WO2010086966A1 - Fusing apparatus for fibrous silicate mineral - Google Patents

Fusing apparatus for fibrous silicate mineral Download PDF

Info

Publication number
WO2010086966A1
WO2010086966A1 PCT/JP2009/051335 JP2009051335W WO2010086966A1 WO 2010086966 A1 WO2010086966 A1 WO 2010086966A1 JP 2009051335 W JP2009051335 W JP 2009051335W WO 2010086966 A1 WO2010086966 A1 WO 2010086966A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
primary
heat exchanger
melting
temperature
Prior art date
Application number
PCT/JP2009/051335
Other languages
French (fr)
Japanese (ja)
Inventor
清治 道前
Original Assignee
Michimae Kiyoharu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michimae Kiyoharu filed Critical Michimae Kiyoharu
Priority to PCT/JP2009/051335 priority Critical patent/WO2010086966A1/en
Priority to JP2009525848A priority patent/JP4410843B1/en
Publication of WO2010086966A1 publication Critical patent/WO2010086966A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/10Supplementary heating arrangements using auxiliary fuel
    • F23G2204/103Supplementary heating arrangements using auxiliary fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/102Arrangement of sensing devices for pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7005Incinerating used asbestos

Definitions

  • the present invention relates to a melt processing apparatus for melting and detoxifying fibrous silicate minerals collectively called asbestos.
  • Naturally produced mineral fibers are collectively referred to as asbestos.
  • Specific examples include serpentinite chrysonyl (white asbestos), amphibolite crocidolite (blue asbestos) and amosite (tea asbestos). It is done. Asbestos has been widely used all over the world because of its excellent industrial properties such as heat resistance, chemical resistance, and insulation properties. forbidden.
  • fibrous minerals such as asbestos contain water of crystallization, etc.
  • the ambient temperature reaches 500 to 1000 ° C.
  • dehydration proceeds and the crystal structure collapses to become powdery. If this powdered material is scattered, there is a high risk of generating secondary pollution, and detoxification is difficult.
  • the fibrous mineral melts, it becomes a molten ingot with a specific gravity of about 4000 kg / m 3 , but in the fibrous state, the specific gravity is very light, about 100 kg / m 3, so asbestos is simply melted at high temperature.
  • the entanglement phenomenon occurs without the mineral fibers being fused and scattered as a powdery material, and the actual situation is that an apparatus capable of completely detoxifying asbestos has not been realized.
  • An object of the present invention is to provide a melt treatment apparatus that can safely and stably perform fibrous detoxification treatment on fibrous silicate minerals such as asbestos.
  • the apparatus for melting a fibrous silicate mineral according to the present invention is a shaft furnace type primary melting having an input portion for an object to be processed at the upper portion and a burner device for irradiating a flame from the lower side portion into the furnace.
  • a secondary melting chamber for melting the powder generated in the primary melting furnace and controlling the outside air to hot air of 700 to 1000 ° C. using the combustion gas recovered from the secondary melting chamber A heat exchanger is provided, and the temperature in the primary melting furnace is controlled to 1700 to 1900 ° C. by blowing hot air of 700 to 1000 ° C. into the burner device of the primary melting furnace.
  • a temperature of 1350 to 1500 ° C. is the limit of the temperature that can be obtained in a stable manner by simply placing a fibrous silicate mineral material into a shaft furnace type melting furnace and heating it with a burner combustion flame. . Therefore, in the present invention, hot air obtained by heating outside air to 700 to 1000 ° C. is blown into the burner apparatus. As a result, the temperature of the burner combustion flame can be increased to about 2000 ° C., and the temperature in the primary melting furnace can be controlled to a high temperature of 1700 to 1900 ° C. In order to blow hot air into the burner, the blowing pressure is preferably 300 to 700 mmAq.
  • the burner apparatus When the burner apparatus is used to irradiate the object to be processed, which is introduced into the furnace from the lower side of the primary melting furnace, the object to be processed is heated. Asbestos and other objects to be treated are thrown into containers and stored and transported to prevent scattering, so waste plastics are often mixed in, so gas is also generated from plastics. . Accordingly, when the object to be treated is heated together with the container, a flammable waste gas and a part of asbestos in powder form are generated in addition to the magmatic melt.
  • a secondary melting chamber (secondary combustion chamber) in which the gas generated in the primary melting furnace is subjected to secondary combustion and the powder generated in the primary melting furnace is melted into droplets. It was. If the secondary melting chamber is kept at 1600 ° C. or higher, the powdered material becomes molten droplets. Moreover, you may provide the auxiliary combustion burner for burning the gas emitted from plastics.
  • the input portion of the object to be processed in the primary melting furnace has a double door structure including a primary door on the side for receiving the object to be processed accommodated in the container and a secondary door on the side to be input into the furnace. It may be an input chamber.
  • the heat exchanger includes a primary heat exchanger that lowers the combustion exhaust gas temperature to about 1300 ° C., a secondary heat exchanger that lowers the combustion exhaust gas temperature to about 900 ° C., and a tertiary heat exchanger that drops the temperature to about 800 ° C. or less. It is also possible to obtain a hot air of 700 to 1000 ° C. by taking outside air as a refrigerant of the heat exchanger.
  • Combustion exhaust gas whose temperature has been lowered to about 800 ° C. or less by a heat exchanger can be effectively used using a waste heat boiler or the like, and thereafter, a conventional exhaust gas treatment means that passes through a bag filter or the like is used. be able to. Moreover, you may employ
  • the melt processing apparatus in the present invention can melt the powder generated at the time of melting in the secondary melting chamber in the case of detoxifying asbestos, the asbestos can be completely detoxified and safe. Stable operation.
  • the combustion air is used to heat and heat the outside air with a heat exchanger, and this hot air is blown into the burner device of the primary melting furnace to obtain a high-temperature frame and change the hot air temperature to 600 to 1000 ° C.
  • the frame temperature can be variably controlled to about 1620-2000 ° C.
  • FIG. 1 shows a flow diagram of recovered combustion gas accompanying the process from an asbestos stored in a storage room to a harmless melt as an example of a treatment target.
  • Asbestos is a cause of pollution if it is not reliably prevented from being scattered, so it is stored in a container 4 sealed from the collection site, and stored in a storage room 1 that is carried in and sealed by a truck or the like.
  • the container 4 carried in from the loading platform such as a truck using the lifter 3 is charged into the primary melting furnace 10 from the charging portion disposed at the upper part of the primary melting furnace 10 by the conveyor 2b.
