WO2010091591A1 - 数据传输方法及系统 - Google Patents

数据传输方法及系统 Download PDF

Info

Publication number
WO2010091591A1
WO2010091591A1 PCT/CN2009/076038 CN2009076038W WO2010091591A1 WO 2010091591 A1 WO2010091591 A1 WO 2010091591A1 CN 2009076038 W CN2009076038 W CN 2009076038W WO 2010091591 A1 WO2010091591 A1 WO 2010091591A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
user equipment
data
base station
user
Prior art date
Application number
PCT/CN2009/076038
Other languages
English (en)
French (fr)
Other versions
WO2010091591A8 (zh
Inventor
陈玉芹
幸国全
Original Assignee
中国广东省深圳市
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国广东省深圳市 filed Critical 中国广东省深圳市
Publication of WO2010091591A1 publication Critical patent/WO2010091591A1/zh
Publication of WO2010091591A8 publication Critical patent/WO2010091591A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/082Mobility data transfer for traffic bypassing of mobility servers, e.g. location registers, home PLMNs or home agents

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a data transmission method and system in the field of wireless communication. Background technique
  • a wireless communication system uses electromagnetic waves to communicate with a fixed or mobile wireless communication terminal (e.g., a mobile wireless telephone or a notebook computer with a wireless communication card, etc., which may be simply referred to as a terminal).
  • the terminal is located within the wireless coverage of the system, and the electromagnetic wave frequency assigned to the terminal can be divided into a plurality of carrier frequencies as a wireless communication channel.
  • wireless coverage is provided over a geographic area by a base station using a designated wireless channel, which is referred to as a cell.
  • the base station is typically located in the center of the cell.
  • a radio access network in general, three functional entities including a user equipment (UE, User Equipment), a base station, and an access gateway are mainly included.
  • the connection between the user terminal and the base station belongs to a Layer 2 connection, including a physical layer and a Media Access Control (MAC) layer, and the access gateway mainly performs three or more functions, including parsing the data IP address, and the like.
  • MAC Media Access Control
  • the access gateway mainly performs three or more functions, including parsing the data IP address, and the like.
  • data interaction between the user terminal and the base station is transmitted through a set of protocol rules on the air interface side, and is independent of information of three or more layers.
  • the data sent by the source user terminal to the multiple destination user terminals may be carried on the same air interface connection address, and the data is forwarded by the access gateway to the destination address of the data after the data arrives at the access gateway from the base station. Parse and forward.
  • the data sent from the core network side is analyzed by the access gateway, the data is mapped to the corresponding air interface side address and sent to the destination terminal via the base station. Therefore, in the prior art, even if the source user terminal and the destination user terminal are located in the same base station, the data of the source user terminal must be parsed by the access gateway before being forwarded to the destination user terminal. Therefore, this data transmission technology has a problem of long processing delay and large resource overhead of the access gateway.
  • a local data forwarding transmission method may be adopted, that is, when data is exchanged between two user terminals under the same base station, the data is not parsed by the access gateway, but is directly forwarded by the base station.
  • Local data forwarding for wireless relay networks can be implemented on the relay station. That is, the uplink data sent by the source user terminal does not reach the base station, but the data is locally forwarded at the relay site.
  • the base station or relay station When implementing local data forwarding, the base station or relay station must be able to resolve the destination user terminal address from the data sent by the source user terminal, that is, have the addressing capability. However, it has not been proposed how the base station or the relay station can resolve the destination user terminal address from the data transmitted from the source user terminal. Summary of the invention
  • the present invention provides an improved data transmission method and system for solving the problem that the base station or the relay station cannot resolve the address of the destination user equipment from the data sent by the source user equipment, thereby failing to implement local forwarding. .
  • a data transmission method is provided.
  • the data transmission method includes: the source user equipment transmits the data sent to the destination user equipment to the base station through a pre-established service flow corresponding to the destination user equipment; the base station parses the received data to obtain the self and the destination user equipment. The air interface connection address of the service flow is forwarded to the destination user equipment.
  • a data transmission method is provided.
  • the data transmission method includes: the source user equipment sends the data sent to the destination user equipment to the relay station through a pre-established service flow corresponding to the destination user equipment;
  • the relay station parses the received data, obtains an air interface connection address of the service flow between itself and the destination user equipment, and forwards the received data to the destination user equipment.
  • the present invention also provides a data transmission system, including at least a source user equipment, a destination user equipment, and a base station;
  • the source user equipment is configured to send data sent to the destination user equipment to the base station by using a pre-established service flow corresponding to the destination user equipment;
  • a base station configured to parse the received data, obtain an air interface connection address of the service flow between the user and the destination user equipment, and forward the received data to the destination user equipment;
  • the destination user equipment is configured to receive data from the source user equipment forwarded by the base station.
  • the present invention further provides another data transmission system, including at least a source user equipment, a destination user equipment, and a relay station;
  • the source user equipment is configured to send, by using a pre-established service flow corresponding to the destination user equipment, data sent to the destination user equipment to the relay station;
  • a relay station configured to parse the received data, obtain an air interface connection address of the service flow between the user and the destination user equipment, and forward the received data to the destination user equipment;
  • the destination user equipment is configured to receive data from the source user equipment forwarded by the base station.
  • the source user equipment sends data to the destination user equipment by using the service flow allocated to the destination user equipment in advance, so that the base station or the relay station can parse the user information of the destination user equipment according to the service flow, thereby
  • the data sent by the source user equipment is forwarded to the destination user equipment, which solves the problem that the address information of the destination user equipment cannot be obtained in the prior art, thereby failing to implement local forwarding, reducing the data transmission path, and shortening the delay of data processing. And reduce the overhead of network resources.
  • FIG. 1 is a flow chart of an embodiment of a data transmission method according to the present invention.
  • FIG. 2 is a flow chart of another embodiment of a data transmission method according to the present invention.
  • FIG. 3 is a schematic structural diagram of an embodiment of a data transmission network according to the present invention.
  • Figure 4 is a flow chart of the first embodiment
  • Figure 5 is a flow chart of the second embodiment
  • FIG. 6 is a schematic structural diagram of another embodiment of a data transmission network according to the present invention.
  • Figure 7 is a flow chart of the third embodiment
  • Figure 8 is a flow chart of the fourth embodiment. detailed description
  • the relay station and the base station do not have an addressing function, and the local forwarding of the data cannot be implemented.
  • the embodiment of the present invention provides an improved data transmission solution.
  • the user equipment When the user equipment is configured to send a static service flow, the user equipment sends the data to the local air interface connection address corresponding to the service flow of the destination user equipment, and the base station or the relay station analyzes the air interface connection address.
  • the user information of the destination user equipment can be obtained, so that the data sent by the source user equipment is forwarded to the destination user equipment.
  • Step S101 A source UE sends data sent to a destination UE to a destination UE by using a service flow corresponding to the target UE.
  • Base station A source UE sends data sent to a destination UE to a destination UE by using a service flow corresponding to the target UE.
  • Step S103 The base station parses the received data, obtains an air interface connection address of the service flow between the UE and the destination UE, and forwards the received data to the destination UE, where the service stream and the data sent by the source UE are used.
  • the flow has a corresponding relationship.
  • Step S101 is specifically implemented as follows:
  • all UEs under the control of the base station are configured as one-to-one user pairs, and one or more service flows are statically configured for each user, and The physical flow address of the user to the peer UE is carried in the attribute of the service flow; then, the base station allocates a corresponding dedicated air interface connection address for each service flow.
  • the source UE sends data to the peer UE
  • the data is mapped to the corresponding dedicated air interface connection according to the physical address of the peer UE, and the base station obtains the user information of the peer UE by analyzing the air interface connection address of the data, and the data is obtained. Forwarding to the peer UE locally on the corresponding downlink air interface.
  • the data transmission method provided by the embodiment of the present invention can be applied to a traditional access network, and can also be applied to a flat network.
  • a traditional access network composed of an access gateway, a base station, and a terminal
  • a user pair configuration and each The establishment of the service flow of the user may be completed or initiated by the access gateway.
  • the access gateway configuring all the UEs under the control of the base station as user pairs and allocating service flows for each user may include:
  • Step 11 The access gateway corresponding to the base station determines whether the current radio access network supports the data local forwarding function. If not, for example, if the data local forwarding function is not enabled, the data transmission method on the air interface side adopts an existing mechanism; Or access gateway supports data local forwarding For example, if the data local forwarding function is enabled, the access gateway configures all UEs under the control of the base station as user pairs.
  • the number of user pairs is, for example, that the UEs under the jurisdiction of a certain base station include: UE A, UE B, and UE C, and the access gateway will
  • the UE under the base station is configured with three user pairs: UE A and UE B, UE A and UE C, UE B and UE C.
  • Step 12 For each user pair, the access gateway allocates one or more service flows for the user pair, and carries the physical address of the peer UE in the attribute of each service flow, and each service flow is The information is sent to the base station.
  • Step 13 The base station allocates a corresponding air interface connection address according to the information of each service flow.
  • step 11 may be specifically implemented by using the following signaling procedure: a.
  • the access gateway sends a service flow setup request message to the two UEs that are paired by the user by the base station, and the base station allocates a corresponding service flow for each service flow.
  • the private air interface connection address where the information carried in the service flow establishment request message includes at least one of the following parameters: the address information, the port number, and the protocol type of the two UEs of the user pair;
  • the two UEs of the user pair send a service flow establishment response message to the access gateway through the base station in response to the foregoing service flow establishment request message;
  • the access gateway sends a service flow establishment confirmation message to the two UEs of the user pair through the base station. At this point, the service flow of the user pair is established.
  • the base station configures one or more service flows for the user pair regardless of whether there is data interaction between the user pairs.
  • the source UE sends data to the pair.
  • the service flow corresponding to the physical address is obtained according to the physical address of the peer UE, and the data is mapped to the dedicated air interface connection corresponding to the service flow by using the classifier.
  • the access gateway may allocate one or more service flows for each user pair.
  • the access gateway assigns only one dedicated service flow pair to the user pair, all of the user pairs
  • the data is mapped to the service flow pair and transmitted using the corresponding air interface connection address pair.
  • the access gateway allocates multiple dedicated service flow pairs for the user pair, the data of the user pair may be mapped to different service flows according to parameters such as QoS (quality of service) and data transmission direction, and correspondingly used respectively.
  • QoS quality of service
  • the air interface is connected to the address for transmission.
  • the access gateway when configuring a user pair, may also configure a UE under its multiple base stations to be a user pair, and allocate one or more service flows for each user pair.
  • the source UE sends data to the peer UE, it may also send data according to the pre-configured service flow.
  • the base station configures all UEs under its jurisdiction as user pairs and assigns a service flow to each user, which may include:
  • Step 21 The base station determines whether the current radio access network supports the data local forwarding function. If not, for example, if the data local forwarding function is not enabled, the data transmission method on the air interface side adopts an existing mechanism; if the data local forwarding function is supported, such as When the data local forwarding function is enabled, the base station configures all UEs under its jurisdiction as user pairs.
  • the base station configures the UEs into three User pair: UE A ⁇ UE B , UE A ⁇ UE C, UE B UE C.
  • Step 22 For each user pair, the base station allocates one or more service flows for the user pair, and carries the physical address of the peer UE in the user pair in the attribute of each service flow.
