WO2010086464A1 - Agente para la fotoprotección cutánea frente a radiaciones uva-uvb - Google Patents

Agente para la fotoprotección cutánea frente a radiaciones uva-uvb Download PDF

Info

Publication number
WO2010086464A1
WO2010086464A1 PCT/ES2009/000050 ES2009000050W WO2010086464A1 WO 2010086464 A1 WO2010086464 A1 WO 2010086464A1 ES 2009000050 W ES2009000050 W ES 2009000050W WO 2010086464 A1 WO2010086464 A1 WO 2010086464A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
skin
agent
uvb
eada
Prior art date
Application number
PCT/ES2009/000050
Other languages
English (en)
French (fr)
Other versions
WO2010086464A8 (es
Inventor
Manuel Gidekel
Ramon Lucas Molina Carlevarino
Gustavo Cabreras Barjas
Carlos Sunkel Letelier
Ana Gutierrez Moraga
Juan Pablo Pivel Ranieri
Juan Manuel Ferrer Cuesta
Maria Teresa Sanz Berzosa
Original Assignee
Vitrogen, S.A.
Apoteknos Para La Piel, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitrogen, S.A., Apoteknos Para La Piel, S.L. filed Critical Vitrogen, S.A.
Priority to EP09839068.5A priority Critical patent/EP2392316A4/en
Priority to US12/736,727 priority patent/US8357407B2/en
Priority to PCT/ES2009/000050 priority patent/WO2010086464A1/es
Priority to CA2723787A priority patent/CA2723787A1/en
Priority to JP2011546879A priority patent/JP5405597B2/ja
Priority to AU2009339186A priority patent/AU2009339186A1/en
Publication of WO2010086464A1 publication Critical patent/WO2010086464A1/es
Publication of WO2010086464A8 publication Critical patent/WO2010086464A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation

