WO2010089427A1 - Soporte de sistema fotogrametrico multi-camara portátil para aplicaciones terrestres - Google Patents

Soporte de sistema fotogrametrico multi-camara portátil para aplicaciones terrestres Download PDF

Info

Publication number
WO2010089427A1
WO2010089427A1 PCT/ES2010/000038 ES2010000038W WO2010089427A1 WO 2010089427 A1 WO2010089427 A1 WO 2010089427A1 ES 2010000038 W ES2010000038 W ES 2010000038W WO 2010089427 A1 WO2010089427 A1 WO 2010089427A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
central body
sensors
cameras
gnss antenna
Prior art date
Application number
PCT/ES2010/000038
Other languages
English (en)
French (fr)
Other versions
WO2010089427A4 (es
Inventor
Luis GARCÍA-ASENJO VILLAMAYOR
Pascual Garrigues Talens
Original Assignee
Universidad Politectica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politectica De Valencia filed Critical Universidad Politectica De Valencia
Publication of WO2010089427A1 publication Critical patent/WO2010089427A1/es
Publication of WO2010089427A4 publication Critical patent/WO2010089427A4/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects

Definitions

  • the present invention refers to a portable multi-camera photogrammetric system support for terrestrial applications, whose purpose is to allow direct georeferencing and calibration of the photogrammetric process.
  • the direct georeferencing process involves fixing the spatial positions and angular orientations in three perpendicular axes to achieve very precise pitching, warping and azimuth angles.
  • the support allows the relative situation between sensors to be easily determined by mechanical processes.
  • the support is adaptable and extensible to an unlimited set of cameras (not only stereoscopic) or sensors, so that it is possible to capture color, multispectral and laser information simultaneously.
  • the support of the invention can be mounted on a centering pole, tripod, mobile car or automobile, thus distinguishing itself from systems designed to be airborne.
  • the support of the invention can be used for 3D coordinate calculation, generation of digital models and continuous mosaics of multi-band information and capture of stereoscopic images between multiple cameras, as well as merging metric-spectral information from different sensors.
  • the main areas of application of the support of the invention are the following:
  • Terrestrial photogrammetry including architectural, archaeological, industrial, medical and civil engineering variants.
  • WO2005100915. It is an airborne system that claims a multi-camera system with image filters in different frequency bands, integrating GPS and INS. - GB2257250A. It is a system with several cameras of different types to generate 3D measurements.
  • - W09735166 ÜS5894323. It is a system that is defined to be incorporated into vehicles and incorporates GPS, INS and multi-spectral multi-cameras. - US2003138247A1. It is a photogrammetric device to mount several cameras in a certain position.
  • the invention consists of a portable multi-camera photogrammetric system support for terrestrial applications, which facilitates direct georeferencing and calibration of the photogrammetric process.
  • direct georeferencing spatial positions and angular orientations in three perpendicular axes must be known to achieve very precise pitching, warping and azimuth angles.
  • the support allows the relative situation between sensors to be easily determined by mechanical processes.
  • the support thereof has: a central body provided with a cabin for the accommodation of an inertial navigation system (INS) with the possibility of azimuthal rotation, a base that supports sensors and cameras, and an antenna GNSS arranged at the top of said support.
  • INS inertial navigation system
  • GNSS antenna GNSS arranged at the top of said support.
  • This generic configuration gives rise to three possible embodiments of the invention: First embodiment: Rigid model. The relative situation of the particular coordinate systems, with respect to the general system defined by the support, remain constant during the measurement process.
  • This first embodiment is that it is a mechanically robust system, which allows the cameras to be moved back and forth, as well as their interchangeability.
  • the inclined sockets with this first embodiment are limited in terms of the system's pitching and warping capacity, both for the sockets of the cameras or the coupled sensors and for the capture of GNSS signal.
  • Second embodiment Model with rotating horizontal or secondary axis.
  • This second embodiment facilitates that the cameras and sensors arranged on the secondary axis (perpendicular to the main or vertical axis) can have a pitching turn.
  • This embodiment allows more compact and lightweight models to be configured for transport on foot and on a centering pole. This second embodiment is limited only by the condition that the centering rod should be approximately vertical.
  • Third embodiment Model with rotating horizontal or secondary axis plus verticalization system of the GNSS antenna. This third embodiment allows the pitching and warping of cameras and sensors, and avoids the lack of verticality of the GNSS antenna, and therefore the loss of GNSS signal.
  • the invention allows a horizontal (azimuthal) rotation for the central body containing the INS.
  • a horizontal (azimuthal) rotation for the central body containing the INS.
  • First embodiment It consists of a horizontal tray with a central body to house the INS in its inside, which presents in its upper part means to incorporate a GNSS antenna, and in the lower part, means to be supported by a supporting element.
  • the horizontal tray has a series of guides that receive the supports of the different sensors or cameras mechanically controlled.
  • the guides also have reading scales to conveniently position the sensors and cameras.
