WO2010090177A1 - Method for inducing differentiation of mesenchymal stem cells - Google Patents

Method for inducing differentiation of mesenchymal stem cells Download PDF

Info

Publication number
WO2010090177A1
WO2010090177A1 PCT/JP2010/051405 JP2010051405W WO2010090177A1 WO 2010090177 A1 WO2010090177 A1 WO 2010090177A1 JP 2010051405 W JP2010051405 W JP 2010051405W WO 2010090177 A1 WO2010090177 A1 WO 2010090177A1
Authority
WO
WIPO (PCT)
Prior art keywords
differentiation
mesenchymal stem
cell
stem cells
cells
Prior art date
Application number
PCT/JP2010/051405
Other languages
French (fr)
Japanese (ja)
Inventor
紀ノ岡正博
金美海
田谷正仁
Original Assignee
国立大学法人大阪大学
財団法人大阪産業振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 財団法人大阪産業振興機構 filed Critical 国立大学法人大阪大学
Publication of WO2010090177A1 publication Critical patent/WO2010090177A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a method for inducing differentiation of mesenchymal stem cells.
  • mesenchymal stem cells mesenchymal stem cells: MSCs
  • MSCs mesenchymal stem cells
  • methods for inducing differentiation of mesenchymal stem cells into the desired differentiation state are currently in the research and development stage.
  • Much of the current research on methods for inducing differentiation of mesenchymal stem cells relates to differentiation control by soluble factors (medium components) in the liquid phase.
  • Patent Documents 1 and 2 below show that a culture surface modified with a dendrimer compound having a terminal substance (D-glucose) that can be taken up by a cell transporter, and promoting cell immobilization by the culture surface. Disclose. Non-Patent Documents 1 and 2 below report the promotion of focal adhesion and morphological changes in human epithelial cells cultured on dendrimer-modified culture surfaces presenting D-glucose.
  • Non-Patent Document 3 reports the effects on morphological changes and migration in rabbit articular chondrocytes cultured on dendrimer-modified culture surfaces presenting D-glucose. Further, Non-Patent Document 4 described below reports that the undifferentiated state of mouse ES cells (embryonic stem cells) is maintained in culture using a dendrimer-modified culture surface presenting D-glucose.
  • the present invention provides a new technique relating to differentiation induction of mesenchymal stem cells.
  • the present invention is a method for inducing differentiation of a mesenchymal stem cell, which comprises culturing the mesenchymal stem cell in a cell culture vessel having a culture surface modified with a dendrimer compound. Regarding the method.
  • a dendrimer-modified culture surface that is a solid phase factor can be provided as a factor for inducing differentiation of mesenchymal stem cells. Further, according to the present invention, differentiation induction of mesenchymal stem cells including use of a dendrimer-modified culture surface as a solid phase factor for inducing differentiation of mesenchymal stem cells can be achieved. Furthermore, according to the present invention, it is possible to preferably induce differentiation of mesenchymal stem cells accompanied by cell proliferation.
  • FIG. 1 shows a control surface (PS surface) (a), a generation 1 dendrimer-modified surface (G1 surface) (b), a generation 3 dendrimer-modified surface (G3 surface) (c), and a generation 5 dendrimer.
  • PS surface a
  • G1 surface a generation 1 dendrimer-modified surface
  • G1 surface a generation 1 dendrimer-modified surface
  • G3 surface c
  • a generation 5 dendrimer a control surface (PS surface) (a), a generation 1 dendrimer-modified surface (G1 surface) (b), a generation 3 dendrimer-modified surface (G3 surface) (c), and a generation 5 dendrimer.
  • FIG. 2 shows staining of desmin, a striated / smooth muscle cell differentiation marker, after culturing mesenchymal stem cells on the PS, G1, G3, and G5 culture surfaces for 7 days.
  • FIG. 3 shows mesenchymal stem cells cultured on the PS, G1, G3, and G5 culture surfaces for 7 days, and then stained for type II collagen, a differentiation marker for chondrocytes (red). It is a figure which shows the microscope observation photograph.
  • FIG. 4 shows mesenchyme cultured on dendrimer-modified culture surfaces with generation numbers 3, 4, and 5 (G3, G4, and G5) presenting 0%, 50%, and 100% D-glucose. It is a figure which shows the microscopic observation photograph of a stem cell after 4 days and 7 days of culture
  • FIG. 5 shows that a cell clump obtained by culturing mesenchymal stem cells on the G5 culture surface for 7 days is fluorescent immunostaining for each of the markers of desmin, MHC Fast Skeletal, cTnT and type II collagen (green). ) And a nuclear micrograph (Topro-3, blue).
  • FIG. 6 shows fluorescence of a cell cluster of mesenchymal stem cells prepared without using a dendrimer-modified culture surface according to the present invention for each marker of desmin, MHCMFast Skeletal, cTnT, type II collagen and CD105. An example of a microscopic observation photograph obtained by immunostaining (green) and nuclear staining (Topro-3, blue) is shown.
  • FIG. 6 shows fluorescence of a cell cluster of mesenchymal stem cells prepared without using a dendrimer-modified culture surface according to the present invention for each marker of desmin, MHCMFast Skeletal, cTnT, type II collagen
  • FIG. 7 shows fluorescence immunostaining (green) for the respective markers of desmin, cTnT and myosin heavy chain after culturing mesenchymal stem cells on the PS, G1, G3 and G5 culture surfaces for 7 days.
  • an example of a microscopic photograph obtained by nuclear staining (Topro, blue) is shown.
  • FIG. 8 is a graph showing the relationship between the culture time and the cell density when mesenchymal stem cells are cultured on the PS, G1, G3, and G5 culture surfaces.
  • FIG. 9 shows an example of a photograph obtained by culturing cells on the PS surface or G5 surface for 7 days, then treating cells with trypsin, re-culturing on the PS surface, and observing the cells on the fifth day under a microscope.
  • FIG. 10 shows that after culturing on the PS surface or G5 surface for 7 days, the cells were trypsinized and re-cultured on the PS surface, and the cells on the 5th day were desmin, cTnT, MHC Fast Skeletal and ⁇ -smooth muscle actin.
  • An example of a microscopic observation photograph after fluorescent immunostaining (green) and nuclear staining (Topro, blue) for each of the markers is shown.
  • the present invention relates to a culture condition in which differentiation is not induced by culture on a general plane culture surface when a mesenchymal stem cell is cultured on a culture surface modified with a dendrimer compound, for example, a culture medium component for differentiation induction or differentiation induction. Based on the knowledge that differentiation of mesenchymal stem cells can be induced even under culture conditions in which no medium is added or used. The present invention is preferably further based on the finding that differentiation induction of the mesenchymal stem cells can be performed with cell proliferation.
  • the present invention includes: [1] A method for inducing differentiation of mesenchymal stem cells (hereinafter also referred to as “differentiation induction method of the present invention”), wherein the mesenchymal stem cells are cultured in a cell culture vessel having a culture surface modified with a dendrimer compound.
  • a method of inducing differentiation of mesenchymal stem cells comprising culturing [2] The method for inducing differentiation of mesenchymal stem cells according to [1], which comprises directing differentiation of mesenchymal stem cells into different cells by adjusting the number of generations of the dendrimer compound; [3] The method for inducing differentiation of mesenchymal stem cells according to [1], wherein the differentiation is differentiation into cells of striated muscle / smooth muscle system, and the generation number of the dendrimer compound is 1 or more; [4] The differentiation induction method of mesenchymal stem cells according to [1], wherein the differentiation is differentiation into cartilage cells, and the generation number of the dendrimer compound is 4 or more; [5] The differentiation is differentiation into cardiomyocytes, The method for inducing differentiation of mesenchymal stem cells according to [1], wherein the generation number of the dendrimer compound is 4 or more.
  • [6] The substance according to any one of [1] to [5], wherein a substance that can be taken up by the transporter of the cell is presented on the culture surface, and the compound is bound to an end of the dendrimer compound.
  • a method for inducing differentiation of mesenchymal stem cells [7] The method for inducing differentiation of mesenchymal stem cells according to any one of [1] to [6], wherein the dendrimer compound includes a structural unit having a cationic group; [8] The substance that can be taken up by the transporter of the cell is at least one sugar selected from the group consisting of D-glucose, D-fructose, and D-galactose, [6] or [7] Method for inducing differentiation of mesenchymal stem cells; [9] A mesenchymal system in which differentiation is directed, comprising directing differentiation of the mesenchymal stem cell by the method for inducing differentiation of a mesenchymal stem cell according to any one of [
  • a mesenchymal stem cell preferably refers to a somatic stem cell that can be differentiated into cells constituting many types of mesenchymal tissues.
  • mesenchymal stem cells mammalian mesenchymal stem cells are preferable, primate mesenchymal stem cells are more preferable, and human mesenchymal stem cells are more preferable from the viewpoint of clinical application to humans.
  • the mesenchymal stem cells can be present in bone marrow, fat, muscle, etc., but the mesenchymal stem cells in the present invention are not particularly limited, and mesenchyme obtained from any tissue of bone marrow, fat, muscle. It may be a stem cell.
  • using mesenchymal stem cells herein may include using a cell population that includes mesenchymal stem cells.
  • the mesenchymal stem cells in the present invention may be obtained from commercially available cells or cell banks.
  • the mesenchymal stem cells in the present invention may be those subcultured.
  • the number of passages is not particularly limited, but is preferably 1 to 50 times, more preferably 1 to 30 times, and even more preferably 1 to 10 times from the viewpoint of maintaining differentiation ability.
  • the mesenchymal stem cells in the present invention preferably have the ability to differentiate into cartilage cells and striated / smooth muscle cells.
  • the mesenchymal stem cells are preferably positive for the mesenchymal stem cell marker.
  • a known marker can be used as a marker for mesenchymal stem cells.
  • at least one cell surface marker of CD105, Stro-1, CD106, and CD271 is preferably positive.
  • the induction of differentiation of mesenchymal stem cells includes starting differentiation of mesenchymal stem cells from an undifferentiated state, and is preferably mesenchymal tissue-specific not detected from an undifferentiated state to an undifferentiated state. A state in which a specific differentiation marker can be detected.
  • a person skilled in the art can appropriately select a mesenchymal tissue-specific differentiation marker and a detection method thereof, and determine whether or not the differentiation marker is detected.
  • Differentiation markers specific to mesenchymal tissues include cell surface markers including sugars and proteins present in cell membranes; intracellular markers including mRNAs, proteins and enzymes present in cells; peptides secreted outside the cells , Extracellular markers including proteins, enzymes, compounds, and the like.
  • the method for detecting the differentiation marker is not particularly limited, and examples thereof include a method using a labeled antibody (staining method, flow cytometry, ELISA, etc.), a staining method utilizing enzyme activity, and an RT-PCR method.
  • Examples of the method for confirming differentiation induction into cartilage cells include type II collagen staining.
  • Examples of the method for confirming induction of differentiation into adipocytes include an oil red O staining method.
  • Examples of the method for confirming differentiation induction into bone cells include ALP staining, and examples of the method for confirming differentiation induction into striated muscle / smooth muscle cells include desmin staining. .
  • As a method for confirming differentiation induction into myocardial cells for example, cTnT (cardiac troponic T) staining method can be mentioned.
  • Examples of the method for confirming differentiation induction into skeletal muscle cells include myosin heavy chain staining. Examples of the method for confirming differentiation induction into vascular cells include the CD31 staining method. However, the method for detecting a differentiation marker is not limited to these.
  • chondrocyte cells include chondrocytes, chondroblasts, and cells directed to differentiation into chondrocytes, and preferably include cells that express a chondrocyte-specific differentiation marker. More preferably, cells that can be stained by a type II collagen staining method are included.
  • striated muscle / smooth muscle cell includes myoblasts, striated muscles and / or smooth muscle myocytes, and cells in which differentiation into myoblasts is directed. Preferably cells that express a myoblast-specific differentiation marker, more preferably cells that can be stained by the desmin staining method.
  • cardiomyocytes include cardiomyocytes, myocardial blasts, cells that can constitute myocardial tissue, and cells that have been differentiated into cardiomyocytes or myocardial blasts.
  • bone system cells include osteoblasts, bone cells, and cells in which differentiation into osteoblasts is directed.
  • differentiated mesenchymal stem cell-derived cell means a property specific to a cell of a specific mesenchymal tissue rather than an undifferentiated mesenchymal stem cell.
  • An altered cell preferably a cell that expresses or can be detected a differentiation marker that is not expressed or detected in undifferentiated mesenchymal stem cells.
  • the dendrimer compound is used for modifying the culture surface.
  • irregularities in the order of nanometers can be formed on a flat culture surface.
  • the dendrimer compound is not particularly limited, and those that can form nanometer-order irregularities on the culture surface as described above can be used.
  • PAMAM polyamidoamine
  • JP-A-2005-192406 can be used.
  • the dendrimer compound used in the present invention is preferably such that the molecule (dendron) constituting the branched portion of the dendrimer compound is cationic, and particularly the terminal group. Is more preferably an amino group.
  • X represents a culture surface or a binding group bonded to the culture surface.
  • n is an integer of 1 or more.
  • a method of forming a dendrimer compound that modifies the culture surface a method of forming a molecule (dendron) that constitutes a branched portion of the dendrimer compound directly or through a compound that serves as a linker (Devergent method) ).
  • the method disclosed in Non-Patent Document 1 (Kim et al., J. Biosci. Bioeng., Vol. 103 (2007) 192-199) can be mentioned.
  • the generation number of the dendrimer compound represented by the above formula (II) is 1, and may be represented as G1.
  • a person skilled in the art can appropriately design the number of generations of the dendrimer compound to a desired number of generations, and specifically, it can be designed as in the examples described later.
  • various substances may be bound to the terminal in the branching direction of the dendrimer compound that modifies the culture surface (for example, the amino group in the above formulas (I) and (II)).
  • a desired substance By binding a desired substance to the terminal, it can be presented to mesenchymal stem cells in culture.
  • the substance to be bound to the end of the dendrimer compound is preferably a substance that can be taken up by a cell transporter.
  • L-amino acids and sugars such as D-glucose, D-fructose, and D-galactose are preferable from the viewpoint of promoting morphological change and / or differentiation induction of mesenchymal stem cells.
  • a substance eg, L-glucose in which an uptakeable transporter is not present in the cell may be bound to the end of the dendrimer compound.
  • the culture surface used in the present invention is a culture surface modified with a dendrimer compound, and is preferably a culture surface on which unevenness of nanometer order is formed on the culture surface.
  • the irregularities preferably have a surface roughness (Ra) measured by an atomic force microscope (AFM) of 1 to 10 nm, and more preferably 2 to 7 nm.
  • Ra surface roughness measured by an atomic force microscope (AFM) of 1 to 10 nm, and more preferably 2 to 7 nm.
  • the method for inducing differentiation of mesenchymal stem cells of the present invention is a method for inducing differentiation comprising culturing mesenchymal stem cells in a cell culture vessel having a culture surface modified with a dendrimer compound as described above.
  • a cell culture vessel having the same material, shape and size as those used in normal cell culture can be used except that it has a modified culture surface.
  • normal conditions such as 4 to 6% CO 2 , preferably 5% CO 2 , such as 35 to 38 ° C., preferably 37 ° C. can be employed.
  • the culture medium a medium for culturing mesenchymal stem cells in an undifferentiated state or a medium for growing mesenchymal stem cells can be used. That is, even if the culture conditions do not induce differentiation of mesenchymal stem cells (for example, culture conditions that do not use a culture medium for differentiation induction or a culture medium component for differentiation induction), the planar culture surface is a dendrimer-modified culture surface. It is possible to induce differentiation of mesenchymal stem cells, and preferably to induce differentiation accompanied by cell proliferation.
  • the differentiation induction method of the present invention may include the use of a culture medium and / or a culture medium for differentiation induction in addition to the use of a dendrimer-modified culture surface.
  • a dendrimer-modified culture surface that is a solid phase factor can be provided as a factor for inducing differentiation of mesenchymal stem cells.
  • it is possible to induce differentiation of mesenchymal stem cells including the use of a dendrimer-modified culture surface that is a solid phase factor for inducing differentiation of mesenchymal stem cells.
  • differentiation induction of mesenchymal stem cells accompanied by cell proliferation becomes possible.
  • the dendrimer compound generation is preferably as young as possible.
  • the mesenchymal stem cells can be differentiated into different cells by adjusting the number of generations of dendrimer compounds. For example, if the number of generations is 1 or more, it is possible to direct differentiation into striated muscle / smooth muscle cell, and if the number of generations is 4 or more, it is possible to further direct differentiation into chondrocytes and cardiomyocytes. It becomes possible.
  • one embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into striated muscle / smooth muscle cells, which has a culture surface modified with a dendrimer compound having a generation number of 1 or more.
  • a differentiation induction method comprising culturing the mesenchymal stem cells in a container.
  • the generation number of the dendrimer compound is preferably 1 to 10, 1 to 8, or 1 to 6. From the viewpoint of obtaining a cell population in which the cells extend in the plane direction of the culture surface, the generation number is preferably 1 to 3. Also, from the viewpoint of obtaining a cell clump in which the cells are round, the generation number is preferably 4 or more, more preferably 4 to 7, and further preferably 4 to 6.
  • a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound.
  • the substance is preferably an L-amino acid and a sugar such as D-glucose, D-fructose, or D-galactose.
  • -Glucose, D-fructose, and D-galactose are more preferred, and D-glucose is even more preferred.
  • differentiation into striated muscle / smooth muscle cell can be determined based on, for example, a positive differentiation marker (for example, desmin) specific to striated muscle / smooth muscle cell.
  • Another embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into cartilage cells, wherein the cell culture vessel has a culture surface modified with a dendrimer compound having a generation number of 4 or more.
  • a differentiation induction method comprising culturing leaf stem cells.
  • the direction of differentiation into chondrocytes can be achieved. From the viewpoint of promoting differentiation into cartilage cells, the number of generations is preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and even more preferably 5.
  • a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound.
  • the substance is preferably L-amino acid and sugars such as D-glucose, D-fructose, D-galactose, and D-glucose, D-fructose, and D- Galactose is more preferred and D-glucose is even more preferred.
  • differentiation into cartilage cells can be determined based on, for example, that a differentiation marker specific for chondrocytes (eg, type II collagen) is positive.
  • Another embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into myocardial cells, wherein the cell culture vessel has a culture surface modified with a dendrimer compound having a generation number of 4 or more.
  • a differentiation induction method comprising culturing leaf stem cells.
  • differentiation of mesenchymal stem cells can be induced, and differentiation of mesenchymal stem cells into myocardial cells can be directed.
  • the number of generations is preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and further preferably 5 or 6.
  • a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound.
  • the substance is preferably L-amino acid and sugars such as D-glucose, D-fructose, D-galactose, and D-glucose, D-fructose, and D- Galactose is more preferred and D-glucose is even more preferred.
  • differentiation into cardiomyocytes can be determined based on, for example, that a differentiation marker specific to cardiomyocytes (eg, cTnT) is positive.
  • a rounded cell aggregate can be formed.
  • cells located on the surface portion (surface layer portion) of this cell cluster tend to be cells that are directed to differentiation into type II collagen-positive chondrocytes.
  • cells located in the interior corresponding to portions other than the surface portion (surface layer portion) of the cell cluster tend to be cells that are directed to differentiation into cardiomyocytes.
  • the surface part (surface layer part) and the inside in the cell agglomeration can be determined with reference to marker-stained data as shown in Examples described later.
  • the cells are obtained by further culturing in a cell culture vessel having a culture surface modified with a dendrimer compound having a generation number of 4 or more. Separating cells that are located on the surface portion (surface layer portion) of the cell aggregate from the obtained cell aggregate, and preferably directed to differentiation into chondrocytes.
  • the cells are further cultured in a cell culture vessel having a culture surface modified with a dendrimer compound having a generation number of 4 or more.
  • the method may include separating the cells located in the cell aggregate from the obtained cell aggregate, and preferably directed to differentiation into cardiomyocytes.
  • the cells are located inside the isolated cell cluster, preferably directed to differentiation into cardiomyocytes.
  • the method may include culturing the cells in a cell culture vessel on a flat culture surface that is not dendrimer-modified.
  • Cells that have been directed to differentiation into cardiomyocytes isolated from the cell clumps are preferably specific for cardiomyocytes such as cTnT even if cultured on a flat culture surface that is not dendrimer-modified. Can maintain positive differentiation markers.
  • the differentiation inducing method of the present invention it is possible to produce preferably mesenchymal stem cell-derived cells in which differentiation is directed.
  • the present invention provides, as another aspect, a method for directing differentiation of mesenchymal stem cells derived from mesenchymal stem cells, comprising directing differentiation to mesenchymal stem cells by the differentiation induction method of the present invention.
  • the present invention relates to a production method (hereinafter also referred to as “the production method of the cell of the present invention”).
  • the method for producing a cell of the present invention it is possible to produce a cell derived from a mesenchymal stem cell that is preferably directed to differentiation while accompanying cell proliferation.
  • a mesenchymal stem cell with a direction of differentiation that can be used as a biomaterial or a cell supply source (cell source) in tissue engineering, regenerative medicine, regenerative medicine engineering, and the like. Derived cells can be produced.
  • the cells that can be produced by the cell production method of the present invention include mesenchymal stem cell-derived cells that have been directed to differentiation into striated muscle / smooth muscle cells, and the direction of differentiation into chondrocytes. And mesenchymal stem cell-derived cells that have been subjected to differentiation, and mesenchymal stem cell-derived cells that have been directed to differentiation into cardiomyocytes.
  • a method for producing mesenchymal stem cell-derived cells in which differentiation has been directed to striated muscle / smooth muscle cells which is the striated muscle / smooth muscle described above.
  • Examples include a production method including culturing mesenchymal stem cells by a method for inducing differentiation into a systemic cell.
  • a method for producing mesenchymal stem cell-derived cells that have been directed to differentiation into chondrocytes the method for inducing differentiation into chondrocytes described above
  • a production method including culturing a mesenchymal stem cell is mentioned.
  • a method for producing a mesenchymal stem cell-derived cell that has been directed to differentiation into a myocardial cell, the differentiation induction into the cardiomyocyte described above
  • the production method includes culturing mesenchymal stem cells by the method.
  • the present invention provides a method for producing a biomaterial or cell source containing cells derived from mesenchymal stem cells that have been subjected to differentiation, and the mesenchymal stem cells are produced by the differentiation induction method of the present invention.
  • the present invention relates to a production method comprising directing differentiation to a cell or producing a cell derived from a mesenchymal stem cell whose differentiation is directed by the cell production method of the present invention.
  • the method for producing a biomaterial or cell source of the present invention it is possible to produce a biomaterial or cell source containing cells derived from mesenchymal stem cells that are preferably differentiated with cell proliferation. .
  • the differentiation induction method of the present invention can be performed without using a medium for differentiation induction and / or a medium component for differentiation induction conventionally used for induction of differentiation of mesenchymal stem cells. Therefore, according to the method for producing a cell of the present invention, it is preferable that the mesenchymal stem cell which is not contacted with these differentiation-inducing medium and / or medium components (has no history of contact) and is directed to differentiation.
  • the cell can be produced, and more preferably, the cell can be produced with cell proliferation.
  • the cells, biomaterials or cell sources that can be produced according to the present invention can preferably be used in the field of regenerative medicine.
  • cells directed to differentiation into cardiomyocytes are preferably applied to repair myocardium
  • cells directed to differentiation into chondrocytes are preferably applied to repair articular cartilage.
  • Cells that have been directed to differentiation into striated / smooth muscle cells can preferably be applied to repair muscle tissue.
  • cells, biomaterials, or cell sources that can be produced according to the present invention can preferably be used for cell assay applications in drug discovery screening.
  • the use of cells, biomaterials, or cell sources that can be produced according to the present invention is not limited thereto.
  • the present invention provides a kit for inducing differentiation of mesenchymal stem cells, a cell culture container having a culture surface modified with a dendrimer compound, and the differentiation induction method of the present invention.
  • the present invention relates to a differentiation induction kit for mesenchymal stem cells (hereinafter also referred to as “differentiation induction kit of the present invention”) including an instruction manual including the description described above.
  • the differentiation induction kit of the present invention may further contain mesenchymal stem cells.
  • the form provided on the web may be sufficient as the instruction manual in the differentiation-inducing kit of this invention, without being bundled with the differentiation-inducing kit of this invention.
  • the culture surface and cell culture vessel in the differentiation induction kit of the present invention can be those described above.
  • a substance that can be taken up by the transporter of mesenchymal stem cells is preferably presented on the modified culture surface by binding to the end of the dendrimer compound.
  • L-amino acids and sugars such as D-glucose, D-fructose and D-galactose are preferable, D-glucose, D-fructose and D-galactose are more preferable, and D-glucose is further preferable.
  • the cell culture container is modified with a dendrimer compound having a generation number of 1 or more, preferably 1 to 10, 1 to 8, 1 to 6, 1 to 3, or 4 to 6
  • This kit has a culture surface and induces differentiation of mesenchymal stem cells into striated muscle / smooth muscle cells.
  • the differentiation-inducing kit of the present invention in this embodiment, it is possible to direct differentiation into mesenchymal stem cells and differentiation into striated muscle / smooth muscle cells with respect to mesenchymal stem cells.
  • mesenchymal stem cells that have been directed to differentiation into striated muscle / smooth muscle cells, and more preferably, the direction of differentiation into striated muscle / smooth muscle cells with cell proliferation.
  • Cells with attached mesenchymal stem cells can be produced.
  • the cell culture container is modified with a dendrimer compound having a generation number of 4 or more, preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and further preferably 5.
  • This kit has a culture surface and induces differentiation of mesenchymal stem cells into cartilage cells and / or cardiomyocytes.
  • the differentiation-inducing kit of the present invention in this embodiment, it is possible to direct differentiation into mesenchymal stem cells and cartilage cells and / or cardiomyocytes, as well as to induce differentiation into mesenchymal stem cells, It is possible to produce cells derived from mesenchymal stem cells that have been directed to differentiation into cartilage cells and / or cardiomyocytes, and more preferably, to cells of cartilage and / or cardiomyocytes while accompanying cell proliferation Cells derived from mesenchymal stem cells with a direction of differentiation can be produced.
  • the present invention relates to a therapeutic method and / or a regenerative medicine method including the use of cells that can be produced by the method for producing cells of the present invention.
  • a treatment in which a mesenchymal stem cell that is deficient in cartilage is used to prepare a cell in which differentiation into a cartilage cell is induced by the method for producing a cell of the present invention, and the cell is transplanted to a target cartilage defect site
  • the transplantation can be performed, for example, by seeding the cells on a collagen gel sponge or the like and placing the sponge in the defect.
  • a mesenchymal stem cell of a subject with dilated cardiomyopathy a cell in which differentiation into striated muscle / smooth muscle cell or cardiomyocyte is induced by the method for producing a cell of the present invention
  • examples thereof include a method for treating dilated cardiomyopathy or regenerative medicine in which a myoblast sheet (cardiac function restoring material) is produced from these cells. That is, the treatment method and / or regenerative medicine method of the present invention aims to restore cardiac function by covering the outside of the heart of the subject with the cardiac function recovery material, inducing blood vessels to the heart wall, repairing cardiomyocytes, A method for treating dilated cardiomyopathy or regenerative medicine.
  • the treatment method and / or regenerative medicine method in this invention are not limited to these.
  • Human mesenchymal stem cells were cultured on a culture surface modified with dentrimers of different generations with D-glucose bonded to the terminal.
  • the production method of the culture surface and the cell culture conditions are as follows.
  • a commercially available square 8-well plate (made of polystyrene, surface area of 9.6 cm 2 / well, manufactured by Nunc) was used as a starting material equipped with a flat surface. It produced as follows. The planar culture surface of this 8-well plate was used as a control surface (hereinafter also referred to as “PS surface”).
  • Step 1 A 50 ⁇ mol / ml aqueous solution of potassium tert-butoxide (t-BuOK) was added to the well and allowed to stand at room temperature for 1 hour in order to present hydroxyl groups on the planar culture surface as the starting material. The wells were then washed 3 times with sterile water.
  • t-BuOK potassium tert-butoxide
  • Step 2 A 360 ⁇ mol / ml aqueous solution of glutaraldehyde was added to the well, allowed to stand at room temperature for 1 hour, and then washed with a large amount of sterile water.
  • a 360 ⁇ mol / ml tris (2-aminoethyl) amine aqueous solution (pH 9.0) was added to the well and left to stand for 1 hour to form a dendron structure, which was washed with sterile water.
  • Step 3 In order to present D-glucose at the end of the dendrimer, 0.5 ⁇ mol / ml D-glucose aqueous solution was added to the well and allowed to stand for 2 hours.
  • Step 4 0.5 ⁇ mol / ml sodium borohydride (NaBH 4 ) was added to the well and allowed to stand for 24 hours. The well was washed with sterilized water to obtain a culture surface modified with a dendrimer on which D-glucose was presented.
  • NaBH 4 sodium borohydride
  • Human bone marrow mesenchymal stem cells (manufactured by Lonza) were used as human mesenchymal stem cells.
  • DMEM medium Dulbecco's modified Eagle medium
  • FBS fetal bovine serum
  • human bone marrow mesenchymal stem cell culture medium manufactured by Lonza was used as the medium for proliferation of the mesenchymal stem cells.
  • FIG. 1 shows mesenchymal stem cells cultured on the culture planes of the PS plane (a), G1 plane (b), G3 plane (c), and G5 plane (d) after 1 day, 3 days, and 7 It is a figure which shows the microscope observation photograph after a day.
  • the mesenchymal stem cells cultured on the culture planes of the PS, G1, and G3 planes tended to show a shape that expanded in the plane direction.
  • the cell shape was rounded, and some cells became clumps to form spherical cell clumps.
  • the cell clumps tended to increase with the number of culture days.
  • FIG. 2 is a view showing a microscopic observation photograph obtained by staining (green) and nuclear staining (red) of desmin, which is a differentiation marker of striated / smooth muscle cells and smooth muscle cells.
  • the culture result in G5 surface in addition to the photograph of a plane (upper surface), the confocal microscope observation photograph of a side surface is shown.
  • the mesenchymal stem cells cultured on the PS culture surface were negative for desmin staining, but the mesenchymal stem cells cultured on the G1 and G3 culture surfaces were positive for desmin staining. It was. Therefore, it can be seen that the mesenchymal stem cells cultured on the culture planes of the G1 plane and the G3 plane have been directed to differentiation into striated / smooth muscle cells.
  • the mesenchymal stem cells cultured on the culture surface of G5 form a cell clump as described above and desmin stain. As shown in FIG. 2, the cells located on the surface of the cell clump are desmin stained. Positive.
  • FIG. 3 is a view showing a microscopic observation photograph obtained by staining (red) type II collagen, which is a differentiation marker for cartilage cells.
  • the mesenchymal stem cells cultured on the PS, G1, and G3 culture surfaces were negative for type II collagen staining, but the mesenchymal stem cells cultured on the G5 culture surface were desmin. Staining was positive. Therefore, it can be seen that the mesenchymal stem cells cultured on the culture surface of G5 have been directed to differentiation into chondrocytes.
  • culture conditions that do not induce differentiation of human mesenchymal stem cells in culture on the PS surface for example, culture conditions that do not use conditioned medium for differentiation induction or medium components for differentiation induction
  • culture conditions that do not use conditioned medium for differentiation induction or medium components for differentiation induction Even if the culture plane is changed from the PS plane to the G1 or G3 plane, differentiation of human mesenchymal stem cells and differentiation into striated / smooth muscle cells can be directed. It was shown that in addition to inducing differentiation of human mesenchymal stem cells and differentiating into striated / smooth muscle cells, it is possible to direct differentiation into chondrocytes by simply changing from PS to G5. .
  • the production method of the culture surface and the cell culture conditions are as follows. The amount of D-glucose presented was adjusted by the mixing rate of L-glucose. In human cells, there is no transporter that can take up L-glucose.
  • Step 1 A 50 ⁇ mol / ml aqueous solution of potassium tert-butoxide (t-BuOK) was added to the well and allowed to stand at room temperature for 1 hour in order to present hydroxyl groups on the planar culture surface as the starting material. The wells were then washed 3 times with sterile water.
  • t-BuOK potassium tert-butoxide
  • Step 2 A 360 ⁇ mol / ml aqueous solution of glutaraldehyde was added to the well, allowed to stand at room temperature for 1 hour, and then washed with a large amount of sterile water. A 360 ⁇ mol / ml tris (2-aminoethyl) amine aqueous solution (pH 9.0) was added to the well and left to stand for 1 hour to form a dendron structure, which was washed with sterile water. This step 2 was repeated three, four, and five times, respectively, when creating G3, G4, and G5 culture surfaces.
  • Step 3 In order to present D-glucose at the end of the dendrimer, 0.5 ⁇ mol / ml D-glucose aqueous solution was added to the well and allowed to stand for 2 hours.
  • Step 4 0.5 ⁇ mol / ml sodium borohydride (NaBH 4 ) was added to the well and allowed to stand for 24 hours. The wells were washed with sterilized water to obtain dendrimer culture surfaces (G3, G4, and G5) on which 100% D-glucose was presented.
  • the 0% D-glucose-presenting dendrimer surface (G3, G4, and G5) was the same as that described above except that the 0.5 ⁇ mol / ml D-glucose aqueous solution in Step 3 was changed to a 0.5 ⁇ mol / ml L-glucose aqueous solution. It was prepared in the same manner as the 100% D-glucose-presenting dendrimer surface (G3, G4, and G5).
  • the 50% D-glucose-presenting dendrimer surface (G3, G4, and G5) has a 0.5 ⁇ mol / ml D-glucose aqueous solution in Step 3 described above, and has an equivalent concentration of D-glucose and L-glucose. It was prepared in the same manner as the 100% D-glucose-presenting dendrimer surface (G3, G4, and G5) except that the aqueous solution was 0.5 ⁇ mol / ml glucose.
  • Human bone marrow mesenchymal stem cells (manufactured by Lonza) were used as human mesenchymal stem cells.
  • DMEM medium Dulbecco's modified Eagle medium
  • FBS fetal bovine serum
  • human bone marrow mesenchymal stem cell culture medium manufactured by Lonza was used as the medium for proliferation of the mesenchymal stem cells.
  • the mesenchymal stem cells were cultured under the above culture conditions on a culture surface modified with 0%, 50%, and 100% D-glucose-presenting dendrimers (G3, G4, and G5). The morphology was observed with a microscope. An example of the result is shown in FIG.
  • the mesenchymal stem cells cultured on the G3 culture surface showed a shape that expanded in the plane direction regardless of the amount of glucose presented.
  • the shape of the cells was rounded, and some cells became clumps to form spherical cell clumps.
  • the number of cells forming a cell cluster was larger on the G5 surface than on the G4 surface.
  • the number of cells forming the cell cluster was larger as the presentation of D-glucose was increased.
  • the cTnT marker was negative on the PS, G1, and G3 surfaces that do not form cell clumps. Therefore, it was suggested that the formation of cell clumps on the dendrimer-modified culture surface is necessary for induction of differentiation into cardiomyocytes.
  • cells derived from mesenchymal stem cells continued to proliferate on the culture surfaces of the PS, G1, and G3 surfaces.
  • the cells derived from the mesenchymal stem cells stopped growing from a certain time.
  • the growth arrest on the G5 plane is suggested to be related to differentiation into cardiomyocytes.
  • Example 3 Note that the results of Example 3 were also reproduced with different bone marrow mesenchymal stem cells.
  • the mesenchymal stem cells are cultured for 7 days on the G5 culture surface to obtain cell clumps that are directed to differentiation into cardiomyocytes, and the cells that have been dissociated by trypsinization of the cell clumps are displayed on the PS plane.
  • the culture surface was transferred and re-cultured.
  • mesenchymal stem cells cultured for 7 days on the PS-cultured surface were similarly trypsinized and then re-cultured on the PS-cultured surface.
  • the cells and culture conditions used are the same as in Example 1. On the fifth day of re-culture, the cell morphology was confirmed by microscopic observation, and the expression of various differentiation markers was further confirmed.
  • FIG. 9 The cell morphology observation results are shown in FIG. Cells that were re-cultured on the PS surface after culturing the G5 surface (bottom of FIG. 9) were slightly flattened compared to normal mesenchymal stem cells and cells that were re-cultured on the PS surface after culturing the PS surface (FIG. 9). The shape was shown.
  • FIG. 10 shows the results of fluorescent immunostaining for markers of desmin, cTnT, MHC Fast Skeletal and ⁇ -smooth muscle actin.
  • markers of desmin, cTnT, MHC Fast Skeletal and ⁇ -smooth muscle actin In cells re-cultured on the PS surface after culturing the PS surface, all of these markers were negative. On the other hand, many of the cells re-cultured on the PS surface after culturing the G5 surface were positive for desmin and cTnT markers. Therefore, it was suggested that differentiation into myocardial cells induced on the G5 culture surface is superior in cell differentiation stability.
  • the present invention is useful, for example, in the field of tissue engineering, the field of regenerative medicine, the field of regenerative medical engineering, and the like.