Definitions

  • the present invention relates to the field of protection of human skin against the harmful effects of UVA (I and II), UVB and visible radiation of sunlight. BACKGROUND OF THE TECHNIQUE
  • the sun is our main source of energy that manifests primarily in the form of light and heat, emitting electromagnetic radiation that travels through space in the form of waves and particles. Waves are described by their frequency (v) or their wavelength ( ⁇ ).
  • v frequency
  • wavelength
  • UVB 1 Ia UVA (I and II) UVB 1 Ia UVA (I and II), visible and near infrared
  • UVB radiation and UVA (I and II) is the one that least reaches the earth when filtered by the ozone layer, but is the most influential on the biosphere, including Humans.
  • UVA radiation produces long-term harmful effects .
  • Figure 1 You can see a graph made public that represents the spectrum of sunlight that affects the earth according to its wavelength, the spectrum of action of the erythema and its relationship between the two. This graph demonstrates the aforementioned, that is, that erythema is mainly caused by the incidence of UVB radiation on the skin, however UVA I and Il radiation (320-400nm) does not produce said skin reaction but other effects on long-term, much more harmful, such as photo aging and photocancerogenesis (see Photocarcinogenesis: UVA vs. UVB Radiation, by Fr. R. de Grujil, Skin Pharmacol. Appl. Physiol. 2002; 15: 316-320).
  • the skin has chromophores capable of absorbing UVA radiation, mainly melanin and urocanic acid, in addition to the bases of nucleic acids and aromatic residues of proteins.
  • the UVA radiation penetrating the skin more affects the skin degeneration in the longer term due to its photodynamic action.
  • the photodynamic action generated by the UVA radiation is a consequence of the reaction of the UVA energy (hv) (I and II) with the photosensitizers of the skin or the environment, in the presence of air oxygen, which produce active oxygen species (ROS ), which are the known free radicals and singlet oxygen (see “Sunscreen enhancement of UV-induced reactive oxygen species in the skin", Ferry M. Hanson et al., Fee Radical Biology & Medicine 41 (2006) 1205-1212) .
  • Free radicals are, by definition, reactive chemical species that contain unpaired electrons in their respective orbitals, and they can be neutral, or charged negatively or positively.
  • UVB and UVA ultraviolet radiation also has an impact on plants (see Journal of Photochemistry and Photobiology B: Biology, Volume 76, Issues 1-3, October 25, 2004, Pages 61-68) and plants they have their own defense mechanisms, since not only man generates photoprotective substances in a natural way, such as melanin, but also plants generate their own defenses, as is the case of the Antarctic D ⁇ schampsia which is a plant that grows under very low temperatures and episodes of a lot of solar radiation, which means that they have developed an effective defense mechanism against these severe conditions, dissipating reactive oxygen species (ROS) by developing a large antioxidant capacity, together with a high capacity of non-radiatively process excess UV radiation in the form of heat in small quantities.
  • ROS reactive oxygen species
  • the present invention is based on the use of the antioxidant and dissipation properties of the excess UV radiation of an aqueous extract of a plant belonging to the grass family, the Antarctic Deschampsia (DA), for obtaining a photoprotective agent possessing said characteristics.
  • DA Antarctic Deschampsia
  • the present invention is refers to the antioxidant capacity of this plant and its dissipation properties of excess UV radiation, to obtain an aqueous extract for use as a skin photoprotector.
  • the plant obtained from its native environment can be used or the plant obtained in an artificial environment by means of a method of propagation thereof. Since the plant grows naturally in the Antarctic continent, which is a territory subject to strict protection regulations that make its exploitation impossible and, therefore, the commercial collection of Antarctic Deschampsia, the use of it makes it necessary its obtaining by artificial means outside its natural growth environment.
  • EADA Antarctic Deschampsia
  • the EADA thus obtained can be used to obtain a cutaneous photoprotection agent against UVA (I and II) and UVB radiation.
  • Said active agent as a photoprotector may be combined with conventional excipients and additives to obtain a formulation in the form of cream, gel, or liquid such as lotions, oils, suspensions or ointments for topical application on the skin.
  • the EADA obtained was subjected to tests to establish its physicochemical and pharmacological characteristics.
  • the EADAs were subjected to a UV-Vis spectrum analysis at 200-400 nm for the determination of the absorbance peaks of the compounds present in the EADA with UV absorbing characteristics.
  • the spectrophotometer was used. SHIMADZU UV-160 and the samples were diluted in eianol until a visible reading was obtained in the spectrum.
  • the colorimetric Folin test was performed to measure the amount of total polyphenols in the EADA. This reaction is characteristic of compounds that have a hydroxyl group attached to a benzene ring.
  • the Folin-Ciocalteau reagent changes from yellow to blue when phenols are present. The intensity of blue is measured through a spectrophotometer at a wavelength of 765 nm (see Annex 3).
  • the antioxidant capacity of EADA was evaluated; This is based on the progressive generation of a stable radical cation ABTS + , whose appearance is detected by the decrease in absorbance of!
  • the quercetin index of the EADAs analyzed was determined to obtain an indicator of the index of phenolic compounds; since this is a flavonoid that has a double bond between carbons 2 and 3, a free OH group in position 3 and a carbonyl group in position 4, which enhances the antioxidant power of the compound.
  • a calibration curve with quercetin was carried out from a concentration of 0.2 mg / ml to 0.8 mg / ml; to then measure the absorbance of the different EADAs in a spectrum at a wavelength of 350 nm and at a concentration of 0.5 mg / ml.
  • Aqueous EADA HPLC pattern was carried out from a concentration of 0.2 mg / ml to 0.8 mg / ml; to then measure the absorbance of the different EADAs in a spectrum at a wavelength of 350 nm and at a concentration of 0.5 mg / ml.
  • HPLC a Shimadzu diode array device with SPD-M10AVP detector and a RP-18.5 ⁇ m column of 25 cm, as a run solvent the methanol: water mixture was used and the samples were run in a gradient program with a flow of 0.7-0.8 ml / min
  • a study of the cell viability (cell cycle) of an extract was carried out Aqueous Deschampsia Antarctica (EADA) at a dose of 10mg / ml, in the presence and absence of ultraviolet light in HaCaT cells.
  • the HaCaT human keratinocyte line is cultured in DMEM medium with 10% fetal bovine serum.
  • the incubation was prolonged for 24 hours without additives.
  • the cells were subsequently detached with trypsin, fixed with 60% ethanol and incubated in a buffer with propidium iodide, Triton X-100 and RNAse.
  • the propidium iodide is fixed to the DNA and emits fluorescence that is measured in a flow cytometer. This determined the number of total cells and the percentage of them that are in the resting phase (G0 / G1) in synthesis (S) or in mitosis (M / G2), as well as cells in apoptosis (Sub-GO ).
  • This approach allows to know if the EADA are toxic or mitogenic and their capacity to reverse the damage by solar ultraviolet radiation.
  • the variation in the number of cells with respect to the control without additive was calculated.
  • 3000 to 5000 cells were evaluated and normalized to 100.
  • the variations were indicated that were observed with the EADA regarding that result of the control.
  • M2 produced little variation in the number of cells in the G2 / S phase and that, after irradiating with UV light, there is a decrease in the number of apoptosis cells of 7% with M2.
  • a first test was carried out to assess the effect of UVB radiation on 3 male mice, administering 0.1 ml of Antarctic Deschampsia preparation at a concentration of 300mg / ml, once a day from Monday to Friday. Each animal was self-control so that the central zone was compared with the peripheral zone.
  • mice 40 male mice, weighing more than 20 grams, were used.
  • the animals After receiving, the animals acclimatized for 7 days to the place where the tests were carried out, being located in a room with the controlled temperature (22 0 C) with relative humidity between 50% and 75%, with replacement 10 times by approximately hour of filtered fresh air and with light / dark cycles of 12h (7.00 -19.00 light and from 19.00 to 7.00 darkness).
  • the animals were fed ad libitum with a standard rodent diet and running water as a drink.
  • the animals were randomly distributed in 4 experimental groups of 10 animals each, as explained in table 10.
  • the products to be tested were used directly by applying them in gel form on the skin.
  • the test was performed following the method described by Winder et al. "A study of Pharmacological influences on ultraviolet erythema in guinea pigs". Arch. Int pharmacodyn, 116: 261-292.1958. and other authors such as Wendy, J. et al. "The local antinociceptive and topical antiifnlamatory effects of propyl gállate in rodents.”. Br. J. Pharmacol, 58: 573-581. 1976. and Katiyar, SK et al.
  • the irradiation dose applied was determined by an ultraviolet light detector, 24 h after the end of the exposure, the animals' backs were photographed and they were sacrificed by cervical dislocation. The skin of the back was removed and a 2x2 fragment located below where the substance to be tested was applied was placed in a bottle with 10% buffered formalin, where they were kept 6 hours before starting the process of inclusion in paraffin and preparation for histological study
  • the preparations obtained were observed with an optical microscope and the epidermal-dermal space of 5 different places of each preparation was photographed at x100 magnification. In each photograph, a count of the burned cells (sunburn cells) was made, considering as a burned cell the cells with a hyperreosinophilic cytoplasm with a dense small dark and irregular nucleus that differs from its neighbors.
  • the evaluation of erythema was performed using a positive / negative criterion, obtaining the percentage of protected animals.
  • the structure of the normal skin was observed, consisting of the presence of a normal (thin) cornea layer, a thin granular layer and a spiny layer of a pair of cells, which is supported on a layer of basal cells ( basal stratum) of perfectly ordered functioning keratinocytes grouped in a row of a height cell that delimits the separation between the epidermis and the dermis in a clear and evident way.
  • basal cells basal stratum
  • no preparation was the presence of cells compatible with the definition of "Sunburn" observed.
  • the basal stratum was replaced by a group of pycnotic cells, among which there is a considerable number of "Sunburn” cells iii) Treatment with 0.5% Ferulic Acid (group 4) effectively protected against erythema at 70 % of the animals in which the skin presented a rosy appearance compatible with normality. In spite of everything, the affected animals showed only small erythematous points and petechiae of little importance. The histological image shows that the impact of UVB radiation has induced very small changes in the skin. The basal stratum that separates the epidermis from the dermis is almost completely intact. The granular and spiny strata have lost height and the corneal layer appears thicker.
  • the photoprotective effect of EADA at 300 mg / ml and 0.5% ferulic acid on an erythema induced by UVB irradiation in mice is shown in Table 11.
  • the results are expressed as presence (+) or absence (-) of Erythema or its manifestations in the treatment area.
  • protected refers to those animals that do not show signs in the area of exposure and if they appear are of little importance and the term “suppression” refers to the reduction of the intensity of erythema and other manifestations with respect to the group Positive Control Vehicle in those in which it appears (subjective criteria).
  • Table 12 represents the presence of "Sunburn" cells induced by UVB irradiation in mice, the results being expressed in number of cells in the histological preparations of the treatment area:
  • FIG 2 a comparative spectrum of absorption of EADA at 500 ⁇ g / ml with ferulic acid at 50 ⁇ g / ml is shown.
  • the absorption spectrum of EADA shows maximum absorption at lengths less than 240 nm. In the band between 250 nm and 350 nm approximately, the EADA offers a stable absorbance between 0.75 and 1.5 AU that significantly blocks the UVC, UVB light and the most energetic portion of the UVA. Therefore, part of its effects could be due to a screen effect that prevents the light radiation from affecting the skin.
  • ferulic acid shows three absorption peaks as can be seen in comparative figure 2. The first two are before the UVC band and the third appears above 285 nm and covers almost up to 340 nm. This behavior is typical of the polyphenols present in numerous vegetables and provides an effective screen effect that protects plants from sunlight.
  • concentrations necessary to obtain similar absorbances it is observed that ferulic acid develops its blockage effectively at 50 ⁇ g / ml, whereas with the EADA, 500 ⁇ g / ml produces a block equivalent to 50% of that seen with 50 ⁇ g / ml of ferulic acid. Therefore, to produce blocks of similar intensity, concentrations of EADA between 10 and 50 times higher than those of ferulic acid would be necessary.

