WO2010093015A1 - Gene associated with deep-water tolerance and use thereof - Google Patents

Gene associated with deep-water tolerance and use thereof Download PDF

Info

Publication number
WO2010093015A1
WO2010093015A1 PCT/JP2010/052074 JP2010052074W WO2010093015A1 WO 2010093015 A1 WO2010093015 A1 WO 2010093015A1 JP 2010052074 W JP2010052074 W JP 2010052074W WO 2010093015 A1 WO2010093015 A1 WO 2010093015A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
polynucleotide
seq
protein
gene
Prior art date
Application number
PCT/JP2010/052074
Other languages
French (fr)
Japanese (ja)
Inventor
基行 芦苅
洋子 服部
隆 松本
建忠 呉
Original Assignee
国立大学法人名古屋大学
独立行政法人農業生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 独立行政法人農業生物資源研究所 filed Critical 国立大学法人名古屋大学
Publication of WO2010093015A1 publication Critical patent/WO2010093015A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to isolation and identification of a gene relating to a response (flooding response) to an increase in water depth of a plant, and a method for improving the flooding tolerance of a plant using the gene.
  • Rice (0ryza sativa) is considered to be a semi-aqueous plant, depending on the need for water and the system for water, upland rice (lowland rice) and floating rice (deep water rice) (deepwater rice or floating rice) Can be classified.
  • Land rice and water rice are cultivated in high altitudes or shallow water areas (about 10 cm deep), but when the water level rises due to the rainy season or heavy rain in these cultivated areas, rice is submerged, and this type of rice dies due to oxygen deficiency. Resulting in.
  • floating rice can take a strategy of avoiding flooding by extending the internodes of the stem according to the water level. Floating rice is able to survive against flooding by increasing water depth, i.e.
  • Non-Patent Document 1 Such dramatic and rapid growth in response to flooding is one of the unique biological adaptations to harsh environments.
  • Non-Patent Documents 2 and 3 Molecular genetic approaches such as cDNA and microarrays have been carried out to elucidate the mechanism for flood response. Moreover, some genes involved in the submergence response have been clarified by classical experiments on the submergence response (Non-Patent Documents 2 and 3). In addition, physiological studies on floating rice suggest that ethylene, abscisic acid and gibberellin are involved in the flooding response (Non-Patent Document 4).
  • An object of the present invention is to isolate and identify a gene related to the submergence response and to use the gene.
  • the present inventors tried to identify genes involved in QTL analysis combined with positional cloning in order to isolate and identify the genes involved in the submergence response in rice and to understand the molecular mechanism of submergence response. .
  • the present inventors succeeded in isolating and identifying a submergence response-related gene for the first time, and further introducing the identified gene into a non-floating rice species to obtain a submergence response capability.
  • a converted plant was obtained. According to the present invention, the following means are provided based on these findings.
  • the polynucleotide of the present invention may be derived from rice.
  • B a protein having an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence represented by SEQ ID NO: 4, and having internode elongation activity of stems during submergence Encoding polynucleotide.
  • (C) A polynucleotide encoding a protein having an amino acid sequence having 70% or more identity with the amino acid sequence represented by SEQ ID NO: 4 and having stem internode elongation activity during submergence.
  • (D) A polynucleotide comprising the base sequence represented by SEQ ID NO: 3.
  • (E) a polynucleotide that hybridizes with a complementary strand of a polynucleotide comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and encodes a protein having internode elongation activity of a stem when submerged.
  • (F) A polynucleotide encoding a protein having 70% or more identity with the base sequence represented by SEQ ID NO: 3 and having internode elongation activity of stems during submergence.
  • a vector comprising the polynucleotide, a plant cell into which the vector has been introduced, a transformed plant comprising the plant cell, a progeny or clone of the plant, and a propagation material for the plant.
  • a method for producing a transformed plant comprising the steps of introducing the polynucleotide of the present invention into a plant cell and regenerating the plant from the plant cell.
  • the cultivation step may include a step S that induces a hand completion response in the transformed plant body.
  • FIG. 2 shows sequence specific binding of OsEIN3 protein to SK1 and SK2. It is a figure which shows the competition test result by the mutant of the promoter region of SK1 and SK2. It is a figure which shows the submergence treatment time and the density
  • the present invention relates to genes involved in submergence response and their use.
  • the present invention is based on the fact that the present inventors succeeded in isolating and identifying a gene that triggers a submergence response for the first time as follows.
  • NIL-12 near-isogenic line
  • NIL12 hetero-isogenic line 16000 derived from T65 / C9285 hybrids (FIG. 2) and NIL- derived from T65 / Bhadua hybrids.
  • a 12B hetero near-isogenic line 12000 strain (FIG. 2) was prepared, and the QTL was subjected to positional cloning.
  • Candidate regions for QTL are duplicated in two independent populations.
  • a BAC library covering this duplicated candidate region was further constructed.
  • additional regions were added in C9285. A region was found. The total 67.5 kb DNA fragment found was predicted to have 18 ORFs (FIG. 5).
  • SK1 and SK2 were not expressed in the air, but were strongly expressed in deep water conditions (FIGS. 6 and 7). Therefore, in order to confirm that SK1 and SK2 induce a submergence response, three subclones carrying one or both of the two genes (SK1, SK2) are selected from the sub-library of the BAC library. These were used to transform T65, a non-floating rice species, using these. Similarly, a BAC library was prepared for Bhadua species, and T65 was transformed with SK1 and SK2.
  • a transformed plant having flood resistance or improved can be obtained by modifying a plant using a gene newly isolated and identified by the present inventors.
  • the genes found by the present inventors are particularly useful in the agricultural field, the energy field using biomass as a raw material, and the chemical industry field. For example, it is possible to obtain plants such as rice that can survive and be harvested against flooding during the rainy season or during heavy rain. Moreover, since a plant with stems and leaves extended is obtained, a plant with a high yield can be obtained when the stems and leaves are used as useful parts (for food or as biomass).
  • the gene isolated by the present inventors When a plant is created using a gene isolated and identified by the present inventors, it is preferable to use transformation.
  • the period required for transformation is extremely short compared to gene transfer by mating, and it is possible to impart or improve submergence tolerance without changing other traits.
  • the flood resistance can be easily improved.
  • the gene isolated by the present inventors can be expected to be applied to grain breeding such as wheat, barley and corn.
  • the gene isolated by the present inventors is an ethylene-responsive transcription factor and widely distributed in plants, it is considered that introduction of the gene can improve the water-resistant response in all plants.
  • genes found by the present inventors are considered to be used for plants including other gramineous plants (for example, wheat, barley, corn, sugarcane, sorghum, etc.) other than rice. Useful in the chemical industry.
  • the polynucleotide of the present invention encodes a protein that is a nuclear localization ethylene-responsive transcription factor and induces internode elongation of stems as a submergence response (the protein of the present invention, hereinafter also referred to as the present protein).
  • the present protein will be described.
  • the protein has a nuclear localization signal (NLS).
  • the nuclear localization signal is usually composed mainly of basic amino acids.
  • Examples of the NLS of this protein include, but are not limited to, SEQ ID NO: 5 and SEQ ID NO: 6 (both are deduced sequences).
  • this protein can have an ERF domain which is a DNA binding domain. According to the phylogenetic analysis of certain ERF domains (AP2 / ERF domains) (SEQ ID NO: 7 and SEQ ID NO: 8) encompassed by this protein, these amino acid sequences are similar to OsSUB1 protein and OsERF I know that.
  • SEQ ID Nos: 5 and 7 are NLS (presumed) and ERF in the amino acid sequence represented by SEQ ID NO: 2
  • SEQ ID Nos: 6 and 8 are NLS (presumed) and NLS in the amino acid sequence represented by SEQ ID NO: 4. ERF.
  • This protein can have ethylene-responsive transcription factor activity on the C-terminal side. More specifically, it preferably has ethylene-responsive transcription factor activity on the C-terminal side of the ERF domain retained by the protein.
  • the ethylene-responsive transcription factor activity can be detected, for example, by the method disclosed in the examples in the subsequent stage.
  • proteins having the amino acid sequences represented by SEQ ID NO: 2 and SEQ ID NO: 4. These proteins were isolated from C9285, a floating rice cultivar native to Bangladesh.
  • a protein having an amino acid sequence highly identical to the amino acid sequence represented by SEQ ID NO: 2 or 4, or 1 or 2 in the amino acid sequence represented by SEQ ID NO: 2 or 4 A protein having an amino acid sequence in which a plurality of amino acids are substituted, deleted, added, and / or inserted, and is encoded by a base sequence that hybridizes under stringent conditions to a complementary strand of the base sequence represented by SEQ ID NO: 1 or 3. And a protein having an amino acid sequence.
  • Examples of the present polynucleotide include a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4. Each of these polynucleotides can be used alone. In that case, a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 4 can be preferably used. It is more preferable to use both of these as the present polynucleotide.
  • Examples of the polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 2 and SEQ ID NO: 4 include polynucleotides having the base sequences represented by SEQ ID NO: 1 and SEQ ID NO: 3, respectively. Such polynucleotides can be prepared by known techniques.
  • total mRNA is prepared from a rice tissue extract, a primer is designed based on the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3, and PCR method such as RACE method is performed to perform the full length of the above SEQ ID NO: cDNA can be obtained.
  • a cDNA library can be prepared from a rice tissue extract, a probe can be designed based on the above base sequence, and obtained by a hybridization method or the like. Further, it may be artificially synthesized based on the base sequence described in the above SEQ ID NO.
  • This polynucleotide is not limited to those encoding the amino acid sequences represented by SEQ ID NOs: 2 and 4, but encodes a protein exhibiting an activity of extending between stem nodes during submergence (submergence responsive activity) If it is.
  • a polynucleotide may be prepared from nature or artificially prepared as long as it has the above-mentioned submergence responsive activity. For example, orthologs, homologues, and artificially introduced mutations of the above SEQ ID NO.
  • the submergence responsive activity can be evaluated by at least one of the methods disclosed in the Examples.
  • a transformed plant can be prepared and measured by measuring internode elongation of the plant during submergence or by measuring internode elongation of the plant by exposure to ethylene or ethephon in the air.
  • This polynucleotide has a high degree of identity with these sequences by performing a homology search against the plant genome database using the amino acid sequence of SEQ ID NO: 2 or 4 or the base sequence of SEQ ID NOs: 1, 3. It may be. For example, based on information on the amino acid sequences of NLS and ERF or the base sequences encoding them from grasses or other plants such as wild and cultivated varieties such as rice that exhibit internode elongation of stems as a submergence response In addition, it may encode an amino acid sequence extracted by homology search using a plant genome database such as a rice genome database.
  • the polynucleotide preferably encodes an amino acid sequence having high identity with the amino acid sequence represented by SEQ ID NO: 2 or 4, and high identity is at least 40% or more, preferably 60% or more, and more preferably Means 80% or more, more preferably 90% or more, more preferably at least 95% or more, more preferably at least 97% or more (eg, 98 to 99%) of sequence identity.
  • the identity of the amino acid sequence and the base sequence is, for example, the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc. Natl. Acad. Sci. USA 90: 5873-5877 by Karlin and Altschul. , 1993).
  • the present polynucleotide may encode an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence represented by SEQ ID NO: 2 or 4. It can be prepared by introducing a mutation site-specifically or randomly by applying a gene modification method known to those skilled in the art, such as a mutation introduction method by PCR or a cassette mutation method. Alternatively, it is also possible to synthesize a sequence in which a mutation is introduced into the base sequence described in the above SEQ ID No. using a commercially available nucleic acid synthesizer.
  • the present polynucleotide may be one that hybridizes under stringent conditions to a complementary strand of the base sequence represented by SEQ ID NO: 1 or 3.
  • stringent hybridization conditions can be appropriately selected by those skilled in the art. For example, 25% formamide, 50% formamide under more severe conditions, 4 ⁇ SSC, 50 mM HEPES® (pH 7.0), 10 ⁇ Denhardt's solution, hybridization solution containing 20 ⁇ g / ml denatured salmon sperm DNA at 42 ° C. After overnight prehybridization, add a labeled probe and incubate at 42 ° C. overnight.
  • the cleaning solution and temperature conditions for the subsequent cleaning are about ⁇ 1xSSC, 0.1% SDS, 37 ° C '', more severe conditions are about ⁇ 0.5xSSC, 0.1% SDS, 42 ° C '', and more severe conditions are ⁇ 0.2xSSC , 0.1% SDS, 65 ° C. ”.
  • isolation of a polynucleotide having high homology with the probe sequence can be expected as the conditions for washing for hybridization become more severe.
  • combinations of the above SSC, SDS, and temperature conditions are exemplary, and those skilled in the art will understand the above or other factors that determine the stringency of hybridization (eg, probe concentration, probe length, hybridization reaction).
  • Such a polynucleotide is usually at least 40% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably at least 95% with the base sequence represented by SEQ ID NO: 1 or 3. More preferably, the sequence identity is at least 97% or more (for example, 98 to 99%).
  • the present polynucleotide includes genomic DNA, cDNA, and chemically synthesized DNA, and may be a DNA / RNA hybrid or a DNA / RNA chimera.
  • the base of RNA may be provided, and the base and sugar chain which chemically modified the natural base may be provided.
  • the polynucleotide does not ask its origin.
  • the polynucleotide is preferably derived from a plant. As described in the Examples, the present polynucleotide is isolated from rice (Poaceae), but it is considered to exist as long as it exhibits a similar flooding response.
  • the present polynucleotide is preferably derived from a monocotyledonous plant, more preferably from a grass family.
  • the expression vector of the present invention is an expression vector that retains the present polynucleotide.
  • the vector of the present invention is used as a vector for expressing the present polynucleotide in plant cells in order to produce the present protein and also to produce transformed plants.
  • Such a vector is not particularly limited as long as it contains a promoter sequence that can be transcribed in plant cells and a terminator sequence containing a polyadenylation site necessary for stabilization of the transcript.
  • the vector used for the transformation of plant cells is not particularly limited as long as the inserted gene can be expressed in the cells.
  • plant cells include various forms of plant cells, such as suspension culture cells, protoplasts, leaf sections, and callus.
  • the vector of the present invention may contain a promoter for constitutively or inducibly expressing the protein of the present invention.
  • promoters for constant expression include cauliflower mosaic virus 35S promoter (Odell et al. 1985 Nature 313: 810), rice actin promoter (Zhang et al.1991 Plant Cell 3: 1155), maize Ubiquitin promoter (Cornejo et al. 1993 Plant Mol.Biol. 23: 567) and the like.
  • promoters for inducible expression are known to be expressed by external factors such as infection and invasion of filamentous fungi / bacteria / viruses, low temperature, high temperature, drying, ultraviolet irradiation, spraying of specific compounds, etc. Promoters and the like. Examples of such promoters include rice chitinase gene promoter (Xu et al. 1996 Plant Mol. Biol. 30: 387) and tobacco PR protein gene promoter (Ohshima et al. 1990 Plan Cell 2:95), Rice “lip19” promoter (Aguan et al. 1993 Mol.GenGenet. 240: 1), rice “hsp80” and “hsp72” promoters (Van Breusegem et al.
  • the transformed cell of the present invention is a cell into which the vector of the present invention has been introduced.
  • the cells into which the vector of the present invention is introduced include plant cells for producing transformed plants, in addition to cells such as E. coli, yeast, animal and plant cells and insect cells used for production of recombinant proteins.
  • a plant cell For example, cells, such as Arabidopsis thaliana, rice, corn, potato, and tobacco, are mentioned.
  • the plant cells of the present invention include cultured cells as well as cells in the plant body. Also included are protoplasts, shoot primordia, multi-buds, and hairy roots.
  • various methods known to those skilled in the art such as polyethylene glycol method, electroporation (electroporation), Agrobacterium-mediated method, and particle gun method can be used.
  • the transformed plant of the present invention contains a plant cell into which the vector of the present invention has been introduced.
  • a transformed plant can be obtained by regenerating a plant from a plant cell transformed by introducing the vector of the present invention.
  • Transformed plant cells can be prepared by a known method as described above. For example, gene transfer into protoplasts using polyethylene glycol (Datta, SK (1995) In Gene Transfer To Plants (Potrykus I and Spangenberg Eds.) Pp66- 74), gene transfer to protoplasts by electric pulse (Toki et al. (1992) Plant Physiol. 100, 1503-1507), gene transfer directly to cells by particle gun method (Christou et al.
  • the present invention includes a plant cell into which the DNA of the present invention has been introduced, a plant containing the cell, progeny and clones of the plant, and propagation material of the plant, its progeny and clones.
  • the plant body produced in this way has been given or improved the ability to respond to submergence, and has improved resistance to submergence. Therefore, it is a plant body that can be expected to be harvested even in submersion and can be expected to increase the yield of the foliage part.
  • the plant produced in this way is not only flooded artificially or exposed to ethylene in the air, intentionally generating a flooding response, resulting in stem nodes.
  • the space can be extended. For this reason, a plant body with a high plant height or a large number of stems and leaves can be easily obtained.
  • the method for producing useful crops of the present invention comprises a step of cultivating the transformed plant of the present invention and a step of harvesting the transformed plant.
  • a crop can survive even during a rainy season or flooding due to heavy rain, so that the crop can be reliably harvested.
  • the cultivation process may include the step of inducing a flooding response in the transformed plant body.
  • the submergence response can be induced artificially by flooding the transformant or exposing it to ethylene. By carrying out such a treatment, it is possible to induce a submergence response in the transformed plant body and extend the internodes of the stem. As a result, it becomes possible to harvest plants having a high plant height or a large number of foliage.
  • the water level is 50% or more of the height of the plant, more preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, most Preferably, it is enough to be completely submerged.
  • exposure to ethylene can be supplied as ethylene gas, for example, in a gas atmosphere where plants can survive, such as in the air. Appropriate ethylene concentration and exposure time in the gas atmosphere can be determined in advance.
  • Wild rice W0106 (O. rufipogon; one year) native to India and cultivated species Taichung 65 (T65; O. sativa ssp. Japonica) are used for rice that does not have floating rice characteristics (hereinafter, non-floating rice species or controls) Used for crossing). Furthermore, O. glumaepatula (W2199) was used as a cultivated species. These lines, C9285, W0120, W0106 and O. glumaepatula were all obtained from the National Institute of Genetics (Japan), and T65 was cultivated at Nagoya University.
  • Plants were germinated by treatment in water in a petri dish at 30 ° C. for 72 hours, and then transplanted to pots having a diameter of 10 cm and a height of 13 cm.
  • TIL internode elongation length
  • BAC libraries were constructed from young leaves of plants in accordance with a conventional method. That is, partial digestion of DNA with HindIII, size fractionation of large DNA by pulse field gel electrophoresis (CHEF, Bio-Rad Laboratories, Hercules, California, USA), vector (pIndigo BAC-5, EPICENTRE Biotechnologies, Madison, Wisconsin, USA) and transformation into E. coli (DH10B strain). Positive BAC clones were screened by PCR from the pooled DNA for each of a sufficient number of BAC libraries holding total DNA equivalent to at least 6 times the amount of rice genomic DNA. For these BAC libraries, positive clones were screened by Southern hybridization from a high-density BAC filter.
  • SK1 and SK2 phenotypes evaluation of SK1 and SK2 phenotypes (measurement of internode elongation length) under submerged conditions was performed using F3 and F4 individuals. Phenotypes were compared for DNA fragments within the candidate regions of C9285, Bhadua and T65.
  • the full length genomic DNAs of SK1 and SK2 including the promoter region were introduced into the binary vector pBI-Hm12. These DNA fragments were introduced into T65, which is a japonica species, by the Agrobacterium method. As a control, an empty vector without these DNA fragments was introduced into T65.
  • RNA isolation and semi-quantitative RT-PCR Total RNA was prepared by the method of Samblook et al. (Molecular Cloning A Laboratory Manual Cold Spring Harbor, 1989) and the first strand of cDNA was prepared using 2 ⁇ g of the Omniscript Reverse Transcription Kit (Qiagen, California, USA). Synthesized from total RNA. Semi-quantitative RT-PCR was performed by the method of Kaneko et al. (Kaneko et al., 2003) using gene specific primers.
  • SK1 and SK2 cDNAs were amplified and introduced into pCR4 Blunt-TOPO (Invitrogen, California, USA). did. Analysis of the base sequence of this plasmid confirmed that SK1 and SK2 were correctly introduced.
  • the plasmid was subjected to restriction enzyme treatment, and the DNA fragment was introduced into the pBI101 binary vector having ACTIN1 promoter and nos terminator. This binary vector was introduced into Agrobacterium strain EHA101 (A. tumefaciens strain EHA101 (Hood et al., 1986)) by electroporation.
  • This sample was used to stain the nucleus and evaluate the intracellular localization of SK1 and SK2 derivatives at 2 ⁇ g / ⁇ L of 4 ′, 6-diamidino-2-phenylindole n-hydrate (DAPI; Dojindo, Kumamoto , Japan) Immerse in the solution.
  • DAPI 6-diamidino-2-phenylindole n-hydrate
  • the stained sample was observed with a confocal microscanning laser microscope (FV500; Olympus, Tokyo, Japan).
  • Plant hormones (auxin (IAA), brassinosteroid (BR), cytokinin (CK), gibberellin (GA), abscisic acid (ABA)) are about 100 mg (raw weight) of rice stem. Extracted from. These plant hormones are prepared by liquid chromatography-mass spectroscopy system chromatography (UPLC / Quattro Premier XE; Waters, Massachusetts, USA) and ODS column (Acquity) according to the method described in the literature (Hirano et al. 2008). -UPLC BEH-C 18 , 1.7 ⁇ m, 2.1 x 100 mm, Waters). The ethylene content was measured using a gas chromatograph (Hitachi, 263-30). The stem base including nodes and internodes was harvested from the flooding after 1 day, placed in a 6 ml glass vial, and held for 1 hour. The amount of ethylene in 1 ml of gas collected from the vial was measured.
  • IAA auxin
  • BR brassinosteroid
  • Electrophoretic gel mobility shift assay To produce OsEIL1 protein, its full-length DNA (Mao et al. 2006) was amplified by PCR, and the pET-32a (+) vector (Novagen, Madison, Wisconsin, USA) Introduced to XbaI and BglII sites. Probes of the SK1 and SK2 promoter fragments were labeled by introducing [ 32 P] dATP Klenow fragment into the 5 ′ overhang site. The DNA binding reaction was performed for 30 minutes at 4 ° C.
  • Electrophoresis was performed on a 13% acrylamide gel at 200 V for 2 hours in glycerin, 1 mM EDTA, 0.05% NP-40, and 2 0.25 ⁇ Tris-borate-EDTA buffer.
  • the competition test was performed by adding an unlabeled competitive oligonucleotide to the binding reaction and then adding a labeled oligonucleotide.
  • Non-Patent Documents 2 and 3 The present inventors have already found three main QTLs present on chromosomes 1, 3, and 12, respectively, using a hybrid of T65 and C9298.
  • Non-Patent Documents 2 and 3 QTL on chromosome 12 is considered to be most involved in the water depth increasing response.
  • a near-isogenic line (NIL) having a genetic background of T65 and having C9285 and Bhadua gene fragments at the end of chromosome 12. -12 was produced by the above method.
  • NIL-12 responded to flooding with internodes and leaf elongation.
  • a C9285 BAC library was constructed according to the above method, and it was found that one BAC clone (C9285_10H05) covers the candidate region. The results are shown in FIG. From the analysis result of the base sequence of the BAC clone, an additional gene region of 46 kb was detected in C9285 but not in T65. The total 67.5 kb DNA fragment had 18 putative ORFs.
  • the coding region base sequences of the SK1 gene and SK2 gene are shown in SEQ ID NOs: 1 and 3, respectively, and the amino acid sequences of the proteins encoded by these genes are shown in SEQ ID NOs: 2 and 4, respectively.
  • the SK1 gene coding region and its base sequence containing at least part of the promoter region on its 5 ′ side are shown in SEQ ID NO: 9, and the SK2 gene coding region and its base containing at least part of the promoter region on its 5 ′ side.
  • the sequence is shown in SEQ ID NO: 10.
  • FIG. 7 shows the results of expression analysis for SK1 and SK2.
  • total RNA was extracted from C9285 and T65 submerged for a predetermined time (3 hours, 6 hours, 12 hours) as shown in FIG. 7, and RT-PCR was performed using specific primers for these genes. It was performed using. The actin gene was used as a control.
  • SK1 was particularly strongly expressed in the submerged condition among the two genes, Snorkel1 (SK1) and Snorkel2 (SK2).
  • a BAC library of Bhadua and selected clones covering the desired region was prepared, and it was also confirmed whether Bhadua has SK2 and SK1.
  • subclone a containing SK1
  • subclone b containing SK2
  • the transformed plant carrying SK1 hardly responded to submergence, whereas the transformed plant carrying SK2 showed significant internodal extension to submergence. It was. Transformed plants carrying SK1 and SK2 responded better than plants carrying either.
  • a transgenic plant having a T65 gene background and overexpressing SK1 or SK2 under the control of the actin promoter was prepared, and internode elongation in air was evaluated. The results are shown in FIG. As shown in FIG. 9, the control (introduced with the empty vector) did not respond in the air. However, in the case of an overexpressing SK1, the first to third internodes were elongated, and SK2 In the overexpressing body, the first to seventh internodes were elongated.
  • the ethylene concentration in the plant body was measured in air and under submerged conditions using a plant hormone quantification method. As shown in FIG. 16, it was found that the ethylene concentration of any plant body was about 2.5 times higher than that in air under flooding conditions. After submerging C9285 and T65 for a predetermined time (6 hours, 12 hours, 24 hours), total RNA was extracted, and expression analysis of ethylene gene (ACS) was performed. The results are shown in FIG. As shown in FIG. 17, it was found that ACS5, which converts SAM to ACC in the rate-limiting step of the ethylene synthesis pathway, was induced by both T65 and C9285 under submerged conditions. From the above, it was found that the synthesis of ethylene induced by activating the ethylene biosynthesis gene ACS5 under submerged conditions induces the expression of SK1 and SK2.
  • ethylene is synthesized by activating the expression of the ethylene biosynthetic enzyme ACS5 gene, and the accumulated ethylene induces the expression of ethylene-responsive transcription factors SK1 and SK2, thereby expressing the submergence response. Is to cause.
  • the GA concentration rises to such an extent that it induces internode elongation directly or indirectly.