  • An external housing contains the central body, which has a lateral support arms coaxial to the secondary pitch axis and supports the INS in a recess of the central body, while the cameras and sensors or devices are supported on the aforementioned arms by means of supports or clamps that slide and are fixed on said arms.
  • the external housing has at its top means to incorporate a 4 GNSS antenna, and at the bottom means to be supported by a support element, which can be a centering rod (telescopic), with spherical level to plump it, or a tripod .
  • the aforementioned central body in order to precisely center the INS sensor, could have a guided tray with three degrees of freedom, making it coincide with the intersection of the vertical and horizontal rotation axes.
  • One of the mentioned arms allows the cable corresponding to the INS to pass inside.
  • the means for incorporating the vertical centering rod consist of a thread arranged in a lower base of the outer shell, while the means of incorporating the antenna consist of a thread for the GNSS antenna in the upper part.
  • the outer housing in this second embodiment incorporates a side cover that allows the introduction and fitting of the central body inside the housing.
  • the secondary axis of pitching can be provided with mechanical means to prevent it from turning unintentionally due to the weight of the sensors.
  • the centering rod that has been mentioned is capable of being a telescopic pole with a spherical level to be conveniently verticalized.
  • the second embodiment described above can be complemented with a system to verticalize the GNSS antenna at all times, thereby obtaining this third embodiment.
  • a gimbal system can be attached to the central body, so that the center of the GNSS antenna is always located above the vertical intersection of the pitch and roll axes.
  • the gimbal will be supported on two means to the outer shell, which will be coaxial to the azimuth axis.
  • a counterweight is attached to the lower part of the central body.
  • INS and information from multi-band images are INS and information from multi-band images.
  • the design of the system allows high portability, since it can be mounted on a tripod, center pole, mobile car or car, unlike other devices or systems designed for use in airborne systems or in mobile mapping systems on cars.
  • the multi-camera photogrammetric system can be used in physical scenarios for metric simulations, both real and virtual, since it allows you to calculate 3D objects, generate digital models, project textures captured by cameras, develop continuous mosaics of multi-band information and merge Metric spectral information from different sensors.
  • FIGURES Figure 1 Rigid model. It represents a perspective view of a first embodiment of the support of the photogrammetric system of the invention, including an exploded view of said first embodiment.
  • Figure 2. Model with rotating horizontal axis. Represents a perspective view of a second realization of the support of the photogrammetric system of the invention, including an exploded view of said second embodiment.
  • Figure 3. Model with rotating horizontal axis plus verticalization system of the GNSS antenna. It represents a perspective view of a third embodiment of the photogrammetric system support of the invention, including an installed GNSS antenna.
  • Said central body 1 consists of a hollow cylinder that supports a tray 2 for sensor installation, a cover 3 for the installation of the GNSS antenna support in its upper part, and in its lower base a support and centering system 4 .
  • Tray 2 for the installation of cameras, video, multi-spectral or laser incorporates guide rails 5 to accommodate the specific supports of each sensor. Next to each guide rail 5, there are strips for measuring displacements.
  • the cover 3 for installation of the GNSS antenna houses an antenna adapter 6.
  • the support and centering system 4 consists of a device that threads on the base of a cylinder 7, and by means of a pressure screw 8, allows to set the angle of pitch of the system. In its lower part it has means 9 for its installation on a supporting element.
  • the INS 10 sensor is housed inside the hollow cylinder 1 through an adapter platform 11 that it rests on a socket provided in the inner wall of the hollow cylinder 1.
  • Model with rotating horizontal axis (figure 2).
  • This model has a central body 1 'inside an external housing 12.
  • the central body 1' has a recess 13 to house the INS system and has lateral arms 14 through which supports 15 of the sensors or cameras are moved.
  • the external housing 12 has on its upper part a means 16 for incorporating a GNSS antenna and on its lower part, a similar means 17 for incorporating a vertical pole that can consist of a telescopic pole with means for its verticalization.
  • the lateral arms 14 enable guides 18 on which the supports 15 that hold devices such as cameras, sensors or others are moved.
  • the supports 15 have fastening screws 19 and an adapter 20 for the cameras.
  • one of the side arms 14 has been conveniently emptied to allow, if necessary, the cable exit of the GNSS device.
  • Model with rotating horizontal axis plus verticalization system of the GNSS antenna (figure 3). This embodiment extends the second embodiment by adding a removable verticalization system of the GNSS antenna.
  • the verticalization device is mounted on the external housing 12 by means of a double bearing 23.
  • a support rotates 25 of the GNSS antenna 26, which in its lower part has a counterweight 27 for verticalization.
  • the counterweight 27 disables the lower means 17 of the external housing 12, which is solved by incorporating a new support part 28 with means for its installation or transport.
  • This support piece 28 allows its adaptation for pull, centering stick, or magnetic bases for installation in cars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Studio Devices (AREA)