Abstract

La presente invención describe un nuevo agente de fotoprotección cutánea frente a Ia radiación UVA (I y II) y UVB que contiene un extracto acuoso obtenido a partir de una planta de la familia de las gramíneas proveniente del continente antartico (Deschampsia antárctica) que presenta tanto propiedades antioxidantes como de disipación del exceso de radiación UV.

Description

AGENTE PARA LA FOTOPROTECCIÓN CUTÁNEA FRENTE A RADIACIONES
UVA-UVB CAMPO TÉCNICO
La presente invención se refiere al campo de Ia protección de Ia piel humana frente a los efectos nocivos de las radiaciones UVA (I y II), UVB y visible de Ia luz solar. ANTECEDENTES DE LA TÉCNICA
El sol es nuestra principal fuente de energía que se manifiesta principalmente en forma de luz y calor, emitiendo una radiación electromagnética que viaja a través del espacio en forma de ondas y partículas. Las ondas se describen por su frecuencia (v) o su longitud de onda (λ). La siguiente tabla muestra el espectro electromagnético de Ia radiación solar:
Figure imgf000003_0001
Tabla 1. Espectro electromagnético de Ia radiación solar
No todas las radiaciones solares llegan a Ia tierra, ya que parte de estas radiaciones son reflejadas, absorbidas o dispersadas, debido a que Ia Tierra está protegida por capas de gases atmosféricos que filtran y atenúan Ia radiación solar. Únicamente las radiaciones comprendidas entre los 290 y 1.800 nm (UVB1 Ia UVA (I y II), visible e infrarrojo cercano) alcanzan Ia superficie de Ia tierra. De este rango de radiaciones que llegan a Ia tierra, Ia radiación UVB y Ia UVA (I y II) es Ia que menos llega a Ia tierra al ser filtrada por Ia capa de ozono, pero es Ia mas influyente sobre Ia biosfera, incluyendo los seres humanos. Por otra parte, los efectos dañinos de Ia radiación solar adquieren cada vez más atención, en particular por el fenómeno de disminución de Ia capa de ozono que hace que cada vez sea menor Ia radiación solar filtrada por Ia atmósfera (véase Ozone Depletion and Human Health Effects de M. J. Molina y Luisa T. Molina, Environmental Medicine; L. Mδller Ed. Sept 24 (2002) ENVIMED)
La sobreexposición a Ia radiación UVB produce efectos perjudiciales en Ia piel a corto plazo, produciendo los eritemas, que es el conocido proceso inflamatorio con enrojecimiento de Ia piel, sin embargo Ia radiación UVA produce efectos perjudiciales a largo plazo.. En Ia figura 1 se puede observar un gráfico hecho público que representa el espectro de luz solar que incide en Ia tierra según su longitud de onda, el espectro de acción del eritema y su relación entre ambas. Este gráfico demuestra Io mencionado anteriormente, es decir, que el eritema se produce principalmente por Ia incidencia de Ia radiación UVB en Ia piel, sin embargo Ia radiación UVA I y Il (320- 400nm) no produce dicha reacción cutánea pero si otros efectos a largo plazo mucho mas perjudiciales, como es el fotoenvejecimiento y Ia fotocancerogénesis (véase Photocarcinogenesis: UVA vs. UVB Radiation, de Fr. R. de Grujil, Skin Pharmacol. Appl. Physiol. 2002; 15:316-320).
En Ia siguiente tabla se puede observar las principales diferencias entre los efectos perjudiciales de Ia radiación UVB y Ia radiación UVA en Ia piel:
Figure imgf000004_0001
Tabla 2.- Comparativa de los efectos de Ia radiación UVB y UVA La piel tiene cromóforos capaces de absorber Ia radiación UVA, principalmente melanina y ácido urocánico, además de las bases de los ácidos nucleicos y residuos aromáticos de proteínas.
La radiación UVA al penetrar mas en Ia piel afecta mas a largo plazo en Ia degeneración cutánea debido a su acción fotodinámica. La acción fotodinámica que genera Ia radiación UVA es consecuencia de Ia reacción de Ia energía (hv) UVA (I y II) con los fotosensibilizadores de Ia piel o del ambiente, en presencia del oxígeno del aire, que producen especies de oxígeno activo (ROS), que son los conocidos radicales libres y el oxígeno singlete (véase "Sunscreen enhancement of UV-induced reactive oxygen species in the skin",Ferry M.Hanson et al., Fee Radical Biology & Medicine 41 (2006) 1205-1212). Los radicales libres son, por definición, especies químicas reactivas que contienen electrones no apareados en sus respectivos orbitales, y pueden ser neutros, o estar cargados negativa o positivamente. Son altamente inestables por Io que tienden a reaccionar alterando los componentes celulares y por ello se los relaciona con el fotoenvejecimiento, melanoma y cáncer de piel, entre otras enfermedades (véase "Free Radicáis in Cutaneous Biology", J. Invest. Dermatol. 102:671-675, 1994 y "Cutaneous photodamage, oxidative stress and topical antioxidant protection", J. Am. Acad. Dermatol. 2003; 48:1-19, Tedesco AC et al, 1997).
Existen infinidad de estudios sobre filtros químicos y físicos encaminados a evitar estos mencionados efectos perjudiciales en Ia piel como se expone, por ejemplo, en "Photoprotection" de P. Kullavanijaya y H. W. Lim, J. Am. Acad. Dermatol. 2005;
52:937-58 y "Ultraviolet radiaton screening compunds", Biol. Rev. (1999), 74, pag. 311-
345, cuyo objetivo es Ia fotoprotecdón tópica mediante sustancias que absorban y filtren Ia radiación UVB y UVA (filtros químicos), que ¡nactiven o destruyan las especies reactivas de oxígeno (radicales libres y oxígeno singlete) que se generan en Ia piel mediante antioxidantes, y que produzcan Ia reflexión por dispersión de Ia radiación mediante filtros físicos como TiO2 o ZnO. De hecho se ha divulgado que extractos vegetales con capacidad antioxidante son capaces de contrarrestar los efectos oxidativos inducidos por TiO2 en distintos sistemas biológicos (ver "Plypodium leucotomos extract inhibits trans-urocanic acid photoisomerization and photodecomposition", Journal of Photochemistry and Photobiology B: Biology 82
(2006) 173-179
Por otra parte el efecto de Ia radiación ultravioleta UVB y UVA también tiene su repercusión en las plantas (ver Journal of Photochemistry and Photobiology B: Biology, Volume 76, Issues 1-3, 25 October 2004, Pages 61-68) y las plantas tienen su propios mecanismos de defensa, ya que no solo el hombre genera sustancias fotoprotectoras de manera natural, como es Ia melanina, sino también las plantas generan sus propias defensas, como es el caso de Ia Dβschampsia antartica que es una planta que crece sometida a muy bajas temperaturas y episodios de mucha radiación solar Io que hace que hayan desarrollado un eficaz mecanismo de defensa ante estas condiciones tan severas consiguiendo disipar las especies reactivas de oxígeno (ROS) mediante el desarrollo de una gran capacidad antioxidante, junto con una alta capacidad de procesar de forma no radiativa el exceso de radiación UV en forma de calor en pequeñas cantidades. Esta planta es peculiar por crecer en el continente antartico y tolerar sin problemas las condiciones ambientales extremas de su habitat. Logra mantenerse verde todo el año, incluso en el invierno antartico bajo el hielo y Ia nieve, siendo de las pocas plantas capaces de soportar estas condiciones climáticas extremas. (Véase "The role oí photochemical quenching and antioxidants in photoprotection of Deschampsia antárctica", en Functional Plant Biology, 2004, 31 , 731-741).
