WO2010095252A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2010095252A1
WO2010095252A1 PCT/JP2009/053134 JP2009053134W WO2010095252A1 WO 2010095252 A1 WO2010095252 A1 WO 2010095252A1 JP 2009053134 W JP2009053134 W JP 2009053134W WO 2010095252 A1 WO2010095252 A1 WO 2010095252A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
fuel
fuel injection
upper chamber
voltage
Prior art date
Application number
PCT/JP2009/053134
Other languages
French (fr)
Japanese (ja)
Inventor
大前和広
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/053134 priority Critical patent/WO2010095252A1/en
Priority to JP2011500421A priority patent/JP5071582B2/en
Publication of WO2010095252A1 publication Critical patent/WO2010095252A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/705Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with means for filling or emptying hydraulic chamber, e.g. for compensating clearance or thermal expansion
    • F02M2200/706Valves for filling or emptying hydraulic chamber

Definitions

  • the present invention relates to a fuel injection device.
  • an injection valve that uses a piezoelectric element as an actuator
  • an injection valve aims to simplify the structure and suppress variations in fuel injection amount.
  • the needle that opens and closes the nozzle hole by contacting and separating from the seat surface in which the nozzle hole is opened, the biasing means that biases the needle in the valve opening direction, and the needle is directly expanded by being extended by the applied voltage.
  • An injection valve including a piezoelectric element that is driven in a valve closing direction has been proposed (see Patent Document 1).
  • Such an injection valve has a simple configuration, and by releasing the voltage applied to the piezoelectric element, the needle is moved in the valve opening direction to inject fuel.
  • an object of the present invention is to avoid fuel injection when the internal combustion engine is stopped in a fuel injection valve that moves the needle in the valve opening direction by releasing the voltage applied to the piezoelectric element.
  • a fuel injection device disclosed in the present specification includes a nozzle body provided with a nozzle hole and a seat portion at a tip portion, and a support portion that is slidably supported on an inner peripheral wall of the nozzle body
  • a needle that is disposed in the nozzle body so as to form a fuel storage chamber on the tip side of the support portion in the nozzle body, and that opens and closes the nozzle hole in contact with and away from the seat portion;
  • a piezoelectric element which is disposed on the proximal end side of the needle so as to form a needle upper chamber between the support portion and moves the needle in a valve closing direction by application of a voltage, and a high pressure in the fuel storage chamber
  • a fuel supply valve for supplying fuel and a control means for controlling application of a voltage to the piezoelectric element.
  • the control means closes the needle when the internal combustion engine is stopped. Status It is characterized by gradually lowering the voltage applied to the piezoelectric element so as to maintain.
  • the voltage applied to the piezoelectric element is gradually reduced so that the closed state of the needle is maintained, thereby gradually reducing the expansion / contraction amount of the piezoelectric element.
  • the volume in the needle upper chamber is gradually increased, and the pressure of the fuel in the needle upper chamber is gradually decreased accordingly.
  • high-pressure fuel is still stored in the fuel storage chamber. That is, the pressure in the fuel storage chamber is higher than the fuel pressure in the needle upper chamber.
  • a static fuel leak occurs between the sliding portion separating the fuel storage chamber and the needle upper chamber, that is, the inner peripheral wall of the nozzle body and the support portion of the needle, and the fuel in the fuel storage chamber gradually flows into the needle upper portion. Flows into the chamber.
  • the pressure receiving area of the needle on the fuel storage chamber side is smaller than the pressure receiving area on the needle upper chamber side by an area corresponding to the seat portion. For this reason, even if the pressure in the fuel storage chamber is slightly higher than the pressure in the needle upper chamber, the needle can be kept closed.
  • the closed valve state of the needle can be maintained even when the voltage is released when the internal combustion engine is stopped.
  • the control means in such a fuel injection device can perform pressure reduction control for reducing the pressure in the fuel supply path after reducing the voltage applied to the piezoelectric element.
  • the control means can perform pressure reduction control for reducing the pressure in the fuel supply path by opening a pressure reduction valve mounted on the common rail.
  • the pressure reduction control for reducing the pressure in the fuel supply path by opening a pressure reduction valve mounted on the common rail.
  • the static leakage of fuel from the fuel storage chamber to the needle upper chamber as described above occurs when the pressure in the fuel storage chamber is higher than the pressure in the needle upper chamber. If the piezoelectric element has already been shrunk and the expansion of the volume in the needle upper chamber has been completed, then the pressure drop in the needle upper chamber due to the volume expansion of the needle upper chamber will not occur. If the expansion of the volume of the needle upper chamber accompanying the fuel replenishment due to the static fuel leak is completed, no further static leak is necessary. Therefore, the pressure in the fuel supply path is reduced after the expansion of the volume of the needle upper chamber is completed. If the pressure in the fuel storage chamber is reduced by this, it is possible to satisfy the request for maintaining the needle closed state and the pressure reduction of the common rail.
  • the fuel injection valve in such a fuel injection device may further include an urging means for urging the needle in the valve closing direction.
  • the force acting on the needle from the needle upper chamber side must exceed the force acting on the needle from the fuel storage chamber side.
  • the pressure on the fuel storage chamber side must be higher than the pressure on the needle upper chamber side.
  • the larger the difference between the pressure on the fuel storage chamber side and the pressure on the needle upper chamber side the greater the amount of static leak and the faster the fuel is supplied to the needle upper chamber. Therefore, it is easy to follow the rapid expansion of the volume of the needle upper chamber. For this reason, the speed at which the voltage applied to the piezoelectric element is lowered can also be increased.
  • the pressure in the needle upper chamber can be further reduced. This is because the biasing means can compensate for the decrease in the force acting on the needle due to the pressure in the needle upper chamber being lowered.
  • the control means in such a fuel injection device can apply a voltage to the piezoelectric element before starting the internal combustion engine when starting the internal combustion engine.
  • the fuel injection valve may include a fuel discharge path for discharging fuel from the needle upper chamber, and a check valve disposed in the fuel discharge path and discharging fuel in the needle upper chamber.
  • the needle upper chamber when the internal combustion engine is stopped is filled with fuel flowing from the fuel storage chamber. If the piezoelectric element is extended in this state filled with fuel, the pressure in the needle upper chamber will increase too much. In some cases, the needle is pressed against the nozzle body, and the fuel injection valve may be damaged.
  • the piezoelectric element can be in an extended state.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel injection device.
  • FIG. 2A is an explanatory diagram of a cross-sectional dimension of the support portion of the needle.
  • FIG. 2B is an explanatory diagram of the cross-sectional dimensions of the tip of the needle.
  • FIG. 3 is an explanatory view showing a state of the fuel injection valve waiting for fuel injection.
  • FIG. 4 is an explanatory diagram showing the state of the fuel injection valve during fuel injection.
  • FIG. 5 is a graph showing the relationship between the voltage applied to the piezo actuator, the needle upper chamber pressure, and the needle lift amount when the internal combustion engine is in operation.
  • FIG. 6 is an explanatory diagram showing the state of the fuel injection valve when the ignition is turned off.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel injection device.
  • FIG. 2A is an explanatory diagram of a cross-sectional dimension of the support portion of the needle.
  • FIG. 2B is an explanatory diagram of
  • FIG. 7 is an explanatory view showing, in an enlarged manner, the periphery of the support portion of the needle when the ignition is turned off.
  • FIG. 8 is a graph showing changes in voltage per unit time of the needle upper chamber volume due to the voltage applied to the piezo actuator, the needle upper chamber pressure, the static leak amount, and the piezo displacement when the ignition is turned off.
  • FIG. 9 is an explanatory diagram showing the state of the fuel injection valve when the ignition is turned on.
  • FIG. 10 is an explanatory view showing a schematic configuration of another fuel injection valve.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel injection device 100.
  • the fuel injection device 100 includes a fuel injection valve 1.
  • the fuel injection valve 1 includes a nozzle body 2 having a nozzle hole 4 and a seat portion 5 provided at the tip.
  • the nozzle body 2 is provided with a sac chamber 3 at the tip, and a nozzle hole 4 is provided so that the sac chamber 3 communicates with the outside.
  • the seat portion 5 is located at the upper edge of the sack chamber 3.
  • the fuel injection valve 1 includes a needle 7.
  • the needle 7 includes a support portion 7 a that is slidably supported on the inner peripheral wall 2 a of the nozzle body 2. Further, the needle 7 is disposed in the nozzle body 2 so as to form the fuel storage chamber 6 on the tip side of the support portion 7 a in the nozzle body 2. Then, the needle 7 opens and closes the nozzle hole 4 with its tip end being in contact with and separating from the seat portion 5.
  • the diameter of the support portion 7a of the needle 7 is set to Dn as shown in FIGS. 1 and 2A. Moreover, the diameter of the part which contact
  • the support part 7a is the thickest part. For this reason, the area of the support part 7a is the needle cross-sectional area, and the needle cross-sectional area is An calculated from Dn. Further, the sheet cross-sectional area is As calculated from Ds.
  • a spring 9 is disposed on the proximal end side of the needle 7.
  • the spring 9 is sandwiched between the needle 7 and the nozzle body 2 and urges the needle 7 in the valve closing direction.
  • the spring 9 is an example of an urging unit in the present invention.