Abstract

Disclosed is a novel technique relating to the induction of the differentiation of mesenchymal stem cells (MSCs). Specifically disclosed is a method for inducing the differentiation of mesenchymal stem cells, which comprises culturing the mesenchymal stem cells in a cell culture vessel having a culture surface modified with a dendrimer compound.

Description

間葉系幹細胞の分化誘導方法Method for inducing differentiation of mesenchymal stem cells
 本発明は、間葉系幹細胞の分化誘導方法に関する。 The present invention relates to a method for inducing differentiation of mesenchymal stem cells.
 近年の再生医療研究の大きな流れの1つは、未分化な幹細胞を人為的に分化誘導し、目的とする組織や臓器を体外又は体内で再構築させようとすることである。そのなかでも間葉系幹細胞(mesenchymal stem cells: MSCs)は、その多様な分化能から、再生医療へ応用できる有力な細胞供給源として期待されている。その一方で、間葉系幹細胞を目的の分化状態へ分化誘導する方法は現在研究開発段階にある。現在の間葉系幹細胞の分化誘導用法に関する研究の多くは、液相での可溶性因子(培地成分)による分化制御に関するものである。 One of the major trends in recent regenerative medicine research is to artificially induce undifferentiated stem cells to reconstruct target tissues and organs outside or inside the body. Among them, mesenchymal stem cells (mesenchymal stem cells: MSCs) are expected as a powerful cell source applicable to regenerative medicine because of their various differentiation potentials. On the other hand, methods for inducing differentiation of mesenchymal stem cells into the desired differentiation state are currently in the research and development stage. Much of the current research on methods for inducing differentiation of mesenchymal stem cells relates to differentiation control by soluble factors (medium components) in the liquid phase.
 なお、細胞を培養する容器の培養面(培養培地が接触する底面)を修飾する技術の1つに、培養面をデンドリマー化合物で修飾する技術がある。下記特許文献1及び2は、細胞のトランスポータが取り込み可能な物質(D-グルコース)を末端に有するデンドリマー化合物で修飾された培養面、及び、前記培養面により細胞の固定化を促進することを開示する。下記非特許文献1及び2は、D-グルコースを提示するデンドリマー修飾培養面で培養されたヒト上皮細胞における、焦点接着の促進、及び形態変化を報告する。下記非特許文献3は、D-グルコースを提示するデンドリマー修飾培養面で培養されたラビット関節軟骨細胞における、形態変化及び移動への影響を報告する。さらに、下記非特許文献4は、マウスのES細胞(胚性幹細胞)の未分化状態が、D-グルコースを提示するデンドリマー修飾培養面を用いた培養で維持されることを報告する。 In addition, there is a technique for modifying the culture surface with a dendrimer compound as one of the techniques for modifying the culture surface (bottom surface with which the culture medium comes into contact) of the cell culture vessel. Patent Documents 1 and 2 below show that a culture surface modified with a dendrimer compound having a terminal substance (D-glucose) that can be taken up by a cell transporter, and promoting cell immobilization by the culture surface. Disclose. Non-Patent Documents 1 and 2 below report the promotion of focal adhesion and morphological changes in human epithelial cells cultured on dendrimer-modified culture surfaces presenting D-glucose. Non-Patent Document 3 below reports the effects on morphological changes and migration in rabbit articular chondrocytes cultured on dendrimer-modified culture surfaces presenting D-glucose. Further, Non-Patent Document 4 described below reports that the undifferentiated state of mouse ES cells (embryonic stem cells) is maintained in culture using a dendrimer-modified culture surface presenting D-glucose.
特開2005-192406号公報JP-A-2005-192406 特開2005-245224号公報JP 2005-245224 A
 本発明は、間葉系幹細胞の分化誘導に関する新たな技術を提供する。 The present invention provides a new technique relating to differentiation induction of mesenchymal stem cells.
 本発明は、間葉系幹細胞の分化を誘導する方法であって、デンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む間葉系幹細胞の分化誘導方法に関する。 The present invention is a method for inducing differentiation of a mesenchymal stem cell, which comprises culturing the mesenchymal stem cell in a cell culture vessel having a culture surface modified with a dendrimer compound. Regarding the method.
 本発明によれば、間葉系幹細胞の分化誘導の因子として、固相因子であるデンドリマー修飾培養面を提供できる。また、本発明によれば、間葉系幹細胞の分化誘導の固相因子としてのデンドリマー修飾培養面の使用を含む間葉系幹細胞の分化誘導が可能となる。さらにまた、本発明によれば、好ましくは、細胞増殖を伴う間葉系幹細胞の分化誘導が可能となる。 According to the present invention, a dendrimer-modified culture surface that is a solid phase factor can be provided as a factor for inducing differentiation of mesenchymal stem cells. Further, according to the present invention, differentiation induction of mesenchymal stem cells including use of a dendrimer-modified culture surface as a solid phase factor for inducing differentiation of mesenchymal stem cells can be achieved. Furthermore, according to the present invention, it is possible to preferably induce differentiation of mesenchymal stem cells accompanied by cell proliferation.
図1は、コントロール面(PS面)(a)、世代数1のデンドリマー修飾面(G1面)(b)、世代数3のデンドリマー修飾面(G3面)(c)、及び世代数5のデンドリマー修飾面(G5面)(d)の培養面で培養された間葉系幹細胞の、培養1日後、3日後、及び7日後の顕微鏡観察写真を示す図である。FIG. 1 shows a control surface (PS surface) (a), a generation 1 dendrimer-modified surface (G1 surface) (b), a generation 3 dendrimer-modified surface (G3 surface) (c), and a generation 5 dendrimer. It is a figure which shows the microscope observation photograph of the mesenchymal stem cell cultured by the culture | cultivation surface of the modification surface (G5 surface) (d) 1 day after culture, 3 days later, and 7 days after. 図2は、PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した後、横紋筋/平滑筋細胞の分化マーカーであるデスミンの染色(緑)と、核染色(赤)とを行った顕微鏡観察写真を示す図である。FIG. 2 shows staining of desmin, a striated / smooth muscle cell differentiation marker, after culturing mesenchymal stem cells on the PS, G1, G3, and G5 culture surfaces for 7 days. And a microscopic observation photograph in which nuclear staining (red) was performed. 図3は、PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した後、軟骨系細胞の分化マーカーであるII型コラーゲンの染色(赤)を行った顕微鏡観察写真を示す図である。FIG. 3 shows mesenchymal stem cells cultured on the PS, G1, G3, and G5 culture surfaces for 7 days, and then stained for type II collagen, a differentiation marker for chondrocytes (red). It is a figure which shows the microscope observation photograph. 図4は、0%、50%、及び100%のD-グルコースが提示された世代数が3、4、及び5(G3、G4、及びG5)のデンドリマー修飾培養面上で培養された間葉系幹細胞の、培養4日後及び7日後の顕微鏡観察写真を示す図である。FIG. 4 shows mesenchyme cultured on dendrimer-modified culture surfaces with generation numbers 3, 4, and 5 (G3, G4, and G5) presenting 0%, 50%, and 100% D-glucose. It is a figure which shows the microscopic observation photograph of a stem cell after 4 days and 7 days of culture | cultivation. 図5は、間葉系幹細胞をG5面の培養面上で7日間培養して得られた細胞集塊を、デスミン、MHC Fast Skeletal、cTnT及びII型コラーゲンのそれぞれのマーカーに対する蛍光免疫染色(緑)並びに核染色(Topro-3,青)を行った顕微鏡観察写真の一例を示す。FIG. 5 shows that a cell clump obtained by culturing mesenchymal stem cells on the G5 culture surface for 7 days is fluorescent immunostaining for each of the markers of desmin, MHC Fast Skeletal, cTnT and type II collagen (green). ) And a nuclear micrograph (Topro-3, blue). 図6は、本発明にかかるデンドリマー修飾面の培養面を使用せずに作製した間葉系幹細胞の細胞集塊を、デスミン、MHC Fast Skeletal、cTnT、II型コラーゲン及びCD105のそれぞれのマーカーに対する蛍光免疫染色(緑)並びに核染色(Topro-3,青)した顕微鏡観察写真の一例を示す。FIG. 6 shows fluorescence of a cell cluster of mesenchymal stem cells prepared without using a dendrimer-modified culture surface according to the present invention for each marker of desmin, MHCMFast Skeletal, cTnT, type II collagen and CD105. An example of a microscopic observation photograph obtained by immunostaining (green) and nuclear staining (Topro-3, blue) is shown. 図7は、PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した後、デスミン、cTnT及びミオシン重鎖のそれぞれのマーカーに対する蛍光免疫染色(緑)並びに核染色(Topro,青)を行った顕微鏡観察写真の一例を示す。FIG. 7 shows fluorescence immunostaining (green) for the respective markers of desmin, cTnT and myosin heavy chain after culturing mesenchymal stem cells on the PS, G1, G3 and G5 culture surfaces for 7 days. In addition, an example of a microscopic photograph obtained by nuclear staining (Topro, blue) is shown. 図8は、PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を培養した場合の、培養時間と細胞密度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the culture time and the cell density when mesenchymal stem cells are cultured on the PS, G1, G3, and G5 culture surfaces. 図9は、PS面又はG5面で7日間培養した後、細胞をトリプシン処理してPS面上で再培養して5日目の細胞を顕微鏡観察した写真の一例を示す。FIG. 9 shows an example of a photograph obtained by culturing cells on the PS surface or G5 surface for 7 days, then treating cells with trypsin, re-culturing on the PS surface, and observing the cells on the fifth day under a microscope. 図10は、PS面又はG5面で7日間培養した後、細胞をトリプシン処理してPS面上で再培養して5日目の細胞の、デスミン、cTnT、MHC Fast Skeletal及びα-平滑筋アクチンのそれぞれのマーカーに対する蛍光免疫染色(緑)並びに核染色(Topro,青)後の顕微鏡観察写真の一例を示す。FIG. 10 shows that after culturing on the PS surface or G5 surface for 7 days, the cells were trypsinized and re-cultured on the PS surface, and the cells on the 5th day were desmin, cTnT, MHC Fast Skeletal and α-smooth muscle actin. An example of a microscopic observation photograph after fluorescent immunostaining (green) and nuclear staining (Topro, blue) for each of the markers is shown.
 本発明は、デンドリマー化合物で修飾された培養面で間葉系幹細胞を培養すると、汎用される平面培養面での培養では分化を誘導しない培養条件、例えば、分化誘導のための培地成分又は分化誘導培地を添加若しくは使用しない培養条件であっても、間葉系幹細胞の分化を誘導できるという知見に基づく。本発明は、好ましくは、さらに、前記の間葉系幹細胞の分化誘導が細胞増殖を伴いながら行うことができるという知見に基づく。 The present invention relates to a culture condition in which differentiation is not induced by culture on a general plane culture surface when a mesenchymal stem cell is cultured on a culture surface modified with a dendrimer compound, for example, a culture medium component for differentiation induction or differentiation induction. Based on the knowledge that differentiation of mesenchymal stem cells can be induced even under culture conditions in which no medium is added or used. The present invention is preferably further based on the finding that differentiation induction of the mesenchymal stem cells can be performed with cell proliferation.
 すなわち、本発明は下記を含む;
〔1〕 間葉系幹細胞の分化を誘導方法(以下、「本発明の分化誘導方法」ともいう。)であって、デンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む、間葉系幹細胞の分化誘導方法;
〔2〕 前記デンドリマー化合物の世代数を調節することにより、間葉系幹細胞に対して異なる細胞への分化の方向付けをすることを含む、〔1〕記載の間葉系幹細胞の分化誘導方法;
〔3〕 前記分化が横紋筋/平滑筋系の細胞への分化であり、前記デンドリマー化合物の世代数が1以上である、〔1〕記載の間葉系幹細胞の分化誘導方法;
〔4〕 前記分化が軟骨系の細胞への分化であり、前記デンドリマー化合物の世代数が4以上である、〔1〕記載の間葉系幹細胞の分化誘導方法;
〔5〕 前記分化が、心筋系細胞への分化であり、
前記デンドリマー化合物の世代数が、4以上である、〔1〕記載の間葉系幹細胞の分化誘導方法。
〔6〕 前記細胞のトランスポータが取り込み可能な物質が前記培養面に提示されており、前記化合物は前記デンドリマー化合物の末端に結合している、〔1〕から〔5〕のいずれかに記載の間葉系幹細胞の分化誘導方法;
〔7〕 前記デンドリマー化合物は、カチオン性基を有する構成単位を含む、〔1〕から〔6〕のいずれかに記載の間葉系幹細胞の分化誘導方法;
〔8〕 前記細胞のトランスポータが取り込み可能な物質は、D-グルコース、D-フルクトース、及びD-ガラクトースからなる群から選択される少なくとも1つの糖である、〔6〕又は〔7〕に記載の間葉系幹細胞の分化誘導方法;
〔9〕 間葉系幹細胞を〔1〕から〔8〕のいずれかに記載の間葉系幹細胞の分化誘導方法により分化の方向付けを行うことを含む、分化の方向付けがされた間葉系幹細胞由来の細胞の製造方法;
〔10〕 前記分化の方向付けは、細胞増殖を伴う、〔9〕記載の細胞の製造方法;
〔11〕 〔9〕又は〔10〕記載の細胞の製造方法により製造され得る、分化の方向付けがされた間葉系幹細胞由来の細胞;
〔12〕 間葉系幹細胞を〔1〕から〔8〕のいずれかに記載の間葉系幹細胞の分化誘導方法により分化の方向付けを行うことを含む、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料の製造方法;
〔13〕 前記分化の方向付けは、細胞増殖を伴う、〔12〕記載の生体材料の製造方法;
〔14〕 〔12〕又は〔13〕記載の生体材料の製造方法により製造され得る、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料;
〔15〕 間葉系幹細胞の分化誘導を行うためのキットであって、デンドリマー化合物で修飾された培養面を有する細胞培養容器、及び、〔1〕から〔8〕のいずれかに記載の間葉系幹細胞の分化誘導方法が記載された取扱説明書を含む、間葉系幹細胞の分化誘導キット;
〔16〕 デンドリマー化合物で修飾された培養面を有する細胞培養容器で間葉系幹細胞を培養することを含む、間葉系幹細胞由来の丸い形態をした細胞集塊を製造する方法;
〔17〕 前記デンドリマー化合物の世代数が、4以上である、〔16〕記載の製造方法;
〔18〕 間葉系幹細胞のトランスポータが取り込み可能な物質が前記培養面に提示されており、前記化合物は前記デンドリマー化合物の末端に結合している、〔16〕又は〔17〕に記載の製造方法;
〔19〕 前記トランスポータが取り込み可能な物質は、D-グルコース、D-フルクトース、及びD-ガラクトースからなる群から選択される少なくとも1つの糖である、〔18〕記載の製造方法。
That is, the present invention includes:
[1] A method for inducing differentiation of mesenchymal stem cells (hereinafter also referred to as “differentiation induction method of the present invention”), wherein the mesenchymal stem cells are cultured in a cell culture vessel having a culture surface modified with a dendrimer compound. A method of inducing differentiation of mesenchymal stem cells, comprising culturing
[2] The method for inducing differentiation of mesenchymal stem cells according to [1], which comprises directing differentiation of mesenchymal stem cells into different cells by adjusting the number of generations of the dendrimer compound;
[3] The method for inducing differentiation of mesenchymal stem cells according to [1], wherein the differentiation is differentiation into cells of striated muscle / smooth muscle system, and the generation number of the dendrimer compound is 1 or more;
[4] The differentiation induction method of mesenchymal stem cells according to [1], wherein the differentiation is differentiation into cartilage cells, and the generation number of the dendrimer compound is 4 or more;
[5] The differentiation is differentiation into cardiomyocytes,
The method for inducing differentiation of mesenchymal stem cells according to [1], wherein the generation number of the dendrimer compound is 4 or more.
[6] The substance according to any one of [1] to [5], wherein a substance that can be taken up by the transporter of the cell is presented on the culture surface, and the compound is bound to an end of the dendrimer compound. A method for inducing differentiation of mesenchymal stem cells;
[7] The method for inducing differentiation of mesenchymal stem cells according to any one of [1] to [6], wherein the dendrimer compound includes a structural unit having a cationic group;
[8] The substance that can be taken up by the transporter of the cell is at least one sugar selected from the group consisting of D-glucose, D-fructose, and D-galactose, [6] or [7] Method for inducing differentiation of mesenchymal stem cells;
[9] A mesenchymal system in which differentiation is directed, comprising directing differentiation of the mesenchymal stem cell by the method for inducing differentiation of a mesenchymal stem cell according to any one of [1] to [8] A method for producing stem cell-derived cells;
[10] The method for producing a cell according to [9], wherein the direction of differentiation is accompanied by cell proliferation;
[11] A cell derived from a mesenchymal stem cell with a direction of differentiation, which can be produced by the method for producing a cell according to [9] or [10];
[12] A mesenchymal system having a direction of differentiation, comprising directing differentiation of the mesenchymal stem cell by the method for inducing differentiation of a mesenchymal stem cell according to any one of [1] to [8] A method for producing a biomaterial containing cells derived from stem cells;
[13] The method for producing a biomaterial according to [12], wherein the direction of differentiation involves cell proliferation;
[14] A biomaterial containing cells derived from mesenchymal stem cells with a direction of differentiation, which can be produced by the method for producing a biomaterial according to [12] or [13];
[15] A kit for inducing differentiation of mesenchymal stem cells, a cell culture container having a culture surface modified with a dendrimer compound, and the mesenchyme according to any one of [1] to [8] A differentiation induction kit for mesenchymal stem cells, comprising an instruction manual describing a method for inducing differentiation of stem cell stem cells;
[16] A method for producing a cell cluster having a round shape derived from a mesenchymal stem cell, comprising culturing the mesenchymal stem cell in a cell culture vessel having a culture surface modified with a dendrimer compound;
[17] The production method according to [16], wherein the generation number of the dendrimer compound is 4 or more;
[18] The production according to [16] or [17], wherein a substance that can be taken up by a transporter of a mesenchymal stem cell is presented on the culture surface, and the compound is bound to an end of the dendrimer compound. Method;
[19] The production method of [18], wherein the substance that can be taken up by the transporter is at least one sugar selected from the group consisting of D-glucose, D-fructose, and D-galactose.
 [間葉系幹細胞]
 本明細書において、間葉系幹細胞(mesenchymal stem cell)とは、好ましくは、多種類の間葉系組織を構成する細胞に分化し得る体性幹細胞をいう。間葉系幹細胞としては、ヒトへの臨床応用の点から、哺乳類の間葉系幹細胞が好ましく、霊長類の間葉系幹細胞がより好ましく、ヒトの間葉系幹細胞がさらに好ましい。また、間葉系幹細胞は、骨髄、脂肪、筋肉等に存在しうるが、本発明における間葉系幹細胞としては、特に制限されず、骨髄、脂肪、筋肉のいずれの組織から得られた間葉系幹細胞であってもよい。したがって、本明細書において間葉系幹細胞を使用することは、間葉系幹細胞を含む細胞集団を使用することを含んでもよい。また、本発明における間葉系幹細胞は、市販のものや細胞バンクから得られるものであってもよい。
[Mesenchymal stem cells]
