる距離は小さくなるため、結果として、表示される文字の大きさ(横方向の大きさ)は、図31の場合と同じとなる。 When the shake width is the same and the shake speed is small, the light emission time t is longer than the light emission time of FIG. 31, but the distance that can be moved during the long light emission time is reduced by the smaller shake speed. As a result, the size of the displayed character (the size in the horizontal direction) is the same as in the case of FIG.
 このように、制御対象として切り替えられた発光素子列の各発光素子は、信号処理部232からの信号(振れ方向の変更タイミングを示す信号)の出力を発光開始タイミングとして、それぞれのタイミングで発光すべき発光ドットパターンを、算出された1ドット列当たりの発光時間分だけ発光させることで、電子体温計2700では右振れが終了するまでの間に、例えば“38.5℃”なる文字を当該体温に応じて選択された発光色により可視化させることができる。つまり、ユーザが振った場合の各振れ時間のばらつきを考慮して文字を可視化させることができ、かつ、そのとき可視化される文字を、測定された体温に対応させた色にすることができる。 As described above, each light emitting element of the light emitting element array switched as a control target emits light at each timing with the output of the signal from the signal processing unit 232 (signal indicating the change timing of the shake direction) as the light emission start timing. By causing the light emitting dot pattern to emit light for the calculated emission time per dot row, the electronic thermometer 2700 changes, for example, a character “38.5 ° C.” to the body temperature until the right shake is completed. It can be visualized by the emission color selected accordingly. That is, the character can be visualized in consideration of the variation of each shake time when the user shakes, and the character visualized at that time can be made a color corresponding to the measured body temperature.
 <6.可視化処理の流れ>
 次に、図36を用いて、演算された体温の予測値を発光部2852において可視化するための表示制御部244における処理の流れについて説明する。
<6. Flow of visualization process>
Next, the flow of processing in the display control unit 244 for visualizing the calculated predicted body temperature value in the light emitting unit 2852 will be described with reference to FIG.
 図9のステップS910において、電子体温計2700において横方向に往復で振られていると判定されると、図36に示す処理が開始される。 If it is determined in step S910 in FIG. 9 that the electronic thermometer 2700 is shaken back and forth in the lateral direction, the processing shown in FIG. 36 is started.
 ステップS3601では、図30に示すテーブルを参照して、演算された体温の予測値に対応する発光色を選択する。 In step S3601, a light emission color corresponding to the calculated predicted body temperature value is selected with reference to the table shown in FIG.
 ステップS3602では、ステップS3601において選択された発光色に対応する発光素子列を制御対象として切り替える。 In step S3602, the light emitting element array corresponding to the light emission color selected in step S3601 is switched as a control target.
 ステップS3603では、信号処理部232からの信号の出力間隔に基づいて、電子体温計2700の右振れの振れ時間Tを算出する。 In step S3603, based on the output interval of the signal from the signal processing unit 232, the shake time T of the right shake of the electronic thermometer 2700 is calculated.
 ステップS3604では、演算された体温の予測値に基づいて、発光部2852において可視化すべき体温に関する情報を表現するための発光ドットパターンを作成する。 In step S3604, a light emitting dot pattern for expressing information related to the body temperature to be visualized in the light emitting unit 2852 is created based on the calculated predicted body temperature value.
 ステップS3605では、ステップS3603において算出された右振れの振れ時間Tと、ステップS3604において作成された発光ドットパターンを表現するのに必要な右振れ方向の発光素子のドット列数とに基づいて、1ドット列当たりの発光時間tを算出する。 In step S3605, based on the right shake time T calculated in step S3603 and the number of dot rows of light emitting elements in the right shake direction necessary to express the light emitting dot pattern created in step S3604, 1 is obtained. The light emission time t per dot row is calculated.
 ステップS3606では、ステップS3602において切り替えられた発光素子列について、信号処理部232からの信号の出力を受信したタイミングで、作成された発光ドットパターンと、算出された1ドット列当たりの発光時間tとに基づいて、各発光素子の発光の制御を開始する。 In step S3606, for the light emitting element array switched in step S3602, at the timing of receiving the signal output from the signal processing unit 232, the generated light emitting dot pattern and the calculated light emission time t per dot array are calculated. Based on the above, control of light emission of each light emitting element is started.
 ステップS3607では、信号処理部232からの信号の出力が継続しているか否かを判定し、継続していると判定された場合には、ステップS3603に戻る。一方、信号処理部232からの信号の出力がないと判定された場合には、可視化処理を終了する。 In step S3607, it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S3603. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
 以上の説明から明らかなように、本実施形態に係る電子体温計2700では、複数の発光素子からなる発光素子列が複数配列され、各発光素子列ごとに異なる発光色で発光するよう構成された発光部2852と、電子体温計2700の振れを検出するモーション・センサ231と、測定された体温に応じて発光部2852のいずれかの発光素子列に切り替え、当該切り替えた発光素子列を構成する発光素子の発光を制御する表示制御部244とを備える構成とした。 As is clear from the above description, in the electronic thermometer 2700 according to the present embodiment, a plurality of light emitting element arrays each including a plurality of light emitting elements are arranged, and light emission configured to emit light with different emission colors for each light emitting element array. Unit 2852, a motion sensor 231 that detects the shake of the electronic thermometer 2700, and switches to one of the light emitting element rows of the light emitting unit 2852 according to the measured body temperature, and the light emitting element that constitutes the switched light emitting element row A display control unit 244 that controls light emission is provided.
 そして、電子体温計が横方向に往復で振られた場合に、制御対象の発光素子列の発光を適切に制御することで、測定された被検者の体温を、該体温に応じた色によりユーザが空間上で視認できるよう構成した。 Then, when the electronic thermometer is swung back and forth in the horizontal direction, by appropriately controlling the light emission of the light-emitting element array to be controlled, the measured body temperature of the subject is displayed by the color corresponding to the body temperature. Is configured to be visible in space.
 この結果、電子体温計において、体温を測定する際の利便性を損なうことなく、ユーザにとってよりわかりやすい表示を実現することが可能となった。特に、当該電子体温計によれば、体温に応じて発光色が変わるため、ユーザは、被検者の発熱の有無及び状態等を一目で認識することができるようになる。 As a result, the electronic thermometer can realize a display that is easier to understand for the user without impairing the convenience of measuring the body temperature. In particular, according to the electronic thermometer, since the emission color changes according to the body temperature, the user can recognize at a glance whether or not the subject has heat and the like.
