WO2010093126A2 - Fuel cell system with charger - Google Patents

Fuel cell system with charger Download PDF

Info

Publication number
WO2010093126A2
WO2010093126A2 PCT/KR2010/000321 KR2010000321W WO2010093126A2 WO 2010093126 A2 WO2010093126 A2 WO 2010093126A2 KR 2010000321 W KR2010000321 W KR 2010000321W WO 2010093126 A2 WO2010093126 A2 WO 2010093126A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
charger
individual
power meter
Prior art date
Application number
PCT/KR2010/000321
Other languages
French (fr)
Korean (ko)
Other versions
WO2010093126A3 (en
Inventor
김호석
홍병선
신미남
박재현
이정기
최윤신
Original Assignee
(주)퓨얼셀 파워
주식회사 동양건설산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)퓨얼셀 파워, 주식회사 동양건설산업 filed Critical (주)퓨얼셀 파워
Priority to CN201080007605.3A priority Critical patent/CN102356495B/en
Publication of WO2010093126A2 publication Critical patent/WO2010093126A2/en
Publication of WO2010093126A3 publication Critical patent/WO2010093126A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/54Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a fuel cell system having a charger, and more particularly, to a fuel cell system having a charger capable of charging a peripheral device.
  • a fuel cell is a device that produces electricity electrochemically by using fuel (hydrogen or reformed gas) and oxidant (oxygen or air), and converts fuel and oxidant continuously supplied from outside into electric energy directly by electrochemical reaction.
  • fuel hydrogen or reformed gas
  • oxidant oxygen or air
  • pure oxygen or air containing a large amount of oxygen is used, and as the fuel, pure hydrogen or hydrocarbon-based fuel (LNG, LPG, CH 3 OH) or hydrogen produced by reforming hydrocarbon-based fuel Use reformed gas containing a large amount.
  • pure hydrogen or hydrocarbon-based fuel LNG, LPG, CH 3 OH
  • hydrogen produced by reforming hydrocarbon-based fuel Use reformed gas containing a large amount.
  • Such fuel cells can be broadly classified into polymer electrolyte fuel cells (PEMFC), direct oxide fuel cells (DMFC), and direct methanol fuel cells (DMFC). Can be.
  • PEMFC polymer electrolyte fuel cells
  • DMFC direct oxide fuel cells
  • DMFC direct methanol fuel cells
  • the polymer electrolyte fuel cell includes a fuel cell body called a stack, which generates electrical energy through an electrochemical reaction of hydrogen gas supplied from the reformer and air supplied by the operation of an air pump or fan. It is made as a structure.
  • the reformer functions as a fuel treatment apparatus for reforming fuel to generate hydrogen gas from the fuel, and supplying the hydrogen gas to the stack.
  • the direct oxidation type fuel cell is directly supplied with alcohol, which is a fuel, without using hydrogen gas.
  • the direct energy fuel cell is supplied by the electrochemical reaction of hydrogen contained in the fuel and separately supplied air. It is made as a structure for generating a.
  • the direct methanol fuel cell refers to a cell using methanol as a fuel in a direct oxidation fuel cell.
  • Such a fuel cell generates power and heat simultaneously, and has been in the spotlight as a high efficiency energy production device with a total efficiency of more than 80%, which is a sum of power generation efficiency and thermal efficiency.
  • the user can directly produce and use the power and heat required by the user, thereby improving convenience of the user and significantly reducing energy use costs.
  • the system is powered by a high-voltage battery installed inside the vehicle and is charged with a gasoline or diesel engine to increase the fuel efficiency of the vehicle. have.
  • the present invention has been made to solve the above problems, and an aspect of the present invention is to provide a fuel cell system that can easily charge a peripheral device such as an electric vehicle.
  • a fuel cell system is a fuel cell device that generates electricity by a reaction of a fuel and an oxidant, and supplies power to a demand source, spaced apart from the demand source, and receiving power from the fuel cell device.
  • a charger capable of charging a peripheral device, a demand source recognizer installed adjacent to the charger to unlock the charger, and a power meter connected to the fuel cell device and the charger.
  • the fuel cell device may include individual fuel cell devices each connected to a plurality of demand sources, and the power meter may include individual power meters connected to individual fuel cell devices.
  • the individual power meters may be connected to a grid power source, and the demand sources may be each household located in a multi-family house.
  • the charger may be installed in the parking lot of the apartment house in response to a plurality of demand sources.
  • the fuel cell apparatus may further include a control unit connected to the power meter and controlling a power generation amount of the fuel cell apparatus according to the demand source and the power consumed by the charger, and further comprising a power storage unit connected to the fuel cell apparatus. It may include.
  • the power storage unit may be connected to a charge switch that is turned on in a charging operation and a discharge switch that is turned on in a discharge operation.
  • the fuel cell system may further include an auxiliary power meter installed adjacent to the charger and displaying an amount of power used by the charger.
  • the fuel cell apparatus includes individual fuel cell apparatuses connected to a plurality of demand sources, respectively, and the individual fuel cell apparatuses are provided with individual power meters for measuring power used at the demand sources.
  • the individual fuel cell device Connected to each other via a network line, the individual fuel cell device includes a control unit for controlling the operation of the fuel cell device, the auxiliary power meter and the individual power meter may be connected to the control unit via a network line.
  • the fuel cell device includes a control unit for controlling the operation of the fuel cell device, the auxiliary power meter may be connected to the control unit via a wireless network, the wireless network is RF (RF) transceiver network, wireless LAN network, Bluetooth transmission and reception It may include any one selected from the network.
  • RF RF
  • the fuel cell apparatus may include individual fuel cell apparatuses connected to a plurality of demand sources, respectively, and a common fuel cell apparatus connected to the chargers to supply power to the chargers.
  • a common power meter may be installed that measures the amount of power consumed through the chargers.
  • the individual fuel cell devices and the common fuel cell device may be connected through a network line, and the charger may be for charging a battery installed in an electric vehicle.
  • the member or the owner of the demand source can easily charge the electric vehicle by using a charger installed spaced apart from the demand source.
  • FIG. 1 is a configuration diagram schematically showing a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram schematically showing a fuel cell system according to a modification of the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
  • FIG. 4 is a configuration diagram schematically illustrating a fuel cell system according to a third embodiment of the present invention.
  • FIG. 5 is a configuration diagram schematically illustrating a fuel cell system according to a fourth embodiment of the present invention.
  • FIG. 1 is a configuration diagram schematically showing a fuel cell system according to a first embodiment of the present invention.
  • the fuel cell system is connected to an individual fuel cell device 100 and an individual fuel cell device 100 for supplying power to a demand user 106.
  • a charger 104 capable of charging a peripheral device spaced apart from the demand source 106, a demand source identifier 103 for unlocking the charger 104, and an individual power meter installed in connection with the charger 104. 102.
  • the demand source 106 is each household present in the apartment house.
  • the present invention is not limited thereto, and the demand source 106 may be various units that consume power.
  • the demand source 106 is composed of a plurality, each demand source 106 is connected to the individual fuel cell device 100 and the individual power meter 102, each individual fuel cell device 100, the charger 104 And the demand source identifier 103 is provided.
  • the individual fuel cell apparatus 100 generates electricity by reacting the fuel with the oxidant and supplies it to the demand source 106.
  • the individual fuel cell apparatus 100 may be formed of a polymer electrolyte fuel cell (PEMFC) that uses a fuel to be reformed into hydrogen-rich reformed gas.
  • PEMFC polymer electrolyte fuel cell
  • the present invention is not limited thereto, and the individual fuel cell apparatus 100 may be configured as a direct methanol fuel cell that generates electrical energy by a direct reaction of methanol and oxygen.
  • the individual fuel cell apparatus 100 may be molten carbonate fuel cells (MCFCs), or solid oxide fuel cells (SOFCs) operating at a high temperature of 600 ° C. or higher, or 200 ° C. or lower.
  • MCFCs molten carbonate fuel cells
  • SOFCs solid oxide fuel cells
  • PAFCs Phosphoric Acid Fuel Cells
  • the individual fuel cell apparatus 100 includes a fuel cell stack for generating electricity by reaction of fuel and oxidant and a controller 101 for controlling the operation of the individual fuel cell apparatus 100.
  • the controller 101 is connected to the demand source 106 and the charger 104 to control the operation of the individual fuel cell apparatus 100 according to the amount of power consumed by the demand source 106 and the charger 104.
  • the individual fuel cell apparatus 100 may further include a power converter for converting the generated DC power into AC power and various peripheral devices (BOPs) for this purpose.
  • the individual fuel cell apparatus 100 may further include a heat recovery unit including a heat storage tank for recovering generated heat and an auxiliary heat source.
  • Each individual fuel cell device 100 is provided with a separate power meter 102 is connected, the individual power meter 102 is connected to the system power source 110 is installed.
  • System power source 110 is a conventional power source for supplying power to the apartment.