  • the spring force of the spring 9 is set to F.
  • the fuel injection valve 1 includes a piezoelectric actuator 10 in which piezoelectric elements are stacked.
  • the piezo actuator 10 is disposed on the base end side of the needle 7 so that the needle upper chamber 8 is formed between the piezo actuator 10 and the support portion 7a.
  • the piezoelectric actuator 10 moves the needle 7 in the valve closing direction by applying a voltage.
  • Such a piezo actuator 10 is connected to a piezo drive circuit 11.
  • the piezo drive circuit 11 is electrically connected to an ECU (Electronic Control Unit) 12 corresponding to the control means in the present invention. That is, the ECU 12 controls the application of voltage to the piezo actuator 10.
  • ECU Electronic Control Unit
  • the ECU 12 issues a control command to the piezo drive circuit 11, and the piezo drive circuit 11 applies a voltage to the piezo actuator 10 based on the control command of the ECU 12.
  • the diameter of the piezo actuator 10 is set to Dp, and the cross-sectional area of the piezo actuator 10 is set to Ap.
  • the fuel injection valve 1 includes a fuel supply path 13 for supplying high-pressure fuel to the fuel storage chamber 6.
  • the fuel supply path 13 is connected to the common rail 15.
  • the common rail 15 includes a pressure reducing valve 15a.
  • the pressure reducing valve 15a is electrically connected to the ECU 12. When the ECU 12 opens the pressure reducing valve 15a, the pressure reducing control in the present invention is executed. That is, by opening the pressure reducing valve 15a and reducing the pressure in the common rail 15, the pressure in the fuel supply path 13, and hence the pressure in the fuel storage chamber 6, can be reduced.
  • the needle upper chamber 8 and the fuel supply path 13 are connected by a fuel discharge path 14.
  • the fuel discharge path 14 is provided for discharging fuel from the needle upper chamber 8.
  • the fuel discharge path 14 is provided with a check valve 14a.
  • the check valve 14a is arranged so as to allow only the fuel flowing in the direction discharged from the needle upper chamber 8.
  • the piezo actuator 10 provided in the fuel injection valve 1 of the present embodiment moves the needle 7 in the valve closing direction, that is, the distal end side by applying a voltage.
  • the fuel storage chamber 6 is replenished with high-pressure fuel from the common rail 15 shown in FIG.
  • the common rail pressure is Pc.
  • the piezo actuator 10 to which a voltage is applied from the piezo drive circuit 11 is extended, the fuel in the needle upper chamber 8 is in a pressurized state.
  • the needle upper chamber pressure Pup is the common rail pressure Pc at the maximum, and the high pressure fuel at the common rail pressure Pc is flowing in the fuel supply path 13, so that the check valve 14 a is opened. There is nothing.
  • valve opening pressure Pup_op that is, the needle upper chamber pressure Pup when the valve is opened is determined as follows.
  • the force to move the needle 7 in the valve opening direction is Pc ⁇ (An ⁇ As) + Psac ⁇ (As)
  • the force to move the needle 7 in the valve closing direction is Pup ⁇ An + F
  • Pc Common rail pressure
  • An Needle cross-sectional area As: Seat cross-sectional area
  • Psac Suck chamber pressure
  • Pup Needle upper chamber pressure
  • the piezo actuator 10 provided in the fuel injection valve 1 of the present embodiment moves the needle 7 in the valve opening direction, that is, the base end side by releasing the application of voltage.
  • the fuel storage chamber 6 is replenished with high-pressure fuel from the common rail 15 shown in FIG.
  • the volume of the needle upper chamber 8 is expanded by the contraction of the piezoelectric actuator 10 from which the voltage application from the piezoelectric drive circuit 11 is released. Along with this, the needle upper chamber pressure Pup decreases.
  • the needle 7 moves in the valve opening direction, whereby the fuel in the sac chamber 3 and the fuel storage chamber 6 is injected from the injection hole 4. .
  • the needle upper chamber pressure Pup is the common rail pressure Pc at the maximum, and the high pressure fuel of the common rail pressure Pc is circulating in the fuel supply path 13, so that the check valve 14a is opened.
  • the fuel injection valve 1 performs fuel injection by performing the above operation.
  • the movement of the needle 7 is organized with reference to FIG.
  • the piezo drive circuit 11 first releases the voltage at the time t1 from the state where the voltage is applied to the piezo actuator 10.
  • the voltage applied to the piezo actuator 10 and the amount of expansion / contraction of the piezo actuator 10 are in a corresponding relationship.
  • the piezo actuator 10 starts to contract.
  • the needle upper chamber pressure Pup also decreases.
  • the contraction amount of the piezo actuator 10 and the needle lift amount are synchronized. For this reason, the needle upper chamber pressure Pup is kept constant during the time t2 to t3.
  • the time t3 indicates the time when the needle lift amount reaches the maximum, that is, reaches the full lift.
  • the voltage drop to the piezo actuator 10 continues after time t3. Therefore, the needle upper chamber pressure Pup decreases again during the time t3 to t4. At time t4, the piezoelectric actuator 10 is in the most contracted state. From this time t4 to t5, the needle upper chamber pressure Pup is constant.
  • the piezo drive circuit 11 starts applying a voltage to the piezo actuator 10. Then, since the piezo actuator 10 starts to expand, the needle upper chamber pressure Pup starts to increase. However, the needle upper chamber pressure Pup between times t5 and t6 has not yet reached the pressure at which the needle 7 can be moved. Therefore, the needle lift amount does not change between times t5 and t6.
  • time t6 At time t6, once the needle 7 starts to move, the extension amount of the piezo actuator 10 and the needle lift amount are synchronized. For this reason, the needle upper chamber pressure Pup is kept constant during the time t6 to t7.
  • time t ⁇ b> 7 indicates the time when the needle lift amount is minimum, that is, the needle 7 is seated on the seat portion 5.
  • the piezoelectric actuator 10 After the time t7, the voltage increase to the piezo actuator 10 continues. For this reason, the needle upper chamber pressure Pup rises again during the time t7 to t8. At time t8, the piezoelectric actuator 10 is in the most extended state. From this time t7 to t8, the needle upper chamber pressure Pup is constant. The above is the movement of the needle 7.
  • the application of voltage to the piezo actuator 10 is released when the internal combustion engine is stopped.
  • measures are also taken to reduce the common rail pressure Pc.
  • the voltage of the piezo actuator 10 is suddenly released after the common rail pressure Pc is reduced, the following inconveniences can be considered.
  • the ECU 12 gradually decreases the voltage applied to the piezo actuator 10 so that the closed state of the needle 7 is maintained when the internal combustion engine is stopped.
  • FIG. 6 is an explanatory diagram showing the state of the fuel injection valve 1 when the ignition is turned off when the internal combustion engine is stopped.
  • FIG. 7 shows an enlarged view of the periphery of the support portion 7a of the needle 7 when the ignition is turned off.
  • FIG. 8 is a graph showing the transition of the voltage applied to the piezo actuator 10 when the ignition is turned off, the needle upper chamber pressure, the amount of static leak, and the volume change amount of the needle upper chamber due to piezo displacement.
  • the ECU 12 when the ECU 12 detects an ignition off signal, the ECU 12 issues a command to the piezo drive circuit 11 to reduce the voltage.
  • the rate of voltage decrease is set so that the amount of contraction of the piezoelectric actuator 10 becomes ⁇ L per unit time as shown in FIG. Thereby, the amount of change per unit time of the volume of the needle upper chamber 8 changes to a constant after reaching ⁇ L ⁇ Ap.
  • the fuel in the fuel storage chamber 6 flows into the needle upper chamber 8.
  • the support portion 7a of the needle 7 is slidably fitted to the inner peripheral wall 2a of the nozzle body 9, and there is a clearance between them.
  • the fuel storage chamber 6 moves to the needle upper chamber 8 as shown by an arrow 20 in FIG. A static fuel leak occurs. That is, the fuel in the fuel storage chamber 6 flows into the needle upper chamber 8 and is filled in the needle upper chamber 8.
  • the needle upper chamber 8 is gradually filled with fuel. Thereby, it can suppress that needle upper chamber pressure Pup reduces until it reaches valve opening pressure Pup_op, and the valve 7 closed state of needle 7 is maintained. In this manner, the application of voltage to the piezo actuator 10 can be canceled while maintaining the state where the needle 7 shown in FIG. 6 is seated on the seat portion 5. Further, since the needle upper chamber 8 is filled with fuel, it is possible to suppress the generation of bubbles in the needle upper chamber 8. As a result, stable fuel injection can be ensured when the internal combustion engine is restarted.
  • the ECU 12 performs a pressure reduction control for reducing the pressure in the fuel supply path 13 after the release of the voltage application of the piezoelectric actuator 10 is completed. Specifically, the pressure reducing valve 15 a attached to the common rail 15 is opened to reduce the pressure of the common rail 15. As a result, the pressure in the fuel supply path 13 connected to the common rail 15 decreases.
  • the fuel injection device 100 that operates as described above when the internal combustion engine is stopped operates as follows when the internal combustion engine is started.
  • the ECU 12 When starting the internal combustion engine, the ECU 12 applies a voltage to the piezo actuator 10 before starting the internal combustion engine. Specifically, when the ECU 12 detects an ignition ON signal, the ECU 12 issues a command to apply a voltage to the piezo drive circuit 11.
  • the piezoelectric actuator 10 to which voltage is applied starts to expand.
  • the fuel in the needle upper chamber 8 is compressed, and the needle upper chamber pressure Pup increases.
  • the fuel in the needle upper chamber 8 opens the check valve 14 a and is discharged to the fuel supply path 13 through the fuel discharge path 14 as indicated by an arrow 21.
  • the fuel injection valve 1 can shift to a state in which a voltage is applied to the piezo actuator 10 while the needle 7 is closed.
  • the internal combustion engine is stopped in the fuel injection valve 1 that moves the needle 7 in the valve opening direction by releasing the voltage applied to the piezoelectric actuator 10. It is possible to avoid the fuel injection in the state of being performed. Further, it is possible to suppress the generation of bubbles in the needle upper chamber 8 when the internal combustion engine is stopped.
  • a groove 30 may be provided in the support portion 7 a to adjust the amount of static fuel leak from the fuel storage chamber 6 to the needle upper chamber 8.