  • the primary melting furnace 10 is a vertical shaft furnace type, and an object to be processed is introduced into the furnace from an upper charging part and is processed by a combustion frame of a burner device 11 provided on a lower side part. Heat.
  • the charging section of the primary melting furnace 10 has a double door structure including a primary door 12 on the side to receive the workpiece 5 while being accommodated in the container 4 and a secondary door 13 on the side to be charged into the furnace. It is chamber 18. When the container 4 is charged into the charging chamber 18, the primary door 12 is opened by the operation of the cylinder 12a or the like with the secondary door 13 closed.
  • the primary door 12 When the container 4 is charged into the charging chamber 18, the primary door 12 is closed, then the secondary door 13 is opened by the operation of the cylinder 13 a and the like, and the container 4 is pushed into the furnace 19 by the pusher 14. When the container 4 falls into the furnace, the secondary door 13 is closed.
  • the burner device 11 When the container 4 is put into the furnace 19, it is heated by the burner device 11 provided on the lower side portion of the primary melting furnace 10.
  • the burner device 11 is supplied with auxiliary combustion air by the compressor 16 and hot air A4 of about 700 to 1000 ° C. heated by a heat exchanger described later.
  • the melting point of chrysotile is 1521 ° C., and 1600 ° C. or higher is preferable for melting mixed asbestos. Therefore, the flame temperature can be raised to 1900 to 2000 ° C. by blowing heated hot air into the burner device.
  • hot air is blown at a pressure of 300 to 700 mmAq
  • the hot air temperature is raised from 700 ° C. to 1000 ° C.
  • the flame temperature changes from 1700 ° C. to 1900 ° C. or higher, so the temperature of the hot air to be blown is controlled.
  • the furnace temperature can be managed.
  • a molten layer M In the primary melting furnace, approximately three layers are formed: a molten layer M, a dry oil layer C on which waste plastic or the like is gasified, and a dry layer D in which minerals are dried and decomposed thereon.
  • the molten layer M melted in a magma shape is recovered as a solid melt 15a by opening the extraction door 15 provided near the bottom of the furnace.
  • the powdery substance generated from the dry layer D and the combustible gas generated from the dry oil layer C are fed into the secondary melting chamber 20.
  • Reference numeral 17 in the figure denotes an analyzer.
  • the secondary melting chamber 20 is maintained at about 1550 to 1650 ° C. by the blower 24 and the auxiliary burner 23.
  • the combustible gas generated in the primary melting furnace 10 burns, the asbestos powder is melted and dropped, flows down along the collection cylinder 21, and becomes solid on the conveyor 22 or the like. To be recovered.
  • the combustion gas generated in the secondary melting chamber 20 is guided to the heat exchanger as the recovered combustion gas 33.
  • the heat exchanger is divided into three stages of a primary heat exchanger 30, a secondary heat exchange 31a, 31b, and a tertiary heat exchanger 32 according to the temperature range.
  • the enlarged schematic diagram is shown in FIG.
  • the primary heat exchanger 30 lowers the recovered combustion gas 33 to about 1300 ° C.
  • the primary heat exchangers 31a and 31b lower the recovered combustion gas 33 from about 1300 ° C. to about 900 ° C.
  • the vessel 32 is lowered to about 800 ° C. or less and then sent to, for example, the waste heat boiler 40 and used for waste heat utilization.
  • the air A1 of the outside air sent to the tertiary heat exchanger 32 by the blower 34 becomes hot air A2 heated from 20 ° C. to about 240 ° C., and is about 800 ° C. in the secondary heat exchangers 31a and 31b. Is heated to about 1000 ° C. by the primary heat exchanger 30 and supplied to the burner device 11 of the primary melting furnace 10.
  • FIG. 2 A structural example of the heat exchanger will be described with reference to FIG.
  • an arrow indicated by a double line indicates a flow of the recovered combustion gas 33, and a white arrow indicates a large flow of hot air.
  • a thin solid line arrow indicates the flow of air in the heat exchange material, and a dotted line arrow indicates the flow of hot air in the primary to tertiary heat exchangers.
  • the primary heat exchanger 30 is intended for the high-temperature recovered combustion gas 33 of about 1450 to 1300 ° C.
  • the heat exchanger 30a made of a ceramic material is used.
  • the heat exchanger material 30a can be thermally expanded and contracted without being restrained in the vertical direction so as to withstand a temperature difference.
  • the heat exchange material 31c in which the outer peripheral portion is made of a ceramic material and the metal material is arranged on the inner peripheral side is used.
  • the heat exchange pipe made of a metal material has a double structure of the outside and the inside, and the inside heat exchange pipe 31e has a hanging structure in which the lower end portion is free.
  • the tertiary heat exchanger 32 has a relatively low temperature of about 900 to 800 ° C., it is composed of a metal double-structure heat exchange pipe 32a, 32b, and the inner heat exchange pipe 32b has a lower end portion. It has a free hanging structure.
  • symbol S in a figure shows the partition wall of collection
  • the recovered combustion gas 33 that has passed through the tertiary heat exchanger 32 may be used as waste heat in a waste heat boiler 40 or the like, as shown in FIG. 1, and the waste heat boiler 40 may be used for power generation. it can.
  • the exhaust gas after use of heat is neutralized using a slaked lime tank 60 and a spray device 61 as necessary, passes through the bag filter 50, and is discharged from the chimney 53 to the atmosphere by the exhaust gas blower 51. In that case, it is checked by the exhaust gas analyzer 54.
  • the residue collected by the bag filter 50 is opened and collected by the conveyor 50b by opening the valve 50a.
  • hot air is produced by a heat exchanger using a combustion gas as a heat source, and this hot air is blown into a burner device, so that a high temperature of 1600 ° C. or higher, which has been difficult in the past, can be achieved. It is possible to drop the powdery material generated in step 2 in the secondary melting chamber, and it is suitable for detoxifying high melting point fibrous minerals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a fusing apparatus which can perform fusion detoxification processing of a fibrous silicate mineral such as asbestos safely, stably and efficiently. The fusing apparatus for fibrous silicate minerals comprises a shaft furnace type primary fusing furnace having a section for throwing in a matter to be processed at an upper part, and a burner for irradiating flame into the furnace from a lateral side at a lower part, and a secondary fusing chamber performing fusion processing of powdery matter produced in the primary fusing furnace, and is further provided with a heat exchanger for controlling outer air to hot wind of 700-1000°C by using combustion gas collected from the secondary fusing chamber. The temperature in the primary fusing furnace is controlled to 1700-1900°C by blowing the hot wind of 700-1000°C into the burner of the primary fusing furnace.