  • the individual power meter 102 consists of a bidirectional power meter, and measures the amount of power used by each demand source 106 and the charger 104.
  • the controller 101 controls the operation of the individual fuel cell apparatus 100 based on the information transmitted from the individual power meter 102 to track the amount of power consumed by the amount of power produced.
  • the charger 104 and the demand source recognizer 103 are spaced apart from the demand source 106.
  • the charger 104 and the demand source identifier 103 may be installed in the parking lot.
  • the peripheral device may be an electric vehicle or the like, and the charger 104 may be formed of a battery charger charger installed in the electric vehicle.
  • the charger 104 has a terminal connected with the individual fuel cell device 100 to draw power and charges an electric vehicle or the like through the terminal.
  • the demand source recognizer 103 confirms whether it is a demand source of the charger 104, and may include an RF card reader or an IR card reader.
  • the demand source 106 is a broad concept including the owner and members of the demand source 106 and may include a subject who has a right to use the charger.
  • the demand source recognizer 103 unlocks the charger 104 only when it is confirmed that the user is the demand source 106. Unlocking here means keeping the charger 104 in a usable state, activating the charger 104, unlocking the charger 104 in the locked state, and charger 104. Operation).
  • the electric vehicle which is located outdoors, may be charged using electric power generated by the individual fuel cell apparatus 100 to charge the electric vehicle at low cost without being subject to the progressive tax.
  • the user can easily recognize whether the user is a demand source through the demand source identifier 103 to charge the electric vehicle.
  • the controller 101 can easily supply power consumed by generating power in response to power consumption of the charger 104 and the demand source 106.
  • FIG. 2 is a configuration diagram schematically showing a fuel cell system according to a modification of the first embodiment of the present invention.
  • the fuel cell system further includes a power storage unit 121 connected to the individual fuel cell device 100.
  • the power storage unit 121 is a device that temporarily stores surplus power among the power generated by the individual fuel cell apparatus 100 and is connected to the individual fuel cell apparatus 100 through the charge switch 122 and the discharge switch 123. Is installed.
  • the charging switch 122 is turned on in the charging operation of the power storage unit 121, and the discharge switch 123 is turned on in the discharge operation of the power storage unit 121.
  • the operation of the charge switch 122 and the discharge switch 123 is controlled by the controller 101.
  • the controller 101 turns off the charge switch 122 when the power consumption of the load connected to the individual fuel cell apparatus 100 exceeds the maximum power generation amount of the individual fuel cell apparatus 100, and discharge switch 123. To ON).
  • the controller 101 turns on the charge switch 122 when the power consumption of the load connected to the individual fuel cell apparatus 100 is smaller than the maximum power generation amount of the individual fuel cell apparatus 100, and discharge switch. Turn 123 off.
  • power when surplus power is generated, power may be stored in the power storage unit 121, and when power is consumed, power may be released to supply power to the demand source 106 and the peripheral device.
  • power storage unit 121 since a large power demand occurs while charging the peripheral device, supplying power stored through the power storage unit 121 may stably supply power to the demand source 106 even while charging the peripheral device.
  • FIG. 3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
  • the fuel cell system includes an individual fuel cell device 300 for supplying power to the demand source 306, an individual power meter 302 connected to the individual fuel cell device 300, And a demand source recognizer 304 installed to be spaced apart from the demand source 306 and unlocking the charger 305 and the charger 305 capable of charging the peripheral device by receiving power from the individual fuel cell device 300. And an auxiliary power meter 303 installed and connected to the charger 305.
  • the individual fuel cell device 300 includes a controller 301 for controlling the operation of the individual fuel cell device 300.
  • the auxiliary power meter 303 measures and displays the power consumed by the charger 305, and transmits the measured power information to the controller 301.
  • the individual fuel cell devices 300 installed in each demand source 306 are not only interconnected through the network line 315, but also connected to the system power supply 310.
  • the auxiliary power meter 303 and the individual power meter 302 are connected to the respective control unit 301 through the network line 315. Accordingly, the controller 301 receives power consumption information of the individual power meter 302 and the auxiliary power meter 303 through the network line 315, and controls the individual fuel cell device 300 to generate power as much as the amount of power consumed.
  • the charger 305 and the demand source recognizer 304 are also connected to the network line 315 without being directly connected to each individual fuel cell device 300.
  • the charger 305 and the demand source 306 are Power is supplied through network line 315.
  • the power used by the charger 305 and the demand source 306 may be checked through the individual power meter 302 and the auxiliary power meter 303, and may be charged by summing the amounts of power displayed on the power meters 302 and 303.
  • FIG. 4 is a configuration diagram schematically illustrating a fuel cell system according to a third embodiment of the present invention.
  • the fuel cell system includes an individual fuel cell device 400 for supplying power to a demand source 406, an individual power meter 402 connected to the individual fuel cell device 400, And a demand source recognizer 404 installed to be spaced apart from the demand source 406 and unlocking the charger 405 and the charger 405 capable of receiving power from the individual fuel cell apparatus 400 to charge the peripheral device.
  • An auxiliary power meter 403 coupled with the charger 405.
  • the individual fuel cell device 400 includes a control unit 401 for controlling the operation of the individual fuel cell device 400.
  • the individual fuel cell devices 400 installed in each demand source 406 are not only interconnected via network lines, but also connected to the system power source 410.
  • the auxiliary power meter 403 measures and displays the power consumed by the charger 405, and transmits the measured power information to the controller 401.
  • the auxiliary power meter 403 and the individual power meter 402 are connected to the control unit 401 through a wireless network and transmit the measured amount of power information to the control unit 401.
  • the wireless network 415 may be formed of an RF (RF) transceiver network, a wireless LAN network, a Bluetooth transceiver network, and the like.
  • RF RF
  • auxiliary power meter 403 and the individual power meter 402 are connected to the control unit 401 through the wireless network 415, it is not necessary to install a separate information transmission line, thereby facilitating the construction of the system.
  • FIG. 5 is a configuration diagram schematically illustrating a fuel cell system according to a fourth embodiment of the present invention.
  • the fuel cell system includes a plurality of individual fuel cell apparatuses 500 for supplying power to the demand source 506 and individual power meters connected to the individual fuel cell apparatuses 500. 502, and the chargers 505 and the chargers 505 that are spaced apart from the demand sources 506 and are powered by the individual fuel cell apparatus 500 to charge the peripheral devices.
  • the individual fuel cell devices 500 include a controller 501 for controlling the operation of the individual fuel cell device 500.
  • the individual fuel cell devices 500 installed at each demand source 506 are not only interconnected through the network line 515, but are also connected to the grid power source 510.
  • a common fuel cell device 508 is connected to the network line 515, and a common power meter 509 is connected to the common fuel cell device 508.
  • the common fuel cell device 508 includes a control unit 507 for controlling the operation of the common fuel cell device 508.
  • the common fuel cell device 508 is connected to the chargers 505 and supplies power to the chargers 505.
  • the line connected to the chargers 505 is connected between the common fuel cell device 508 and the common power meter 509 to measure the power consumption through the entire charger 505 through the common power meter 509.
  • the control unit 507 of the common fuel cell device 508 controls the operation so that the common fuel cell device 508 produces corresponding power based on the power amount information transmitted from the common power meter 509.
  • the control unit 501 of the individual fuel cell device 500 controls the individual fuel cell device 500 to produce the corresponding power based on the power amount information transmitted from each individual power meter 502.
  • each charger 505 may be checked through the auxiliary power meter 503, and then charged to each demand source 506.
  • the power can be stably supplied to each charger 505, and each demand source 506 is individually provided. It is possible to stably supply power through the fuel cell devices 500.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention relates to a fuel cell system for easily supplying electricity to an electric vehicle or the like, comprising: a fuel cell device which produces electricity by the reaction between fuel and an oxidant and which supplies the produced electricity to a consumer; a charger which is spaced apart from the consumer and which receives electricity from the fuel cell device to charge peripheral devices with the received electricity; a consumer recognition unit arranged in the vicinity of the charger to unlock the charger; and a wattmeter connected to the fuel cell device and to the charger.