 [第9の実施形態]
 上記第8の実施形態では、互いに発光色の異なる発光素子列2852A~2852Cを別々に配列し、測定された体温に応じて切り替えて発光させることで、測定された体温に応じた色の文字を可視化させる構成としたが本発明はこれに限定されない。
[Ninth Embodiment]
In the eighth embodiment, the light emitting element arrays 2852A to 2852C having different emission colors are arranged separately, and light is emitted by switching according to the measured body temperature, so that characters of a color corresponding to the measured body temperature are displayed. Although the configuration is made visible, the present invention is not limited to this.
 互いに発光色の異なる複数の発光素子からなる発光素子群を共通の開口部(発光窓)内に配置し、当該発光素子群を複数配列することで発光素子群列を形成するようにしてもよい。この場合、各発光窓からは、発光素子群を構成する各発光素子により発光された光が混色されて放射されることとなる。つまり、発光素子群を構成する各発光素子の発光量を調整することにより、任意の色の光を発光窓から放射させることが可能となる。以下、本実施形態の詳細を説明する。 A light emitting element group consisting of a plurality of light emitting elements having different emission colors may be arranged in a common opening (light emitting window), and a plurality of the light emitting element groups may be arranged to form a light emitting element group row. . In this case, light emitted from each light emitting element constituting the light emitting element group is mixed and emitted from each light emitting window. That is, by adjusting the light emission amount of each light emitting element constituting the light emitting element group, light of any color can be emitted from the light emitting window. Details of this embodiment will be described below.
 <1.電子体温計の外観構成>
 図37は、本発明の第9の実施形態に係る電子体温計3700の外観構成の一例を示す図である。参照番号101、103、104は上記第8の実施形態において説明済みであるため、ここでは説明を省略する。
<1. External structure of electronic thermometer>
FIG. 37 is a diagram illustrating an example of an external configuration of an electronic thermometer 3700 according to the ninth embodiment of the present invention. Since reference numerals 101, 103, and 104 have already been described in the eighth embodiment, description thereof is omitted here.
 図37において、3702は発光部であり、LED等の発光素子が内部に複数配置された発光素子群より発光された光が混色されて放射される発光窓が、電子体温計3700の長手方向に複数配列されている。つまり、複数の発光素子からなる発光素子群が、長手方向に複数配列された発光素子群列が形成されている。 In FIG. 37, reference numeral 3702 denotes a light emitting unit, and a plurality of light emitting windows, in which light emitted from a light emitting element group in which a plurality of light emitting elements such as LEDs are arranged, are mixed and emitted in the longitudinal direction of the electronic thermometer 3700. It is arranged. That is, a light emitting element group row in which a plurality of light emitting element groups each including a plurality of light emitting elements are arranged in the longitudinal direction is formed.
 なお、図37の例では、発光部3702として発光素子群が電子体温計3700の長手方向に7個配列された場合について図示しているが、電子体温計3700の長手方向に配列される発光素子群の数は7個に限られない。 In the example of FIG. 37, a case where seven light emitting element groups are arranged in the longitudinal direction of the electronic thermometer 3700 as the light emitting unit 3702 is illustrated, but the light emitting element group arranged in the longitudinal direction of the electronic thermometer 3700 is illustrated. The number is not limited to seven.
 <2.発光部1402の断面構成>
 次に、図38を用いて発光部3702の断面構成について説明する。図38は、図37のA-A断面を示す図である。図38に示すように、発光窓3801の内部には、LED等の発光素子が複数配置され(3802A、3802B、3803C)、発光素子群を形成している。各発光素子は互いに発光色が異なっており、本実施形態では、発光素子3802Aが赤色に発光し、発光素子1502Bが緑色に発光し、発光素子1502Cが青色に発光するよう構成されているものとする。
<2. Sectional Configuration of Light Emitting Unit 1402>
Next, a cross-sectional configuration of the light emitting portion 3702 will be described with reference to FIG. 38 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 38, a plurality of light emitting elements such as LEDs are arranged inside the light emitting window 3801 (3802A, 3802B, 3803C) to form a light emitting element group. Each light emitting element has a different emission color. In this embodiment, the light emitting element 3802A emits red light, the light emitting element 1502B emits green light, and the light emitting element 1502C emits blue light. To do.
 ただし、発光素子群を形成する各発光素子の発光色の組み合わせはこれに限定されるものではなく、他の発光色を発光する発光素子が含まれていてもよい。 However, the combination of light emission colors of the light emitting elements forming the light emitting element group is not limited to this, and light emitting elements that emit other light emission colors may be included.
 また、発光素子群を形成する発光素子の数は3個に限られず、2個以上であれば何個であってもよい。 Further, the number of light emitting elements forming the light emitting element group is not limited to three, and may be any number as long as it is two or more.
 <3.電子体温計のシステム構成>
 電子体温計3700のシステム構成は、第8の実施形態において図28を用いて説明した電子体温計2700のシステム構成と基本的に同じであるため、ここでは説明を省略する。
<3. System configuration of electronic thermometer>
Since the system configuration of the electronic thermometer 3700 is basically the same as the system configuration of the electronic thermometer 2700 described with reference to FIG. 28 in the eighth embodiment, the description thereof is omitted here.
 なお、図28における発光素子列2852Aを構成する複数の発光素子の1つが、図38の発光素子3802Aに対応しており、発光素子列2852Bを構成する複数の発光素子の1つが、図38の発光素子3802Bに対応しており、発光素子列2852Cを構成する複数の発光素子の1つが、図38の発光素子3802Cに対応している。 Note that one of the plurality of light emitting elements constituting the light emitting element row 2852A in FIG. 28 corresponds to the light emitting element 3802A in FIG. 38, and one of the plurality of light emitting elements constituting the light emitting element row 2852B is shown in FIG. It corresponds to the light emitting element 3802B, and one of the plurality of light emitting elements constituting the light emitting element array 2852C corresponds to the light emitting element 3802C in FIG.
 また、上記第8の実施形態では、表示制御部244が、測定された体温に応じて、3つの発光素子列2852A~2852Cのうちのいずれか1つの発光素子列に切り替える切り替え機能を有していた。 In the eighth embodiment, the display control unit 244 has a switching function of switching to any one of the three light emitting element arrays 2852A to 2852C according to the measured body temperature. It was.
 これに対して、本実施形態に係る電子体温計3700の場合、表示制御部244が、測定された体温に応じた色が発光窓から放射されるように、各発光素子列2852A~2852Cに印加する電流値を調整する調整機能を有している。 On the other hand, in the case of the electronic thermometer 3700 according to the present embodiment, the display control unit 244 applies each of the light emitting element arrays 2852A to 2852C so that a color corresponding to the measured body temperature is emitted from the light emitting window. An adjustment function for adjusting the current value is provided.