Abstract

Disclosed is the isolation/identification of a gene associated with deep-water tolerance.  Also disclosed is a use of the gene. A polynucleotide encoding a protein comprising the amino acid sequence depicted in SEQ ID NO:4 is isolated as a gene associated with deep-water tolerance.  The use of the gene enables the production of a plant which can exhibit deep-water tolerance readily.

Description

冠水応答関連遺伝子及びその利用Submerged response-related genes and their use
 本発明は、植物の水深の増大に対する応答(冠水応答)に関する遺伝子の単離、同定、並びに該遺伝子を利用した植物の冠水耐性を改善する方法等に関する。 The present invention relates to isolation and identification of a gene relating to a response (flooding response) to an increase in water depth of a plant, and a method for improving the flooding tolerance of a plant using the gene.
 干害のほか豪雨による冠水害といった自然災害は、コメを初めとする穀類など食物生産に不安定し、収量を低下させる。近年、こうした自然災害に耐性のある作物を育種して食糧生産を安定化させる必要性が高まってきている。 自然 Natural disasters such as drought and flooding due to heavy rains make the food production such as rice and other cereals unstable and reduce the yield. In recent years, there has been an increasing need to stabilize food production by breeding crops that are resistant to such natural disasters.
 イネ(0ryza sativa)は、半水性植物とされており、水の必要性と水に対する体制によって、陸稲(highland rice)、水稲(lowland rice)及び浮きイネ(深水イネ)(deepwater rice又はfloating rice)に分類することができる。陸イネや水イネは、高地又は浅水領域(水深10cm程度)で栽培されているが、こうした栽培地域において雨季や豪雨などによって水位が上昇するとイネは水没し、この種のイネは酸素欠乏により枯死してしまう。これに対して浮きイネは、水位に応じて茎の節間を伸張させて冠水を回避するという戦略を取ることができる。浮きイネは、水深の増大、すなわち、冠水により劇的に節間を伸張させ、水面上に葉を展開することにより酸素欠乏を回避しガス交換を回復して冠水に抗して生き延びることができる。ある種の浮きイネにあっては、冠水の間に、一日あたり20~25cmにも及ぶ顕著な節間伸張が起こり、空気中で1m程度であったものが冠水によって最大8mにまでも伸張することが知られている(非特許文献1)。このような冠水に応じた劇的でかつ急激な成長は、過酷な環境に対するユニークな生物学適合の一つである。 Rice (0ryza sativa) is considered to be a semi-aqueous plant, depending on the need for water and the system for water, upland rice (lowland rice) and floating rice (deep water rice) (deepwater rice or floating rice) Can be classified. Land rice and water rice are cultivated in high altitudes or shallow water areas (about 10 cm deep), but when the water level rises due to the rainy season or heavy rain in these cultivated areas, rice is submerged, and this type of rice dies due to oxygen deficiency. Resulting in. On the other hand, floating rice can take a strategy of avoiding flooding by extending the internodes of the stem according to the water level. Floating rice is able to survive against flooding by increasing water depth, i.e. dramatically extending internodes by flooding and deploying leaves on the water surface to avoid oxygen deficiency and restore gas exchange . In some types of floating rice, a significant internode stretch of 20 to 25 cm per day occurs during the flooding, but what was about 1 m in the air can be extended to a maximum of 8 m by flooding. It is known to do (Non-Patent Document 1). Such dramatic and rapid growth in response to flooding is one of the unique biological adaptations to harsh environments.
cDNAやマイクロアレイなどの分子遺伝学的にアプローチが冠水応答に対するメカニズムを解明するために行われてきている。また、冠水応答に対する従来からの古典的な実験によって、冠水応答に関与するいくつかの遺伝子が明らかにされている(非特許文献2、3)。また、浮きイネの生理学的な研究によれば、エチレン、アブサイシン酸及びジベレリンが冠水応答に関与することが示唆されている(非特許文献4)。 Molecular genetic approaches such as cDNA and microarrays have been carried out to elucidate the mechanism for flood response. Moreover, some genes involved in the submergence response have been clarified by classical experiments on the submergence response (Non-Patent Documents 2 and 3). In addition, physiological studies on floating rice suggest that ethylene, abscisic acid and gibberellin are involved in the flooding response (Non-Patent Document 4).
 しかしながら、こうした冠水応答に関与する遺伝子は現在までのところ単離同定されていない。先行技術によって明らからされた遺伝子に関する情報は、相互に整合するものではなく、関与するとされた遺伝子はいまだにその位置も特定されていない。 However, the genes involved in such submergence responses have not been isolated and identified so far. The information about genes revealed by the prior art is not consistent with each other, and the genes that have been implicated have not yet been located.
 一方、このような遺伝子を利用することで、雨季や豪雨にあっても、酸素欠乏により枯死することなく生き抜く冠水耐性植物を育種することが可能となる。加えて、当該遺伝子を利用して、稲ワラなどソフトバイオマスとしての収量増加が可能な植物を育種することも可能となる。 On the other hand, by using such a gene, it is possible to breed a flood-resistant plant that survives without dying due to lack of oxygen even in the rainy season or heavy rain. In addition, plants that can increase the yield as soft biomass such as rice straw can be bred using the gene.
 本発明は、冠水応答に関連する遺伝子の単離・同定並びに当該遺伝子を利用することを一つの目的とする。 An object of the present invention is to isolate and identify a gene related to the submergence response and to use the gene.
 本発明者らは、イネにおける冠水応答に関与する遺伝子を単離同定し冠水応答についての分子レベルでのメカニズムを理解するために、ポジショナルクローニングを組み合わせたQTL解析により関与する遺伝子の同定を試みた。膨大な実験及び解析の結果、本発明者らは、冠水応答関連遺伝子を単離同定することに初めて成功した、さらに同定した遺伝子を非浮きイネ種に導入することで冠水応答能力を獲得した形質転換植物を得た。本発明によれば、これらの知見に基づき、以下の手段が提供される。 The present inventors tried to identify genes involved in QTL analysis combined with positional cloning in order to isolate and identify the genes involved in the submergence response in rice and to understand the molecular mechanism of submergence response. . As a result of enormous experimentation and analysis, the present inventors succeeded in isolating and identifying a submergence response-related gene for the first time, and further introducing the identified gene into a non-floating rice species to obtain a submergence response capability. A converted plant was obtained. According to the present invention, the following means are provided based on these findings.
 本発明によれば、下記(a)~(f)のいずれかのポリヌクレオチドが提供される。本発明のポリヌクレオチドはイネ由来であってもよい。
(a)配列番号4で表されるアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
(b)配列番号4で表されるアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
(c)配列番号4で表されるアミノ酸配列と70%以上の同一性を有するアミノ酸配列を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
(d)配列番号3で表される塩基配列を含むポリヌクレオチド。
(e)配列番号3で表される塩基配列からなるポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズし、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
(f)配列番号3で表される塩基配列と70%以上の同一性を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
According to the present invention, the following polynucleotides (a) to (f) are provided. The polynucleotide of the present invention may be derived from rice.
(A) A polynucleotide encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 4.
(B) a protein having an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence represented by SEQ ID NO: 4, and having internode elongation activity of stems during submergence Encoding polynucleotide.
(C) A polynucleotide encoding a protein having an amino acid sequence having 70% or more identity with the amino acid sequence represented by SEQ ID NO: 4 and having stem internode elongation activity during submergence.
(D) A polynucleotide comprising the base sequence represented by SEQ ID NO: 3.
(E) a polynucleotide that hybridizes with a complementary strand of a polynucleotide comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and encodes a protein having internode elongation activity of a stem when submerged.
(F) A polynucleotide encoding a protein having 70% or more identity with the base sequence represented by SEQ ID NO: 3 and having internode elongation activity of stems during submergence.
 本発明によれば、本ポリヌクレオチドを含むベクター、当該ベクターが導入された植物細胞、当該植物細胞を含む形質転換植物体、当該植物体の子孫又はクローン、当該植物体の繁殖材料も提供される。 According to the present invention, there are also provided a vector comprising the polynucleotide, a plant cell into which the vector has been introduced, a transformed plant comprising the plant cell, a progeny or clone of the plant, and a propagation material for the plant. .
 また、本発明によれば、本発明のポリヌクレオチドを植物細胞に導入し、該植物細胞から植物体を再生させる工程を含む、形質転換植物体の製造方法も提供される。 Moreover, according to the present invention, there is also provided a method for producing a transformed plant comprising the steps of introducing the polynucleotide of the present invention into a plant cell and regenerating the plant from the plant cell.
 さらに、本発明によれば、有用作物の生産方法であって、本発明の形質転換植物体を栽培する工程と、前記形質転換植物体を収穫する工程と、を備える、生産方法が提供される。該生産方法において、前記栽培工程は、前記形質転換植物体におい手完遂応答を誘導するステップSを含む工程としてもよい。 Furthermore, according to the present invention, there is provided a production method for useful crops, comprising the step of cultivating the transformed plant of the present invention and the step of harvesting the transformed plant. . In the production method, the cultivation step may include a step S that induces a hand completion response in the transformed plant body.
冠水応答の概略を示す図である。It is a figure which shows the outline of a flooding response. 準同質遺伝子系統NIL-12及びNIL-12Bの作製プロトコールを示す図である。It is a figure which shows the preparation protocol of near-isogenic lines NIL-12 and NIL-12B. T65、C9285及びNIL-12における冠水応答を示す図である。上段は、各系統のゲノタイプを模式的に示し、下段は、各植物体の空気中及び冠水条件下での栽培例を示す。It is a figure which shows the flooding response in T65, C9285, and NIL-12. The upper row schematically shows the genotype of each line, and the lower row shows an example of cultivation of each plant body in air and under submerged conditions. 各種系統における冠水応答時の節間伸長程度の測定結果を示す図である。It is a figure which shows the measurement result of the degree of internode elongation at the time of flooding response in various systems. BhaduaとC9285の12番染色体上のQTLのポジショナルクローニングの結果を示す図である。It is a figure which shows the result of the positional cloning of QTL on the 12th chromosome of Bhadua and C9285. C9285BAC中の候補領域における18個の推定遺伝子の発現パターンを示す図である。It is a figure which shows the expression pattern of 18 putative genes in the candidate area | region in C9285BAC. SK1、SK2及びACS5の発現解析結果を示す図である。It is a figure which shows the expression analysis result of SK1, SK2, and ACS5. SK1及びSK2の機能獲得解析結果を示す図である。It is a figure which shows the function acquisition analysis result of SK1 and SK2. SK1及びSK2の過剰発現体における節間伸長数の測定結果を示す図である。It is a figure which shows the measurement result of the number of internode elongation in the overexpression body of SK1 and SK2. SK1、SK2及びACS5の組織特異的発現解析結果を示す図である。It is a figure which shows the tissue specific expression analysis result of SK1, SK2, and ACS5. SK1及びSK2のゲノム構造を示す図である。It is a figure which shows the genome structure of SK1 and SK2. 典型的又は代表的な植物由来のAP2/ERF遺伝子との比較に基づくSK1及びSK2の発生系統樹を示す図である。It is a figure which shows the phylogenetic tree of SK1 and SK2 based on the comparison with the AP2 / ERF gene derived from a typical or typical plant. SK1タンパク質及びSK2タンパク質の細胞内局在を示す図である。It is a figure which shows the intracellular localization of SK1 protein and SK2 protein. 酵母におけるトランス活性化活性の測定結果を示す図である。It is a figure which shows the measurement result of the transactivation activity in yeast. 植物ホルモンとSK1及びSK2の誘導との関係を示す図である。図中の数字は、ホルモン処理日数を示す。It is a figure which shows the relationship between a plant hormone and the induction | guidance | derivation of SK1 and SK2. The numbers in the figure indicate the number of days of hormone treatment. T65及びC9285における冠水条件下での植物体中のエチレン濃度の測定結果を示す図である。It is a figure which shows the measurement result of the ethylene density | concentration in a plant body under the flooding conditions in T65 and C9285. T65及びC9285における冠水条件下でのエチレン関連遺伝子の発現パターンを示す図である。It is a figure which shows the expression pattern of the ethylene related gene under the flooding conditions in T65 and C9285. 非冠水条件下、エチレンによる節間伸長促進を示す図である。It is a figure which shows internode elongation promotion by ethylene under non-flooding conditions. エチレン阻害剤が添加された冠水条件下での節間伸長抑制を示す図である。It is a figure which shows internode elongation suppression under the flooding conditions to which the ethylene inhibitor was added. イネにおけるEIN3様タンパク質の系統樹と構造を示す図である。It is a figure which shows the phylogenetic tree and structure of EIN3-like protein in rice. EIN3の結合サイト確認のためのプライマー及び既知のEBSとのアライメント等を示す図である。It is a figure which shows the alignment with the primer for confirmation of the binding site of EIN3, known EBS, etc. SK1及びSK2へのOsEIN3タンパク質の配列特異的結合を示す図である。FIG. 2 shows sequence specific binding of OsEIN3 protein to SK1 and SK2. SK1及びSK2のプロモーター領域の変異体による競合試験結果を示す図である。It is a figure which shows the competition test result by the mutant of the promoter region of SK1 and SK2. 冠水処理時間と植物体中のGA1の濃度変化を示す図である。It is a figure which shows the submergence treatment time and the density | concentration change of GA1 in a plant body. GA処理下での節間伸長の測定結果を示す図である。It is a figure which shows the measurement result of internode elongation under GA process. NIL-12等における節間伸長の測定結果を示す図である。It is a figure which shows the measurement result of internode elongation in NIL-12 etc.
 本発明は、冠水応答に関与する遺伝子及びその利用に関連する。本発明は、本発明者らは、冠水応答のトリガーとなる遺伝子を以下のとおり初めて単離同定に成功下ことに基づく。 The present invention relates to genes involved in submergence response and their use. The present invention is based on the fact that the present inventors succeeded in isolating and identifying a gene that triggers a submergence response for the first time as follows.
 すなわち、冠水応答に関連する遺伝子を有する可能性の高いQTLの一つである12番染色体の長腕に座乗するQTLに関して準同質遺伝子系統(NIL-12)を作製した(図2)。すなわち、T65の遺伝的背景を有し12番染色体の末端にC9285の遺伝子断片を有するNIL-12を作製した。NIL-12は、水深増大に対して節間伸長にて応答することを見出した。 That is, a near-isogenic line (NIL-12) was created for QTL seated on the long arm of chromosome 12, which is one of QTLs likely to have genes related to the submergence response (FIG. 2). That is, NIL-12 having a genetic background of T65 and having a C9285 gene fragment at the end of chromosome 12 was prepared. NIL-12 was found to respond by internode elongation to increased water depth.
 さらに、これらの結果に基づき、異なる二つのマッピング集団、すなわち、T65/C9285の交配種に由来するNIL12のヘテロ準同質遺伝子系統16000株(図2)及びT65/Bhaduaの交配種に由来するNIL-12Bのヘテロ準同質遺伝子系統12000株(図2)を作製し、そのQTLのポジショナルクローニングを試みた。QTLに対する候補領域は、二つの独立した集団において重複しており、QTLを同定するために、さらに、この重複した候補領域をカバーするBACライブラリを構築し、塩基配列解析の結果、C9285において追加の領域が見出された。見出された全体として67.5kbのDNA断片は18個のORFを有することが予測された(図5)。 Furthermore, based on these results, two different mapping populations, NIL12 hetero-isogenic line 16000 derived from T65 / C9285 hybrids (FIG. 2) and NIL- derived from T65 / Bhadua hybrids. A 12B hetero near-isogenic line 12000 strain (FIG. 2) was prepared, and the QTL was subjected to positional cloning. Candidate regions for QTL are duplicated in two independent populations. In order to identify QTL, a BAC library covering this duplicated candidate region was further constructed. As a result of nucleotide sequence analysis, additional regions were added in C9285. A region was found. The total 67.5 kb DNA fragment found was predicted to have 18 ORFs (FIG. 5).
 18個のORFのうち、二つの遺伝子、Snorkel1(SK1)及びSnorkel2(SK2)は空気中では発現しておらず、深水条件では強く発現していた(図6、図7)。そこで、SK1及びSK2が、冠水応答を誘導することを確認するために、前記BACライブラリのサブライブラリから、二つの遺伝子(SK1、SK2)のいずれか一方又は両方を保持する3種のサブクローンを作製し(図5)、これらを用いて非浮きイネ種であるT65を形質転換した。また、Bhadua種についても同様にBACライブラリを作製してSK1及びSK2によりT65を形質転換した。 Of the 18 ORFs, two genes, Snorkel1 (SK1) and Snorkel2 (SK2), were not expressed in the air, but were strongly expressed in deep water conditions (FIGS. 6 and 7). Therefore, in order to confirm that SK1 and SK2 induce a submergence response, three subclones carrying one or both of the two genes (SK1, SK2) are selected from the sub-library of the BAC library. These were used to transform T65, a non-floating rice species, using these. Similarly, a BAC library was prepared for Bhadua species, and T65 was transformed with SK1 and SK2.