Description

충전기를 갖는 연료 전지 시스템Fuel cell system with charger
본 발명은 충전기를 갖는 연료 전지 시스템에 관한 것으로서, 보다 상세하게는 주변 장치를 충전할 수 있는 충전기를 구비한 연료 전지 시스템에 관한 것이다.The present invention relates to a fuel cell system having a charger, and more particularly, to a fuel cell system having a charger capable of charging a peripheral device.
연료 전지는 연료(수소 또는 개질 가스)와 산화제(산소 또는 공기)를 이용하여 전기 화학적으로 전력을 생산하는 장치로서, 외부에서 지속적으로 공급되는 연료와 산화제를 전기 화학 반응에 의하여 직접 전기에너지로 변환시키는 장치이다. A fuel cell is a device that produces electricity electrochemically by using fuel (hydrogen or reformed gas) and oxidant (oxygen or air), and converts fuel and oxidant continuously supplied from outside into electric energy directly by electrochemical reaction. Device.
연료 전지의 산화제로는 순수 산소를 이용하거나 산소가 다량 함유되어 있는 공기를 이용하며, 연료로는 순수 수소 또는 탄화수소계 연료(LNG, LPG, CH3OH)또는 탄화수소계 연료를 개질하여 생성된 수소가 다량 함유된 개질 가스를 사용한다.As the oxidant of the fuel cell, pure oxygen or air containing a large amount of oxygen is used, and as the fuel, pure hydrogen or hydrocarbon-based fuel (LNG, LPG, CH 3 OH) or hydrogen produced by reforming hydrocarbon-based fuel Use reformed gas containing a large amount.
이러한 연료 전지는 크게, 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)와, 직접 산화형 연료 전지(Direct Oxydation Fuel Cell)와 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell: DMFC)로 구분될 수 있다.Such fuel cells can be broadly classified into polymer electrolyte fuel cells (PEMFC), direct oxide fuel cells (DMFC), and direct methanol fuel cells (DMFC). Can be.
고분자 전해질형 연료 전지는 스택(stack)이라 불리는 연료 전지 본체를 포함하며, 개질기로부터 공급되는 수소 가스와, 공기펌프 또는 팬의 가동에 의해 공급되는 공기의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 구조로서 이루어진다. 여기서 개질기는 연료를 개질하여 이 연료로부터 수소 가스를 발생시키고, 이 수소 가스를 스택으로 공급하는 연료처리장치로서의 기능을 한다.The polymer electrolyte fuel cell includes a fuel cell body called a stack, which generates electrical energy through an electrochemical reaction of hydrogen gas supplied from the reformer and air supplied by the operation of an air pump or fan. It is made as a structure. Here, the reformer functions as a fuel treatment apparatus for reforming fuel to generate hydrogen gas from the fuel, and supplying the hydrogen gas to the stack.
직접 산화형 연료 전지는 고분자 전해질형 연료 전지와 달리, 수소 가스를 사용하지 않고 연료인 알코올류를 직접적으로 공급받아 이 연료 중에 함유된 수소와, 별도로 공급되는 공기의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 구조로서 이루어진다. 직접 메탄올형 연료 전지는 직접 산화형 연료 전지 중에서 메탄올을 연료로 사용하는 전지를 말한다.Unlike the polymer electrolyte type fuel cell, the direct oxidation type fuel cell is directly supplied with alcohol, which is a fuel, without using hydrogen gas. The direct energy fuel cell is supplied by the electrochemical reaction of hydrogen contained in the fuel and separately supplied air. It is made as a structure for generating a. The direct methanol fuel cell refers to a cell using methanol as a fuel in a direct oxidation fuel cell.
이러한 연료 전지는 전력과 열을 동시에 발생시키는 바, 발전효율과 열효율의 합인 총효율이 80%가 넘는 고효율 에너지 생산기기로 각광받고 있다. 또한, 실제 건물용이나 주거용 주택에 연료 전지를 설치하여 사용자가 필요로 하는 전력과 열을 직접 생산하여 사용할 수 있는 장점이 있어서 사용자의 편의성이 향상될 뿐만 아니라 에너지 사용 비용을 대폭 감소시킬 수 있다.Such a fuel cell generates power and heat simultaneously, and has been in the spotlight as a high efficiency energy production device with a total efficiency of more than 80%, which is a sum of power generation efficiency and thermal efficiency. In addition, by installing a fuel cell in an actual building or a residential house, the user can directly produce and use the power and heat required by the user, thereby improving convenience of the user and significantly reducing energy use costs.
화석 연료를 이용한 자동차 운행에 따른 공해물질 배출과 화석 연료의 고갈의 문제로 인하여 전기를 동력원으로 하는 전기 자동차 및 하이브리드 전기 자동차에 대한 연구가 활발하게 진행되고 있다.Due to the problem of emission of pollutants and depletion of fossil fuels caused by the operation of automobiles using fossil fuels, research on electric vehicles and hybrid electric vehicles powered by electricity is being actively conducted.
하이브리드 전기 자동차의 경우, 내부에 장착된 고전압 배터리로부터 전원을 공급받고, 가솔린 또는 디젤 엔진의 구동으로 충전하는 시스템으로 자동차 연비의 효율성은 증가하지만, 내연기관을 사용하기 때문에 공해물질을 배출하는 문제가 있다.In the case of hybrid electric vehicles, the system is powered by a high-voltage battery installed inside the vehicle and is charged with a gasoline or diesel engine to increase the fuel efficiency of the vehicle. have.
또한, 전기 자동차의 경우에는 전기를 충전하는 충전소와 같은 인프라를 확보하여야 하는 문제가 있으며, 주거지에서 충전할 경우에는 전기세를 누진으로 적용하는 세제 시스템으로 인하여 에너지 비용이 큰 폭으로 증가하는 문제가 있다.In addition, in the case of electric vehicles, there is a problem of securing an infrastructure such as a charging station for charging electricity, and in the case of charging in a residential area, there is a problem in that energy costs are greatly increased due to a tax system that applies electricity tax progressively. .
본 발명은 상기한 바와 같은 문제를 해결하기 위해 안출된 것으로서, 본 발명의 일 측면은 전기 자동차와 같은 주변 장치를 용이하게 충전할 수 있는 연료 전지 시스템을 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an aspect of the present invention is to provide a fuel cell system that can easily charge a peripheral device such as an electric vehicle.
본 발명의 일 실시예에 따른 연료 전지 시스템은 연료와 산화제의 반응으로 전기를 생산하며 수요원에 전력을 공급하는 연료전지장치와, 상기 수요원에서 이격 설치되며 상기 연료전지장치로부터 전력을 공급받아 주변 장치를 충전시킬 수 있는 충전기와, 상기 충전기와 인접하게 설치되어 상기 충전기의 잠금을 해제하는 수요원 인식기, 및 상기 연료전지장치 및 상기 충전기와 연결 설치된 전력계를 포함한다.A fuel cell system according to an embodiment of the present invention is a fuel cell device that generates electricity by a reaction of a fuel and an oxidant, and supplies power to a demand source, spaced apart from the demand source, and receiving power from the fuel cell device. A charger capable of charging a peripheral device, a demand source recognizer installed adjacent to the charger to unlock the charger, and a power meter connected to the fuel cell device and the charger.
상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들을 포함하고, 상기 전력계는 개별 연료전지장치에 연결 설치된 개별 전력계를 포함할 수 있다.The fuel cell device may include individual fuel cell devices each connected to a plurality of demand sources, and the power meter may include individual power meters connected to individual fuel cell devices.
상기 개별 전력계들은 계통전원에 연결될 수 있으며, 상기 수요원들은 공동주택에 위치하는 각 세대일 수 있다. 또한, 상기 충전기는 복수개의 수요원에 대응하여 공동주택의 주차장에 설치될 수 있다.The individual power meters may be connected to a grid power source, and the demand sources may be each household located in a multi-family house. In addition, the charger may be installed in the parking lot of the apartment house in response to a plurality of demand sources.
또한, 상기 연료전지장치는 상기 전력계와 연결되어 상기 수요원 및 상기 충전기에서 소모하는 전력에 따라 연료전지장치의 발전량을 제어하는 제어부를 더 포함할 수 있으며, 상기 연료전지장치에 연결 설치된 축전부를 더 포함할 수 있다. 또한, 상기 축전부는 충전 동작 시에 온(ON) 되는 충전 스위치와 방전 동작 시에 온(ON) 되는 방전 스위치에 연결될 수 있다.The fuel cell apparatus may further include a control unit connected to the power meter and controlling a power generation amount of the fuel cell apparatus according to the demand source and the power consumed by the charger, and further comprising a power storage unit connected to the fuel cell apparatus. It may include. In addition, the power storage unit may be connected to a charge switch that is turned on in a charging operation and a discharge switch that is turned on in a discharge operation.
연료 전지 시스템은 상기 충전기와 인접하게 설치되며 상기 충전기에서 사용된 전력량을 표시하는 보조 전력계를 더 포함할 수 있다. The fuel cell system may further include an auxiliary power meter installed adjacent to the charger and displaying an amount of power used by the charger.
상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들을 포함하고, 상기 개별 연료전지장치들에는 상기 수요원에서 사용되는 전력을 측정하는 개별 전력계가 설치되고, 상기 개별 연료전지장치들은 네트워크 라인을 통해서 서로 연결되고, 상기 개별 연료전지장치는 상기 연료전지장치의 작동을 제어하는 제어부를 포함하며, 상기 보조 전력계 및 상기 개별 전력계는 네트워크 라인을 통해서 상기 제어부에 연결될 수 있다.The fuel cell apparatus includes individual fuel cell apparatuses connected to a plurality of demand sources, respectively, and the individual fuel cell apparatuses are provided with individual power meters for measuring power used at the demand sources. Connected to each other via a network line, the individual fuel cell device includes a control unit for controlling the operation of the fuel cell device, the auxiliary power meter and the individual power meter may be connected to the control unit via a network line.