 このように、発光部3702の各発光素子が調整された電流値により発光されている状態で、ユーザが電子体温計3700を往復で振ることで、ユーザは、目の残像効果により、被検者の体温に関する情報を空間上において、体温に応じた色の文字として視認することができる。 In this way, the user shakes the electronic thermometer 3700 in a reciprocating manner while each light emitting element of the light emitting unit 3702 emits light with the adjusted current value, so that the user can perform Information on the body temperature can be visually recognized as characters of a color corresponding to the body temperature in the space.
 <4.測定された体温と発光色との関係>
 次に、可視化する際の発光色の選択方法について説明する。図39は測定された体温と発光色との関係を示した図である。図39に示す関係を規定したテーブルは、表示制御部244に予め格納されており、表示制御部244では、演算処理部246より出力された被検者の体温に基づいて、当該関係に基づく発光色を選択する。
<4. Relationship between measured body temperature and emission color>
Next, a method for selecting a luminescent color for visualization will be described. FIG. 39 is a diagram showing the relationship between the measured body temperature and the emission color. The table defining the relationship shown in FIG. 39 is stored in advance in the display control unit 244. The display control unit 244 emits light based on the relationship based on the body temperature of the subject output from the arithmetic processing unit 246. Select a color.
 図39の場合、測定された体温が低い場合には、発光色として青色が強い色が選択され、測定された体温が普通(平熱)の場合には、発光色として緑色が強い色が選択され、測定された体温が高い場合には、発光色として赤色が強い色が選択されることとなる。 In the case of FIG. 39, when the measured body temperature is low, a strong blue color is selected as the luminescent color, and when the measured body temperature is normal (normal heat), a strong green color is selected as the luminescent color. If the measured body temperature is high, a strong red color is selected as the emission color.
 図39に示すように、本実施形態の場合、測定された体温の変化に応じて、発光色が連続的に変化する。つまり、測定された体温に対応する発光色が、青色→緑色→赤色の3色のグラデーションとして定義されている。 As shown in FIG. 39, in the case of the present embodiment, the emission color continuously changes according to the change in the measured body temperature. That is, the emission color corresponding to the measured body temperature is defined as a gradation of three colors of blue → green → red.
 表示制御部244では、選択された発光色が発光窓から放射されるように、各発光素子群を構成する各発光素子に印加する電流値を調整する。 The display control unit 244 adjusts the current value applied to each light emitting element constituting each light emitting element group so that the selected emission color is emitted from the light emitting window.
 なお、図39に示す関係は一例であり、測定された体温と発光色との連続的な関係は、図39に示す関係に限られるものではない。 The relationship shown in FIG. 39 is an example, and the continuous relationship between the measured body temperature and the emission color is not limited to the relationship shown in FIG.
 <5.可視化処理の流れ>
 次に、図40を用いて、測定された体温の予測値を発光部2852において可視化するための表示制御部244における処理の流れについて説明する。
<5. Flow of visualization process>
Next, a processing flow in the display control unit 244 for visualizing the predicted value of the measured body temperature in the light emitting unit 2852 will be described with reference to FIG.
 図9のステップS910において、電子体温計3700が横方向に往復で振られていると判定されると、図40に示す処理が開始される。 If it is determined in step S910 in FIG. 9 that the electronic thermometer 3700 is being swung back and forth in the lateral direction, the processing shown in FIG. 40 is started.
 ステップS4001では、図39に示す関係を参照して、測定された体温の予測値に対応する発光色を選択する。 In step S4001, with reference to the relationship shown in FIG. 39, an emission color corresponding to the predicted value of the measured body temperature is selected.
 ステップS4002では、ステップS4001において選択された発光色となるように、各発光素子群を構成する各発光素子に印加する電流値を決定する。 In step S4002, a current value to be applied to each light emitting element constituting each light emitting element group is determined so that the light emission color selected in step S4001 is obtained.
 ステップS4003~ステップS4005に示す処理は、図36のステップS3603~ステップS3605に示す処理と同じであるため、ここでは説明を省略する。 Since the processing shown in steps S4003 to S4005 is the same as the processing shown in steps S3603 to S3605 of FIG. 36, description thereof is omitted here.
 ステップS4006では、信号処理部232からの信号の出力を受信したタイミングで、作成された発光ドットパターンと、算出された1ドット列当たりの発光時間tとに基づいて、ステップS4002において決定された電流値により、各発光素子を発光させるよう制御を開始する。 In step S4006, the current determined in step S4002 based on the generated light emission dot pattern and the calculated light emission time t per dot row at the timing when the signal output from the signal processing unit 232 is received. Control is started so that each light emitting element emits light according to the value.
 ステップS4007に示す処理は、図36のステップS3607に示す処理と同じであるため、ここでは説明を省略する。 The process shown in step S4007 is the same as the process shown in step S3607 of FIG.
 以上の説明から明らかなように、本実施形態に係る電子体温計3700では、発光した光が混色されて発光窓から放射されるように配置された複数の発光素子からなる発光素子群が、複数配列された発光素子群列を備え、測定された体温に応じて、各発光素子群に含まれる各発光素子に印加する電流値を調整する構成とした。 As is clear from the above description, in the electronic thermometer 3700 according to the present embodiment, a plurality of light emitting element groups including a plurality of light emitting elements arranged so that emitted light is mixed and emitted from the light emitting window are arranged in a plurality. The light emitting element group row is provided, and the current value applied to each light emitting element included in each light emitting element group is adjusted according to the measured body temperature.
 そして、電子体温計が横方向に往復で振られた場合に、電流値が調整された各発光素子の発光を適切に制御することで、測定された被検者の体温を、該体温に応じた色の文字によりユーザが空間上で視認することができる構成とした。 Then, when the electronic thermometer is swung back and forth in the lateral direction, the measured body temperature of the subject according to the body temperature is appropriately controlled by appropriately controlling the light emission of each light emitting element whose current value is adjusted. The configuration is such that the user can visually recognize the color characters in space.
 この結果、電子体温計において、体温を測定する際の利便性を損なうことなく、ユーザにとってより見やすい表示を実現することが可能となった。特に、当該電子体温計によれば、体温に応じて発光色が連続的に変わるため、ユーザは、被検者の発熱の有無等を一目で認識することができるようになる。 As a result, it has become possible to realize a display that is easier for the user to see without sacrificing convenience when measuring the body temperature in the electronic thermometer. In particular, according to the electronic thermometer, since the emission color changes continuously according to the body temperature, the user can recognize at a glance whether or not the subject has fever.