  • Step 23 The base station allocates a corresponding air interface connection address according to the information of each service flow.
  • the step 21 is specifically implemented by the following signaling procedure: a2.
  • the base station sends a service flow establishment request message to the two UEs of the user, where the information carried in the service flow establishment request message includes at least Not limited to one of the following parameters: User pair Address information, port number, and protocol type of the two UEs;
  • the two UEs of the user pair send a service flow setup response message to the base station in response to the foregoing service flow setup request message;
  • the base station sends a service flow establishment confirmation message to the two UEs of the user pair.
  • the service flow of the user pair is established, regardless of whether there is data interaction between the user pairs, and one or more service flows are configured for the user pair.
  • the base station is for each service flow. Assign the corresponding dedicated air interface connection address.
  • the service stream corresponding to the physical address is obtained according to the physical address of the peer UE, and the data is mapped to a dedicated air interface connection corresponding to the service flow.
  • the base station may allocate one or more service flows for each user pair.
  • the base station assigns only one dedicated service flow pair to the user pair, all data of the user pair is mapped to the service flow pair, and the corresponding air interface connection address pair is used for transmission.
  • the base station allocates multiple dedicated service flow pairs for the user pair, the data of the user pair may be mapped to different service flows according to parameters such as QoS and data transmission direction, and respectively transmitted by using corresponding air interface connection addresses.
  • the access gateway or the base station may have the following three conditions for the service flow established by each user pair:
  • the service flow is an uplink service flow starting from the user pair, ending at the base station, and a downlink service flow starting from the base station and ending at the user pair; correspondingly, the air interface connection of the service flow starts from the user pair and ends at The uplink air interface connection of the base station and the downlink air interface connection starting from the base station and ending at the user pair.
  • the base station and the user pair including the source UE and the destination UE
  • there is no need to re-establish a new downlink service flow and only the uplink service flow and the existing downlink need to be established.
  • the upper The traffic may be carried only by the source UE and the uplink data sent to the peer UE.
  • the downlink service flow not only carries the downlink data from the source UE and the peer UE, but also carries the data sent by other users to the peer UE. .
  • the data to be sent is mapped to the air interface connection address corresponding to the uplink service flow, and is sent to the base station by the uplink service flow, and after receiving the data, the base station acquires the data.
  • the air interface connection address of the downlink service flow corresponding to the air interface connection address of the uplink service flow, and the received data is mapped to the air interface connection address corresponding to the downlink service flow and sent to the opposite UE.
  • the service flow is an end-to-end unidirectional service flow starting from the source UE and ending at the opposite end UE via the base station; correspondingly, the air interface connection of the service flow starts from the source UE, and ends at the opposite UE via the base station.
  • the first one-way service flow is: source UE ⁇ base station ⁇ peer UE
  • the second service flow is: peer UE ⁇ base station ⁇ Source UE.
  • the first service flow only carries data from the source UE and sent to the opposite UE
  • the second service flow only carries data from the opposite UE and sent to the source UE.
  • the data to be sent is mapped to the air interface connection address corresponding to the service flow, and is sent to the base station by the first service flow, and the base station receives the source UE and sends the data.
  • the data is forwarded to the peer UE by mapping the received data to the air interface connection address corresponding to the service flow.
  • the peer UE sends data to the source UE
  • the peer UE transmits the data to be sent to the air interface connection address corresponding to the service flow
  • the base station transmits the data to the base station through the second service flow, and the base station passes the service.
  • the flow maps the received data to the air interface connection address corresponding to the service flow and forwards the data to the source UE.
  • the service flow is the end-to-end bidirectional service flow between the base station and the peer UE, that is, the source UE ⁇ base station ⁇ the opposite UE; correspondingly, the air interface connection of the service flow is the source UE via the base station and Two-way air interface connection between peer UEs.
  • the service flow only one service flow needs to be established between user pairs.
  • the service flow only carries the data exchanged between the source user and the peer user.
  • the source UE sends data to the peer UE, the data is mapped to the air interface connection address corresponding to the two-way service flow through the two-way service flow.
  • the data is sent to the base station, and the base station forwards the data sent by the source UE to the air interface connection address corresponding to the two-way service flow, and sends the data to the peer UE.
  • the peer UE has data to send to the source UE
  • the peer UE sends data to the base station through the bidirectional service flow
  • the base station sends the data to the source UE through the bidirectional service flow.
  • Step S103 in Figure 1 is specifically implemented as follows:
  • the base station After receiving the data sent by the source UE through the pre-established service flow, the base station can obtain the user information of the destination UE by analyzing the air interface connection address corresponding to the service flow.
  • the user information can be a physical address, specifically, The physical address includes but is not limited to: the IP address of the UE and the port number of the UE.
  • the base station data unit (PDU) may be reorganized into a service data unit (SDU), and according to the link between the base station and the destination UE. And the scheduling situation repackages the SDU into a MAC PDU and forwards it to the destination UE.
  • SDU service data unit
  • the base station may query the locally saved source by parsing the physical address of the target UE in the service flow and the source UE corresponding to the service flow.
  • the user information of all the UEs under its jurisdiction can determine whether the source UE and the destination UE are both UEs under its jurisdiction, so as to determine whether the service flow is a local forwarding service flow, specifically, if the source UE and the destination UE are the base station.
  • the base station determines that the service flow is a local forwarding service flow, and the base station acquires a downlink service flow corresponding to the service flow, and forwards the data sent by the source UE to the destination UE by using the downlink service flow.
  • the base station may carry the identifier of the local forwarding service flow in the service flow, and the base station can determine the current industry by analyzing the identifier.
  • the service flow is a local forwarding service flow, and the base station acquires a downlink service flow corresponding to the service flow, and forwards the data sent by the source UE to the destination UE by using the downlink service flow.
  • the base station can have a local addressing function, so that the base station can implement the local forwarding function.
  • Step S201 The source UE sends data sent to the destination UE to the relay station by using a service flow corresponding to the target UE that is established in advance. .
  • Step S203 The relay station parses the received data, obtains an air interface connection address of the service flow between the UE and the destination UE, and forwards the received data to the destination UE, where the service flow is used by the source UE to send the data.
  • Business flows have a corresponding relationship.
  • Step S201 is specifically implemented as follows:
  • all UEs under the jurisdiction of the relay station are configured as one-to-one user pairs, and one or more service flows are statically configured for each user, and The physical address of the peer UE in the user pair is set in the attribute of the service flow; then, the corresponding dedicated air interface connection address is assigned to each service flow by the relay station or the base station.
  • the source UE sends data to the peer UE
  • the data is mapped to the corresponding dedicated air interface connection according to the physical address of the peer UE, and the relay station obtains the user information of the opposite UE by analyzing the air interface connection address of the data, and the data is corresponding.
  • the downlink air interface is forwarded locally to the peer UE.
  • the configuration of the user pair and the establishment of the service flow of each user pair may be completed by the access gateway, and may also be completed by the base station in the flattened network, specifically, the access gateway.
  • Configuring all UEs governed by the relay as user pairs and assigning traffic flows to each user may include: Step 31: The access gateway corresponding to the relay station determines whether the current radio access network supports the data local forwarding function. If not, for example, the data local forwarding function is not activated, the data transmission method on the air interface side adopts an existing mechanism; Local forwarding function, such as enabling data local forwarding, the access gateway configures all UEs under the jurisdiction of the relay station as user pairs.
  • the number of user pairs is, for example, assuming that the UEs under the jurisdiction of a certain relay station include: UE A, UE B, and UE C, then the access gateway places the relay station.
  • the UE is configured into three user pairs: UE A ⁇ UE B, UE A ⁇ UE C, UE B and UE C.
  • Step 32 For each user pair, the access gateway allocates one or more service flows for the user pair, and carries the physical address of the peer UE in the attribute of each service flow, and each service flow is The information is sent to the relay station.
  • Step 33 The relay station or the base station allocates a corresponding air interface connection address for each service flow according to the information of each service flow.
  • the step 31 may be specifically implemented by using the following signaling procedure: a3.
  • the access gateway sends a service flow establishment request message to the two UEs of the user through the relay station and its corresponding base station, where the service flow
  • the information carried in the setup request message includes at least one of the following parameters: the address information, the port number, and the protocol type of the two UEs of the user pair; b3.
  • the two UEs of the user pair respond to the foregoing service flow establishment request message, and
  • the base station sends a service flow establishment response message to the access gateway;
  • the access gateway establishes a confirmation message by sending a service flow to the two UEs and the relay station of the user pair through the base station.
  • the service flow of the user pair is established, regardless of whether there is data interaction between the user pairs, one or more service flows are configured for the user pair, and during the service flow establishment process, the relay station or the base station is each The service flow allocates a corresponding dedicated air interface connection address.
  • the relay station if the relay station has the capability of assigning an air interface connection address, the relay station is used for each service.
  • the flow allocates a corresponding dedicated air interface connection address. If the relay station does not have the capability, the base station can allocate a corresponding dedicated air interface connection address for each service flow.
  • the source UE sends data to the peer UE
  • the service stream corresponding to the physical address is obtained according to the physical address of the peer UE, and the data is mapped to the dedicated air interface connection corresponding to the service flow by using the classifier.
  • the access gateway may allocate one or more service flows for each user pair.
  • the access gateway assigns only one dedicated service flow pair to the user pair, all data of the user pair is mapped to the service flow pair, and the corresponding air interface connection address pair is used for transmission.
  • the access gateway allocates multiple dedicated service flow pairs for the user pair, the data of the user pair may be mapped to different service flows according to parameters such as QoS, data transmission direction, and the corresponding air interface connection address is used for transmission.
  • the access gateway may also configure a UE under the jurisdiction of multiple relay stations under the multiple base stations as a user pair, and allocate one or more service flows for each user pair.
  • the source UE of the user pair sends data to the peer UE, the data may also be sent according to the pre-configured service flow.
  • the configuration of the user pair and the establishment of the service flow of each user pair can be completed by the base station.
  • configuring, by the base station, all the UEs under the control of one of the relay stations under the control of the UE as a user pair and allocating the service flow for each user may include:
  • Step 41 The base station determines whether the current radio access network supports the data local forwarding function. If not, for example, the data local forwarding function is not activated, the data transmission method on the air interface side adopts an existing mechanism; if the data local forwarding function is supported, such as enabling The data local forwarding function, the base station configures all UEs under its jurisdiction to be configured as user pairs.
  • the base station configures the UEs into three User pair: UE A ⁇ UE B, UE A ⁇ UE C, UE B and UE C.
  • Step 42 For each user pair, the base station allocates one or more service flows for the user pair, and carries the physical address of the peer UE in the attribute of each service flow, and sends information of each service flow. Give the relay station.
  • Step 43 The relay station allocates a corresponding air interface connection address according to the information of each service flow.
  • the step 41 may be specifically implemented by using the following signaling procedure: a4.
  • the base station sends a service flow establishment request message to the two UEs of the user by the relay station, where the service flow establishment request message carries the information at least Including but not limited to one of the following parameters: address information, port number and protocol type of two UEs of the user pair;