상기 연료전지장치는 상기 연료전지장치의 작동을 제어하는 제어부를 포함하고, 상기 보조 전력계는 무선망을 통해서 상기 제어부에 연결될 수 있으며, 상기 무선망은 알에프(RF) 송수신망, 무선랜망, 블루투스 송수신망 중에서 선택되는 어느 하나를 포함할 수 있다.The fuel cell device includes a control unit for controlling the operation of the fuel cell device, the auxiliary power meter may be connected to the control unit via a wireless network, the wireless network is RF (RF) transceiver network, wireless LAN network, Bluetooth transmission and reception It may include any one selected from the network.
상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들과 상기 충전기들과 연결되어 상기 충전기들에 전력을 공급하는 공동 연료전지장치를 포함할 수 있으며, 상기 공동 연료전지장치에는 상기 충전기들을 통해서 소모된 전력량을 측정하는 공동 전력계가 설치될 수 있다.The fuel cell apparatus may include individual fuel cell apparatuses connected to a plurality of demand sources, respectively, and a common fuel cell apparatus connected to the chargers to supply power to the chargers. A common power meter may be installed that measures the amount of power consumed through the chargers.
상기 개별 연료전지장치들과 상기 공동 연료전지장치는 네트워크 라인을 통해서 연결될 수 있으며, 상기 충전기는 전기 자동차에 설치된 배터리 충전용일 수 있다.The individual fuel cell devices and the common fuel cell device may be connected through a network line, and the charger may be for charging a battery installed in an electric vehicle.
상기와 같이 본 발명의 실시예들에 따르면 수요원과 이격되어 설치된 충전기를 이용하여 해당 수요원의 구성원 또는 소유자가 용이하게 전기 자동차 등을 충전할 수 있다.According to the embodiments of the present invention as described above, the member or the owner of the demand source can easily charge the electric vehicle by using a charger installed spaced apart from the demand source.
도 1은 본 발명의 제1 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.1 is a configuration diagram schematically showing a fuel cell system according to a first embodiment of the present invention.
도 2는 본 발명의 제1 실시예의 변형예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.2 is a configuration diagram schematically showing a fuel cell system according to a modification of the first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.4 is a configuration diagram schematically illustrating a fuel cell system according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.5 is a configuration diagram schematically illustrating a fuel cell system according to a fourth embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 당업자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 1은 본 발명의 제1 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.1 is a configuration diagram schematically showing a fuel cell system according to a first embodiment of the present invention.
상기한 도면을 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템은 수요원(demand user)(106)에 전력을 공급하는 개별 연료전지장치(100)와, 개별 연료전지장치(100)에 연결 설치되며, 수요원(106)으로부터 이격되어 주변 장치를 충전시킬 수 있는 충전기(104)와, 충전기(104)의 잠금을 해제하는 수요원 인식기(103), 및 충전기(104)와 연결 설치된 개별 전력계(102)를 포함한다.Referring to the drawings, the fuel cell system according to the present embodiment is connected to an individual fuel cell device 100 and an individual fuel cell device 100 for supplying power to a demand user 106. A charger 104 capable of charging a peripheral device spaced apart from the demand source 106, a demand source identifier 103 for unlocking the charger 104, and an individual power meter installed in connection with the charger 104. 102.
본 실시예에서 수요원(106)은 공동주택에 존재하는 각 세대이다. 다만, 본 발명이 이에 제한되는 것은 아니며, 수요원(106)은 전력을 소모하는 각종 단위가 될 수 있다.In this embodiment, the demand source 106 is each household present in the apartment house. However, the present invention is not limited thereto, and the demand source 106 may be various units that consume power.
수요원(106)은 복수 개로 이루어지며, 각 수요원(106)에는 개별 연료전지장치(100)와 개별 전력계(102)가 연결 설치되고, 각각의 개별 연료전지장치(100)에는 충전기(104)와 수요원 인식기(103)가 설치된다.The demand source 106 is composed of a plurality, each demand source 106 is connected to the individual fuel cell device 100 and the individual power meter 102, each individual fuel cell device 100, the charger 104 And the demand source identifier 103 is provided.
개별 연료전지장치(100)는 연료와 산화제의 반응으로 전기를 생산하여 수요원(106)에 공급한다. 본 실시예에 따른 개별 연료전지장치(100)는 연료를 수소가 풍부한 개질가스로 개질하여 사용하는 고분자 전해질형 연료 전지(Polymer Electrode Membrane Fuel Cell; PEMFC)로 이루어질 수 있다.The individual fuel cell apparatus 100 generates electricity by reacting the fuel with the oxidant and supplies it to the demand source 106. The individual fuel cell apparatus 100 according to the present exemplary embodiment may be formed of a polymer electrolyte fuel cell (PEMFC) that uses a fuel to be reformed into hydrogen-rich reformed gas.
다만 본 발명이 이에 제한되는 것은 아니며, 개별 연료전지장치(100)는 메탄올과 산소의 직접적인 반응에 의하여 전기 에너지를 발생시키는 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell)로 이루어질 수 있다.However, the present invention is not limited thereto, and the individual fuel cell apparatus 100 may be configured as a direct methanol fuel cell that generates electrical energy by a direct reaction of methanol and oxygen.
또한, 개별 연료전지장치(100)는 600℃ 이상의 고온에서 작동하는 용융 탄산염형 연료전지(MCFC, Molten Carbonate Fuel Cells), 또는 고체산화물형 연료전지(SOFC, Solid Oxide Fuel Cells), 또는 200℃ 이하의 비교적 저온에서 작동하는 인산형 연료전지(PAFC, Phosphoric Acid Fuel Cells)로 이루어질 수 있다.In addition, the individual fuel cell apparatus 100 may be molten carbonate fuel cells (MCFCs), or solid oxide fuel cells (SOFCs) operating at a high temperature of 600 ° C. or higher, or 200 ° C. or lower. Phosphoric Acid Fuel Cells (PAFCs) operate at relatively low temperatures.
개별 연료전지장치(100)는 연료와 산화제의 반응으로 전기를 생성하는 연료전지스택과 개별 연료전지장치(100)의 작동을 제어하는 제어부(101)를 포함한다. 제어부(101)는 수요원(106) 및 충전기(104)와 연결 설치되어 수요원(106)과 충전기(104)에서 소모하는 전력량에 따라서 개별 연료전지장치(100)의 작동을 제어한다.The individual fuel cell apparatus 100 includes a fuel cell stack for generating electricity by reaction of fuel and oxidant and a controller 101 for controlling the operation of the individual fuel cell apparatus 100. The controller 101 is connected to the demand source 106 and the charger 104 to control the operation of the individual fuel cell apparatus 100 according to the amount of power consumed by the demand source 106 and the charger 104.
또한, 개별 연료전지장치(100)는 발생된 직류 전력을 교류 전력으로 변환하는 전력변환기와 이를 위한 각종 주변 장치(BOP; balance of plant)를 더 포함할 수 있다. 또한, 개별 연료전지장치(100)는 발생한 열을 회수하는 축열조와 보조열원기로 구성된 열회수부를 더 포함할 수 있다.In addition, the individual fuel cell apparatus 100 may further include a power converter for converting the generated DC power into AC power and various peripheral devices (BOPs) for this purpose. In addition, the individual fuel cell apparatus 100 may further include a heat recovery unit including a heat storage tank for recovering generated heat and an auxiliary heat source.
각각의 개별 연료전지장치(100)에는 개별 전력계(102)가 연결 설치되고, 개별 전력계(102)는 계통전원(110)에 연결 설치된다. 계통전원(110)은 공동주택 등으로 전력을 공급하는 통상적인 전원이다. 개별 전력계(102)는 양방향 전력계로 이루어지며, 각 수요원(106)과 충전기(104)에서 사용한 전력량을 계측한다.Each individual fuel cell device 100 is provided with a separate power meter 102 is connected, the individual power meter 102 is connected to the system power source 110 is installed. System power source 110 is a conventional power source for supplying power to the apartment. The individual power meter 102 consists of a bidirectional power meter, and measures the amount of power used by each demand source 106 and the charger 104.
제어부(101)는 개별 전력계(102)에서 전달된 정보를 바탕으로 개별 연료전지장치(100)의 작동을 제어함으로써 생산되는 전력량이 소모되는 전력량을 추종하도록 한다.The controller 101 controls the operation of the individual fuel cell apparatus 100 based on the information transmitted from the individual power meter 102 to track the amount of power consumed by the amount of power produced.