Abstract

Facilita la georreferenciación directa y la calibración en procesos fotogramétricos. Cuenta con un cuerpo central (1, 1') provisto de un habitáculo (11, 13) para el alojamiento de un sistema de navegación inercial INS (10) en su interior y con posibilidad de giro horizontal, una base (2, 14) que soporta sensores y cámaras, y una antena GNSS dispuesta en la parte superior del soporte, posibilitando así tres realizaciones consistentes en: un modelo rígido en el que la situación relativa de los sistemas particulares de coordenadas, con respecto al sistema general definido por el soporte, permanece constante durante el proceso de medición; un modelo con eje horizontal giratorio en el que las cámaras y sensores pueden tener giro de cabeceo; y un modelo con eje horizontal giratorio más sistema de verticalización de antena que permite cabeceo y alabeo de cámaras y sensores, y evita faltas de verticalidad en la antena.

Description

SOPORTE DE SISTEMA FOTOGRAMÉTRICO MULTI-CÁMARA PORTÁTIL
PARA APLICACIONES TERRESTRES
OBJETO DE LA INVENCIÓN
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva, se refiere a un soporte de sistema fotogramétrico multi-cámara portátil para aplicaciones terrestres, cuya finalidad es permitir la georreferenciación directa y la calibración del proceso fotogramétrico. El proceso de georreferenciación directa implica fijar las posiciones espaciales y orientaciones angulares en tres ejes perpendiculares para conseguir ángulos de cabeceo, de alabeo y de acimut muy precisos. Para la calibración, el soporte permite que la situación relativa entre sensores sea fácilmente determinada mediante procesos mecánicos. Además, el soporte es adaptable y extensible a un conjunto ilimitado de cámaras (no sólo estereoscópicas) o sensores, de manera que sea posible capturar información en color, multiespectral y láser simultáneamente . Otros objetivos de la invención consisten en garantizar soluciones fotogramétricas robustas solucionando problemas de orientación espacial y permitiendo realizar una georreferenciación mixta, combinando sensores GNSS (Global Navigation Satellite System, lo que incluye GPS, GLONASS, GALILEO, etc.) y un sistema de navegación inercial (INS) con la solución fotogramétrica tradicional. El soporte de la invención puede montarse sobre bastón centrador, trípode, carro móvil o automóvil, distinguiéndose asi de sistemas concebidos para ser aerotransportados. Además, el soporte de la invención podrá ser utilizado para cálculo de coordenadas en 3D, generación de modelos digitales y mosaicos continuos de información multi-banda y captura de imágenes estereoscópicas entre múltiples cámaras, asi como fusionar información métrico- espectral proveniente de diferentes sensores. Las principales áreas de aplicación del soporte de la invención son las siguientes:
Fotogrametría terrestre, incluyendo las variantes arquitectónica, arqueológica, industrial, médica y de ingeniería civil.
- Teledetección de objeto cercano.
- Cartografiado o mapeado móvil.
- Modelización 3D.
- Documentación del patrimonio cultural. - Cartografiado terrestre en aplicaciones medioambientales, geografía y geología.
- Simulación real y virtual.
ANTECEDENTES DE IA INVENCIÓN
Entre los registros relacionados con la invención cabe citar los siguientes:
WO2005100915. Se trata de un sistema aerotransportado que reivindica un sistema multi-cámara con filtros de imagen en diferentes bandas de frecuencia, integrando GPS e INS. - GB2257250A. Se trata de un sistema con varias cámaras de distinto tipo para generar mediciones 3D.
- W09735166 = ÜS5894323. Se trata de un sistema que es definido para ser incorporado en vehículos y que incorpora GPS, INS y multi-cámaras multi-espectrales . - US2003138247A1. Se trata de un equipo fotogramétrico para montar varias cámaras en una posición determinada.