  • the two UEs of the user pair send a service flow establishment response message to the base station through the relay station in response to the foregoing service flow establishment request message;
  • the base station sends a service flow establishment confirmation message to the two UEs and the relay station of the user pair.
  • the service flow of the user pair is established, regardless of whether there is data interaction between the user pairs, and one or more service flows are configured for the user pair.
  • the relay station or the base station is each The service flow allocates the corresponding dedicated air interface connection address.
  • the service stream corresponding to the physical address is obtained according to the physical address of the peer UE, and the data is mapped to the dedicated air interface connection corresponding to the service flow.
  • the base station may allocate one or more service flow pairs for each user pair.
  • the base station assigns only one dedicated service flow pair to the user pair, all data of the user pair is mapped to the service flow pair, and the corresponding air interface connection address pair is used for transmission.
  • the base station allocates multiple dedicated service flow pairs for the user pair, the data of the user pair may be mapped to different service flows according to parameters such as QoS and data transmission direction, and respectively transmitted by using corresponding air interface connection addresses.
  • the base station may also configure UEs under the jurisdiction of multiple relay stations as user pairs, and establish a service flow for each user pair.
  • the access gateway or the base station may also establish a service flow for each user pair.
  • Step S203 in FIG. 2 is specifically implemented as follows:
  • the relay station After receiving the data sent by the source UE through the pre-established service flow, the relay station can obtain the user information of the destination UE by analyzing the air interface connection address corresponding to the service flow.
  • the user information can be a physical address, specifically, The physical address includes but is not limited to: the IP address of the UE and the port number of the UE.
  • the MAC PDU when the relay station forwards the data locally, the MAC PDU may be re-grouped into an SDU, and the SDU is repackaged into a MAC PDU according to the link and scheduling situation between the base station and the destination UE, and forwarded to the destination UE.
  • the intermediate station may perform local storage by querying the physical address of the destination UE in the service flow and the source UE corresponding to the service flow.
  • the user information of all the UEs under its jurisdiction may be determined whether the source UE and the destination UE are both UEs under its jurisdiction, so as to determine whether the service flow is a local forwarding service flow, specifically, if the source UE and the destination UE are The relay station determines that the service flow is a local forwarding service flow, and the relay station acquires a downlink service flow corresponding to the service flow, and forwards the data sent by the source UE to the destination UE by using the downlink service flow.
  • the relay station may carry the identifier of the local forwarding service flow in the service flow, and the relay station may determine that the current service flow is the local forwarding service flow by parsing the identifier, and the relay station acquires the The downlink service flow corresponding to the service flow, and the data sent by the source UE is forwarded to the destination UE by using the downlink service flow.
  • the relay station can have a local addressing function, so that the relay station can implement the local forwarding function.
  • Embodiment 1 This embodiment is described by taking the network structure shown in FIG. 3 as an example.
  • the access gateway configures the UE under the control of the base station as a user pair, and allocates a service flow for each user pair, thereby implementing the local base station. Forwarding function.
  • Embodiment 4 is a flowchart of Embodiment 1. As shown in FIG. 4, implementing local forwarding of a base station in Embodiment 1 mainly includes the following steps:
  • Step 401 The access gateway determines that the current radio access network starts the local forwarding function, and configures all UEs under the control of the base station as user pairs.
  • Step 402 The access gateway sends a service flow establishment request message to the UE A and the UE B in the user center by using the base station.
  • Step 403 The UE A and the UE B return a service flow establishment response message to the access gateway by using the foregoing service flow establishment request sent by the access gateway.
  • Step 404 The access gateway receives the foregoing service flow establishment response message, and sends a service flow establishment confirmation message to the UE A and the UE B through the base station.
  • Step 405 The access gateway sends a message to the base station, where the message carries the information of the established service flow.
  • Step 406 The base station allocates a corresponding air interface connection address for each service flow according to the information of each service flow.
  • step 406 may be performed in step 402. Specifically, when receiving the service flow setup request message sent by the access gateway in step 402, the base station may allocate a corresponding air interface for each service flow. The address is connected, and the air interface connection address of the service flow is carried in the service flow setup request message to be sent to UE A and UE B.
  • Step 407 The UE A maps the data sent to the UE B to the air interface connection address corresponding to the established service flow.
  • Step 408 The base station receives the data sent by the UE A, and obtains the address information of the UE B by parsing the air interface connection address corresponding to the service flow.
  • Step 409 The base station determines that the service flow is a local forwarding service flow according to locally saved user information of all UEs under its jurisdiction.
  • the service flow may also carry an identifier indicating whether the service flow is a local forwarding service. If the identifier indicates that the service flow is a local forwarding service flow, the base station determines that the service flow is a local forwarding service flow.
  • Step 410 The base station acquires a downlink service flow corresponding to the uplink service flow that receives the data, and forwards the received data to the UE B by using the downlink service flow.
  • the UE is configured as a user pair by the base station, and a service flow is allocated for each user pair, thereby implementing a local forwarding function of the base station.
  • FIG. 5 is a flowchart of the second embodiment. As shown in FIG. 5, the local forwarding of the base station in the flattened network in the second embodiment mainly includes the following steps:
  • Step 501 The base station determines that the current radio access network starts the local forwarding function, and configures all UEs under its jurisdiction as user pairs.
  • Step 502 The base station sends a service flow establishment request message to the UE A and the UE B in the user center, and allocates a corresponding air interface connection address.
  • the base station may allocate a corresponding air interface connection address for each service flow, and carry the service flow in the service flow establishment confirmation message. Corresponding air interface connection address.
  • Step 503 UE A and UE B return a service flow establishment response message to the base station in response to the foregoing service flow establishment request.
  • Step 504 The base station receives the foregoing service flow establishment response message, and sends a service flow establishment confirmation message to the UE A and the UE B.
  • Step 505 The UE A maps the data sent to the UE B to the air interface connection address corresponding to the established service flow.
  • Step 506 The base station receives the data sent by the UE A, and obtains the address information of the UE B by parsing the air interface connection address corresponding to the service flow.
  • Step 507 The base station determines that the service flow is a local forwarding service flow according to locally saved user information of all UEs under its jurisdiction.
  • the service flow may also carry an identifier indicating whether the service flow is a local forwarding service. If the identifier indicates that the service flow is a local forwarding service flow, the base station determines that the service flow is a local forwarding service flow.
  • Step 508 The base station acquires a downlink service flow corresponding to the uplink service flow that receives the data, and forwards the received data to the UE B by using the downlink service flow.
  • the third embodiment is described by taking the network structure shown in FIG. 6 as an example.
  • the access gateway configures the UE under the jurisdiction of the relay station as a user pair, and allocates a service flow for each user pair, thereby implementing relaying. Local forwarding function.
  • FIG. 7 is a flowchart of the third embodiment. As shown in Figure 7, the local forwarding of the relay station in the third embodiment mainly includes the following steps:
  • Step 701 The access gateway determines that the current radio access network starts the local forwarding function, and configures all UEs under the jurisdiction of the relay station as user pairs.
  • Step 702 The access gateway sends a service flow establishment request message to the UE A and the UE B in the user center through the base station and the relay station.
  • Step 703 The UE A and the UE B return a service flow establishment response message to the access gateway by using the base station and the relay station in response to the foregoing service flow establishment request sent by the access gateway.
  • Step 704 The access gateway receives the foregoing service flow establishment response message, and sends a service flow establishment confirmation message to the relay station, UE A, and UE B through the base station;
  • Step 705 The access gateway sends a message to the relay station, where the message carries the information of the established service flow.
  • Step 706 The relay station or the base station allocates a corresponding air interface connection address according to the information of each service flow;
  • the relay station may allocate a corresponding air interface connection address for each service flow. If the relay station does not have the capability, the base station may allocate corresponding information for each service flow. The air interface connection address.
  • step 702 after receiving the service flow setup request message sent by the access gateway, the relay station or the base station allocates a corresponding air interface connection address for the service flow, and carries the allocated air interface connection address in the service flow establishment request.
  • the message is sent to UE A and UE B.
  • Step 707 The UE A sends the data sent to the UE B to the air interface connection address corresponding to the established service flow.
  • Step 708 The relay station receives the data sent by the UE A, and obtains the address information of the UE B by parsing the air interface connection address corresponding to the service flow.
  • Step 709 The relay station determines that the service flow is a local forwarding service flow according to locally saved user information of all UEs under its jurisdiction;
  • the service flow may also carry an identifier indicating whether the service flow is a local forwarding service. If the identifier indicates that the service flow is a local forwarding service flow, the relay station determines that the service flow is a local forwarding service flow.
  • Step 710 The relay station acquires a downlink service flow corresponding to the uplink service flow that receives the data, and forwards the received data to the UE B by using the downlink service flow.
  • the fourth embodiment is described by taking the network structure shown in FIG. 6 as an example.
  • the base station configures the UE under the jurisdiction of the relay station as a user pair, and allocates a service flow for each user pair, thereby implementing a relay local forwarding function.
  • FIG. 8 is a flowchart of Embodiment 4, as shown in FIG. 8, the implementation of relay local forwarding in Embodiment 4 mainly includes the following steps:
  • Step 801 The base station determines that the current radio access network starts the local forwarding function, and configures all UEs under the jurisdiction of a certain relay station as a user pair.
  • Step 802 The base station sends a service flow establishment request message to the relay station, the UE A and the UE B in the user pair, and the relay station or the base station allocates a corresponding air interface connection address for the service flow.
  • the base station or the relay station may also allocate a corresponding air interface connection address for each service flow after receiving the service flow establishment response message sent by the UE A and the UE B, and carry the service flow establishment confirmation message.
  • the air interface connection address corresponding to the service flow may be allocated.
  • Step 803 UE A and UE B return a service flow establishment response message to the base station by using the relay station in response to the foregoing service flow establishment request.
  • Step 804 The base station receives the foregoing service flow establishment response message, and sends a service flow establishment confirmation message to the relay station, UE A, and UE B.
  • Step 805 The UE A maps the data sent to the UE B to the air interface connection corresponding to the established service flow.
  • Step 806 The relay station receives the data sent by the UE A, and obtains the address information of the UE B by parsing the air interface connection address corresponding to the service flow.
  • Step 807 The relay station determines that the service flow is a local forwarding service flow according to locally saved user information of all UEs under its jurisdiction.
  • the service flow may also carry an identifier indicating whether the service flow is a local forwarding service. If the identifier indicates that the service flow is a local forwarding service flow, the relay station determines that the service flow is a local forwarding service flow.
  • Step 808 The relay station acquires a downlink service flow corresponding to the uplink service flow that receives the data, and forwards the received data to the UE B by using the downlink service flow.
  • the user of the relay station is statically assigned to the local forwarding service flow.
  • the data is mapped to the air interface connection address corresponding to the service flow of the destination user equipment, and the base station or the relay station passes.
  • the air interface connection address is parsed, the user information of the destination user equipment can be obtained, and the data sent by the source user equipment is forwarded to the destination user equipment, thereby reducing the data transmission path, shortening the data processing delay, and reducing the network resource overhead. It is especially suitable for wireless access networks with a small number of users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