충전기(104)와 수요원 인식기(103)는 수요원(106)으로부터 이격되어 설치되는데, 공동주택에서는 충전기(104) 및 수요원 인식기(103)가 주차장에 설치될 수 있다. 이때, 주변 장치는 전기 자동차 등이 될 수 있으며, 충전기(104)는 전기 자동차에 설치된 배터리 충전용 충전기로 이루어질 수 있다.The charger 104 and the demand source recognizer 103 are spaced apart from the demand source 106. In the apartment house, the charger 104 and the demand source identifier 103 may be installed in the parking lot. In this case, the peripheral device may be an electric vehicle or the like, and the charger 104 may be formed of a battery charger charger installed in the electric vehicle.
충전기(104)는 개별 연료전지장치(100)와 연결되어 전력을 인출할 수 있는 단자를 갖고, 이 단자를 통해서 전기자동차 등을 충전시킨다. 수요원 인식기(103)는 해당 충전기(104)의 수요원인지 여부를 확인하며, 알에프 카드(RF card) 판독기, 또는 아이알 카드(IR card) 판독기 등으로 이루어질 수 있다.The charger 104 has a terminal connected with the individual fuel cell device 100 to draw power and charges an electric vehicle or the like through the terminal. The demand source recognizer 103 confirms whether it is a demand source of the charger 104, and may include an RF card reader or an IR card reader.
여기서 수요원(106)이라 함은 수요원(106)의 소유주와 그 구성원 등을 포함하는 광의의 개념으로서 해당 충전기를 사용할 권리가 있는 주체를 포함할 수 있다.Here, the demand source 106 is a broad concept including the owner and members of the demand source 106 and may include a subject who has a right to use the charger.
수요원 인식기(103)는 해당 사용자가 수요원(106) 임이 확인된 경우에만 충전기(104)의 잠금을 해제한다. 여기서 잠금을 해제한다고 함은 충전기(104)를 사용 가능 상태에 있도록 하는 것을 의미하며, 충전기(104)를 활성화하는 것과, 잠금 상태에 있는 충전기(104)의 잠금을 해제하는 것, 및 충전기(104)를 작동시키는 것을 포함한다.The demand source recognizer 103 unlocks the charger 104 only when it is confirmed that the user is the demand source 106. Unlocking here means keeping the charger 104 in a usable state, activating the charger 104, unlocking the charger 104 in the locked state, and charger 104. Operation).
이와 같이 본 실시예에 따르면 개별 연료전지장치(100)에서 발생된 전력을 이용하여 옥외에 위치하는 전기자동차 등을 충전함으로써 누진세의 적용을 받지 않고 낮은 비용으로 전기 자동차를 충전할 수 있다. 특히, 공동 주택 등의 주차장에서 수요원 인식기(103)를 통하여 사용자가 해당 수요원인지를 용이하게 파악하여 전기 자동차를 충전시킬 수 있다. 또한, 제어부(101)가 충전기(104)와 수요원(106)의 전력 소모에 대응하여 발전을 수행함으로써 소모되는 전력을 용이하게 공급할 수 있다.As such, according to the present exemplary embodiment, the electric vehicle, which is located outdoors, may be charged using electric power generated by the individual fuel cell apparatus 100 to charge the electric vehicle at low cost without being subject to the progressive tax. In particular, in a parking lot such as an apartment house, the user can easily recognize whether the user is a demand source through the demand source identifier 103 to charge the electric vehicle. In addition, the controller 101 can easily supply power consumed by generating power in response to power consumption of the charger 104 and the demand source 106.
도 2는 본 발명의 제1 실시예의 변형예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.2 is a configuration diagram schematically showing a fuel cell system according to a modification of the first embodiment of the present invention.
도 2를 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템은 개별 연료전지장치(100)와 연결된 축전부(121)를 더 포함한다. 축전부(121)는 개별 연료전지장치(100)에서 발생된 전력 중에서 잉여 전력을 임시로 저장하는 기기로서 충전 스위치(122)와 방전 스위치(123)를 매개로 개별 연료전지장치(100)에 연결 설치된다.Referring to FIG. 2, the fuel cell system according to the present embodiment further includes a power storage unit 121 connected to the individual fuel cell device 100. The power storage unit 121 is a device that temporarily stores surplus power among the power generated by the individual fuel cell apparatus 100 and is connected to the individual fuel cell apparatus 100 through the charge switch 122 and the discharge switch 123. Is installed.
충전 스위치(122)는 축전부(121)의 충전 동작 시에 온(ON) 되며, 방전 스위치(123)는 축전부(121)의 방전 동작 시에 온(ON) 된다.The charging switch 122 is turned on in the charging operation of the power storage unit 121, and the discharge switch 123 is turned on in the discharge operation of the power storage unit 121.
충전 스위치(122)와 방전 스위치(123)의 동작은 제어부(101)에 의하여 제어된다. 제어부(101)는 개별 연료전지장치(100)에 연결된 부하의 전력 사용량이 개별 연료전지장치(100)의 최대 발전량을 초과하는 경우에 충전 스위치(122)를 오프(OFF) 시키고, 방전 스위치(123)를 온(ON) 시킨다. 또한, 제어부(101)는 개별 연료전지장치(100)에 연결된 부하의 전력 사용량이 개별 연료전지장치(100)의 최대 발전량보다 더 작은 경우에는 충전 스위치(122)를 온(ON) 시키고, 방전 스위치(123)를 오프(OFF) 시킨다.The operation of the charge switch 122 and the discharge switch 123 is controlled by the controller 101. The controller 101 turns off the charge switch 122 when the power consumption of the load connected to the individual fuel cell apparatus 100 exceeds the maximum power generation amount of the individual fuel cell apparatus 100, and discharge switch 123. To ON). In addition, the controller 101 turns on the charge switch 122 when the power consumption of the load connected to the individual fuel cell apparatus 100 is smaller than the maximum power generation amount of the individual fuel cell apparatus 100, and discharge switch. Turn 123 off.
이에 따라 잉여 전력이 발생할 때에는 축전부(121)에 전력을 저장하고, 전력의 소비가 많을 때에는 전력을 방출하여 수요원(106) 및 주변 장치에 전력을 공급할 수 있다. 특히, 주변 장치를 충전하는 동안에는 큰 전력 수요가 발생하는 바, 축전부(121)를 통해서 비축된 전력을 공급하면 주변 장치를 충전하는 동안에도 안정적으로 수요원(106)에 전력을 공급할 수 있다.Accordingly, when surplus power is generated, power may be stored in the power storage unit 121, and when power is consumed, power may be released to supply power to the demand source 106 and the peripheral device. In particular, since a large power demand occurs while charging the peripheral device, supplying power stored through the power storage unit 121 may stably supply power to the demand source 106 even while charging the peripheral device.
도 3은 본 발명의 제2 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.3 is a configuration diagram schematically illustrating a fuel cell system according to a second embodiment of the present invention.
도 3을 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템은 수요원(306)에 전력을 공급하는 개별 연료전지장치(300)와 개별 연료전지장치(300)에 연결된 개별 전력계(302), 및 수요원(306)에서 이격 설치되며 개별 연료전지장치(300)로부터 전력을 공급받아 주변 장치를 충전시킬 수 있는 충전기(305)와 충전기(305)의 잠금을 해제하는 수요원 인식기(304), 충전기(305)와 인접하게 설치되어 연결된 보조 전력계(303)를 포함한다. 개별 연료전지장치(300)는 개별 연료전지장치(300)의 작동을 제어하는 제어부(301)를 포함한다.Referring to FIG. 3, the fuel cell system according to the present embodiment includes an individual fuel cell device 300 for supplying power to the demand source 306, an individual power meter 302 connected to the individual fuel cell device 300, And a demand source recognizer 304 installed to be spaced apart from the demand source 306 and unlocking the charger 305 and the charger 305 capable of charging the peripheral device by receiving power from the individual fuel cell device 300. And an auxiliary power meter 303 installed and connected to the charger 305. The individual fuel cell device 300 includes a controller 301 for controlling the operation of the individual fuel cell device 300.
보조 전력계(303)는 충전기(305)에서 소모되는 전력을 측정하여 표시하며, 측정된 전력 정보를 제어부(301)로 전달한다.The auxiliary power meter 303 measures and displays the power consumed by the charger 305, and transmits the measured power information to the controller 301.
각각의 수요원(306)에 설치된 개별 연료전지장치들(300)은 네트워크 라인(315)을 통해서 상호 연결될 뿐만 아니라, 계통전원(310)에 연결된다. 또한, 보조 전력계(303)와 개별 전력계(302)는 네트워크 라인(315)을 통해서 각각의 제어부(301)에 연결된다. 이에 따라 제어부(301)는 네트워크 라인(315)을 통해서 개별 전력계(302)와 보조 전력계(303)의 소모 전력 정보를 전달 받으며, 소모 전력량만큼 개별 연료전지장치(300)가 발전하도록 제어한다.The individual fuel cell devices 300 installed in each demand source 306 are not only interconnected through the network line 315, but also connected to the system power supply 310. In addition, the auxiliary power meter 303 and the individual power meter 302 are connected to the respective control unit 301 through the network line 315. Accordingly, the controller 301 receives power consumption information of the individual power meter 302 and the auxiliary power meter 303 through the network line 315, and controls the individual fuel cell device 300 to generate power as much as the amount of power consumed.