 各種の形質転換体に対する冠水応答を評価した結果、SK1及びSK2は、いずれも冠水応答に関与することがわかった(図7、図8、図9)。また、SK2遺伝子が冠水応答に必須であって強く寄与し、SK1は弱く作用することがわかった。 As a result of evaluating submergence responses to various transformants, it was found that both SK1 and SK2 are involved in submergence responses (FIGS. 7, 8, and 9). It was also found that SK2 gene is essential and strongly contributes to submergence response, and SK1 acts weakly.
 本発明によれば、本発明者らが新たに単離・同定した遺伝子を用いて植物を改変することで、冠水耐性を有するあるいは向上された形質転換植物を得ることができる。本発明者らが見出した遺伝子は、特に農業分野、バイオマスを原料とするエネルギー分野及び化学工業分野に有用である。例えば、雨季や豪雨時の増水時の冠水に抗して生き延びて収穫できるイネなどの植物を得ることができる。また、茎や葉が伸張した植物が得られることから、茎葉を有用部位(食用としてあるいはバイオマスとして)とする場合、収量の多い植物を得ることができる。 According to the present invention, a transformed plant having flood resistance or improved can be obtained by modifying a plant using a gene newly isolated and identified by the present inventors. The genes found by the present inventors are particularly useful in the agricultural field, the energy field using biomass as a raw material, and the chemical industry field. For example, it is possible to obtain plants such as rice that can survive and be harvested against flooding during the rainy season or during heavy rain. Moreover, since a plant with stems and leaves extended is obtained, a plant with a high yield can be obtained when the stems and leaves are used as useful parts (for food or as biomass).
 本発明者らが単離・同定した遺伝子を利用して植物を創出する場合、形質転換によることが好ましい。形質転換に要する期間は交配による遺伝子移入に比較して極めて短期間であり、他の形質の変化を伴わないで冠水耐性を付与又は向上させることができる。本発明者らが単離した遺伝子を利用することにより、冠水耐性を容易に改善することができる。また、穀類には、ゲノムシンテニー(遺伝子の相同性)が極めてよく保存されているため、本発明者らが単離した遺伝子は、コムギ、オオムギ、トウモロコシなどの穀物育種への応用が期待できる。さらに、本発明者らが単離した遺伝子は、エチレン応答転写因子であり、植物に広く分布することから、当該遺伝子の導入により全ての植物で耐水応答を改善することができると考えられる。 When a plant is created using a gene isolated and identified by the present inventors, it is preferable to use transformation. The period required for transformation is extremely short compared to gene transfer by mating, and it is possible to impart or improve submergence tolerance without changing other traits. By utilizing the gene isolated by the present inventors, the flood resistance can be easily improved. In addition, since the genome synteny (gene homology) is well preserved in cereals, the gene isolated by the present inventors can be expected to be applied to grain breeding such as wheat, barley and corn. Furthermore, since the gene isolated by the present inventors is an ethylene-responsive transcription factor and widely distributed in plants, it is considered that introduction of the gene can improve the water-resistant response in all plants.
 本発明者らが見出した遺伝子は、イネ以外の他のイネ科植物(例えば、コムギ、オオムギ、トウモロコシ、サトウキビ、ソルガム等)を含む植物に利用であると考えられ、広く農業分野、エネルギー分野及び化学工業分野に有用である。 The genes found by the present inventors are considered to be used for plants including other gramineous plants (for example, wheat, barley, corn, sugarcane, sorghum, etc.) other than rice. Useful in the chemical industry.
(ポリヌクレオチド)
 本発明のポリヌクレオチドは、核局在性のエチレン応答転写因子であって冠水応答として茎の節間伸張を誘導するタンパク質(本発明のタンパク質、以下本タンパク質ともいう。)をコードしている。以下、本タンパク質について説明する。
(Polynucleotide)
The polynucleotide of the present invention encodes a protein that is a nuclear localization ethylene-responsive transcription factor and induces internode elongation of stems as a submergence response (the protein of the present invention, hereinafter also referred to as the present protein). Hereinafter, the present protein will be described.
(タンパク質)
 本タンパク質は、核局在シグナル(Nucler Localizaion Signal(NLS))を有する。核局在シグナルは、通常、塩基性アミノ酸を主体として構成されている。本タンパク質のNLSとしては、例えば、配列番号5及び配列番号6(いずれも推定配列である。)が挙げられるが、これに限定するものではない。また、本タンパク質は、DNA結合ドメインであるERFドメインを有することができる。本タンパク質に包含されるある種のERFドメイン(AP2/ERFドメイン)(配列番号7及び配列番号8)の系統発生解析によれば、これらの当該アミノ酸配列は、OsSUB1タンパク質及びOsERFに類似していることがわかっている。なお、配列番号5及び7は、配列番号2で表されるアミノ酸配列におけるNLS(推定)及びERFであり、配列番号6及び8は、配列番号4で表されるアミノ酸配列におけるNLS(推定)及びERFである。
(protein)
The protein has a nuclear localization signal (NLS). The nuclear localization signal is usually composed mainly of basic amino acids. Examples of the NLS of this protein include, but are not limited to, SEQ ID NO: 5 and SEQ ID NO: 6 (both are deduced sequences). Moreover, this protein can have an ERF domain which is a DNA binding domain. According to the phylogenetic analysis of certain ERF domains (AP2 / ERF domains) (SEQ ID NO: 7 and SEQ ID NO: 8) encompassed by this protein, these amino acid sequences are similar to OsSUB1 protein and OsERF I know that. SEQ ID NOs: 5 and 7 are NLS (presumed) and ERF in the amino acid sequence represented by SEQ ID NO: 2, and SEQ ID NOs: 6 and 8 are NLS (presumed) and NLS in the amino acid sequence represented by SEQ ID NO: 4. ERF.
 本タンパク質は、そのC末端側にエチレン応答転写因子活性を有することができる。より具体的には、当該タンパク質が保持するERFドメインよりもC末端側にエチレン応答転写因子活性を有することが好ましい。エチレン応答転写因子活性は、例えば、後段における実施例に開示の方法で検出することができる。 This protein can have ethylene-responsive transcription factor activity on the C-terminal side. More specifically, it preferably has ethylene-responsive transcription factor activity on the C-terminal side of the ERF domain retained by the protein. The ethylene-responsive transcription factor activity can be detected, for example, by the method disclosed in the examples in the subsequent stage.
 本タンパク質の一態様として、配列番号2及び配列番号4で表されるアミノ酸配列を有するタンパク質が挙げられる。これらのタンパク質は、バングラデシュ原産の栽培品種の浮きイネであるC9285から単離されたものである。本タンパク質の他の態様としては、後述するように、配列番号2又は4で表されるアミノ酸配列と高い同一性のアミノ酸配列を有するタンパク質、配列番号2又は4で表されるアミノ酸配列において1又は複数のアミノ酸が置換、欠失、付加及び/又は挿入されたアミノ酸配列を有するタンパク質、配列番号1又は3で表される塩基配列の相補鎖にストリンジェントな条件でハイブリダイズする塩基配列によってコードされるアミノ酸配列を有するタンパク質が挙げられる。 As an embodiment of the present protein, there are proteins having the amino acid sequences represented by SEQ ID NO: 2 and SEQ ID NO: 4. These proteins were isolated from C9285, a floating rice cultivar native to Bangladesh. As other aspects of the present protein, as described later, a protein having an amino acid sequence highly identical to the amino acid sequence represented by SEQ ID NO: 2 or 4, or 1 or 2 in the amino acid sequence represented by SEQ ID NO: 2 or 4 A protein having an amino acid sequence in which a plurality of amino acids are substituted, deleted, added, and / or inserted, and is encoded by a base sequence that hybridizes under stringent conditions to a complementary strand of the base sequence represented by SEQ ID NO: 1 or 3. And a protein having an amino acid sequence.
 本ポリヌクレオチドとしては、配列番号2又は配列番号4で表されるアミノ酸配列をコードするポリヌクレオチドが挙げられる。なお、これらの本ポリヌクレオチドは、それぞれ単独で用いることもできる。その場合、配列番号4で表されるアミノ酸配列をコードするポリヌクレオチドを好ましく用いることができる。本ポリヌクレオチドとしてはこれら双方を利用するのがより好ましい。配列番号2及び配列番号4で表されるアミノ酸配列をコードするポリヌクレオチドとしては、それぞれ配列番号1及び配列番号3で表される塩基配列を有するポリヌクレオチドが挙げられる。かかるポリヌクレオチドは、公知技術によって調製することができる。例えば、イネ組織抽出物からtotal mRNAを調製し、配列番号1又は配列番号3で表される塩基配列をもとにプライマーを設計し、RACE法などPCR法等を行って上記配列番号の完全長cDNAを得ることができる。またはイネ組織抽出物からcDNAライブラリを作製し、上記塩基配列をもとにプローブを設計し、ハイブリダイゼーション法等によって得ることもできる。さらには、上記配列番号に記載の塩基配列をもとに、人工的に合成してもよい。 Examples of the present polynucleotide include a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4. Each of these polynucleotides can be used alone. In that case, a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 4 can be preferably used. It is more preferable to use both of these as the present polynucleotide. Examples of the polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 2 and SEQ ID NO: 4 include polynucleotides having the base sequences represented by SEQ ID NO: 1 and SEQ ID NO: 3, respectively. Such polynucleotides can be prepared by known techniques. For example, total mRNA is prepared from a rice tissue extract, a primer is designed based on the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3, and PCR method such as RACE method is performed to perform the full length of the above SEQ ID NO: cDNA can be obtained. Alternatively, a cDNA library can be prepared from a rice tissue extract, a probe can be designed based on the above base sequence, and obtained by a hybridization method or the like. Further, it may be artificially synthesized based on the base sequence described in the above SEQ ID NO.
 本ポリヌクレオチドは、配列番号2及び4で表されるアミノ酸配列をコードするものに限定されるものではなく、冠水時に茎の節間を伸張する活性(冠水応答活性)を呈するタンパク質をコードするものであればよい。このようなポリヌクレオチドは、上記のような冠水応答活性を有する限り、天然から調製されたものでも人工的に調製されたものでもよい。例えば、上記配列番号のオーソログ、ホモログ、人工的に変異を導入したものが挙げられる。なお、冠水応答活性は、実施例に開示の方法の少なくとも一つで評価することができる。例えば、形質転換植物体を作製し、冠水時における該植物体の節間伸長の測定や、空気中におけるエチレン又はエテフォンへの暴露による前記植物体の節間伸長の測定で行うことができる。 This polynucleotide is not limited to those encoding the amino acid sequences represented by SEQ ID NOs: 2 and 4, but encodes a protein exhibiting an activity of extending between stem nodes during submergence (submergence responsive activity) If it is. Such a polynucleotide may be prepared from nature or artificially prepared as long as it has the above-mentioned submergence responsive activity. For example, orthologs, homologues, and artificially introduced mutations of the above SEQ ID NO. The submergence responsive activity can be evaluated by at least one of the methods disclosed in the Examples. For example, a transformed plant can be prepared and measured by measuring internode elongation of the plant during submergence or by measuring internode elongation of the plant by exposure to ethylene or ethephon in the air.
 本ポリヌクレオチドは、植物ゲノムのデータベースに対して、配列番号2又は4のアミノ酸配列や配列番号1、3の塩基配列を利用して相同性検索を行ってこれらの配列と高い同一性を有するものであってもよい。例えば、冠水応答として茎の節間伸張を呈すイネなどの植物の野生種及び栽培種などのイネ科植物又はその他の植物から、NLS及びERFに関するアミノ酸配列又はこれをコードする塩基配列の情報に基づいて、イネゲノムのデータベース等植物ゲノムのデータベースを利用した相同性検索等で抽出するなどして抽出されるアミノ酸配列をコードするものであってもよい。 This polynucleotide has a high degree of identity with these sequences by performing a homology search against the plant genome database using the amino acid sequence of SEQ ID NO: 2 or 4 or the base sequence of SEQ ID NOs: 1, 3. It may be. For example, based on information on the amino acid sequences of NLS and ERF or the base sequences encoding them from grasses or other plants such as wild and cultivated varieties such as rice that exhibit internode elongation of stems as a submergence response In addition, it may encode an amino acid sequence extracted by homology search using a plant genome database such as a rice genome database.
 本ポリヌクレオチドは、配列番号2又は4で表されるアミノ酸配列と高い同一性のアミノ酸配列をコードすることが好ましいが、高い同一性とは、少なくとも40%以上、好ましくは60%以上、さらに好ましくは80%以上、さらに好ましくは90%以上、さらに好ましくは少なくとも95%以上、さらに好ましくは少なくとも97%以上(例えば、98から99%)の配列の同一性を意味する。アミノ酸配列や塩基配列の同一性は、例えば、Karlin and Altschul によるアルゴリズムBLAST (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990、Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF, et al: J Mol Biol 215: 403, 1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。 The polynucleotide preferably encodes an amino acid sequence having high identity with the amino acid sequence represented by SEQ ID NO: 2 or 4, and high identity is at least 40% or more, preferably 60% or more, and more preferably Means 80% or more, more preferably 90% or more, more preferably at least 95% or more, more preferably at least 97% or more (eg, 98 to 99%) of sequence identity. The identity of the amino acid sequence and the base sequence is, for example, the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc. Natl. Acad. Sci. USA 90: 5873-5877 by Karlin and Altschul. , 1993). Programs called BLASTN and BLASTX based on the BLAST algorithm have been developed (Altschul SF, et al: J Mol Biol 215: 403, 1990). When analyzing a base sequence using BLASTN, parameters are set to, for example, score = 100 and wordlength = 12. In addition, when an amino acid sequence is analyzed using BLASTX, the parameters are, for example, score = 50 and wordlength = 3. When using BLAST and Gapped BLAST programs, use the default parameters of each program. Specific techniques for these analysis methods are known (http://www.ncbi.nlm.nih.gov.).
 本ポリヌクレオチドは、配列番号2又は4で表されるアミノ酸配列において1又は複数のアミノ酸が置換、欠失、付加及び/又は挿入されたアミノ酸配列をコードするものであってもよい。PCRによる変異導入法やカセット変異法などの当業者に周知の遺伝子改変方法を施し、部位特異的にまたはランダムに変異を導入することによって調製することができる。または上記配列番号記載の塩基配列に変異を導入した配列を、市販の核酸合成装置によって合成することも可能である。 The present polynucleotide may encode an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence represented by SEQ ID NO: 2 or 4. It can be prepared by introducing a mutation site-specifically or randomly by applying a gene modification method known to those skilled in the art, such as a mutation introduction method by PCR or a cassette mutation method. Alternatively, it is also possible to synthesize a sequence in which a mutation is introduced into the base sequence described in the above SEQ ID No. using a commercially available nucleic acid synthesizer.
 なお、アミノ酸の変異を伴わない縮重変異体も、本ポリヌクレオチドに含まれる。 Note that degenerate mutants that do not involve amino acid mutations are also included in the polynucleotide.
 本ポリヌクレオチドは、配列番号1又は3で表される塩基配列の相補鎖にストリンジェントな条件でハイブリダイズするものであってもよい。ここで、ストリンジェントなハイブリダイゼーション条件は、当業者であれば、適宜選択することができる。一例を示せば、25%ホルムアミド、より厳しい条件では50%ホルムアミド、4×SSC、50mM HEPES (pH7.0)、10×デンハルト溶液、20μg/ml変性サケ精子DNAを含むハイブリダイゼーション溶液中、42℃で一晩プレハイブリダイゼーションを行った後、標識したプローブを添加し、42℃で一晩保温することによりハイブリダイゼーションを行う。その後の洗浄における洗浄液および温度条件は、「1xSSC、0.1% SDS、37℃」程度で、より厳しい条件としては「0.5xSSC、0.1% SDS、42℃」程度で、さらに厳しい条件としては「0.2xSSC、0.1% SDS、65℃」程度で実施することができる。このようにハイブリダイゼーションの洗浄の条件が厳しくなるほどプローブ配列と高い相同性を有するポリヌクレオチドの単離を期待しうる。但し、上記SSC、SDSおよび温度の条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジェンシーを決定する上記若しくは他の要素(例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーション反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。こうしたポリヌクレオチドは、通常、配列番号1又は3で表される塩基配列と少なくとも40%以上、好ましくは60%以上、さらに好ましくは80%以上、さらに好ましくは90%以上、さらに好ましくは少なくとも95%以上、さらに好ましくは少なくとも97%以上(例えば、98から99%)の配列の同一性を有するものである。 The present polynucleotide may be one that hybridizes under stringent conditions to a complementary strand of the base sequence represented by SEQ ID NO: 1 or 3. Here, stringent hybridization conditions can be appropriately selected by those skilled in the art. For example, 25% formamide, 50% formamide under more severe conditions, 4 × SSC, 50 mM HEPES® (pH 7.0), 10 × Denhardt's solution, hybridization solution containing 20 μg / ml denatured salmon sperm DNA at 42 ° C. After overnight prehybridization, add a labeled probe and incubate at 42 ° C. overnight. The cleaning solution and temperature conditions for the subsequent cleaning are about `` 1xSSC, 0.1% SDS, 37 ° C '', more severe conditions are about `` 0.5xSSC, 0.1% SDS, 42 ° C '', and more severe conditions are `` 0.2xSSC , 0.1% SDS, 65 ° C. ”. Thus, isolation of a polynucleotide having high homology with the probe sequence can be expected as the conditions for washing for hybridization become more severe. However, combinations of the above SSC, SDS, and temperature conditions are exemplary, and those skilled in the art will understand the above or other factors that determine the stringency of hybridization (eg, probe concentration, probe length, hybridization reaction). It is possible to achieve the same stringency as above by appropriately combining the time and the like. Such a polynucleotide is usually at least 40% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more, more preferably at least 95% with the base sequence represented by SEQ ID NO: 1 or 3. More preferably, the sequence identity is at least 97% or more (for example, 98 to 99%).