Description

繊維状ケイ酸塩鉱物の熔融処理装置Fibrous silicate mineral melting equipment
 本発明はアスベストと総称される繊維状ケイ酸塩鉱物を熔融処理し、無害化するための熔融処理装置に関する。 The present invention relates to a melt processing apparatus for melting and detoxifying fibrous silicate minerals collectively called asbestos.
 天然に産する鉱物繊維をアスベストと総称されているが、具体的には蛇紋石族のクリソヌイル(白石綿)、角閃石族のクロシドライト(青石綿)及びアモサイト(茶石綿)等が代表例として挙げられる。
 アスベストは耐熱性、耐薬品性、絶縁性等の工業上の諸特性に優れていたために、世界中に広く普及してしまったが、健康被害が明らかになり、製造及び使用等が全面的に禁止された。
Naturally produced mineral fibers are collectively referred to as asbestos. Specific examples include serpentinite chrysonyl (white asbestos), amphibolite crocidolite (blue asbestos) and amosite (tea asbestos). It is done.
Asbestos has been widely used all over the world because of its excellent industrial properties such as heat resistance, chemical resistance, and insulation properties. forbidden.
 しかし、アスベストのような繊維状鉱物にあっては、結晶水等を含有しているために、雰囲気温度500~1000℃になると、脱水化が進行し、結晶構造が崩壊した後に粉状になり、この粉状物が飛散すれば二次公害を発生させる恐れが高く、無害化が難しいものであった。
 より具体的に説明すると、繊維状鉱物が熔融すると、比重約4000kg/mの熔融塊となるが繊維状の状態では比重が100kg/m程度と非常に軽いので、アスベストを単に高温熔融するだけでは、鉱物繊維が融合せずに捲き込み現象が発生し、粉状物として飛散してしまう問題があり、アスベストを完全に無害化できる装置が実現していないのが実状である。
However, since fibrous minerals such as asbestos contain water of crystallization, etc., when the ambient temperature reaches 500 to 1000 ° C., dehydration proceeds and the crystal structure collapses to become powdery. If this powdered material is scattered, there is a high risk of generating secondary pollution, and detoxification is difficult.
More specifically, when the fibrous mineral melts, it becomes a molten ingot with a specific gravity of about 4000 kg / m 3 , but in the fibrous state, the specific gravity is very light, about 100 kg / m 3, so asbestos is simply melted at high temperature. However, there is a problem that the entanglement phenomenon occurs without the mineral fibers being fused and scattered as a powdery material, and the actual situation is that an apparatus capable of completely detoxifying asbestos has not been realized.
 本発明は、アスベストのような繊維状ケイ酸塩鉱物を安全で安定的に効率良く、熔融無害化処理することができる熔融処理装置の提供を目的とする。 An object of the present invention is to provide a melt treatment apparatus that can safely and stably perform fibrous detoxification treatment on fibrous silicate minerals such as asbestos.
 本発明に係る繊維状ケイ酸塩鉱物の熔融処理装置は、上部に被処理物の投入部を有し、下部の側部から炉内にフレーム照射するバーナー装置を有するシャフト炉型の1次熔融炉と、1次熔融炉で発生した粉状物を熔融処理する2次熔融室とを備え、2次熔融室から回収した燃焼ガスを用いて外気の空気を700~1000℃の熱風に制御する熱交換器を有し、前記700~1000℃の熱風を前記1次熔融炉のバーナー装置に吹込むことで1次熔融炉内温度を1700~1900℃に制御することを特徴とする。 The apparatus for melting a fibrous silicate mineral according to the present invention is a shaft furnace type primary melting having an input portion for an object to be processed at the upper portion and a burner device for irradiating a flame from the lower side portion into the furnace. A secondary melting chamber for melting the powder generated in the primary melting furnace and controlling the outside air to hot air of 700 to 1000 ° C. using the combustion gas recovered from the secondary melting chamber A heat exchanger is provided, and the temperature in the primary melting furnace is controlled to 1700 to 1900 ° C. by blowing hot air of 700 to 1000 ° C. into the burner device of the primary melting furnace.
 シャフト炉型の熔融炉に繊維状ケイ酸塩鉱物の被処理物を投入し、バーナー燃焼炎で加熱するだけでは実際に安定して得られる温度は1350~1500℃レベルの温度が限界であった。
 そこで、本発明では外気の空気を700~1000℃に加熱した熱風をバーナー装置に吹き込んだものである。
 これにより、バーナー燃焼炎の温度を約2000℃まで高温にすることが可能になり、1次熔融炉内温度を1700~1900℃の高温に制御できる。
 なお、熱風をバーナーに吹き込むには吹き込み圧300~700mmAqあるのが好ましい。
A temperature of 1350 to 1500 ° C. is the limit of the temperature that can be obtained in a stable manner by simply placing a fibrous silicate mineral material into a shaft furnace type melting furnace and heating it with a burner combustion flame. .
Therefore, in the present invention, hot air obtained by heating outside air to 700 to 1000 ° C. is blown into the burner apparatus.
As a result, the temperature of the burner combustion flame can be increased to about 2000 ° C., and the temperature in the primary melting furnace can be controlled to a high temperature of 1700 to 1900 ° C.
In order to blow hot air into the burner, the blowing pressure is preferably 300 to 700 mmAq.
 1次熔融炉の下部の側部から炉内に、投入した被処理物に向けバーナー装置にてフレーム照射すると、被処理物が加熱昇温させられる。
 アスベスト等の被処理物は飛散を防止するために、コンテナに投入密閉されて保管及び搬入されてくることから、廃プラスチック類等も混入している場合が多いので、プラスチック類からガスも発生する。
 従って、被処理物をコンテナごと加熱すると、マグマ状の熔融物の他に燃焼性の廃ガス及びアスベストの一部が粉状化した飛散物が発生する。
When the burner apparatus is used to irradiate the object to be processed, which is introduced into the furnace from the lower side of the primary melting furnace, the object to be processed is heated.
Asbestos and other objects to be treated are thrown into containers and stored and transported to prevent scattering, so waste plastics are often mixed in, so gas is also generated from plastics. .