한편, 충전기(305), 및 수요원 인식기(304)도 각각의 개별 연료전지장치(300)에 직접 연결되지 않고 네트워크 라인(315)에 연결되는 바, 충전기(305) 및 수요원(306)은 네트워크 라인(315)을 통해서 전력을 공급받는다. 충전기(305) 및 수요원(306)에서 사용된 전력은 개별 전력계(302)와 보조 전력계(303)를 통해서 확인할 수 있으며, 전력계들(302, 303)에 표시된 전력량을 합산하여 과금할 수 있다.Meanwhile, the charger 305 and the demand source recognizer 304 are also connected to the network line 315 without being directly connected to each individual fuel cell device 300. The charger 305 and the demand source 306 are Power is supplied through network line 315. The power used by the charger 305 and the demand source 306 may be checked through the individual power meter 302 and the auxiliary power meter 303, and may be charged by summing the amounts of power displayed on the power meters 302 and 303.
이와 같이 네트워크 라인(315)을 통해서 전력을 공급하면 각 수요원(306)에 설치된 개별 연료전지장치(300)에서 생성된 전력을 통합하여 나누어 사용함으로써 소모 전력에 대한 분산이 이루어져서 보다 안정적으로 전력을 공급할 수 있다.In this way, when power is supplied through the network line 315, power generated by the individual fuel cell devices 300 installed in each demand source 306 is divided and used to distribute power consumption so that power is more stable. Can supply
도 4는 본 발명의 제3 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.4 is a configuration diagram schematically illustrating a fuel cell system according to a third embodiment of the present invention.
도 4를 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템은 수요원(406)에 전력을 공급하는 개별 연료전지장치(400)와 개별 연료전지장치(400)에 연결된 개별 전력계(402), 및 수요원(406)에서 이격 설치되며 개별 연료전지장치(400)로부터 전력을 공급받아 주변 장치를 충전시킬 수 있는 충전기(405)와 충전기(405)의 잠금을 해제하는 수요원 인식기(404), 충전기(405)와 연결된 보조 전력계(403)를 포함한다. 또한 개별 연료전지장치(400)는 개별 연료전지장치(400)의 작동을 제어하는 제어부(401)를 포함한다.Referring to FIG. 4, the fuel cell system according to the present embodiment includes an individual fuel cell device 400 for supplying power to a demand source 406, an individual power meter 402 connected to the individual fuel cell device 400, And a demand source recognizer 404 installed to be spaced apart from the demand source 406 and unlocking the charger 405 and the charger 405 capable of receiving power from the individual fuel cell apparatus 400 to charge the peripheral device. An auxiliary power meter 403 coupled with the charger 405. In addition, the individual fuel cell device 400 includes a control unit 401 for controlling the operation of the individual fuel cell device 400.
각각의 수요원(406)에 설치된 개별 연료전지장치들(400)은 네트워크 라인을 통해서 상호 연결될 뿐만 아니라, 계통전원(410)에 연결된다.The individual fuel cell devices 400 installed in each demand source 406 are not only interconnected via network lines, but also connected to the system power source 410.
보조 전력계(403)는 충전기(405)에서 소모되는 전력을 측정하여 표시하며, 측정된 전력 정보를 제어부(401)로 전달한다. 보조 전력계(403) 및 개별 전력계(402)는 무선망을 통해서 제어부(401)와 연결되며 제어부(401)로 측정된 전력량 정보를 전달한다.The auxiliary power meter 403 measures and displays the power consumed by the charger 405, and transmits the measured power information to the controller 401. The auxiliary power meter 403 and the individual power meter 402 are connected to the control unit 401 through a wireless network and transmit the measured amount of power information to the control unit 401.
무선망(415)은 알에프(RF) 송수신망, 무선랜망, 블루투스 송수신망 등으로 이루어질 수 있다.The wireless network 415 may be formed of an RF (RF) transceiver network, a wireless LAN network, a Bluetooth transceiver network, and the like.
이와 같이 보조 전력계(403)와 개별 전력계(402)가 무선망(415)을 통해서 제어부(401)와 연결되면 별도의 정보 전달 라인을 설치할 필요가 없으므로 시스템의 구축이 용이해 진다.As such, when the auxiliary power meter 403 and the individual power meter 402 are connected to the control unit 401 through the wireless network 415, it is not necessary to install a separate information transmission line, thereby facilitating the construction of the system.
도 5는 본 발명의 제4 실시예에 따른 연료 전지 시스템을 개략적으로 도시한 구성도이다.5 is a configuration diagram schematically illustrating a fuel cell system according to a fourth embodiment of the present invention.
도 5를 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템은 수요원(506)에 전력을 공급하는 복수 개의 개별 연료전지장치(500)와 개별 연료전지장치들(500)에 연결된 개별 전력계들(502), 및 수요원들(506)로부터 이격 설치되며 개별 연료전지장치(500)로부터 전력을 공급받아 주변 장치를 충전시킬 수 있는 충전기들(505)과 충전기들(505)의 잠금을 해제하는 수요원 인식기들(504), 충전기들(505)과 연결된 보조 전력계들(503)을 포함한다. 또한 개별 연료전지장치들(500)은 개별 연료전지장치(500)의 작동을 제어하는 제어부(501)를 포함한다.Referring to FIG. 5, the fuel cell system according to the present embodiment includes a plurality of individual fuel cell apparatuses 500 for supplying power to the demand source 506 and individual power meters connected to the individual fuel cell apparatuses 500. 502, and the chargers 505 and the chargers 505 that are spaced apart from the demand sources 506 and are powered by the individual fuel cell apparatus 500 to charge the peripheral devices. Source identifiers 504, auxiliary power meters 503 connected with chargers 505. In addition, the individual fuel cell devices 500 include a controller 501 for controlling the operation of the individual fuel cell device 500.
각각의 수요원(506)에 설치된 개별 연료전지장치들(500)은 네트워크 라인(515)을 통해서 상호 연결될 뿐만 아니라, 계통전원(510)에 연결된다. 또한 네트워크 라인(515)에는 공동 연료전지장치(508)가 연결 설치되고, 공동 연료전지장치(508)에는 공동 전력계(509)가 연결 설치된다. 공동 연료전지장치(508)는 공동 연료전지장치(508)의 작동을 제어하는 제어부(507)를 포함한다.The individual fuel cell devices 500 installed at each demand source 506 are not only interconnected through the network line 515, but are also connected to the grid power source 510. In addition, a common fuel cell device 508 is connected to the network line 515, and a common power meter 509 is connected to the common fuel cell device 508. The common fuel cell device 508 includes a control unit 507 for controlling the operation of the common fuel cell device 508.
공동 연료전지장치(508)는 충전기(505)들과 연결 설치되며, 충전기들(505)에 전력을 공급한다. 충전기들(505)과 연결된 라인은 공동 연료전지장치(508)와 공동 전력계(509) 사이에 연결되어 공동 전력계(509)를 통해서 전체 충전기(505)를 통한 전력 소모량을 측정한다.The common fuel cell device 508 is connected to the chargers 505 and supplies power to the chargers 505. The line connected to the chargers 505 is connected between the common fuel cell device 508 and the common power meter 509 to measure the power consumption through the entire charger 505 through the common power meter 509.
공동 연료전지장치(508)의 제어부(507)는 공동 전력계(509)에서 전달된 전력량 정보를 바탕으로 공동 연료전지장치(508)가 이에 대응되는 전력을 생산하도록 작동을 제어한다. 한편, 개별 연료전지장치(500)의 제어부(501)는 각 개별 전력계(502)에서 전달된 전력량 정보를 바탕으로 개별 연료전지장치(500)가 이에 대응되는 전력을 생산하도록 제어한다.The control unit 507 of the common fuel cell device 508 controls the operation so that the common fuel cell device 508 produces corresponding power based on the power amount information transmitted from the common power meter 509. On the other hand, the control unit 501 of the individual fuel cell device 500 controls the individual fuel cell device 500 to produce the corresponding power based on the power amount information transmitted from each individual power meter 502.
또한, 각 충전기(505)에서 사용된 전력은 보조 전력계(503)를 통해서 확인한 후, 각 수요원(506)에 과금할 수 있다.In addition, the power used by each charger 505 may be checked through the auxiliary power meter 503, and then charged to each demand source 506.
본 실시예와 같이 공동 연료전지장치(508)를 별도로 설치하여 각각의 충전기(505)로 전력을 공급하면 각 충전기들(505)로 안정적으로 전력을 공급할 수 있으며, 각 수요원(506)에는 개별 연료전지장치들(500)을 통해서 안정적으로 전력을 공급할 수 있다.When the common fuel cell device 508 is separately installed to supply power to each charger 505 as shown in this embodiment, the power can be stably supplied to each charger 505, and each demand source 506 is individually provided. It is possible to stably supply power through the fuel cell devices 500.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.