Abstract

A fuel injection device (100) comprises a fuel injection valve (1) and an ECU (12). The fuel injection valve (1) comprises a nozzle body (2) having a nozzle hole (4) and a seat part (5) at the end, and a needle (7) which is provided with a support part (7a) slidably supported on the inner peripheral wall (2a) of the nozzle body (2), which is so disposed in the nozzle body (2) that a fuel storage chamber (6) is formed in the nozzle body (2) on the tip end side than the support part (7a), and which opens and closes the nozzle hole by approaching and separating from the seat part (5). The fuel injection valve (1) further comprises a piezo actuator (10) which is so disposed on the proximal end side than the needle (7) that a needle upper chamber (8) is formed between the piezo actuator (10) and the support part (7a), and which moves the needle (7) in the valve closing direction when a voltage is applied thereto. The ECU (12) so gradually lowers the voltage applied to the piezo actuator (10) that the closed state of the needle (7) is maintained when an internal combustion engine is stopped.

Description

燃料噴射装置Fuel injection device
 本発明は、燃料噴射装置に関する。 The present invention relates to a fuel injection device.
 従来、種々の形態の燃料噴射弁が提案されている。例えば、圧電素子をアクチュエータとする噴射弁において、構造の簡素化をはかるとともに、燃料噴射量のバラツキを抑えることを課題とする噴射弁が提案されている。具体的には、噴孔が開口した座面に接離して噴口を開閉するニードルと、ニードルを開弁方向に付勢する付勢手段と、印加される電圧により伸長してニードルを直接的に閉弁方向に駆動する圧電素子と、を備えた噴射弁が提案されている(特許文献1参照)。このような噴射弁は、簡易な構成であり、圧電素子に印加された電圧を解除することによってニードルを開弁方向へ移動させ、燃料の噴射を行う。 Conventionally, various types of fuel injection valves have been proposed. For example, in an injection valve that uses a piezoelectric element as an actuator, an injection valve has been proposed that aims to simplify the structure and suppress variations in fuel injection amount. Specifically, the needle that opens and closes the nozzle hole by contacting and separating from the seat surface in which the nozzle hole is opened, the biasing means that biases the needle in the valve opening direction, and the needle is directly expanded by being extended by the applied voltage. An injection valve including a piezoelectric element that is driven in a valve closing direction has been proposed (see Patent Document 1). Such an injection valve has a simple configuration, and by releasing the voltage applied to the piezoelectric element, the needle is moved in the valve opening direction to inject fuel.
特開平10-159674号公報Japanese Patent Laid-Open No. 10-159675
 しかしながら、前記のように、印加される電圧により伸長してニードルを直接的に閉弁方向に駆動する圧電素子を用いた場合、以下のような事象が問題となると考えられる。
 すなわち、内燃機関が停止し、圧電素子への電圧印加が解除されると、ニードルが開弁方向へ動いてしまい、意図しない燃料の噴射が行われるおそれがある。
However, as described above, when a piezoelectric element that extends by an applied voltage and directly drives the needle in the valve closing direction, the following phenomenon is considered to be a problem.
That is, when the internal combustion engine is stopped and the voltage application to the piezoelectric element is released, the needle moves in the valve opening direction, which may cause unintended fuel injection.
 そこで、本発明は、圧電素子に印加された電圧を解除することによってニードルを開弁方向へ移動させる燃料噴射弁において、内燃機関を停止した状態における燃料の噴射を回避することを課題とする。 Therefore, an object of the present invention is to avoid fuel injection when the internal combustion engine is stopped in a fuel injection valve that moves the needle in the valve opening direction by releasing the voltage applied to the piezoelectric element.
 上記課題を解決するために、本明細書開示の燃料噴射装置は、先端部に噴孔及びシート部が設けられたノズルボディと、当該ノズルボディの内周壁に摺動自在に支持される支持部を備え、前記ノズルボディ内において、前記支持部よりも先端側に燃料貯留室を形成するように前記ノズルボディ内に配置され、前記シート部に接離して前記噴孔を開閉するニードルと、前記支持部との間にニードル上部室が形成されるように、前記ニードルよりも基端側に配置され、電圧の印加によって前記ニードルを閉弁方向に移動させる圧電素子と、前記燃料貯留室に高圧燃料を供給する燃料供給経路と、を備えた燃料噴射弁と、前記圧電素子への電圧の印加を制御する制御手段と、を備え、当該制御手段は、内燃機関停止時に、前記ニードルの閉弁状態が維持されるように前記圧電素子に印加した電圧を徐々に低下させることを特徴としている。 In order to solve the above-described problems, a fuel injection device disclosed in the present specification includes a nozzle body provided with a nozzle hole and a seat portion at a tip portion, and a support portion that is slidably supported on an inner peripheral wall of the nozzle body A needle that is disposed in the nozzle body so as to form a fuel storage chamber on the tip side of the support portion in the nozzle body, and that opens and closes the nozzle hole in contact with and away from the seat portion; A piezoelectric element which is disposed on the proximal end side of the needle so as to form a needle upper chamber between the support portion and moves the needle in a valve closing direction by application of a voltage, and a high pressure in the fuel storage chamber A fuel supply valve for supplying fuel; and a control means for controlling application of a voltage to the piezoelectric element. The control means closes the needle when the internal combustion engine is stopped. Status It is characterized by gradually lowering the voltage applied to the piezoelectric element so as to maintain.
 このように、内燃機関停止時に、ニードルの閉弁状態が維持されるように圧電素子へ印加した電圧を徐々に低下させることにより、圧電素子の伸縮量を徐々に低減させる。これにより、ニードル上部室内の容積を徐々に拡大し、これに伴って、ニードル上部室内の燃料の圧力を徐々に低下させる。このとき、燃料貯留室には未だ高圧の燃料が貯留されている。すなわち、燃料貯留室内の圧力がニードル上部室内の燃料の圧力よりも高い状態となっている。この結果、燃料貯留室とニードル上部室とを隔てる摺動部、すなわち、ノズルボディの内周壁とニードルの支持部との間に燃料の静リークが生じ、燃料貯留室内の燃料が徐々にニードル上部室へ流入する。ここで、燃料貯留室側のニードルの受圧面積は、シート部に応じた面積分、ニードル上部室側の受圧面積よりも小さくなる。このため、燃料貯留室内の圧力がニードル上部室の圧力よりも僅かに高い状態であっても、ニードルを閉弁状態に維持することが可能となる。 Thus, when the internal combustion engine is stopped, the voltage applied to the piezoelectric element is gradually reduced so that the closed state of the needle is maintained, thereby gradually reducing the expansion / contraction amount of the piezoelectric element. Thereby, the volume in the needle upper chamber is gradually increased, and the pressure of the fuel in the needle upper chamber is gradually decreased accordingly. At this time, high-pressure fuel is still stored in the fuel storage chamber. That is, the pressure in the fuel storage chamber is higher than the fuel pressure in the needle upper chamber. As a result, a static fuel leak occurs between the sliding portion separating the fuel storage chamber and the needle upper chamber, that is, the inner peripheral wall of the nozzle body and the support portion of the needle, and the fuel in the fuel storage chamber gradually flows into the needle upper portion. Flows into the chamber. Here, the pressure receiving area of the needle on the fuel storage chamber side is smaller than the pressure receiving area on the needle upper chamber side by an area corresponding to the seat portion. For this reason, even if the pressure in the fuel storage chamber is slightly higher than the pressure in the needle upper chamber, the needle can be kept closed.
 このように、圧電素子への電圧印加を徐々に解除することにより、内燃機関停止時に電圧が解除された状態でもニードルの閉弁状態を維持することができる。 Thus, by gradually releasing the voltage application to the piezoelectric element, the closed valve state of the needle can be maintained even when the voltage is released when the internal combustion engine is stopped.
 このような燃料噴射装置における前記制御手段は、前記圧電素子に印加した電圧を低下させた後に、前記燃料供給経路内の圧力を減圧する減圧制御を行うことができる。制御手段は、例えば、コモンレールに装着した減圧弁を開弁することによって燃料供給経路内の圧力を減圧する減圧制御を行うことができる。内燃機関を停止状態とするときは、コモンレールの圧力を減圧しておくのが一般的であるが、このような減圧制御を行うことにより、コモンレールの減圧の要請を満たすことができる。ここで、このようなタイミングで減圧制御を行うのは、以下の理由による。 The control means in such a fuel injection device can perform pressure reduction control for reducing the pressure in the fuel supply path after reducing the voltage applied to the piezoelectric element. For example, the control means can perform pressure reduction control for reducing the pressure in the fuel supply path by opening a pressure reduction valve mounted on the common rail. When the internal combustion engine is stopped, it is common to reduce the pressure of the common rail. However, by performing such pressure reduction control, it is possible to satisfy the demand for pressure reduction of the common rail. Here, the reason why the pressure reduction control is performed at such timing is as follows.