In the present specification, a mesenchymal stem cell preferably refers to a somatic stem cell that can be differentiated into cells constituting many types of mesenchymal tissues. As mesenchymal stem cells, mammalian mesenchymal stem cells are preferable, primate mesenchymal stem cells are more preferable, and human mesenchymal stem cells are more preferable from the viewpoint of clinical application to humans. In addition, the mesenchymal stem cells can be present in bone marrow, fat, muscle, etc., but the mesenchymal stem cells in the present invention are not particularly limited, and mesenchyme obtained from any tissue of bone marrow, fat, muscle. It may be a stem cell. Accordingly, using mesenchymal stem cells herein may include using a cell population that includes mesenchymal stem cells. In addition, the mesenchymal stem cells in the present invention may be obtained from commercially available cells or cell banks.
 本発明における間葉系幹細胞は、継代培養されたものであってもよい。継代回数は特に制限されないが、分化能の維持という観点から、1~50回が好ましく、1~30回がより好ましく、1~10回がさらに好ましい。本発明における間葉系幹細胞は、軟骨系の細胞及び横紋筋/平滑筋系の細胞への分化能を有することが好ましい。 The mesenchymal stem cells in the present invention may be those subcultured. The number of passages is not particularly limited, but is preferably 1 to 50 times, more preferably 1 to 30 times, and even more preferably 1 to 10 times from the viewpoint of maintaining differentiation ability. The mesenchymal stem cells in the present invention preferably have the ability to differentiate into cartilage cells and striated / smooth muscle cells.
 本発明における間葉系幹細胞は、間葉系幹細胞のマーカーが陽性であることが好ましい。間葉系幹細胞のマーカーとしては公知のマーカーを使用できる。ヒト間葉系幹細胞の場合、例えば、CD105、Stro-1、CD106、及びCD271の少なくとも1つの細胞表面マーカーが陽性であることが好ましい。 In the present invention, the mesenchymal stem cells are preferably positive for the mesenchymal stem cell marker. A known marker can be used as a marker for mesenchymal stem cells. In the case of human mesenchymal stem cells, for example, at least one cell surface marker of CD105, Stro-1, CD106, and CD271 is preferably positive.
 [間葉系幹細胞の分化誘導]
 本明細書において、間葉系幹細胞の分化誘導とは、間葉系幹細胞を未分化状態から分化を開始させることを含み、好ましくは、未分化状態から未分化状態では検出されない間葉系組織特異的な分化マーカーが検出され得る状態とすることを含む。当業者であれば、間葉系組織特異的な分化マーカー及びその検出方法を適宜選択し、該分化マーカーが検出されるか否かを判断することができる。
[Induction of differentiation of mesenchymal stem cells]
In the present specification, the induction of differentiation of mesenchymal stem cells includes starting differentiation of mesenchymal stem cells from an undifferentiated state, and is preferably mesenchymal tissue-specific not detected from an undifferentiated state to an undifferentiated state. A state in which a specific differentiation marker can be detected. A person skilled in the art can appropriately select a mesenchymal tissue-specific differentiation marker and a detection method thereof, and determine whether or not the differentiation marker is detected.
 間葉系組織特異的な分化マーカーとしては、細胞膜に存在する糖、タンパク質などを含む細胞表面マーカー;細胞内に存在するmRNA、タンパク質、酵素などを含む細胞内マーカー;細胞外に分泌されるペプチド、タンパク質、酵素、化合物などを含む細胞外マーカー;などが挙げられる。分化マーカーの検出方法としては、特に制限されず、標識抗体を用いる方法(染色法、フローサイトメトリー、ELISAなど)、酵素活性を利用した染色法、RT-PCR法などが挙げられる。 Differentiation markers specific to mesenchymal tissues include cell surface markers including sugars and proteins present in cell membranes; intracellular markers including mRNAs, proteins and enzymes present in cells; peptides secreted outside the cells , Extracellular markers including proteins, enzymes, compounds, and the like. The method for detecting the differentiation marker is not particularly limited, and examples thereof include a method using a labeled antibody (staining method, flow cytometry, ELISA, etc.), a staining method utilizing enzyme activity, and an RT-PCR method.
 間葉系組織特異的な分化マーカーの検出法としては、以下の方法が挙げられる。軟骨系細胞への分化誘導を確認する方法としては、例えば、II型コラーゲン染色法が挙げられる。脂肪細胞への分化誘導を確認する方法としては、例えば、オイルレッドO染色法が挙げられる。骨系細胞への分化誘導を確認する方法としては、例えば、ALP染色法が挙げられ、横紋筋/平滑筋系細胞への分化誘導を確認する方法としては、例えば、デスミン染色法が挙げられる。心筋系細胞への分化誘導を確認する方法としては、例えば、cTnT(cardiac troponic T)染色法が挙げられる。骨格筋系細胞への分化誘導を確認する方法としては、例えば、ミオシン重鎖染色法が挙げられる。血管系細胞への分化誘導を確認する方法としては、例えば、CD31染色法が挙げられる。但し、分化マーカーの検出方法は、これらに限定されない。 As a method for detecting a differentiation marker specific to a mesenchymal tissue, the following method may be mentioned. Examples of the method for confirming differentiation induction into cartilage cells include type II collagen staining. Examples of the method for confirming induction of differentiation into adipocytes include an oil red O staining method. Examples of the method for confirming differentiation induction into bone cells include ALP staining, and examples of the method for confirming differentiation induction into striated muscle / smooth muscle cells include desmin staining. . As a method for confirming differentiation induction into myocardial cells, for example, cTnT (cardiac troponic T) staining method can be mentioned. Examples of the method for confirming differentiation induction into skeletal muscle cells include myosin heavy chain staining. Examples of the method for confirming differentiation induction into vascular cells include the CD31 staining method. However, the method for detecting a differentiation marker is not limited to these.
 本明細書において、「軟骨系細胞」とは、軟骨細胞、軟骨芽細胞、及び軟骨細胞への分化が方向付けされた細胞を含み、好ましくは軟骨細胞特異的な分化マーカーを発現する細胞を含み、より好ましくはII型コラーゲン染色法で染色され得る細胞を含む。また、本明細書において、「横紋筋/平滑筋系細胞」とは、筋芽細胞、横紋筋及び又は平滑筋の筋細胞、及び筋芽細胞への分化が方向付けされた細胞を含み、好ましくは筋芽細胞特異的な分化マーカーを発現する細胞を含み、より好ましくはデスミン染色法で染色され得る細胞を含む。本明細書において、「心筋系細胞」とは、心筋細胞、心筋芽細胞、心筋組織を構成し得る細胞、及び心筋細胞又は心筋芽細胞への分化が方向付けされた細胞を含み、好ましくは心筋細胞又は心筋芽細胞特異的な分化マーカーを発現する細胞を含み、より好ましくはcTnT染色法で染色され得る細胞を含む。本明細書において、「骨系細胞」とは、骨芽細胞、骨細胞、及び骨芽細胞への分化が方向付けされた細胞を含む。 In the present specification, “chondrocyte cells” include chondrocytes, chondroblasts, and cells directed to differentiation into chondrocytes, and preferably include cells that express a chondrocyte-specific differentiation marker. More preferably, cells that can be stained by a type II collagen staining method are included. In the present specification, “striated muscle / smooth muscle cell” includes myoblasts, striated muscles and / or smooth muscle myocytes, and cells in which differentiation into myoblasts is directed. Preferably cells that express a myoblast-specific differentiation marker, more preferably cells that can be stained by the desmin staining method. In the present specification, “cardiomyocytes” include cardiomyocytes, myocardial blasts, cells that can constitute myocardial tissue, and cells that have been differentiated into cardiomyocytes or myocardial blasts. A cell or a cell expressing a cardiomyocyte-specific differentiation marker, more preferably a cell that can be stained by the cTnT staining method. In the present specification, “bone system cells” include osteoblasts, bone cells, and cells in which differentiation into osteoblasts is directed.
 本明細書において、「分化の方向付けがされた間葉系幹細胞由来の細胞」とは、未分化の間葉系幹細胞よりも特定の間葉系組織の細胞に特異的な性質を示すように変化した細胞をいい、好ましくは未分化の間葉系幹細胞では発現していない或いは検出されない分化マーカーを発現している或いは検出され得る細胞をいう。 In the present specification, the term “differentiated mesenchymal stem cell-derived cell” means a property specific to a cell of a specific mesenchymal tissue rather than an undifferentiated mesenchymal stem cell. An altered cell, preferably a cell that expresses or can be detected a differentiation marker that is not expressed or detected in undifferentiated mesenchymal stem cells.
 [デンドリマー化合物]
 本明細書において、デンドリマー化合物は、培養面の修飾に用いられる。デンドリマー化合物の修飾により、平面な培養面にナノメートルオーダーの凹凸が形成されうる。デンドリマー化合物としては、特に制限されず、上述のように、培養面にナノメートルオーダーの凹凸を形成できるものを使用でき、例えば、公知のポリアミドアミン(PAMAM)デンドリマーや、特開2005-192406号公報に開示される下記式(I)又は(II)で表わされるポリイミノアミンデンドリマーなどが挙げられる。また、細胞の培養面への固定化を促進する点からは、本発明に用いるデンドリマー化合物は、デンドリマー化合物の枝状部分を構成する分子(デンドロン)がカチオン性であることが好ましく、特に末端基がアミノ基であることがより好ましい。
[Dendrimer compounds]
In the present specification, the dendrimer compound is used for modifying the culture surface. By modifying the dendrimer compound, irregularities in the order of nanometers can be formed on a flat culture surface. The dendrimer compound is not particularly limited, and those that can form nanometer-order irregularities on the culture surface as described above can be used. For example, a known polyamidoamine (PAMAM) dendrimer or JP-A-2005-192406 can be used. And polyiminoamine dendrimers represented by the following formula (I) or (II) disclosed in the above. Further, from the viewpoint of promoting the fixation of cells to the culture surface, the dendrimer compound used in the present invention is preferably such that the molecule (dendron) constituting the branched portion of the dendrimer compound is cationic, and particularly the terminal group. Is more preferably an amino group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(I)及び(II)において、Xは培養面又は培養面に結合した結合性基を示す。また、上記式(I)において、nは1以上の整数である。 In the above formulas (I) and (II), X represents a culture surface or a binding group bonded to the culture surface. In the above formula (I), n is an integer of 1 or more.
 培養面を修飾するデンドリマー化合物の形成方法としては、デンドリマー化合物の枝状部分を構成する分子(デンドロン)を平面培養面に直接、或いはリンカーとなる化合物を介して結合させて形成する方法(Divergent法)が挙げられる。具体的には上記非特許文献1(Kim et al., J. Biosci. Bioeng., vol. 103 (2007) 192-199)に開示される方法が挙げられる。なお、本明細書においてデンドリマー化合物の世代数とは、枝状部分の分岐数をいい、例えば、上記式(I)で表わされるデンドリマー化合物においてn=1のとき、世代数は2であり、以下G2と表すこともある。また、上記式(II)で表されるデンドリマー化合物の世代数は1であり、G1と表すこともある。デンドリマー化合物の世代数は当業者であれば目的の世代数に適宜設計でき、具体的には後述する実施例のように設計できる。 As a method of forming a dendrimer compound that modifies the culture surface, a method of forming a molecule (dendron) that constitutes a branched portion of the dendrimer compound directly or through a compound that serves as a linker (Devergent method) ). Specifically, the method disclosed in Non-Patent Document 1 (Kim et al., J. Biosci. Bioeng., Vol. 103 (2007) 192-199) can be mentioned. In the present specification, the number of generations of the dendrimer compound refers to the number of branches of the branched portion. For example, when n = 1 in the dendrimer compound represented by the above formula (I), the number of generations is 2, It may be expressed as G2. Moreover, the generation number of the dendrimer compound represented by the above formula (II) is 1, and may be represented as G1. A person skilled in the art can appropriately design the number of generations of the dendrimer compound to a desired number of generations, and specifically, it can be designed as in the examples described later.
 培養面を修飾するデンドリマー化合物の分岐方向の末端(例えば、上記式(I)及び(II)におけるアミノ基)には、必要に応じて、様々な物質を結合させてもよい。所望の物質を末端に結合することにより、該物質を培養する間葉系幹細胞に提示することができる。細胞の培養面への固定化を促進する点からは、デンドリマー化合物の末端に結合させる物質としては、細胞のトランスポータが取り込み可能な物質であることが好ましい。細胞のトランスポータが取り込み可能な物質としては、間葉系幹細胞の形態変化及び又は分化誘導を促進する点から、L-アミノ酸、及びD-グルコース、D-フルクトース、D-ガラクトースなどの糖が好ましい。一方、好ましさは劣る実施形態において、取り込み可能なトランスポータが細胞に存在しない物質(例えば、L-グルコース)をデンドリマー化合物の末端に結合させてもよい。 If necessary, various substances may be bound to the terminal in the branching direction of the dendrimer compound that modifies the culture surface (for example, the amino group in the above formulas (I) and (II)). By binding a desired substance to the terminal, it can be presented to mesenchymal stem cells in culture. From the viewpoint of promoting the immobilization of cells on the culture surface, the substance to be bound to the end of the dendrimer compound is preferably a substance that can be taken up by a cell transporter. As a substance that can be taken up by a cell transporter, L-amino acids and sugars such as D-glucose, D-fructose, and D-galactose are preferable from the viewpoint of promoting morphological change and / or differentiation induction of mesenchymal stem cells. . On the other hand, in a less preferred embodiment, a substance (eg, L-glucose) in which an uptakeable transporter is not present in the cell may be bound to the end of the dendrimer compound.
 [培養面]
 本発明に用いる培養面は、上述したとおり、デンドリマー化合物で修飾された培養面であって、培養面にナノメートルオーダーの凹凸が形成されている培養面であることが好ましい。前記凹凸は、原子間力顕微鏡(AFM)で測定される表面粗さ(Ra)が、1~10nmであることが好ましく、2~7nmがより好ましい。上述したとおり、間葉系幹細胞の形態変化及び又は分化誘導を促進する点から、培養面には前記の細胞のトランスポータが取り込み可能な物質が提示されていることが好ましい。
[Culture surface]
As described above, the culture surface used in the present invention is a culture surface modified with a dendrimer compound, and is preferably a culture surface on which unevenness of nanometer order is formed on the culture surface. The irregularities preferably have a surface roughness (Ra) measured by an atomic force microscope (AFM) of 1 to 10 nm, and more preferably 2 to 7 nm. As described above, from the viewpoint of promoting morphological change and / or differentiation induction of mesenchymal stem cells, it is preferable that a substance that can be taken up by the transporter of the cells is presented on the culture surface.
 [間葉系幹細胞の分化誘導方法]
 本発明の間葉系幹細胞の分化誘導方法は、上述のようにデンドリマー化合物で修飾された培養面を有する細胞培養容器で、間葉系幹細胞を培養することを含む分化誘導方法である。前記細胞培養容器は、修飾培養面を備える以外は通常の細胞培養で用いられるものと同様の材質、形状、大きさの細胞培養容器を使用できる。培養条件も、通常の条件、例えば4~6%CO2、好ましくは5%CO2下、例えば35~38℃、好ましくは37℃という条件を採用できる。培養培地は、間葉系幹細胞を未分化状態で培養する培地又は間葉系幹細胞の増殖用の培地を使用できる。すなわち、間葉系幹細胞の分化誘導が起こらない培養条件(例えば、分化誘導のための培地や分化誘導のための培地成分を使用しない培養条件)であっても、平面培養面をデンドリマー修飾培養面とするだけで間葉系幹細胞の分化誘導が行え、好ましくは、細胞増殖を伴う分化誘導が行える。但し、本発明の分化誘導方法は、デンドリマー修飾培養面の使用に加え、分化誘導のための培地及び又は培地の使用を含んでもよい。
[Method of inducing differentiation of mesenchymal stem cells]
The method for inducing differentiation of mesenchymal stem cells of the present invention is a method for inducing differentiation comprising culturing mesenchymal stem cells in a cell culture vessel having a culture surface modified with a dendrimer compound as described above. As the cell culture vessel, a cell culture vessel having the same material, shape and size as those used in normal cell culture can be used except that it has a modified culture surface. As the culture conditions, normal conditions such as 4 to 6% CO 2 , preferably 5% CO 2 , such as 35 to 38 ° C., preferably 37 ° C. can be employed. As the culture medium, a medium for culturing mesenchymal stem cells in an undifferentiated state or a medium for growing mesenchymal stem cells can be used. That is, even if the culture conditions do not induce differentiation of mesenchymal stem cells (for example, culture conditions that do not use a culture medium for differentiation induction or a culture medium component for differentiation induction), the planar culture surface is a dendrimer-modified culture surface. It is possible to induce differentiation of mesenchymal stem cells, and preferably to induce differentiation accompanied by cell proliferation. However, the differentiation induction method of the present invention may include the use of a culture medium and / or a culture medium for differentiation induction in addition to the use of a dendrimer-modified culture surface.
 したがって、本発明によれば、間葉系幹細胞の分化誘導の因子として、固相因子であるデンドリマー修飾培養面を提供できる。そして、本発明によれば、間葉系幹細胞の分化誘導の固相因子であるデンドリマー修飾培養面の使用を含む、間葉系幹細胞の分化誘導が可能となる。さらに、本発明によれば、好ましくは、細胞増殖を伴う間葉系幹細胞の分化誘導が可能となる。なお、細胞増殖促進の観点からは、デンドリマー化合物の世代数が若いほど好ましい。 Therefore, according to the present invention, a dendrimer-modified culture surface that is a solid phase factor can be provided as a factor for inducing differentiation of mesenchymal stem cells. According to the present invention, it is possible to induce differentiation of mesenchymal stem cells, including the use of a dendrimer-modified culture surface that is a solid phase factor for inducing differentiation of mesenchymal stem cells. Furthermore, according to the present invention, preferably, differentiation induction of mesenchymal stem cells accompanied by cell proliferation becomes possible. From the viewpoint of promoting cell proliferation, the dendrimer compound generation is preferably as young as possible.
 さらにまた、本発明によれば、後述するとおり、デンドリマー化合物の世代数を調節することにより、間葉系幹細胞に対して異なる細胞への分化の方向付けをすることができる。例えば、世代数1以上であれば、横紋筋/平滑筋系細胞へ分化の方向付けが可能となり、世代数4以上であれば、さらに、軟骨系細胞及び心筋系細胞へ分化の方向付けが可能となる。 Furthermore, according to the present invention, as described later, the mesenchymal stem cells can be differentiated into different cells by adjusting the number of generations of dendrimer compounds. For example, if the number of generations is 1 or more, it is possible to direct differentiation into striated muscle / smooth muscle cell, and if the number of generations is 4 or more, it is possible to further direct differentiation into chondrocytes and cardiomyocytes. It becomes possible.
 [横紋筋/平滑筋系細胞への分化誘導]