Claims (17)

  1. 연료와 산화제의 반응으로 전기를 생산하며 수요원에 전력을 공급하는 연료전지장치;A fuel cell device that generates electricity by reacting a fuel and an oxidant and supplies power to a demand source;
    상기 수요원으로부터 이격 설치되며 상기 연료전지장치로부터 전력을 공급받아 주변 장치를 충전시킬 수 있는 충전기;A charger spaced apart from the demand source and capable of charging the peripheral device by receiving power from the fuel cell device;
    상기 충전기와 인접하게 설치되어 상기 충전기의 잠금을 해제하는 수요원 인식기;A demand source recognizer installed adjacent to the charger to unlock the charger;
    상기 연료전지장치와 연결 설치된 전력계;A power meter installed in connection with the fuel cell device;
    를 포함하는 연료 전지 시스템.Fuel cell system comprising a.
  2. 제1 항에 있어서,According to claim 1,
    상기 전력계는 상기 충전기와 연결된 연료 전지 시스템.And the power meter is connected to the charger.
  3. 제1 항에 있어서,According to claim 1,
    상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들을 포함하고, 상기 전력계는 상기 개별 연료전지장치에 각각 연결 설치된 개별 전력계를 포함하는 연료 전지 시스템.The fuel cell apparatus includes individual fuel cell apparatuses each connected to a plurality of demand sources, and the power meter comprises individual power meters each connected to the individual fuel cell apparatuses.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 개별 전력계들은 계통전원에 연결된 연료 전지 시스템The individual power meters are fuel cell systems connected to grid power.
  5. 제3 항에 있어서,The method of claim 3, wherein
    상기 수요원들은 공동주택에 위치하는 각 세대인 연료 전지 시스템.The demand source is each generation fuel cell system located in a multi-unit house.
  6. 제3 항에 있어서,The method of claim 3, wherein
    상기 충전기는 복수개의 수요원에 대응하여 공동주택의 주차장에 설치된 연료 전지 시스템.The charger is a fuel cell system installed in the parking lot of the apartment in response to a plurality of demand sources.
  7. 제1 항에 있어서,According to claim 1,
    상기 연료전지장치는 상기 전력계와 연결되어 상기 수요원 및 상기 충전기에서 소모하는 전력에 따라 연료전지장치의 발전량을 제어하는 제어부를 더 포함하는 연료 전지 시스템.The fuel cell apparatus further includes a control unit connected to the power meter and controlling a power generation amount of the fuel cell apparatus according to the power consumed by the demand source and the charger.
  8. 제1 항에 있어서,According to claim 1,
    상기 연료전지장치에 연결 설치된 축전부를 더 포함하는 연료 전지 시스템.And a power storage unit connected to the fuel cell device.
  9. 제8 항에 있어서,The method of claim 8,
    상기 축전부는 상기 충전기의 충전 동작 시에 온(ON) 되는 충전 스위치와 방전 동작 시에 온(ON) 되는 방전 스위치를 통해서 상기 충전기와 연결된 연료 전지 시스템.The power storage unit is connected to the charger through a charge switch that is turned on in a charging operation of the charger and a discharge switch that is turned on in a discharge operation.
  10. 제1 항에 있어서,According to claim 1,
    상기 충전기와 인접하게 설치되며 상기 충전기에서 사용된 전력량을 표시하는 보조 전력계를 포함하는 연료 전지 시스템.And an auxiliary power meter installed adjacent to the charger and displaying an amount of power used by the charger.
  11. 제10 항에 있어서,The method of claim 10,
    상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들을 포함하고, The fuel cell device includes individual fuel cell devices each connected to a plurality of demand sources,
    상기 개별 연료전지장치들에는 상기 수요원에서 사용되는 전력을 측정하는 개별 전력계가 설치되고,The individual fuel cell devices are provided with a separate power meter for measuring the power used in the demand source,
    상기 개별 연료전지장치들은 네트워크 라인을 통해서 서로 연결되고,The individual fuel cell devices are connected to each other through a network line,
    상기 개별 연료전지장치는 상기 연료전지장치의 작동을 제어하는 제어부를 포함하며,The individual fuel cell device includes a control unit for controlling the operation of the fuel cell device,
    상기 보조 전력계 및 상기 개별 전력계는 네트워크 라인을 통해서 상기 제어부에 연결된 연료 전지 시스템.The auxiliary power meter and the individual power meter are coupled to the control unit via a network line.
  12. 제10 항에 있어서,The method of claim 10,
    상기 연료전지장치는 상기 연료전지장치의 작동을 제어하는 제어부를 포함하고, 상기 보조 전력계는 무선망을 통해서 상기 제어부에 연결된 연료 전지 시스템.The fuel cell apparatus includes a control unit for controlling the operation of the fuel cell apparatus, and the auxiliary power meter is connected to the control unit via a wireless network.
  13. 제12 항에 있어서,The method of claim 12,
    상기 무선망은 알에프(RF) 송수신망, 무선랜망, 블루투스 송수신망 중에서 선택되는 어느 하나를 포함하는 연료 전지 시스템.The wireless network includes a fuel cell system including any one selected from RF (RF) transceiver network, wireless LAN network, Bluetooth transceiver network.
  14. 제1 항에 있어서,According to claim 1,
    상기 연료전지장치는 복수개의 수요원에 각각 연결 설치된 개별 연료전지장치들과 상기 충전기들과 연결되어 상기 충전기들에 전력을 공급하는 공동 연료전지장치를 포함하는 연료 전지 시스템.The fuel cell system includes individual fuel cell devices respectively connected to a plurality of demand sources and a common fuel cell device connected to the chargers to supply power to the chargers.
  15. 제14 항에 있어서,The method of claim 14,
    상기 공동 연료전지장치에는 상기 충전기들을 통해서 소모된 전력량을 측정하는 공동 전력계가 설치된 연료 전지 시스템.The common fuel cell apparatus is provided with a common power meter for measuring the amount of power consumed through the charger.
  16. 제14 항에 있어서,The method of claim 14,
    상기 개별 연료전지장치들과 상기 공동 연료전지장치는 네트워크 라인을 통해서 연결된 연료 전지 시스템.And the individual fuel cell devices and the common fuel cell device are connected via a network line.
  17. 제1 항에 있어서,According to claim 1,
    상기 충전기는 전기 자동차에 설치된 배터리 충전용인 연료 전지 시스템.The charger is a fuel cell system for charging a battery installed in an electric vehicle.
PCT/KR2010/000321 2009-02-13 2010-01-18 Fuel cell system with charger WO2010093126A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080007605.3A CN102356495B (en) 2009-02-13 2010-01-18 Fuel cell system with charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0011917 2009-02-13
KR1020090011917A KR101022012B1 (en) 2009-02-13 2009-02-13 Fuel cell system having charger