 前記のような燃料貯留室からニードル上部室への燃料の静リークは、燃料貯留室内の圧力がニードル上部室内の圧力よりも高い場合に生じる。すでに、圧電素子が縮み終わり、ニードル上部室内の容積の拡大が終了していれば、以後、ニードル上部室の容積拡大に起因するニードル上部室の圧力低下は生じない。燃料の静リークによる燃料の補充を伴ったニードル上部室の容積の拡大が終了していれば、さらなる静リークは不要となる。そこで、ニードル上部室の容積の拡大が終了した後に燃料供給経路内の圧力を減圧する。そして、これにより燃料貯留室内の圧力を減圧すれば、ニードルの閉弁状態の維持と、コモンレールの減圧の要請を満たすことができる。 The static leakage of fuel from the fuel storage chamber to the needle upper chamber as described above occurs when the pressure in the fuel storage chamber is higher than the pressure in the needle upper chamber. If the piezoelectric element has already been shrunk and the expansion of the volume in the needle upper chamber has been completed, then the pressure drop in the needle upper chamber due to the volume expansion of the needle upper chamber will not occur. If the expansion of the volume of the needle upper chamber accompanying the fuel replenishment due to the static fuel leak is completed, no further static leak is necessary. Therefore, the pressure in the fuel supply path is reduced after the expansion of the volume of the needle upper chamber is completed. If the pressure in the fuel storage chamber is reduced by this, it is possible to satisfy the request for maintaining the needle closed state and the pressure reduction of the common rail.
 このような燃料噴射装置における前記燃料噴射弁は、前記ニードルを閉弁方向に付勢する付勢手段をさらに備えることができる。 The fuel injection valve in such a fuel injection device may further include an urging means for urging the needle in the valve closing direction.
 ニードルの閉弁状態が維持されるためには、ニードル上部室側からニードルに作用する力が、燃料貯留室側からニードルに作用する力に上回っていなければならない。その一方で、燃料貯留室側からニードル上部室側への燃料の静リークを生じさせるためには、燃料貯留室側の圧力がニードル上部室側の圧力よりも高くなければならない。ここで、燃料貯留室側の圧力とニードル上部室側の圧力との差が大きいほど、静リーク量が多く、ニードル上部室へ燃料が供給される速度も早い。従って、ニードル上部室の容積の急速な拡大にも追従し易い。このため、圧電素子に印加された電圧を低下させる速度も速めることができる。 In order to maintain the valve closed state of the needle, the force acting on the needle from the needle upper chamber side must exceed the force acting on the needle from the fuel storage chamber side. On the other hand, in order to cause a static leak of fuel from the fuel storage chamber side to the needle upper chamber side, the pressure on the fuel storage chamber side must be higher than the pressure on the needle upper chamber side. Here, the larger the difference between the pressure on the fuel storage chamber side and the pressure on the needle upper chamber side, the greater the amount of static leak and the faster the fuel is supplied to the needle upper chamber. Therefore, it is easy to follow the rapid expansion of the volume of the needle upper chamber. For this reason, the speed at which the voltage applied to the piezoelectric element is lowered can also be increased.
 ここで、前記ニードルを閉弁方向に付勢する付勢手段が設けられていると、ニードル上部室内の圧力をより低下させることが可能となる。これは、ニードル上部室内の圧力を低下させることによるニードルへ作用する力の減少分を付勢手段により、補うことができるためである。 Here, if a biasing means for biasing the needle in the valve closing direction is provided, the pressure in the needle upper chamber can be further reduced. This is because the biasing means can compensate for the decrease in the force acting on the needle due to the pressure in the needle upper chamber being lowered.
 このような燃料噴射装置における前記制御手段は、内燃機関始動時において、内燃機関始動前に前記圧電素子への電圧の印加を行うことができる。 The control means in such a fuel injection device can apply a voltage to the piezoelectric element before starting the internal combustion engine when starting the internal combustion engine.
 本明細書開示の燃料噴射装置が備える燃料噴射弁は、閉弁状態にあるときは、圧電素子に電圧を印加した状態とするものである。ところが、内燃機関停止時の燃料噴射弁は、圧電素子に電圧を印加していない状態でニードルを閉弁状態としている。このため、内燃機関始動時は、圧電素子に電圧を印加し、圧電素子を伸長させた状態でニードルを閉弁状態としておかなければならない。そこで、内燃機関始動時において、内燃機関始動前に前記圧電素子への電圧の印加を行う。これにより、圧電素子への電圧の印加を解除することによって燃料の噴射を行うことができる状態となる。 When the fuel injection valve provided in the fuel injection device disclosed in this specification is in a closed state, a voltage is applied to the piezoelectric element. However, the fuel injection valve when the internal combustion engine is stopped has the needle closed while no voltage is applied to the piezoelectric element. For this reason, when starting the internal combustion engine, a voltage must be applied to the piezoelectric element, and the needle must be closed with the piezoelectric element extended. Therefore, when the internal combustion engine is started, voltage is applied to the piezoelectric element before the internal combustion engine is started. Thereby, it will be in the state which can inject a fuel by canceling the application of the voltage to a piezoelectric element.
 また、前記燃料噴射弁は、前記ニードル上部室から燃料を排出する燃料排出経路と、当該燃料排出経路に配置され、前記ニードル上部室内の燃料を排出するチェック弁と、を備えることができる。 The fuel injection valve may include a fuel discharge path for discharging fuel from the needle upper chamber, and a check valve disposed in the fuel discharge path and discharging fuel in the needle upper chamber.
 内燃機関停止時のニードル上部室内には、燃料貯留室から流入した燃料が充填された状態となっている。このように燃料が充填された状態で圧電素子を伸長させると、ニードル上部室内の圧力が上がりすぎてしまう。また、場合によっては、ニードルがノズルボディに押し付けられ、燃料噴射弁の破損を招くおそれがある。 The needle upper chamber when the internal combustion engine is stopped is filled with fuel flowing from the fuel storage chamber. If the piezoelectric element is extended in this state filled with fuel, the pressure in the needle upper chamber will increase too much. In some cases, the needle is pressed against the nozzle body, and the fuel injection valve may be damaged.
 そこで、ニードル上部室から燃料を排出する燃料排出経路と、当該燃料排出経路に配置され、前記ニードル上部室内の燃料を排出するチェック弁とを備えることによって、ニードル上部室の圧力の上昇を抑制しつつ圧電素子を伸長状態とすることができる。 Therefore, a rise in pressure in the needle upper chamber is suppressed by providing a fuel discharge path for discharging the fuel from the needle upper chamber and a check valve disposed in the fuel discharge path for discharging the fuel in the needle upper chamber. In addition, the piezoelectric element can be in an extended state.
 圧電素子に印加された電圧を解除することによってニードルを開弁方向へ移動させる燃料噴射弁において、内燃機関を停止した状態における燃料の噴射を回避することができる。 In the fuel injection valve that moves the needle in the valve opening direction by releasing the voltage applied to the piezoelectric element, it is possible to avoid fuel injection when the internal combustion engine is stopped.
図1は、燃料噴射装置の概略構成を示した説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel injection device. 図2(A)は、ニードルにおける支持部の断面寸法の説明図である。図2(B)は、ニードルにおける先端部の断面寸法の説明図である。FIG. 2A is an explanatory diagram of a cross-sectional dimension of the support portion of the needle. FIG. 2B is an explanatory diagram of the cross-sectional dimensions of the tip of the needle. 図3は、燃料噴射を待機する燃料噴射弁の状態を示す説明図である。FIG. 3 is an explanatory view showing a state of the fuel injection valve waiting for fuel injection. 図4は、燃料噴射時の燃料噴射弁の状態を示す説明図である。FIG. 4 is an explanatory diagram showing the state of the fuel injection valve during fuel injection. 図5は、内燃機関稼動時にピエゾアクチュエータに印加される電圧、ニードル上部室圧力、ニードルリフト量の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the voltage applied to the piezo actuator, the needle upper chamber pressure, and the needle lift amount when the internal combustion engine is in operation. 図6は、イグニションをオフにしたときの燃料噴射弁の状態を示す説明図である。FIG. 6 is an explanatory diagram showing the state of the fuel injection valve when the ignition is turned off. 図7は、イグニションをオフにしたときのニードルの支持部の周辺を拡大して示す説明図である。FIG. 7 is an explanatory view showing, in an enlarged manner, the periphery of the support portion of the needle when the ignition is turned off. 図8は、イグニションをオフにしたときにピエゾアクチュエータに印加される電圧、ニードル上部室圧力、静リーク量、ピエゾ変位によるニードル上部室容積の単位時間当たり変化量の推移を示すグラフである。FIG. 8 is a graph showing changes in voltage per unit time of the needle upper chamber volume due to the voltage applied to the piezo actuator, the needle upper chamber pressure, the static leak amount, and the piezo displacement when the ignition is turned off. 図9は、イグニションをオンとしたときの燃料噴射弁の状態を示す説明図である。FIG. 9 is an explanatory diagram showing the state of the fuel injection valve when the ignition is turned on. 図10は、他の燃料噴射弁の概略構成を示した説明図である。FIG. 10 is an explanatory view showing a schematic configuration of another fuel injection valve.
 以下、本発明の実施の形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、燃料噴射装置100の概略構成を示した説明図である。燃料噴射装置100は、燃料噴射弁1を備えている。燃料噴射弁1は、先端部に噴孔4及びシート部5が設けられたノズルボディ2を備えている。ノズルボディ2は、先端部にサック室3が設けられ、このサック室3が外部と連通するように噴孔4が設けられている。シート部5は、サック室3の上縁に位置している。 FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel injection device 100. The fuel injection device 100 includes a fuel injection valve 1. The fuel injection valve 1 includes a nozzle body 2 having a nozzle hole 4 and a seat portion 5 provided at the tip. The nozzle body 2 is provided with a sac chamber 3 at the tip, and a nozzle hole 4 is provided so that the sac chamber 3 communicates with the outside. The seat portion 5 is located at the upper edge of the sack chamber 3.