 本ポリヌクレオチドは、ゲノムDNA、cDNA、化学合成DNAが含まれるほか、DNA/RNAハイブリッド、DNA/RNAキメラであってもよい。またRNAの構成塩基を備えていてもよいほか、天然塩基を化学的修飾した塩基や糖鎖を備えていてもよい。 The present polynucleotide includes genomic DNA, cDNA, and chemically synthesized DNA, and may be a DNA / RNA hybrid or a DNA / RNA chimera. Moreover, the base of RNA may be provided, and the base and sugar chain which chemically modified the natural base may be provided.
 本ポリヌクレオチドは、その由来を問うものではない。本ポリヌクレオチドは、好ましくは植物由来である。実施例に記載したように、本ポリヌクレオチドはイネ(イネ科)から分離したものであるが、同様の冠水応答を示す植物であれば存在すると考えられる。本ポリヌクレオチドは、好ましくは単子葉植物由来であり、より好ましくはイネ科由来である。 This polynucleotide does not ask its origin. The polynucleotide is preferably derived from a plant. As described in the Examples, the present polynucleotide is isolated from rice (Poaceae), but it is considered to exist as long as it exhibits a similar flooding response. The present polynucleotide is preferably derived from a monocotyledonous plant, more preferably from a grass family.
(発現ベクター)
 本発明の発現ベクターは、本ポリヌクレオチドを保持する発現ベクターである。本発明のベクターは、本タンパク質を生産するためのほか、形質転換植物体作製のために植物細胞内で本ポリヌクレオチドを発現させるベクターとして用いられる。このようなベクターは、植物細胞で転写可能なプロモーター配列と転写産物の安定化に必要なポリアデニレーション部位を含むターミネーター配列を含んでいれば特に制限されず、例えば、プラスミド「pBI121」、「pBI221」、「pBI101」(いずれもClontech社製)などが挙げられる。植物細胞の形質転換に用いられるベクターとしては、該細胞内で挿入遺伝子を発現させることが可能なものであれば特に制限はない。例えば、植物細胞内での恒常的な遺伝子発現を行うためのプロモーター(例えば、カリフラワーモザイクウイルスの35Sプロモーター)を有するベクターや外的な刺激により誘導的に活性化されるプロモーターを有するベクターを用いることも可能である。ここでいう「植物細胞」には、種々の形態の植物細胞、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルスなどが含まれる。
(Expression vector)
The expression vector of the present invention is an expression vector that retains the present polynucleotide. The vector of the present invention is used as a vector for expressing the present polynucleotide in plant cells in order to produce the present protein and also to produce transformed plants. Such a vector is not particularly limited as long as it contains a promoter sequence that can be transcribed in plant cells and a terminator sequence containing a polyadenylation site necessary for stabilization of the transcript. For example, plasmids “pBI121”, “pBI221” ”,“ PBI101 ”(both manufactured by Clontech). The vector used for the transformation of plant cells is not particularly limited as long as the inserted gene can be expressed in the cells. For example, using a vector having a promoter (eg, cauliflower mosaic virus 35S promoter) for constitutive gene expression in plant cells or a vector having a promoter that is inducibly activated by external stimuli Is also possible. As used herein, “plant cells” include various forms of plant cells, such as suspension culture cells, protoplasts, leaf sections, and callus.
 本発明のベクターは、本発明のタンパク質を恒常的または誘導的に発現させるためのプロモーターを含有しうる。恒常的に発現させるためのプロモーターとしては、例えば、カリフラワーモザイクウイルスの35Sプロモーター(Odell et al. 1985 Nature 313:810)、イネのアクチンプロモーター(Zhang et al.1991 Plant Cell 3:1155)、トウモロコシのユビキチンプロモーター(Cornejo et al. 1993 Plant Mol.Biol. 23:567)などが挙げられる。 The vector of the present invention may contain a promoter for constitutively or inducibly expressing the protein of the present invention. Examples of promoters for constant expression include cauliflower mosaic virus 35S promoter (Odell et al. 1985 Nature 313: 810), rice actin promoter (Zhang et al.1991 Plant Cell 3: 1155), maize Ubiquitin promoter (Cornejo et al. 1993 Plant Mol.Biol. 23: 567) and the like.
 なお、誘導的に発現させるためのプロモーターとしては、例えば糸状菌・細菌・ウイルスの感染や侵入、低温、高温、乾燥、紫外線の照射、特定の化合物の散布などの外因によって発現することが知られているプロモーターなどが挙げられる。このようなプロモーターとしては、例えば、イネキチナーゼ遺伝子のプロモーター(Xu et al. 1996 Plant Mol.Biol.30:387)やタバコのPRタンパク質遺伝子のプロモーター(Ohshima et al. 1990 Plant Cell 2:95)、イネの「lip19」遺伝子のプロモーター(Aguan et al. 1993 Mol.GenGenet. 240:1)、イネの「hsp80」遺伝子と「hsp72」遺伝子のプロモーター(Van Breusegem et al. 1994 Planta 193:57)、シロイヌナズナの「rab16」遺伝子のプロモーター(Nundy et al. 1990 Proc.Natl.Acad.Sci.USA 87:1406)、パセリのカルコン合成酵素遺伝子のプロモーター(Schulze-Lefert et al. 1989 EMBO J. 8:651)、トウモロコシのアルコールデヒドロゲナーゼ遺伝子のプロモーター(Walker et al. 1987 Proc.Natl.Acad.Sci.USA 84:6624)などが挙げられる。本発明によれば、こうした発現ベクターが導入された宿主細胞も提供される。 In addition, promoters for inducible expression are known to be expressed by external factors such as infection and invasion of filamentous fungi / bacteria / viruses, low temperature, high temperature, drying, ultraviolet irradiation, spraying of specific compounds, etc. Promoters and the like. Examples of such promoters include rice chitinase gene promoter (Xu et al. 1996 Plant Mol. Biol. 30: 387) and tobacco PR protein gene promoter (Ohshima et al. 1990 Plan Cell 2:95), Rice “lip19” promoter (Aguan et al. 1993 Mol.GenGenet. 240: 1), rice “hsp80” and “hsp72” promoters (Van Breusegem et al. 1994 Planta 193: 57), Arabidopsis "Rab16" gene promoter (Nundy et al. 1990 Proc.Natl.Acad.Sci.USA 87: 1406), parsley chalcone synthase gene promoter (Schulze-Lefert et al. 1989 EMBO J. 8: 651) And the promoter of corn alcohol dehydrogenase gene (Walker et al. 1987 Proc.Natl.Acad.Sci.USA 84: 6624). According to the present invention, a host cell into which such an expression vector has been introduced is also provided.
(形質転換細胞)
 本発明の形質転換細胞は、本発明のベクターが導入された細胞である。本発明のベクターが導入される細胞には、組み換えタンパク質の生産に用いる大腸菌、酵母、動植物細胞、昆虫細胞等の細胞の他に、形質転換植物体作製のための植物細胞が含まれる。植物細胞としては特に制限はなく、例えば、シロイヌナズナ、イネ、トウモロコシ、ジャガイモ、タバコなどの細胞が挙げられる。本発明の植物細胞には、培養細胞の他、植物体中の細胞も含まれる。また、プロトプラスト、苗条原基、多芽体、毛状根も含まれる。植物細胞へのベクターの導入は、ポリエチレングリコール法、電気穿孔法(エレクトロポーレーション)、アグロバクテリウムを介する方法、パーティクルガン法など当業者に公知の種々の方法を用いることができる。
(Transformed cells)
The transformed cell of the present invention is a cell into which the vector of the present invention has been introduced. The cells into which the vector of the present invention is introduced include plant cells for producing transformed plants, in addition to cells such as E. coli, yeast, animal and plant cells and insect cells used for production of recombinant proteins. There is no restriction | limiting in particular as a plant cell, For example, cells, such as Arabidopsis thaliana, rice, corn, potato, and tobacco, are mentioned. The plant cells of the present invention include cultured cells as well as cells in the plant body. Also included are protoplasts, shoot primordia, multi-buds, and hairy roots. For introduction of a vector into a plant cell, various methods known to those skilled in the art such as polyethylene glycol method, electroporation (electroporation), Agrobacterium-mediated method, and particle gun method can be used.
(形質転換植物)
 本発明の形質転換植物は、本発明のベクターが導入された植物細胞を含んでいる。形質転換植物は、本発明のベクターを導入して形質転換した植物細胞から植物体を再生させることにより得ることができる。形質転換植物細胞は、上記のとおり公知の方法で作製できるが、例えば、例えば、ポリエチレングリコールによるプロトプラストへ遺伝子導入(Datta,S.K. (1995) In Gene Transfer To Plants(Potrykus I and Spangenberg Eds.) pp66-74)、電気パルスによるプロトプラストへ遺伝子導入(Toki et al. (1992) Plant Physiol. 100, 1503-1507)、パーティクルガン法により細胞へ遺伝子を直接導入(Christou et al. (1991) Bio/technology, 9: 957-962.)およびアグロバクテリウムを介して遺伝子を導入(Hiei et al. (1994) Plant J. 6: 271-282.)等の各種方法が挙げられる。また、転換植物細胞からの植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行うことが可能である(Toki et al. (1995) Plant Physiol. 100:1503-1507参照)。例えば、イネであればFujimuraら(Plant Tissue Culture Lett. 2:74 (1995))の方法が挙げられ、トウモロコシであればShillitoら(Bio/Technology 7:581 (1989))の方法やGorden-Kammら(Plant Cell 2:603(1990))が挙げられ、ジャガイモであればVisserら(Theor.Appl.Genet 78:594 (1989))の方法が挙げられ、タバコであればNagataとTakebe(Planta 99:12(1971))の方法が挙げられ、シロイヌナズナであればAkamaら(Plant Cell Reports12:7-11 (1992))の方法が挙げられる。
(Transformed plant)
The transformed plant of the present invention contains a plant cell into which the vector of the present invention has been introduced. A transformed plant can be obtained by regenerating a plant from a plant cell transformed by introducing the vector of the present invention. Transformed plant cells can be prepared by a known method as described above. For example, gene transfer into protoplasts using polyethylene glycol (Datta, SK (1995) In Gene Transfer To Plants (Potrykus I and Spangenberg Eds.) Pp66- 74), gene transfer to protoplasts by electric pulse (Toki et al. (1992) Plant Physiol. 100, 1503-1507), gene transfer directly to cells by particle gun method (Christou et al. (1991) Bio / technology, 9: 957-962.) And gene transfer via Agrobacterium (Hiei et al. (1994) Plant J. 6: 271-282.). In addition, regeneration of plant bodies from converted plant cells can be performed by methods known to those skilled in the art depending on the type of plant cells (see Toki et al. (1995) Plant Physiol. 100: 1503-1507). ). For example, the method of Fujimura et al. (Plant Tissue Culture Lett. 2:74 (1995)) can be cited for rice, and the method of Shillito et al. (Bio / Technology 7: 581 (1989)) or Gorden-Kamm for maize. (Plant Cell 2: 603 (1990)), for potatoes the method of Visser et al. (Theor.Appl.Genet 78: 594 (1989)), for tobacco, Nagata and Takebe (Planta 99 : 12 (1971)), and for Arabidopsis, the method of Akama et al. (Plant Cell Reports 12: 7-11 (1992)) is used.
 ゲノム内に本ポリヌクレオチドが導入された形質転換植物体が得られれば、該植物体から有性生殖または無性生殖により子孫を得ることが可能である。また、該植物体やその子孫あるいはクローンから繁殖材料(例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラスト等)を得て、それらを基に該植物体を量産することも可能である。本発明には、本発明のDNAが導入された植物細胞、該細胞を含む植物体、該植物体の子孫およびクローン、並びに該植物体、その子孫、およびクローンの繁殖材料が含まれる。 If a transformed plant into which the present polynucleotide is introduced into the genome is obtained, offspring can be obtained from the plant by sexual reproduction or asexual reproduction. It is also possible to obtain a propagation material (for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.) from the plant body, its descendants or clones, and mass-produce the plant body based on them. Is possible. The present invention includes a plant cell into which the DNA of the present invention has been introduced, a plant containing the cell, progeny and clones of the plant, and propagation material of the plant, its progeny and clones.
 このようにして作出された植物体は、冠水応答能が付与又は向上され、冠水に対して耐性が改善されたものとなっている。したがって、冠水にあっても収穫を期待できるとともに、茎葉部分の収量増大が期待できる植物体となっている。 The plant body produced in this way has been given or improved the ability to respond to submergence, and has improved resistance to submergence. Therefore, it is a plant body that can be expected to be harvested even in submersion and can be expected to increase the yield of the foliage part.
 また、こうして作出された植物体は、自然災害による冠水に耐性があるほか、人為的に冠水させるかあるいは空気中でエチレンに暴露することで、意図的に冠水応答を生じさせることで茎の節間を伸長させることができる。このため、草丈の高い、あるいは茎葉部分が多い植物体を容易に得ることができる。 In addition to being resistant to flooding due to natural disasters, the plant produced in this way is not only flooded artificially or exposed to ethylene in the air, intentionally generating a flooding response, resulting in stem nodes. The space can be extended. For this reason, a plant body with a high plant height or a large number of stems and leaves can be easily obtained.
(生産方法)
 本発明の有用作物の生産方法は、本発明の形質転換植物体を栽培する工程と、前記形質転換植物体を収穫する工程を備えている。本発明の生産方法によれば、雨季や豪雨などによる冠水時にあっても作物が生き延びることができるので確実に作物を収穫することができる。また、栽培工程は、形質転換植物体において冠水応答を誘導するステップを含んでいてもよい。冠水応答は、形質転換体を冠水し又はエチレンに暴露することにより人工的に誘導することができる。こうした処理を実施することで、形質転換植物体に冠水応答を誘導し、茎の節間を伸長させることができる。この結果、草丈の高い、あるいは茎葉部分が多い植物体を収穫できるようになる。
(Production method)
The method for producing useful crops of the present invention comprises a step of cultivating the transformed plant of the present invention and a step of harvesting the transformed plant. According to the production method of the present invention, a crop can survive even during a rainy season or flooding due to heavy rain, so that the crop can be reliably harvested. Moreover, the cultivation process may include the step of inducing a flooding response in the transformed plant body. The submergence response can be induced artificially by flooding the transformant or exposing it to ethylene. By carrying out such a treatment, it is possible to induce a submergence response in the transformed plant body and extend the internodes of the stem. As a result, it becomes possible to harvest plants having a high plant height or a large number of foliage.
 なお、冠水応答を誘導するための冠水処理は、冠水応答が誘導できる程度の水位となるように植物体に水を供給すればよい。好ましくは、植物の高さの50%以上の高さの水位であり、より好ましくは同70%以上であり、さらに好ましくは同80%以上であり、一層好ましくは、90%以上であり、最も好ましくは完全に水没する程度である。また、冠水応答をエチレンに暴露することにより誘導する場合、冠水応答が誘導できる程度の濃度あるいは量のエチレンに暴露すればよい。エチレンへの暴露は、例えば、空気中など植物体が生存できるガス雰囲気においてエチレンガスとして供給することができる。ガス雰囲気中の適切なエチレン濃度や暴露時間は、予め決定しておくことができる。 In addition, what is necessary is just to supply water to a plant body so that it may become the water level of the grade which can induce a flooding response in the flooding process for inducing a flooding response. Preferably, the water level is 50% or more of the height of the plant, more preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, most Preferably, it is enough to be completely submerged. In addition, when the submergence response is induced by exposure to ethylene, exposure to a concentration or amount of ethylene that can induce the submergence response may be performed. The exposure to ethylene can be supplied as ethylene gas, for example, in a gas atmosphere where plants can survive, such as in the air. Appropriate ethylene concentration and exposure time in the gas atmosphere can be determined in advance.
 以下、本発明を実施例を挙げて具体的に説明するが、これらは本発明を限定するものではない。以下、本発明の材料及び方法について説明する。 Hereinafter, the present invention will be specifically described with reference to examples, but these do not limit the present invention. Hereinafter, the material and method of the present invention will be described.
(1)植物材料及び冠水応答評価
 インド原産の野生種であり冠水耐性のあるW0120((O. ru The Indian wild rice species W0120 (O. rufipogon; perennial), (Morishima et al. 1962), バングラディッシュで栽培されている浮きイネの栽培種であるC9285及びBhadua(いずれもO. sativa, ssp. インデカ種)を、浮きイネ種として以下の実験に用いた。
(1) Evaluation of plant material and submergence response W0120 (O. ru The Indian wild rice species W0120 (O. rufipogon; perennial), (Morishima et al. 1962), Bangladesh C9285 and Bhadua (both O. sativa and ssp. Indeca species), which are cultivated floating rice cultivated in Hokkaido, were used as floating rice species in the following experiments.
 インド原産の野生種W0106 (O. rufipogon; 一年性)と栽培種Taichung 65 (T65; O. sativa ssp. ジャポニカ種)を、浮きイネの特徴を有しないイネ(以下、非浮きイネ種又は対照種と称する。)及び交雑用に用いた。さらに、O. glumaepatula (W2199)を栽培種として用いた。これらの系統、C9285、 W0120、 W0106及び O. glumaepatula は、いずれも国立遺伝学研究所(日本)から取得したものを用い、T65は、名古屋大学で栽培したものを用いた。 Wild rice W0106 (O. rufipogon; one year) native to India and cultivated species Taichung 65 (T65; O. sativa ssp. Japonica) are used for rice that does not have floating rice characteristics (hereinafter, non-floating rice species or controls) Used for crossing). Furthermore, O. glumaepatula (W2199) was used as a cultivated species. These lines, C9285, W0120, W0106 and O. glumaepatula were all obtained from the National Institute of Genetics (Japan), and T65 was cultivated at Nagoya University.