数据传输方法及系统 技术领域
本发明涉及移动通信技术领域, 尤其涉及无线通信领域中的一种数据 传输方法及系统。 背景技术
一般地,无线通信系统使用电磁波和固定或者移动的无线通信终端(例 如, 移动无线电话或附有无线通信卡的笔记本电脑等, 均可简称为终端) 进行通信。 一般而言, 终端位于系统的无线覆盖范围之内, 分配给终端的 电磁波频率作为无线通信信道可以分成多个载波频率。 在无线通信系统中, 通过基站利用指定无线信道在一定地理范围内提供无线覆盖, 该地理范围 称为小区。 从理论上而言, 基站一般位于小区的中央。
在无线接入网络中, 一般而言, 主要包含用户设备 (UE , User Equipment )、基站和接入网关三个功能实体。 其中, 用户终端和基站之间的 连接属于二层连接, 包括物理层和媒体接入控制 (MAC , Media Access Control )层; 而接入网关主要执行三层以上的功能, 包括解析数据 IP地址 等功能。 在现有的无线接入网通信系统中, 用户终端和基站之间的数据交 互通过一套空口侧的协议规则进行传输, 与三层及三层以上的信息无关。 例如, 在上行数据传输中, 源用户终端发送给多个目的用户终端的数据可 以承载在相同的空口连接地址上, 该数据经从基站到达接入网关之后, 由 接入网关对数据的目的地址进行解析并转发。 在下行数据传输中, 从核心 网侧发来的数据经由接入网关解析目的地址之后, 将该数据映射到相应的 空口侧地址上经由基站发送给目的终端。 由此可知, 在现有技术中, 即使源用户终端和目的用户终端位于相同 的基站之内, 源用户终端的数据也必须经过接入网关解析之后才能转发给 目的用户终端。 因此, 这种数据传输技术存在处理时延较长及接入网关资 源开销较大的问题。
为了解决上述问题, 可以采用本地数据转发的传输方法, 即同一基站 下两个用户终端之间进行交互数据时, 不通过接入网关对数据进行解析, 而是直接由基站进行转发处理。
对于无线中继网络本地数据转发可以在中继站上实现。 即源用户终端 发送的上行数据不会到达基站, 而是在中继站点处对数据进行本地转发。
在实现本地数据转发时, 基站或中继站必须能够从源用户终端发送的 数据中解析出目的用户终端地址, 即具有寻址能力。 但目前尚未提出基站 或中继站如何从源用户终端发送的数据中解析出目的用户终端地址的方 法。 发明内容
有鉴于此, 本发明提供了一种改进的数据传输方法及系统, 用以解决 由于基站或中继站无法从源用户设备发送的数据中解析出目的用户设备的 地址, 而导致无法实现本地转发的问题。
根据本发明的一个方面, 提供了一种数据传输方法。
根据本发明的数据传输方法包括: 源用户设备通过预先建立的与目的 用户设备对应的业务流, 将发送给目的用户设备的数据发送给基站; 基站 解析接收到的数据, 获取自身与目的用户设备之间的业务流的空口连接地 址, 将接收到的数据转发给目的用户设备。
根据本发明的另一个方面, 提供了一种数据传输方法。
根据本发明的数据传输方法包括: 源用户设备通过预先建立的与目的 用户设备对应的业务流, 将发送给目的用户设备的数据发送给中继站; 所 述中继站解析接收到的数据, 获取自身与目的用户设备之间的业务流的空 口连接地址, 将接收到的数据转发给目的用户设备。
本发明还提供一种数据传输系统, 至少包括源用户设备、 目的用户设 备和基站; 其中,
源用户设备, 用于通过预先建立的与目的用户设备对应的业务流, 将 发送给目的用户设备的数据发送给基站;
基站, 用于解析接收到的数据, 获取自身与目的用户设备之间的业务 流的空口连接地址, 将接收到的数据转发给目的用户设备;
目的用户设备, 用于接收有基站转发的来自源用户设备的数据。
本发明还提供另一种数据传输系统, 至少包括源用户设备、 目的用户 设备和中继站; 其中,
源用户设备, 用于通过预先建立的与目的用户设备对应的业务流, 将 发送给所述目的用户设备的数据发送给中继站;
中继站, 用于解析接收到的数据, 获取自身与目的用户设备之间的业 务流的空口连接地址, 将接收到的数据转发给目的用户设备;
目的用户设备, 用于接收有基站转发的来自源用户设备的数据。
通过本发明的上述至少一个方案, 源用户设备通过预先为其与目的用 户设备分配的业务流向目的用户设备发送数据, 使得基站或中继站可以根 据该业务流解析出目的用户设备的用户信息, 从而将源用户设备发送的数 据转发给目的用户设备, 解决了现有技术中由于无法获取目的用户设备的 地址信息, 从而导致无法实现本地转发的问题, 减少了数据传输路径, 缩 短了数据处理的时延及降低了网络资源的开销。
本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从 说明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其 他优点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结 构来实现和获得。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与 本发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图 中:
图 1为本发明一种数据传输方法的实施例的流程图;
图 2为本发明另一种数据传输方法的实施例的流程图;
图 3为本发明一种数据传输网络的实施例的结构示意图;
图 4为实施例一的流程图;
图 5为实施例二的流程图;
图 6为本发明另一种数据传输网络的实施例的结构示意图;
图 7为实施例三的流程图;
图 8为实施例四的流程图。 具体实施方式
针对现有技术中的中继站和基站不具有寻址功能而导致无法实现数据 的本地转发的问题, 本发明实施例提供一种改进的数据传输方案, 在本发 明实施例提供的技术方案中, 预先为用户对配置静态业务流, 用户设备在 向本地的目的用户设备发送数据时, 将数据映射到与目的用户设备的业务 流对应的空口连接地址上发送, 基站或中继站通过解析该空口连接地址, 可以获取目的用户设备的用户信息, 从而将源用户设备发送的数据转发给 目的用户设备。
在不冲突的情况下 , 本申请中的实施例及实施例中的特征可以相互组 合。 以下结合附图对本发明的优选实施例进行说明 , 应当理解, 此处所描 述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
图 1为本发明数据传输方法的实施例的流程图, 如图 1所示, 包括: 步骤 S 101 : 源 UE通过预先建立的与目的 UE对应的业务流, 将发送 给目的 UE的数据发送给基站。
步骤 S103: 基站解析接收到的数据, 获取其与目的 UE之间的业务流 的空口连接地址, 将接收到的数据转发给目的 UE, 其中, 该业务流与源 UE发送的数据所使用的业务流具有对应关系。
以下进一步描述上述各处理的细节。
步骤 S101具体实现如下:
为了使基站具有本地转发能力, 在本发明实施例中, 首先, 将该基站 所管辖的所有 UE配置为一对一的用户对,并为每个用户对静态配置一个或 多个业务流, 并在业务流的属性中携带该用户对中对端 UE的物理地址; 然 后, 由基站为每个业务流分配相应的专用空口连接地址。 这样, 源 UE在发 送数据给对端 UE时,按照对端 UE的物理地址将数据映射到相应的专用空 口连接上,基站通过解析数据的空口连接地址获得对端 UE的用户信息, 并 将数据在相应的下行空口连接上本地转发给对端 UE。
根据本发明实施例提供的数据传输方法可以应用于传统的接入网络, 也可以应用于扁平化网络, 对于由接入网关、 基站和终端组成的传统接入 网络, 用户对的配置及每个用户对的业务流的建立可以由接入网关完成或 发起,具体地,接入网关为基站所管辖的所有 UE配置为用户对并为每个用 户分配业务流可以包括:
步骤 11 : 与基站对应的接入网关判断当前无线接入网络是否支持数据 本地转发功能, 如果不支持, 比如数据本地转发功能没有启动时, 则空口 侧的数据传输方法采用现有机制; 如果基站或接入网关支持数据本地转发 功能,如启用数据本地转发功能, 则接入网关将基站所管辖的所有 UE配置 为用户对。
具体地, 当基站所管辖的 UE总数为 N个时, 则用户对的数量为 比如, 4叚设某一基站所管辖的 UE包括: UE A、 UE B和 UE C, 则接入网 关将该基站下的 UE配成三个用户对: UE A和 UE B、 UE A和 UE C、 UE B 和 UE C。
步骤 12: 对于每个用户对, 接入网关为该用户对分配一个或多个业务 流,在每个业务流的属性中携带用户对中对端 UE的物理地址,并将每个业 务流的信息发送给基站。
步骤 13: 基站根据每个业务流的信息为其分配相应的空口连接地址。 在具体实施过程中, 步骤 11具体可以通过如下的信令流程实现: al . 接入网关通过基站向用户对的两个 UE分别发送业务流建立请求消 息, 并由基站为每个业务流分配相应的专用空口连接地址, 其中, 该业务 流建立请求消息中携带信息至少包括但不限于如下参量之一: 用户对的两 个 UE的地址信息、 端口号和协议类型;
bl . 用户对的两个 UE响应于上述业务流建立请求消息,通过基站向接 入网关发送业务流建立响应消息;
cl . 接入网关通过基站向用户对的两个 UE发送业务流建立确认消息。 至此, 该用户对的业务流建立完成, 无论该用户对之间是否存在数据 交互, 基站都为该用户对配置一个或多个业务流, 在业务流建立完成后, 源 UE在发送数据给对端 UE时, 按照对端 UE的物理地址, 获取与该物理 地址对应的业务流, 使用分类器将数据映射到与该业务流对应的专用空口 连接上发送。
在具体实施过程中, 接入网关可以为每个用户对分配一个或多个业务 流。 当接入网关为用户对只分配一个专用业务流对时, 该用户对的所有的 数据都映射到该业务流对上, 并使用相应的空口连接地址对进行传输。 当 接入网关为用户对分配多个专用业务流对时, 该用户对的数据可以根据业 务质量(QoS, quality of service ), 数据传输方向等参量映射到不同的业务 流上, 并分别使用相应的空口连接地址进行传输。
在具体实施过程, 接入网关在配置用户对时, 也可以将其下的多个基 站所管辖的 UE配置为用户对,并为每个用户对分配一个或多个业务流,这 些用户对中的源 UE向对端 UE发送数据时,也可以根据预先配置的业务流 发送数据。
对于由基站和终端组成的扁平化网络, 由于扁平化网络中基站集成了 传统基站和接入网关的功能, 因此, 可以由基站完成用户对的配置及每个 用户对的业务流的建立,具体地,基站为其所管辖的所有 UE配置为用户对 并为每个用户分配业务流可以包括:
步骤 21 : 基站判断当前无线接入网络是否支持数据本地转发功能, 如 果不支持, 比如数据本地转发功能没有启动时, 则空口侧的数据传输方法 采用现有机制; 如果支持数据本地转发功能, 如启用数据本地转发功能, 则基站将其所管辖的所有 UE配置为用户对。
具体地, 当基站所管辖的 UE总数为 N个时, 用户对的数量为 比 如, 假设某一基站所管辖的 UE包括: UE A、 UE B和 UE C, 则基站将这 些 UE配成三个用户对: UE A ^ UE B , UE A ^ UE C, UE B UE C。
步骤 22: 对于每个用户对, 基站为该用户对分配一个或多个业务流, 在每个业务流的属性中携带用户对中对端 UE的物理地址。
步骤 23: 基站根据每个业务流的信息为其分配相应的空口连接地址。 在具体实施过程中, 步骤 21具体可以通过如下的信令流程实现: a2. 基站向用户对的两个 UE分别发送业务流建立请求消息, 其中, 该 业务流建立请求消息中携带信息至少包括但不限于如下参量之一: 用户对 的两个 UE的地址信息、 端口号和协议类型;
b2. 用户对的两个 UE响应于上述业务流建立请求消息, 向基站发送业 务流建立响应消息;
c2. 基站向用户对的两个 UE发送业务流建立确认消息。
至此, 该用户对的业务流建立完成, 无论该用户对之间是否存在数据 交互, 为该用户对配置的一个或多个业务流都存在, 在业务流建立过程中, 基站为每个业务流分配相应的专用空口连接地址。源 UE在发送数据给对端 UE时, 按照对端 UE的物理地址, 获取与该物理地址对应的业务流, 并将 数据映射到与该业务流对应的专用空口连接上发送。