 燃料噴射弁1は、ニードル7を備えている。ニードル7は、ノズルボディ2の内周壁2aに摺動自在に支持される支持部7aを備えている。また、ニードル7は、ノズルボディ2内において、支持部7aよりも先端側に燃料貯留室6を形成するようにノズルボディ2内に配置されている。そして、ニードル7は、その先端部をシート部5に接離して噴孔4を開閉する。このようなニードル7の支持部7aの直径は、図1、図2(A)に示すようにDnに設定されている。また、ニードル7のシート部5に当接する部分の直径は、図1、図2(B)に示すようにDsに設定されている。支持部7aが最も太い部分であり、このため、支持部7aの面積がニードル断面積となり、ニードル断面積はDnから算出されるAnとなる。また、シート断面積は、Dsから算出されるAsとなる。 The fuel injection valve 1 includes a needle 7. The needle 7 includes a support portion 7 a that is slidably supported on the inner peripheral wall 2 a of the nozzle body 2. Further, the needle 7 is disposed in the nozzle body 2 so as to form the fuel storage chamber 6 on the tip side of the support portion 7 a in the nozzle body 2. Then, the needle 7 opens and closes the nozzle hole 4 with its tip end being in contact with and separating from the seat portion 5. The diameter of the support portion 7a of the needle 7 is set to Dn as shown in FIGS. 1 and 2A. Moreover, the diameter of the part which contact | abuts the sheet | seat part 5 of the needle 7 is set to Ds, as shown in FIG. 1, FIG. 2 (B). The support part 7a is the thickest part. For this reason, the area of the support part 7a is the needle cross-sectional area, and the needle cross-sectional area is An calculated from Dn. Further, the sheet cross-sectional area is As calculated from Ds.
 ニードル7の基端側には、バネ9が配置されている。バネ9は、ニードル7とノズルボディ2との間に挟持され、ニードル7を閉弁方向に付勢している。バネ9は、本発明における付勢手段の一例である。バネ9のバネ力はFに設定されている。 A spring 9 is disposed on the proximal end side of the needle 7. The spring 9 is sandwiched between the needle 7 and the nozzle body 2 and urges the needle 7 in the valve closing direction. The spring 9 is an example of an urging unit in the present invention. The spring force of the spring 9 is set to F.
 燃料噴射弁1は、圧電素子を積層したピエゾアクチュエータ10を備えている。ピエゾアクチュエータ10は、このピエゾアクチュエータ10と支持部7aとの間にニードル上部室8が形成されるように、ニードル7よりも基端側に配置されている。このピエゾアクチュエータ10は、電圧の印加によってニードル7を閉弁方向に移動させる。このようなピエゾアクチュエータ10は、ピエゾ駆動回路11に接続されている。そして、このピエゾ駆動回路11は、本発明における制御手段に相当するECU(Electronic Control Unit)12に電気的に接続されている。すなわち、ECU12は、ピエゾアクチュエータ10への電圧の印加を制御する。より具体的には、ECU12は、ピエゾ駆動回路11へ、制御指令を発し、ピエゾ駆動回路11は、ECU12の制御指令に基づいてピエゾアクチュエータ10へ電圧の印加を行う。
 なお、ピエゾアクチュエータ10の直径はDpに設定されており、ピエゾアクチュエータ10の断面積はApに設定されている。
The fuel injection valve 1 includes a piezoelectric actuator 10 in which piezoelectric elements are stacked. The piezo actuator 10 is disposed on the base end side of the needle 7 so that the needle upper chamber 8 is formed between the piezo actuator 10 and the support portion 7a. The piezoelectric actuator 10 moves the needle 7 in the valve closing direction by applying a voltage. Such a piezo actuator 10 is connected to a piezo drive circuit 11. The piezo drive circuit 11 is electrically connected to an ECU (Electronic Control Unit) 12 corresponding to the control means in the present invention. That is, the ECU 12 controls the application of voltage to the piezo actuator 10. More specifically, the ECU 12 issues a control command to the piezo drive circuit 11, and the piezo drive circuit 11 applies a voltage to the piezo actuator 10 based on the control command of the ECU 12.
The diameter of the piezo actuator 10 is set to Dp, and the cross-sectional area of the piezo actuator 10 is set to Ap.
 燃料噴射弁1は、燃料貯留室6に高圧燃料を供給する燃料供給経路13を備えている。この燃料供給経路13は、コモンレール15に接続されている。コモンレール15は、減圧弁15aを備えている。この減圧弁15aは、ECU12に電気的に接続されている。ECU12が減圧弁15aを開弁させることにより、本発明における減圧制御が実行される。すなわち、減圧弁15aを開弁し、コモンレール15内の圧力を下げることにより、燃料供給経路13内の圧力、ひいては、燃料貯留室6内の圧力を減圧することができる。 The fuel injection valve 1 includes a fuel supply path 13 for supplying high-pressure fuel to the fuel storage chamber 6. The fuel supply path 13 is connected to the common rail 15. The common rail 15 includes a pressure reducing valve 15a. The pressure reducing valve 15a is electrically connected to the ECU 12. When the ECU 12 opens the pressure reducing valve 15a, the pressure reducing control in the present invention is executed. That is, by opening the pressure reducing valve 15a and reducing the pressure in the common rail 15, the pressure in the fuel supply path 13, and hence the pressure in the fuel storage chamber 6, can be reduced.
 ニードル上部室8と燃料供給経路13とは、燃料排出経路14によって接続されている。燃料排出経路14は、ニードル上部室8から燃料を排出するために設けられている。この燃料排出経路14には、チェック弁14aが設けられている。チェック弁14aは、ニードル上部室8から排出される向きの燃料の流通のみを許容するように配置されている。 The needle upper chamber 8 and the fuel supply path 13 are connected by a fuel discharge path 14. The fuel discharge path 14 is provided for discharging fuel from the needle upper chamber 8. The fuel discharge path 14 is provided with a check valve 14a. The check valve 14a is arranged so as to allow only the fuel flowing in the direction discharged from the needle upper chamber 8.
 以上のような燃料噴射装置100の動作につき、図面を参照しつつ説明する。 The operation of the fuel injection device 100 as described above will be described with reference to the drawings.
 まず、図3を参照しつつ、内燃機関稼動時において、燃料噴射弁1が燃料噴射を待機している状態について説明する。本実施形態の燃料噴射弁1が備えるピエゾアクチュエータ10は、電圧の印加によってニードル7を閉弁方向、すなわち、先端側へ移動させる。 First, the state where the fuel injection valve 1 is waiting for fuel injection when the internal combustion engine is operating will be described with reference to FIG. The piezo actuator 10 provided in the fuel injection valve 1 of the present embodiment moves the needle 7 in the valve closing direction, that is, the distal end side by applying a voltage.
 燃料貯留室6には、図1に示すコモンレール15より燃料供給経路13を通じて高圧燃料が補充された状態となっている。ここで、コモンレール圧をPcとする。一方、ピエゾ駆動回路11から電圧が印加されたピエゾアクチュエータ10が伸長しているため、ニードル上部室8内の燃料は、加圧された状態となっている。なお、図3に示す状態では、ニードル上部室圧力Pupは最大でコモンレール圧Pcであり、燃料供給経路13には、コモンレール圧Pcの高圧燃料が流通しているため、チェック弁14aが開弁することはない。 The fuel storage chamber 6 is replenished with high-pressure fuel from the common rail 15 shown in FIG. Here, the common rail pressure is Pc. On the other hand, since the piezo actuator 10 to which a voltage is applied from the piezo drive circuit 11 is extended, the fuel in the needle upper chamber 8 is in a pressurized state. In the state shown in FIG. 3, the needle upper chamber pressure Pup is the common rail pressure Pc at the maximum, and the high pressure fuel at the common rail pressure Pc is flowing in the fuel supply path 13, so that the check valve 14 a is opened. There is nothing.
 ここで、開弁圧Pup_op、すなわち、開弁するときのニードル上部室圧力Pupは、以下のように定められる。 Here, the valve opening pressure Pup_op, that is, the needle upper chamber pressure Pup when the valve is opened is determined as follows.
 ニードル7を開弁方向に移動させようとする力は、
 Pc×(An-As)+Psac×(As)
 ニードル7を閉弁方向に移動させようとする力は、
 Pup×An+F
  Pc  :コモンレール圧
  An  :ニードル断面積
  As  :シート断面積
  Psac:サック室圧力
  Pup :ニードル上部室圧力
  F   :バネ力
 以上より、ニードル開弁条件は、
 Pc×(An-As)+Psac×(As)
=Pup×An+F
 これより、開弁圧Pup_opは、
 Pup_op
=(Pc×(An-As)+Psac×(As)-F)/An
となる。
The force to move the needle 7 in the valve opening direction is
Pc × (An−As) + Psac × (As)
The force to move the needle 7 in the valve closing direction is
Pup × An + F
Pc: Common rail pressure An: Needle cross-sectional area As: Seat cross-sectional area Psac: Suck chamber pressure Pup: Needle upper chamber pressure F: Spring force From the above, the needle valve opening conditions are
Pc × (An−As) + Psac × (As)
= Pup × An + F
From this, the valve opening pressure Pup_op is
Pup_op
= (Pc × (An−As) + Psac × (As) −F) / An
It becomes.
 ピエゾ駆動回路11がピエゾアクチュエータ10へ電圧を印加し、それによりピエゾアクチュエータ10が伸長することによってニードル上部室圧力Pupが開弁圧Pup_opよりも高くなっていれば、閉弁状態は維持される。 When the piezo drive circuit 11 applies a voltage to the piezo actuator 10 and the piezo actuator 10 extends thereby, the needle upper chamber pressure Pup is higher than the valve opening pressure Pup_op, the valve closing state is maintained.
 次に、図4を参照しつつ、内燃機関稼動時において、燃料噴射弁1が燃料噴射を行う状態について説明する。本実施形態の燃料噴射弁1が備えるピエゾアクチュエータ10は、電圧の印加が解除されることによってニードル7を開弁方向、すなわち、基端側へ移動させる。 Next, a state in which the fuel injection valve 1 performs fuel injection when the internal combustion engine is operating will be described with reference to FIG. The piezo actuator 10 provided in the fuel injection valve 1 of the present embodiment moves the needle 7 in the valve opening direction, that is, the base end side by releasing the application of voltage.