 植物体は、ペトリ皿内の水中で、30℃、72時間処理して発芽させた後、直径10cm、高さ13cmのポットに移植した。10葉期に、茎の節間伸張長さ(TIL)を評価するのにあたって、植物体を3000Lのタンク内で1週間、その高さの70%まで冠水させた(図1参照)。 Plants were germinated by treatment in water in a petri dish at 30 ° C. for 72 hours, and then transplanted to pots having a diameter of 10 cm and a height of 13 cm. At the 10th leaf stage, in order to evaluate the internode elongation length (TIL) of the stem, the plant body was submerged to 70% of its height in a 3000 L tank for 1 week (see FIG. 1).
(2)栽培種と野生種のBACライブラリの構築
 BACライブラリは、植物体の若葉から常法に従い構築した。すなわち、HindIII によるDNAの部分的消化処理、パルスフィールドゲル電気泳動(CHEF, Bio-Rad Laboratories, Hercules, California, USA)による巨大DNAのサイズ分画、ベクター (pIndigo BAC-5, EPICENTRE Biotechnologies, Madison, Wisconsin, USA)への連結及び大腸菌E. coli (DH10B strain)への形質転換により構築した。陽性のBACクローンは、少なくともイネゲノムDNAの6倍量に相当する総DNAを保持する十分な個数のBACライブラリのそれぞれにつき、プールしたDNAからPCRによりスクリーニングした。また、これらのBACライブラリにつき、高密度BACフィルターからサザンハイブリダイゼーションで陽性クローンをスクリーニングした。
(2) Construction of cultivated and wild species BAC libraries BAC libraries were constructed from young leaves of plants in accordance with a conventional method. That is, partial digestion of DNA with HindIII, size fractionation of large DNA by pulse field gel electrophoresis (CHEF, Bio-Rad Laboratories, Hercules, California, USA), vector (pIndigo BAC-5, EPICENTRE Biotechnologies, Madison, Wisconsin, USA) and transformation into E. coli (DH10B strain). Positive BAC clones were screened by PCR from the pooled DNA for each of a sufficient number of BAC libraries holding total DNA equivalent to at least 6 times the amount of rice genomic DNA. For these BAC libraries, positive clones were screened by Southern hybridization from a high-density BAC filter.
(3)準同質遺伝子系統及びピラミディング系統の作製
 浮きイネ種であるC9285の1番染色体、3番染色体及び12番染色体上のQTLに対応する遺伝子断片をT65の遺伝的背景に対して備える準同質遺伝子系統(NIL-1、NIL-3及びNIL-12)をそれぞれ作製した。図2に示すように、浮きイネの栽培種C9285及びBhaduaをそれぞれ非浮きイネ種T65と交配した。これらの交配種につき、T65を反復親とする4回の戻し交配とマーカー利用選抜(MAS)によりNIL-12(BC4F1集団)を得た。さらに、自殖を行い、準同質遺伝子系統の後代NIL-12及びNIL-12B(BC4F2集団)を得た。同様にしてNIL-1及びNIL-3につきBC4F2集団を得た。ピラミディング系統であるNIL1+3、NIL3+12、NIL1+12及びNIL1+3+12は、準同質遺伝子系統NILsを互いに交配することにより得た。
(3) Preparation of quasi-isogenic lines and pyramiding lines A quasi-equipment with a gene fragment corresponding to QTL on chromosomes 1, 3 and 12 of C9285, a floating rice species, against the genetic background of T65 Isogenic lines (NIL-1, NIL-3, and NIL-12) were produced respectively. As shown in FIG. 2, floating rice cultivars C9285 and Bhadua were crossed with non-floating rice species T65, respectively. For these hybrids, NIL-12 (BC 4 F 1 population) was obtained by 4 backcrosses using T65 as a recurrent parent and marker-based selection (MAS). Furthermore, self-breeding was performed to obtain progeny NIL-12 and NIL-12B (BC 4 F 2 population) of near-isogenic lines. Similarly, BC 4 F 2 populations were obtained for NIL-1 and NIL-3. The pyramiding lines NIL1 + 3, NIL3 + 12, NIL1 + 12 and NIL1 + 3 + 12 were obtained by crossing near isogenic lines NILs with each other.
(4)SK1遺伝子及びSK2遺伝子のクローニング
 T65とC9285(BC4F2)の交配種からのヘテロ系統NIL-12(BC4F2)の16000個体と、T65とBhadua(BC4F2)の交配種から得たヘテロ系統NIL-12B(BC4F2)の12000個体をSK1及びSK2のポジショナルクローニングに利用した。
(4) SK1 gene and SK2 gene cloning T65 and C9285 and 16000 individuals (BC 4 F 2) hetero systems NIL-12 from hybrids of (BC 4 F 2), T65 and Bhadua the (BC 4 F 2) 12000 individuals of the heterozygous line NIL-12B (BC 4 F 2 ) obtained from the hybrid were used for the positional cloning of SK1 and SK2.
 冠水条件でのSK1及びSK2の表現型の評価(節間伸張長さの測定)は、F3及びF4個体を用いて行った。C9285、Bhadua及びT65の候補領域内にあるDNA断片につき、表現型を比較した。プロモーター領域を含むSK1及びSK2の全長ゲノムDNAを、バイナリベクターpBI-Hm12に導入した。これらのDNA断片は、アグロバクテリウム法によりジャポニカ種であるT65に導入した。対照として、こうしたDNA断片を含まない空のベクターをT65に導入した。 Evaluation of SK1 and SK2 phenotypes (measurement of internode elongation length) under submerged conditions was performed using F3 and F4 individuals. Phenotypes were compared for DNA fragments within the candidate regions of C9285, Bhadua and T65. The full length genomic DNAs of SK1 and SK2 including the promoter region were introduced into the binary vector pBI-Hm12. These DNA fragments were introduced into T65, which is a japonica species, by the Agrobacterium method. As a control, an empty vector without these DNA fragments was introduced into T65.
(5)RNAの分離及び半定量的RT-PCR
 全RNAを、Samblookら(Molecular Cloning A Laboratory Mannual Cold Spring Harbor、1989)の方法により調製し、cDNAの第1の鎖をオムニスクリプト リバース トランスクリプションキット(Qiagen, California, USA)を用いて2μgの全RNAから合成した。遺伝子特異的なプライマーを用いて半定量的RT-PCRをKanekoらの方法(Kaneko et al., 2003)により実施した。
(5) RNA isolation and semi-quantitative RT-PCR
Total RNA was prepared by the method of Samblook et al. (Molecular Cloning A Laboratory Manual Cold Spring Harbor, 1989) and the first strand of cDNA was prepared using 2 μg of the Omniscript Reverse Transcription Kit (Qiagen, California, USA). Synthesized from total RNA. Semi-quantitative RT-PCR was performed by the method of Kaneko et al. (Kaneko et al., 2003) using gene specific primers.
(6)プラスミドの構築及び植物体の形質転換
 SK1及びSK2が過剰発現した形質転換体を作製するために、SK1とSK2のcDNAを増幅してpCR4 Blunt-TOPO (Invitrogen, California, USA)に導入した。このプラスミドの塩基配列を解析して正しくSK1及びSK2が導入されたことを確認した。プラスミドを制限酵素処理して、DNA断片をACTIN1 プロモーター及びnosターミネーターを有するpBI101バイナリベクターに導入した。このバイナリベクターを、アグロバクテリウムEHA101株(A. tumefaciens strain EHA101 (Hood et al., 1986))にエレクトロポレーションで導入した。イネを、文献(Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282 (1994).)記載の方法で形質転換した。簡略して説明すると、DNA断片が導入されたアグロバクテリウムEHA101株を栽培イネであるT65のカルスにエレクトロポレーションで導入し、形質転換植物体を、50 mg/l ハイグロマイシンを含有する培地で選択した。ハイグロマイシン耐性植物体を土壌に移植し、30℃で16時間光条件/8時間暗条件で栽培した。
(6) Plasmid construction and plant transformation To produce transformants overexpressing SK1 and SK2, SK1 and SK2 cDNAs were amplified and introduced into pCR4 Blunt-TOPO (Invitrogen, California, USA). did. Analysis of the base sequence of this plasmid confirmed that SK1 and SK2 were correctly introduced. The plasmid was subjected to restriction enzyme treatment, and the DNA fragment was introduced into the pBI101 binary vector having ACTIN1 promoter and nos terminator. This binary vector was introduced into Agrobacterium strain EHA101 (A. tumefaciens strain EHA101 (Hood et al., 1986)) by electroporation. Rice (Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. J. 6, 271-282 (1994).). Briefly, the Agrobacterium EHA101 strain into which the DNA fragment was introduced was introduced into T65 callus, a cultivated rice plant, by electroporation, and the transformed plant was placed in a medium containing 50 mg / l hygromycin. Selected. The hygromycin-resistant plant was transplanted to soil and cultivated at 30 ° C. for 16 hours in light conditions / 8 hours in dark conditions.
(7)GFP融合タンパク質を発現させるためのプラスミドの構築
 GFP融合タンパク質を作製するため、SK1とSK2のcDNAをその配列に基づくプライマーを用いてPCRで増幅した。SK1遺伝子又はSK2遺伝子のN末端にGFPが連結した融合タンパク質をACTIN1プロモーターの制御下で発現させるために、PCR産物を、pCR4 Blunt-TOPO (Invitrogen)に導入し、その後pUC119 ベクターに導入した。
(7) Construction of plasmid for expressing GFP fusion protein In order to produce a GFP fusion protein, SK1 and SK2 cDNAs were amplified by PCR using primers based on the sequences. In order to express a fusion protein in which GFP was linked to the N-terminus of the SK1 gene or SK2 gene under the control of the ACTIN1 promoter, the PCR product was introduced into pCR4 Blunt-TOPO (Invitrogen) and then into the pUC119 vector.
(8)顕微鏡観察
 GFP-SK1及びGFP-SK2の各融合タンパク質をコードするDNAコンストラクトで金粒子をコートし、 PDS-1000/He biolistic system (Bio-Rad, California, USA)を用いてタマネギ表皮細胞に衝撃波で粒子を導入した。タマネギ表皮細胞を22℃の暗室で培養し、24時間後、細胞層をスライドグラスに載置した。この試料を、核を染色してSK1及びSK2の誘導体細胞内局在を評価するために、2 μg/μL の4',6-ジアミジノ-2-フェニリンドール n-ハイドレート (DAPI; Dojindo, Kumamoto, Japan) 溶液に浸漬した。染色した試料を、共焦点マイクロスキャニングレーザー顕微鏡 (FV500; Olympus, Tokyo, Japan)で観察した。
(8) Microscopic observation Gold particles are coated with DNA constructs encoding each fusion protein of GFP-SK1 and GFP-SK2, and onion epidermis cells using PDS-1000 / He biolistic system (Bio-Rad, California, USA) Introduced particles with shock waves. Onion epidermal cells were cultured in a dark room at 22 ° C., and after 24 hours, the cell layer was placed on a slide glass. This sample was used to stain the nucleus and evaluate the intracellular localization of SK1 and SK2 derivatives at 2 μg / μL of 4 ′, 6-diamidino-2-phenylindole n-hydrate (DAPI; Dojindo, Kumamoto , Japan) Immerse in the solution. The stained sample was observed with a confocal microscanning laser microscope (FV500; Olympus, Tokyo, Japan).
(9)トランス活性化活性の測定
 GAL-4系のマッチメーカーの2ハイブリッドシステム3(クロンテック社製)をトランス活性化活性の測定に用いた。コンストラクトpGBKT7- BD -SK1 (or SK2)-Full、 pGBKT7- BD-SK1 (又は SK2)-NT、 pGBKT7-BD-SK1 (or SK2)-AP2/ERF及びpGBKT7- BD -SK1 (又はSK2)-CTを構築するために、SK1及びSK2につき、その全長(Full)、N末端側(NT)、AP2/ERFドメイン及びC末端(CT)をPCRを用いて増幅した。解析により確認したPCR産物をEcoRI 及び PstIで処理後、 pGBKT7 ベクターに導入し、GAL-4-結合性ドメインと連結した。すべてのコンストラクトを、酵母AH109株に導入した。それぞれの酵母の液体培養を順にOD600=0.6にまで希釈し、各希釈液2μlをトリプトファン-ヒスチジン陰性SD(Synthetic Dropout)培地に接種した。
(9) Measurement of transactivation activity GAL-4 matchmaker 2-hybrid system 3 (Clontech) was used for measurement of transactivation activity. Constructs pGBKT7-BD-SK1 (or SK2) -Full, pGBKT7-BD-SK1 (or SK2) -NT, pGBKT7-BD-SK1 (or SK2) -AP2 / ERF and pGBKT7-BD-SK1 (or SK2) -CT To construct SK1, SK1 and SK2, the full length (Full), N-terminal side (NT), AP2 / ERF domain and C-terminal (CT) were amplified using PCR. The PCR product confirmed by the analysis was treated with EcoRI and PstI, introduced into the pGBKT7 vector, and ligated with the GAL-4-binding domain. All constructs were introduced into the yeast strain AH109. Liquid cultures of the respective yeasts were sequentially diluted to OD600 = 0.6, and 2 μl of each diluted solution was inoculated into tryptophan-histidine negative SD (Synthetic Dropout) medium.
(10)植物ホルモンの定量
 植物ホルモン(オーキシン(IAA)、ブラシノステロイド(BR)、サイトカイニン(CK)、ジベレリン(GA)、アブサイシン酸(ABA))は、約100mg(生重量)のイネの茎から抽出した。これらの植物ホルモンは、文献(Hirano et al. 2008)記載の方法に準じて、液体クロマトグラフィー-マススペクトロスコーピィシステムクロマトグラフィー(UPLC/Quattro Premier XE; Waters, Massachusetts, USA)及びODSカラム(Acquity-UPLC BEH-C18, 1.7 μm, 2.1 x 100 mm, Waters)を用いて定量した。エチレン含量は、ガスクロマトグラフ(日立、263-30)を用いて測定した。節及び節間を含む茎基部を、冠水から1日経過後に収穫し、6mlのガラスバイアル内に載置し、1時間保持した。バイアルから採取したガス1ml中のエチレン量を測定した。
(10) Quantification of plant hormones Plant hormones (auxin (IAA), brassinosteroid (BR), cytokinin (CK), gibberellin (GA), abscisic acid (ABA)) are about 100 mg (raw weight) of rice stem. Extracted from. These plant hormones are prepared by liquid chromatography-mass spectroscopy system chromatography (UPLC / Quattro Premier XE; Waters, Massachusetts, USA) and ODS column (Acquity) according to the method described in the literature (Hirano et al. 2008). -UPLC BEH-C 18 , 1.7 μm, 2.1 x 100 mm, Waters). The ethylene content was measured using a gas chromatograph (Hitachi, 263-30). The stem base including nodes and internodes was harvested from the flooding after 1 day, placed in a 6 ml glass vial, and held for 1 hour. The amount of ethylene in 1 ml of gas collected from the vial was measured.
(11)植物ホルモンによる処理及び植物ホルモンの阻害
 植物ホルモン応答の解析にあたり、植物体を空気中で1ヶ月栽培した。その後、植物ホルモンによる処理としては、植物体を、10ppmのエチレン、10μMのGA、10nMのBR、20μMのIAA、1μMのCK及び100μMのABAをそれぞれ含有する水に移した。
(11) Treatment with plant hormones and inhibition of plant hormones For analysis of plant hormone responses, plants were cultivated in air for 1 month. Thereafter, for treatment with plant hormones, the plants were transferred to water containing 10 ppm ethylene, 10 μM GA, 10 nM BR, 20 μM IAA, 1 μM CK and 100 μM ABA, respectively.
(12)電気泳動ゲル移動度シフトアッセイ
 OsEIL1タンパク質を産生させるため、その全長DNA (Mao et al. 2006)をPCRで増幅し、 pET-32a(+)ベクター (Novagen, Madison, Wisconsin, USA)の XbaI 及び BglII サイトに導入した。SK1及びSK2のプロモーターフラグメントのプローブを、5’側のオーバーハング部位への [32P]dATPクレノウ断片の導入によって標識した。DNA結合反応は、30分間、4℃で、0.5ngの32P-標識プローブとバクテリアが産生した融合タンパク質を含有するバインディングバッファ(12.5 mM Tris-HCl, 60 mM NaCl, 0.25 mM DTT, 12.5% glycerin, 1 mM EDTA, 0.05% NP-40, and 2 0.25×トリス-ホウ酸-EDTAバッファ中、200V、2時間、13%アクリルアミドゲルで電気泳動を行った。
(12) Electrophoretic gel mobility shift assay To produce OsEIL1 protein, its full-length DNA (Mao et al. 2006) was amplified by PCR, and the pET-32a (+) vector (Novagen, Madison, Wisconsin, USA) Introduced to XbaI and BglII sites. Probes of the SK1 and SK2 promoter fragments were labeled by introducing [ 32 P] dATP Klenow fragment into the 5 ′ overhang site. The DNA binding reaction was performed for 30 minutes at 4 ° C. with a binding buffer containing 0.5 ng of 32 P-labeled probe and a bacterially produced fusion protein (12.5 mM Tris-HCl, 60 mM NaCl, 0.25 mM DTT, 12.5% Electrophoresis was performed on a 13% acrylamide gel at 200 V for 2 hours in glycerin, 1 mM EDTA, 0.05% NP-40, and 2 0.25 × Tris-borate-EDTA buffer.
 競合試験は、未標識の競合オリゴヌクレオチドを結合反応に添加しその後標識オリゴヌクレオチドを添加することにより行った。 The competition test was performed by adding an unlabeled competitive oligonucleotide to the binding reaction and then adding a labeled oligonucleotide.
(SK1及びSK2遺伝子の同定)
 既に、本発明者らはT65とC9298との雑種を用いて、1番染色体、3番染色体及び12番染色体にそれぞれ存在する3つの主たるQTLを見出している。(非特許文献2、3)。これらのQTLのうち、12番染色体上のQTLが最も水深増大応答に最も関与しているとされている(非特許文献2、3)。これらの文献に基づき、12番染色体上最も強力なQTLの影響を評価するために、T65の遺伝的背景を有し12番染色体の末端にC9285及びBhaduaの遺伝子断片を有する準同質遺伝子系統(NIL-12)を上記方法で作製した。作製したNIL系統ほか、浮きイネ種C9285及び非浮きイネ種C65について、冠水応答を評価した。作製したNIL-12の他、T65、C9285についての冠水応答を評価した。結果を図3及び図4に示す。
(Identification of SK1 and SK2 genes)
The present inventors have already found three main QTLs present on chromosomes 1, 3, and 12, respectively, using a hybrid of T65 and C9298. (Non-Patent Documents 2 and 3). Among these QTLs, QTL on chromosome 12 is considered to be most involved in the water depth increasing response (Non-Patent Documents 2 and 3). Based on these documents, in order to evaluate the influence of the strongest QTL on chromosome 12, a near-isogenic line (NIL) having a genetic background of T65 and having C9285 and Bhadua gene fragments at the end of chromosome 12. -12) was produced by the above method. In addition to the produced NIL lines, the flooding response was evaluated for floating rice species C9285 and non-floating rice species C65. In addition to the produced NIL-12, the submergence response for T65 and C9285 was evaluated. The results are shown in FIGS.
 図3及び図4に示すように、NIL-12は、冠水に対して節間及び葉の伸張にて応答した。 As shown in FIG. 3 and FIG. 4, NIL-12 responded to flooding with internodes and leaf elongation.
 次に、これらの結果に基づき、2つの集団、すなわち、T65/C9285のクロスに由来するNIL12系統の16000個体及びT65/Bhaduaの交配種に由来するNIL-12B系統の12000個体につき、ポジショナルクローニングを試みた。結果を図5に示す。 Next, based on these results, positional cloning was performed for two populations: 16,000 individuals of the NIL12 line derived from the T65 / C9285 cross and 12000 individuals of the NIL-12B line derived from the T65 / Bhadua cross. Tried. The results are shown in FIG.
 図5に示すように、NIL-12B系統においては、12番染色体上のQTLは、FL-EcoRV及びFL-EcoRIの間の約88.5kbにマッピングされた。同様に、NIL-12系統においては、分子マーカーDW6-PvuIIとDW9-PvuIIとの間の21.5kbにマッピングされた。このQTLに対する候補領域は、二つの独立したマッピング集団で重複していた。 As shown in FIG. 5, in the NIL-12B line, QTL on chromosome 12 was mapped to about 88.5 kb between FL-EcoRV and FL-EcoRI. Similarly, in the NIL-12 line, it was mapped to 21.5 kb between the molecular markers DW6-PvuII and DW9-PvuII. The candidate region for this QTL overlapped in two independent mapping populations.