Hoy en día existe una gran necesidad por obtener productos que protejan Ia piel, de manera duradera, de los efectos adversos producidos por Ia radiación UVA y UVB, y aunque se sabe que un antioxidante contrarresta los efectos de Ia acción fotodinámica producidos por las especies reactivas de oxígeno (ROS), es necesario detectar que antioxidantes son los adecuados y comprobar su efectos, ya que no todos son beneficiosos puesto que pueden producir una propagación en cadena ("chain propagation") y tener consecuencias peores, así como hay que tener en cuenta diversos factores biológicos como es el tropismo de Ia piel. DESCRIPCIÓN DE LA INVENCIÓN La presente invención se basa en el uso de las propiedades antioxidantes y de disipación del exceso de radiación UV de un extracto acuoso de una planta perteneciente a la familia de las gramíneas, Ia Deschampsia antárctica (DA), para Ia obtención de un agente fotoprotector que posea dichas características. Se ha observado que un extracto acuoso con estas características, al que a partir de ahora denominaremos como EADA (Extracto Acuoso de Deschampsia antárctica), tiene propiedades fotoprotectoras frente a Ia radiación UVB y UVA (I y II), dado que i) por un lado los antioxidantes que contiene contrarrestan los efectos negativos producidos por Ia formación de radicales libres que se forman principalmente por Ia radiación UVA Il cuando incide sobre Ia piel en presencia de fotosensibilizadores y oxígeno, debido a su acción fotodinámica, ii) y, por otro lado es importante destacar que tanto Ia melanina, el cromóforo cutáneo mas importante, como DA, son capaces de eliminar el exceso de energía radiante aunque por distinto mecanismo. En el caso de melanina, el exceso de energía radiante se elimina en forma de pequeños pulsos de calor ("ultraphase internal conversión") y en el caso de DA se trata de "photo Chemical quenching" que, en todo caso es capaz de bloquear la fotoinhibición biológica.
En este sector técnico del aprovechamiento de las propiedades antioxidantes de determinadas plantas y su posible aplicación para Ia fotoprotección, teniendo en cuenta que no todos los antioxidantes son fotoprotectores, Ia presente invención se refiere a Ia capacidad antioxidante de esta planta y sus propiedades de disipación del exceso de Ia radiación UV, para Ia obtención de un extracto acuoso para su uso como fotoprotector cutáneo.
En Ia obtención del EADA de Ia invención puede emplearse Ia planta obtenida de su entorno nativo o bien Ia planta obtenida en un entorno artificial mediante un método de propagación de Ia misma. Dado que Ia planta crece de forma natural en el continente antartico, que es un territorio sometido a estrictas regulaciones de protección que hacen imposible su explotación y, por tanto, Ia recolección con fines comerciales de Ia Deschampsia antárctica, el uso de Ia misma hace necesaria su obtención por medios artificiales fuera de su entorno de crecimiento natural.
La obtención del extracto de Deschampsia antárctica (EADA) se realiza según un procedimiento previamente establecido por los autores, que recurre a un método acuoso, evitando el uso de disolventes orgánicos que plantean problemas de contaminación y residuos difíciles de eliminar en el extracto. El EADA así obtenido puede ser usado para Ia obtención de un agente de fotoprotección cutánea frente a radiaciones UVA (I y II) y UVB. Dicho agente activo como fotoprotector podrá ser combinado con excipientes y aditivos convencionales para Ia obtención de una formulación en forma de crema, gel, o líquido como lociones, aceites, suspensiones o pomadas de aplicación tópica sobre Ia piel. El EADA obtenido fue sometido a pruebas para establecer sus características físico-químicas y farmacológicas.
A continuación se resumen seguidamente estos ensayos. Cromatografía de placa fina (TLC)
Se llevó a cabo Ia técnica utilizada para Ia separación de compuestos que forman parte de una mezcla mediante TLC (Anexo 1). Los EADA obtenidos son sembrados de forma puntiforme sobre una placa de gel de sílice 60 F254 (MERCK) y como disolvente se empleó:
• n-hexano:acetato de etilo (50:50)
• acetato de etilo:metanol (80:20) • acetato de etilo:ácido fórmico:ácido acético glacial:agua destilada
(67:6,4:6,4:18,2)
Los EADA se sometieron a un análisis en espectro UV-Vis a 200-400 nm para Ia determinación de los picos de absorbancia de los compuestos presentes en los EADA con características absorbentes de UV. Para ello se utilizó el espectrofotómetro SHIMADZU UV-160 y las muestras fueron diluidas en eíanol hasta obtener una lectura visible en el espectro.
Cuantificación de Ia actividad antioxidante de los EADA
Se realizó Ia prueba colorimétrica de Folin para medir Ia cantidad de polifenoles totales en los EADA. Esta reacción es característica de los compuestos que tienen un grupo hidroxilo unido a un anillo de benceno. El reactivo del Folin-Ciocalteau cambia del color amarillo a azul cuando los fenoles están presentes. La intensidad del azul es medida a través de un espectrofotómetro a una longitud de onda de 765 nm (véase anexo 3). A través del método colorimétrico ABTS se evaluó Ia capacidad antioxidante del EADA; este se basa en Ia generación progresiva de un catión radical estable ABTS+, cuya aparición se detecta por Ia disminución en Ia absorbancia de! sistema a una longitud de onda de 734 nm, longitud de onda a Ia que dicho catión presenta uno de sus máximos de absorbancia y degradación o quelación de dicho catión por interacción con una sustancia antioxidante. Se determinó el índice quercetina de los EADA analizados para obtener un indicador del índice de compuestos fenólicos; ya que este es un flavonoide que posee un doble enlace entre los carbonos 2 y 3, un grupo OH libre en Ia posición 3 y un grupo carbonilo en Ia posición 4, Io cual potencia el poder antioxidante del compuesto. Se procedió realizar una curva de calibración con quercetina desde una concentración de 0,2 mg/ml hasta 0,8 mg/ml; para luego medir Ia absorbancia de los distintos EADAs en un espectro a una longitud de onda de 350 nm y a una concentración de 0,5 mg/ml. Patrón HPLC del EADA acuoso
Para Ia obtención de un patrón de los compuestos que pueden estar presentes en los EADAs obtenidos se realizó un análisis por HPLC con detector UV. E! HPLC utilizado fue un equipo Shimadzu con arreglo de diodos con detector SPD-M10AVP y una columna RP-18,5 μm de 25 cm, como disolvente de corrida se utilizo la mezcla metanol:agua y las muestras fueron corridas en un programa con gradiente con un flujo de 0,7 - 0,8 ml/min
Una vez obtenido el EADA, se realizaron diferentes ensayos en cobayas para comprobar sus efectos fotoprotectores frente a Ia radiación UVB y UVA (I y II) en Ia piel de dichos roedores:
Estudio de Ia viabilidad celular (ciclo celular) del extracto acuoso de Deschampsia antárctica (EADA)