 [第10の実施形態]
 上記第8の実施形態では、振れ時間に応じて各発光素子の発光を制御することとしたが、本発明はこれに限定されず、上記第5の実施形態のように振れ幅に応じて各発光素子の発光を制御するよう構成してもよい。
[Tenth embodiment]
In the eighth embodiment, the light emission of each light emitting element is controlled according to the shake time. However, the present invention is not limited to this, and each of the light emitting elements according to the shake width as in the fifth embodiment. You may comprise so that light emission of a light emitting element may be controlled.
 <1.発光開始から発光終了までの発光制御処理の内容>
 はじめに、本実施形態における発光開始から発光終了までの表示制御部244における発光制御処理の内容について説明する。
<1. Details of the light emission control process from the start to the end of light emission>
First, the contents of the light emission control process in the display control unit 244 from the light emission start to the light emission end in the present embodiment will be described.
 図41は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図41において、41Aは振れ方向の変更位置において発光を開始した状態を示している。また、41B及び41Cは、振れ幅Lの1/3の位置に到達した状態及び2/3の位置に到達した状態をそれぞれ示している。さらに、41Dは振れ幅Lの位置に到達し、発光が終了した状態を示している。 FIG. 41 is a diagram for explaining the contents of the light emission control process from the light emission start to the light emission end in the display control unit 244. In FIG. 41, 41A shows a state in which light emission is started at the change position of the shake direction. Further, 41B and 41C respectively show a state where the position has reached 1/3 of the swing width L and a state where the position has reached 2/3. Further, 41D shows a state in which light emission is completed after reaching the position of the swing width L.
 図41の例では、測定された体温が38.5℃であるため、発光素子列2852Aが発光するように切り替えられている。発光素子列2852Aは、振れ方向の変更位置からの距離に対応するドット列に従って赤色に発光するよう制御される。 41, since the measured body temperature is 38.5 ° C., the light emitting element array 2852A is switched to emit light. The light emitting element array 2852A is controlled to emit red light according to the dot array corresponding to the distance from the shake direction change position.
 同様に、図42は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図41との違いは、図42の場合、測定された体温が36.5℃であるため、発光素子列2852Bが発光するように切り替えられている点である。発光素子列2852Bは、振れ方向の変更位置からの距離に対応するドット列に従って緑色に発光するよう制御される。 Similarly, FIG. 42 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 41 is that, in the case of FIG. 42, since the measured body temperature is 36.5 ° C., the light emitting element array 2852B is switched to emit light. The light emitting element row 2852B is controlled to emit light in green according to the dot row corresponding to the distance from the shake direction change position.
 同様に、図43は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。図41との違いは、図43の場合、測定された体温が35.5℃であるため、発光素子列2852Cが発光するように切り替えられている点である。発光素子列2852Cは、振れ方向の変更位置からの距離に対応するドット列に従って青色に発光するよう制御される。 Similarly, FIG. 43 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The difference from FIG. 41 is that, in the case of FIG. 43, since the measured body temperature is 35.5 ° C., the light emitting element array 2852C is switched to emit light. The light emitting element row 2852C is controlled to emit blue light according to the dot row corresponding to the distance from the shake direction change position.
 一方、図44は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。本実施形態において用いられる発光ドットパターンは、振れ幅(L1)に応じて各ドット列の振れ方向の変更位置からの距離を規定しているため、図44の場合、図41の場合と比較して、表現される文字の大きさ(横方向の大きさ)は、小さくなる。 On the other hand, FIG. 44 is a diagram for explaining the content of the light emission control processing from the light emission start to the light emission end in the display control unit 244. Since the light emitting dot pattern used in this embodiment defines the distance from the change position of the shake direction of each dot row according to the shake width (L1), the case of FIG. 44 is compared with the case of FIG. Thus, the size of the represented character (the size in the horizontal direction) becomes smaller.
 同様に、図45は、表示制御部244における、発光開始から発光終了までの発光制御処理の内容を説明するための図である。本実施形態において用いられる発光ドットパターンは、振れ幅(L2)に応じて各ドット列の振れ方向の変更位置からの距離を規定しているため、図41の場合と比較して、表現される文字の大きさ(横方向の大きさ)は、大きくなる。 Similarly, FIG. 45 is a diagram for explaining the contents of the light emission control processing from the light emission start to the light emission end in the display control unit 244. The light emitting dot pattern used in the present embodiment defines the distance from the change position of the shake direction of each dot row in accordance with the shake width (L2), and therefore is expressed as compared with the case of FIG. The size of the character (the size in the horizontal direction) increases.
 このように、本実施形態の場合、信号処理部232からの信号(振れ方向の変更位置)の出力を発光開始位置として制御を開始し、規定された振れ方向の変更位置からの距離に到達するごとに、対応するドット列に従っていずれかの発光素子列を構成する各発光素子を順次発光させていくため、ユーザが電子体温計を振る場合に生じる、振れ幅や振れ速度のばらつきを吸収することができる。また、第8の実施形態と同様に、測定された体温に対応する色により発光されるため、ユーザは、被検者の発熱の有無を一目で認識することができる。 As described above, in the case of the present embodiment, the control is started with the output of the signal from the signal processing unit 232 (shake direction change position) as the light emission start position, and reaches the distance from the specified shake direction change position. Each of the light-emitting elements constituting any one of the light-emitting element rows is caused to emit light sequentially according to the corresponding dot row, so that it is possible to absorb fluctuations in swing width and shake speed that occur when the user shakes the electronic thermometer. it can. Further, as in the eighth embodiment, since light is emitted with a color corresponding to the measured body temperature, the user can recognize at a glance whether or not the subject has fever.
 <2.可視化処理の流れ>
 次に、図46を用いて、本実施形態における可視化処理の流れについて説明する。図9のステップS910において、電子体温計3700が横方向に往復で振られていると判定されると、図46に示す処理が開始される。
<2. Flow of visualization process>
Next, the flow of visualization processing in this embodiment will be described using FIG. If it is determined in step S910 in FIG. 9 that the electronic thermometer 3700 is swung back and forth in the lateral direction, the processing shown in FIG. 46 is started.
 ステップS4001では、図30に示すテーブルを参照して、演算された体温の予測値に対応する発光色を選択する。 In step S4001, with reference to the table shown in FIG. 30, the luminescent color corresponding to the calculated predicted body temperature is selected.
 ステップS4002では、ステップS4001において選択された発光色に対応する発光素子列を制御対象として切り替える。 In step S4002, the light emitting element array corresponding to the light emission color selected in step S4001 is switched as a control target.
 ステップS4603では、信号処理部232からの信号(振れ方向の変更位置を示す信号)に基づいて、電子体温計3700の振れ幅を算出する。 In step S4603, based on a signal from the signal processing unit 232 (a signal indicating a change position of the shake direction), the shake width of the electronic thermometer 3700 is calculated.