Accordingly, when the object to be treated is heated together with the container, a flammable waste gas and a part of asbestos in powder form are generated in addition to the magmatic melt.
 そこで本発明においては、1次熔融炉で発生したガスを2次燃焼させ、同1次熔融炉で発生した粉状物を滴状に熔融処理する2次熔融室(2次燃焼室)を設けた。
 2次熔融室を1600℃以上に保持すれば、粉状物が熔融滴状になる。
 また、プラスチック類から発生するガスを燃焼するための助燃バーナーを設けてもよい。
Therefore, in the present invention, a secondary melting chamber (secondary combustion chamber) is provided in which the gas generated in the primary melting furnace is subjected to secondary combustion and the powder generated in the primary melting furnace is melted into droplets. It was.
If the secondary melting chamber is kept at 1600 ° C. or higher, the powdered material becomes molten droplets.
Moreover, you may provide the auxiliary combustion burner for burning the gas emitted from plastics.
 本発明において、1次熔融炉の被処理物の投入部は、コンテナに収容した被処理物を受け入れる側の1次扉と、炉内に投入する側の2次扉からなる二重扉構造の投入室であってもよい。
 また、熱交換器は、燃焼排ガス温度を、約1300℃まで降下させる1次熱交換器と、約900℃まで降下させる2次熱交換器と、約800℃以下に降下させる3次熱交換器からなる3段式熱交換器であり、当該熱交換器の冷媒として外気の空気を取り込み、700~1000℃の熱風を得るようにしてもよい。
 熱交換器により温度を約800℃以下に降下させた燃焼排ガスは、廃熱ボイラー等を用いて有効利用することが可能であり、その後はバグフィルター等を経由させる常法の排ガス処理手段を用いることができる。
 また、1次熔融炉及び2次熔融室の炉壁は高温に耐えられるように水冷ジャケット構造を採用してもよい。
In the present invention, the input portion of the object to be processed in the primary melting furnace has a double door structure including a primary door on the side for receiving the object to be processed accommodated in the container and a secondary door on the side to be input into the furnace. It may be an input chamber.
In addition, the heat exchanger includes a primary heat exchanger that lowers the combustion exhaust gas temperature to about 1300 ° C., a secondary heat exchanger that lowers the combustion exhaust gas temperature to about 900 ° C., and a tertiary heat exchanger that drops the temperature to about 800 ° C. or less. It is also possible to obtain a hot air of 700 to 1000 ° C. by taking outside air as a refrigerant of the heat exchanger.
Combustion exhaust gas whose temperature has been lowered to about 800 ° C. or less by a heat exchanger can be effectively used using a waste heat boiler or the like, and thereafter, a conventional exhaust gas treatment means that passes through a bag filter or the like is used. be able to.
Moreover, you may employ | adopt a water cooling jacket structure so that the furnace wall of a primary melting furnace and a secondary melting chamber can endure high temperature.
 本発明における熔融処理装置は、アスベストの無害化処理する際に熔融時に発生する粉状物を2次熔融室で滴状に熔融化できるので、完全にアスベストの無害化が可能になり、安全で安定した操業となる。
 また、燃焼排ガスを用いて熱交換器により外気の空気を加熱熱風化し、この熱風を1次熔融炉のバーナー装置に吹き込むことにより高温フレームが得られるとともに熱風温度を600~1000℃に変化させることでフレーム温度を約1620~2000℃に可変制御できる。
Since the melt processing apparatus in the present invention can melt the powder generated at the time of melting in the secondary melting chamber in the case of detoxifying asbestos, the asbestos can be completely detoxified and safe. Stable operation.
In addition, the combustion air is used to heat and heat the outside air with a heat exchanger, and this hot air is blown into the burner device of the primary melting furnace to obtain a high-temperature frame and change the hot air temperature to 600 to 1000 ° C. The frame temperature can be variably controlled to about 1620-2000 ° C.
本発明に係る熔融処理装置のフロー図を示す。The flowchart of the melt processing apparatus which concerns on this invention is shown. 熱交換器の拡大図を示す。The enlarged view of a heat exchanger is shown.
符号の説明Explanation of symbols
10   1次熔融炉
11   バーナー装置
12   1次扉
13   2次扉
14   プッシャー
15   抽出扉
20   2次熔融室
21   回収筒
22   コンベア
23   助燃バーナー
24   ブロアー
30   1次熱交換器
31a,3ab   2次熱交換器
32   3次熱交換器
DESCRIPTION OF SYMBOLS 10 Primary melting furnace 11 Burner apparatus 12 Primary door 13 Secondary door 14 Pusher 15 Extraction door 20 Secondary melting chamber 21 Recovery cylinder 22 Conveyor 23 Auxiliary burner 24 Blower 30 Primary heat exchanger 31a, 3ab Secondary heat exchanger 32 Tertiary heat exchanger
  本発明に係る繊維状ケイ酸塩鉱物の熔融処理装置の構成例を以下図面に基づいて説明する。
 図1は、処理対象例としてアスベストを保管室に保管した状態から無害となる熔融物までと、それに伴う回収燃焼ガスのフロー図を示す。
 アスベストは飛散を確実に防止しないと、公害の発生原因となることから、回収現地から密閉されたコンテナ4に収容されて、トラック等にて搬入及び密閉管理された保管室1に保管される。
 トラック等の荷台からリフター3を用いて搬入されたコンテナ4はコンベア2bにより、1次熔融炉10の上部に配置した投入部から、この1次熔融炉10内に投入される。
 1次熔融炉10は竪型のシャフト炉型になっていて、上部の投入部から被処理物を炉内に投入し、下部の側部に設けたバーナー装置11の燃焼フレームにて被処理物を加熱する。
 1次熔融炉10の投入部は、被処理物5をコンテナ4に収容したまま受け入れる側に1次扉12と、炉内に投入する側に2次扉13とからなる二重扉構造の投入室18になっている。
 投入室18にコンテナ4を投入する際には、2次扉13を閉じた状態で1次扉12をシリンダー12a等の作動により開く。
 投入室18にコンテナ4が投入されると、1次扉12が閉じ、次にシリンダー13a等の作動により2次扉13が開き、プッシャー14にてコンテナ4を炉内19に押し込む。
 炉内にコンテナ4が落下すると、2次扉13が閉じる。
The structural example of the fusion processing apparatus of the fibrous silicate mineral which concerns on this invention is demonstrated based on drawing below.