Se realizó un estudio de Ia viabilidad celular (ciclo celular) de un extracto acuoso de Deschampsia antárctica (EADA) a dosis de 10mg/ml, en presencia y ausencia de luz ultravioleta en células HaCaT. La línea de queratinocitos humanos HaCaT se cultiva en medio DMEM con 10% de suero bovino fetal.
Figure imgf000009_0001
Tabla 3.- Extractos utilizados en los ensayos
Para este primer ensayo, se usó un grupo de control (sin adición de EADA) y un grupo (EADA M2) que se irradió a las 4 horas de iniciado el experimento con luz ultravioleta solar simulada a dosis de 9,75 J/cm2 UVA + 0,75 J/cm2 UVB.
La incubación se prolongó durante 24 horas sin aditivos. Posteriormente se despegaron las células con tripsina, se fijaron con etanol 60% y las incubamos en un buffer con ioduro de propidio, Tritón X-100 y RNAsa. El ioduro de propidio se fija al DNA y emite fluorescencia que se mide en un citómetro de flujo. Así se determinó el número de células totales y el porcentaje de las mismas que se encuentran en fase de reposo (G0/G1) en síntesis (S) o en mitosis (M/G2), así como las células en apoptosis (Sub-GO). Este abordaje permite conocer si los EADA son tóxicos o mitógenos y su capacidad para revertir el daño por radiación ultravioleta solar.
Para poder comparar el experimento y obtener valores fácilmente comprensibles, se calculó Ia variación en el número de células con respecto al control sin aditivo. En cada experimento se evaluaron 3000 a 5000 células y se normalizó a 100. Así, si un 41% de las células se encontraba en fase G0/G1 y un 39% en fase G2/S en el control sin aditivos, se indicaron las variaciones que se observaban con el EADA respecto a ese resultado del control.
E! Ia siguiente tabla 4 se muestran los resultados obtenidos, los valores negativos indican una disminución en el número de células respecto al control y los valores positivos indican un aumento en el número de células respecto al control:
Figure imgf000009_0002
Tabla 4.- Resultados del estudio de viabilidad celular-ciclo celular Se observa que M2 estimula Ia proliferación de las células no irradiadas, que se mantiene durante Ia irradiación.
La repetición de este experimento mostró un efecto similar: efecto proliferativo y de resistencia a Ia apoptosls tras Ia radiación UV. Es importante destacar que en este nuevo estudio, Ia células estaban predominantemente en estado reposo, frente a un estado mas proliferativo en el estudio previo (células en G2/S del 5% frente al 39% en el estudio previo). El resultado se puede observar en Ia tabla 5 siguiente:
Figure imgf000010_0001
Tabla 5
Haciendo una media de ambos experimentos, se puede concluir que M2 produjo poca variación en el número de células en fase G2/S y que, tras irradiar con luz UV, hay una disminución del número de células en apoptosis del 7% con M2.
Efecto del extracto acuoso de Deschampsia antárctica (EADA) sobre Ia piel de ratones al aplicar radiación UVB
a) Se realizó un primer ensayo para valorar el efecto de Ia radiación UVB en 3 ratones machos, administrando 0,1 mi de preparado de Deschampsia antárctica en una concentración de 300mg/ml, una vez al día de lunes a viernes. Cada animal fue control de si mismo de manera que Ia zona central se comparó con Ia zona periférica. Tras Ia exposición a UVB (290-350nm) siguiendo el método descrito por Zinder & cois, y otros autores, situando los animales a 8cm de una fuente de luz ultravioleta de 6*40w, de 313nm de emisión fundamental y rango comprendido entre 290 y 350nm, considerada como banda ancha y con un filtro UVC, el eritema formado se evaluó con cruces de una forma subjetiva, distinguiendo Ia zona periférica (no tratada) de Ia central (tratada) y se fotografió a las 24 horas de Ia exposición. Los resultados obtenidos fueron:
Figure imgf000011_0001
Tabla 9
De los resultados se pudo concluir que el EADA a 300 mg/ml reduce Ia intensidad del eritema generado por Ia radiación UVB. b) En un segundo ensayo, se estudió el efecto de un EADA sobre Ia formación de eritema dérmico y Ia aparición de células quemadas, denominadas células "sunburn", debido a Ia exposición de Ia piel de ratón a una fuente de irradiación de 290 - 320 nm, dentro del espectro de Ia luz UVB.
Los resultados obtenidos se compararon con el efecto del ácido ferúlico que actuó como sustancia de referencia y que es un potente antioxidante natural muy extendido en el reino vegetal de muy baja toxicidad y que protege las membranas celulares de Ia oxidación lipídica y al genoma celular de Ia mutagénesis y de los daños oxidativos del ADN (3).
Material y Métodos.
Se utilizaron 40 ratones macho, de peso superior a 20 gramos. Tras su recepción, los animales se aclimataron durante 7 días al lugar donde se realizaron los ensayos, ubicándose en una sala con Ia temperatura controlada (220C) con humedad relativa entre el 50% y el 75%, con recambio de 10 veces por hora aproximadamente de aire fresco filtrado y con ciclos luz/oscuridad de 12h (7,00 -19,00 luz y de 19,00 a 7,00 oscuridad). Durante este periodo y durante el periodo experimental, los animales fueron alimentados ad libitum con dieta estándar para roedores y agua corriente como bebida.
Figure imgf000011_0002
Tabla 10
*disueltos en agua destilada (EDA) o etanol (Ferúlico) y suspendidos en gel inerte de carbopol que actuó como vehículo.
Los animales se distribuyeron aleatoriamente en 4 grupos experimentales de 10 animales cada uno, según Io expuesto en Ia tabla 10. Los productos a probar se utilizaron directamente aplicándolos en forma de gel sobre la piel. La prueba se realizó siguiendo el método descrito por Winder et al. "A study of Pharmacological influences on ultraviolet erythema in guinea pigs". Arch. Int pharmacodyn, 116: 261-292.1958. y otros autores como Wendy, J. et al. "The local antinociceptive and topical antiifnlamatory effects of propyl gállate in rodents.". Br. J. Pharmacol, 58: 573 -581. 1976. y Katiyar, S. K. et al. "Protective Effects of Silymarin Against Photocarcinogenesis in a Mouse Skin Model". J Nati Cáncer Inst 89: 556-65. 1997. con ligeras modificaciones. Seis días antes del ensayo, los animales se depilaron para eliminar todo el rastro de pelo y dejar Ia piel del dorso completamente al descubierto.
El primer día del ensayo, comenzó una pauta de aplicación matutina (100:00h) y vespertina (20:00h) diaria del vehículo, de Ia sustancia a ensayar o del patrón, siguiendo una pauta randomizada y a ciegas que duró 3 días. El tercer día, tras realizar Ia aplicación matutina de los tratamientos correspondientes, los animales se colocaron y se fijaron en Ia plataforma de exposición del equipo. A continuación, los animales se situaron a 8 cm de una fuente de luz ultravioleta de 4*40w, de 313 nm de emisión fundamental y rango comprendido entre 290 y 350 nm aproximadamente y con un filtro anti-UVC. La exposición se mantuvo hasta que todos los animales recibieron una dosis total aproximada de 2,5kJ/m2. La dosis de irradiación aplicada, se determinó mediante un detector de luz ultravioleta, 24 h después de terminar Ia exposición, el dorso de los animales se fotografió y éstos fueron sacrificados por dislocación cervical. La piel del dorso se extirpó y un fragmento de 2x2 situado debajo de donde se aplicó Ia sustancia a ensayar se introdujo en un frasco con de formalina tamponada al 10%, donde se mantuvieron 6h antes de iniciar el proceso de inclusión en parafina y preparación para estudio histológico.