- FR2836215 = ÜS7187401 = US2003202089. Se trata de un sistema multi-cámara estereoscópica de modelo tridimensional, térmica, con GPS, INS y además es portátil. Los registros citados, asi como el estado de la técnica que conocemos, presenta el inconveniente de que no resuelve mecánicamente ni facilita la operación previa al proceso de georrreferenciación directa mediante procesos de calibración. La calibración consiste en determinar la posición relativa de los sistemas de coordenadas particulares de los dispositivos con respecto al sistema general materializado por la plataforma o soporte, de manera que una vez calibrados los dispositivos, los parámetros obtenidos (tres traslaciones y tres rotaciones para cada dispositivo) es posible llevar a cabo el proceso de georreferenciación directa. Si los dispositivos se sustituyen por otros diferentes o se cambia la situación relativa de los mismos es necesario volver a calibrar el sistema. Los dispositivos del estado de la técnica, contrariamente a la presente invención, no tienen en cuenta la necesidad de calibrar el sistema y facilitar las mediciones externas necesarias, con lo que la sustitución de dispositivos es más lenta y compleja que si se emplea la invención propuesta. DESCRIPCIÓN DE LA INVENCIÓN
Para lograr los objetivos y evitar los inconvenientes indicados en anteriores apartados, la invención consiste en un soporte de sistema fotogramétrico multi-cámara portátil para aplicaciones terrestres, que facilita la georreferenciación directa y la calibración del proceso fotogramétrico. Para la georreferenciación directa, deben conocerse las posiciones espaciales y orientaciones angulares en tres ejes perpendiculares para conseguir ángulos de cabeceo, de alabeo y de acimut muy precisos. Para la calibración, el soporte permite que la situación relativa entre sensores pueda ser fácilmente determinada mediante procesos mecánicos.
Novedosamente, según la invención, el soporte de la misma cuenta con: un cuerpo central provisto de un habitáculo para el alojamiento de un sistema de navegación inercial (INS) con posibilidad de giro acimutal, una base que soporta sensores y cámaras, y una antena GNSS dispuesta en la parte superior del referido soporte. Esta configuración genérica da lugar a tres posibles realizaciones de la invención: Primera realización: Modelo rigido. La situación relativa de los sistemas particulares de coordenadas, con respecto al sistema general definido por el soporte, permanecen constantes durante el proceso de medición. Entre las ventajas de esta primera realización se encuentra la de ser un sistema mecánicamente robusto, que permite el desplazamiento de las cámaras hacia delante y hacia detrás, asi como su intercambiabilidad. Las tomas inclinadas con esta primera realización son limitadas en cuanto a la capacidad de cabeceo y alabeo del sistema, tanto para las tomas de las cámaras o los sensores acoplados como para la captura de señal GNSS.
Segunda realización: Modelo con eje horizontal o secundario giratorio. Esta segunda realización facilita el que las cámaras y los sensores dispuestos en el eje secundario (perpendicular al eje principal o vertical) puedan tener un giro de cabeceo. Esta realización permite configurar modelos más compactos y ligeros para su transporte a pie y sobre bastón centrador. Esta segunda realización está limitada únicamente por la condición de que el bastón centrador debe quedar aproximadamente en posición vertical.
Tercera realización: Modelo con eje horizontal o secundario giratorio más sistema de verticalización de la antena GNSS. Esta tercera realización permite el cabeceo y el alabeo de cámaras y sensores, y evita la falta de verticalidad de la antena GNSS, y por tanto la pérdida de señal GNSS.
De modo genérico, en las tres referidas realizaciones, la invención permite un giro horizontal (acimutal) para el cuerpo central que contiene el INS. A continuación se describen aspectos particulares de cada una de las tres realizaciones .
Realización primera: Consiste en una bandeja horizontal con un cuerpo central para alojar el INS en su interior, que presenta en su parte superior medios para incorporar una antena GNSS, y en la parte inferior, medios para ser soportada por un elemento sustentador. La bandeja horizontal dispone de una serie de guias que reciben de manera mecánicamente controlada los soportes de los diferentes sensores o cámaras. Las guías disponen a su vez de escalas de lectura para situar convenientemente los sensores y cámaras.
