JP2016146777A - Bag for cell cultivation and cell cultivation method using the same - Google Patents

Bag for cell cultivation and cell cultivation method using the same Download PDF

Info

Publication number
JP2016146777A
JP2016146777A JP2015025289A JP2015025289A JP2016146777A JP 2016146777 A JP2016146777 A JP 2016146777A JP 2015025289 A JP2015025289 A JP 2015025289A JP 2015025289 A JP2015025289 A JP 2015025289A JP 2016146777 A JP2016146777 A JP 2016146777A
Authority
JP
Japan
Prior art keywords
bag
cells
cell
cell culture
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015025289A
Other languages
Japanese (ja)
Inventor
達也 樋口
Tatsuya Higuchi
達也 樋口
梢 駒澤
Kozue Komazawa
梢 駒澤
梨沙 岡入
Risa Okairi
梨沙 岡入
西村 益浩
Masuhiro Nishimura
益浩 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Otsuka Pharmaceutical Factory Inc
Original Assignee
Daikin Industries Ltd
Otsuka Pharmaceutical Factory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Otsuka Pharmaceutical Factory Inc filed Critical Daikin Industries Ltd
Priority to JP2015025289A priority Critical patent/JP2016146777A/en
Priority to PCT/JP2016/000409 priority patent/WO2016129220A1/en
Priority to TW105103555A priority patent/TW201634687A/en
Publication of JP2016146777A publication Critical patent/JP2016146777A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bag for cell cultivation capable of preparing cell containing liquid in which floating cell, multipotent stem cell etc. are contained at a high concentration and living cells are included at a high ratio.SOLUTION: A bag for cell cultivation comprises a bag shape container made of tetrafluoroethylene (TFE)-hexafluoropropylene (HFP) copolymer, in which calculated average roughness (Ra) in surface roughness of inner surface of the bag shape container is 3.5 to 6.5nm, root-mean-square roughness (RMS) in surface roughness of the inner surface of the bag shape container is 4.5 to 8.0nm, and surface free energy in inner surface of the bag shape container is 16.5 to 18.5 (mJ/m). When human marrow mesenchymal stem cells (hMSC cells) are cultured in the bag shape container, multipotent stem cells are efficiently induced due to improvement in floating condition, thus preparation of suspension of multipotent stem cell may be carried out at high concentration and at high ratio in living cell, enabling providing cell suspension for transplantation in regenerative therapy of high quality.SELECTED DRAWING: None

Description

本発明は、テトラフルオロエチレン(TFE)−ヘキサフルオロプロピレン(HFP)系共重合体からなる袋状容器を備え、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)である細胞培養用バッグや、かかる細胞培養用バッグの上記袋状容器内で、細胞を浮遊培養する細胞の培養方法に関する。 The present invention includes a bag-like container made of a tetrafluoroethylene (TFE) -hexafluoropropylene (HFP) copolymer, and the arithmetic average roughness (Ra) of the surface roughness of the inner surface of the bag-like container is 3.5. -6.5 nm, the root mean square roughness (RMS) of the surface roughness of the inner surface of the bag-shaped container is 4.5-8.0 nm, and the surface free energy of the inner surface of the bag-shaped container is 16.5- The present invention relates to a cell culture bag of 18.5 (mJ / m 2 ) and a cell culture method for culturing cells in suspension in the bag-like container of the cell culture bag.

基礎研究や再生医療の現場において、哺乳動物細胞をインビトロで継代培養し、増殖させることが一般的に行われている。特に、胚性幹細胞(ES細胞)や誘導多能性幹細胞(iPS細胞)等の多能性幹細胞は、再生医療や創薬研究への実用化が期待されており、そのためには、高品質の細胞を安定的に大量培養する必要がある。しかし、ガラス製や合成樹脂製のフラスコ又はシャーレを用いた従来の接着培養法では、大量生産には不向きであることから、多能性幹細胞を浮遊培養できるバッグや、バッグを用いた培養方法の開発が進められている。   In the field of basic research and regenerative medicine, it is a common practice to subculture and propagate mammalian cells in vitro. In particular, pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are expected to be put to practical use in regenerative medicine and drug discovery research. It is necessary to stably mass-culture cells. However, the conventional adhesion culture method using a glass or synthetic resin flask or petri dish is not suitable for mass production, so a bag capable of culturing pluripotent stem cells or a culture method using the bag Development is underway.

ポリ(エチレンブチレン)ポリスチレンブロック共重合体と、ポリプロピレンの重合体混合物にエチレンアクリル酸エステル共重合体を混合したポリマーアロイとからなる浮遊培養用のバッグは、透明性やガス透過性が優れていることが報告されている(特許文献1)。また、透明性やガス透過性に優れた浮遊培養用のバッグの市販品も知られており、例えば、エチレン酢酸ビニルを材料としたCultiLife[登録商標] Spinバッグ(TAKARA社製)、TFE−HFP共重合体(FEP)を材料としたVueLife FEP Bag 32-C(American Fluoroseal Corporation社製)、カルチャーバッグA−1000NL(ニプロ社製)等が市販されている。   Bags for floating culture consisting of a poly (ethylene butylene) polystyrene block copolymer and a polymer alloy in which an ethylene acrylate copolymer is mixed with a polymer mixture of polypropylene are excellent in transparency and gas permeability. (Patent Document 1). Commercially available bags for suspension culture with excellent transparency and gas permeability are also known. For example, CultiLife [registered trademark] Spin bag (made by TAKARA) made of ethylene vinyl acetate, TFE-HFP VueLife FEP Bag 32-C (manufactured by American Fluoroseal Corporation), culture bag A-1000NL (manufactured by Nipro Corporation), and the like, which are made of a copolymer (FEP), are commercially available.

最近、メチルセルロースやジェランガムを含む培養液と、ニプロ社が開発したガス透過性培養バッグとを用いてES細胞やiPS細胞を浮遊培養すると、効率よく細胞を増殖できることが報告されている(非特許文献1)。   Recently, it has been reported that cells can be efficiently proliferated by suspension culture of ES cells and iPS cells using a culture solution containing methylcellulose and gellan gum and a gas permeable culture bag developed by Nipro (non-patent document). 1).

特開平3−65177号公報JP-A-3-65177

Otsuji, T.G., et al. Stem Cell Reports. 2: 734-745 (2014).Otsuji, T.G., et al. Stem Cell Reports. 2: 734-745 (2014).

本発明の課題は、浮遊性細胞や多能性幹細胞等の高濃度でかつ生細胞の割合が高い細胞含有液を調製することができる細胞培養用バッグを提供することにある。   An object of the present invention is to provide a cell culture bag capable of preparing a cell-containing solution having a high concentration and a high proportion of living cells such as suspension cells and pluripotent stem cells.

本発明者らは、上記課題を解決すべく鋭意検討する中で、TFE−HFP系共重合体フィルムを材料とし、表面粗度のRaが3.5〜6.5nmであり、表面粗度のRMSが4.5〜8.0nmであり、かつ表面自由エネルギーが16.5〜18.5(mJ/m)の袋状容器内面を備えた細胞培養用バッグを製造し、かかるバッグを用いてヒト末梢血由来単核球(hPBMC)を培養すると、細胞生存率低下が効果的に抑制されることを見いだした。また、上記バッグを用いてヒト骨髄由来間葉系幹細胞(hMSC細胞)を培養すると、浮遊状態が向上することにより効率よく多能性幹細胞が誘導されることを確認した。本発明はこれらの知見に基づいて完成するに至ったものである。 The present inventors are diligently studying to solve the above problems, and using a TFE-HFP copolymer film as a material, the surface roughness Ra is 3.5 to 6.5 nm, and the surface roughness is A cell culture bag having an inner surface of a bag-like container having an RMS of 4.5 to 8.0 nm and a surface free energy of 16.5 to 18.5 (mJ / m 2 ) is manufactured, and the bag is used. When human peripheral blood-derived mononuclear cells (hPBMC) were cultured, it was found that the decrease in cell viability was effectively suppressed. It was also confirmed that when human bone marrow-derived mesenchymal stem cells (hMSC cells) were cultured using the bag, pluripotent stem cells were efficiently induced by improving the floating state. The present invention has been completed based on these findings.

すなわち、本発明は(1)テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体からなる袋状容器を備え、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)であることを特徴とする細胞培養用バッグや、(2)袋状容器の厚みが10〜100μmであることを特徴とする上記(1)に記載の細胞培養用バッグや、(3)細胞が間葉系幹細胞又は末梢血由来単核球であることを特徴とする上記(1)又は(2)に記載の細胞培養用バッグに関する。 That is, the present invention comprises (1) a bag-like container made of a tetrafluoroethylene-hexafluoropropylene copolymer, and the arithmetic average roughness (Ra) of the surface roughness of the inner surface of the bag-like container is 3.5-6. 0.5 nm, the root mean square roughness (RMS) of the inner surface of the bag-shaped container is 4.5 to 8.0 nm, and the surface free energy of the inner surface of the bag-shaped container is 16.5 to 18. 5 (mJ / m 2 ), or (2) The cell culture bag according to (1) above, wherein the bag-like container has a thickness of 10 to 100 μm And (3) the cell culture bag according to (1) or (2) above, wherein the cells are mesenchymal stem cells or peripheral blood-derived mononuclear cells.