Las preparaciones obtenidas se observaron con microscopio óptico y se fotografió a x100 aumentos el espacio epidérmico-dérmico de 5 lugares distintos de cada preparación. En cada fotografía se hizo un recuento de las células quemadas (sunburn cells), considerando como célula quemada a las células con citoplasma hípereosinofílico con un núcleo denso pequeño oscuro e irregular que se diferencia de sus vecinos.
La evaluación del eritema se realizó mediante un criterio de positivo/negativo, obteniéndose el porcentaje de animales protegidos.
En las preparaciones histológicas, se contó el número de células hipereosinófilas con núcleo picnótico (sunburn) por campo en las fotografías de los cinco sectores diferentes de Ia misma preparación. La suma de los cinco recuentos se consideró como el valor correspondiente al animal. Seguidamente se obtuvo Ia media ±E.S.M. de los resultados individuales de cada grupo experimental y se calculó el porcentaje de modificación del grupo expuesto y tratado con Ia sustancia a ensayar con respecto al grupo control expuesto y de éstos a su vez, con respecto al grupo control no expuesto. Resultados i) El aspecto de Ia piel de los ratones con "blanco vehículo" (grupo 1) que no fueron expuestos a UVB fue completamente normal y sonrosada por Io que se calificó como Eritema Negativo. En Ia preparación histológica se observó Ia estructura de Ia piel normal que consiste en Ia presencia de una capa cornea normal (fina), un estrato granuloso delgado y un estrato espinoso de un par de células, que se apoya sobre una capa de células básales (estrato basal) de keratinocitos funcionantes perfectamente ordenados agrupados en hilera de una célula de altura y que delimita Ia separación entre Ia epidermis y Ia dermis de una forma clara y evidente. En ninguna preparación se observó Ia presencia de células compatibles con Ia definición de "Sunburn". ¡i) A las 24 horas de Ia exposición, todos los animales del "vehículo control positivo" (grupo 2) mostraron un eritema intenso acompañado de evidentes signos inflamatorios, muy intensos en algunas ocasiones con zonas de extravasación hemática variable, que iban desde pequeñas petequias hasta lesiones claramente hemorrágicas. En las m i crofotog rafias de Ia piel se observan alteraciones muy profundas de Ia estructura celular de Ia epidermis, cuya disposición en capas se ha perdido. No se distinguen los estratos granuloso ni espinoso.
El estrato basal fue sustituido por un grupo de células picnóticas, entre las que se haya un número considerable de células "Sunburn" iii) El tratamiento con Acido Ferúlico al 0,5% (grupo 4) protegió de forma eficaz frente al eritema al 70% de los animales en los que Ia piel presentó un aspecto sonrosado compatible con Ia normalidad. A pesar de todo, los animales afectados sólo mostraron pequeños puntos eritematosos y petequias de escasa importancia. La imagen histológica demuestra que el impacto de Ia radiación UVB ha inducido cambios muy pequeños en Ia piel. Se mantiene casi íntegro el estrato basal que separa bien la epidermis de Ia dermis. Los estratos granuloso y espinoso han perdido altura y Ia capa cornea aparece mas gruesa. Aunque el número de células sunburn es reducido, se observan numerosos núcleos picnóticos, que indican cierto daño en Ia estructura epidérmica. iv) De manera similar, el tratamiento con el EADA a razón de 300 mg/mi (grupo 3) se observa un estrato basal normal un espinoso casi normal y un engrasamiento de Ia capa cornea. El número de células sunburn es muy escaso. El dorso de los animales no presenta enrojecimientos por Io que todos los animales del grupo fueron calificados de eritma negativo.
El efecto fotoprotector del EADA a 300 mg/ml y del ácido ferúlico al 0,5% sobre un eritema inducido por irradiación UVB en ratón se muestra en Ia tabla 11. Los resultados están expresados como presencia (+) o ausencia (-) de eritema o sus manifestaciones en Ia zona de tratamiento. El término "protegidos" se refiere a aquellos animales que no muestran signos en el área de exposición y si aparecen son de poca importancia y el término de "supresión" se refiere a Ia reducción de Ia intensidad del eritema y demás manifestaciones con respecto al grupo Vehículo Control Positivo en aquellos en que aparece (criterio subjetivo).
Figure imgf000014_0001
Tabla 11
Figure imgf000015_0001
Tabla 12
La significación estadística de las diferencias se evaluó mediante pruebas no paramétricas como el test de fisher o el test de χ2 (chi cuadrado). La tabla 12 representa Ia presencia de células "Sunburn" inducidas por irradiación UVB en ratón estando los resultados expresados en número de células en las preparaciones histológicas de Ia zona de tratamiento:
En Ia Figura 2, se muestra un espectro comparativo de absorción del EADA a 500μg/ml con el ácido ferúlico a 50μg/ml. El espectro de absorción del EADA muestra una absorción máxima a longitudes inferiores a 240 nm. En Ia banda comprendida entre 250 nm y 350 nm aproximadamente, el EADA ofrece una absorbancia estable entre 0,75 y 1 ,5 UA que bloquea de forma significativa Ia luz UVC, UVB y Ia porción más energética de Ia UVA. Por tanto, parte de sus efectos podrían ser debidos a un efecto pantalla que impide que Ia radiación luminosa incida sobre Ia piel.
Comparativamente el ácido ferúlico muestra tres picos de absorción como puede verse en Ia figura comparativa 2. Los dos primeros están antes de Ia banda UVC y el tercero aparece sobre los 285 nm y abarca casi hasta los 340 nm. Este comportamiento es típico de los polifenoles presentes en numerosos vegetales y proporciona un efecto pantalla eficaz que protege a las plantas de Ia luz solar. Al comparar las concentraciones necesarias para obtener absorbancias similares, se observa que el ácido ferúlico desarrolla su bloqueo con eficacia a 50 μg/ml, en tanto que con el EADA, 500 μg/ml producen un bloqueo equivalente al 50% del visto con 50 μg/ml de ácido ferúlico. Por tanto, para producir bloqueos de intensidad semejante, serían necesarias concentraciones de EADA entre 10 y 50 veces superiores a las de ácido ferúlico.
En conclusión se puede decir que: a) La aplicación tópica del EADA a razón de 300 mg/ml, reduce de forma eficaz del eritema inducido por Ia irradiación UVB. b) El EADA aplicada a 300 mg/ml tópicamente inhibe en un 95,11 % Ia aparición de células quemadas ("Sunburn"). c) La potencia de Ia preparación de Deschampsia preparada en este ensayo es ligeramente superior a Ia que muestra el ácido ferúlico a) 0,5%. d) En relación al ácido ferúlico, Ia concentración de Deschampsia antartica para inducir un bloqueo UV ha de ser entre 10 y 50 veces superior.