 したがって、本発明の一実施形態は、間葉系幹細胞の横紋筋/平滑筋系細胞への分化誘導方法であって、世代数が1以上のデンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む分化誘導方法である。この実施形態における本発明によれば、好ましくは、間葉系幹細胞に対する分化誘導とともに、間葉系幹細胞に対する横紋筋/平滑筋系細胞への分化の方向付けが可能となり、さらに好ましくは、細胞増殖を伴う、間葉系幹細胞の横紋筋/平滑筋系細胞への分化の方向付けが可能となる。デンドリマー化合物の世代数としては、好ましくは、1~10、1~8、又は1~6である。細胞が培養面の平面方向に伸びた形態の細胞集団を得る点からは、世代数は1~3が好ましい。また、細胞が丸い形態をした細胞集塊を得る点からは、世代数は、4以上が好ましく、4~7がより好ましく、4~6がさらに好ましい。
[Induction of differentiation into striated / smooth muscle cells]
Therefore, one embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into striated muscle / smooth muscle cells, which has a culture surface modified with a dendrimer compound having a generation number of 1 or more. A differentiation induction method comprising culturing the mesenchymal stem cells in a container. According to the present invention in this embodiment, preferably, it is possible to direct differentiation into mesenchymal stem cells and differentiation of mesenchymal stem cells into striated muscle / smooth muscle cells, more preferably cells. It is possible to direct the differentiation of mesenchymal stem cells into striated / smooth muscle cells with proliferation. The generation number of the dendrimer compound is preferably 1 to 10, 1 to 8, or 1 to 6. From the viewpoint of obtaining a cell population in which the cells extend in the plane direction of the culture surface, the generation number is preferably 1 to 3. Also, from the viewpoint of obtaining a cell clump in which the cells are round, the generation number is preferably 4 or more, more preferably 4 to 7, and further preferably 4 to 6.
 横紋筋/平滑筋系細胞への分化を促進する点からは、間葉系幹細胞のトランスポータが取り込み可能な物質が、デンドリマー化合物の末端に結合することにより、前記修飾培養面に提示されていることが好ましく、横紋筋/平滑筋系細胞への分化を促進する点から、前記物質としては、L-アミノ酸、及びD-グルコース、D-フルクトース、D-ガラクトースなどの糖が好ましく、D-グルコース、D-フルクトース、及びD-ガラクトースがより好ましく、D-グルコースがさらに好ましい。上述のとおり、横紋筋/平滑筋系細胞への分化は、例えば、横紋筋/平滑筋系細胞に特異的な分化マーカー(例えば、デスミン)が陽性であることを基準に判断できる。 From the viewpoint of promoting differentiation into striated muscle / smooth muscle cells, a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound. In terms of promoting differentiation into striated / smooth muscle cells, the substance is preferably an L-amino acid and a sugar such as D-glucose, D-fructose, or D-galactose. -Glucose, D-fructose, and D-galactose are more preferred, and D-glucose is even more preferred. As described above, differentiation into striated muscle / smooth muscle cell can be determined based on, for example, a positive differentiation marker (for example, desmin) specific to striated muscle / smooth muscle cell.
 [軟骨系細胞への分化誘導]
 また、本発明のその他の実施形態は、間葉系幹細胞の軟骨系細胞への分化誘導方法であって、世代数が4以上のデンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む分化誘導方法である。この実施形態における本発明によれば、間葉系幹細胞に対する分化誘導とともに、間葉系幹細胞に対する軟骨系細胞への分化の方向付けが可能となり、さらに好ましくは、細胞増殖を伴う、間葉系幹細胞の軟骨系細胞への分化の方向付けが可能となる。軟骨系細胞への分化を促進する点からは、前記世代数は、4~10又は4~8が好ましく、4~6がより好ましく、5がさらに好ましい。
[Induction of differentiation into chondrocytes]
Another embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into cartilage cells, wherein the cell culture vessel has a culture surface modified with a dendrimer compound having a generation number of 4 or more. A differentiation induction method comprising culturing leaf stem cells. According to the present invention in this embodiment, it is possible to direct differentiation of mesenchymal stem cells into chondrocytes, and more preferably, mesenchymal stem cells accompanied by cell proliferation. The direction of differentiation into chondrocytes can be achieved. From the viewpoint of promoting differentiation into cartilage cells, the number of generations is preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and even more preferably 5.
 軟骨系細胞への分化を促進する点からは、間葉系幹細胞のトランスポータが取り込み可能な物質が、デンドリマー化合物の末端に結合することにより、前記修飾培養面に提示されていることが好ましく、軟骨系細胞への分化を促進する点から、前記物質としては、L-アミノ酸、及びD-グルコース、D-フルクトース、D-ガラクトースなどの糖が好ましく、D-グルコース、D-フルクトース、及びD-ガラクトースがより好ましく、D-グルコースがさらに好ましい。上述のとおり、軟骨系細胞への分化は、例えば、軟骨系細胞に特異的な分化マーカー(例えば、II型コラーゲン)が陽性であることを基準に判断できる。 From the point of promoting differentiation into chondrocyte cells, it is preferable that a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound, From the viewpoint of promoting differentiation into cartilage cells, the substance is preferably L-amino acid and sugars such as D-glucose, D-fructose, D-galactose, and D-glucose, D-fructose, and D- Galactose is more preferred and D-glucose is even more preferred. As described above, differentiation into cartilage cells can be determined based on, for example, that a differentiation marker specific for chondrocytes (eg, type II collagen) is positive.
 [心筋系細胞への分化誘導]
 また、本発明のその他の実施形態は、間葉系幹細胞の心筋系細胞への分化誘導方法であって、世代数が4以上のデンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む分化誘導方法である。この実施形態における本発明によれば、間葉系幹細胞に対する分化誘導とともに、間葉系幹細胞に対する心筋系細胞への分化の方向付けが可能となる。心筋系細胞への分化を促進する点からは、前記世代数は、4~10又は4~8が好ましく、4~6がより好ましく、5又は6がさらに好ましい。
[Induction of differentiation into myocardial cells]
Another embodiment of the present invention is a method for inducing differentiation of mesenchymal stem cells into myocardial cells, wherein the cell culture vessel has a culture surface modified with a dendrimer compound having a generation number of 4 or more. A differentiation induction method comprising culturing leaf stem cells. According to the present invention in this embodiment, differentiation of mesenchymal stem cells can be induced, and differentiation of mesenchymal stem cells into myocardial cells can be directed. From the viewpoint of promoting differentiation into cardiomyocytes, the number of generations is preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and further preferably 5 or 6.
 心筋系細胞への分化を促進する点からは、間葉系幹細胞のトランスポータが取り込み可能な物質が、デンドリマー化合物の末端に結合することにより、前記修飾培養面に提示されていることが好ましい。心筋系細胞への分化を促進する点から、前記物質としては、L-アミノ酸、及びD-グルコース、D-フルクトース、D-ガラクトースなどの糖が好ましく、D-グルコース、D-フルクトース、及びD-ガラクトースがより好ましく、D-グルコースがさらに好ましい。上述のとおり、心筋系細胞への分化は、例えば、心筋系細胞に特異的な分化マーカー(例えば、cTnT)が陽性であることを基準に判断できる。 From the viewpoint of promoting differentiation into cardiomyocytes, it is preferable that a substance that can be taken up by the transporter of mesenchymal stem cells is presented on the modified culture surface by binding to the end of the dendrimer compound. From the viewpoint of promoting differentiation into myocardial cells, the substance is preferably L-amino acid and sugars such as D-glucose, D-fructose, D-galactose, and D-glucose, D-fructose, and D- Galactose is more preferred and D-glucose is even more preferred. As described above, differentiation into cardiomyocytes can be determined based on, for example, that a differentiation marker specific to cardiomyocytes (eg, cTnT) is positive.
 世代数が4以上のデンドリマー化合物で修飾された培養面で間葉系幹細胞を培養すると、前述のとおり、丸い形態をした細胞集塊を形成できる。後述の実施例で示すとおり、この細胞集塊の表面部(表層部)に位置する細胞は、II型コラーゲン陽性の軟骨系細胞への分化の方向付けがされた細胞となる傾向を示す。一方、該細胞集塊の表面部(表層部)以外の部分に相当する内部に位置する細胞は、心筋系細胞への分化の方向付けがされた細胞となる傾向を示す。なお、細胞集塊における表面部(表層部)及び内部は、後述する実施例に示すようにマーカー染色したデータを参照して判断することができる。 When the mesenchymal stem cells are cultured on a culture surface modified with a dendrimer compound having a generation number of 4 or more, as described above, a rounded cell aggregate can be formed. As shown in Examples described later, cells located on the surface portion (surface layer portion) of this cell cluster tend to be cells that are directed to differentiation into type II collagen-positive chondrocytes. On the other hand, cells located in the interior corresponding to portions other than the surface portion (surface layer portion) of the cell cluster tend to be cells that are directed to differentiation into cardiomyocytes. In addition, the surface part (surface layer part) and the inside in the cell agglomeration can be determined with reference to marker-stained data as shown in Examples described later.
 したがって、間葉系幹細胞の軟骨系細胞への分化誘導方法にかかる一実施形態においては、さらに、世代数が4以上のデンドリマー化合物で修飾された培養面を有する細胞培養容器で培養することで得られた細胞集塊から該細胞集塊の表面部(表層部)に位置する細胞であって、好ましくは軟骨系細胞への分化の方向付けがされた細胞を分離することを含んでもよい。 Therefore, in one embodiment of the method for inducing differentiation of mesenchymal stem cells into cartilage cells, the cells are obtained by further culturing in a cell culture vessel having a culture surface modified with a dendrimer compound having a generation number of 4 or more. Separating cells that are located on the surface portion (surface layer portion) of the cell aggregate from the obtained cell aggregate, and preferably directed to differentiation into chondrocytes.
 同様に、間葉系幹細胞の心筋系細胞への分化誘導方法にかかる一実施形態においては、さらに、世代数が4以上のデンドリマー化合物で修飾された培養面を有する細胞培養容器で培養することで得られた細胞集塊から該細胞集塊の内部に位置する細胞であって、好ましくは心筋系細胞への分化の方向付けがされた細胞を分離することを含んでもよい。 Similarly, in one embodiment of the method for inducing differentiation of mesenchymal stem cells into cardiomyocytes, the cells are further cultured in a cell culture vessel having a culture surface modified with a dendrimer compound having a generation number of 4 or more. The method may include separating the cells located in the cell aggregate from the obtained cell aggregate, and preferably directed to differentiation into cardiomyocytes.
 間葉系幹細胞の心筋系細胞への分化誘導方法にかかるその他の実施形態においては、分離された該細胞集塊の内部に位置する細胞、好ましくは心筋系細胞への分化の方向付けがされた細胞を、デンドリマー修飾されていない平面培養面の細胞培養容器で培養することを含んでもよい。該細胞集塊から分離された心筋系細胞への分化の方向付けがされた細胞は、好ましくは、デンドリマー修飾されていない平面培養面に戻して培養してもcTnTなどの心筋系細胞に特異的な分化マーカーの陽性を維持できる。 In another embodiment of the method for inducing differentiation of mesenchymal stem cells into cardiomyocytes, the cells are located inside the isolated cell cluster, preferably directed to differentiation into cardiomyocytes. The method may include culturing the cells in a cell culture vessel on a flat culture surface that is not dendrimer-modified. Cells that have been directed to differentiation into cardiomyocytes isolated from the cell clumps are preferably specific for cardiomyocytes such as cTnT even if cultured on a flat culture surface that is not dendrimer-modified. Can maintain positive differentiation markers.
 前述のとおり、本発明の分化誘導方法によれば、好ましくは、分化の方向付けがされた間葉系幹細胞由来の細胞を製造できる。 As described above, according to the differentiation inducing method of the present invention, it is possible to produce preferably mesenchymal stem cell-derived cells in which differentiation is directed.
 [細胞の製造方法]
 したがって、本発明は、その他の態様として、本発明の分化誘導方法により間葉系幹細胞に対して分化の方向付けを行うことを含む、分化の方向付けがされた間葉系幹細胞由来の細胞の製造方法(以下、「本発明の細胞の製造方法」ともいう。)に関する。本発明の細胞の製造方法によれば、好ましくは、細胞増殖を伴いながら、分化の方向付けがされた間葉系幹細胞由来の細胞を製造できる。また、本発明の細胞の製造方法によれば、組織工学、再生医療、再生医工学等における生体材料又は細胞供給源(細胞ソース)として使用可能な、分化の方向付けがされた間葉系幹細胞由来細胞を製造できる。
[Method for producing cells]
Therefore, the present invention provides, as another aspect, a method for directing differentiation of mesenchymal stem cells derived from mesenchymal stem cells, comprising directing differentiation to mesenchymal stem cells by the differentiation induction method of the present invention. The present invention relates to a production method (hereinafter also referred to as “the production method of the cell of the present invention”). According to the method for producing a cell of the present invention, it is possible to produce a cell derived from a mesenchymal stem cell that is preferably directed to differentiation while accompanying cell proliferation. Moreover, according to the method for producing cells of the present invention, a mesenchymal stem cell with a direction of differentiation that can be used as a biomaterial or a cell supply source (cell source) in tissue engineering, regenerative medicine, regenerative medicine engineering, and the like. Derived cells can be produced.
 本発明の細胞の製造方法により製造され得る細胞としては、前述のとおり、横紋筋/平滑筋系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞、軟骨系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞、及び、心筋系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞が挙げられる。 As described above, the cells that can be produced by the cell production method of the present invention include mesenchymal stem cell-derived cells that have been directed to differentiation into striated muscle / smooth muscle cells, and the direction of differentiation into chondrocytes. And mesenchymal stem cell-derived cells that have been subjected to differentiation, and mesenchymal stem cell-derived cells that have been directed to differentiation into cardiomyocytes.
 本発明の細胞の製造方法の一実施形態として、横紋筋/平滑筋系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞の製造方法であって、上述した横紋筋/平滑筋系細胞への分化誘導方法により間葉系幹細胞を培養することを含む製造方法が挙げられる。また、本発明の細胞の製造方法のその他の実施形態として、軟骨系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞の製造方法であって、上述した軟骨系細胞への分化誘導方法により間葉系幹細胞を培養することを含む製造方法が挙げられる。さらにまた、本発明の細胞の製造方法のその他の実施形態として、心筋系細胞へ分化の方向付けがされた間葉系幹細胞由来細胞の製造方法であって、上述した心筋系細胞への分化誘導方法により間葉系幹細胞を培養することを含む製造方法が挙げられる。 As an embodiment of the method for producing cells of the present invention, there is provided a method for producing mesenchymal stem cell-derived cells in which differentiation has been directed to striated muscle / smooth muscle cells, which is the striated muscle / smooth muscle described above. Examples include a production method including culturing mesenchymal stem cells by a method for inducing differentiation into a systemic cell. Further, as another embodiment of the method for producing cells of the present invention, a method for producing mesenchymal stem cell-derived cells that have been directed to differentiation into chondrocytes, the method for inducing differentiation into chondrocytes described above A production method including culturing a mesenchymal stem cell is mentioned. Furthermore, as another embodiment of the method for producing a cell of the present invention, a method for producing a mesenchymal stem cell-derived cell that has been directed to differentiation into a myocardial cell, the differentiation induction into the cardiomyocyte described above The production method includes culturing mesenchymal stem cells by the method.
 本発明は、さらにその他の態様として、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料又は細胞供給源の製造方法であって、本発明の分化誘導方法により間葉系幹細胞に対して分化の方向付けを行うこと、或いは、本発明の細胞の製造方法により分化の方向付けがされた間葉系幹細胞由来の細胞を製造することを含む、製造方法に関する。本発明の生体材料又は細胞供給源の製造方法によれば、好ましくは、細胞増殖を伴いながら、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料又は細胞供給源を製造できる。 In yet another aspect, the present invention provides a method for producing a biomaterial or cell source containing cells derived from mesenchymal stem cells that have been subjected to differentiation, and the mesenchymal stem cells are produced by the differentiation induction method of the present invention. The present invention relates to a production method comprising directing differentiation to a cell or producing a cell derived from a mesenchymal stem cell whose differentiation is directed by the cell production method of the present invention. According to the method for producing a biomaterial or cell source of the present invention, it is possible to produce a biomaterial or cell source containing cells derived from mesenchymal stem cells that are preferably differentiated with cell proliferation. .
 また、前述のとおり、本発明の分化誘導方法は、従来間葉系幹細胞の分化誘導に使用される分化誘導のための培地及び又は分化誘導のための培地成分を使用しなくても行うことができるから、本発明の細胞の製造方法によれば、好ましくは、これらの分化誘導培地及び又は培地成分と未接触である(接触した経歴がない)、分化の方向付けがされた間葉系幹細胞由来細胞を製造でき、さらに好ましくは、細胞増殖を伴いながら、前記細胞を製造できる。 Further, as described above, the differentiation induction method of the present invention can be performed without using a medium for differentiation induction and / or a medium component for differentiation induction conventionally used for induction of differentiation of mesenchymal stem cells. Therefore, according to the method for producing a cell of the present invention, it is preferable that the mesenchymal stem cell which is not contacted with these differentiation-inducing medium and / or medium components (has no history of contact) and is directed to differentiation. The cell can be produced, and more preferably, the cell can be produced with cell proliferation.