また、本発明は(4)テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体からなる袋状容器を備え、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)である細胞培養用バッグの前記袋状容器内で、細胞を浮遊培養することを特徴とする細胞の培養方法や、(5)袋状容器の厚みが10〜100μmであることを特徴とする上記(4)に記載の培養方法や、(6)細胞が間葉系幹細胞又は末梢血由来単核球であることを特徴とする上記(4)又は(5)に記載の培養方法に関する。 The present invention also includes (4) a bag-like container made of a tetrafluoroethylene-hexafluoropropylene copolymer, and the arithmetic average roughness (Ra) of the surface roughness of the inner surface of the bag-like container is 3.5-6. 0.5 nm, the root mean square roughness (RMS) of the inner surface of the bag-shaped container is 4.5 to 8.0 nm, and the surface free energy of the inner surface of the bag-shaped container is 16.5 to 18. 5 (mJ / m 2 ) cell culturing method characterized in that cells are suspended in the bag-like container, or (5) the bag-like container has a thickness of 10 to 100 μm. The culture method according to (4) above, or (6) the cells according to (4) or (5) above, wherein the cells are mesenchymal stem cells or peripheral blood-derived mononuclear cells. It relates to the culture method of.

本発明の細胞培養用バッグを用いて細胞を培養すると、細胞生存率低下を効果的に抑制でき、また浮遊状態が向上することにより効率よく多能性幹細胞を誘導することができるため、高濃度でかつ生細胞の割合が高い細胞懸濁液の調製が可能であり、再生医療における良質な移植用細胞懸濁液を提供することができる。   When cells are cultured using the cell culture bag of the present invention, a decrease in cell viability can be effectively suppressed, and pluripotent stem cells can be efficiently induced by improving the floating state. In addition, a cell suspension having a high ratio of living cells can be prepared, and a high-quality cell suspension for transplantation in regenerative medicine can be provided.

図1Aは、測定範囲3μm角で測定したときの細胞培養用バッグA(市販品;比較例サンプル1)の表面の顕微鏡画像を示す図である。図1Bは、測定範囲3μm角で測定したときの細胞培養用バッグB(実施例サンプル)の表面の顕微鏡画像を示す図である。FIG. 1A is a diagram showing a microscopic image of the surface of a cell culture bag A (commercial product; comparative sample 1) when measured in a measuring range of 3 μm square. FIG. 1B is a diagram showing a microscopic image of the surface of cell culture bag B (Example sample) when measured in a measurement range of 3 μm square. 6種類の細胞培養用バッグ(細胞培養用バッグA、細胞培養用バッグB、細胞培養用バッグC〜E[比較例サンプル2〜4]、及び細胞培養用バッグF[市販品;比較例サンプル5])を用いて1日間hMSC細胞を培養したときの細胞の顕微鏡画像を示す図である。Six types of cell culture bags (cell culture bag A, cell culture bag B, cell culture bags C to E [Comparative Example Samples 2 to 4], and cell culture bag F [commercial product; comparative sample 5 ]) Is a diagram showing a microscopic image of the cells when culturing hMSC cells for 1 day. 上記6種類の細胞培養用バッグA〜Fを用いて7日間hPBMC細胞を培養したときの細胞の顕微鏡画像を示す図である。It is a figure which shows the microscope image of a cell when hPBMC cell is cultured for 7 days using said 6 types of cell culture bags AF.

本発明の細胞培養用バッグは、TFE−HFP系共重合体からなる袋状容器を備えた、細胞培養に用いるためのバッグであり、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)である点に特徴がある。かかる特徴を有する袋状容器中で細胞を培養すると、細胞接着と細胞生存率低下が効果的に抑制されるため、かかる袋状容器を備えた本発明の細胞培養用バッグは、浮遊性細胞の他、接着性細胞の浮遊培養に好適に用いることができる。浮遊培養に用いる場合、上記袋状容器は、マトリゲル、エンタクチン、フィブロネクチン、温度応答性ポリマー(PIPAAm)、ポリカチオン(ポリリジン等)、ゼラチン、レクチン、多糖類(ヒアルロン酸等)、ポリ乳酸、ポリグリコール酸、ε−アミノカプロラクトン、I型コラーゲン、IV型コラーゲン、キトサン、ラミニンなどの細胞接着性物質でその容器内表面がコーティング(又は配置)されていないものが好ましい。 The cell culture bag of the present invention is a bag for use in cell culture, comprising a bag-like container made of a TFE-HFP copolymer, and the arithmetic average roughness of the surface roughness of the inner surface of the bag-like container ( Ra) is 3.5 to 6.5 nm, the root mean square roughness (RMS) of the surface roughness of the inner surface of the bag-shaped container is 4.5 to 8.0 nm, and the surface freeness of the inner surface of the bag-shaped container is It is characterized in that the energy is 16.5 to 18.5 (mJ / m 2 ). When cells are cultured in a bag-like container having such characteristics, cell adhesion and cell viability decrease are effectively suppressed. Therefore, the cell culture bag of the present invention provided with such a bag-like container In addition, it can be suitably used for suspension culture of adherent cells. When used for suspension culture, the above-mentioned bag-like container is matrigel, entactin, fibronectin, temperature-responsive polymer (PIPAAm), polycation (polylysine, etc.), gelatin, lectin, polysaccharide (hyaluronic acid, etc.), polylactic acid, polyglycol A cell adhesive substance such as acid, ε-aminocaprolactone, type I collagen, type IV collagen, chitosan, laminin, etc., whose inner surface is not coated (or arranged) is preferred.

上記袋状容器の厚みは、耐久性や費用対効果の面から10〜100μmの範囲内が好ましく、15〜95μmの範囲内がより好ましく、20〜92μmの範囲内がさらに好ましく、25〜89μmの範囲内がさらにより好ましく、30〜86μmの範囲内が特に好ましく、35〜83μmの範囲内が特により好ましく、40〜80μmの範囲内が最も好ましい。   The thickness of the bag-like container is preferably in the range of 10 to 100 μm, more preferably in the range of 15 to 95 μm, further preferably in the range of 20 to 92 μm, from the viewpoint of durability and cost effectiveness. Even more preferably within the range, particularly preferably within the range of 30 to 86 μm, particularly preferably within the range of 35 to 83 μm, most preferably within the range of 40 to 80 μm.

本発明において、「TFE−HFP系共重合体」とは、少なくともTFEとHFPとを含む共重合体を意味する。すなわち、「TFE−HFP系共重合体」には、TFEとHFPとの2元共重合体(TFE/HFP共重合体;FEP)の他、TFEとHFPとビニルフルオライド(VF)との共重合体(TFE/HFP/VF共重合体)、TFEとHFPとビニリデンフルオライド(VDF)との共重合体(TFE/HFP/VDF共重合体)、TFEとHFPとパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(TFE/HFP/PAVE共重合体)等の3元共重合体や、TFEとHFPとVFとVDFとの共重合体(TFE/HFP/VF/VDF共重合体)、TFEとHFPとVFとPAVEとの共重合体(TFE/HFP/VF/PAVE共重合体)、TFEとHFPとVDFとPAVEとの共重合体(TFE/HFP/VDF/PAVE共重合体)等の4元共重合体や、TFEとHFPとVFとVDFとPAVEとの共重合体(TFE/HFP/VF/VDF/PAVE共重合体)等の5元共重合体も含まれる。   In the present invention, “TFE-HFP copolymer” means a copolymer containing at least TFE and HFP. That is, the “TFE-HFP copolymer” includes a binary copolymer of TFE and HFP (TFE / HFP copolymer; FEP), and a copolymer of TFE, HFP, and vinyl fluoride (VF). Polymer (TFE / HFP / VF copolymer), TFE / HFP / vinylidene fluoride (VDF) copolymer (TFE / HFP / VDF copolymer), TFE / HFP / perfluoro (alkyl vinyl ether) ( Terpolymers such as copolymers with PAVE) (TFE / HFP / PAVE copolymer), and copolymers of TFE, HFP, VF and VDF (TFE / HFP / VF / VDF copolymer). , TFE / HFP / VF / PAVE copolymer (TFE / HFP / VF / PAVE copolymer), TFE / HFP / VDF / PAVE copolymer (TFE / HFP / VD) Quaternary copolymers such as TFE / HFP / VF / VDF / PAVE copolymer) and quaternary copolymers such as TFE / HFP / VF / VDF / PAVE copolymer. Is also included.

本発明のTFE−HFP系共重合体としては、TFE/HFP共重合体やTFE/HFP/PAVE共重合体が好ましい。かかるTFE/HFP共重合体におけるTFEとHFPとの質量比は、80〜97/3〜20が好ましく、84〜92/8〜16がより好ましい。また、上記TFE/HFP/PAVE共重合体におけるTFEとHFPとPAVEとの質量比は、70〜97/3〜20/0.1〜10が好ましく、81〜92/5〜16/0.3〜5がより好ましい。   The TFE-HFP copolymer of the present invention is preferably a TFE / HFP copolymer or a TFE / HFP / PAVE copolymer. 80-97 / 3-20 are preferable and, as for the mass ratio of TFE and HFP in this TFE / HFP copolymer, 84-92 / 8-16 are more preferable. The mass ratio of TFE, HFP, and PAVE in the TFE / HFP / PAVE copolymer is preferably 70 to 97/3 to 20 / 0.1 to 10, more preferably 81 to 92/5 to 16 / 0.3. ~ 5 is more preferred.