在具体实施过程中, 基站可以为每个用户对分配一个或多个业务流。 当基站为用户对只分配一个专用业务流对时, 该用户对的所有的数据都映 射到该业务流对上, 并使用相应的空口连接地址对进行传输。 当基站为用 户对分配多个专用业务流对时, 该用户对的数据可以根据 QoS、 数据传输 方向等参量映射到不同的业务流上, 并分别使用相应的空口连接地址进行 传输。
在具体实施过程中, 接入网关或基站为每个用户对建立的业务流可能 存在以下三种情况:
一、 业务流为起始于用户对、 结束于基站的上行业务流以及起始于基 站、 结束于用户对的下行业务流; 相应的, 业务流的空口连接为起始于用 户对、 结束于基站的上行空口连接以及起始于基站、 结束于用户对的下行 空口连接。
在第一种情况下, 如果基站和用户对(包括源 UE和目的 UE )之间已 经存在合适的下行业务流, 则不需要重新建立新的下行业务流, 只需要建 立上行业务流和现存下行业务流的映射关系, 并建立该上行业务流对应的 空口连接地址与该现存下行业务流对应的空口连接地址的映射关系。 该上 行业务流可以仅承载来自源 UE、 发送给对端 UE的上行数据, 该下行业务 流不仅承载来自源 UE、 发送给对端 UE的下行数据, 还可以承载其他用户 发给对端 UE的数据。
在具体实施过程中, 源 UE在发送数据时, 通过上述上行业务流, 将待 发送数据映射到与该上行业务流对应的空口连接地址上发送给基站, 基站 接收到上述数据后, 获取与该上行业务流的空口连接地址对应的下行业务 流的空口连接地址, 将接收到的数据映射到与该下行业务流对应的空口连 接地址上发送给对端 UE。
二、 业务流为起始于源 UE、 经由基站结束于对端 UE的端到端的单向 业务流; 相应的, 该业务流的空口连接为起始于源 UE, 经由基站结束于对 端 UE的单向空口连接;
在第二种情况下, 用户对之间需建立两条单向业务流, 第一条单向业 务流为: 源 UE→基站→对端 UE, 第二条业务流为: 对端 UE→基站→源 UE。 其中, 第一条业务流仅承载来自源 UE、 发送给对端 UE的数据, 而第 二条业务流仅承载来自对端 UE、 发送给源 UE的数据。
在具体实施过程中, 源 UE在向对端 UE发送数据时, 通过第一条业务 流, 将待发送的数据映射到与该业务流对应的空口连接地址上发送给基站 , 基站接收源 UE发送的数据,通过该业务流,将接收到的数据映射到与该业 务流对应的空口连接地址转发给对端 UE。 同样, 对于对端 UE, 其发送数 据给源 UE时, 对端 UE通过第二条业务流, 将待发送的数据映射到与该业 务流对应的空口连接地址上发送给基站, 基站通过该业务流, 将接收到的 数据映射到与该业务流对应的空口连接地址转发给源 UE。
三、 业务流为源 UE经由基站与对端 UE之间的端到端的双向业务流, 即源 UE—→基站―→对端 UE; 相应的, 该业务流的空口连接为源 UE经 由基站与对端 UE之间的双向空口连接。 在第三种情况下, 用户对之间仅需建立一条业务流。 该业务流仅承载 源用户和对端用户之间交互的数据, 源 UE在向对端 UE发送数据时, 通过 该双向业务流, 将数据映射到与该双向业务流对应的空口连接地址上将数 据发送到基站,基站通过该双向业务流将源 UE发送的数据转映射到与该双 向业务流对应的空口连接地址上发给对端 UE, 同样, 当对端 UE有数据要 发送给源 UE时, 对端 UE通过该双向业务流将数据发送给基站, 基站通过 该双向业务流将数据发送源 UE。
图 1中步骤 S103具体实现如下:
基站通过预先建立的业务流接收到源 UE发送的数据后,通过解析与该 业务流对应的空口连接地址, 可以获取目的 UE的用户信息, 具体地, 该用 户信息可以为物理地址, 具体地, 物理地址包括但不限于: UE的 IP地址、 UE的端口号。
在具体实施过程中, 基站在本地转发数据时, 可以将 MAC 协议数据 单元( PDU, Protocol data unit )重组为服务数据单元( SDU, Service Data Unit ), 并根据基站与目的 UE之间的链路及调度情况将 SDU重新打包为 MAC PDU并转发给目的 UE。
在具体实施过程中,如果基站本地保存有其所管辖的所有 UE的用户信 息,则基站可以通过解析业务流中的目的 UE的物理地址以及该业务流所对 应的源 UE, 通过查询本地保存的其所管辖的所有 UE的用户信息, 可以判 断源 UE与目的 UE是否都为其所管辖的 UE, 从而判断该业务流是否为本 地转发业务流, 具体地, 如果源 UE与目的 UE为该基站所管辖的 UE, 则 基站确定该业务流为本地转发业务流, 基站获取与该业务流对应的下行业 务流, 通过该下行业务流将源 UE发送的数据转发给目的 UE。
如果基站本地没有保存其所管辖的 UE的用户信息,则可以通过在业务 流中携带本地转发业务流的标识, 基站通过解析该标识, 可以确定当前业 务流为本地转发业务流, 基站获取与该业务流对应的下行业务流, 通过该 下行业务流将源 UE发送的数据转发给目的 UE。
通过本发明实施例提供的上述方法, 可以使得基站具有本地寻址功能, 从而使得基站可以实现本地转发功能。
根据本发明实施例, 还提供了另一种数据传输方法, 该方法用于包括 中继站的无线网络中。
图 2为本发明数据传输方法的实施例的流程图, 如图 2所示, 包括: 步骤 S201 : 源 UE通过预先建立的与目的 UE对应的业务流, 将发送 给目的 UE的数据发送给中继站。
步骤 S203: 中继站解析接收到的数据, 获取其与目的 UE之间的业务 流的空口连接地址, 将接收到的上述数据转发给目的 UE, 其中, 该业务流 与源 UE发送上述数据所使用的业务流具有对应关系。
以下进一步描述上述各处理细节。
步骤 S201具体实现如下:
为了使中继站具有本地转发能力, 在本发明实施例中, 首先, 将该中 继站所管辖的所有 UE配置为一对一的用户对,并为每个用户对静态配置一 个或多个业务流, 并将业务流的属性中设置该用户对中对端 UE 的物理地 址; 然后, 由中继站或基站为每个业务流分配相应的专用空口连接地址。 源 UE在发送数据给对端 UE时, 按照对端 UE的物理地址将数据映射到相 应的专用空口连接上, 中继站通过解析数据的空口连接地址获得对端 UE 的用户信息, 并将数据在相应的下行空口连接上本地转发给对端 UE。
与图 1 中所示的数据传输方法相似, 用户对的配置及每个用户对的业 务流的建立可以由接入网关完成, 在扁平化网络中也可以由基站完成, 具 体地,接入网关为中继站所管辖的所有 UE配置为用户对并为每个用户分配 业务流可以包括: 步骤 31 : 与中继站对应的接入网关判断当前无线接入网络是否支持数 据本地转发功能, 如果不支持, 比如数据本地转发功能没有启动, 则空口 侧的数据传输方法采用现有机制; 如果支持数据本地转发功能, 如启用数 据本地转发该功能, 则接入网关将中继站所管辖的所有 UE配置为用户对。
具体地, 当中继站所管辖的 UE总数为 N个时, 则用户对的数量为 比如, 假设某一中继站所管辖的 UE包括: UE A、 UE B和 UE C, 则接入 网关将该中继站下的 UE配成三个用户对: UE A ^ UE B, UE A ^ UE C, UE B和 UE C。
步骤 32: 对于每个用户对, 接入网关为该用户对分配一个或多个业务 流,在每个业务流的属性中携带用户对中对端 UE的物理地址,并将每个业 务流的信息发送给中继站。
步骤 33: 中继站或基站根据每个业务流的信息为每个业务流分配相应 的空口连接地址。
在具体实施过程中, 步骤 31具体可以通过如下的信令流程实现: a3. 接入网关通过中继站及其对应的基站向用户对的两个 UE分别发送 业务流建立请求消息, 其中, 该业务流建立请求消息中携带信息至少包括 但不限于如下参量之一:用户对的两个 UE的地址信息、端口号和协议类型; b3. 用户对的两个 UE响应于上述业务流建立请求消息,通过基站向接 入网关发送业务流建立响应消息;
c3. 接入网关通过基站向用户对的两个 UE及中继站发送业务流建立确 认消息。
至此, 该用户对的业务流建立完成, 无论该用户对之间是否存在数据 交互, 为该用户对配置的一个或多个业务流都存在, 在业务流建立过程中, 中继站或基站为每个业务流分配相应的专用空口连接地址, 在具体实施过 程中, 如果中继站具有分配空口连接地址的能力, 则由中继站为每个业务 流分配相应的专用空口连接地址, 如果中继站没有该能力, 则可以由基站 为每个业务流分配相应的专用空口连接地址。 源 UE在发送数据给对端 UE 时, 按照对端 UE的物理地址, 获取与该物理地址对应的业务流, 使用分类 器将数据映射到与该业务流对应的专用空口连接上发送。
在具体实施过程中, 接入网关可以为每个用户对分配一个或多个业务 流。 当接入网关为用户对只分配一个专用业务流对时, 该用户对的所有的 数据都映射到该业务流对上, 并使用相应的空口连接地址对进行传输。 当 接入网关为用户对分配多个专用业务流对时, 该用户对的数据可以根据 QoS,数据传输方向等参量映射到不同的业务流上, 并分别使用相应的空口 连接地址进行传输。
在具体实施过程, 接入网关在配置用户对时, 也可以将其下的多个基 站中的多个中继站所管辖的 UE配置为用户对,并为每个用户对分配一个或 多个业务流, 这些用户对中的源 UE向对端 UE发送数据时, 也可以根据预 先配置的业务流发送数据。
对于由基站、 中继站和终端组成的扁平化网络, 由于扁平化网络中基 站集成了传统基站和接入网关的功能, 因此, 可以由基站完成用户对的配 置及每个用户对的业务流的建立, 具体地, 基站为其下的某个中继站所管 辖的所有 UE配置为用户对并为每个用户分配业务流可以包括:
步骤 41 : 基站判断当前无线接入网络是否支持数据本地转发功能, 如 果不支持, 比如数据本地转发功能没有启动, 则空口侧的数据传输方法采 用现有机制; 如果支持数据本地转发功能, 如启用数据本地转发功能, 则 基站将其下某中继器所管辖的所有 UE配置为用户对。 具体地, 当中继站所管辖的 UE总数为 N个时, 用户对的数量为 比如, 假设某一中继站所管辖的 UE包括: UE A、 UE B和 UE C, 则基站 将这些 UE配成三个用户对: UE A ^ UE B, UE A ^ UE C, UE B和 UE C。 步骤 42: 对于每个用户对, 基站为该用户对分配一个或多个业务流, 在每个业务流的属性中携带用户对中对端 UE的物理地址,并将每个业务流 的信息发送给中继站。
步骤 43:中继站根据每个业务流的信息为其分配相应的空口连接地址。 在具体实施过程中, 步骤 41具体可以通过如下的信令流程实现: a4.基站通过中继站向用户对的两个 UE分别发送业务流建立请求消息, 其中, 该业务流建立请求消息中携带信息至少包括但不限于如下参量之一: 用户对的两个 UE的地址信息、 端口号和协议类型;
M.用户对的两个 UE响应于上述业务流建立请求消息, 通过中继站向 基站发送业务流建立响应消息;
c3.基站向用户对的两个 UE及中继站发送业务流建立确认消息。
至此, 该用户对的业务流建立完成, 无论该用户对之间是否存在数据 交互, 为该用户对配置的一个或多个业务流都存在, 在业务流建立过程后, 中继站或基站为每个业务流分配相应的专用空口连接地址。源 UE在发送数 据给对端 UE时, 按照对端 UE的物理地址, 获取与该物理地址对应的业务 流, 并将数据映射到与该业务流对应的专用空口连接上发送。
在具体实施过程中, 基站可以为每个用户对分配一个或多个业务流对。 当基站为用户对只分配一个专用业务流对时, 该用户对的所有的数据都映 射到该业务流对上, 并使用相应的空口连接地址对进行传输。 当基站为用 户对分配多个专用业务流对时, 该用户对的数据可以根据 QoS、 数据传输 方向等参量映射到不同的业务流上, 并分别使用相应的空口连接地址进行 传输。
在具体实施过程中,基站也可以将其下的多个中继站所管辖的 UE配置 为用户对, 并为每个用户对建立业务流。
在具体实施过程中, 接入网关或基站为每个用户对建立的业务流也可 以存在三种情况, 具体与上述第一种数据传输方法类似, 在此不在赘述。 图 2中步骤 S203具体实现如下:
中继站通过预先建立的业务流接收到源 UE发送的数据后,通过解析与 该业务流对应的空口连接地址, 可以获取目的 UE的用户信息, 具体地, 该 用户信息可以为物理地址, 具体地, 物理地址包括但不限于: UE的 IP地 址、 UE的端口号。
在具体实施过程中, 中继站在本地转发数据时, 可以将 MAC PDU重 组为 SDU, 并根据基站与目的 UE之间的链路及调度情况将 SDU重新打包 为 MAC PDU并转发给目的 UE。
在具体实施过程中,如果中继站本地保存有其所管辖的所有 UE的用户 信息,则中站可以通过解析业务流中的目的 UE的物理地址以及该业务流所 对应的源 UE, 通过查询本地保存的其所管辖的所有 UE的用户信息, 可以 判断源 UE与目的 UE是否都为其所管辖的 UE, 从而判断该业务流是否为 本地转发业务流, 具体地, 如果源 UE与目的 UE为该中继站所管辖的 UE, 则中继站确定该业务流为本地转发业务流, 中继站获取与该业务流对应的 下行业务流, 通过该下行业务流将源 UE发送的数据转发给目的 UE。
如果中继站本地没有保存其所管辖的 UE的用户信息,则可以通过在业 务流中携带本地转发业务流的标识, 中继站通过解析该标识, 可以确定当 前业务流为本地转发业务流, 中继站获取与该业务流对应的下行业务流, 通过该下行业务流将源 UE发送的数据转发给目的 UE。
通过本发明实施例提供的上述方法, 可以使得中继站具有本地寻址功 能, 从而使得中继站可以实现本地转发功能。
为了进一步理解本发明实施例提供的技术方案的具体实施方式, 以下 通过具体实施例对本发明实施例提供的技术方案进行说明。
实施例一。 本实施例以图 3 所示的网络结构为例进行说明, 在本实施例中由接入 网关将基站所管辖的 UE配置为用户对,并为每个用户对分配业务流,从而 实现基站本地转发功能。
图 4为实施例一的流程图, 如图 4所示, 在实施例一中实现基站本地 转发主要包括以下步骤:
步骤 401 : 接入网关确定当前无线接入网络启动本地转发功能, 将基站 所管辖的所有 UE配置为用户对。
步骤 402: 接入网关通过基站向用户对中的 UE A和 UE B发送业务流 建立请求消息。
步骤 403: UE A和 UE B响应于接入网关发送的上述业务流建立请求, 通过基站向接入网关返回业务流建立响应消息。
步骤 404:接入网关接收上述业务流建立响应消息,并通过基站向 UE A 和 UE B 发送业务流建立确认消息。
步骤 405: 接入网关向基站发送消息, 该消息中携带有上述建立的业务 流的信息。
步骤 406:基站根据每个业务流的信息为每个业务流分配相应的空口连 接地址。
在具体实施过程中, 步骤 406的处理可以在步骤 402中执行, 具体地, 在步骤 402 中在接收到接入网关发送的业务流建立请求消息时, 基站可以 为每个业务流分配相应的空口连接地址, 并在将向 UE A和 UE B发送业务 流建立请求消息中携带该业务流的空口连接地址。
步骤 407: UE A将发送给 UE B的数据映射到上述建立的业务流对应 的空口连接地址上发送。
步骤 408: 基站接收 UE A发送的数据, 并通过解析与上述业务流对应 的空口连接地址获取 UE B的地址信息。 步骤 409: 基站根据本地保存的其所管辖的所有 UE的用户信息, 确定 上述业务流为本地转发业务流。
在具体实施过程中, 还可以在业务流中携带指示该业务流是否为本地 转发业务的标识, 如果该标识指示上述业务流为本地转发业务流, 则基站 确定该业务流为本地转发业务流。
步骤 410: 基站获取与接收上述数据的上行业务流对应的下行业务流, 并通过该下行业务流将接收到的上述数据转发给 UE B。
实施例二。
本实施例以图 3 所示的网络结构为例进行说明, 在本实施例由基站将 其所管辖的 UE配置为用户对,并为每个用户对分配业务流,从而实现基站 本地转发功能。
图 5为实施例二的流程图, 如图 5所示, 在实施例二中实现扁平化网 络中基站本地转发主要包括以下步骤:
步骤 501 : 基站确定当前无线接入网络启动本地转发功能, 将其所管辖 的所有 UE配置为用户对。
步骤 502:基站向用户对中的 UE A和 UE B发送业务流建立请求消息, 并分配相应的空口连接地址。
在具体实施过程中, 基站也可以在接收到 UE A和 UE B发送的业务流 建立响应消息后, 为每个业务流分配相应的空口连接地址, 并在业务流建 立确认消息中携带该业务流对应的空口连接地址。
步骤 503: UE A和 UE B响应于上述业务流建立请求, 向基站返回业 务流建立响应消息。
步骤 504: 基站接收上述业务流建立响应消息, 并向 UE A和 UE B 发 送业务流建立确认消息。 步骤 505: UE A将发送给 UE B的数据映射到上述建立的业务流对应 的空口连接地址上发送。
步骤 506: 基站接收 UE A发送的数据, 并通过解析与上述业务流对应 的空口连接地址获取 UE B的地址信息。
步骤 507: 基站根据本地保存的其所管辖的所有 UE的用户信息, 确定 上述业务流为本地转发业务流。
在具体实施过程中, 还可以在业务流中携带指示该业务流是否为本地 转发业务的标识, 如果该标识指示上述业务流为本地转发业务流, 则基站 确定该业务流为本地转发业务流。
步骤 508: 基站获取与接收上述数据的上行业务流对应的下行业务流, 并通过该下行业务流将接收到的上述数据转发给 UE B。
实施例三。
实施例三以图 6所示的网络结构为例进行说明, 在实施例三中由接入 网关将中继站所管辖的 UE配置为用户对,并为每个用户对分配业务流,从 而实现中继本地转发功能。
图 7为实施例三的流程图, 如图 7所示, 在实施例三中实现中继站本 地转发主要包括以下步骤:
步骤 701 : 接入网关确定当前无线接入网络启动本地转发功能, 将中继 站所管辖的所有 UE配置为用户对。
步骤 702: 接入网关通过基站、 中继站向用户对中的 UE A和 UE B发 送业务流建立请求消息;
步骤 703: UE A和 UE B响应于接入网关发送的上述业务流建立请求, 通过基站、 中继站向接入网关返回业务流建立响应消息;
步骤 704: 接入网关接收上述业务流建立响应消息, 并通过基站向中继 站、 UE A和 UE B 发送业务流建立确认消息; 步骤 705: 接入网关向中继站发送消息, 该消息中携带有上述建立的业 务流的信息;
步骤 706:中继站或基站根据每个业务流的信息为其分配相应的空口连 接地址;
在具体实施过程中, 如果中继站具有分配的空口连接地址的能力, 则 可以由中继站为每个业务流分配相应的空口连接地址, 如果中继站没有该 能力, 则可以由基站为每个业务流分配相应的空口连接地址。
同样, 也可以在步骤 702 中, 中继站或基站接收到接入网关发送的业 务流建立请求消息后, 为该业务流分配相应的空口连接地址, 并将分配的 空口连接地址携带在业务流建立请求消息中发送给 UE A和 UE B。
步骤 707: UE A将发送给 UE B的数据映射到上述建立的业务流对应 的空口连接地址上发送。
步骤 708: 中继站接收 UE A发送的数据, 并通过解析与上述业务流对 应的空口连接地址获取 UE B的地址信息;
步骤 709: 中继站根据本地保存的其所管辖的所有 UE的用户信息, 确 定上述业务流为本地转发业务流;
在具体实施过程中, 还可以在业务流中携带指示该业务流是否为本地 转发业务的标识, 如果该标识指示上述业务流为本地转发业务流, 则中继 站确定该业务流为本地转发业务流。
步骤 710: 中继站获取与接收上述数据的上行业务流对应的下行业务 流, 并通过该下行业务流将接收到的上述数据转发给 UE B。
实施例四。
实施例四以图 6所示的网络结构为例进行说明, 在实施例四由基站将 中继站所管辖的 UE配置为用户对,并为每个用户对分配业务流,从而实现 中继站本地转发功能。 图 8为实施例四的流程图, 如图 8所示, 在实施例四中实现中继站本 地转发主要包括以下步骤:
步骤 801 : 基站确定当前无线接入网络启动本地转发功能, 将其下的某 个中继站所管辖的所有 UE配置为用户对。
步骤 802: 基站向中继站、 用户对中的 UE A和 UE B发送业务流建立 请求消息, 中继站或基站为该业务流分配相应的空口连接地址。
在具体实施过程中, 基站或中继站也可以在接收到 UE A和 UE B发送 的业务流建立响应消息后, 为每个业务流分配相应的空口连接地址, 并在 业务流建立确认消息中携带该业务流对应的空口连接地址。
步骤 803: UE A和 UE B响应于上述业务流建立请求, 通过中继站向 基站返回业务流建立响应消息。
步骤 804: 基站接收上述业务流建立响应消息, 并向中继站、 UE A和 UE B 发送业务流建立确认消息。
步骤 805: UE A将发送给 UE B的数据映射到上述建立的业务流对应 的空口连接上发送。
步骤 806: 中继站接收 UE A发送的数据, 并通过解析与上述业务流对 应的空口连接地址获取 UE B的地址信息。
步骤 807: 中继站根据本地保存的其所管辖的所有 UE的用户信息, 确 定上述业务流为本地转发业务流。
在具体实施过程中, 还可以在业务流中携带指示该业务流是否为本地 转发业务的标识, 如果该标识指示上述业务流为本地转发业务流, 则中继 站确定该业务流为本地转发业务流。
步骤 808: 中继站获取与接收上述数据的上行业务流对应的下行业务 流, 并通过该下行业务流将接收到的上述数据转发给 UE B。
如上所述, 借助本发明实施例提供的技术方案, 通过预先为基站或中 继站所管辖的用户对静态分配本地转发业务流, 用户设备在向本地的目的 用户设备发送数据时, 将数据映射到与目的用户设备的业务流对应的空口 连接地址上发送, 基站或中继站通过解析该空口连接地址, 可以获取目的 用户设备的用户信息, 从而将源用户设备发送的数据转发给目的用户设备, 从而减少了数据传输路径, 缩短了数据处理的时延及降低了网络资源的开 销, 对于用户数量较少的无线接入网络中特别适用。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、 一种数据传输方法, 其特征在于, 包括:
源用户设备通过预先建立的与目的用户设备对应的业务流, 将发送给 目的用户设备的数据发送给基站;
基站解析接收到的数据, 获取自身与目的用户设备之间的业务流的空 口连接地址, 将接收到的数据转发给目的用户设备。
2、 根据权利要求 1所述的数据传输方法, 其特征在于, 所述基站与目 的用户设备之间的业务流, 与所述源用户设备发送的数据使用的业务流具 有对应关系。
3、 根据权利要求 2所述的数据传输方法, 其特征在于, 在所述源用户 设备发送数据之前, 该方法还包括:
所述基站确定当前无线接入网支持数据本地转发功能, 将基站自身所 管辖的所有用户设备配置为一对一的用户对;
对于每个用户对, 所述基站为该用户对分配一个或多个业务流, 为每 个业务流分配相应的空口连接地址, 并在该业务流的属性中设置所述用户 对中的对端用户设备的物理地址。
4、 根据权利要求 3所述的数据传输方法, 其特征在于, 所述基站为用 户对分配一个或多个业务流包括:
所述基站向用户对中的两个用户设备分别发送业务流建立请求消息, 其中, 所述业务流建立请求消息中携带的信息包括以下至少之一: 所述用 户对中的两个用户设备的地址信息、 端口号和协议类型;
所述用户对中的两个用户设备响应于业务流建立请求消息, 分别向所 述基站发送业务流建立响应消息;
所述基站向用户对中的两个用户设备分别发送业务流建立确认消息。
5、 根据权利要求 2所述的数据传输方法, 其特征在于, 在所述源用户 设备发送数据之前, 该方法还包括:
与所述基站对应的接入网关确定当前无线接入网支持数据本地转发功 能, 将所述基站所管辖的所有用户设备组成一对一的用户对;
对于每个用户对, 所述接入网关为该用户对分配一个或多个业务流, 并在每个业务流的属性中设置所述用户对的对端用户设备的物理地址, 并 将每个业务流的信息发送给所述基站;
所述基站根据每个业务流的信息为每个业务流分配相应的空口连接地 址。
6、 根据权利要求 5所述的数据传输方法, 其特征在于, 所述接入网关 为用户对分配一个或多个业务流包括:
所述接入网关通过所述基站向用户对中的两个用户设备发送业务流建 立请求消息, 其中, 所述业务流建立请求消息中携带信息包括以下至少之 一: 所述用户对的两个用户设备地址信息、 端口号和协议类型;