Segunda realización: Una carcasa externa contiene al cuerpo central, el cual dispone de unos brazos laterales solidarios coaxiales al eje secundario de cabeceo y soporta al INS en un rebaje del cuerpo central, mientras que las cámaras y sensores o dispositivos quedan soportados en los aludidos brazos mediante unos soportes o abrazaderas que deslizan y se fijan sobre dichos brazos. La carcasa externa presenta en su parte superior medios para incorporar una antena4 GNSS, y en la parte inferior medios para ser soportada por un elemento sustentador, que puede ser un bastón centrador (telescópico) , con nivel esférico para aplomarlo, o bien un trípode.
El aludido cuerpo central, a efectos de centrar con precisión el sensor INS, podría disponer de una bandeja guiada con tres grados de libertad, haciéndolo coincidir con la intersección de los ejes de giro vertical y horizontal.
Uno de los brazos que se han mencionado permite pasar por su interior el cable correspondiente al INS.
En la carcasa externa se dispone de medios que presionan sobre el cuerpo central para fijar a ésta en una posición de cabeceo determinada.
Los medios de incorporación al bastón vertical centrador consisten en un roscado dispuesto en una base inferior de la carcasa exterior, en tanto que los medios de incorporación de la antena consisten en un roscado para antena GNSS en la parte superior. La carcasa exterior en esta segunda realización incorpora una tapa lateral que permite la introducción y el encaje del cuerpo central en el interior de la carcasa. Al eje secundario de cabeceo se le puede dotar de medios mecánicos para evitar que gire involuntariamente por efecto del peso de los sensores. El bastón centrador que se ha mencionado es susceptible de ser un bastón telescópico con un nivel esférico para ser convenientemente verticalizado.
Tercera realización: La realización segunda que se ha descrito anteriormente puede ser complementada con un sistema para verticalizar en todo momento la antena GNSS, con lo que se obtiene esta tercera realización. Para ello, se puede acoplar un sistema cardán al cuerpo central, de manera que el centro de la antena GNSS esté siempre situado sobre la vertical de la intersección de los ejes de cabeceo y de alabeo. El cardán se sustentará sobre dos medios a la carcasa externa, que serán coaxiales al eje de acimut.
En la zona inferior del cuerpo central se acopla un contrapeso. Con las tres realizaciones descritas, la invención presenta las siguientes ventajas para el proceso fotogramétrico :
- Facilita la intercambiabilidad y extensibilidad a un conjunto ilimitado de cámaras (no solo estereoscópicas) o sensores, de manera que es posible capturar información en color, multi-espectral y láser simultáneamente. Si se requiere de otros tipos de cámaras o dispositivos, el sistema se puede readaptar con un nuevo diseño para los brazos y/o sustituyendo soportes de los sensores. - Permite una rápida, sencilla y precisa autocalibración de los diferentes dispositivos. Gracias a que el soporte se encuentra mecanizado para facilitar la medición precisa de los centros de los diferentes dispositivos, el calibrado de los mismos puede hacerse de manera rigurosa y precisa mediante procesos directos o indirectos en campos de pruebas, bancos de calibración y/o patrones murales, tanto in situ como en laboratorio.
- Garantiza una solución robusta y de alta precisión a los siguientes problemas: a) Orientación espacial de dispositivos; b) Intersección espacial de rayos a los objetos capturados en las imágenes, puesto que permite una georreferenciación mixta, combinando sensores GNSS,
INS e información a partir de imágenes multi-banda. - El diseño del sistema permite una elevada portabilidad, ya que puede montarse sobre trípode, bastón centrador, carro móvil o automóvil, a diferencia de otros dispositivos o sistemas concebidos para su uso en sistemas aerotransportados o en sistemas de cartografiado móvil sobre automóviles.
El sistema fotogramétrico multi-cámara puede ser utilizado en escenarios físicos para simulaciones métricas, tanto reales como virtuales, ya que permite calcular objetos en 3D, generar modelos digitales, proyectar texturas capturadas mediante las cámaras, desarrollar mosaicos continuos de información multi-banda y fusionar información métricoespectral proveniente de diferentes sensores .