上記浮遊性細胞としては、赤血球、(末梢血由来の)白血球(好中球、単核球[単球、リンパ球]、マクロファージ等)などの浮遊性細胞を挙げることができ、末梢血由来単核球が好ましい。   Examples of the suspension cells include suspension cells such as red blood cells and white blood cells (derived from peripheral blood) (neutrophils, mononuclear cells [monocytes, lymphocytes], macrophages, etc.). Nuclear spheres are preferred.

上記接着性細胞としては、胚性幹細胞(embryonic stem cells:ES細胞)、胚性生殖細胞(embryonic germ cells:EG細胞)、生殖細胞系列幹細胞(germline stem cells:GS細胞)、誘導多能性幹細胞(iPS細胞;induced pluripotent stem cell)等の多能性幹細胞、間葉系幹細胞、造血系幹細胞、神経系幹細胞等の複能性幹細胞、心筋前駆細胞、血管内皮前駆細胞、神経前駆細胞、脂肪前駆細胞、皮膚線維芽細胞、骨格筋筋芽細胞、骨芽細胞、象牙芽細胞等の単能性幹細胞(前駆細胞)などの幹細胞や、心筋細胞、血管内皮細胞、神経細胞、脂肪細胞、皮膚線維細胞、骨格筋細胞、骨細胞、ヘパトサイト(肝)細胞、臍帯静脈内皮細胞、皮膚微小リンパ管内皮細胞、表皮角化細胞、気管支上皮細胞、メラノサイト細胞、平滑筋細胞、象牙細胞等の成熟細胞を挙げることができ、間葉系幹細胞が好ましい。間葉系幹細胞の他、上記前駆細胞や上記成熟細胞を浮遊培養すると多能性幹細胞が誘導されるため、本発明の細胞培養用バックは、これら細胞を用いた多能性幹細胞の調製に有利に用いることができる。   Examples of the adhesive cells include embryonic stem cells (embryonic stem cells: ES cells), embryonic germ cells (embryonic germ cells: EG cells), germ line stem cells (germline stem cells: GS cells), induced pluripotent stem cells. Pluripotent stem cells (iPS cells; induced pluripotent stem cells), mesenchymal stem cells, hematopoietic stem cells, multipotent stem cells such as neural stem cells, myocardial progenitor cells, vascular endothelial progenitor cells, neural progenitor cells, fat precursors Stem cells such as cells, dermal fibroblasts, skeletal muscle myoblasts, osteoblasts, odontoblasts, etc., cardiomyocytes, vascular endothelial cells, nerve cells, fat cells, skin fibers Mature cells such as cells, skeletal muscle cells, bone cells, hepatocyte (hepatocyte) cells, umbilical vein endothelial cells, cutaneous microlymphatic endothelial cells, epidermal keratinocytes, bronchial epithelial cells, melanocyte cells, smooth muscle cells, ivory cells Raising Mesenchymal stem cells are preferred. In addition to mesenchymal stem cells, pluripotent stem cells are induced by suspension culture of the progenitor cells and the mature cells. Therefore, the cell culture bag of the present invention is advantageous for the preparation of pluripotent stem cells using these cells. Can be used.

本発明において、「表面粗度のRa」とは、JIS B0601で定義されているように基準面(指定面の高さの平均値となるフラット面)から指定面までの偏差の絶対値を平均した値であり、次式で算出される。
Ra=1/S0∬|F(X,Y)−Z0|dXdY
ここで、S0は基準面の面積、Z0は基準面の高さ、F(X,Y)は座標(X,Y)における指定面の高さを表す。
In the present invention, “surface roughness Ra” means an average of absolute values of deviations from a reference surface (flat surface which is an average value of heights of designated surfaces) to a designated surface as defined in JIS B0601. Calculated by the following equation.
Ra = 1 / S 0 ∬ | F (X, Y) −Z 0 | dXdY
Here, S 0 represents the area of the reference surface, Z 0 represents the height of the reference surface, and F (X, Y) represents the height of the designated surface at the coordinates (X, Y).

本発明の細胞培養用バッグにおける袋状容器内面の表面粗度のRaは、3.5〜6.5nmの範囲内であればよく、例えば、3.5〜6.3nm、3.5〜6.1nm、3.5〜5.9nm、3.5〜5.7nm、3.5〜5.5nm、3.5〜5.3nm、3.7〜6.5nm、3.9〜6.5nm、4.1〜6.5nm、4.3〜6.5nm、4.5〜6.5nm、4.7〜6.5nm、4.9〜6.5nm、3.7〜6.3nm、3.7〜6.1nm、3.7〜5.9nm、3.7〜5.7nm、3.7〜5.5nm、3.7〜5.3nm、3.9〜6.3nm、3.9〜6.1nm、3.9〜5.9nm、3.9〜5.7nm、3.9〜5.5nm、3.9〜5.3nm、4.1〜6.3nm、4.1〜6.1nm、4.1〜5.9nm、4.1〜5.7nm、4.1〜5.5nm、4.1〜5.3nm、4.3〜6.3nm、4.3〜6.1nm、4.3〜5.9nm、4.3〜5.7nm、4.3〜5.5nm、4.3〜5.3nm、4.5〜6.3nm、4.5〜6.1nm、4.5〜5.9nm、4.5〜5.7nm、4.5〜5.5nm、4.5〜5.3nm、4.7〜6.3nm、4.7〜6.1nm、4.7〜5.9nm、4.7〜5.7nm、4.7〜5.5nm、4.7〜5.3nm、4.9〜6.3nm、4.9〜6.1nm、4.9〜5.9nm、4.9〜5.7nm、4.9〜5.5nm、4.9〜5.3nm等であってもよいが、4.9〜5.3nmであることが好ましい。   Ra of the surface roughness of the inner surface of the bag-like container in the cell culture bag of the present invention may be in the range of 3.5 to 6.5 nm, for example, 3.5 to 6.3 nm, 3.5 to 6 .1 nm, 3.5-5.9 nm, 3.5-5.7 nm, 3.5-5.5 nm, 3.5-5.3 nm, 3.7-6.5 nm, 3.9-6.5 nm 4.1-6.5 nm, 4.3-6.5 nm, 4.5-6.5 nm, 4.7-6.5 nm, 4.9-6.5 nm, 3.7-6.3 nm, 3 0.7-6.1 nm, 3.7-5.9 nm, 3.7-5.7 nm, 3.7-5.5 nm, 3.7-5.3 nm, 3.9-6.3 nm, 3.9 -6.1 nm, 3.9-5.9 nm, 3.9-5.7 nm, 3.9-5.5 nm, 3.9-5.3 nm, 4.1-6.3 nm, 4.1-6 .1 nm, 4.1-5.9 m, 4.1-5.7 nm, 4.1-5.5 nm, 4.1-5.3 nm, 4.3-6.3 nm, 4.3-6.1 nm, 4.3-5.9 nm, 4.3 to 5.7 nm, 4.3 to 5.5 nm, 4.3 to 5.3 nm, 4.5 to 6.3 nm, 4.5 to 6.1 nm, 4.5 to 5.9 nm, 5 to 5.7 nm, 4.5 to 5.5 nm, 4.5 to 5.3 nm, 4.7 to 6.3 nm, 4.7 to 6.1 nm, 4.7 to 5.9 nm, 4.7 to 5.7 nm, 4.7-5.5 nm, 4.7-5.3 nm, 4.9-6.3 nm, 4.9-6.1 nm, 4.9-5.9 nm, 4.9-5. Although 7 nm, 4.9-5.5 nm, 4.9-5.3 nm, etc. may be sufficient, it is preferable that it is 4.9-5.3 nm.

本発明において、「表面粗度のRMS」とは、基準面から指定面までの偏差の自乗を平均した値の平方根であり、次式で算出される。
RMS=[1/S0∬{F(X,Y)−Z02dXdY]1/2
ここで、S0は基準面の面積、Z0は基準面の高さ、F(X,Y)は座標(X,Y)における指定面の高さを表す。
In the present invention, “RMS of surface roughness” is a square root of a value obtained by averaging the squares of deviations from the reference surface to the designated surface, and is calculated by the following equation.
RMS = [1 / S 0 ∬ {F (X, Y) −Z 0 } 2 dXdY] 1/2
Here, S 0 represents the area of the reference surface, Z 0 represents the height of the reference surface, and F (X, Y) represents the height of the designated surface at the coordinates (X, Y).