 燃料貯留室6には、図1に示すコモンレール15より燃料供給経路13を通じて高圧燃料が補充された状態となっている。一方、ピエゾ駆動回路11からの電圧印加が解除されたピエゾアクチュエータ10が収縮することによって、ニードル上部室8の容積が拡大する。これに伴ってニードル上部室圧力Pupは低下する。 The fuel storage chamber 6 is replenished with high-pressure fuel from the common rail 15 shown in FIG. On the other hand, the volume of the needle upper chamber 8 is expanded by the contraction of the piezoelectric actuator 10 from which the voltage application from the piezoelectric drive circuit 11 is released. Along with this, the needle upper chamber pressure Pup decreases.
 そして、低下したニードル上部室圧力Pupが開弁圧Pup_opに到達するとニードル7は、開弁方向に移動し、これにより、噴孔4からサック室3、燃料貯留室6内の燃料が噴射される。なお、図4に示す状態においても、ニードル上部室圧力Pupは最大でコモンレール圧Pcであり、燃料供給経路13には、コモンレール圧Pcの高圧燃料が流通しているため、チェック弁14aが開弁することはない。 Then, when the reduced needle upper chamber pressure Pup reaches the valve opening pressure Pup_op, the needle 7 moves in the valve opening direction, whereby the fuel in the sac chamber 3 and the fuel storage chamber 6 is injected from the injection hole 4. . In the state shown in FIG. 4 as well, the needle upper chamber pressure Pup is the common rail pressure Pc at the maximum, and the high pressure fuel of the common rail pressure Pc is circulating in the fuel supply path 13, so that the check valve 14a is opened. Never do.
 燃料噴射弁1は、以上のような動作を行うことにより、燃料の噴射を行う。
 ここで、図5を参照しつつ、ニードル7の動きを整理する。ピエゾ駆動回路11は、ピエゾアクチュエータ10に電圧を印加した状態から、まず、時間t1の時点で電圧解除を行う。ここで、ピエゾアクチュエータ10に印加されている電圧とピエゾアクチュエータ10の伸縮量とは対応関係にある。時間t1の時点で電圧の解除が行われるとピエゾアクチュエータ10は収縮し始める。これに伴ってニードル上部室圧力Pupも低下する。
The fuel injection valve 1 performs fuel injection by performing the above operation.
Here, the movement of the needle 7 is organized with reference to FIG. The piezo drive circuit 11 first releases the voltage at the time t1 from the state where the voltage is applied to the piezo actuator 10. Here, the voltage applied to the piezo actuator 10 and the amount of expansion / contraction of the piezo actuator 10 are in a corresponding relationship. When the voltage is released at time t1, the piezo actuator 10 starts to contract. Along with this, the needle upper chamber pressure Pup also decreases.
 時間t2になり、一旦、ニードル7が動き始めると、ピエゾアクチュエータ10の収縮量とニードルリフト量とが同期するようになる。このため、時間t2~t3の間は、ニードル上部室圧力Pupは一定に推移する。ここで、時間t3は、ニードルリフト量が最大、すなわち、フルリフトに到達した時点を示している。 At time t2, once the needle 7 starts to move, the contraction amount of the piezo actuator 10 and the needle lift amount are synchronized. For this reason, the needle upper chamber pressure Pup is kept constant during the time t2 to t3. Here, the time t3 indicates the time when the needle lift amount reaches the maximum, that is, reaches the full lift.
 時間t3以後も、ピエゾアクチュエータ10への電圧の低下は継続される。このため、時間t3~t4の間は、再びニードル上部室圧力Pupが低下する。そして、時間t4となると、ピエゾアクチュエータ10は最も収縮した状態となる。この時間t4~t5までは、ニードル上部室圧力Pupは一定となる。 The voltage drop to the piezo actuator 10 continues after time t3. Therefore, the needle upper chamber pressure Pup decreases again during the time t3 to t4. At time t4, the piezoelectric actuator 10 is in the most contracted state. From this time t4 to t5, the needle upper chamber pressure Pup is constant.
 時間t5からは、ピエゾ駆動回路11は、ピエゾアクチュエータ10への電圧の印加を開始する。すると、ピエゾアクチュエータ10が伸長し始めるので、ニードル上部室圧力Pupが上昇し始める。ただし、時間t5~t6の間のニードル上部室圧力Pupは、未だニードル7を移動させることができる圧力にまでは到達していない。このため、時間t5~t6の間においてニードルリフト量は変化しない。 From time t5, the piezo drive circuit 11 starts applying a voltage to the piezo actuator 10. Then, since the piezo actuator 10 starts to expand, the needle upper chamber pressure Pup starts to increase. However, the needle upper chamber pressure Pup between times t5 and t6 has not yet reached the pressure at which the needle 7 can be moved. Therefore, the needle lift amount does not change between times t5 and t6.
 時間t6になり、一旦、ニードル7が動き始めると、ピエゾアクチュエータ10の伸長量とニードルリフト量とが同期するようになる。このため、時間t6~t7の間は、ニードル上部室圧力Pupは一定に推移する。ここで、時間t7は、ニードルリフト量が最小、すなわち、ニードル7がシート部5に着座した時点を示している。 At time t6, once the needle 7 starts to move, the extension amount of the piezo actuator 10 and the needle lift amount are synchronized. For this reason, the needle upper chamber pressure Pup is kept constant during the time t6 to t7. Here, time t <b> 7 indicates the time when the needle lift amount is minimum, that is, the needle 7 is seated on the seat portion 5.
 時間t7以後も、ピエゾアクチュエータ10への電圧の上昇は継続される。このため、時間t7~t8の間は、再びニードル上部室圧力Pupが上昇する。そして、時間t8となると、ピエゾアクチュエータ10は最も伸長した状態となる。この時間t7~t8までは、ニードル上部室圧力Pupは一定となる。以上が、ニードル7の動きである。 After the time t7, the voltage increase to the piezo actuator 10 continues. For this reason, the needle upper chamber pressure Pup rises again during the time t7 to t8. At time t8, the piezoelectric actuator 10 is in the most extended state. From this time t7 to t8, the needle upper chamber pressure Pup is constant. The above is the movement of the needle 7.
 以上のように動作する燃料噴射弁1は、内燃機関の停止時にピエゾアクチュエータ10への電圧の印加が解除される。また、コモンレール圧Pcも低下させる措置が取られるのが一般的である。ここで、仮に、コモンレール圧Pcを低下させた後に、ピソゾアクチュエータ10の電圧を急激に解除すると、以下のような不都合が考えられる。 In the fuel injection valve 1 operating as described above, the application of voltage to the piezo actuator 10 is released when the internal combustion engine is stopped. In general, measures are also taken to reduce the common rail pressure Pc. Here, if the voltage of the piezo actuator 10 is suddenly released after the common rail pressure Pc is reduced, the following inconveniences can be considered.
 コモンレール圧Pcを低下させると、これに伴って燃料貯留室6 内の圧力も低下することになる。この状態でピエゾアクチュエータ10に印加される電圧を急激に解除し、ニードル上部室8の容積を拡大させ、ニードル上部室圧力Pupを低下させると、ニードル上部室8内の燃料に気泡が発生することが懸念される。ニードル上部室8内に気泡が存在していると、次回内燃機関始動時の燃料噴射が不安定となり、規定量の燃料噴射量の確保が困難になると考えられる。 When the common rail pressure Pc is lowered, the pressure in the fuel storage chamber 6 is also lowered accordingly. In this state, if the voltage applied to the piezo actuator 10 is suddenly released, the volume of the needle upper chamber 8 is expanded, and the needle upper chamber pressure Pup is reduced, bubbles are generated in the fuel in the needle upper chamber 8. Is concerned. If air bubbles are present in the needle upper chamber 8, it is considered that fuel injection at the next start of the internal combustion engine becomes unstable, and it becomes difficult to secure a predetermined amount of fuel injection.
 そこで、本実施形態の燃料噴射装置100では、以下のような制御が行われる。すなわち、ECU12は、内燃機関停止時に、ニードル7の閉弁状態が維持されるようにピエゾアクチュエータ10に印加した電圧を徐々に減少させる。 Therefore, in the fuel injection device 100 of the present embodiment, the following control is performed. That is, the ECU 12 gradually decreases the voltage applied to the piezo actuator 10 so that the closed state of the needle 7 is maintained when the internal combustion engine is stopped.
 図6は、内燃機関を停止させる際に、イグニションをオフにしたときの燃料噴射弁1の状態を示す説明図である。図7は、イグニションをオフにしたときのニードル7の支持部7aの周辺を拡大して示している。また、図8は、イグニションをオフにしたときにピエゾアクチュエータ10に印加される電圧、ニードル上部室圧力、静リーク量、ピエゾ変位によるニードル上部室の容積変化量の推移を示すグラフである。 FIG. 6 is an explanatory diagram showing the state of the fuel injection valve 1 when the ignition is turned off when the internal combustion engine is stopped. FIG. 7 shows an enlarged view of the periphery of the support portion 7a of the needle 7 when the ignition is turned off. FIG. 8 is a graph showing the transition of the voltage applied to the piezo actuator 10 when the ignition is turned off, the needle upper chamber pressure, the amount of static leak, and the volume change amount of the needle upper chamber due to piezo displacement.
 まず、ECU12がイグニションのオフ信号を検知すると、ECU12は、ピエゾ駆動回路11に対し、電圧を低下させる指令を発する。ここで、電圧の低下の速度は、図8に示すようにピエゾアクチュエータ10の収縮量が単位時間辺りΔLとなるように設定される。これにより、ニードル上部室8の容積の単位時間辺りの変化量は、ΔL×Apに到達した後、一定に推移する。 First, when the ECU 12 detects an ignition off signal, the ECU 12 issues a command to the piezo drive circuit 11 to reduce the voltage. Here, the rate of voltage decrease is set so that the amount of contraction of the piezoelectric actuator 10 becomes ΔL per unit time as shown in FIG. Thereby, the amount of change per unit time of the volume of the needle upper chamber 8 changes to a constant after reaching ΔL × Ap.
 このように、ピエゾアクチュエータ10の単位時間辺りの収縮量がΔLであると、ニードル上部室8の容積Vpは、単位時間辺りAp×ΔLだけ、変化する。そして、これに伴って、ニードル上部室圧力Pupの単位時間辺りの変化量ΔPupは、