所述用户对的两个用户设备响应于业务流建立请求消息, 通过所述基 站向接入网关发送业务流建立响应消息;
所述接入网关通过所述基站向用户对的两个用户设备发送业务流建立 确认消息。
7、 根据权利要求 5或 6所述的数据传输方法, 其特征在于, 所述接入 网关为该用户对分配一个或多个业务流之前, 该方法还包括:
所述接入网关将与其对应的多个基站所管辖的用户设备组成用户对。
8、 根据权利要求 3至 6中任一项所述的数据传输方法, 其特征在于, 所述源用户设备发送所述数据之前, 该方法还包括:
所述源用户设备根据目的用户设备的所述物理地址, 将所述数据映射 到与所述物理地址对应的业务流。
9、 根据权利要求 1至 6中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 起始于源用户设备和对端用户设备、 结束于所述基站的 上行业务流, 以及起始于所述基站结束于源用户设备和对端用户设备的下 行业务流。
10、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述源用户 设备将所述数据发送给所述基站包括:
所述源用户设备通过源用户设备与所述基站之间的上行业务流, 将所 述数据在与上行业务流相应的上行空口连接地址上发送给基站;
所述基站将数据转发给目的用户设备包括:
所述基站通过基站与目的用户设备之间的下行业务流, 将所述数据在 与下行业务流相应的下行空口连接地址上转发给目的用户设备, 其中, 所 述下行业务流包括: 专用于承载所述源用户设备发送给所述目的用户设备 的数据的下行业务流或用于承载多个用户设备发送给所述目的用户设备的 数据的下行业务流。
11、 根据权利要求 1至 6中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 起始于源用户设备经由所述基站结束于目的用户设备的 单向业务流。
12、 根据权利要求 11所述的数据传输方法, 其特征在于, 所述源用户 设备将所述数据发送给所述基站包括:
所述源用户设备通过单向业务流, 将所述数据在与单向业务流相应的 空口连接地址上发送给所述基站;
所述基站将数据转发给所述目的用户设备包括:
所述基站通过单向业务流, 将数据在与单向业务流相应的空口连接地 址上转发给所述目的用户设备。
13、 根据权利要求 1至 6中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 源用户设备经由所述基站与目的用户设备之间的双向业 务流。
14、 根据权利要求 13所述的数据传输方法, 其特征在于, 所述源用户 设备将所述数据发送给所述基站包括:
所述源用户设备通过双向业务流, 将所述数据在与双向业务流相应的 空口连接地址上发送给所述基站;
所述基站将数据转发给目的用户设备包括:
所述基站通过双向业务流, 将所述数据在与双向业务流相应的空口连 接地址上转发给所述目的用户设备。
15、 根据权利要求 1至 6中任一项所述的数据传输方法, 其特征在于, 所述基站将数据转发给目的用户设备之前, 该方法还包括:
所述基站根据本地保存的其所管辖范围内的用户设备的用户信息及的 用户设备的用户信息, 确定目的用户设备在其管辖范围内。
16、 根据权利要求 1至 6中任一项所述的数据传输方法, 其特征在于, 所述业务流中携带有指示该业务流为本地转发业务流的标识; 所述基站将 数据转发给所述目的用户设备之前, 该方法还包括:
所述基站根据所述标识, 确定所述业务流为本地转发业务流。
17、 一种数据传输方法, 其特征在于, 包括:
源用户设备通过预先建立的与目的用户设备对应的业务流, 将发送给 目的用户设备的数据发送给中继站;
所述中继站解析接收到的数据, 获取自身与目的用户设备之间的业务 流的空口连接地址, 将接收到的数据转发给目的用户设备。
18、 根据权利要求 17所述的数据传输方法, 其特征在于, 所述中继站 与目的用户设备之间的业务流, 与源用户设备发送的数据使用的业务流具 有对应关系。
19、 根据权利要求 18所述的数据传输方法, 其特征在于, 在所述源用 户设备向目的用户设备发送所述数据之前, 该方法还包括:
所述中继站对应的基站确定当前无线接入网支持数据的本地转发功 能, 将所述中继站所管辖的所有用户设备组成一对一的用户对;
对于每个用户对, 所述基站为该用户对分配一个或多个业务流, 为每 个业务流分配相应的空口连接地址, 并在每个业务流的属性中携带所述用 户对中的对端用户设备的物理地址。
20、 根据权利要求 19所述的数据传输方法, 其特征在于, 所述基站为 用户对分配一个或多个业务流包括:
所述基站向用户对中的两个用户设备分别发送业务流建立请求消息, 其中, 所述业务流建立请求消息中携带信息包括以下至少之一: 所述用户 对中的两个用户设备的地址信息、 端口号和协议类型;
所述用户对中的两个用户设备响应于业务流建立请求消息, 分别向所 述基站发送业务流建立响应消息;
所述基站向用户对中的两个用户设备及所述中继站分别发送业务流建 立确认消息。
21、 根据权利求 19或 20所述数据传输方法, 其特征在于, 所述基站 为用户对分配一个或多个业务流之前, 该方法还包括:
所述基站将其下的多个中继站所管辖的用户设备组成一对一的用户 对。
22、 根据权利要求 17所述的数据传输方法, 其特征在于, 在所述源用 户设备发送数据之前, 该方法还包括: 所述中继站对应的接入网关确定当前无线接入网支持数据的本地转发 功能, 将所述中继站所管辖的所有用户设备组成一对一的用户对;
对于每个用户对, 所述接入网关为该用户对分配一个或多个业务流, 在每个业务流的属性中携带用户对中对端用户设备的物理地址, 并将每个 业务流的信息发送给所述中继站;
所述中继站为每个业务流分配相应的空口连接地址。
23、 根据权利要求 22所述的数据传输方法, 其特征在于, 所述接入网 关为用户对分配一个或多个业务流包括:
所述接入网关通过中继站对应的基站, 向用户对的两个用户设备分别 发送业务流建立请求消息, 其中, 所述业务流建立请求消息中携带信息包 括以下至少之一: 所述用户对的两个用户设备地址信息、 端口号和协议类 型;
所述用户对的两个用户设备响应于业务流建立请求消息, 分别向通过 所述基站向接入网关发送业务流建立响应消息;
所述接入网关通过基站向用户对的两个用户设备及所述中继站分别发 送业务流建立确认消息。
24、 根据权利要求 22或 23所述的数据传输方法, 其特征在于, 在所 述接入网关为该用户对分配一个或多个业务流之前, 该方法还包括:
所述接入网关将其下的多个基站下的多个中继站所管辖的用户设备组 成的用户对。
25、 根据权利要求 19至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 在所述源用户设备发送数据之前, 该方法包括:
所述源用户设备根据目的用户设备的所述物理地址, 将所述数据映射 到与物理地址对应的所述业务流。
26、 根据权利要求 17至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 起始于源用户设备结束于所述中继站的上 行业务流、 起始于所述中继站结束于所述目的用户设备的下行业务流。
27、 根据权利要求 26所述的数据传输方法, 其特征在于, 所述源用户 设备将数据发送给中继站包括:
所述源用户设备通过源用户设备与中继站之间的上行业务流, 将所述 数据在与上行业务流相应的上行空口连接地址上发送给中继站;
所述中继站将数据转发给目的用户设备包括:
所述中继站通过中继站与目的用户设备之间的下行业务流, 将所述数 据在与下行业务流相应的下行空口连接地址上转发给目的用户设备, 其中, 所述下行业务流包括: 专用于承载所述源用户设备发送给所述目的用户设 备的数据的下行业务流或用于承载多个用户设备发送给所述目的用户设备 的数据的下行业务流。
28、 根据权利要求 17至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 起始于源用户设备经由所述中继站结束于 目的用户设备的单向业务流。
29、 根据权利要求 28所述的数据传输方法, 其特征在于, 所述源用户 设备将所述数据发送给所述中继站包括:
所述源用户设备通过单向业务流, 将所述数据在与单向业务流相应的 空口连接地址上发送给中继站;
所述中继站将数据转发给目的用户设备包括:
所述中继站通过单向业务流, 将所述数据在与单向业务流相应的空口 连接地址上转发给所述目的用户设备。
30、 根据权利要求 17至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 所述业务流包括: 源用户设备经由所述中继站与目的用户设 备之间的双向业务流。
31、 根据权利要求 30所述的数据传输方法, 其特征在于, 所述源用户 设备将所述数据发送给所述中继站包括:
所述源用户设备通过双向业务流, 将所述数据在与双向业务流相应的 空口连接地址上发送给中继站;
所述中继站将所述数据转发给所述目的用户设备包括:
所述中继站通过双向业务流, 将所述数据在与双向业务流相应的空口 连接地址上转发给目的用户设备。
32、 根据权利要求 17至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 所述中继站将数据转发给所述目的用户设备之前, 该方法还 包括:
所述中继站根据本地保存的其管辖范围内的用户设备的用户信息, 及 所述目的用户设备的用户信息, 确定所述目的用户设备在其所管辖范围内。
33、 根据权利要求 17至 20、 22或 23中任一项所述的数据传输方法, 其特征在于, 所述业务流中携带有指示该业务流为本地转发业务流的标识; 所述中继站将数据转发给目的用户设备之前, 该方法还包括: 所述中继站根据所述标识, 确定业务流为本地转发业务流。
34、 一种数据传输系统, 其特征在于, 至少包括源用户设备、 目的用 户设备和基站; 其中,
源用户设备, 用于通过预先建立的与目的用户设备对应的业务流, 将 发送给目的用户设备的数据发送给基站;
基站, 用于解析接收到的数据, 获取自身与目的用户设备之间的业务 流的空口连接地址, 将接收到的数据转发给目的用户设备; 目的用户设备, 用于接收有基站转发的来自源用户设备的数据。
35、 根据权利要求 34所述的数据传输系统, 其特征在于, 该系统还包 括与所述基站对应的接入网关,
用于确定当前无线接入网支持数据本地转发功能, 将所述基站所管辖 的所有用户设备组成一对一的用户对; 对于每个用户对, 为该用户对分配 一个或多个业务流, 并在每个业务流的属性中设置用户对的对端用户设备 的物理地址, 并将每个业务流的信息发送给所述基站;
所述基站, 还用于根据每个业务流的信息为每个业务流分配相应的空 口连接地址。
36、 一种数据传输系统, 其特征在于, 至少包括源用户设备、 目的用 户设备和中继站; 其中,
源用户设备, 用于通过预先建立的与目的用户设备对应的业务流, 将 发送给所述目的用户设备的数据发送给中继站;
中继站, 用于解析接收到的数据, 获取自身与目的用户设备之间的业 务流的空口连接地址, 将接收到的数据转发给目的用户设备;
目的用户设备, 用于接收有基站转发的来自源用户设备的数据。
37、 根据权利要求 36所述的数据传输系统, 其特征在于, 该系统还包 括与所述中继站对应的接入网关,
用于确定当前无线接入网支持数据本地转发功能, 将所述中继站所管 辖的所有用户设备组成一对一的用户对; 对于每个用户对, 为该用户对分 配一个或多个业务流, 在每个业务流的属性中携带用户对中对端用户设备 的物理地址, 并将每个业务流的信息发送给所述中继站;
所述中继站还用于, 为每个业务流分配相应的空口连接地址。
PCT/CN2009/076038 2009-02-10 2009-12-25 数据传输方法及系统 WO2010091591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910006276.X 2009-02-10
CN200910006276.XA CN101800946B (zh) 2009-02-10 2009-02-10 数据传输方法