 本発明により製造され得る細胞、生体材料、又は細胞供給源は、好ましくは、再生医療の分野に使用され得る。例えば、心筋系細胞へ分化の方向付けがされた細胞は、好ましくは、心筋の修復に適用され、軟骨系細胞へ分化の方向付けがされた細胞は、好ましくは、関節軟骨の修復に適用され、横紋筋/平滑筋系細胞へ分化の方向付けがされた細胞は、好ましくは、筋肉組織の修復に適用され得る。或いは、本発明により製造され得る細胞、生体材料、又は細胞供給源は、好ましくは、創薬スクリーニングにおける細胞アッセイの用途にも使用され得る。但し、本発明により製造され得る細胞、生体材料、又は細胞供給源の用途はこれらに限定されない。 The cells, biomaterials or cell sources that can be produced according to the present invention can preferably be used in the field of regenerative medicine. For example, cells directed to differentiation into cardiomyocytes are preferably applied to repair myocardium, and cells directed to differentiation into chondrocytes are preferably applied to repair articular cartilage. Cells that have been directed to differentiation into striated / smooth muscle cells can preferably be applied to repair muscle tissue. Alternatively, cells, biomaterials, or cell sources that can be produced according to the present invention can preferably be used for cell assay applications in drug discovery screening. However, the use of cells, biomaterials, or cell sources that can be produced according to the present invention is not limited thereto.
 [キット]
 本発明は、さらにその他の態様として、間葉系幹細胞の分化誘導を行うためのキットであって、デンドリマー化合物で修飾された培養面を有する細胞培養容器、及び、本発明の分化誘導方法を説明する記載を含む取扱説明書を含む間葉系幹細胞の分化誘導キット(以下、「本発明の分化誘導キット」ともいう。)に関する。本発明の分化誘導キットは、さらに、間葉系幹細胞を含んでもよい。なお、本発明の分化誘導キットにおける取扱説明書は、本発明の分化誘導キットに同梱されることなくウェブ上で提供される形態であってもよい。本発明の分化誘導キットにおける培養面及び細胞培養容器は、前述のものを使用できる。分化誘導の効率化の点から、前述のとおり、間葉系幹細胞のトランスポータが取り込み可能な物質が、デンドリマー化合物の末端に結合することにより、前記修飾培養面に提示されていることが好ましい。前記物質としては、L-アミノ酸、及びD-グルコース、D-フルクトース、D-ガラクトースなどの糖が好ましく、D-グルコース、D-フルクトース、及びD-ガラクトースがより好ましく、D-グルコースがさらに好ましい。
[kit]
As yet another aspect, the present invention provides a kit for inducing differentiation of mesenchymal stem cells, a cell culture container having a culture surface modified with a dendrimer compound, and the differentiation induction method of the present invention. The present invention relates to a differentiation induction kit for mesenchymal stem cells (hereinafter also referred to as “differentiation induction kit of the present invention”) including an instruction manual including the description described above. The differentiation induction kit of the present invention may further contain mesenchymal stem cells. In addition, the form provided on the web may be sufficient as the instruction manual in the differentiation-inducing kit of this invention, without being bundled with the differentiation-inducing kit of this invention. The culture surface and cell culture vessel in the differentiation induction kit of the present invention can be those described above. From the viewpoint of efficient differentiation induction, as described above, a substance that can be taken up by the transporter of mesenchymal stem cells is preferably presented on the modified culture surface by binding to the end of the dendrimer compound. As the substance, L-amino acids and sugars such as D-glucose, D-fructose and D-galactose are preferable, D-glucose, D-fructose and D-galactose are more preferable, and D-glucose is further preferable.
 本発明の分化誘導キットの一実施形態は、細胞培養容器が世代数1以上、好ましくは1~10、1~8、1~6、1~3、又は4~6のデンドリマー化合物で修飾された培養面を有し、間葉系幹細胞に対して横紋筋/平滑筋系細胞への分化誘導を行うキットである。この実施形態における本発明の分化誘導キットによれば、間葉系幹細胞に対する分化誘導とともに、間葉系幹細胞に対する横紋筋/平滑筋系細胞への分化の方向付けが可能となり、好ましくは、横紋筋/平滑筋系細胞への分化の方向付けがされた間葉系幹細胞由来の細胞を製造でき、より好ましくは、細胞増殖を伴いながら、横紋筋/平滑筋系細胞への分化の方向付けがされた間葉系幹細胞由来の細胞を製造できる。 In one embodiment of the differentiation induction kit of the present invention, the cell culture container is modified with a dendrimer compound having a generation number of 1 or more, preferably 1 to 10, 1 to 8, 1 to 6, 1 to 3, or 4 to 6 This kit has a culture surface and induces differentiation of mesenchymal stem cells into striated muscle / smooth muscle cells. According to the differentiation-inducing kit of the present invention in this embodiment, it is possible to direct differentiation into mesenchymal stem cells and differentiation into striated muscle / smooth muscle cells with respect to mesenchymal stem cells. It is possible to produce cells derived from mesenchymal stem cells that have been directed to differentiation into striated muscle / smooth muscle cells, and more preferably, the direction of differentiation into striated muscle / smooth muscle cells with cell proliferation. Cells with attached mesenchymal stem cells can be produced.
 本発明の分化誘導キットのその他の実施形態は、細胞培養容器が世代数4以上、好ましくは4~10又は4~8、より好ましくは4~6、さらに好ましくは5のデンドリマー化合物で修飾された培養面を有し、間葉系幹細胞に対して軟骨系細胞及び/又は心筋系細胞への分化誘導を行うキットである。この実施形態における本発明の分化誘導キットによれば、間葉系幹細胞に対する分化誘導とともに、間葉系幹細胞に対する軟骨系細胞及び/又は心筋系細胞への分化の方向付けが可能となり、好ましくは、軟骨系細胞及び/又は心筋系細胞への分化の方向付けがされた間葉系幹細胞由来の細胞を製造でき、より好ましくは、細胞増殖を伴いながら、軟骨系細胞及び/又は心筋系細胞への分化の方向付けがされた間葉系幹細胞由来の細胞を製造できる。 In another embodiment of the differentiation induction kit of the present invention, the cell culture container is modified with a dendrimer compound having a generation number of 4 or more, preferably 4 to 10 or 4 to 8, more preferably 4 to 6, and further preferably 5. This kit has a culture surface and induces differentiation of mesenchymal stem cells into cartilage cells and / or cardiomyocytes. According to the differentiation-inducing kit of the present invention in this embodiment, it is possible to direct differentiation into mesenchymal stem cells and cartilage cells and / or cardiomyocytes, as well as to induce differentiation into mesenchymal stem cells, It is possible to produce cells derived from mesenchymal stem cells that have been directed to differentiation into cartilage cells and / or cardiomyocytes, and more preferably, to cells of cartilage and / or cardiomyocytes while accompanying cell proliferation Cells derived from mesenchymal stem cells with a direction of differentiation can be produced.
 [治療方法]
 本発明は、さらにその他の態様として、本発明の細胞の製造方法で製造され得る細胞の使用を含む治療方法及び又は再生医療方法に関する。例えば、軟骨を欠損した対象の間葉系幹細胞を用いて本発明の細胞の製造方法により軟骨系細胞への分化が誘導された細胞を調製し、前記細胞を対象の軟骨欠損部位に移植する治療又は再生医療の方法が挙げられる。前記移植は、例えば、コラーゲンゲルスポンジなどに前記細胞を播種し、そのスポンジを欠損部に配置するなどして行うことができる。また、例えば、拡張型心筋症の対象の間葉系幹細胞を用いて本発明の細胞の製造方法により横紋筋/平滑筋系細胞又は心筋系細胞への分化が誘導された細胞を調製し、それらの細胞から筋芽細胞シート(心機能回復材)を製造する拡張型心筋症の治療又は再生医療の方法が挙げられる。すなわち、本発明の治療方法及び又は再生医療方法は、前記心機能回復材を対象の心臓の外部に被覆して心臓壁面への血管を誘導し、心筋細胞を修復し、心機能の回復を目指す、拡張型心筋症の治療又は再生医療の方法である。なお、本発明における治療方法及び又は再生医療方法はこれらに限定されない。
[Method of treatment]
In still another aspect, the present invention relates to a therapeutic method and / or a regenerative medicine method including the use of cells that can be produced by the method for producing cells of the present invention. For example, a treatment in which a mesenchymal stem cell that is deficient in cartilage is used to prepare a cell in which differentiation into a cartilage cell is induced by the method for producing a cell of the present invention, and the cell is transplanted to a target cartilage defect site Or the method of regenerative medicine is mentioned. The transplantation can be performed, for example, by seeding the cells on a collagen gel sponge or the like and placing the sponge in the defect. In addition, for example, by using a mesenchymal stem cell of a subject with dilated cardiomyopathy, a cell in which differentiation into striated muscle / smooth muscle cell or cardiomyocyte is induced by the method for producing a cell of the present invention, Examples thereof include a method for treating dilated cardiomyopathy or regenerative medicine in which a myoblast sheet (cardiac function restoring material) is produced from these cells. That is, the treatment method and / or regenerative medicine method of the present invention aims to restore cardiac function by covering the outside of the heart of the subject with the cardiac function recovery material, inducing blood vessels to the heart wall, repairing cardiomyocytes, A method for treating dilated cardiomyopathy or regenerative medicine. In addition, the treatment method and / or regenerative medicine method in this invention are not limited to these.
 以下、実施例を用いて本発明をさらに説明する。 Hereinafter, the present invention will be further described using examples.
 末端にD-グルコースが結合した世代数の異なるデントリマーで修飾された培養面においてヒト間葉系幹細胞を培養した。培養面の作製方法及び細胞培養条件は、下記のとおり。 Human mesenchymal stem cells were cultured on a culture surface modified with dentrimers of different generations with D-glucose bonded to the terminal. The production method of the culture surface and the cell culture conditions are as follows.
 [培養面の準備]
 デンドリマーで修飾された培養面は、平面培養面(Plain surface)を備える出発材料として市販の角型8ウェルプレート(ポリスチレン製、表面積9.6cm2/ウェル、Nunc社製)を使用し、下記のように作製した。また、この8ウェルプレートの平面培養面をコントロール面(以下、「PS面」ともいう。)として使用した。
[Preparation of culture surface]
For the culture surface modified with dendrimer, a commercially available square 8-well plate (made of polystyrene, surface area of 9.6 cm 2 / well, manufactured by Nunc) was used as a starting material equipped with a flat surface. It produced as follows. The planar culture surface of this 8-well plate was used as a control surface (hereinafter also referred to as “PS surface”).
 〔世代数1(G1)のD-グルコース提示デンドリマー面の作製〕
 G1のD-グルコース提示デンドリマー面(G1面)は、無菌条件下において下記4ステップで作製した。
ステップ1:出発材料である前記平面培養面上にヒドロキシル基を提示させるために、50μmol/mlのカリウムtert-ブトキシド(t-BuOK)水溶液をウェルに添加し、室温で1時間静置した。その後、前記ウェルを滅菌水で3回洗浄した。
ステップ2:360μmol/mlのグルタルアルデヒド水溶液を前記ウェルに添加し、室温で1時間静置し、その後多量の滅菌水で洗浄した。前記ウェルに360μmol/mlのトリス(2-アミノエチル)アミン水溶液(pH9.0)を添加して1時間静置してデンドロン構造を形成し、滅菌水で洗浄した。
ステップ3:デンドリマー末端にD-グルコースを提示させるため、0.5μmol/mlのD-グルコース水溶液を前記ウェルに添加して2時間静置した。
ステップ4:0.5μmol/mlの水素化ホウ素ナトリウム(NaBH4)を前記ウェルに添加して24時間静置した。前記ウェルを滅菌水で洗浄し、D-グルコースが提示されたデンドリマーで修飾された培養面を得た。
[Production of generation 1 (G1) D-glucose-presenting dendrimer surface]
The D-glucose-presenting dendrimer surface (G1 surface) of G1 was prepared in the following four steps under aseptic conditions.
Step 1: A 50 μmol / ml aqueous solution of potassium tert-butoxide (t-BuOK) was added to the well and allowed to stand at room temperature for 1 hour in order to present hydroxyl groups on the planar culture surface as the starting material. The wells were then washed 3 times with sterile water.
Step 2: A 360 μmol / ml aqueous solution of glutaraldehyde was added to the well, allowed to stand at room temperature for 1 hour, and then washed with a large amount of sterile water. A 360 μmol / ml tris (2-aminoethyl) amine aqueous solution (pH 9.0) was added to the well and left to stand for 1 hour to form a dendron structure, which was washed with sterile water.
Step 3: In order to present D-glucose at the end of the dendrimer, 0.5 μmol / ml D-glucose aqueous solution was added to the well and allowed to stand for 2 hours.
Step 4: 0.5 μmol / ml sodium borohydride (NaBH 4 ) was added to the well and allowed to stand for 24 hours. The well was washed with sterilized water to obtain a culture surface modified with a dendrimer on which D-glucose was presented.
 〔世代数3及び5(G3及びG5)のD-グルコース提示デンドリマー面の作製〕
 G3及びG5のD-グルコース提示デンドリマー面(G3面及びG5面)は、上記ステップ1の後、上記ステップ2をそれぞれ3回及び5回繰り返してデンドリマーの世代数を3及び5とし、その後、上記ステップ3及びステップ4を行うことにより作製した。
[Preparation of D-glucose-presenting dendrimer surfaces of generations 3 and 5 (G3 and G5)]
For the D-glucose-presenting dendrimer surfaces (G3 surface and G5 surface) of G3 and G5, after step 1, the above step 2 is repeated 3 and 5 times, respectively, so that the number of generations of dendrimers is 3 and 5, It was produced by performing Step 3 and Step 4.
 [使用した細胞]
 ヒト間葉系幹細胞として、ヒト骨髄間葉系幹細胞(Lonza社製)を使用した。
[Used cells]
Human bone marrow mesenchymal stem cells (manufactured by Lonza) were used as human mesenchymal stem cells.
 [使用した培地]
 上記デンドリマー修飾培養面上での培養培地として、10%FBS(ウシ胎児血清)を含むDMEM培地(ダルベッコ改変イーグル培地)(Sigma社製)を使用した。また、前記間葉系幹細胞の増殖用培地としては、ヒト骨髄間葉系幹細胞培養培地(Lonza社製)を使用した。
[Medium used]
A DMEM medium (Dulbecco's modified Eagle medium) containing 10% FBS (fetal bovine serum) (manufactured by Sigma) was used as a culture medium on the dendrimer-modified culture surface. In addition, a human bone marrow mesenchymal stem cell culture medium (manufactured by Lonza) was used as the medium for proliferation of the mesenchymal stem cells.
 [培養条件]
 細胞培養は、37℃、5%CO2雰囲気下で行った。なお、細胞のウェルへの接種濃度は、5×103cell/cm2とした。
[Culture conditions]
Cell culture was performed at 37 ° C. in a 5% CO 2 atmosphere. In addition, the inoculation density | concentration to the well of a cell was 5 * 10 < 3 > cell / cm < 2 >.
 [培細胞分化評価]
 間葉系幹細胞の分化は、下記表1の分化マーカー染色法を用いて確認した。なお、10%FBS(ウシ胎児血清)を含むDMEM培地を用いて、PS面で培養したヒト間葉系幹細胞は、下記表1の分化マーカー染色に対して全てが陰性であった。
[Evaluation of cell differentiation]
The differentiation of mesenchymal stem cells was confirmed using the differentiation marker staining method shown in Table 1 below. The human mesenchymal stem cells cultured on the PS surface using DMEM medium containing 10% FBS (fetal bovine serum) were all negative for the differentiation marker staining shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [細胞形態変化及びその結果]
 PS面、G1面、G3面、及びG5面上で上記間葉系幹細胞を上記培養条件で培養し、1、3、及び7日後の細胞の形態を顕微鏡観察した。その結果の一例を図1に示す。図1は、PS面(a)、G1面(b)、G3面(c)、及びG5面(d)の培養面で培養された間葉系幹細胞の、培養1日後、3日後、及び7日後の顕微鏡観察写真を示す図である。
[Cell shape change and its result]
The mesenchymal stem cells were cultured on the PS, G1, G3, and G5 planes under the above culture conditions, and the morphology of the cells after 1, 3, and 7 days was observed with a microscope. An example of the result is shown in FIG. FIG. 1 shows mesenchymal stem cells cultured on the culture planes of the PS plane (a), G1 plane (b), G3 plane (c), and G5 plane (d) after 1 day, 3 days, and 7 It is a figure which shows the microscope observation photograph after a day.
 図1に示すとおり、PS面、G1面、及びG3面の培養面上で培養した間葉系幹細胞は平面方向に伸張した形態を示す傾向があった。一方、G5面の培養面上で培養した場合、細胞の形態は丸くなり、幾つかの細胞が塊になって球状の細胞集塊が形成された。また、該細胞集塊は、培養日数とともに大きくなる傾向があった。 As shown in FIG. 1, the mesenchymal stem cells cultured on the culture planes of the PS, G1, and G3 planes tended to show a shape that expanded in the plane direction. On the other hand, when the cells were cultured on the G5 surface, the cell shape was rounded, and some cells became clumps to form spherical cell clumps. In addition, the cell clumps tended to increase with the number of culture days.
 [分化の方向付けの確認:横紋筋/平滑筋系への分化]
 PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した後、デスミン染色を行って、該分化マーカーの有無を確認した。その結果の一例を図2に示す。図2は、横紋筋/平滑筋系細胞及び平滑筋系細胞の分化マーカーであるデスミンの染色(緑)と核染色(赤)とを行った顕微鏡観察写真を示す図である。なお、G5面での培養結果については、平面(上面)の写真に加え、断側面の共焦点顕微鏡観察写真を示す。
[Confirmation of differentiation direction: differentiation into striated muscle / smooth muscle system]
After culturing mesenchymal stem cells on the PS, G1, G3, and G5 culture surfaces for 7 days, desmin staining was performed to confirm the presence or absence of the differentiation marker. An example of the result is shown in FIG. FIG. 2 is a view showing a microscopic observation photograph obtained by staining (green) and nuclear staining (red) of desmin, which is a differentiation marker of striated / smooth muscle cells and smooth muscle cells. In addition, about the culture result in G5 surface, in addition to the photograph of a plane (upper surface), the confocal microscope observation photograph of a side surface is shown.
 図2に示すとおり、PS面の培養面上で培養した間葉系幹細胞ではデスミン染色陰性であったが、G1面及びG3面の培養面上で培養した間葉系幹細胞はデスミン染色陽性であった。したがって、G1面及びG3面の培養面上で培養した間葉系幹細胞は、横紋筋/平滑筋系の細胞への分化の方向付けがされたことがわかる。 As shown in FIG. 2, the mesenchymal stem cells cultured on the PS culture surface were negative for desmin staining, but the mesenchymal stem cells cultured on the G1 and G3 culture surfaces were positive for desmin staining. It was. Therefore, it can be seen that the mesenchymal stem cells cultured on the culture planes of the G1 plane and the G3 plane have been directed to differentiation into striated / smooth muscle cells.
 また、G5面の培養面上で培養した間葉系幹細胞は、前述のとおり細胞集塊を形成し、デスミン染色したところ、図2に示すとおり、細胞集塊の表面に位置する細胞がデスミン染色陽性を示した。 In addition, the mesenchymal stem cells cultured on the culture surface of G5 form a cell clump as described above and desmin stain. As shown in FIG. 2, the cells located on the surface of the cell clump are desmin stained. Positive.
 [分化の方向付けの確認:軟骨系への分化]
 PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した後、II型コラーゲン染色を行って、該分化マーカーの有無を確認した。その結果の一例を図3に示す。図3は、軟骨系細胞の分化マーカーであるII型コラーゲンの染色(赤)を行った顕微鏡観察写真を示す図である。
[Confirmation of differentiation direction: differentiation into cartilage system]
After culturing mesenchymal stem cells on the PS, G1, G3, and G5 culture surfaces for 7 days, type II collagen staining was performed to confirm the presence or absence of the differentiation marker. An example of the result is shown in FIG. FIG. 3 is a view showing a microscopic observation photograph obtained by staining (red) type II collagen, which is a differentiation marker for cartilage cells.