 ΔPup=-K×Ap×ΔL/Vp
  K:燃料の体積弾性係数

となる。
Thus, when the contraction amount per unit time of the piezoelectric actuator 10 is ΔL, the volume Vp of the needle upper chamber 8 changes by Ap × ΔL per unit time. Along with this, the change amount ΔPup per unit time of the needle upper chamber pressure Pup is:

ΔPup = −K × Ap × ΔL / Vp
K: Fuel bulk modulus

It becomes.
 ニードル上部室圧力Pupのこのような低下により、燃料貯留室6内の燃料がニードル上部室8へ流入するようになる。この様子を、図7を参照しつつ説明する。ニードル7の支持部7aは、ノズルボディ9の内周壁2aに摺動自在に嵌め合わされており、両者の間にはクリアランスが存在する。燃料貯留室6内の圧力、すなわち、コモンレール圧Pcと、ニードル上部室圧力Pupとが所定の条件を満たすと、図7中、矢示20で示すように燃料貯留室6からニードル上部室8へ向かって燃料の静リークが生じる。すなわち、燃料貯留室6内の燃料がニードル上部室8内への流入され、ニードル上部室8内に充填される。 Due to such a decrease in the needle upper chamber pressure Pup, the fuel in the fuel storage chamber 6 flows into the needle upper chamber 8. This will be described with reference to FIG. The support portion 7a of the needle 7 is slidably fitted to the inner peripheral wall 2a of the nozzle body 9, and there is a clearance between them. When the pressure in the fuel storage chamber 6, that is, the common rail pressure Pc and the needle upper chamber pressure Pup satisfy predetermined conditions, the fuel storage chamber 6 moves to the needle upper chamber 8 as shown by an arrow 20 in FIG. A static fuel leak occurs. That is, the fuel in the fuel storage chamber 6 flows into the needle upper chamber 8 and is filled in the needle upper chamber 8.
 燃料貯留室6からニードル上部室8へ流入するクリアランスリーク量Qleakは、

 Qleak=(Pc-Pup)×C
   C:係数

と、定義される。
 このQleakは、図8に示すように、時間の経過により増加する。そして、このQleakとΔL×Apとが等しくなると、ニードル上部室圧力Pupは安定する。
 なお、係数Cは、圧力の変動による、クリアランスの変動等が加味された数値となる。
The clearance leak amount Qleak flowing from the fuel storage chamber 6 into the needle upper chamber 8 is

Qleak = (Pc−Pup) 3 × C
C: Coefficient

It is defined as
This Qleak increases as time passes, as shown in FIG. When this Qleak is equal to ΔL × Ap, the needle upper chamber pressure Pup is stabilized.
Note that the coefficient C is a numerical value in consideration of a clearance variation due to a pressure variation.
 以上説明したように、内燃機関停止時に、ピエゾアクチュエータ10に印加した電圧を徐々に低下させると、ニードル上部室8内に徐々に燃料が充填されるる。これにより、ニードル上部室圧力Pupが開弁圧Pup_opに到達するまで低減されることを抑制することができ、ニードル7の閉弁状態が維持される。このように、図6に示すニードル7がシート部5に着座した状態を維持しつつ、ピエゾアクチュエータ10への電圧の印加を解除することができる。
 また、ニードル上部室8内には燃料が充填されるので、ニードル上部室8内に気泡が発生することも抑制することができる。この結果、内燃機関再始動時の安定した燃料噴射を確保することができる。
As described above, when the voltage applied to the piezo actuator 10 is gradually reduced when the internal combustion engine is stopped, the needle upper chamber 8 is gradually filled with fuel. Thereby, it can suppress that needle upper chamber pressure Pup reduces until it reaches valve opening pressure Pup_op, and the valve 7 closed state of needle 7 is maintained. In this manner, the application of voltage to the piezo actuator 10 can be canceled while maintaining the state where the needle 7 shown in FIG. 6 is seated on the seat portion 5.
Further, since the needle upper chamber 8 is filled with fuel, it is possible to suppress the generation of bubbles in the needle upper chamber 8. As a result, stable fuel injection can be ensured when the internal combustion engine is restarted.
 ECU12は、ピエゾアクチュエータ10の電圧印加の解除が完了した後、燃料供給経路13内の圧力を減圧する減圧制御を行う。具体的には、コモンレール15に装着された減圧弁15aを開弁し、コモンレール15の圧力を低下させる。これにより、コモンレール15に接続された燃料供給経路13内の圧力が低下する。 The ECU 12 performs a pressure reduction control for reducing the pressure in the fuel supply path 13 after the release of the voltage application of the piezoelectric actuator 10 is completed. Specifically, the pressure reducing valve 15 a attached to the common rail 15 is opened to reduce the pressure of the common rail 15. As a result, the pressure in the fuel supply path 13 connected to the common rail 15 decreases.
 内燃機関の停止時に以上のような動作をする燃料噴射装置100は、内燃機関始動時に、以下のような動作をする。 The fuel injection device 100 that operates as described above when the internal combustion engine is stopped operates as follows when the internal combustion engine is started.
 内燃機関始動時、ECU12は、内燃機関始動前にピエゾアクチュエータ10への電圧の印加を行う。具体的には、ECU12が、イグニションのオン信号を検知すると、ECU12は、ピエゾ駆動回路11に対し、電圧を印加させる指令を発する。 When starting the internal combustion engine, the ECU 12 applies a voltage to the piezo actuator 10 before starting the internal combustion engine. Specifically, when the ECU 12 detects an ignition ON signal, the ECU 12 issues a command to apply a voltage to the piezo drive circuit 11.
 この指令により、電圧の印加がされたピエゾアクチュエータ10は、伸長し始める。これにより、ニードル上部室8内の燃料は圧縮され、ニードル上部室圧力Pupは上昇する。すると、図9に示すように、ニードル上部室8内の燃料は、チェック弁14aを開弁し、矢示21で示すように燃料排出経路14を通じて燃料供給経路13へ排出される。これにより、燃料噴射弁1は、ニードル7を閉弁状態としつつ、ピエゾアクチュエータ10に電圧が印加された状態に移行することができる。 In response to this command, the piezoelectric actuator 10 to which voltage is applied starts to expand. Thereby, the fuel in the needle upper chamber 8 is compressed, and the needle upper chamber pressure Pup increases. Then, as shown in FIG. 9, the fuel in the needle upper chamber 8 opens the check valve 14 a and is discharged to the fuel supply path 13 through the fuel discharge path 14 as indicated by an arrow 21. Thereby, the fuel injection valve 1 can shift to a state in which a voltage is applied to the piezo actuator 10 while the needle 7 is closed.
 ここで、ニードル上部室8内の燃料が燃料排出経路14へ排出されることにより、ニードル上部室圧力Pupの過上昇を抑制することができる。 Here, when the fuel in the needle upper chamber 8 is discharged to the fuel discharge path 14, an excessive increase in the needle upper chamber pressure Pup can be suppressed.
 以上説明したように、本実施形態の燃料噴射装置100によれば、ピエゾアクチュエータ10に印加された電圧を解除することによってニードル7を開弁方向へ移動させる燃料噴射弁1において、内燃機関を停止した状態における燃料の噴射を回避することができる。また、内燃機関停止時にニードル上部室8内における気泡の発生を抑制することができる。 As described above, according to the fuel injection device 100 of the present embodiment, the internal combustion engine is stopped in the fuel injection valve 1 that moves the needle 7 in the valve opening direction by releasing the voltage applied to the piezoelectric actuator 10. It is possible to avoid the fuel injection in the state of being performed. Further, it is possible to suppress the generation of bubbles in the needle upper chamber 8 when the internal combustion engine is stopped.
 上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施形態を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施形態とするが可能であることは上記記載から自明である。 The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these embodiments. Various modifications of these embodiments are within the scope of the present invention, and further, It is apparent from the above description that various other embodiments are possible within the scope.
 例えば、図10に示すように支持部7aに溝30を設け、燃料貯留室6からニードル上部室8への燃料の静リーク量を調整するようにすることもできる。 For example, as shown in FIG. 10, a groove 30 may be provided in the support portion 7 a to adjust the amount of static fuel leak from the fuel storage chamber 6 to the needle upper chamber 8.