 ステップS4604では、演算された体温の予測値に基づいて、発光部2852において可視化すべき体温に関する情報を表現するための発光ドットパターンを作成する。このとき、各ドット列の振れ方向の変更位置からの距離を、ステップS4603において算出された振れ幅に基づいて規定する。 In step S4604, a light emitting dot pattern for expressing information related to body temperature to be visualized in the light emitting unit 2852 is created based on the calculated predicted body temperature value. At this time, the distance from the change position of the shake direction of each dot row is defined based on the shake width calculated in step S4603.
 ステップS4605では、信号処理部232からの信号に基づいて、電子体温計3700の振れ方向の変更位置を識別する。 In step S4605, the change position of the shake direction of the electronic thermometer 3700 is identified based on the signal from the signal processing unit 232.
 ステップS4606では、ステップS4605において識別された振れ方向の変更位置を基準として制御を開始する。具体的には、信号処理部232からの信号(振れ方向の変更位置からの距離を示す信号)が、ステップS4604において作成された発光ドットパターンを構成する各ドット列について規定された距離に一致した場合に、ステップS4002において切り替えられた発光素子列を構成する各発光素子を、対応するドット列に従って発光させる。 In step S4606, control is started based on the change position of the shake direction identified in step S4605. Specifically, the signal from the signal processing unit 232 (a signal indicating the distance from the change position of the shake direction) matches the distance defined for each dot row constituting the light emitting dot pattern created in step S4604. In this case, each light emitting element constituting the light emitting element row switched in step S4002 is caused to emit light according to the corresponding dot row.
 ステップS4007では、信号処理部232からの信号の出力が継続しているか否かを判定し、継続していると判定された場合には、ステップS4603に戻る。一方、信号処理部232からの信号の出力がないと判定された場合には、可視化処理を終了する。 In step S4007, it is determined whether or not the output of the signal from the signal processing unit 232 is continued. If it is determined that the output is continued, the process returns to step S4603. On the other hand, when it is determined that there is no signal output from the signal processing unit 232, the visualization process is terminated.
 以上の説明から明らかなように、本実施形態に係る電子体温計では、複数の発光素子からなる発光素子列が複数配列され、各発光素子列ごとに発光色が異なる発光部2852と、電子体温計3700の振れを検出するモーション・センサ231と、測定された体温に応じて発光部2852のいずれかの発光素子列に切り替え、当該切り替えた発光素子列を構成する各発光素子の発光を制御する表示制御部244とを備える構成とした。 As is clear from the above description, in the electronic thermometer according to the present embodiment, a plurality of light emitting element arrays each including a plurality of light emitting elements are arranged, and the light emitting unit 2852 having a different emission color for each light emitting element array, and the electronic thermometer 3700. A motion sensor 231 for detecting a shake of the light, and display control for controlling light emission of each light emitting element constituting the switched light emitting element array by switching to any one of the light emitting element arrays 2852 according to the measured body temperature And a portion 244.
 そして、電子体温計が横方向に往復で振られた場合に、制御対象の発光素子列の発光を適切に制御することで、測定された被検者の体温を、該体温に応じた色の文字によりユーザが空間上で視認できるよう構成した。 When the electronic thermometer is swung back and forth in the horizontal direction, the measured temperature of the subject is appropriately controlled by appropriately controlling the light emission of the light emitting element array to be controlled. Thus, the user can see in space.
 この結果、電子体温計において、体温を測定する際の利便性を損なうことなく、ユーザにとってより見やすい表示を実現することが可能となった。特に、当該電子体温計によれば、体温に応じて発光色が変わるため、ユーザは、被検者の発熱の有無を一目で認識することができるようになる。 As a result, it has become possible to realize a display that is easier for the user to see without sacrificing convenience when measuring the body temperature in the electronic thermometer. In particular, according to the electronic thermometer, since the emission color changes according to the body temperature, the user can recognize at a glance whether or not the subject has fever.
 [第11の実施形態]
 上記第1乃至10の実施形態では、発光素子としてLEDを用いる場合について説明したが、本発明はこれに限定されず、例えば、有機EL等、他の発光素子を用いるようにしてもよい。
[Eleventh embodiment]
In the first to tenth embodiments, the case where an LED is used as a light emitting element has been described. However, the present invention is not limited to this, and other light emitting elements such as an organic EL may be used.
 また、上記第1乃至10の実施形態では、発光部により可視化された被検体の体温に関する情報として、予測された体温を用いる場合について説明したが、本発明はこれに限定されず、実測された体温を用いるようにしてもよい。また、可視化される情報は、被検体の体温に限定されず、他の情報であってもよいことはいうまでもない。 In the first to tenth embodiments, the case where the predicted body temperature is used as the information about the body temperature of the subject visualized by the light emitting unit has been described. However, the present invention is not limited to this and is actually measured. Body temperature may be used. Needless to say, the information to be visualized is not limited to the body temperature of the subject and may be other information.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2009年2月19日提出の日本国特許出願特願2009-037041、2009年2月19日提出の日本国特許出願特願2009-037042、及び2009年3月11日提出の日本国特許出願特願2009-058662を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application is Japanese Patent Application Japanese Patent Application No. 2009-037041 filed on February 19, 2009, Japanese Patent Application Japanese Patent Application No. 2009-037042 filed on February 19, 2009, and Japanese Patent Application filed on March 11, 2009. The priority is claimed on the basis of Japanese Patent Application No. 2009-058662, the entire contents of which are incorporated herein by reference.

Claims (24)

  1.  被検体の体温を測定する電子体温計であって、
     配列された複数の発光素子を備える発光手段と、
     前記電子体温計が振られたことを検出する振れ検出手段と、
     前記発光手段が備える各発光素子の発光を制御する発光制御手段と、を備え、
     前記発光制御手段は、
      測定された前記被検体の体温に関する情報に基づいて発光ドットパターンを作成する作成手段と、
      前記振れ検出手段による検出結果に基づいて算出された、前記電子体温計の所定方向の振れ時間と、前記発光ドットパターンを表現するのに必要な前記所定方向の発光素子のドット列数とに基づいて、前記発光素子の1ドット列当たりの発光時間を算出する算出手段と、を備え、
     前記振れ検出手段が前記電子体温計が振られたことを検出した場合に、前記作成された発光ドットパターンと、前記算出された1ドット列当たりの発光時間とに基づいて、前記各発光素子の発光を制御することを特徴とする電子体温計。
    An electronic thermometer for measuring the temperature of a subject,
    A light emitting means comprising a plurality of light emitting elements arranged;
    Shake detection means for detecting that the electronic thermometer is shaken;
    A light emission control means for controlling light emission of each light emitting element provided in the light emission means,
    The light emission control means includes
    Creating means for creating a luminescent dot pattern based on the measured body temperature information of the subject;
    Based on the shake time in the predetermined direction of the electronic thermometer calculated based on the detection result by the shake detection means, and the number of dot rows of the light emitting elements in the predetermined direction necessary to express the light emitting dot pattern Calculating means for calculating a light emission time per dot row of the light emitting element,
    When the shake detecting means detects that the electronic thermometer is shaken, the light emission of each light emitting element is based on the created light emitting dot pattern and the calculated light emission time per dot row. An electronic thermometer characterized by controlling the temperature.