 図3に示すとおり、PS面、G1面、及びG3面の培養面で培養した間葉系幹細胞ではII型コラーゲン染色陰性であったが、G5面の培養面で培養した間葉系幹細胞はデスミン染色陽性であった。したがって、G5面の培養面上で培養した間葉系幹細胞は、軟骨系細胞への分化の方向付けがされたことがわかる。 As shown in FIG. 3, the mesenchymal stem cells cultured on the PS, G1, and G3 culture surfaces were negative for type II collagen staining, but the mesenchymal stem cells cultured on the G5 culture surface were desmin. Staining was positive. Therefore, it can be seen that the mesenchymal stem cells cultured on the culture surface of G5 have been directed to differentiation into chondrocytes.
 以上、示したとおり、PS面での培養においてはヒト間葉系幹細胞の分化の誘導が起こらない培養条件(例えば、分化誘導のための馴化培地や分化誘導のための培地成分を使用しない培養条件)であっても、培養面をPS面からG1又はG3面とするだけでヒト間葉系幹細胞の分化の誘導及び横紋筋/平滑筋系細胞への分化の方向付けができ、培養面をPS面からG5面とするだけでヒト間葉系幹細胞の分化の誘導及び横紋筋/平滑筋系細胞への分化の方向に加え、軟骨系細胞への分化の方向付けができることが示された。 As described above, culture conditions that do not induce differentiation of human mesenchymal stem cells in culture on the PS surface (for example, culture conditions that do not use conditioned medium for differentiation induction or medium components for differentiation induction) Even if the culture plane is changed from the PS plane to the G1 or G3 plane, differentiation of human mesenchymal stem cells and differentiation into striated / smooth muscle cells can be directed. It was shown that in addition to inducing differentiation of human mesenchymal stem cells and differentiating into striated / smooth muscle cells, it is possible to direct differentiation into chondrocytes by simply changing from PS to G5. .
 提示されるD-グルコースの量が0%、50%、及び100%となるデンドリマー修飾培養面を作製し、これらの培養面においてヒト間葉系幹細胞を培養した。培養面の作製方法及び細胞培養条件は、下記のとおり。D-グルコースの提示量は、L-グルコースの混合率で調節した。なお、ヒト細胞には、L-グルコースを取り込み可能なトランスポータが存在しない。 Dendrimer-modified culture surfaces in which the amount of D-glucose presented was 0%, 50%, and 100% were prepared, and human mesenchymal stem cells were cultured on these culture surfaces. The production method of the culture surface and the cell culture conditions are as follows. The amount of D-glucose presented was adjusted by the mixing rate of L-glucose. In human cells, there is no transporter that can take up L-glucose.
 [培養面の準備]
 デンドリマーで修飾された培養面は、平面培養面(Plain surface)を備える出発材料として市販の角型8ウェルプレート(ポリスチレン製、表面積9.6cm2/ウェル、Nunc社製)を使用し、下記のように作製した。
[Preparation of culture surface]
For the culture surface modified with dendrimer, a commercially available square 8-well plate (made of polystyrene, surface area of 9.6 cm 2 / well, manufactured by Nunc) was used as a starting material equipped with a flat surface. It produced as follows.
 〔100%D-グルコース提示デンドリマー面の作製〕
 世代数3、4、及び5(G3、G4、及びG5)の100%D-グルコース提示デンドリマー面は、無菌条件下において下記4ステップで作製した。
ステップ1:出発材料である前記平面培養面上にヒドロキシル基を提示させるために、50μmol/mlのカリウムtert-ブトキシド(t-BuOK)水溶液をウェルに添加し、室温で1時間静置した。その後、前記ウェルを滅菌水で3回洗浄した。
ステップ2:360μmol/mlのグルタルアルデヒド水溶液を前記ウェルに添加し、室温で1時間静置し、その後多量の滅菌水で洗浄した。前記ウェルに360μmol/mlのトリス(2-アミノエチル)アミン水溶液(pH9.0)を添加して1時間静置してデンドロン構造を形成し、滅菌水で洗浄した。G3、G4、及びG5の培養面を作製する場合、このステップ2を、それぞれ、3、4、及び5回繰り返した。
ステップ3:デンドリマー末端にD-グルコースを提示させるため、0.5μmol/mlのD-グルコース水溶液を前記ウェルに添加して2時間静置した。
ステップ4:0.5μmol/mlの水素化ホウ素ナトリウム(NaBH4)を前記ウェルに添加して24時間静置した。前記ウェルを滅菌水で洗浄し、100%のD-グルコースが提示されたデンドリマー培養面(G3、G4、及びG5)を得た。
[Production of 100% D-glucose-presenting dendrimer surface]
Generation numbers 3, 4, and 5 (G3, G4, and G5) 100% D-glucose-presenting dendrimer surfaces were prepared under aseptic conditions in the following 4 steps.
Step 1: A 50 μmol / ml aqueous solution of potassium tert-butoxide (t-BuOK) was added to the well and allowed to stand at room temperature for 1 hour in order to present hydroxyl groups on the planar culture surface as the starting material. The wells were then washed 3 times with sterile water.
Step 2: A 360 μmol / ml aqueous solution of glutaraldehyde was added to the well, allowed to stand at room temperature for 1 hour, and then washed with a large amount of sterile water. A 360 μmol / ml tris (2-aminoethyl) amine aqueous solution (pH 9.0) was added to the well and left to stand for 1 hour to form a dendron structure, which was washed with sterile water. This step 2 was repeated three, four, and five times, respectively, when creating G3, G4, and G5 culture surfaces.
Step 3: In order to present D-glucose at the end of the dendrimer, 0.5 μmol / ml D-glucose aqueous solution was added to the well and allowed to stand for 2 hours.
Step 4: 0.5 μmol / ml sodium borohydride (NaBH 4 ) was added to the well and allowed to stand for 24 hours. The wells were washed with sterilized water to obtain dendrimer culture surfaces (G3, G4, and G5) on which 100% D-glucose was presented.
 〔0%及び50%D-グルコース提示デンドリマー面の作製〕
 0%D-グルコース提示デンドリマー面(G3、G4、及びG5)は、上記ステップ3における0.5μmol/mlのD-グルコース水溶液を、0.5μmol/mlのL-グルコース水溶液とした以外は前述の100%D-グルコース提示デンドリマー面(G3、G4、及びG5)と同様にして作製した。また、50%D-グルコース提示デンドリマー面(G3、G4、及びG5)は、上記ステップ3における0.5μmol/mlのD-グルコース水溶液を、D-グルコース及びL-グルコースを等量含みグルコース濃度が0.5μmol/mlのグルコース水溶液とした以外は前述の100%D-グルコース提示デンドリマー面(G3、G4、及びG5)と同様にして作製した。
[Preparation of 0% and 50% D-glucose-presenting dendrimer surfaces]
The 0% D-glucose-presenting dendrimer surface (G3, G4, and G5) was the same as that described above except that the 0.5 μmol / ml D-glucose aqueous solution in Step 3 was changed to a 0.5 μmol / ml L-glucose aqueous solution. It was prepared in the same manner as the 100% D-glucose-presenting dendrimer surface (G3, G4, and G5). The 50% D-glucose-presenting dendrimer surface (G3, G4, and G5) has a 0.5 μmol / ml D-glucose aqueous solution in Step 3 described above, and has an equivalent concentration of D-glucose and L-glucose. It was prepared in the same manner as the 100% D-glucose-presenting dendrimer surface (G3, G4, and G5) except that the aqueous solution was 0.5 μmol / ml glucose.
 [使用した細胞]
 ヒト間葉系幹細胞として、ヒト骨髄間葉系幹細胞(Lonza社製)を使用した。
[Used cells]
Human bone marrow mesenchymal stem cells (manufactured by Lonza) were used as human mesenchymal stem cells.
 [使用した培地]
 上記デンドリマー修飾培養面上での培養培地として、10%FBS(ウシ胎児血清)を含むDMEM培地(ダルベッコ改変イーグル培地)(Sigma社製)を使用した。また、前記間葉系幹細胞の増殖用培地としては、ヒト骨髄間葉系幹細胞培養培地(Lonza社製)を使用した。
[Medium used]
A DMEM medium (Dulbecco's modified Eagle medium) containing 10% FBS (fetal bovine serum) (manufactured by Sigma) was used as a culture medium on the dendrimer-modified culture surface. In addition, a human bone marrow mesenchymal stem cell culture medium (manufactured by Lonza) was used as the medium for proliferation of the mesenchymal stem cells.
 [培養条件]
 細胞培養は、37℃、5%CO2雰囲気下で行った。なお、細胞のウェルへの接種濃度は、5×103cell/cm2とした。
[Culture conditions]
Cell culture was performed at 37 ° C. in a 5% CO 2 atmosphere. In addition, the inoculation density | concentration to the well of a cell was 5 * 10 < 3 > cell / cm < 2 >.
 [細胞形態変化及びその結果]
 0%、50%、及び100%D-グルコース提示デンドリマー(G3、G4、及びG5)で修飾された培養面上で上記間葉系幹細胞を上記培養条件で培養し、4及び7日後の細胞の形態を顕微鏡観察した。その結果の一例を図4に示す。
[Cell shape change and its result]
The mesenchymal stem cells were cultured under the above culture conditions on a culture surface modified with 0%, 50%, and 100% D-glucose-presenting dendrimers (G3, G4, and G5). The morphology was observed with a microscope. An example of the result is shown in FIG.
 図4に示すとおり、G3面の培養面上で培養した間葉系幹細胞は、グルコースの提示量に関らず、平面方向に伸張した形態を示した。一方、G4及びG5面の培養面上で培養した場合、細胞の形態は丸くなり、幾つかの細胞が塊になって球状の細胞集塊が形成された。細胞集塊を形成する細胞の数は、G4面よりもG5面の方が多かった。また、細胞集塊を形成する細胞の数は、D-グルコースの提示が多いほど多かった。よって、細胞集塊の形成は、デンドリマーの世代数が多いほど、また、D-グルコースの提示が多いほど、促進されることが示された。 As shown in FIG. 4, the mesenchymal stem cells cultured on the G3 culture surface showed a shape that expanded in the plane direction regardless of the amount of glucose presented. On the other hand, when cultured on the culture surfaces of G4 and G5, the shape of the cells was rounded, and some cells became clumps to form spherical cell clumps. The number of cells forming a cell cluster was larger on the G5 surface than on the G4 surface. In addition, the number of cells forming the cell cluster was larger as the presentation of D-glucose was increased. Thus, it has been shown that the formation of cell clumps is promoted as the number of generations of dendrimers increases and as the presentation of D-glucose increases.
 [分化の方向付けの確認:心筋系への分化]
 G5面の培養面上で、間葉系幹細胞を7日間培養して細胞集塊を得た。使用した間葉系幹細胞、培養条件等は、実施例1と同様である。次に、この細胞集塊に対して、骨格筋系細胞に特異的なマーカー(デスミン、MHC fast Skeletal)、心筋系細胞に特異的なマーカー(デスミン、cTnT)、及び軟骨系細胞に特異的なマーカー(II型コラーゲン)に対する蛍光免疫染色を行った。染色の程度を確認するためTopro-3により核染色も同時に行った。その観察結果を図5に示す。
[Confirmation of differentiation direction: differentiation into myocardial system]
On the G5 surface, the mesenchymal stem cells were cultured for 7 days to obtain cell clusters. The mesenchymal stem cells and culture conditions used are the same as in Example 1. Next, specific markers for skeletal muscle cells (desmin, MHC fast Skeletal), markers specific for cardiomyocytes (desmin, cTnT), and chondrocytes Fluorescent immunostaining for the marker (type II collagen) was performed. To confirm the degree of staining, nuclear staining was also performed simultaneously with Topro-3. The observation results are shown in FIG.
 図5に示すとおり、デスミン及びcTnTは、細胞集塊全体的に発現していた。一方、MHC fast Skeletal及びII型コラーゲンは、表面(表層部)において発現が確認された。したがって、該細胞集塊においては、表面(表層部)の細胞は軟骨系細胞への分化の方向付けがされているが、該細胞集塊の内部の細胞は心筋系細胞への分化の方向付けがされていることが確認された。 As shown in FIG. 5, desmin and cTnT were expressed throughout the cell mass. On the other hand, expression of MHC fast Skeletal and type II collagen was confirmed on the surface (surface layer portion). Therefore, in the cell cluster, cells on the surface (surface layer part) are directed to differentiation into cartilage cells, but cells inside the cell cluster are directed to differentiation into cardiomyocytes. Has been confirmed.
 [デンドリマー修飾面の役割の確認]
 上記のような心筋系細胞への分化誘導には、デンドリマー修飾培養面上での培養が必要であることを確認するため、細胞非接着性の丸底98ウェルプレートを利用して間葉系幹細胞の細胞集塊を作製した。細胞培養容器を細胞非接着性の丸底98ウェルプレートとした以外は、細胞培養条件は実施例1と同様とした。次に、得られた細胞集塊に対してデスミン、MHC fast Skeletal、cTnT、II型コラーゲン、及びCD105の各マーカーに対する蛍光免疫染色を行った。なお、CD105は、未分化の間葉系幹細胞のマーカーの1つである。その観察結果を図6に示す。
[Confirmation of the role of dendrimer-modified surface]
In order to confirm that culture on the dendrimer-modified culture surface is necessary for the induction of differentiation into cardiomyocytes as described above, mesenchymal stem cells using a non-cell-adhesive round bottom 98 well plate Cell clusters were prepared. The cell culture conditions were the same as in Example 1 except that the cell culture vessel was a non-cell-adhesive round bottom 98 well plate. Next, fluorescence immunostaining for each marker of desmin, MHC fast Skeletal, cTnT, type II collagen, and CD105 was performed on the obtained cell cluster. CD105 is one of the markers for undifferentiated mesenchymal stem cells. The observation results are shown in FIG.
 図6に示すとおり、デスミンが細胞集塊の周囲で若干の発現が観察されたが、図5とは対照的に、MHC fast Skeletal、cTnT、及びII型コラーゲンの各マーカーについては陰性であった。また、間葉系幹細胞の未分化状態を示すCD105が陽性であった。したがって、間葉系幹細胞を単に細胞集塊とするだけでは心筋細胞の分化誘導には不十分であり、デンドリマー修飾培養面上での培養が必要であることが確認された。 As shown in FIG. 6, desmin was observed to be slightly expressed around the cell cluster, but in contrast to FIG. 5, MHC fast Skeletal, cTnT, and type II collagen markers were negative. . Moreover, CD105 which shows the undifferentiated state of a mesenchymal stem cell was positive. Therefore, it was confirmed that merely using a mesenchymal stem cell as a cell clump is insufficient for induction of cardiomyocyte differentiation, and that culture on a dendrimer-modified culture surface is necessary.
 [PS面、G1面、G3面における心筋系細胞への分化の有無]
 PS面、G1面、及びG3面における心筋系細胞への分化誘導の有無を確認した。実施例1に記載の培養条件と同様の条件下において、PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を7日間培養した。その後、デスミン、MHC fast Skeletal、及びcTnTに対する蛍光免疫染色を行って顕微鏡観察した。その結果を図7に示す。
[Presence or absence of differentiation into myocardial cells on the PS, G1, and G3 planes]
The presence or absence of differentiation induction into myocardial cells on the PS, G1, and G3 planes was confirmed. Under the same conditions as those described in Example 1, mesenchymal stem cells were cultured on the PS, G1, G3, and G5 culture surfaces for 7 days. Thereafter, fluorescence immunostaining for desmin, MHC fast Skeletal, and cTnT was performed and observed under a microscope. The result is shown in FIG.
 図7に示すとおり、細胞集塊を形成しないPS面、G1面、及びG3面では、cTnTマーカーが陰性であった。よって、心筋系細胞への分化誘導には、デンドリマー修飾培養面上での細胞集塊の形成が必要であることが示唆された。 As shown in FIG. 7, the cTnT marker was negative on the PS, G1, and G3 surfaces that do not form cell clumps. Therefore, it was suggested that the formation of cell clumps on the dendrimer-modified culture surface is necessary for induction of differentiation into cardiomyocytes.
 [分化誘導と細胞増殖の関係]
 PS面、G1面、G3面、及びG5面の培養面上で間葉系幹細胞を培養するときの培養時間と細胞増殖の関係を確認した。具体的には、実施例1に記載の細胞培養条件下で培養し、所定の時間ごとに細胞密度を計測した。その結果を図8に示す。
[Relationship between differentiation induction and cell proliferation]
The relationship between the culture time and cell proliferation when culturing mesenchymal stem cells on the PS, G1, G3, and G5 culture surfaces was confirmed. Specifically, the cells were cultured under the cell culture conditions described in Example 1, and the cell density was measured every predetermined time. The result is shown in FIG.
 図8に示すとおり、PS面、G1面、及びG3面の培養面上では、間葉系幹細胞に由来する細胞は増殖し続けた。一方、G5面上での培養では間葉系幹細胞に由来する細胞はある一定の時間から増殖が止まった。G5面上での増殖停止は、心筋系細胞への分化との関連が示唆される。 As shown in FIG. 8, cells derived from mesenchymal stem cells continued to proliferate on the culture surfaces of the PS, G1, and G3 surfaces. On the other hand, in the culture on the G5 surface, the cells derived from the mesenchymal stem cells stopped growing from a certain time. The growth arrest on the G5 plane is suggested to be related to differentiation into cardiomyocytes.
 なお、本実施例3の結果は、ロット違いのヒト骨髄間葉系幹細胞でも再現された。 Note that the results of Example 3 were also reproduced with different bone marrow mesenchymal stem cells.
 [細胞分化可塑性]
 G5面の培養面で間葉系幹細胞を7日間培養して心筋系細胞への分化が方向付けられた細胞集塊を得て、その細胞集塊をトリプシン処理して乖離させた細胞をPS面の培養面に移して再培養した。対照として、PS面の培養面で7日間培養した間葉系幹細胞を同様にトリプシン処理したのち、PS面の培養面で再培養した。使用した細胞、培養条件は実施例1と同様である。再培養の5日目に顕微鏡観察により細胞の形態を確認し、さらに、様々な分化マーカーの発現を確認した。
[Cell differentiation plasticity]
The mesenchymal stem cells are cultured for 7 days on the G5 culture surface to obtain cell clumps that are directed to differentiation into cardiomyocytes, and the cells that have been dissociated by trypsinization of the cell clumps are displayed on the PS plane. The culture surface was transferred and re-cultured. As a control, mesenchymal stem cells cultured for 7 days on the PS-cultured surface were similarly trypsinized and then re-cultured on the PS-cultured surface. The cells and culture conditions used are the same as in Example 1. On the fifth day of re-culture, the cell morphology was confirmed by microscopic observation, and the expression of various differentiation markers was further confirmed.
 細胞の形態観察結果を図9に示す。G5面の培養後にPS面で再培養した細胞(図9下)は、通常の間葉系幹細胞及びPS面の培養後にPS面で再培養した細胞(図9上)に比べてやや扁平な多角形状を示した。 The cell morphology observation results are shown in FIG. Cells that were re-cultured on the PS surface after culturing the G5 surface (bottom of FIG. 9) were slightly flattened compared to normal mesenchymal stem cells and cells that were re-cultured on the PS surface after culturing the PS surface (FIG. 9). The shape was shown.
 次に、デスミン、cTnT、MHC Fast Skeletal及びα-平滑筋アクチンのマーカーに対する蛍光免疫染色の結果を図10に示す。PS面の培養後にPS面で再培養した細胞では、これらのマーカーは全て陰性であった。一方、G5面の培養後にPS面で再培養した細胞の多くは、デスミン及びcTnTのマーカーが陽性であった。したがって、G5面の培養面で誘導された心筋系細胞へ分化は、細胞分化安定性的に優れていることが示唆された。 Next, FIG. 10 shows the results of fluorescent immunostaining for markers of desmin, cTnT, MHC Fast Skeletal and α-smooth muscle actin. In cells re-cultured on the PS surface after culturing the PS surface, all of these markers were negative. On the other hand, many of the cells re-cultured on the PS surface after culturing the G5 surface were positive for desmin and cTnT markers. Therefore, it was suggested that differentiation into myocardial cells induced on the G5 culture surface is superior in cell differentiation stability.
 本発明は、例えば、組織工学の分野、再生医療の分野、再生医工学の分野などにおいて有用である。 The present invention is useful, for example, in the field of tissue engineering, the field of regenerative medicine, the field of regenerative medical engineering, and the like.