FIG. 1 shows a flow diagram of recovered combustion gas accompanying the process from an asbestos stored in a storage room to a harmless melt as an example of a treatment target.
Asbestos is a cause of pollution if it is not reliably prevented from being scattered, so it is stored in a container 4 sealed from the collection site, and stored in a storage room 1 that is carried in and sealed by a truck or the like.
The container 4 carried in from the loading platform such as a truck using the lifter 3 is charged into the primary melting furnace 10 from the charging portion disposed at the upper part of the primary melting furnace 10 by the conveyor 2b.
The primary melting furnace 10 is a vertical shaft furnace type, and an object to be processed is introduced into the furnace from an upper charging part and is processed by a combustion frame of a burner device 11 provided on a lower side part. Heat.
The charging section of the primary melting furnace 10 has a double door structure including a primary door 12 on the side to receive the workpiece 5 while being accommodated in the container 4 and a secondary door 13 on the side to be charged into the furnace. It is chamber 18.
When the container 4 is charged into the charging chamber 18, the primary door 12 is opened by the operation of the cylinder 12a or the like with the secondary door 13 closed.
When the container 4 is charged into the charging chamber 18, the primary door 12 is closed, then the secondary door 13 is opened by the operation of the cylinder 13 a and the like, and the container 4 is pushed into the furnace 19 by the pusher 14.
When the container 4 falls into the furnace, the secondary door 13 is closed.
 コンテナ4が炉内19に投入されると、1次熔融炉10の下部の側部に設けたバーナー装置11により加熱される。
 バーナー装置11には、コンプレッサー16により助燃エアーが供給されるとともに、後述する熱交換器により加熱された約700~1000℃の熱風A4が吹き込まれる。
 例えば、クリソタイルの融点は1521℃であり、混合アスベストの熔融には1600℃以上が好ましい。
 そこで、バーナー装置に加熱した熱風を吹き込むことでフレーム温度を1900~2000℃に上昇させることができる。
 ここで、熱風を圧力300~700mmAqで吹き込んだ場合に熱風温度を700℃から1000℃まで上昇させると、それに伴いフレーム温度は1700℃から1900℃以上に変化するから、吹き込む熱風の温度を制御することで炉内温度を管理することができる。
When the container 4 is put into the furnace 19, it is heated by the burner device 11 provided on the lower side portion of the primary melting furnace 10.
The burner device 11 is supplied with auxiliary combustion air by the compressor 16 and hot air A4 of about 700 to 1000 ° C. heated by a heat exchanger described later.
For example, the melting point of chrysotile is 1521 ° C., and 1600 ° C. or higher is preferable for melting mixed asbestos.
Therefore, the flame temperature can be raised to 1900 to 2000 ° C. by blowing heated hot air into the burner device.
Here, when hot air is blown at a pressure of 300 to 700 mmAq, if the hot air temperature is raised from 700 ° C. to 1000 ° C., the flame temperature changes from 1700 ° C. to 1900 ° C. or higher, so the temperature of the hot air to be blown is controlled. Thus, the furnace temperature can be managed.
 1次熔融炉内では、熔融層Mとその上に廃プラスチック等がガス化した乾油層Cと、その上に鉱物が乾燥分解した乾燥層Dとの概ね3層が形成される。
 マグマ状に熔融した熔融層Mは、炉の底部付近に設けた抽出扉15を開いて固体熔融物15aとして回収される。
In the primary melting furnace, approximately three layers are formed: a molten layer M, a dry oil layer C on which waste plastic or the like is gasified, and a dry layer D in which minerals are dried and decomposed thereon.
The molten layer M melted in a magma shape is recovered as a solid melt 15a by opening the extraction door 15 provided near the bottom of the furnace.
 乾燥層Dから発生した粉状物や、乾油層Cから発生した燃焼性ガスは、2次熔融室20に送り込まれる。
 図中符号17は分析装置である。
 2次熔融室20は、ブロアー24と助燃バーナー23により約1550~1650℃に保持されている。
 2次熔融室20では、1次熔融炉10で発生した燃焼性ガスが燃焼し、アスベストの粉状物は熔融滴下し、回収筒21に沿って下に流れ落ち、コンベア22等にて固体物として回収される。
The powdery substance generated from the dry layer D and the combustible gas generated from the dry oil layer C are fed into the secondary melting chamber 20.
Reference numeral 17 in the figure denotes an analyzer.
The secondary melting chamber 20 is maintained at about 1550 to 1650 ° C. by the blower 24 and the auxiliary burner 23.
In the secondary melting chamber 20, the combustible gas generated in the primary melting furnace 10 burns, the asbestos powder is melted and dropped, flows down along the collection cylinder 21, and becomes solid on the conveyor 22 or the like. To be recovered.
 2次熔融室20で発生した燃焼ガスは回収燃焼ガス33として熱交換器に誘導される。
 熱交換器は温度域に応じて1次熱交換器30,2次熱交換に31a,31b及び3次熱交換器32の3段階に分かれている。
 その拡大模式図を図2に示す。
 1次熱交換器30は、回収燃焼ガス33を1300℃程度まで降下させ、1次熱交換器31a,31bは回収燃焼ガス33を約1300℃から約900℃にまで降下させ、3次熱交換器32は約800℃以下まで降下させた後に例えば廃熱ボイラー40等に送り込み、廃熱利用に供する。
 これにより、ブロアー34により3次熱交換器32に送り込まれた外気の空気A1は20℃から約240℃に加熱された熱風A2になり、2次熱交換器31a,31bにて約800℃近くまで加熱された熱風A3になり、1次熱交換器30にてさらに約1000℃まで加熱した熱風A4として1次熔融炉10のバーナー装置11に供給する。