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan unas figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BKESVE DESCRIPCIÓN DE LAS FIGURAS Figura 1.- Modelo rígido. Representa una vista en perspectiva de una primera realización del soporte del sistema fotogramétrico de la invención, incluyéndose un despiece de dicha primera realización.
Figura 2.- Modelo con eje horizontal giratorio. Representa una vista en perspectiva de una segunda realización del soporte del sistema fotogramétrico de la invención, incluyéndose un despiece de dicha segunda realización.
Figura 3.- Modelo con eje horizontal giratorio más sistema de verticalización de la antena GNSS. Representa una vista en perspectiva de una tercera realización del soporte de sistema fotogramétrico de la invención, incluyéndose una antena GNSS instalada.
DESCRIPCIÓN DE UNO O VARIOS EJEMPLOS DE REALIZACIÓN DE IA INVENCIÓN
Seguidamente se realiza una descripción de tres realizaciones de la invención haciendo referencia a la numeración adoptada en las figuras.
Realización primera: Modelo rígido (figura 1) . El soporte del sistema fotogramétrico se muestra en la figura
1, donde puede apreciarse que cuenta con un cuerpo central
1. Dicho cuerpo central 1 consiste en un cilindro hueco que soporta una bandeja 2 para instalación de sensores, una tapa 3 para la instalación del soporte de la antena GNSS en su parte superior, y en su base inferior un sistema de soporte y centrado 4.
La bandeja 2 para la instalación de cámaras fotográficas, de video, multi-espectrales o láser, incorpora carriles guía 5 para alojar los soportes específicos de cada sensor. Junto a cada carril guía 5 se dispone de regletas para medir los desplazamientos.
La tapa 3 para instalación de la antena GNSS alberga un adaptador de antena 6.
El sistema de soporte y centrado 4 consiste en un dispositivo que rosca sobre la base de un cilindro 7, y mediante un tornillo de presión 8, permite fijar el ángulo de cabeceo del sistema. En su parte inferior dispone de medios 9 para su instalación sobre un elemento sustentador.
El sensor INS 10 va alojado en el interior del cilindro hueco 1 mediante una plataforma adaptadora 11 que apoya sobre un zócalo previsto en la pared interior del cilindro hueco 1.
Segunda realización: Modelo con eje horizontal giratorio (figura 2) . Este modelo dispone de un cuerpo central 1' interior a una carcasa externa 12. El cuerpo central 1' tiene un rebaje 13 para alojar el sistema INS y dispone de unos brazos laterales 14 por donde se desplazan unos soportes 15 de los sensores o cámaras.
La carcasa externa 12 dispone en su parte superior de un medio 16 para incorporar una antena GNSS y en su parte inferior, de un medio similar 17 para incorporar un bastón vertical que puede consistir en un bastón telescópico con medios para su verticalización.
Los brazos laterales 14 habilitan unas guias 18 sobre las que se desplazan los soportes 15 que sujetan dispositivos tales como cámaras, sensores u otros. Los soportes 15 disponen de tornillos de sujeción 19 y de un adaptador 20 para las cámaras.
En esta segunda realización de la invención, uno de los brazos laterales 14 ha sido convenientemente vaciado para permitir, en caso necesario, la salida del cable del dispositivo GNSS.
El encaje y giro del cuerpo central 1' dentro de la carcasa externa 12 queda asegurado mediante una tapa roscada 21, y la posición relativa del cuerpo central 1' con respecto a la carcasa externa 12 se fija mediante un tornillo de fijación 22.
Tercera realización: Modelo con eje horizontal giratorio más sistema de verticalización de la antena GNSS (figura 3) . Esta realización amplia la realización segunda añadiendo un sistema de verticalización desmontable de la antena GNSS.
El dispositivo de verticalización va montado sobre la carcasa externa 12 mediante un doble rodamiento 23. Sobre unas piezas 24 que unen ambos rodamientos gira un soporte 25 de la antena GNSS 26, que en su parte inferior dispone de un contrapeso 27 para su verticalización.
El contrapeso 27 inhabilita el medio inferior 17 de la carcasa externa 12, lo cual se soluciona incorporando una nueva pieza de sustentación 28 con medios para su instalación o transporte. Esta pieza de sustentación 28 permite su adaptación para jalón, bastón centrador, o bien bases magnéticas para su instalación en automóvil.