本発明の細胞培養用バッグにおける袋状容器内面の表面粗度のRMSは、4.5〜8.0nmの範囲内であればよく、例えば、4.5〜7.8nm、4.5〜7.6nm、4.5〜7.4nm、4.5〜7.2nm、4.5〜7.0nm、4.5〜6.8nm、4.5〜6.6nm、4.5〜6.4nm、4.7〜8.0nm、4.9〜8.0nm、5.1〜8.0nm、5.3〜8.0nm、5.5〜8.0nm、5.7〜8.0nm、5.9〜8.0nm、6.1〜8.0nm、4.7〜7.8nm、4.7〜7.6nm、4.7〜7.4nm、4.7〜7.2nm、4.7〜7.0nm、4.7〜6.8nm、4.7〜6.6nm、4.7〜6.4nm、4.9〜7.8nm、4.9〜7.6nm、4.9〜7.4nm、4.9〜7.2nm、4.9〜7.0nm、4.9〜6.8nm、4.9〜6.6nm、4.9〜6.4nm、5.1〜7.8nm、5.1〜7.6nm、5.1〜7.4nm、5.1〜7.2nm、5.1〜7.0nm、5.1〜6.8nm、5.1〜6.6nm、5.1〜6.4nm、5.3〜7.8nm、5.3〜7.6nm、5.3〜7.4nm、5.3〜7.2nm、5.3〜7.0nm、5.3〜6.8nm、5.3〜6.6nm、5.3〜6.4nm、5.5〜7.8nm、5.5〜7.6nm、5.5〜7.4nm、5.5〜7.2nm、5.5〜7.0nm、5.5〜6.8nm、5.5〜6.6nm、5.5〜6.4nm、5.7〜7.8nm、5.7〜7.6nm、5.7〜7.4nm、5.7〜7.2nm、5.7〜7.0nm、5.7〜6.8nm、5.7〜6.6nm、5.7〜6.4nm、5.9〜7.8nm、5.9〜7.6nm、5.9〜7.4nm、5.9〜7.2nm、5.9〜7.0nm、5.9〜6.8nm、5.9〜6.6nm、5.9〜6.4nm、6.1〜7.8nm、6.1〜7.6nm、6.1〜7.4nm、6.1〜7.2nm、6.1〜7.0nm、6.1〜6.8nm、6.1〜6.6nm、6.1〜6.4nm等であってもよいが、6.1〜6.4nmであることが好ましい。   The surface roughness RMS of the inner surface of the bag-like container in the cell culture bag of the present invention may be in the range of 4.5 to 8.0 nm, for example, 4.5 to 7.8 nm, 4.5 to 7 .6 nm, 4.5 to 7.4 nm, 4.5 to 7.2 nm, 4.5 to 7.0 nm, 4.5 to 6.8 nm, 4.5 to 6.6 nm, 4.5 to 6.4 nm 4.7 to 8.0 nm, 4.9 to 8.0 nm, 5.1 to 8.0 nm, 5.3 to 8.0 nm, 5.5 to 8.0 nm, 5.7 to 8.0 nm, 5 9.9-8.0 nm, 6.1-8.0 nm, 4.7-7.8 nm, 4.7-7.6 nm, 4.7-7.4 nm, 4.7-7.2 nm, 4.7 -7.0 nm, 4.7-6.8 nm, 4.7-6.6 nm, 4.7-6.4 nm, 4.9-7.8 nm, 4.9-7.6 nm, 4.9-7 4 nm, 4.9-7. nm, 4.9-7.0 nm, 4.9-6.8 nm, 4.9-6.6 nm, 4.9-6.4 nm, 5.1-7.8 nm, 5.1-7.6 nm, 5.1-7.4 nm, 5.1-7.2 nm, 5.1-7.0 nm, 5.1-6.8 nm, 5.1-6.6 nm, 5.1-6.4 nm, 5. 3-7.8 nm, 5.3-7.6 nm, 5.3-7.4 nm, 5.3-7.2 nm, 5.3-7.0 nm, 5.3-6.8 nm, 5.3- 6.6 nm, 5.3-6.4 nm, 5.5-7.8 nm, 5.5-7.6 nm, 5.5-7.4 nm, 5.5-7.2 nm, 5.5-7. 0 nm, 5.5-6.8 nm, 5.5-6.6 nm, 5.5-6.4 nm, 5.7-7.8 nm, 5.7-7.6 nm, 5.7-7.4 nm, 5.7-7.2 nm, 5.7-7.0 nm 5.7 to 6.8 nm, 5.7 to 6.6 nm, 5.7 to 6.4 nm, 5.9 to 7.8 nm, 5.9 to 7.6 nm, 5.9 to 7.4 nm, 5. 9 to 7.2 nm, 5.9 to 7.0 nm, 5.9 to 6.8 nm, 5.9 to 6.6 nm, 5.9 to 6.4 nm, 6.1 to 7.8 nm, 6.1 to 7.6 nm, 6.1-7.4 nm, 6.1-7.2 nm, 6.1-7.0 nm, 6.1-6.8 nm, 6.1-6.6 nm, 6.1-6. Although 4 nm etc. may be sufficient, it is preferable that it is 6.1-6.4 nm.

表面粗度のRaやRMSを算出するために必要な測定値は、例えば、原子間力顕微鏡(AFM)として、高精度大型プローブ顕微鏡ユニットAFM5200S(HITACHI High-Tech社製)を使用し、ダイナミックフォースモードで、フィルムの表面を、測定面積3×3μm角、走査速度1Hz、x−y方向256×256分割、カンチレバーSI−DF−20(Si、f=134kHz、C=16N/m)の条件で測定したAFMトポグラフィ像について、傾斜自動補正処理を行うことにより求めることができる。   The measurement value necessary for calculating Ra and RMS of the surface roughness is, for example, a dynamic force using a high precision large probe microscope unit AFM5200S (manufactured by HITACHI High-Tech) as an atomic force microscope (AFM). In mode, the surface of the film is measured under the conditions of a measurement area of 3 × 3 μm square, a scanning speed of 1 Hz, a 256 × 256 division in the xy direction, and a cantilever SI-DF-20 (Si, f = 134 kHz, C = 16 N / m). It can obtain | require by performing the inclination automatic correction process about the measured AFM topography image.

本発明において、「表面自由エネルギー」とは、Owens−Wendt理論の水/n−ヘキサデカンの2成分の計算により算出された値をいう。かかる表面自由エネルギー値は、例えば、DropMater701(協和界面科学社製)にて、液滴容量2μLの水及びn−ヘキサデカンに対する静的接触角を測定することにより算出することができる。   In the present invention, “surface free energy” refers to a value calculated by calculation of two components of water / n-hexadecane according to the Owens-Wendt theory. Such a surface free energy value can be calculated, for example, by measuring a static contact angle with respect to water and n-hexadecane having a droplet volume of 2 μL using DropMatter 701 (manufactured by Kyowa Interface Science Co., Ltd.).

本発明の細胞培養用バッグにおける袋状容器内面の表面自由エネルギーは、16.5〜18.5(mJ/m)の範囲内であればよく、例えば、16.5〜18.3(mJ/m)、16.5〜18.1(mJ/m)、16.5〜17.9(mJ/m)、16.5〜17.7(mJ/m)、16.7〜18.5(mJ/m)、16.9〜18.5(mJ/m)、17.1〜18.5(mJ/m)、17.3〜18.5(mJ/m)、17.5〜18.5(mJ/m)、16.7〜18.3(mJ/m)、16.7〜18.1(mJ/m)、16.7〜17.9(mJ/m)、16.7〜17.7(mJ/m)、16.9〜18.3(mJ/m)、16.9〜18.1(mJ/m)、16.9〜17.9(mJ/m)、16.9〜17.7(mJ/m)、17.1〜18.3(mJ/m)、17.1〜18.1(mJ/m)、17.1〜17.9(mJ/m)、17.1〜17.7(mJ/m)、17.3〜18.3(mJ/m)、17.3〜18.1(mJ/m)、17.3〜17.9(mJ/m)、17.3〜17.7(mJ/m)、17.5〜18.3(mJ/m)、17.5〜18.1(mJ/m)、17.5〜17.9(mJ/m)、17.5〜17.7(mJ/m)等であってもよいが、17.5〜17.7(mJ/m)であることが好ましい。 The surface free energy of the inner surface of the bag-like container in the cell culture bag of the present invention may be in the range of 16.5 to 18.5 (mJ / m 2 ), for example, 16.5 to 18.3 (mJ). / M 2 ), 16.5 to 18.1 (mJ / m 2 ), 16.5 to 17.9 (mJ / m 2 ), 16.5 to 17.7 (mJ / m 2 ), 16.7 ˜18.5 (mJ / m 2 ), 16.9 to 18.5 (mJ / m 2 ), 17.1 to 18.5 (mJ / m 2 ), 17.3 to 18.5 (mJ / m) 2 ), 17.5 to 18.5 (mJ / m 2 ), 16.7 to 18.3 (mJ / m 2 ), 16.7 to 18.1 (mJ / m 2 ), 16.7 to 17 .9 (mJ / m 2 ), 16.7 to 17.7 (mJ / m 2 ), 16.9 to 18.3 (mJ / m 2 ), 16.9 to 18.1 (mJ / m 2 ) , 16 9~17.9 (mJ / m 2), 16.9~17.7 (mJ / m 2), 17.1~18.3 (mJ / m 2), 17.1~18.1 (mJ / m 2 ), 17.1 to 17.9 (mJ / m 2 ), 17.1 to 17.7 (mJ / m 2 ), 17.3 to 18.3 (mJ / m 2 ), 17.3 18.1 (mJ / m 2), 17.3~17.9 (mJ / m 2), 17.3~17.7 (mJ / m 2), 17.5~18.3 (mJ / m 2 ) 17.5 to 18.1 (mJ / m 2 ), 17.5 to 17.9 (mJ / m 2 ), 17.5 to 17.7 (mJ / m 2 ), etc. It is preferable that it is 17.5-17.7 (mJ / m < 2 >).