Claims (19)

  1. 間葉系幹細胞の分化誘導の方法であって、
    デンドリマー化合物で修飾された培養面を有する細胞培養容器で前記間葉系幹細胞を培養することを含む、間葉系幹細胞の分化誘導方法。
    A method for inducing differentiation of mesenchymal stem cells,
    A method for inducing differentiation of mesenchymal stem cells, comprising culturing the mesenchymal stem cells in a cell culture vessel having a culture surface modified with a dendrimer compound.
  2. 前記デンドリマー化合物の世代数を調節することにより、間葉系幹細胞に対して異なる細胞への分化の方向付けをすることを含む、請求項1記載の間葉系幹細胞の分化誘導方法。 The method for inducing differentiation of mesenchymal stem cells, comprising directing differentiation of mesenchymal stem cells into different cells by adjusting the number of generations of the dendrimer compound.
  3. 前記分化が、横紋筋/平滑筋系の細胞への分化であり、
    前記デンドリマー化合物の世代数が、1以上である、請求項1又は2に記載の間葉系幹細胞の分化誘導方法。
    The differentiation is differentiation into striated / smooth muscle cell,
    The method for inducing differentiation of mesenchymal stem cells according to claim 1 or 2, wherein the generation number of the dendrimer compound is 1 or more.
  4. 前記分化が、軟骨系の細胞への分化であり、
    前記デンドリマー化合物の世代数が、4以上である、請求項1又は2に記載の間葉系幹細胞の分化誘導方法。
    The differentiation is differentiation into cartilage cells,
    The method for inducing differentiation of mesenchymal stem cells according to claim 1 or 2, wherein the generation number of the dendrimer compound is 4 or more.
  5. 前記分化が、心筋系細胞への分化であり、
    前記デンドリマー化合物の世代数が、4以上である、請求項1又は2に記載の間葉系幹細胞の分化誘導方法。
    The differentiation is differentiation into cardiomyocytes,
    The method for inducing differentiation of mesenchymal stem cells according to claim 1 or 2, wherein the generation number of the dendrimer compound is 4 or more.
  6. 間葉系幹細胞のトランスポータが取り込み可能な物質が前記培養面に提示されており、
    前記物質は前記デンドリマー化合物の末端に結合している、請求項1から5のいずれかに記載の間葉系幹細胞の分化誘導方法。
    A substance that can be taken up by the transporter of mesenchymal stem cells is presented on the culture surface,
    The method for inducing differentiation of mesenchymal stem cells according to any one of claims 1 to 5, wherein the substance is bound to an end of the dendrimer compound.
  7. 前記デンドリマー化合物は、枝状部分を構成する分子がカチオン性である、請求項1から6のいずれかに記載の間葉系幹細胞の分化誘導方法。 The method for inducing differentiation of mesenchymal stem cells according to any one of claims 1 to 6, wherein the dendrimer compound has a cationic molecule constituting the branched portion.
  8. 前記トランスポータが取り込み可能な物質は、D-グルコース、D-フルクトース、及びD-ガラクトースからなる群から選択される少なくとも1つの糖である、請求項6又は7に記載の間葉系幹細胞の分化誘導方法。 The mesenchymal stem cell differentiation according to claim 6 or 7, wherein the substance that can be taken up by the transporter is at least one sugar selected from the group consisting of D-glucose, D-fructose, and D-galactose. Guidance method.
  9. 間葉系幹細胞を請求項1から8のいずれかに記載の間葉系幹細胞の分化誘導方法により分化の方向付けを行うことを含む、分化の方向付けがされた間葉系幹細胞由来の細胞の製造方法。 A mesenchymal stem cell-derived cell having a direction of differentiation, comprising directing differentiation of the mesenchymal stem cell by the method for inducing differentiation of a mesenchymal stem cell according to any one of claims 1 to 8. Production method.
  10. 前記分化の方向付けは、細胞増殖を伴う、請求項9記載の細胞の製造方法。 The method for producing cells according to claim 9, wherein the direction of differentiation is accompanied by cell proliferation.
  11. 請求項9又は10に記載の細胞の製造方法により製造され得る、分化の方向付けがされた間葉系幹細胞由来の細胞。 A cell derived from a mesenchymal stem cell with a direction of differentiation, which can be produced by the method for producing a cell according to claim 9 or 10.
  12. 間葉系幹細胞を請求項1から8のいずれかに記載の間葉系幹細胞の分化誘導方法により分化の方向付けを行うことを含む、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料の製造方法。 A mesenchymal stem cell-derived cell with a direction of differentiation, comprising directing differentiation of the mesenchymal stem cell by the method for inducing differentiation of a mesenchymal stem cell according to any one of claims 1 to 8. A method for producing a biomaterial.
  13. 前記分化の方向付けは、細胞増殖を伴う、請求項12記載の生体材料の製造方法。 The method for producing a biomaterial according to claim 12, wherein the direction of differentiation is accompanied by cell proliferation.
  14. 請求項12又は13に記載の生体材料の製造方法により製造され得る、分化の方向付けがされた間葉系幹細胞由来の細胞を含む生体材料。 A biomaterial comprising cells derived from mesenchymal stem cells with a direction of differentiation, which can be produced by the method for producing a biomaterial according to claim 12 or 13.
  15. 間葉系幹細胞の分化誘導を行うためのキットであって、
    デンドリマー化合物で修飾された培養面を有する細胞培養容器、及び、
    請求項1から8のいずれかに記載の間葉系幹細胞の分化誘導方法が記載された取扱説明書を含む、間葉系幹細胞の分化誘導キット。
    A kit for inducing differentiation of mesenchymal stem cells,
    A cell culture vessel having a culture surface modified with a dendrimer compound, and
    A mesenchymal stem cell differentiation-inducing kit comprising an instruction manual that describes the method for inducing differentiation of mesenchymal stem cells according to any one of claims 1 to 8.
  16. デンドリマー化合物で修飾された培養面を有する細胞培養容器で間葉系幹細胞を培養することを含む、間葉系幹細胞由来の丸い形態をした細胞集塊を製造する方法。 A method for producing a cell cluster having a round shape derived from a mesenchymal stem cell, comprising culturing the mesenchymal stem cell in a cell culture vessel having a culture surface modified with a dendrimer compound.
  17. 前記デンドリマー化合物の世代数が、4以上である、請求項16記載の製造方法。 The production method according to claim 16, wherein the generation number of the dendrimer compound is 4 or more.
  18. 間葉系幹細胞のトランスポータが取り込み可能な物質が前記培養面に提示されており、
    前記物質は前記デンドリマー化合物の末端に結合している、請求項16又は17に記載の製造方法。
    A substance that can be taken up by the transporter of mesenchymal stem cells is presented on the culture surface,
    The production method according to claim 16 or 17, wherein the substance is bonded to an end of the dendrimer compound.
  19. 前記トランスポータが取り込み可能な物質は、D-グルコース、D-フルクトース、及びD-ガラクトースからなる群から選択される少なくとも1つの糖である、請求項18記載の製造方法。 The production method according to claim 18, wherein the substance that can be taken up by the transporter is at least one sugar selected from the group consisting of D-glucose, D-fructose, and D-galactose.
PCT/JP2010/051405 2009-02-03 2010-02-02 Method for inducing differentiation of mesenchymal stem cells WO2010090177A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009022871 2009-02-03
JP2009-185191 2009-08-07
JP2009185191A JP5641468B2 (en) 2009-02-03 2009-08-07 Method for inducing differentiation of mesenchymal stem cells
JP2009-022871 2009-10-01