Claims

I-11-REIVINDICACIONES
1.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MULTI-CÁMARA
PORTÁTIL PARA APLICACIONES TERRESTRES, que facilita la georreferenciación directa y la calibración del proceso
5 fotogramétrico; caracterizado porgue dicho soporte cuenta con un cuerpo central (1, 1') provisto de un habitáculo
(11, 13) para el alojamiento de un sistema de navegación inercial INS (10) en su interior y con posibilidad de giro horizontal (acimutal), una base (2, 14) que soporta0 sensores y cámaras, y una antena GNSS (26) dispuesta en la parte superior del referido soporte, posibilitando esta configuración genérica tres realizaciones consistentes en:
- Una primera realización o modelo rígido en la que la situación relativa de los sistemas particulares de coordenadas, con respecto al sistema general definido por el soporte, permanece constante durante el proceso de medición;
- una segunda realización o modelo con eje horizontal o secundario giratorio, en la que las cámaras y los sensores dispuestos en el eje secundario (perpendicular al eje principal o vertical) pueden tener un giro de cabeceo; y
- una tercera realización o modelo con eje horizontal o secundario giratorio más sistema de verticalización de la antena GNSS, permitiendo esta tercera realización el cabeceo y el alabeo de cámaras y sensores, y evitándose faltas de verticalidad de la antena GNSS (26) para impedir pérdida de la señal GNSS.
2.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MULTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 1, caracterizado porque en dicha primera realización la aludida base consiste en una bandeja horizontal (2) con un cuerpo central (1) para alojar el INS (10) en su interior, y que presenta en su parte superior medios para incorporar una antena GNSS (6), y en la parte inferior medios para ser soportada por un elemento sustentador (4); disponiendo la bandeja horizontal (2) de una serie de carriles guias (5) que reciben de manera mecánicamente controlada los soportes de los diferentes sensores o cámaras; disponiendo dichos carriles guias (5) de escalas de lectura para situar convenientemente los sensores y cámaras.
3.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO NIULTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 2, caracterizado porque en dicha primera realización el cuerpo central (1) consiste en un cilindro hueco que soporta la bandeja (2) para instalación de sensores, una tapa superior (3) para la instalación de los medios de incorporación de antena (6) , y un sistema de soporte y centrado (4) en su parte inferior constituyente de los referidos medios de soporte sobre elemento sustentador; consistiendo los medios de incorporación de antena en un adaptador de antena GNSS (6); en tanto que el referido sistema de soporte y centrado (4) consiste en un dispositivo que rosca sobre la base de un cilindro (7) y mediante un tornillo de presión (8) permite fijar el ángulo de cabeceo del sistema, incluyéndose en su parte inferior medios (9) para su instalación sobre un elemento sustentador; mientras que el INS (10) va alojado en el interior del referido cilindro hueco (1) sobre una plataforma adaptadora (11) que apoya en un zócalo previsto en la pared interior del aludido cilindro hueco (1) .
4.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MÜLTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 1, caracterizado porque en dicha segunda realización una carcasa externa (12) contiene al cuerpo central (I1) , el cual dispone de unos brazos laterales (14) solidarios coaxiales al eje secundario o de cabeceo y que soportan al INS (10) en un rebaje (13) del cuerpo central (1") y a las cámaras, sensores o dispositivos en los propios brazos (14) mediante unos soportes o abrazaderas (15) que deslizan y se fijan sobre dichos brazos (14) mediante unas guias (18); presentando la carcasa externa (12) en su parte superior medios para incorporar una antena GNSS (16) , y en la parte inferior medios para ser soportada por un elemento sustentador (17), que puede ser un bastón centrador
(telescópico) , con nivel esférico para aplomarlo, o bien un trípode; en tanto que los referidos soportes o abrazaderas
(15) cuentan con tornillos de sujeción (19) y con adaptador para cámaras (20) .
5.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MULTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 4, caracterizado porque en dicha segunda realización, el aludido cuerpo central (I1), a efectos de centrar con precisión el sensor INS (10), dispone de una bandeja guiada con tres grados de libertad, haciéndolo coincidir con la intersección de los ejes de giro vertical y horizontal, en tanto que uno de los mencionados brazos (14) permite pasar por su interior un cable perteneciente al sensor INS (10); disponiéndose en la referida carcasa (12) de medios que presionan sobre el cuerpo central (I1) para fijar a éste en una posición de cabeceo determinada, preferentemente determinados por un tornillo de fijación (22); mientras que los referidos medios de soporte de elemento sustentador consisten en un roscado (17) dispuesto en una base inferior de la carcasa (12) , en tanto que los medios de incorporación de antena consisten en un roscado superior
(16) para una antena GNSS; incorporándose en la carcasa externa (12) una tapa lateral roscada (21) que permite la introducción y el encaje del cuerpo central (I1) en el interior de dicha carcasa (12) ; habiéndose previsto dotar al eje secundario o de cabeceo de medios mecánicos para evitar que gire involuntariamente por efecto del peso de los sensores.
6.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MÜLTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 4 ó 5, caracterizado porque dicha tercera realización consiste en añadir un sistema de verticalización de antena GNSS a la referida segunda realización, para lo cual se acopla un sistema cardán al cuerpo central (I1) , de manera que el centro de la antena GNSS (26) esté siempre situado sobre la vertical de la intersección de los ejes de cabeceo y de alabeo; sustentándose dicho cardán sobre dos medios a la carcasa externa (12), que son coaxiales al eje de acimut; acoplándose además un contrapeso (27) en la zona inferior del cuerpo central (I1)-
7.- SOPORTE DE SISTEMA FOTOGRAMÉTRICO MÜLTI-CÁMARA PORTÁTIL PARA APLICACIONES TERRESTRES, según reivindicación 6, caracterizado porque dicho sistema de verticalización se encuentra montado sobre la carcasa externa (12) mediante un doble rodamiento (23), mientras que sobre unas piezas (24) que unen ambos rodamientos (23) 'gira un soporte (25) de la antena GNSS (26) , que en su parte inferior dispone del referido contrapeso (27) para su verticalización; de manera que este contrapeso (27) inhabilita los medios de soporte o roscado (17) de la parte inferior central de la carcasa
(12), por lo que se incorpora una nueva pieza de sustentación (28) en las zonas inferiores extremas de la carcasa (12) , con medios para su instalación o transporte; permitiendo esta nueva pieza de sustentación (28) su adaptación para jalón, bastón centrador, o bien bases magnéticas para su instalación en automóvil.
PCT/ES2010/000038 2009-02-03 2010-02-02 Soporte de sistema fotogrametrico multi-camara portátil para aplicaciones terrestres WO2010089427A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200900365 2009-02-03
ES200900365A ES2347626B1 (es) 2009-02-03 2009-02-03 Soporte de sistema fotogrametrico multi-camara portatil para aplicaciones terrestres.