Claims (6)

  1.  先端部に噴孔及びシート部が設けられたノズルボディと、
     当該ノズルボディの内周壁に摺動自在に支持される支持部を備え、前記ノズルボディ内において、前記支持部よりも先端側に燃料貯留室を形成するように前記ノズルボディ内に配置され、前記シート部に接離して前記噴孔を開閉するニードルと、
     前記支持部との間にニードル上部室が形成されるように、前記ニードルよりも基端側に配置され、電圧の印加によって前記ニードルを閉弁方向に移動させる圧電素子と、
     前記燃料貯留室に高圧燃料を供給する燃料供給経路と、
    を備えた燃料噴射弁と、
     前記圧電素子への電圧の印加を制御する制御手段と、
    を備え、
     当該制御手段は、内燃機関停止時に、前記ニードルの閉弁状態が維持されるように前記圧電素子に印加した電圧を徐々に低下させることを特徴とした燃料噴射装置。
    A nozzle body provided with a nozzle hole and a seat at the tip,
    A support portion that is slidably supported on the inner peripheral wall of the nozzle body, and is arranged in the nozzle body so as to form a fuel storage chamber on the tip side of the support portion in the nozzle body; A needle that opens and closes the nozzle hole in contact with and away from the seat portion;
    A piezoelectric element that is disposed on the proximal side of the needle so as to form a needle upper chamber between the support portion and moves the needle in a valve closing direction by application of a voltage;
    A fuel supply path for supplying high-pressure fuel to the fuel storage chamber;
    A fuel injection valve comprising:
    Control means for controlling the application of voltage to the piezoelectric element;
    With
    The control means gradually lowers the voltage applied to the piezoelectric element so that the closed state of the needle is maintained when the internal combustion engine is stopped.
  2.  前記制御手段は、前記圧電素子に印加した電圧を低下させた後に、前記燃料供給経路内の圧力を減圧する減圧制御を行うことを特徴とした請求項1記載の燃料噴射装置。 2. The fuel injection device according to claim 1, wherein the control means performs pressure reduction control for reducing the pressure in the fuel supply path after reducing the voltage applied to the piezoelectric element.
  3.  前記燃料噴射弁は、前記ニードルを閉弁方向に付勢する付勢手段をさらに備えたことを特徴とした請求項1又は2記載の燃料噴射装置。 3. The fuel injection device according to claim 1 or 2, wherein the fuel injection valve further includes an urging means for urging the needle in a valve closing direction.
  4.  内燃機関始動時において、前記制御手段は、内燃機関始動前に前記圧電素子への電圧の印加を行うことを特徴とした請求項1乃至3のいずれか一項記載の燃料噴射装置。 The fuel injection device according to any one of claims 1 to 3, wherein when the internal combustion engine is started, the control means applies a voltage to the piezoelectric element before the internal combustion engine is started.
  5.  先端部に噴孔及びシート部が設けられたノズルボディと、
     当該ノズルボディの内周壁に摺動自在に支持される支持部を備え、前記ノズルボディ内において、前記支持部よりも先端側に燃料貯留室を形成するように前記ノズルボディ内に配置され、前記シート部に接離して前記噴孔を開閉するニードルと、
     前記支持部との間にニードル上部室が形成されるように、前記ニードルよりも基端側に配置され、電圧の印加によって前記ニードルを閉弁方向に移動させる圧電素子と、
     前記燃料貯留室に高圧燃料を供給する燃料供給経路と、
    を備えた燃料噴射弁と、
     前記圧電素子への電圧の印加を制御する制御手段と、
    を備え、
     内燃機関始動時において、前記制御手段は、内燃機関始動前に前記圧電素子への電圧の印加を行うことを特徴とした燃料噴射装置。
    A nozzle body provided with a nozzle hole and a seat at the tip,
    A support portion that is slidably supported on the inner peripheral wall of the nozzle body, and is arranged in the nozzle body so as to form a fuel storage chamber on the tip side of the support portion in the nozzle body; A needle that opens and closes the nozzle hole in contact with and away from the seat portion;
    A piezoelectric element that is disposed on the proximal side of the needle so as to form a needle upper chamber between the support portion and moves the needle in a valve closing direction by application of a voltage;
    A fuel supply path for supplying high-pressure fuel to the fuel storage chamber;
    A fuel injection valve comprising:
    Control means for controlling the application of voltage to the piezoelectric element;
    With
    The fuel injection device according to claim 1, wherein when the internal combustion engine is started, the control means applies a voltage to the piezoelectric element before the internal combustion engine is started.
  6.  前記燃料噴射弁は、前記ニードル上部室から燃料を排出する燃料排出経路と、当該燃料排出経路に配置され、前記ニードル上部室内の燃料を排出するチェック弁と、
    を備えたことを特徴とした請求項4又は5記載の燃料噴射装置。
    The fuel injection valve includes a fuel discharge path for discharging fuel from the needle upper chamber, a check valve disposed in the fuel discharge path and discharging fuel in the needle upper chamber,
    The fuel injection device according to claim 4 or 5, further comprising:
PCT/JP2009/053134 2009-02-23 2009-02-23 Fuel injection device WO2010095252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/053134 WO2010095252A1 (en) 2009-02-23 2009-02-23 Fuel injection device
JP2011500421A JP5071582B2 (en) 2009-02-23 2009-02-23 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053134 WO2010095252A1 (en) 2009-02-23 2009-02-23 Fuel injection device

Publications (1)

Publication Number Publication Date
WO2010095252A1 true WO2010095252A1 (en) 2010-08-26

Family

ID=42633552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053134 WO2010095252A1 (en) 2009-02-23 2009-02-23 Fuel injection device

Country Status (2)

Country Link
JP (1) JP5071582B2 (en)
WO (1) WO2010095252A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219650A (en) * 1988-07-07 1990-01-23 Toyota Motor Corp Fuel injection device for internal combustion engine
JPH11153068A (en) * 1997-11-20 1999-06-08 Nippon Soken Inc Pressure accumulation type fuel injection valve
JPH11257185A (en) * 1998-03-12 1999-09-21 Nissan Motor Co Ltd Differential pressure-type fuel injection system
JP2000097123A (en) * 1998-09-24 2000-04-04 Nissan Motor Co Ltd Piezoelectric fuel injection valve and fuel injection device
JP2005500470A (en) * 2001-08-20 2005-01-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219650A (en) * 1988-07-07 1990-01-23 Toyota Motor Corp Fuel injection device for internal combustion engine
JPH11153068A (en) * 1997-11-20 1999-06-08 Nippon Soken Inc Pressure accumulation type fuel injection valve
JPH11257185A (en) * 1998-03-12 1999-09-21 Nissan Motor Co Ltd Differential pressure-type fuel injection system
JP2000097123A (en) * 1998-09-24 2000-04-04 Nissan Motor Co Ltd Piezoelectric fuel injection valve and fuel injection device
JP2005500470A (en) * 2001-08-20 2005-01-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve

Also Published As

Publication number Publication date
JPWO2010095252A1 (en) 2012-08-16
JP5071582B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4167230B2 (en) Fuel injection device
JP4433598B2 (en) Common rail fuel injection system
JP4556881B2 (en) Common rail fuel injection system
JP2009167801A (en) Fuel injection device
JP4871364B2 (en) Fuel injector and operation method thereof
JP4662292B2 (en) Fuel injection device
JP5257216B2 (en) Fuel injection valve
JP2017002891A (en) Fuel injection valve and fuel injection valve control device
JP4609271B2 (en) Fuel injection valve
JP5071582B2 (en) Fuel injection device
JP4168564B2 (en) Fuel injection device
JP4023804B2 (en) Injector for internal combustion engine
JP4635980B2 (en) Fuel supply system
JP6209764B2 (en) Fuel injection nozzle for common rail
JP2004176656A (en) Fuel injection valve
JP2008151077A (en) Fuel injection device
JP2002221117A (en) Fuel injection valve
JP2010242517A (en) Fuel injection valve
JP2010236494A (en) Fuel injection valve and fuel injection device
JP2006242139A (en) Fuel supply system
JP2008196391A (en) Fuel injection device
JP5257212B2 (en) Fuel injection valve
JP2011122467A (en) Injector
JP4026448B2 (en) Injector
JP2009216022A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500421

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840358

Country of ref document: EP

Kind code of ref document: A1