  2.  前記振れ検出手段は、
     前記電子体温計の長手方向と略直交する方向における往復の振れを検出することを特徴とする請求項1に記載の電子体温計。
    The shake detection means includes
    2. The electronic thermometer according to claim 1, wherein a reciprocal shake in a direction substantially orthogonal to a longitudinal direction of the electronic thermometer is detected.
  3.  前記振れ検出手段は、傾斜センサを備え、
     該傾斜センサは、前記電子体温計の往復の振れにおける、振れ方向の変更タイミングを検出することを特徴とする請求項2に記載の電子体温計。
    The shake detection means includes a tilt sensor,
    The electronic thermometer according to claim 2, wherein the tilt sensor detects a change timing of a shake direction in a reciprocating shake of the electronic thermometer.
  4.  前記振れ検出手段は、加速度センサを備え、
     該加速度センサより出力された信号に基づいて、前記電子体温計の往復の振れにおける、振れ方向の変更タイミングを検出することを特徴とする請求項2に記載の電子体温計。
    The shake detection means includes an acceleration sensor,
    The electronic thermometer according to claim 2, wherein a change timing of a shake direction in a reciprocating shake of the electronic thermometer is detected based on a signal output from the acceleration sensor.
  5.  前記算出手段は、
     前記振れ検出手段により検出された前記振れ方向の変更タイミングに基づいて算出された前記電子体温計の所定方向の振れ時間を、前記被検体の体温に関する情報を表現する発光ドットパターンに必要な前記所定方向の発光素子のドット列数で除算することにより、前記発光素子の1ドット列当たりの発光時間を算出することを特徴とする請求項1乃至4の何れか1項に記載の電子体温計。
    The calculating means includes
    The predetermined direction required for the light emitting dot pattern representing the information related to the body temperature of the subject, the shake time of the electronic thermometer calculated based on the change timing of the shake direction detected by the shake detection means The electronic thermometer according to claim 1, wherein a light emission time per dot row of the light emitting element is calculated by dividing by the number of dot rows of the light emitting element.
  6.  前記算出手段は、
     前記振れ検出手段により検出された前記振れ方向の変更タイミングに基づいて算出された前記電子体温計の所定方向の振れ時間から固定時間減算した時間または前記振れ時間に基づく所定の時間減算した時間を、前記被検体の体温に関する情報を表現する発光ドットパターンに必要な前記所定方向の発光素子のドット列数で除算することにより、前記発光素子の1ドット列当たりの発光時間を算出することを特徴とする請求項1乃至4の何れか1項に記載の電子体温計。
    The calculating means includes
    A time obtained by subtracting a fixed time from a shake time in a predetermined direction of the electronic thermometer calculated based on a change timing of the shake direction detected by the shake detection means, or a time obtained by subtracting a predetermined time based on the shake time, The light emission time per dot row of the light emitting element is calculated by dividing by the number of dot rows of the light emitting element in the predetermined direction necessary for the light emitting dot pattern expressing information on the body temperature of the subject. The electronic thermometer according to any one of claims 1 to 4.
  7.  前記発光制御手段は、
     前記振れ検出手段により検出された前記振れ方向の変更タイミングに基づいて、前記各発光素子の発光を開始することを特徴とする請求項5に記載の電子体温計。
    The light emission control means includes
    6. The electronic thermometer according to claim 5, wherein the light emission of each light emitting element is started based on the change timing of the shake direction detected by the shake detection means.
  8.  前記作成手段は、前記体温に関する情報を示す文字列のうち、最初の文字の前と最後の文字の後に、空白のドット列が配された発光ドットパターンを作成することを特徴とする請求項7に記載の電子体温計。 The creation means creates a light-emitting dot pattern in which a blank dot row is arranged before the first character and after the last character in a character string indicating information on the body temperature. Electronic thermometer as described in 1.
  9.  前記発光制御手段は、
     前記振れ検出手段により検出された前記振れ方向の変更タイミングに対して、前記固定時間または前記振れ時間に基づく所定の時間が経過してから、前記発光素子の発光を開始することを特徴とする請求項6に記載の電子体温計。
    The light emission control means includes
    The light emission of the light emitting element is started after a predetermined time based on the fixed time or the shake time has elapsed with respect to the change timing of the shake direction detected by the shake detection unit. Item 7. The electronic thermometer according to Item 6.
  10.  測定された前記被検者の体温に関する情報に基づいて、前記発光素子の発光色を選択する選択手段を更に備え、
     前記振れ検出手段が前記電子体温計が振られたことを検出した場合に、前記作成された発光ドットパターンと、前記算出された1ドット列当たりの発光時間とに基づいて、前記選択された発光色により発光されるよう、前記各発光素子の発光を制御することを特徴とする請求項1に記載の電子体温計。
    Further comprising a selection means for selecting a light emission color of the light emitting element based on the measured information on the body temperature of the subject,
    When the shake detection means detects that the electronic thermometer is shaken, the selected emission color is based on the created emission dot pattern and the calculated emission time per dot row. The electronic thermometer according to claim 1, wherein the light emission of each of the light emitting elements is controlled so as to emit light.
  11.  被検体の体温を測定する電子体温計であって、
     配列された複数の発光素子を備える発光手段と、
     前記電子体温計が振られたことを検出するとともに、振れ速度がゼロとなった位置を基準位置として、該基準位置からの距離を算出する振れ検出手段と、
     前記発光手段が備える各発光素子の発光を制御する発光制御手段と、を備え、
     前記発光制御手段は、
      測定された前記被検体の体温に関する情報を表現するために、前記電子体温計の振れ方向における前記発光素子のドット列から構成された発光ドットパターンであって、該各ドット列の前記基準位置からの距離が規定された発光ドットパターンを作成する作成手段を備え、
      前記振れ検出手段により算出された距離が、前記発光ドットパターンを構成する各ドット列について規定された前記基準位置からの距離に一致した場合に、前記各発光素子を、対応するドット列に従って発光するよう制御することを特徴とする電子体温計。
    An electronic thermometer for measuring the temperature of a subject,
    A light emitting means comprising a plurality of light emitting elements arranged;
    While detecting that the electronic thermometer is shaken, a shake detection means for calculating a distance from the reference position, with a position where the shake speed becomes zero as a reference position;
    A light emission control means for controlling light emission of each light emitting element provided in the light emission means,
    The light emission control means includes
    In order to express information on the measured body temperature of the subject, a light-emitting dot pattern composed of dot rows of the light-emitting elements in the deflection direction of the electronic thermometer, the dot rows from the reference position A creation means for creating a luminous dot pattern with a specified distance is provided,
    When the distance calculated by the shake detection unit matches the distance from the reference position defined for each dot row constituting the light emitting dot pattern, each light emitting element emits light according to the corresponding dot row. An electronic thermometer characterized by being controlled.