本発明の細胞培養用バッグにおける袋状容器は、通常、密閉された状態でその内部と外部がFEPを介して隔てられるように、少なくともその一部にFEPの材料を含む。例えば、袋状容器の内部に培養液を充填した際に、かかる培養液が接し得る面の少なくとも30%、好ましくは50%以上、より好ましくは80%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上、特に好ましくは98%以上、最も好ましくは実質的に100%がFEPにより構成される。本願明細書において、「密閉」は、例えば、クランプ等でチューブを閉鎖する方法、熱溶着によりチューブを閉鎖する方法等により実施される。   The bag-like container in the cell culture bag of the present invention usually contains an FEP material at least partially so that the inside and the outside are separated from each other via the FEP in a sealed state. For example, when a culture solution is filled in a bag-like container, at least 30%, preferably 50% or more, more preferably 80% or more, more preferably 90% or more, more preferably 90% or more of the surface that can come into contact with the culture solution. Preferably 95% or more, particularly preferably 98% or more, most preferably substantially 100% is constituted by FEP. In the present specification, “sealing” is performed, for example, by a method of closing the tube with a clamp or the like, a method of closing the tube by heat welding, or the like.

上記袋状容器は、可撓性を有するFEPのシート(フィルム)からなることが好ましい。袋状容器の形状としては、正方形、長方形、菱形、円形、楕円形等を挙げることができ、外見や製造の容易性の観点から長方形が好ましい。   The bag-like container is preferably made of a flexible FEP sheet (film). Examples of the shape of the bag-like container include a square, a rectangle, a rhombus, a circle, and an ellipse. A rectangle is preferable from the viewpoint of appearance and ease of manufacture.

上記袋状容器には、細胞懸濁液や培養液を導入又は導出するための、FEP等で作製したポートを気密的に少なくとも1つ設けることができる。かかるポートには、袋状容器を密閉し得るように、閉鎖手段を設けることができる。かかる閉鎖手段としては、クリップ等の狭持体、連通ピース(折れ棒)、コックなどを挙げることができる。   In the bag-like container, at least one port made of FEP or the like for introducing or discharging a cell suspension or a culture solution can be provided in an airtight manner. The port can be provided with a closing means so that the bag-like container can be sealed. Examples of the closing means include a holding body such as a clip, a communication piece (folding bar), and a cock.

本発明の細胞培養用バッグにおける袋状容器は、TFE−HFP系共重合体のフィルム(シート)を重ね合わせた上で、縁部を、インパルスシーラー等を用いてヒートシールすることにより製造することができる。   The bag-like container in the cell culture bag of the present invention is manufactured by stacking a TFE-HFP copolymer film (sheet) and then heat-sealing the edge using an impulse sealer or the like. Can do.

本発明の細胞培養用バッグは、必要に応じて、エチレンオキサイドガス滅菌、オートクレーブ滅菌等の滅菌処理を施してもよい。   The cell culture bag of the present invention may be subjected to sterilization treatment such as ethylene oxide gas sterilization and autoclave sterilization as necessary.

本発明の細胞の培養方法は、本発明の細胞培養用バッグの袋状容器に保持された培養液中で、上記浮遊性細胞又は接着性細胞を浮遊培養する方法であれば特に制限されず、かかる細胞の培養液としては、細胞が生存・増殖できるものであれば特に制限されず、0.1〜30(v/v)%の血清(ウシ胎児血清[Fetal bovine serum;FBS]、子牛血清[Calf bovine serum;CS]等)を含有する動物細胞培養用培養液(DMEM、EMEM、IMDM[例えばgibco社製]、RPMI1640、αMEM、F−12、F−10、M−199、AIM−V、MSCBM[例えばLonza社製]等)や、市販のB27サプリメント(−インスリン)(Life Technologies社製)、N2サプリメント(Life Technologies社製)、B27サプリメント(Life Technologies社製)、Knockout Serum Replacement(Invitrogen社製)、間葉系幹細胞添加因子セット(Lonza社製)等の血清代替物を適量(例えば、1〜30%)添加した上記動物細胞培養用培養液などを挙げることができる。細胞の浮遊性をさらに向上させるために、上記培養液に、メチルセルロース、ジェランガム、グァーガム、キサンタンガム、デキストラン等の高分子ポリマーを適宜補充してもよいが、本発明の細胞培養用バッグが有する効果により、上記高分子ポリマーの非存在下でも効果的に細胞を浮遊培養することができる。このため、上記培養液としては、上記高分子ポリマーを含有しないものが好ましい。   The cell culturing method of the present invention is not particularly limited as long as it is a method of culturing the above-mentioned suspension cells or adhesive cells in the culture solution held in the bag-like container of the cell culture bag of the present invention, The culture medium for such cells is not particularly limited as long as the cells can survive and proliferate, and 0.1 to 30 (v / v)% serum (Fetal bovine serum; FBS), calf Culture medium for animal cell culture (DMEM, EMEM, IMDM [for example, manufactured by gibco)], RPMI1640, αMEM, F-12, F-10, M-199, AIM- containing serum [Calf bovine serum; CS], etc. V, MSCBM [for example, made by Lonza] etc.), commercially available B27 supplement (-insulin) (made by Life Technologies), N2 supplement (made by Life Technologies), B27 supplement (made by Life Technologies), Knockout Se Examples include the above-mentioned culture medium for animal cell culture to which serum substitutes such as rum Replacement (manufactured by Invitrogen) and mesenchymal stem cell additive factor set (manufactured by Lonza) are added in an appropriate amount (for example, 1 to 30%). . In order to further improve the floating properties of the cells, the culture solution may be supplemented with a high molecular polymer such as methylcellulose, gellan gum, guar gum, xanthan gum, dextran as appropriate. However, due to the effect of the cell culture bag of the present invention. The cells can be effectively cultured in suspension even in the absence of the polymer. For this reason, the culture solution preferably does not contain the above polymer.

細胞の培養温度は、通常約30〜40℃の範囲内であり、好ましくは37℃である。培養時のCO濃度は、通常約1〜10%の範囲内であり、好ましくは約5%である。また、培養時の湿度は、通常約70〜100%の範囲内であり、好ましくは約95〜100%の範囲内である。 The culture temperature of the cells is usually in the range of about 30-40 ° C, preferably 37 ° C. The CO 2 concentration at the time of culture is usually in the range of about 1 to 10%, preferably about 5%. Moreover, the humidity at the time of culture | cultivation is in the range of about 70-100% normally, Preferably it exists in the range of about 95-100%.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

1.細胞培養用バッグの製造
インパルスシーラーを用いて、5cm×10cmサイズの3種類のフィルム(FEP素材の厚さ50μmのフィルム、FEP素材の厚さ25μmのフィルム、及びテトラフルオロエチレン[TFE]−パーフルオロ[アルキルビニルエーテル][PAVE]共重合体[PFA]素材の厚さ50μmのフィルム)を、シール温度370℃、シール時間50秒、シール圧力0.2MPa、シール幅5mmの条件でヒートシールすることにより、4種類の細胞培養用バッグ(細胞培養用バッグB[FEP素材の厚さ50μmのバッグ;実施例サンプル]、細胞培養用バッグC[FEP素材の厚さ25μmのバッグ;比較例サンプル2]、細胞培養用バッグD[PFA素材の厚さ50μmのバッグ;比較例サンプル3]、及び細胞培養用バッグE[PFA素材の厚さ50μmのバッグ;比較例サンプル4])を製造した。
1. Manufacture of cell culture bag Three types of 5cm x 10cm size films (50μm thick FEP material, 25μm thick FEP material, and tetrafluoroethylene [TFE] -perfluoro) using impulse sealer By heat-sealing [alkyl vinyl ether] [PAVE] copolymer [PFA] film having a thickness of 50 μm under the conditions of a sealing temperature of 370 ° C., a sealing time of 50 seconds, a sealing pressure of 0.2 MPa, and a sealing width of 5 mm. Four types of cell culture bags (cell culture bag B [FEP material thickness 50 μm bag; example sample], cell culture bag C [FEP material thickness 25 μm bag; comparative example sample 2], Cell culture bag D [PFA material 50 μm thick bag; comparative sample 3], and cells [Bag PFA material thickness 50 [mu] m; Comparative Sample 4] Yoyo bag E) was prepared.