Claims

REIVINDICACIONES
1. Agente para Ia fotoprotección cutánea frente a radiaciones UVA y UVB, caracterizado por contener un extracto acuoso obtenido a partir de una planta de Ia familia de las gramíneas proveniente del continente antartico, cultivada en laboratorio o recolectada en el propio territorio antartico.
.
2. Agente para Ia fotoprotección cutánea frente a radiaciones UVA y UVB según reivindicación 1 , caracterizado por que el extracto acuoso es de Ia planta Deschampsia antárctica.
3. El agente para Ia fotoprotección cutánea frente a radiaciones UVA y UVB según reivindicación 1 y 2, caracterizado por contener 300mg/ml de extracto acuoso.
4. Composición fotoprotectora sólida o líquida en forma de crema, gel, aceite o loción de aplicación cutánea, caracterizada por incluir un agente de fotoprotección según las reivindicaciones 1 a Ia 4.
5. Uso de Ia planta Deschampsia antárctica, para Ia obtención de un agente fotoprotector cutáneo definido en Ia reivindicación 1.
PCT/ES2009/000050 2009-01-30 2009-01-30 Agente para la fotoprotección cutánea frente a radiaciones uva-uvb WO2010086464A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09839068.5A EP2392316A4 (en) 2009-01-30 2009-01-30 MEDIUM FOR THE PROTECTION OF THE SKIN AGAINST UVA / UVB RAYS
US12/736,727 US8357407B2 (en) 2009-01-30 2009-01-30 Agent for cutaneous photoprotection against UVA/UVB rays
PCT/ES2009/000050 WO2010086464A1 (es) 2009-01-30 2009-01-30 Agente para la fotoprotección cutánea frente a radiaciones uva-uvb
CA2723787A CA2723787A1 (en) 2009-01-30 2009-01-30 Agent for cutaneous photoprotection against uva/uvb rays
JP2011546879A JP5405597B2 (ja) 2009-01-30 2009-01-30 Uva/uvb線に対する皮膚の光保護特性を有する光保護組成物、及び美容処理方法
AU2009339186A AU2009339186A1 (en) 2009-01-30 2009-01-30 Agent for cutaneous photoprotection against UVA/UVB rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/000050 WO2010086464A1 (es) 2009-01-30 2009-01-30 Agente para la fotoprotección cutánea frente a radiaciones uva-uvb

Publications (2)

Publication Number Publication Date
WO2010086464A1 true WO2010086464A1 (es) 2010-08-05
WO2010086464A8 WO2010086464A8 (es) 2011-02-17

Family

ID=42395117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000050 WO2010086464A1 (es) 2009-01-30 2009-01-30 Agente para la fotoprotección cutánea frente a radiaciones uva-uvb

Country Status (6)

Country Link
US (1) US8357407B2 (es)
EP (1) EP2392316A4 (es)
JP (1) JP5405597B2 (es)
AU (1) AU2009339186A1 (es)
CA (1) CA2723787A1 (es)
WO (1) WO2010086464A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260170A1 (en) 2016-06-20 2017-12-27 Industrial Farmaceutica Cantabria, S.A. Use of extracts of deschampsia antarctica for counteracting human skin barrier damage caused by environmental aggressions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058423A2 (en) * 2009-11-13 2011-05-19 Avesthagen Limited Identification and characterization of natural chemical entities by liquid chromatography and mass spectrometry lc-ms/ms and uses thereof
WO2013084193A2 (en) * 2011-12-07 2013-06-13 Manuel Gidekel Aqueous extracts of deschampsia antarctica

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717808A (ja) * 1993-07-06 1995-01-20 Japan Vilene Co Ltd 抗菌性高分子及びその製造方法、並びに抗菌性高分子を使用した抗菌材及びその製造方法
DE4444238A1 (de) * 1994-12-13 1996-06-20 Beiersdorf Ag Kosmetische oder dermatologische Wirkstoffkombinationen aus Zimtsäurederivaten und Flavonglycosiden
US20100310686A1 (en) * 2007-11-14 2010-12-09 Uxmal S.A., Chile Extracts of deschampsia antarctica desv, with antineoplastic activity