  12.  前記振れ検出手段は、
     前記電子体温計の長手方向と略直交する方向における往復の振れを検出することを特徴とする請求項11に記載の電子体温計。
    The shake detection means includes
    The electronic thermometer according to claim 11, wherein a reciprocal shake in a direction substantially orthogonal to a longitudinal direction of the electronic thermometer is detected.
  13.  前記振れ検出手段は、加速度センサを備え、
     該加速度センサより出力された信号に基づいて、前記電子体温計の振れ方向の変更位置及び該振れ方向の変更位置からの距離を算出することを特徴とする請求項12に記載の電子体温計。
    The shake detection means includes an acceleration sensor,
    The electronic thermometer according to claim 12, wherein a change position of the shake direction of the electronic thermometer and a distance from the change position of the shake direction are calculated based on a signal output from the acceleration sensor.
  14.  前記作成手段は、
     前記電子体温計の振れ幅と、前記発光ドットパターンを構成するドット列の数とに基づいて、前記各ドット列の前記基準位置からの距離を規定することを特徴とする請求項12または13に記載の電子体温計。
    The creating means includes
    The distance from the said reference position of each said dot row is prescribed | regulated based on the fluctuation width of the said electronic thermometer, and the number of the dot rows which comprise the said light emission dot pattern, It is characterized by the above-mentioned. Electronic thermometer.
  15.  前記作成手段は、
     前記電子体温計の振れ幅から固定距離を減算することにより得られた距離または振れ幅に基づく所定の距離を減算することにより得られた距離と、前記発光ドットパターンを構成するドット列の数とに基づいて、前記各ドット列の前記基準位置からの距離を規定することを特徴とする請求項14に記載の電子体温計。
    The creating means includes
    The distance obtained by subtracting a predetermined distance based on the distance obtained by subtracting a fixed distance from the amplitude of the electronic thermometer or the number of dot rows constituting the light emitting dot pattern The electronic thermometer according to claim 14, wherein a distance from the reference position of each dot row is defined based on.
  16.  前記作成手段は、前記体温に関する情報を示す文字列のうち、最初の文字の前と最後の文字の後に、空白のドット列が配された発光ドットパターンを作成することを特徴とする請求項14に記載の電子体温計。 The creation means creates a light emitting dot pattern in which a blank dot row is arranged before the first character and after the last character in the character string indicating the information on the body temperature. Electronic thermometer as described in 1.
  17.  測定された前記被検者の体温に関する情報に基づいて、前記発光素子の発光色を選択する選択手段を更に備え、
     前記振れ検出手段により算出された距離が、前記発光ドットパターンを構成する各ドット列について規定された前記基準位置からの距離に一致した場合に、前記各発光素子を、対応するドット列に従って、前記選択された発光色により発光するよう制御することを特徴とする請求項11に記載の電子体温計。
    Further comprising a selection means for selecting a light emission color of the light emitting element based on the measured information on the body temperature of the subject,
    When the distance calculated by the shake detection means matches the distance from the reference position defined for each dot row constituting the light emitting dot pattern, each light emitting element is moved according to the corresponding dot row. The electronic thermometer according to claim 11, wherein the electronic thermometer is controlled to emit light according to the selected emission color.
  18.  前記選択手段は、前記測定された前記被検者の体温に関する情報と、予め定められた基準体温との比較に基づいて、前記発光素子の発光色を選択することを特徴とする請求項10または17に記載の電子体温計。 The said selection means selects the luminescent color of the said light emitting element based on the comparison with the information with respect to the measured said body temperature of the said subject, and the predetermined reference | standard temperature. The electronic thermometer according to 17.
  19.  前記発光手段は、配列された複数の発光素子である発光素子列が、並列に複数配されており、各発光素子列は、互いに異なる発光色により発光するよう構成されていることを特徴とする請求項10または17に記載の電子体温計。 The light emitting means includes a plurality of light emitting element arrays, which are a plurality of light emitting elements arranged in parallel, and each light emitting element array is configured to emit light with different emission colors. The electronic thermometer according to claim 10 or 17.
  20.  前記発光制御手段は、前記発光手段が備える複数の発光素子列のうち、前記選択された発光色に対応する発光素子列に切り替えて発光を制御することを特徴とする請求項19に記載の電子体温計。 The electronic device according to claim 19, wherein the light emission control unit controls light emission by switching to a light emitting device column corresponding to the selected light emission color among a plurality of light emitting device columns included in the light emitting unit. Thermometer.
  21.  前記発光手段は、互いに発光色の異なる複数の発光素子からなる発光素子群であって、該複数の発光素子から発光される光が混色されて放射されるように配置された発光素子群が複数配列されて構成されていることを特徴とする請求項10または17に記載の電子体温計。 The light emitting means is a light emitting element group composed of a plurality of light emitting elements having different emission colors, and a plurality of light emitting element groups arranged so that light emitted from the plurality of light emitting elements is mixed and emitted. The electronic thermometer according to claim 10 or 17, characterized by being arranged.
  22.  前記発光制御手段は、前記発光素子群を構成する複数の発光素子から発光された光が混色されることにより、前記選択された発光色となるように、該複数の発光素子それぞれに印加する電流値を調整することを特徴とする請求項21に記載の電子体温計。 The light emission control unit is configured to apply a current applied to each of the plurality of light emitting elements such that the light emitted from the plurality of light emitting elements constituting the light emitting element group is mixed to obtain the selected light emission color. The electronic thermometer according to claim 21, wherein the value is adjusted.