2.細胞培養用バッグのバッグ内面の表面分析
2−1 表面粗度
高精度大型プローブ顕微鏡ユニットAFM5200S(HITACHI High-Tech社製)を用いて、実施例1で製造した4種類の細胞培養用バッグに加えて、2種類の市販の細胞培養用バッグ(細胞培養用バッグA及びF[比較例サンプル1及び5])のバッグ内面の表面粗度の測定を行った(表1参照)。測定範囲を3μm角とした場合、細胞培養用バッグA(比較例サンプル1)のバッグ内面のRa及びRMSは、それぞれ3.0nm及び3.8nm(図1A、表1参照)であり、また、細胞培養用バッグC(比較例サンプル2)のバッグ内面のRa及びRMSは、それぞれ4.0nm及び5.1nm(表1参照)であったのに対して、細胞培養用バッグB(実施例サンプル)のバッグ内面のRa及びRMSは、それぞれ5.1nm及び6.3nm(図1B、表1参照)であった。これらの結果は、FEP素材の細胞培養用バッグA及びC(比較例サンプル1及び2)よりもFEP素材の細胞培養用バッグB(実施例サンプル)の方がバッグ内面の表面粗度が大きいことを示している。また、PFA素材の細胞培養用バッグD(比較例サンプル3)のバッグ内面のRa及びRMSは、それぞれ5.5nm及び7.5nmであり、PFA素材の細胞培養用バッグE(比較例サンプル4)のバッグ内面のRa及びRMSは、それぞれ4.5nm及び5.7nmであり、エチレン−酢酸ビニル共重合体(EVA)素材の細胞培養用バッグF(比較例サンプル5)のバッグ内面のRa及びRMSは、それぞれ3.0nm及び3.7nmであった(表1参照)。
2. Surface analysis of the inner surface of a cell culture bag 2-1 Surface roughness In addition to the four types of cell culture bags produced in Example 1, using a high precision large probe microscope unit AFM5200S (manufactured by HITACHI High-Tech) Then, the surface roughness of the bag inner surface of two types of commercially available cell culture bags (cell culture bags A and F [Comparative Example Samples 1 and 5]) was measured (see Table 1). When the measurement range is 3 μm square, Ra and RMS on the inner surface of the cell culture bag A (Comparative Example Sample 1) are 3.0 nm and 3.8 nm, respectively (see FIG. 1A, Table 1). The Ra and RMS on the inner surface of the cell culture bag C (Comparative Sample 2) were 4.0 nm and 5.1 nm (see Table 1), respectively, whereas the Cell Culture Bag B (Example Sample) ) Of the bag inner surface was 5.1 nm and 6.3 nm (see FIG. 1B, Table 1), respectively. These results indicate that the surface roughness of the inner surface of the FEP material cell culture bag B (Example sample) is larger than that of the FEP material cell culture bag A and C (Comparative Samples 1 and 2). Is shown. Moreover, Ra and RMS of the bag inner surface of the cell culture bag D of PFA material (Comparative Example Sample 3) are 5.5 nm and 7.5 nm, respectively, and the cell culture bag E of PFA material (Comparative Example Sample 4). Ra and RMS on the inner surface of the bag are 4.5 nm and 5.7 nm, respectively, and Ra and RMS on the inner surface of the cell culture bag F (Comparative Example Sample 5) made of ethylene-vinyl acetate copolymer (EVA) material. Were 3.0 nm and 3.7 nm, respectively (see Table 1).

2−2 接触角
また、液滴法により水及びn−ヘキサデカン(n−HD)を用いたときの細胞培養用バッグA〜Fのバッグ内面の接触角について、全自動接触角計DM−701(KYOWA社製)を用いて測定した(測定回数:各5回)(表1参照)。得られた測定データの平均値を基に表面自由エネルギーを算出した(表1参照)。その結果、細胞培養用バッグA及びC(比較例サンプル1及び2)のバッグ内面の表面自由エネルギーは、それぞれ19.5及び22.6(mJ/m)であったのに対して、細胞培養用バッグB(実施例サンプル)のバッグ内面の表面自由エネルギーは、17.6(mJ/m)であった(表1参照)。この結果は、FEP素材の細胞培養用バッグA及びC(比較例サンプル1及び2)よりもFEP素材の細胞培養用バッグB(実施例サンプル)の方がバッグ内面の表面自由エネルギーが小さいことが示された。また、PFA素材の細胞培養用バッグDのバッグ内面の表面自由エネルギーは、17.5(mJ/m)であり、PFA素材の細胞培養用バッグE(比較例サンプル4)のバッグ内面の表面自由エネルギーは、22.5(mJ/m)であり、EVA素材の細胞培養用バッグF(比較例サンプル5)のバッグ内面の表面自由エネルギーは、30.0(mJ/m)であった(表1参照)。
2-2 Contact angle Moreover, about the contact angle of the bag inner surface of the bags A to F for cell culture when water and n-hexadecane (n-HD) are used by the droplet method, a fully automatic contact angle meter DM-701 ( (Manufactured by KYOWA) (number of measurements: 5 times each) (see Table 1). The surface free energy was calculated based on the average value of the obtained measurement data (see Table 1). As a result, the surface free energies of the bag inner surfaces of the cell culture bags A and C (Comparative Samples 1 and 2) were 19.5 and 22.6 (mJ / m 2 ), respectively. The surface free energy of the bag inner surface of the culture bag B (Example sample) was 17.6 (mJ / m 2 ) (see Table 1). This result shows that the surface free energy on the inner surface of the FEP material cell culture bag B (Example sample) is smaller than that of the FEP material cell culture bag A and C (Comparative sample 1 and 2). Indicated. The surface free energy of the inner surface of the cell culture bag D made of PFA material is 17.5 (mJ / m 2 ), and the surface of the bag inner surface of the cell culture bag E made of PFA material (Comparative Sample 4). The free energy was 22.5 (mJ / m 2 ), and the surface free energy on the inner surface of the EVA cell culture bag F (Comparative Sample 5) was 30.0 (mJ / m 2 ). (See Table 1).

3.細胞培養用バッグを用いたhMSC細胞の培養
実施例1において、細胞培養用バッグB(実施例サンプル)が、同じFEP素材の細胞培養用バッグA及びC(比較例サンプル1及び2)よりも表面粗度が高く、表面自由エネルギーが小さいことが示されたので、細胞培養用バッグBを用いて細胞を培養した場合に、細胞接着が抑制され、浮遊培養できるかどうかについて解析した。
3. Culturing hMSC cells using cell culture bag In Example 1, cell culture bag B (Example sample) is more surface than cell culture bags A and C (Comparative Example Samples 1 and 2) of the same FEP material Since it was shown that the roughness was high and the surface free energy was small, when cells were cultured using the cell culture bag B, it was analyzed whether cell adhesion was suppressed and suspension culture was possible.

3−1 方法
3−1−1 細胞培養
〔1〕hMSC細胞(Lonza社製、PT-2501)を、間葉系幹細胞添加因子セット(Lonza社製、PT-4105)を加えたMSCBM(Mesenchymal Stem Cell Basal Medium)(Lonza社製、PT-3238)培養液中に1×10細胞/mLの濃度で懸濁し、6種類の細胞培養用バッグA〜Fのバッグ内に4mL播種した。
〔2〕インキュベーター(37℃、5%CO)内で培養後、1日目に細胞を顕微鏡(IX-70、オリンパス社製)下で観察した(図2参照)。
〔3〕さらに6日間培養後、以下の「3−1−2 mRNAの発現解析」に記載の方法にしたがって遺伝子発現解析を行った。
3-1 Method 3-1-1 Cell culture [1] MSCBM (Mesenchymal Stem with hMSC cells (Lonza, PT-2501) added with mesenchymal stem cell additive factor set (Lonza, PT-4105) Cell Basal Medium) (manufactured by Lonza, PT-3238) was suspended in a culture solution at a concentration of 1 × 10 5 cells / mL, and 4 mL was seeded in six types of cell culture bags A to F.
[2] After culturing in an incubator (37 ° C., 5% CO 2 ), the cells were observed under a microscope (IX-70, Olympus) on the first day (see FIG. 2).
[3] After further culturing for 6 days, gene expression analysis was performed according to the method described in “3-1-2 mRNA expression analysis” below.