 このQTLを同定するため、上記方法に従いC9285のBACライブラリを構築し、一つのBACクローン(C9285_10H05)が候補領域をカバーしていることを見出した。結果を図5に示す。BACクローンの塩基配列の解析結果から、T65にはなく、C9285において46kbの追加の遺伝子領域が検出された。合計67.5kbのDNA断片は18の推定ORFを有していた。 In order to identify this QTL, a C9285 BAC library was constructed according to the above method, and it was found that one BAC clone (C9285_10H05) covers the candidate region. The results are shown in FIG. From the analysis result of the base sequence of the BAC clone, an additional gene region of 46 kb was detected in C9285 but not in T65. The total 67.5 kb DNA fragment had 18 putative ORFs.
 次に、これらの推定ORFについての発現解析を行った。発現解析は、図6に示す所定時間(3時間、6時間、12時間)(Aは空気中を示す。)冠水させたC9285から上記方法により全RNAを抽出し、これらの各推定ORFについての特異的プライマーを用いてRT-PCRを用いて行った。アクチン遺伝子を対照として用いた。結果は、図6に示すように、C9285において、18個のORFのうち、二つの遺伝子(8番:Snorkel1(SK1)及び12番:Snorkel2(SK2))が空気中では発現しておらず冠水条件で強く発現することがわかった。なお、SK1遺伝子及びSK2遺伝子のコード領域塩基配列をそれぞれ配列番号1及び3に示し、これらの遺伝子がコードするタンパク質のアミノ酸配列をそれぞれ配列番号2及び4に示す。なお、SK1遺伝子のコード領域とその5’側にプロモーター領域の少なくとも一部を含む塩基配列を配列番号9に示し、SK2遺伝子のコード領域とその5’側にプロモーター領域の少なくとも一部を含む塩基配列を配列番号10に示す。 Next, expression analysis of these putative ORFs was performed. In the expression analysis, total RNA was extracted by the above method from C9285 submerged for a predetermined time (3 hours, 6 hours, 12 hours) shown in FIG. 6 (A indicates air). Each of these estimated ORFs was extracted. RT-PCR was performed using specific primers. The actin gene was used as a control. As shown in FIG. 6, in C9285, 2 out of 18 ORFs (8: Snorkel1 (SK1) and 12: Snorkel2 (SK2)) are not expressed in the air and are submerged. It was found to be strongly expressed under conditions. The coding region base sequences of the SK1 gene and SK2 gene are shown in SEQ ID NOs: 1 and 3, respectively, and the amino acid sequences of the proteins encoded by these genes are shown in SEQ ID NOs: 2 and 4, respectively. The SK1 gene coding region and its base sequence containing at least part of the promoter region on its 5 ′ side are shown in SEQ ID NO: 9, and the SK2 gene coding region and its base containing at least part of the promoter region on its 5 ′ side. The sequence is shown in SEQ ID NO: 10.
 また、図7に、SK1、SK2につき発現解析を行った結果を示す。発現解析は、図7に示す所定時間(3時間、6時間、12時間)冠水させたC9285及びT65から上記方法により全RNAを抽出し、これらの遺伝子についての特異的プライマーを用いてRT-PCRを用いて行った。アクチン遺伝子を対照として用いた。結果は、図7に示すように、C9285において、二つの遺伝子、Snorkel1(SK1)及びSnorkel2(SK2)のうち、特にSK1が冠水条件で強く発現することがわかった。 FIG. 7 shows the results of expression analysis for SK1 and SK2. In the expression analysis, total RNA was extracted from C9285 and T65 submerged for a predetermined time (3 hours, 6 hours, 12 hours) as shown in FIG. 7, and RT-PCR was performed using specific primers for these genes. It was performed using. The actin gene was used as a control. As a result, as shown in FIG. 7, in C9285, it was found that SK1 was particularly strongly expressed in the submerged condition among the two genes, Snorkel1 (SK1) and Snorkel2 (SK2).
 Bhaduaと所望の領域をカバーする選択したクローンとのBACライブラリを作製して、BhaduaがSK2及びSK1を有しているかどうかも確認した。 A BAC library of Bhadua and selected clones covering the desired region was prepared, and it was also confirmed whether Bhadua has SK2 and SK1.
 SK1及びSK2が、水深増大応答を誘導することを確認するために、BACクローンC9285_10H05のサブライブラリからサブクローンa(SK1を含有)、サブクローンb(SK2を含有)を作製した(図5参照)。これらの遺伝子断片を非浮きイネ種T65に導入して上記方法により形質転換植物体を作製した。これらの形質転換植物体につき、冠水応答を評価した。結果を図8に示す。 In order to confirm that SK1 and SK2 induce a water depth increasing response, subclone a (containing SK1) and subclone b (containing SK2) were created from the sub library of BAC clone C9285_10H05 (see FIG. 5). . These gene fragments were introduced into non-floating rice species T65 to produce transformed plants by the above method. The submergence response was evaluated for these transformed plants. The results are shown in FIG.
 図8に示すように、SK1を保持する形質転換植物体は、冠水に対してほとんど応答しなかったが、SK2を保持する形質転換植物体は、冠水に対して顕著に節間の伸張を示した。SK1とSK2とを保持する形質転換植物体は、いずれかを保持する植物よりもよりもさらによく応答した。 As shown in FIG. 8, the transformed plant carrying SK1 hardly responded to submergence, whereas the transformed plant carrying SK2 showed significant internodal extension to submergence. It was. Transformed plants carrying SK1 and SK2 responded better than plants carrying either.
 また、T65の遺伝子背景を有しアクチンプロモーターの制御下でSK1又はSK2を過剰発現する形質転換植物体を作製し、空気中での節間伸張を評価した。結果を図9に示す。図9に示すように、コントロール(空のベクターを導入したもの)は空気中で応答しなかったが、SK1の過剰発現体にあっては、第1から第3の節間が伸張し、SK2の過剰発現体にあっては、第1から第7の節間が伸張した。これらの結果から、SK1及びSK2は、いずれも冠水応答に関与することがわかったが、SK2遺伝子が冠水応答に関しSK1よりも効果が大きいこと、SK1は冠水応答の調節のために必須であり、SK2は弱く作用することがわかった。 Also, a transgenic plant having a T65 gene background and overexpressing SK1 or SK2 under the control of the actin promoter was prepared, and internode elongation in air was evaluated. The results are shown in FIG. As shown in FIG. 9, the control (introduced with the empty vector) did not respond in the air. However, in the case of an overexpressing SK1, the first to third internodes were elongated, and SK2 In the overexpressing body, the first to seventh internodes were elongated. From these results, it was found that SK1 and SK2 are both involved in the submergence response, but that the SK2 gene is more effective than SK1 with respect to the submergence response, SK1 is essential for the regulation of submergence response, SK2 was found to act weakly.
 次に、SK1及びSK2の組織特異的発現を確認した。全RNAを、葉鞘(LS)、葉先(LB)、茎(ST)、根(RO)及び円錐花序(PA)からそれぞれ抽出し、SK1及びSK2に特異的プライマーを用いてRT-PCRを行った。結果を図10に示す。図10に示すように、これらの遺伝子は、葉(葉鞘及び葉先)及び節及び節間を含む茎など、冠水応答が生じる組織で発現していることがわかった。 Next, tissue-specific expression of SK1 and SK2 was confirmed. Total RNA was extracted from leaf sheath (LS), leaf tip (LB), stem (ST), root (RO) and conical inflorescence (PA), and RT-PCR was performed using specific primers for SK1 and SK2. It was. The results are shown in FIG. As shown in FIG. 10, it was found that these genes are expressed in tissues in which a submergence response occurs, such as leaves (leaf sheaths and leaf tips) and stems including nodes and internodes.
(SK1及びSK2の機能評価1)
 SK1及びSK2の塩基配列の解析結果によれば、推定核局在シグナル(NLS)とAP2/ERFドメインとを有している(図11)。このAP2/ERFドメインの系統発生解析によれば、SK1及びSK2は、エチレン応答転写因子であることが推測された(図12)。また、このドメインの塩基配列に基づけば、OsSUB1タンパク質や各種ERFとの類似性を示しているが、このドメイン外の配列に関し、公知の遺伝子で類似性を示すものはなかった。
(Functional evaluation 1 of SK1 and SK2)
According to the analysis results of the base sequences of SK1 and SK2, it has a putative nuclear localization signal (NLS) and an AP2 / ERF domain (FIG. 11). According to the phylogenetic analysis of this AP2 / ERF domain, it was speculated that SK1 and SK2 are ethylene-responsive transcription factors (FIG. 12). Moreover, based on the base sequence of this domain, it shows similarities with OsSUB1 protein and various ERFs, but there were no known genes showing similarities with respect to sequences outside this domain.
 SK1タンパク質及びSK2タンパク質の細胞内局在性を確認するために、上記方法により顕微鏡観察を行った。結果を図13に示す。図13に示すように、GFPシグナルは、核内に局在した。 In order to confirm the intracellular localization of the SK1 protein and SK2 protein, microscopic observation was performed by the above method. The results are shown in FIG. As shown in FIG. 13, the GFP signal was localized in the nucleus.
 また、上記したトランス活性化活性の測定方法を用いて、酵母ワンハイブリッドシステムを用いていずれのタンパク質が転写活性を有しているかどうか、また、どの部分が転写活性を有しているかどうかを確認した。結果を図14に示す。図14に示すように、SK1タンパク質及びSK2タンパク質がそれらのC末端において強い転写活性を有していることがわかった。以上の結果から、SK1及びSK2は、転写因子をコードしていることがわかった。 In addition, using the method for measuring transactivation activity as described above, it is confirmed which protein has transcriptional activity and which part has transcriptional activity using the yeast one-hybrid system. did. The results are shown in FIG. As shown in FIG. 14, it was found that SK1 protein and SK2 protein have strong transcriptional activity at their C-terminus. From the above results, it was found that SK1 and SK2 encode transcription factors.
 次に、上記したホルモン応答SK1及びSK2の発現がエチレンを含む植物ホルモン(IAA、GA、CK、BR、ABA)によって誘導されるかどうかを、C9285について上記したホルモン処理方法を用い、所定の栽培期間経過後、植物体から全RNAを抽出し、RT-PCRを実施して、SK1及びSK2の発現解析を行った。結果を図15に示す。図15に示すように、エチレンのみがSK1及びSK2の発現を有意に促進することがわかった。 Next, whether or not the expression of the hormone responses SK1 and SK2 is induced by a plant hormone containing ethylene (IAA, GA, CK, BR, ABA), using the hormone treatment method described above for C9285, a predetermined cultivation After a period of time, total RNA was extracted from the plant body, RT-PCR was performed, and SK1 and SK2 expression analysis was performed. The results are shown in FIG. As shown in FIG. 15, it was found that only ethylene significantly promotes the expression of SK1 and SK2.
 また、C9285及びT65につき、植物ホルモンの定量方法を用いて空気中及び冠水条件での植物体中のエチレン濃度を測定した。図16に示すように、いずれの植物体のエチレン濃度も、冠水条件下で空気中よりも約2.5倍高いことがわかった。C9285及びT65を所定時間(6時間、12時間、24時間)冠水後、全RNAを抽出して、エチレン生成遺伝子(ACS)の発現解析を行った。結果を図17に示す。図17に示すように、エチレン合成経路の律速段階においてSAMをACCに転換するACS5が冠水条件下でのT65及びC9285の双方で誘導されていることがわかった。以上のことから、冠水条件下でエチレン生合成遺伝子ACS5を活性化することにより引き起こされるエチレンの合成がSK1及びSK2の発現を誘導することがわかった。 Also, for C9285 and T65, the ethylene concentration in the plant body was measured in air and under submerged conditions using a plant hormone quantification method. As shown in FIG. 16, it was found that the ethylene concentration of any plant body was about 2.5 times higher than that in air under flooding conditions. After submerging C9285 and T65 for a predetermined time (6 hours, 12 hours, 24 hours), total RNA was extracted, and expression analysis of ethylene gene (ACS) was performed. The results are shown in FIG. As shown in FIG. 17, it was found that ACS5, which converts SAM to ACC in the rate-limiting step of the ethylene synthesis pathway, was induced by both T65 and C9285 under submerged conditions. From the above, it was found that the synthesis of ethylene induced by activating the ethylene biosynthesis gene ACS5 under submerged conditions induces the expression of SK1 and SK2.
 さらに、C9285及びT65につきエチレンに対する生理学的応答を調べた。すなわち、空気中でエチレンに植物体を暴露するとともにエチレン阻害剤を用いてエチレンの作用を阻害したときの節間の伸長長さを測定した。結果を図18及び図19に示す。これらの図に示すように、C9285については、空気中のエチレン又はエタフォン濃度に応じて節間伸長長さは増大する一方、阻害剤の添加量に応じて、節間伸長長さは低下した。また、T65について節間伸長は観察されなかった。以上のことから、冠水応答はエチレン合成を介して生じることがわかった。 Furthermore, physiological responses to ethylene were investigated for C9285 and T65. That is, the elongation length between nodes when a plant body was exposed to ethylene in the air and ethylene action was inhibited using an ethylene inhibitor was measured. The results are shown in FIGS. As shown in these figures, for C9285, the internode elongation length increased according to the ethylene or etaphone concentration in the air, while the internode elongation length decreased according to the added amount of the inhibitor. In addition, no internode elongation was observed for T65. From the above, it was found that the flooding response occurs through ethylene synthesis.
 エチレン合成とSK1及びSK2の関係を調べるため、イネのEIN3(Ethylene Insentive3)(OsEIN3、図20参照)がSK1及びSK2のプロモーター領域に結合するかどうかを調べた。図21に示すように、SK1及びSK2のプロモーター領域(-2048bp、1797bp)を200~300bpの10個及び9個の断片にそれぞれ分割し、OsEIN3との相互作用を上記した電気泳動移動度シフトアッセイ(EMSA)により評価した。結果を図22に示す。図22に示すように、SK1(-1478bpから-1196bp領域)及びSK2(-633bpから-373bp領域)にOsEIN3が結合することがわかった。また、これらの2つの領域は、EINS3のターゲットコア配列を有していた(図21参照)。また、競合試験の結果も、これらの領域とOsEIN3との相互作用を支持するものであった(図23)。以上のことから、SK1及びSK2は、エチレン応答転写因子をコードしていることを確認できた。 In order to investigate the relationship between ethylene synthesis and SK1 and SK2, whether or not rice EIN3 (Ethylene Insentive3) (OsEIN3, see FIG. 20) binds to the promoter regions of SK1 and SK2 was examined. As shown in FIG. 21, the SK1 and SK2 promoter regions (−2048 bp, 1797 bp) were divided into 10 and 9 fragments of 200 to 300 bp, respectively, and the above-mentioned electrophoretic mobility shift assay for interaction with OsEIN3 was performed. (EMSA). The results are shown in FIG. As shown in FIG. 22, it was found that OsEIN3 binds to SK1 (-1478 bp to -1196 bp region) and SK2 (-633 bp to -373 bp region). These two regions also had a target core sequence of EINS3 (see FIG. 21). The results of the competition test also supported the interaction between these regions and OsEIN3 (FIG. 23). From the above, it was confirmed that SK1 and SK2 encode ethylene-responsive transcription factors.
(SK1及びSK2の機能評価2)
 本実施例では、浮きイネが冠水応答で節間が伸長する機構について調査した。植物の成長には植物ホルモンが必須であることから、C9285とT65につき冠水前後の植物ホルモン量をGC-MSを調べた。結果を図24に示す。図24に示すように、冠水後のC9285において高濃度の活性GAが検出された。これに対して、T65は冠水前後で大きく変化しなかった。なお、他のホルモン量は大きくこのことは、GAの生合成が冠水によって引き起こされることを示唆した。
(Functional evaluation 2 of SK1 and SK2)
In this example, the mechanism of floating intergrowth in floating rice was investigated. Since plant hormones are essential for plant growth, GC-MS was used to determine the amount of plant hormones before and after flooding for C9285 and T65. The results are shown in FIG. As shown in FIG. 24, a high concentration of active GA was detected in C9285 after flooding. In contrast, T65 did not change significantly before and after flooding. The amount of other hormones was large, suggesting that GA biosynthesis was caused by flooding.
 次いで、GA又はGA及びGA阻害剤(ウニコナゾール)を投与したときの節間伸長を評価した。植物体にGAを処理するには、10-5MのGA1溶液をT65とNIL-12の根本に投与し、7日間育成させ節間を計測した。また、阻害剤の適用にあたっては、まず通常の栽培条件下で10-6MのGA阻害剤を処理した後、これら前処理した植物体を10-6MのGA阻害剤を含有する水で冠水させ、7日間経過後に伸長した節間の長さを測定した。結果を図25に示す。図25に示すように、GAを処理すると、T65及びC9285の双方につき、節間が伸長し、阻害剤存在下では同様に節間の伸長が抑制された。また、図26に示すように、冠水条件下では、NIL-12は伸長するが、GAの生合成酵素に変異を有するGA欠損変異体は、冠水応答を示さなかった。以上のことから、GAは、冠水応答時の節間伸長に重要であることがわかった。 Next, internode elongation was evaluated when GA or GA and GA inhibitor (uniconazole) were administered. In order to treat the plant with GA, a 10 −5 M GA1 solution was administered to the root of T65 and NIL-12, and the plant was grown for 7 days and the internodes were measured. In applying the inhibitor, first, a 10-6 M GA inhibitor was treated under normal cultivation conditions, and then these pretreated plants were submerged with water containing a 10-6 M GA inhibitor. The length of the internode extended after 7 days was measured. The results are shown in FIG. As shown in FIG. 25, when GA was treated, internodes were elongated for both T65 and C9285, and in the presence of an inhibitor, internode elongation was similarly suppressed. Moreover, as shown in FIG. 26, under submerged conditions, NIL-12 was elongated, but GA-deficient mutants having mutations in GA biosynthetic enzymes did not show a submergence response. From the above, it was found that GA is important for internode elongation during flooding response.
 これらの結果から、冠水応答のための一つのモデルが提案できると考えられる。すなわち、冠水条件下において、エチレン生合成酵素ACS5遺伝子の発現が活性化されることによりエチレンが合成され、蓄積したエチレンがエチレン応答転写因子であるSK1及びSK2の発現を誘導し、冠水応答の発現を引き起こす、というものである。また、GAの生合成経路につながるSK1及びSK2によるシグナル伝達の結果、直接的又は間接的に節間伸長を誘導する程度にGA濃度が上昇すると考えられる。 From these results, one model for flood response can be proposed. In other words, under the submerged conditions, ethylene is synthesized by activating the expression of the ethylene biosynthetic enzyme ACS5 gene, and the accumulated ethylene induces the expression of ethylene-responsive transcription factors SK1 and SK2, thereby expressing the submergence response. Is to cause. In addition, as a result of signal transduction by SK1 and SK2 leading to the biosynthetic pathway of GA, it is considered that the GA concentration rises to such an extent that it induces internode elongation directly or indirectly.