  23.  配列された複数の発光素子を備える発光手段と、電子体温計が振られたことを検出する振れ検出手段と、を備え、被検体の体温を測定する電子体温計における表示制御方法であって、
     測定された前記被検体の体温に関する情報に基づいて発光ドットパターンを作成する作成工程と、
     前記振れ検出手段による検出結果に基づいて算出された、前記電子体温計の所定方向の振れ時間と、前記発光ドットパターンを表現するのに必要な前記所定方向の発光素子のドット列数とに基づいて、前記発光素子の1ドット列当たりの発光時間を算出する算出工程と、
     前記振れ検出手段が前記電子体温計が振られたことを検出した場合に、前記作成された発光ドットパターンと、前記算出された1ドット列当たりの発光時間とに基づいて、前記各発光素子の発光を制御する制御工程と
     を備えることを特徴とする電子体温計の表示制御方法。
    A display control method in an electronic thermometer for measuring a body temperature of a subject, comprising: a light emitting means including a plurality of light emitting elements arranged; and a shake detecting means for detecting that the electronic thermometer is shaken,
    A creation step of creating a luminescent dot pattern based on the measured body temperature related information;
    Based on the shake time in the predetermined direction of the electronic thermometer calculated based on the detection result by the shake detection means, and the number of dot rows of the light emitting elements in the predetermined direction necessary to express the light emitting dot pattern Calculating a light emission time per dot row of the light emitting element;
    When the shake detecting means detects that the electronic thermometer is shaken, the light emission of each light emitting element is based on the created light emitting dot pattern and the calculated light emission time per dot row. A control process for controlling the electronic thermometer display control method.
  24.  配列された複数の発光素子を備える発光手段と、電子体温計が振られたことを検出するとともに、振れ速度がゼロとなった位置を基準位置として、該基準位置からの距離を算出する振れ検出手段と、を備え、被検体の体温を測定する電子体温計における表示制御方法であって、
     測定された前記被検体の体温に関する情報を表現するために、前記電子体温計の振れ方向における前記発光素子のドット列から構成された発光ドットパターンであって、該各ドット列の前記基準位置からの距離が規定された発光ドットパターンを作成する作成工程と、
     前記振れ検出手段により算出された距離が、前記発光ドットパターンを構成する各ドット列について規定された前記基準位置からの距離に一致した場合に、前記各発光素子を、対応するドット列に従って発光するよう制御する制御工程と
     を備えることを特徴とする電子体温計の表示制御方法。
    Light emitting means having a plurality of light emitting elements arranged, and a shake detecting means for detecting that the electronic thermometer is shaken and calculating a distance from the reference position with a position where the shake speed is zero as a reference position And a display control method in an electronic thermometer for measuring the body temperature of a subject,
    In order to express information on the measured body temperature of the subject, a light-emitting dot pattern composed of dot rows of the light-emitting elements in the deflection direction of the electronic thermometer, the dot rows from the reference position A creation process for creating a luminous dot pattern with a defined distance;
    When the distance calculated by the shake detection unit matches the distance from the reference position defined for each dot row constituting the light emitting dot pattern, each light emitting element emits light according to the corresponding dot row. A control process for controlling the electronic thermometer display control method.
PCT/JP2010/000676 2009-02-19 2010-02-04 Electronic thermometer and display control method WO2010095384A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009037041A JP5260352B2 (en) 2009-02-19 2009-02-19 Electronic thermometer and display control method
JP2009037042A JP5260353B2 (en) 2009-02-19 2009-02-19 Electronic thermometer and display control method
JP2009-037041 2009-02-19
JP2009-037042 2009-02-19
JP2009058662A JP5260363B2 (en) 2009-03-11 2009-03-11 Electronic thermometer and display control method
JP2009-058662 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010095384A1 true WO2010095384A1 (en) 2010-08-26

Family

ID=42633674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000676 WO2010095384A1 (en) 2009-02-19 2010-02-04 Electronic thermometer and display control method

Country Status (2)

Country Link
TW (1) TW201031900A (en)
WO (1) WO2010095384A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127146U (en) * 1983-02-14 1984-08-27 三菱鉱業セメント株式会社 electronic thermometer
JPS6147529A (en) * 1984-08-15 1986-03-08 Omron Tateisi Electronics Co Electronic clinical thermometer
JPH0247519Y2 (en) * 1984-11-28 1990-12-13
JPH0342393Y2 (en) * 1985-11-22 1991-09-05
JPH0843563A (en) * 1994-08-03 1996-02-16 Takara Co Ltd Time display device
JPH08110761A (en) * 1994-10-11 1996-04-30 Kyushu Hitachi Maxell Ltd Rocking type display device
JP2002257768A (en) * 2001-03-02 2002-09-11 New Cosmos Electric Corp Portable gas detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127146U (en) * 1983-02-14 1984-08-27 三菱鉱業セメント株式会社 electronic thermometer
JPS6147529A (en) * 1984-08-15 1986-03-08 Omron Tateisi Electronics Co Electronic clinical thermometer
JPH0247519Y2 (en) * 1984-11-28 1990-12-13
JPH0342393Y2 (en) * 1985-11-22 1991-09-05
JPH0843563A (en) * 1994-08-03 1996-02-16 Takara Co Ltd Time display device
JPH08110761A (en) * 1994-10-11 1996-04-30 Kyushu Hitachi Maxell Ltd Rocking type display device
JP2002257768A (en) * 2001-03-02 2002-09-11 New Cosmos Electric Corp Portable gas detector

Also Published As

Publication number Publication date
TW201031900A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP5217103B2 (en) Fuel consumption display device
US9019319B2 (en) Display device for vehicle
JP6120552B2 (en) Display device and control method thereof
TWI486731B (en) Can be integrally represents time and the physical clock
JP2013024926A (en) Backlight device, its control method and image display device
WO2010095384A1 (en) Electronic thermometer and display control method
JP5218613B2 (en) Fuel consumption display device
JP6072505B2 (en) Clock, information display device, information display method, and information display program
WO2019196737A1 (en) Electronic cigarette control method, electronic cigarette, and computer storage medium
US7652563B2 (en) Optical input device
JP6292440B2 (en) Signal indicator
US20130162695A1 (en) Display control apparatus
JP2010210592A (en) Electronic clinical thermometer and display control method
JP5260363B2 (en) Electronic thermometer and display control method
JP5260352B2 (en) Electronic thermometer and display control method
JP2005241288A (en) Vehicle limiting speed alarm device
WO2011077736A1 (en) Electronic thermometer and display control method
JP5260353B2 (en) Electronic thermometer and display control method
JP2010210524A (en) Electronic clinical thermometer and display control method
JP5932381B2 (en) Image display apparatus and control method thereof
JP5399947B2 (en) Electronic thermometer and display control method
KR101161766B1 (en) method for providing watch function and digital apparatus thereof
KR102279775B1 (en) Controlling method of treadmill based on learning
JP2018100855A (en) Instrument for vehicle
KR101103562B1 (en) Display system using after-image effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743515

Country of ref document: EP

Kind code of ref document: A1