3−1−2 mRNAの発現解析
〔1〕細胞を15mL遠心管に回収し、RNeasy Mini Kit(Qiagen社製)及びQIA shredder(Qiagen社製)を用いて製品付属のプロトコールにしたがって細胞の全RNAを抽出した。
〔2〕抽出した全RNAの濃度は、NanoDrop 2000(Thermo Fisher Scientific社製)を用いて測定した。
〔3〕全RNAを20μg/mLに調整し、96ウェルプレート(Fast 96 well Reaction plate[Applied Biosystems社製、#4309169])に3μL/ウェルとなるように分注した。
〔4〕2種類の多能性幹細胞マーカー遺伝子(Nanog及びOct3/4)のmRNAの発現量をRT−PCRにより検出するために、TaqMan One-Step RT-PCR Master Mix Reagents Kit(Applied Biosystems社製、#4309169)を用いて以下の1)〜6)からなる反応液を調製し、全RNAを分注した96ウェルプレートへ滴下した。なお、内部標準としてGAPDH遺伝子を用いた。
1)Rnase-free water;0.5μL
2)2X Master Mix without UNG;10μL(1×)
3)40X MultiScribe and RNase Inhibitor Mix;0.5μL
4)Forward Primer;2.0μL(300nM)
5)Reverse Primer;2.0μL(900nM)
6)TaqMan Probe;2.0μL(200nM)
3-1-2 mRNA expression analysis [1] Cells are collected in a 15 mL centrifuge tube, and the total RNA of the cells is obtained using the RNeasy Mini Kit (Qiagen) and QIA shredder (Qiagen) according to the protocol attached to the product. Extracted.
[2] The concentration of the extracted total RNA was measured using NanoDrop 2000 (Thermo Fisher Scientific).
[3] Total RNA was adjusted to 20 μg / mL, and dispensed to a 96-well plate (Fast 96 well Reaction plate [Applied Biosystems, # 4309169]) at 3 μL / well.
[4] TaqMan One-Step RT-PCR Master Mix Reagents Kit (manufactured by Applied Biosystems) in order to detect mRNA expression levels of two types of pluripotent stem cell marker genes (Nanog and Oct3 / 4) by RT-PCR , # 4309169) was used to prepare a reaction solution consisting of the following 1) to 6) and added dropwise to a 96-well plate into which total RNA was dispensed. The GAPDH gene was used as an internal standard.
1) Rnase-free water; 0.5 μL
2) 2X Master Mix without UNG; 10 μL (1 ×)
3) 40X MultiScribe and RNase Inhibitor Mix; 0.5 μL
4) Forward Primer; 2.0 μL (300 nM)
5) Reverse Primer; 2.0 μL (900 nM)
6) TaqMan Probe; 2.0 μL (200 nM)

上記2種類の多能性幹細胞マーカー遺伝子のcDNAを増幅するためのプライマーセット(上記「Forward Primer」及び「Reverse Primer」)の塩基配列や、その増幅(PCR)産物にハイブリダイズするプローブ(上記「TaqMan Probe」)の塩基配列は、表2に示す。   Base sequences of primer sets (above “Forward Primer” and “Reverse Primer”) for amplifying cDNAs of the above two types of pluripotent stem cell marker genes and probes that hybridize to the amplification (PCR) products (above “ The base sequence of “TaqMan Probe”) is shown in Table 2.

〔5〕工程〔4〕で調製した全RNAと反応液との混合液を用いて、ABI PRISM 7500FAST Sequence Detection system (Applied Biosystems社製)によるリアルタイムRT−PCRを、以下の1)〜3)に示した条件で行った。
1)48℃、30分を1サイクル(mRNAからcDNAへの逆転写反応)
2)95℃、10分を1サイクル(ポリメラーゼの活性化)
3)95℃、15秒と60℃、1分の往復を40サイクル(「Forward Primer」及び「Reverse Primer」によるcDNAの増幅)
〔6〕Baselineソフトウェア(Applied Biosystems社製)を用いてPCR産物が一定量になるPCRのサイクル数(threshold cycle;Ct値)を測定し、比較Ct法(delta delta Ct法)によりGAPDH遺伝子のcDNA増幅産物のCt値を基準とした上記2種類の多能性幹細胞マーカー遺伝子のcDNA増幅産物のCt値の相対値を求め、かかるCt値の相対値から、上記2種類の多能性幹細胞マーカー遺伝子のcDNAの相対量、すなわち上記2種類の多能性幹細胞マーカー遺伝子のmRNAの相対量を算出した(平均値±標準偏差、N=3)(表3参照)。
[5] Real-time RT-PCR by ABI PRISM 7500FAST Sequence Detection system (Applied Biosystems) using the mixture of total RNA and reaction solution prepared in step [4] is performed in the following 1) to 3). Performed under the conditions indicated.
1) One cycle of 48 minutes at 48 ° C (reverse transcription reaction from mRNA to cDNA)
2) 95 ° C., 10 minutes, 1 cycle (polymerase activation)
3) 40 cycles of 95 ° C, 15 seconds and 60 ° C, 1 minute reciprocation (cDNA amplification by "Forward Primer" and "Reverse Primer")
[6] The PCR cycle number (threshold cycle; Ct value) in which the PCR product becomes a constant amount is measured using Baseline software (Applied Biosystems), and cDNA of the GAPDH gene is determined by the comparative Ct method (delta delta Ct method). Relative values of Ct values of cDNA amplification products of the above-mentioned two types of pluripotent stem cell marker genes based on Ct values of the amplified products are obtained, and the above two types of pluripotent stem cell marker genes are determined from the relative values of the Ct values. The relative amount of cDNA, that is, the relative amount of mRNA of the above two types of pluripotent stem cell marker genes was calculated (mean ± standard deviation, N = 3) (see Table 3).


表中「Before」は、細胞培養用バッグで培養直後(0時間)の細胞サンプルを示す。

In the table, “Before” indicates a cell sample immediately after culture (0 hour) in a cell culture bag.

3−2 結果
顕微鏡観察の結果、4種類の細胞培養用バッグC〜F(比較例サンプル2〜5)を用いてhMSC細胞を培養した場合、細胞は接着したのに対して、その他の2種類の細胞培養用バッグA(比較例サンプル1)及び細胞培養用バッグB(実施例サンプル)を用いてhMSC細胞を培養した場合、細胞の接着は抑制され、浮遊した(図2参照)。本発明者らは、hMSC細胞の浮遊状態を向上させると、多能性幹細胞マーカーの発現が増加し、hMSC細胞の多能性獲得効率が高まることを見いだしている。そこで、多能性幹細胞マーカーの発現を解析したところ、細胞培養用バッグB(実施例サンプル)を用いてhMSC細胞を培養した場合、他の細胞培養用バッグを用いてhMSC細胞を培養した場合よりも、多能性幹細胞マーカー遺伝子のmRNAの発現レベルが増加することが示された(表3参照)。これらの結果は、細胞培養用バッグB(実施例サンプル)を用いてhMSC細胞を浮遊培養させると、効率よく多能性幹細胞を誘導できることを示している。
3-2 Results As a result of microscopic observation, when hMSC cells were cultured using four types of cell culture bags C to F (Comparative Samples 2 to 5), the cells adhered, while the other two types When hMSC cells were cultured using the cell culture bag A (Comparative Sample 1) and the cell culture bag B (Example Sample), cell adhesion was suppressed and floated (see FIG. 2). The present inventors have found that when the floating state of hMSC cells is improved, the expression of pluripotent stem cell markers is increased and the pluripotency acquisition efficiency of hMSC cells is increased. Thus, when the expression of pluripotent stem cell markers was analyzed, when hMSC cells were cultured using cell culture bag B (Example sample), than when hMSC cells were cultured using other cell culture bags. Was also shown to increase the mRNA expression level of the pluripotent stem cell marker gene (see Table 3). These results indicate that pluripotent stem cells can be efficiently induced by suspension culture of hMSC cells using the cell culture bag B (Example sample).

4.細胞培養用バッグを用いたhPBMCの培養
4−1 方法(細胞培養とトリパンブルー染色)
〔1〕浮遊細胞であるhPBMC細胞(Lonza社製、CC-2702)を、10%FBS(ATCCより入手、30-20202)を含有するIMDM(gibco社製、12440-053)培養液中に2×10細胞/mLの濃度で懸濁し、6種類の細胞培養用バッグA〜Fのバッグ内に5mL播種した。
〔2〕インキュベーター(37℃、5%CO)内で培養し、1時間後に細胞培養液の一部(10μL)を採取し、10μLの0.4%トリパンブルー(Gibco社製)と混合し、細胞計数盤で生細胞数を計測し、細胞生存率を算出した(表4参照)。
〔3〕細胞培養用バッグに播種してから7日間培養後、細胞を顕微鏡(IX-70、オリンパス社製)下で観察し(図3参照)、浮遊した細胞と接着した細胞の両方を含む細胞懸濁液10μLを採取し、10μLの0.4%トリパンブルー(Gibco社製)と混合し、細胞計数盤で生細胞数を計測し、細胞生存率を算出した(表4参照)。
4). HPBMC culture using cell culture bag 4-1 Method (cell culture and trypan blue staining)
[1] 2 hPBMC cells (Lonza, CC-2702), which are floating cells, were added to a 2% IMDM (gibco, 12440-053) culture solution containing 10% FBS (obtained from ATCC, 30-20202). It was suspended at a concentration of × 10 5 cells / mL, and 5 mL was seeded in six types of cell culture bags A to F.
[2] Cultivation in an incubator (37 ° C., 5% CO 2 ). After 1 hour, a part (10 μL) of the cell culture solution is collected and mixed with 10 μL of 0.4% trypan blue (Gibco). The number of viable cells was counted with a cell counter and the cell viability was calculated (see Table 4).
[3] After culturing for 7 days after seeding in a cell culture bag, the cells are observed under a microscope (IX-70, Olympus) (see FIG. 3), and include both suspended cells and adhered cells. 10 μL of the cell suspension was collected, mixed with 10 μL of 0.4% trypan blue (Gibco), the number of viable cells was counted with a cell counter, and the cell viability was calculated (see Table 4).