Claims (10)

  1.  下記(a)~(f)のいずれかのポリヌクレオチド。
    (a)配列番号4で表されるアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
    (b)配列番号4で表されるアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加、および/または挿入されたアミノ酸配列を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
    (c)配列番号4で表されるアミノ酸配列と70%以上の同一性を有するアミノ酸配列を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
    (d)配列番号2で表される塩基配列を含むポリヌクレオチド。
    (e)配列番号2で表される塩基配列からなるポリヌクレオチドの相補鎖とストリンジェントな条件下でハイブリダイズし、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
    (f)配列番号2で表される塩基配列と70%以上の同一性を有し、冠水時に茎の節間伸長活性を有するタンパク質をコードするポリヌクレオチド。
    The polynucleotide of any one of (a) to (f) below:
    (A) A polynucleotide encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 4.
    (B) a protein having an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence represented by SEQ ID NO: 4, and having internode elongation activity of stems during submergence Encoding polynucleotide.
    (C) A polynucleotide encoding a protein having an amino acid sequence having 70% or more identity with the amino acid sequence represented by SEQ ID NO: 4 and having stem internode elongation activity during submergence.
    (D) a polynucleotide comprising the base sequence represented by SEQ ID NO: 2.
    (E) a polynucleotide that hybridizes with a complementary strand of a polynucleotide comprising the base sequence represented by SEQ ID NO: 2 under stringent conditions and encodes a protein having internode elongation activity of a stem when submerged.
    (F) A polynucleotide encoding a protein having 70% or more identity with the base sequence represented by SEQ ID NO: 2 and having internode elongation activity of stems during submergence.
  2.  イネ由来である、請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, which is derived from rice.
  3.  請求項1又は2に記載のポリヌクレオチドを含むベクター。 A vector comprising the polynucleotide according to claim 1 or 2.
  4.  請求項3に記載のベクターが導入された植物細胞。 Plant cells into which the vector according to claim 3 has been introduced.
  5.  請求項3に記載の植物細胞を含む形質転換植物体。 A transformed plant comprising the plant cell according to claim 3.
  6.  請求項5に記載の形質転換植物体の子孫またはクローンである、形質転換植物体。 A transformed plant that is a descendant or clone of the transformed plant according to claim 5.
  7.  請求項5又は6に記載の形質転換植物体の繁殖材料。 The propagation material of the transformed plant body according to claim 5 or 6.
  8.  請求項1又は2に記載のポリヌクレオチドを植物細胞に導入し、該植物細胞から植物体を再生させる工程を含む、形質転換植物体の製造方法。 A method for producing a transformed plant comprising the steps of introducing the polynucleotide according to claim 1 or 2 into a plant cell and regenerating the plant from the plant cell.
  9.  有用作物の生産方法であって、
     請求項5又は6に記載の形質転換植物体を栽培する工程と、
     前記形質転換植物体を収穫する工程と、
    を備える、生産方法。
    A method for producing useful crops,
    Cultivating the transformed plant according to claim 5 or 6, and
    Harvesting the transformed plant;
    A production method comprising:
  10.  前記栽培工程は、前記形質転換植物体において冠水応答を誘導するステップを含む工程である、請求項9に記載の生産方法。
     