Publications (2)

Publication Number Publication Date
WO2010091591A1 true WO2010091591A1 (zh) 2010-08-19
WO2010091591A8 WO2010091591A8 (zh) 2011-09-29

Family

ID=42561391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076038 WO2010091591A1 (zh) 2009-02-10 2009-12-25 数据传输方法及系统

Country Status (2)

Country Link
CN (1) CN101800946B (zh)
WO (1) WO2010091591A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546370B (zh) * 2010-12-20 2015-07-29 华为技术有限公司 业务流修改处理方法、装置和系统
WO2011116714A2 (zh) * 2011-04-28 2011-09-29 华为技术有限公司 终端间的通信方法和设备
CN107580342B (zh) * 2016-07-05 2020-04-17 大唐移动通信设备有限公司 一种基于基站的数据处理方法和装置
CN110677879B (zh) * 2019-09-10 2022-05-06 徐州时空思维智能科技有限公司 一种基站与终端的数据互通执行方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078147A (ja) * 1998-08-28 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 無線パケット転送方法および該方法を用いた無線基地局
CN1505344A (zh) * 2002-12-04 2004-06-16 ��ʽ����Ntt����Ħ 中继设备、控制内容传送的方法、以及内容传送系统
CN1725872A (zh) * 2004-07-19 2006-01-25 华为技术有限公司 一种双模终端进行通信的方法
CN1996928A (zh) * 2006-01-04 2007-07-11 株式会社日立制作所 网络系统
CN101136853A (zh) * 2007-09-27 2008-03-05 华为技术有限公司 一种数据路由的方法、通讯系统及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790152B1 (ko) * 2005-11-24 2008-01-02 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 시스템
US20080153453A1 (en) * 2006-12-20 2008-06-26 Nokia Corporation Method for providing emergency service in WiMAX networks
CN101296020A (zh) * 2007-04-27 2008-10-29 北京三星通信技术研究有限公司 部分功能ofdma中继系统直接消息转发的实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078147A (ja) * 1998-08-28 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 無線パケット転送方法および該方法を用いた無線基地局
CN1505344A (zh) * 2002-12-04 2004-06-16 ��ʽ����Ntt����Ħ 中继设备、控制内容传送的方法、以及内容传送系统
CN1725872A (zh) * 2004-07-19 2006-01-25 华为技术有限公司 一种双模终端进行通信的方法
CN1996928A (zh) * 2006-01-04 2007-07-11 株式会社日立制作所 网络系统
CN101136853A (zh) * 2007-09-27 2008-03-05 华为技术有限公司 一种数据路由的方法、通讯系统及设备

Also Published As

Publication number Publication date
WO2010091591A8 (zh) 2011-09-29
CN101800946B (zh) 2014-11-05
CN101800946A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
US11477703B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
KR102345654B1 (ko) 이중 접속 수립 방법 및 디바이스
CN107409345B (zh) 移动通信方法、装置和系统
JP2020507976A (ja) 無線通信システムにおいて反映式サービス品質(QoS)を行うための方法及びそのための装置
JP6093037B2 (ja) グループコールコンテキストを確立する方法、システム、基地局、及びクラスタepc
JP2018536347A (ja) D2d通信システムにおいてバッファ状態報告をトリガーする方法及びその装置
JP2014511168A (ja) 移動体通信ネットワークおよび方法
JP2019088024A (ja) 最適化されたue中継
US10111210B2 (en) Method for implementing radio resource control protocol function, macro base station, and micro cell node
WO2014012410A1 (zh) 一种数据传输方法、装置及通信系统
JP7320673B2 (ja) 端末間マルチホップサイドリンク無線通信におけるデータパケット伝送実行の方法および装置
CN114503526A (zh) 用于路由和承载映射配置的方法及设备
WO2015018232A1 (zh) 设备到设备连接管理方法、装置及基站
WO2021097858A1 (zh) 一种通信方法及装置
WO2021218279A1 (zh) 一种数据传输方法、装置及设备
WO2015062287A1 (zh) 终端的本地交换方法及系统
WO2013053133A1 (zh) 业务数据传输处理方法、设备以及通信系统
US20230370945A1 (en) Method, device, and system for relay configuration in wireless networks
WO2010105410A1 (zh) 一种建立无线承载的方法、装置及系统
KR20110077560A (ko) 다중 홉 중계 통신을 지원하는 광대역 무선통신 시스템에서 서비스 품질 관리를 위한 장치 및 방법
WO2010091591A1 (zh) 数据传输方法及系统
JP5752018B2 (ja) キャリアアグリゲーションを用いた無線端末の基地局選択方法、無線端末、アクセスポイント及びプログラム
WO2018054336A1 (zh) 消息的发送方法和装置
WO2022047654A1 (zh) 一种通信方法及装置
TW201110762A (en) Methods and apparatus for providing a fast and power efficient multicast scheme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839914

Country of ref document: EP

Kind code of ref document: A1