4−2 結果
顕微鏡観察の結果、細胞培養用バッグB(実施例サンプル)を用いてhPBMC細胞を培養した場合、市販の細胞培養用バッグを用いてhPBMC細胞を培養した場合と同程度、細胞の接着性が抑制された(図3参照)。さらに、細胞の生存率を解析したところ、細胞培養用バッグB(実施例サンプル)を用いてhPBMC細胞を培養した場合、市販の細胞培養用バッグF(比較例サンプル5)を用いてhPBMC細胞を培養した場合よりも、細胞生存率低下が有意に抑制されることが示された(表4参照)。
4-2 Results As a result of microscopic observation, when hPBMC cells were cultured using cell culture bag B (Example sample), the same level of cells were cultured as in the case of culturing hPBMC cells using commercially available cell culture bags. Adhesion was suppressed (see FIG. 3). Furthermore, when cell viability was analyzed, when hPBMC cells were cultured using cell culture bag B (Example sample), hPBMC cells were obtained using commercially available cell culture bag F (Comparative sample 5). It was shown that a decrease in cell viability was significantly suppressed as compared to the case of culturing (see Table 4).

本発明によると、高濃度でかつ大量の浮遊性細胞懸濁液や多能性幹細胞懸濁液の調製が可能となるため、再生医療における良質な移植用細胞懸濁液を提供することができる。   According to the present invention, it is possible to prepare a high concentration and a large amount of suspension suspension and pluripotent stem cell suspension, so that it is possible to provide a high quality cell suspension for transplantation in regenerative medicine. .

Claims (6)

テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体からなる袋状容器を備え、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)であることを特徴とする細胞培養用バッグ。 A bag-shaped container made of a tetrafluoroethylene-hexafluoropropylene copolymer is provided, and the arithmetic average roughness (Ra) of the surface roughness of the inner surface of the bag-shaped container is 3.5 to 6.5 nm. The root mean square roughness (RMS) of the inner surface of the container is 4.5 to 8.0 nm, and the surface free energy of the inner surface of the bag-shaped container is 16.5 to 18.5 (mJ / m 2 ). A cell culture bag characterized by being. 袋状容器の厚みが10〜100μmであることを特徴とする請求項1に記載の細胞培養用バッグ。   The bag for cell culture according to claim 1, wherein the bag-like container has a thickness of 10 to 100 µm. 細胞が間葉系幹細胞又は末梢血由来単核球であることを特徴とする請求項1又は2に記載の細胞培養用バッグ。   The cell culture bag according to claim 1 or 2, wherein the cells are mesenchymal stem cells or peripheral blood-derived mononuclear cells. テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体からなる袋状容器を備え、前記袋状容器内面の表面粗度の算術平均粗さ(Ra)が3.5〜6.5nmであり、前記袋状容器内面の表面粗度の二乗平均粗さ(RMS)が4.5〜8.0nmであり、かつ前記袋状容器内面の表面自由エネルギーが16.5〜18.5(mJ/m)である細胞培養用バッグの前記袋状容器内で、細胞を浮遊培養することを特徴とする細胞の培養方法。 A bag-shaped container made of a tetrafluoroethylene-hexafluoropropylene copolymer is provided, and the arithmetic average roughness (Ra) of the surface roughness of the inner surface of the bag-shaped container is 3.5 to 6.5 nm. The root mean square roughness (RMS) of the inner surface of the container is 4.5 to 8.0 nm, and the surface free energy of the inner surface of the bag-shaped container is 16.5 to 18.5 (mJ / m 2 ). A method for culturing cells, comprising subjecting the cells to suspension culture in the bag-like container of a cell culture bag. 袋状容器の厚みが10〜100μmであることを特徴とする請求項4に記載の培養方法。   The culture method according to claim 4, wherein the bag-like container has a thickness of 10 to 100 μm. 細胞が間葉系幹細胞又は末梢血由来単核球であることを特徴とする請求項4又は5に記載の培養方法。   The culture method according to claim 4 or 5, wherein the cells are mesenchymal stem cells or peripheral blood-derived mononuclear cells.
JP2015025289A 2015-02-12 2015-02-12 Bag for cell cultivation and cell cultivation method using the same Pending JP2016146777A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015025289A JP2016146777A (en) 2015-02-12 2015-02-12 Bag for cell cultivation and cell cultivation method using the same
PCT/JP2016/000409 WO2016129220A1 (en) 2015-02-12 2016-01-27 Bag for cell culture and cell culture method using same
TW105103555A TW201634687A (en) 2015-02-12 2016-02-03 Bag for cell culture and cell culture method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025289A JP2016146777A (en) 2015-02-12 2015-02-12 Bag for cell cultivation and cell cultivation method using the same

Publications (1)

Publication Number Publication Date
JP2016146777A true JP2016146777A (en) 2016-08-18

Family

ID=56614503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025289A Pending JP2016146777A (en) 2015-02-12 2015-02-12 Bag for cell cultivation and cell cultivation method using the same

Country Status (3)

Country Link
JP (1) JP2016146777A (en)
TW (1) TW201634687A (en)
WO (1) WO2016129220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961493B2 (en) 2015-07-16 2021-03-30 Daikin Industries, Ltd. Container for cell administration, storage or culturing
WO2021182316A1 (en) * 2020-03-10 2021-09-16 東洋製罐グループホールディングス株式会社 Bag-like culturing vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206612B1 (en) * 2017-03-07 2017-10-04 東洋インキScホールディングス株式会社 Cell culture bags

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (en) * 1988-02-17 1988-08-17 Daikin Ind Ltd Cultivation apparatus
JP2005036106A (en) * 2003-07-15 2005-02-10 New Industry Research Organization Cell adhesion material
JP2010200745A (en) * 2009-02-03 2010-09-16 Osaka Univ Method for inducing differentiation of mesenchymal stem cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198972A (en) * 1988-02-17 1988-08-17 Daikin Ind Ltd Cultivation apparatus
JP2005036106A (en) * 2003-07-15 2005-02-10 New Industry Research Organization Cell adhesion material
JP2010200745A (en) * 2009-02-03 2010-09-16 Osaka Univ Method for inducing differentiation of mesenchymal stem cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"VueLife Cell Culture Bags", CELLGENIX[ONLINE], JPN6016037885, 26 January 2014 (2014-01-26), ISSN: 0003410016 *
HSIN-I CHANG AND YIWEI WANG, REGENERATIVE MEDICINE AND TISSUE ENGINEERING - CELLS AND BIOMATERIALS, JPN6016011028, 2011, pages 569 - 588, ISSN: 0003410017 *
渋沢社史データベース[ONLINE], JPN6017010541, 21 March 2017 (2017-03-21), ISSN: 0003527626 *
表面科学, vol. 19, no. 7, JPN6017010539, 1998, pages 453 - 456, ISSN: 0003527625 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961493B2 (en) 2015-07-16 2021-03-30 Daikin Industries, Ltd. Container for cell administration, storage or culturing
WO2021182316A1 (en) * 2020-03-10 2021-09-16 東洋製罐グループホールディングス株式会社 Bag-like culturing vessel

Also Published As

Publication number Publication date
WO2016129220A1 (en) 2016-08-18
TW201634687A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
Robb et al. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency
Cheng et al. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities
JP6478428B2 (en) Method for preparing pluripotent stem cells
US20100248361A1 (en) Platelet production methods
JP2016185976A (en) Improved hematopoietic stem and progenitor cell therapy
EP2985343A1 (en) In vitro-co-culturesystem
JPWO2018116904A1 (en) Cell culture substrate
Yan et al. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D
WO2016129220A1 (en) Bag for cell culture and cell culture method using same
Sart et al. Large-scale expansion and differentiation of mesenchymal stem cells in microcarrier-based stirred bioreactors
US20200360444A1 (en) Cell population including adhesive stem cells, production method therefor and pharmaceutical composition
Scibona et al. Expansion processes for cell-based therapies
Yu et al. Ex vitro expansion of human placenta-derived mesenchymal stem cells in stirred bioreactor
JP2010158180A (en) Scaffold material
JP6519168B2 (en) Three-dimensional cell assembly, method for producing the same, and solution for forming the same
JP7256818B2 (en) Sheeting method of cardiomyocytes
Liu et al. Expansion of human amniotic fluid stem cells in 3-dimensional fibrous scaffolds in a stirred bioreactor
JP2017212952A (en) Production method of cell aggregate
Gharravi Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit
JPWO2004078961A1 (en) Floating carrier and floating / collecting method
Khaseb et al. Expression analysis of genes involved in the expansion of hematopoietic stem cells (SCF, Flt3-L, TPO, IL-3, and IL-6) in unrestricted somatic stem cells cultured on fibrin
RU2418066C1 (en) Method of modifying proliferative activity and differential potency of multipotent mesenchymal stromal cells
JPWO2020067443A1 (en) Somatic cell sheeting method
Suchánek et al. Characteristics of human natal stem cells cultured in allogeneic medium
WO2018225703A1 (en) Method for preparing differentiation-induced cells

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170330