The combustion gas generated in the secondary melting chamber 20 is guided to the heat exchanger as the recovered combustion gas 33.
The heat exchanger is divided into three stages of a primary heat exchanger 30, a secondary heat exchange 31a, 31b, and a tertiary heat exchanger 32 according to the temperature range.
The enlarged schematic diagram is shown in FIG.
The primary heat exchanger 30 lowers the recovered combustion gas 33 to about 1300 ° C., and the primary heat exchangers 31a and 31b lower the recovered combustion gas 33 from about 1300 ° C. to about 900 ° C. The vessel 32 is lowered to about 800 ° C. or less and then sent to, for example, the waste heat boiler 40 and used for waste heat utilization.
Thereby, the air A1 of the outside air sent to the tertiary heat exchanger 32 by the blower 34 becomes hot air A2 heated from 20 ° C. to about 240 ° C., and is about 800 ° C. in the secondary heat exchangers 31a and 31b. Is heated to about 1000 ° C. by the primary heat exchanger 30 and supplied to the burner device 11 of the primary melting furnace 10.
 熱交換器の構造例を図2に基づいて説明する。
 図2において、二重線で示した矢印は回収燃焼ガス33の流れを示し、白抜きの矢印は熱風の大きな流れを示す。
 また、細い実線矢印は熱交材の中の空気の流れを示し、点線の矢印は1次~3次熱交換器の熱風の流れを示す。
 1次熱交換器30は約1450~1300℃の高温の回収燃焼ガス33を対象にしているので、セラミックス材からなる熱交材30aを用いている。
 熱交材30aは、温度差に耐えられるように上下方向には拘束せずに熱伸縮可能になっている。
 2次熱交換器31a,31bは約1300℃~900℃の回収燃焼ガスを対象にしているので外周部をセラミックス材にし、内周側に金属材を配置した熱交材31cを使用している。
 また、金属材からなる熱交パイプは外側と内側の二重構造にし、内側の熱交パイプ31eは下端部がフリーの吊り下げ構造になっている。
 3次熱交換器32は約900~800℃の相対的に低温になっているので、金属製の二重構造の熱交パイプ32a,32bで構成し、内側の熱交パイプ32bは下端部がフリーにした吊り下げ構造になっている。
 なお、図中符号Sは、回収燃焼ガスと加熱空気の仕切り壁を示す。
A structural example of the heat exchanger will be described with reference to FIG.
In FIG. 2, an arrow indicated by a double line indicates a flow of the recovered combustion gas 33, and a white arrow indicates a large flow of hot air.
A thin solid line arrow indicates the flow of air in the heat exchange material, and a dotted line arrow indicates the flow of hot air in the primary to tertiary heat exchangers.
Since the primary heat exchanger 30 is intended for the high-temperature recovered combustion gas 33 of about 1450 to 1300 ° C., the heat exchanger 30a made of a ceramic material is used.
The heat exchanger material 30a can be thermally expanded and contracted without being restrained in the vertical direction so as to withstand a temperature difference.
Since the secondary heat exchangers 31a and 31b target the recovered combustion gas at about 1300 ° C. to 900 ° C., the heat exchange material 31c in which the outer peripheral portion is made of a ceramic material and the metal material is arranged on the inner peripheral side is used. .
In addition, the heat exchange pipe made of a metal material has a double structure of the outside and the inside, and the inside heat exchange pipe 31e has a hanging structure in which the lower end portion is free.
Since the tertiary heat exchanger 32 has a relatively low temperature of about 900 to 800 ° C., it is composed of a metal double-structure heat exchange pipe 32a, 32b, and the inner heat exchange pipe 32b has a lower end portion. It has a free hanging structure.
In addition, the code | symbol S in a figure shows the partition wall of collection | recovery combustion gas and heating air.
 3次熱交換器32を経由した回収燃焼ガス33は図1に示すように廃熱ボイラー40等にて廃熱利用してもよく、この廃熱ボイラー40を利用して、発電を行うこともできる。
 また、熱利用後の排ガスは必要に応じて消石灰タンク60及び噴霧装置61を用いて中和処理し、バグフィルター50を通過、排ガスブロワー51にて煙突53から大気に放出される。
 その場合に排ガス分析装置54にてチェックされている。
 また、バグフィルター50にて回収された残渣はバルブ50aを開いてコンベア50bにて搬出回収される。
The recovered combustion gas 33 that has passed through the tertiary heat exchanger 32 may be used as waste heat in a waste heat boiler 40 or the like, as shown in FIG. 1, and the waste heat boiler 40 may be used for power generation. it can.
Further, the exhaust gas after use of heat is neutralized using a slaked lime tank 60 and a spray device 61 as necessary, passes through the bag filter 50, and is discharged from the chimney 53 to the atmosphere by the exhaust gas blower 51.
In that case, it is checked by the exhaust gas analyzer 54.
The residue collected by the bag filter 50 is opened and collected by the conveyor 50b by opening the valve 50a.
 本発明は、燃焼ガスを熱源にした熱交換器にて熱風を造り、この熱風をバーナー装置に吹き込むことで、従来は困難とされていた1600℃以上の高温が可能になり、1次熔融工程で発生した粉状物を2次熔融室で滴下可能になったものであり、高融点の繊維状の鉱物を無害化するのに好適である。 In the present invention, hot air is produced by a heat exchanger using a combustion gas as a heat source, and this hot air is blown into a burner device, so that a high temperature of 1600 ° C. or higher, which has been difficult in the past, can be achieved. It is possible to drop the powdery material generated in step 2 in the secondary melting chamber, and it is suitable for detoxifying high melting point fibrous minerals.