    The production method according to claim 9, wherein the cultivation step includes a step of inducing a submergence response in the transformed plant body.
PCT/JP2010/052074 2009-02-13 2010-02-12 Gene associated with deep-water tolerance and use thereof WO2010093015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-031885 2009-02-13
JP2009031885A JP5303713B2 (en) 2009-02-13 2009-02-13 Submerged response-related genes and their use

Publications (1)

Publication Number Publication Date
WO2010093015A1 true WO2010093015A1 (en) 2010-08-19

Family

ID=42561855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052074 WO2010093015A1 (en) 2009-02-13 2010-02-12 Gene associated with deep-water tolerance and use thereof

Country Status (2)

Country Link
JP (1) JP5303713B2 (en)
WO (1) WO2010093015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885837A (en) * 2015-07-03 2015-09-09 安徽袁粮水稻产业有限公司 Flooding tolerance indoor identification method for direct sowing rice in northern area
CN104920089A (en) * 2015-07-03 2015-09-23 宋立胜 Screening method for flood-resisting parent for breeding direct-sowing rice

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HATTORI, Y. ET AL.: "A Major QTL Confers Rapid Internode Elongation in Response to Water Rise in Deepwater Rice", BREEDING SCIENCE, vol. 57, no. 4, 14 December 2007 (2007-12-14), pages 305 - 314 *
HATTORI, Y. ET AL.: "Mapping of three QTLs that regulate internode elongation in deepwater rice", BREEDING SCIENCE, vol. 58, no. 1, 26 March 2008 (2008-03-26), pages 39 - 46 *
HATTORI, Y. ET AL.: "The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water", NATURE, vol. 460, 20 August 2009 (2009-08-20), pages 1026 - 1030 *
YOKO HATTORI ET AL.: "Ukiine no Sekkan Shincho ni Kansuru QTL Kaiseki", DAI 47 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, - 19 March 2006 (2006-03-19), pages 225 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885837A (en) * 2015-07-03 2015-09-09 安徽袁粮水稻产业有限公司 Flooding tolerance indoor identification method for direct sowing rice in northern area
CN104920089A (en) * 2015-07-03 2015-09-23 宋立胜 Screening method for flood-resisting parent for breeding direct-sowing rice
CN104920089B (en) * 2015-07-03 2017-06-30 徐州佳禾农业科技有限公司 A kind of resistance to screening technique for flooding parent of Direct-seeding Rice breeding

Also Published As

Publication number Publication date
JP5303713B2 (en) 2013-10-02
JP2010183894A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
AU738652B2 (en) Genetic control of plant growth and development
RU2558249C2 (en) Rice zinc finger protein transcription factor dst and use thereof for regulating drought and salt tolerance
US20110016591A1 (en) Resistance to auxinic herbicides
PL202462B1 (en) Methods and means for modification of plant characteristics using the vernalization gene vrn2
US20110207608A1 (en) Transcriptional and post-transcription regulation of transcription factor for drought resistance
EP1580270B1 (en) Gene for increasing grain yield and uses thereof
US10100327B2 (en) Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield
EP1650301B1 (en) Gene imparting redifferentiation ability of plant and utilization of the same
US20150128304A1 (en) Plant Body Showing Improved Resistance Against Environmental Stress and Method for Producing Same
US6613962B1 (en) Tomato nucleic acid encoding protein that confers resistance to aphids and nematodes and plants transformed therewith
US20160102316A1 (en) Stress tolerant plants
CN116769000A (en) Application of transcription factor SmMYB13 in improving drought tolerance of plants
JP5303713B2 (en) Submerged response-related genes and their use
US20160010105A1 (en) Stress tolerant plants
JP2016103994A5 (en)
US20050044592A1 (en) Plant growth modulation
JP4998809B2 (en) Polypeptides for improving plant iron deficiency tolerance and use thereof
JP2016103994A (en) Gene for imparting environment stress resistance and use thereof
US7220845B2 (en) Nucleic acid molecules associated with plant cell proliferation and growth and uses thereof
CN106831966B (en) Gene for enhancing saline-alkali stress tolerance of plants and application thereof
CN112501184B (en) Soybean GmMT1 gene, vector containing GmMT1 gene, and preparation method and application thereof
KR100833475B1 (en) 1 OsMSRPK1 gene promoting development or differentiation of young stage plant
WO2013077419A1 (en) Gene having function of increasing fruit size for plants, and use thereof
Jordano et al. Stress tolerant plants
Griffiths Functional analysis of dehydration responsive genes in the resurrection grass Sporobolus stapfianus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741292

Country of ref document: EP

Kind code of ref document: A1