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Free Radicals in Cutaneous Biology", J. INVEST. DERMATOL., vol. 102, 1994, pages 671 - 675
"Plypodium Leucotomos Extract Inhibits Trans-Urocanic Acid Photoisomerization and Photodecomposition", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY, vol. 82, 2006, pages 173 - 179
"The Role of Photochemical Quenching and Antioxidants in Photoprotection of Deschampsia Antarctica", FUNCTIONAL PLANT BIOLOGY, vol. 31, 2004, pages 731 - 741
"Ultraviolet Radiation Screening Compounds", BIOL. REV., vol. 74, 1999, pages 311 - 345
AUSTRAL: "La planta que mueve the ciencia", 8 June 2004 (2004-06-08), XP008154771, Retrieved from the Internet <URL:http://www.ufro.cl/prensa/doc/2004/June/07-13/08June-%20Austral-%20La%20planta%20que%20mueve%20a%201a%20ciencia.pdf> *
CAMPO SURENO.: "Vitrogen tiene su propia verdad. Un ejemplo de audacia", 31 May 2004 (2004-05-31), XP008154769, Retrieved from the Internet <URL:http://www.ufro.cl/prensa/doc/2004/May/31-06/31May%20-austral%20Campo%20Sure%Flo-20Vitrogen%20tiene%20su%20propia%20verdad.pdf> *
FERRY M. HANSON ET AL.: "Sunscreen enhancement of UV-induced reactive oxygen species in the skin", FREE RADICAL BIOLOGY & MEDICINE, vol. 41, 2006, pages 1205 - 1212
FR. R. DE GRUJIL, SKIN: "Photocarcinogenesis: UVA vs UVB Radiation", PHARMACOL. APPL. PHYSIOL., vol. 15, 2002, pages 316 - 320
INFORMATIVO MECESUP: "Afecciones a la piel por rayos UV", CIENCIA, TECNOLOGIA E INNOVACION. U. OF THE FRONTERA., 11 June 2004 (2004-06-11), Retrieved from the Internet <URL:http://www.mecesup.cl/informativo/paginas/cuerpo.php?idedi=20040603104532&idele=20030503145454> *
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY, vol. 76, no. 1-3, 25 October 2004 (2004-10-25), pages 61 - 68
KATIYAR, S.K. ET AL.: "Protective Effects of Silymarin Against Photocarcinogenesis in a Mouse Skin Model", J. NATL. CANCER INST., vol. 89, 1997, pages 556 - 65
M. J. MOLINA, LUISA T. MOLINA: "Environmental Medicine", 24 September 2002, article "Ozone Depletion and Human Health Effects"
P. KULLAVANIJAYA, H.W. LIM: "Photoprotection", J. AM. ACAD. DERMATOL., vol. 52, 2005, pages 937 - 58
See also references of EP2392316A4 *
TEDESCO AC ET AL.: "Cutaneous Photodamage, Oxidative Stress and Topical Antioxidant Protection", J. AM. ACAD. DERMATOL. 2003, vol. 48, 1997, pages 1 - 19
UNIVERSIA.CL.: "Universidad de La Frontera gana cuatro FONDEF: Millonaria inversi6n para investigacion aplicada", 8 June 2004 (2004-06-08), XP008154768, Retrieved from the Internet <URL:http://www.ufro.cl/prensa/doc/2004/June/07-13/08June-%20Universia-%20cuatro%20fondef.pdf> *
WENDY, J ET AL.: "The Local Antinociceptive and Topical Anti-inflammatory Effects of Propyl Gallate in Rodents", BR. J. PHARMACOL, vol. 58, 1976, pages 573 - 581
WINDER ET AL.: ""A Study of Pharmacological Influences of Ultraviolet Erythema in Guinea Pigs", ARCH. INT PHARMACODYN, vol. 116, 1958, pages 261 - 292

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260170A1 (en) 2016-06-20 2017-12-27 Industrial Farmaceutica Cantabria, S.A. Use of extracts of deschampsia antarctica for counteracting human skin barrier damage caused by environmental aggressions
WO2017220563A1 (en) 2016-06-20 2017-12-28 Industrial Farmacéutica Cantabria, S.A. Use of extracts of deschampsia antarctica for counteracting human skin barrier damage caused by environmental aggressions

Also Published As

Publication number Publication date
EP2392316A1 (en) 2011-12-07
JP2012516311A (ja) 2012-07-19
WO2010086464A8 (es) 2011-02-17
AU2009339186A1 (en) 2011-07-07
US8357407B2 (en) 2013-01-22
US20110195034A1 (en) 2011-08-11
EP2392316A4 (en) 2013-10-23
JP5405597B2 (ja) 2014-02-05
CA2723787A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
Dupont et al. Beyond UV radiation: a skin under challenge
Rancan et al. Protection against UVB irradiation by natural filters extracted from lichens
Lim et al. The health impact of solar radiation and prevention strategies
Emmett et al. Ultraviolet radiation as a cause of skin tumors
Romanhole et al. Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin
Vostalova et al. Lonicera caerulea fruits reduce UVA-induced damage in hairless mice
Mejía‐Giraldo et al. Photoprotective potential of Baccharis antioquensis (Asteraceae) as natural sunscreen
Acevedo et al. Photoprotective activity of Buddleja scordioides
Hong et al. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models
Lud et al. DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola crispa ssp. antarctica (Chlorophyta) under manipulated UV‐B radiation
Gonzales‐Castañeda et al. Hypocotyls of Lepidium meyenii (maca), a plant of the Peruvian highlands, prevent ultraviolet A‐, B‐, and C‐induced skin damage in rats
ES2689105B2 (es) Composición de extractos vegetales con flavonoides para paliar los múltiples efectos de la contaminación del aire sobre la piel
Murase et al. The effects of Brazilian green propolis against excessive light-induced cell damage in retina and fibroblast cells
Yakovleva et al. Diel fluctuations of mycosporine-like amino acids in shallow-water scleractinian corals
Rajnochová Svobodová et al. Effects of oral administration of Lonicera caerulea berries on UVB-induced damage in SKH-1 mice. A pilot study
WO2010086464A1 (es) Agente para la fotoprotección cutánea frente a radiaciones uva-uvb
Verma et al. Skin protection from solar ultraviolet radiation using natural compounds: a review
Kim et al. Empetrum nigrum var. japonicum extract suppresses ultraviolet B-induced cell damage via absorption of radiation and inhibition of oxidative stress
Goettsch et al. Methods for exposure of laboratory animals to ultraviolet radiation
Oresajo et al. Complementary effects of antioxidants and sunscreens in reducing UV-induced skin damage as demonstrated by skin biomarker expression
Ray et al. Use of L-929 cell line for phototoxicity assessment
CN108484438A (zh) 一种从紫菜中提取类菌胞素氨基酸的方法
Hornung Photoprotection
Shenoy et al. Study of sunscreen activity of aqueous, methanol and acetone extracts of leaves of Pongamia pinnata (L.) pierre, fabaceae
Ivannikov et al. Chromatographic and mass spectrometric analysis of secondary metabolites of Deschampsia antarctica from Galindez Island, Argentine Islands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2723787

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12736727

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009339186

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2011546879

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009839068

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009339186

Country of ref document: AU

Date of ref document: 20090130

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924085

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924085

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110620