Claims (3)

  1.  上部に被処理物の投入部を有し、下部の側部から炉内にフレーム照射するバーナー装置を有するシャフト炉型の1次熔融炉と、
    1次熔融炉で発生した粉状物を熔融処理する2次熔融室とを備え、
    2次熔融室から回収した燃焼ガスを用いて外気の空気を700~1000℃の熱風に制御する熱交換器を有し、
    前記700~1000℃の熱風を前記1次熔融炉のバーナー装置に吹込むことで1次熔融炉内温度を1700~1900℃に制御することを特徴とする繊維状ケイ酸塩鉱物の熔融処理装置。
    A shaft furnace type primary melting furnace having a burner device that has an input part of an object to be processed in the upper part and flame irradiation into the furnace from the lower side part;
    A secondary melting chamber for melting the powder generated in the primary melting furnace,
    Having a heat exchanger that controls the outside air to hot air of 700 to 1000 ° C. using the combustion gas recovered from the secondary melting chamber;
    An apparatus for melting a fibrous silicate mineral, wherein the temperature in the primary melting furnace is controlled to 1700-1900 ° C. by blowing the hot air of 700-1000 ° C. into the burner device of the primary melting furnace. .
  2.  1次熔融炉の被処理物の投入部は、コンテナに収容した被処理物を受け入れる側の1次扉と、炉内に投入する側の2次扉からなる二重扉構造の投入室であることを特徴とする請求の範囲1記載の繊維状ケイ酸塩鉱物の熔融処理装置。 The input part of the workpiece of the primary melting furnace is a double door structure input chamber composed of a primary door on the side for receiving the object to be processed contained in the container and a secondary door on the side to be input into the furnace. The apparatus for melting a fibrous silicate mineral according to claim 1, wherein:
  3.  熱交換器は、燃焼排ガス温度を、約1300℃まで降下させる1次熱交換器と、約900℃まで降下させる2次熱交換器と、約800℃以下に降下させる3次熱交換器からなる3段式熱交換器であり、当該熱交換器の冷媒として外気の空気を取り込み、700~1000℃の熱風を得ることを特徴とする請求の範囲1記載の繊維状ケイ酸塩鉱物の熔融処理装置。 The heat exchanger includes a primary heat exchanger that lowers the flue gas temperature to about 1300 ° C., a secondary heat exchanger that lowers the temperature of the exhaust gas to about 900 ° C., and a tertiary heat exchanger that drops the temperature to about 800 ° C. or less. The fusion treatment of fibrous silicate mineral according to claim 1, which is a three-stage heat exchanger, and takes in air from outside as refrigerant of the heat exchanger to obtain hot air at 700 to 1000 ° C. apparatus.
PCT/JP2009/051335 2009-01-28 2009-01-28 Fusing apparatus for fibrous silicate mineral WO2010086966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/051335 WO2010086966A1 (en) 2009-01-28 2009-01-28 Fusing apparatus for fibrous silicate mineral
JP2009525848A JP4410843B1 (en) 2009-01-28 2009-01-28 Fibrous silicate mineral melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051335 WO2010086966A1 (en) 2009-01-28 2009-01-28 Fusing apparatus for fibrous silicate mineral