Publications (2)

Publication Number Publication Date
WO2010089427A1 true WO2010089427A1 (es) 2010-08-12
WO2010089427A4 WO2010089427A4 (es) 2010-10-07

Family

ID=42541693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000038 WO2010089427A1 (es) 2009-02-03 2010-02-02 Soporte de sistema fotogrametrico multi-camara portátil para aplicaciones terrestres

Country Status (2)

Country Link
ES (1) ES2347626B1 (es)
WO (1) WO2010089427A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2517791A1 (es) * 2013-05-03 2014-11-03 Universidad De Salamanca Dispositivo para geo-localización 3D y orientación de tomas fotográficas terrestres

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277177A (zh) * 2015-10-17 2016-01-27 佛山市安尔康姆航空科技有限公司 多旋翼无人机倾斜摄影系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010246A1 (en) * 1996-09-06 1998-03-12 University Of Florida Handheld portable digital geographic data manager
WO1999018732A1 (en) * 1997-10-06 1999-04-15 Ciampa John A Digital-image mapping
US20040198254A1 (en) * 2003-01-23 2004-10-07 Seiichi Mizui Mobile body communication device
RU2308001C1 (ru) * 2006-01-18 2007-10-10 Борис Кириллович Малявский Способ фотограмметрической калибровки фотокамер

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010246A1 (en) * 1996-09-06 1998-03-12 University Of Florida Handheld portable digital geographic data manager
WO1999018732A1 (en) * 1997-10-06 1999-04-15 Ciampa John A Digital-image mapping
US20040198254A1 (en) * 2003-01-23 2004-10-07 Seiichi Mizui Mobile body communication device
RU2308001C1 (ru) * 2006-01-18 2007-10-10 Борис Кириллович Малявский Способ фотограмметрической калибровки фотокамер

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2517791A1 (es) * 2013-05-03 2014-11-03 Universidad De Salamanca Dispositivo para geo-localización 3D y orientación de tomas fotográficas terrestres

Also Published As

Publication number Publication date
ES2347626A1 (es) 2010-11-02
ES2347626B1 (es) 2011-08-19
WO2010089427A4 (es) 2010-10-07

Similar Documents

Publication Publication Date Title
US10422640B2 (en) Digital magnetic compass compensation
ES2667671T3 (es) Sistema y método para calibrar una unidad de medición inercial
ES2755789T3 (es) Brújula solar electrónica de alta precisión
US10060742B2 (en) Forensic mapping instrument
US20120116711A1 (en) Portable celestial compass
RU2011123991A (ru) Внутрискважинная калибровка инструмента при проведении изысканий пластов
US10634795B2 (en) Rover and rover measuring system
CN105783944B (zh) 太阳敏感器标定方法及系统
ES2347626B1 (es) Soporte de sistema fotogrametrico multi-camara portatil para aplicaciones terrestres.
CN106840108B (zh) 视觉测量仪和视觉测量方法
JP2016197103A (ja) 放電発生箇所の検出装置
KR101144200B1 (ko) 일반도화기에서 사용되는 영상도화이미지의 데어터 수집시스템
US6049989A (en) Three-dimensional homologous surveying method and the related instrument
IL222256A (en) Angle gauge with graphic information display means for supplying information
CN113587896B (zh) 一种任意地形条件下树高树干长冠长高精度测量方法
CN209279950U (zh) 一种激光测距装置
CN106931955B (zh) 一种用于地质工作的经纬罗盘仪
RU2523100C1 (ru) Секстан
CN108344427A (zh) 一种星敏感器的俯仰反射镜的检校方法及检校机构
KR102650404B1 (ko) 무인항공기가 촬영한 영상이미지의 영상처리시스템
EP1114978A1 (en) Three-dimensional homologous surveying method and the related instrument
RU87747U1 (ru) Установка для исследования скважинных телеметрических систем
ES1075035U (es) Dispositivo lidar aerotransportado.
JP6509471B1 (ja) 計測装置
ES2244301B2 (es) Dispositivo de bajo coste para la localizacion de robots autonomos.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738223

Country of ref document: EP

Kind code of ref document: A1