Publications (2)

Publication Number Publication Date
WO2010093126A2 true WO2010093126A2 (en) 2010-08-19
WO2010093126A3 WO2010093126A3 (en) 2010-10-21

Family

ID=42562149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000321 WO2010093126A2 (en) 2009-02-13 2010-01-18 Fuel cell system with charger

Country Status (3)

Country Link
KR (1) KR101022012B1 (en)
CN (1) CN102356495B (en)
WO (1) WO2010093126A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119936A (en) * 2017-05-08 2017-09-01 江苏理工学院 A kind of underground parking energy supplying system based on the direct SOFC of natural gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130977A (en) * 1995-10-31 1997-05-16 Hitachi Ltd System linkage system containing dispersed power supply
JPH10262303A (en) * 1997-03-18 1998-09-29 Honda Motor Co Ltd Battery charger for motor vehicle using battery at least as part of its power
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2006262570A (en) * 2005-03-15 2006-09-28 Tokyo Electric Power Co Inc:The Power supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824157Y (en) * 2005-04-25 2006-10-04 柳溪立 Charging device for electric car charging
KR100641125B1 (en) * 2005-08-22 2006-11-02 엘지전자 주식회사 Fuel cell having charging part
KR100664073B1 (en) * 2005-09-28 2007-01-03 엘지전자 주식회사 Driving control method for fuel cell system
KR100778626B1 (en) * 2006-10-25 2007-11-29 에스케이에너지 주식회사 Fuel sell system of apartment house and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130977A (en) * 1995-10-31 1997-05-16 Hitachi Ltd System linkage system containing dispersed power supply
JPH10262303A (en) * 1997-03-18 1998-09-29 Honda Motor Co Ltd Battery charger for motor vehicle using battery at least as part of its power
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2006262570A (en) * 2005-03-15 2006-09-28 Tokyo Electric Power Co Inc:The Power supply system

Also Published As

Publication number Publication date
WO2010093126A3 (en) 2010-10-21
KR101022012B1 (en) 2011-03-16
KR20100092671A (en) 2010-08-23
CN102356495A (en) 2012-02-15
CN102356495B (en) 2015-04-15

Similar Documents

Publication Publication Date Title
CN101116211B (en) Hybrid fuel cell system with battery capacitor energy storage system
US8216732B2 (en) Fuel cell power generation system
US20220140365A1 (en) Ess system for charging fuel cell electric vehicle and electric vehicle
RU99108430A (en) ENERGY SYSTEM (OPTIONS)
CN105539184A (en) Electric car metro area charge management system
US6653749B2 (en) Portable power supply system and a method for providing electrical power
WO2019107598A1 (en) Hybrid power pack power conversion apparatus applicable to eco-friendly vehicle
CN111261904A (en) Portable SOFC power generation device and energy management method thereof
CN104935037A (en) Charging station with multiple methanol-water reforming hydrogen production and power generation modules and charging method
US20060228594A1 (en) Method for shutting down fuel cell and fuel cell system using the same
WO2019103388A1 (en) Fuel cell power pack and power supply control method thereof
CN101170178B (en) Fuel battery system for apartment building and control method of the system
US20110123884A1 (en) Method for controlling a fuel cell system during shutdown
CN117302008A (en) Mobile power generation, charging and changing system
WO2010093126A2 (en) Fuel cell system with charger
CN111422075A (en) Vehicle power supply method, device and system
CN215244426U (en) Off-grid type hybrid electric power direct current charging station
CN212950158U (en) Integrated electric energy conversion device, power supply device, vehicle and equipment
WO2020204577A1 (en) Fuel cell-based electric vehicle charging system
WO2010093127A2 (en) Purge method for a fuel cell system
KR102534438B1 (en) Portable multipurpose power supply apparatus
Ubong et al. Fuel Cell-Powered HEV Design and Control
CN220086966U (en) Intelligent micro-grid control system
CN112912268B (en) Power supply device, vehicle and equipment
CN219564785U (en) Energy replenishment system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007605.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741344

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741344

Country of ref document: EP

Kind code of ref document: A2