Publications (1)

Publication Number Publication Date
WO2010090177A1 true WO2010090177A1 (en) 2010-08-12

Family

ID=42542070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051405 WO2010090177A1 (en) 2009-02-03 2010-02-02 Method for inducing differentiation of mesenchymal stem cells

Country Status (2)

Country Link
JP (1) JP5641468B2 (en)
WO (1) WO2010090177A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146777A (en) * 2015-02-12 2016-08-18 ダイキン工業株式会社 Bag for cell cultivation and cell cultivation method using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM M-H ET AL.: "Myogenic induction of human mesenchymal stem cells by culture on dendrimer- immobilized surface with D-glucose display.", J. BIOSCI. BIOENG., vol. 109, 18 July 2009 (2009-07-18), pages 55 - 61 *
MASHAYEKHAN S ET AL.: "Enrichment of undifferentiated mouse embryonic stem cells on a culture surface with a glucose-displaying dendrimer.", BIOMATERIALS, vol. 29, 2008, pages 4236 - 4243 *
OLIVEIRA J M ET AL.: "Surface engineered carboxymethlchitosan/poly(amidoamine) dendrimer nanoparticles for intracellular targeting.", ADV. FUNCT. MATER., vol. 18, 2008, pages 1840 - 1853 *
OLIVEIRA J M ET AL.: "The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamathasone-loaded carboxymethlchitosan/poly(amidoamine) dendrimer nanoparticles.", BIOMATERIALS, vol. 30, 25 November 2008 (2008-11-25), pages 804 - 813 *
SHIOTA M ET AL.: "Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties.", EXP. CELL RES., vol. 313, 2007, pages 1008 - 1023 *

Also Published As

Publication number Publication date
JP5641468B2 (en) 2014-12-17
JP2010200745A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP6510033B2 (en) Three-dimensional complex cell aggregate model, its production method and application
Kaur et al. The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells
Huang et al. Engineering three-dimensional cell mechanical microenvironment with hydrogels
Shimizu et al. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering
Luo et al. Designer D-form self-assembling peptide nanofiber scaffolds for 3-dimensional cell cultures
CN105209605A (en) Engineered liver tissues, arrays thereof, and methods of making the same
Cornelissen et al. Fibrin gel as alternative scaffold for respiratory tissue engineering
JP2007319074A (en) New scaffold comprising nano-fiber and use thereof
TW201014914A (en) Materials and methods for cell growth
Lee et al. Engineered phage matrix stiffness-modulating osteogenic differentiation
JP4233646B2 (en) Method for increasing the stability and / or shelf life of various substrates
Ozturk et al. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly (N-isopropylacrylamide) scaffolds
WO2016070057A1 (en) Methods for maintaining and expanding mesenchymal stem cells on extracellular matrix coated microcarriers
Kim et al. Response of human epithelial cells to culture surfaces with varied roughnesses prepared by immobilizing dendrimers with/without d-glucose display
WO2019189786A1 (en) Sheet for cell culture use, and three-dimensional structure body and method for producing same
JP5641468B2 (en) Method for inducing differentiation of mesenchymal stem cells
JP2023021274A (en) Method for producing three-dimensional cell structure
Danti et al. A Micro/Nanoscale Surface Mechanical Study on Morpho‐Functional Changes in Multilineage‐Differentiated Human Mesenchymal Stem Cells
BR102012033604A2 (en) THREE-DIMENSIONAL GROWING PERFUSION CHAMBER FOR TISSUE ENGINEERING
KR20210103984A (en) Heart extracellular matrix-derived scaffold for culture and transplantation of cardiac organoid and preparing method thereof
Taheri et al. Engineered substrates incapable of induction of chondrogenic differentiation compared to the chondrocyte imprinted substrates
CN114341173A (en) Supramolecular structures
JP4849434B2 (en) Metal surface modified ceramic scaffolds and their applications
JP2005065696A (en) Modified reconstituted basement membrane composition for assay system
CA3048388A1 (en) Method for producing a corneal epithelial cell population

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738509

Country of ref document: EP

Kind code of ref document: A1