Publications (1)

Publication Number Publication Date
WO2010086966A1 true WO2010086966A1 (en) 2010-08-05

Family

ID=41739257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051335 WO2010086966A1 (en) 2009-01-28 2009-01-28 Fusing apparatus for fibrous silicate mineral

Country Status (2)

Country Link
JP (1) JP4410843B1 (en)
WO (1) WO2010086966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237069A (en) * 2013-06-05 2014-12-18 独立行政法人産業技術総合研究所 Detoxification method of waste containing asbestos

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device
JP2003232508A (en) * 2002-02-07 2003-08-22 Meidensha Corp Thermal decomposition treatment method and facility therefor
JP2006275480A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Heat transfer pipe repairing/withdrawing method for high temperature air heater and heat transfer pipe structure
JP2008032361A (en) * 2006-07-31 2008-02-14 Nitsushiyoo Kiko:Kk Melting furnace
JP2008202803A (en) * 2006-06-08 2008-09-04 Kenzo Takahashi Industrial waste melting/solidifying apparatus
JP2008275180A (en) * 2006-11-01 2008-11-13 Itaru Watanabe Waste melting treatment method and equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111020A (en) * 1998-09-30 2000-04-18 Hosokawa Micron Corp Heat recovery device
JP2003232508A (en) * 2002-02-07 2003-08-22 Meidensha Corp Thermal decomposition treatment method and facility therefor
JP2006275480A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Heat transfer pipe repairing/withdrawing method for high temperature air heater and heat transfer pipe structure
JP2008202803A (en) * 2006-06-08 2008-09-04 Kenzo Takahashi Industrial waste melting/solidifying apparatus
JP2008032361A (en) * 2006-07-31 2008-02-14 Nitsushiyoo Kiko:Kk Melting furnace
JP2008275180A (en) * 2006-11-01 2008-11-13 Itaru Watanabe Waste melting treatment method and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237069A (en) * 2013-06-05 2014-12-18 独立行政法人産業技術総合研究所 Detoxification method of waste containing asbestos

Also Published As

Publication number Publication date
JPWO2010086966A1 (en) 2012-07-26
JP4410843B1 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
TWI356716B (en) Method and apparatus of treating waste
CN1759941B (en) New type heating and fusing method and equipment for dealing with flying ash generated by burning garbage
CN203494881U (en) Plasma thermal decomposition melting furnace
CN106871131A (en) Device and method for processing industrial dangerous waste sodium sulfate salt slag and recycling
JP2005180880A (en) Waste thermal decomposition treatment device and thermal decomposition treatment control system
JP5216283B2 (en) Waste asbestos melting furnace
CN109357268A (en) The process of waste and old paint kettle is handled using the oxygen-enriched natural gas shaft furnace of hot wind
JP4410843B1 (en) Fibrous silicate mineral melting equipment
CN112923376B (en) Rotary ash slag molten state vitrification oxygen-enriched incineration system and process method
CN102778035B (en) Process and device for explosive gas heating
RU2343353C2 (en) Method of thermal waste-free recycling of public solid waste
CN108036334A (en) Danger wastes method for innocent treatment and device
CN209431412U (en) Abraum salt high-temperature fusion oxygen blast kiln
CN107166397A (en) A kind of saliferous waste treatment equipment and method
US11596988B2 (en) Method and plant for waste treatment
CN207405125U (en) A kind of horizontal biomass reacting furnace
CN207599716U (en) To handle the fusion apparatus of waste
JP2007301422A (en) Method and facility for treating asbestos waste
ES2656419T3 (en) Procedure and treatment plant and metal fusion
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
CN101688667B (en) Process and plant for incinerating waste with preheating of the latter
CN104006672A (en) Method for smoke discharging and dedusting of steel making electric furnace
CN210267232U (en) Movable small-sized middle-low radioactive waste gasification melting treatment system
JP7066090B2 (en) Waste disposal method
US5421275A (en) Method and apparatus for reducing mixed waste

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009525848

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839158

Country of ref document: EP

Kind code of ref document: A1