WO2010086199A1 - Mischeinrichtung zur vermischung von wasser und wasserdampf in einer umleitstation - Google Patents

Mischeinrichtung zur vermischung von wasser und wasserdampf in einer umleitstation Download PDF

Info

Publication number
WO2010086199A1
WO2010086199A1 PCT/EP2010/050122 EP2010050122W WO2010086199A1 WO 2010086199 A1 WO2010086199 A1 WO 2010086199A1 EP 2010050122 W EP2010050122 W EP 2010050122W WO 2010086199 A1 WO2010086199 A1 WO 2010086199A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
water
mesh
water vapor
mixing
Prior art date
Application number
PCT/EP2010/050122
Other languages
English (en)
French (fr)
Inventor
Arne Grassmann
Christian Musch
Heinrich STÜER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201080006140.XA priority Critical patent/CN102300628B/zh
Priority to US13/146,415 priority patent/US8641019B2/en
Priority to EP10700226.3A priority patent/EP2382033B1/de
Publication of WO2010086199A1 publication Critical patent/WO2010086199A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4523Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube
    • B01F25/45231Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube the sieves, screens or meshes being cylinders or cones which obstruct the whole diameter of the tube, the flow changing from axial in radial and again in axial

Definitions

  • a bypass station serves to supply the steam formed in a steam generator bypassing a (steam) turbine directly to a condenser.
  • a bypass is necessary, for example, if the running times of the steam generator and the turbine are not synchronous with one another. For example, water vapor is generated before the startup of the turbine or even during the shutdown of the turbine, which can not be used by the turbine in these operating conditions.
  • the vaporization pressure in the diverter station is usually throttled on the one hand, and the water vapor is cooled by the injection of water, for example, and the water injected into the steam is heated and evaporated, thus reversing the steam is cooled.
  • water always refers to water in its liquid state of aggregation, in particular in the form of droplets, while steam refers to the water in its gaseous state of aggregation.
  • the water is often injected through several nozzles aligned transversely to the flow direction and mixed with the water vapor.
  • the water is injected into the water vapor in a (single) jet, wherein the mixing is usually realized by a diaphragm.
  • the mixing is usually realized by a diaphragm.
  • both variants for mixing - and thus for successful cooling - comparatively large mixing lengths are required.
  • used mixing diaphragms are exposed to relatively high wear by so-called drop impact.
  • the invention has for its object to provide a device that makes it possible in connection with a diverter, the diverted water vapor by mixing with water to cool particularly effectively.
  • a mixing device which comprises a so-called static mixer, which is essentially formed from a wire mesh.
  • the wire mesh is produced by at least one substantially intertwined wire to mesh.
  • the mixer is mounted downstream of a water injection with respect to a flow direction predetermined by the water vapor, so that the mesh flows through the mixture of water and water vapor.
  • the stitches are essentially formed by a wire knit or a knit wire.
  • the wire mesh is designated when the stitches are knitted in the literal sense.
  • the stitches are formed in that a plurality of loops arranged in a row are respectively guided through a loop of an adjacent row. This gives the wire mesh a particularly high stability.
  • the wire mesh can be made in particular of a single wire.
  • a mesh is in each case a wire frame, as well as a bordered by this wire frame opening referred to.
  • the designation is used in particular independently of whether the stitch is made in the narrower sense as so-called knitwear (eg knitted, knitted, crocheted, etc.), or whether the stitch is made by a different weave or interlacing of a wire or wires ,
  • wire is a thin, long, flexible piece of metal, in particular with a circular cross-section designated. However, other cross-sectional shapes are also conceivable in principle.
  • the wire is made of stainless steel.
  • the wire mesh differs in particular from a perforated plate, in which a plurality of, usually substantially round openings are introduced into a metal sheet.
  • the meshes of the wire mesh are traversed by the mixture of water droplets and water vapor.
  • the respective wire frame vortices which force a cross-mixing of the water vapor flow and thus mixing of the water droplets with the water vapor.
  • the water advantageously penetrates as far as possible into the core of the vapor flow.
  • the drops of water are cut to the wire frame, resulting in a faster evaporation of the water and thus a more effective cooling result.
  • the wire network dissipates heat via the heat-conducting metal. Overall, it is characterized by the installation of the mixer
  • Wire mesh achieves a particularly effective cooling of the water vapor.
  • the mixer Due to the production from wire, the mixer has a comparatively high stability, in particular the wire is particularly resistant to tensile loads. In addition, the mixer advantageously has a high temperature resistance.
  • An additional advantage of the mixer formed from a wire mesh is its filtering effect: Sometimes it may happen during maintenance of the diverter that larger parts are forgotten. These can cause great damage when they get into the condenser. They may be intercepted by the wire mesh.
  • the wire mesh is formed of a wire mesh.
  • a braid that stands out Wire net characterized in that a plurality of wires are each substantially entwined at an angle to each other to form meshes with each other.
  • the wire mesh it is also conceivable to produce the wire mesh as a fabric, in which several wires are woven together in at least two units. In this case, the wires of a unit are each aligned substantially perpendicular to the wires of the second unit.
  • the mixer can essentially be designed in the form of a round disk which can be mounted in the cross-section of a (round) pipeline.
  • the mixer, or its wire mesh is generally shaped essentially as an elliptical paraboloid.
  • the network is intended in the
  • Piping mounted so that it has in a longitudinal section (with respect to the pipeline) substantially the shape of an upstream open parabola. This gives the network a particularly high stability to the steam flow.
  • the wire mesh is dimensioned such that a mesh size in relation to the diameter of the wire is selected such that a free flow area is at least 50% of the total area of the wire mesh.
  • the free flow area is essentially formed by the mesh openings, while the total area is formed both by the mesh openings and the respective associated wire frame.
  • FIG. 1 shows a schematic sectional view of a mixing device mounted in a bypass station with a mixer formed from a wire mesh for mixing water and water vapor,
  • FIG 2 shows a schematic representation of the wire network in a first embodiment according to FIG 1,
  • FIG 4 in illustration according to FIG 2, the wire mesh in each case in a further embodiment.
  • FIG. 1 a part of a diverting station 1 is indicated roughly schematically in a longitudinal section.
  • the bypass station 1 comprises a horizontally aligned pipe 2 for the transfer of water vapor 3, starting from a steam generator (not shown here) (to the left of the bypass station 1) to a condenser (also not shown) (right of the bypass station).
  • a flow direction 4 of the water vapor 3 indicated by arrows therefore runs from left to right.
  • the pipeline 2 Upstream in the flow direction 4, the pipeline 2 is preceded by a Laval nozzle 5, which on the one hand serves to reduce the vapor pressure, and on the other hand serves as a measuring point for the flow velocity.
  • an inlet nozzle 7 for the injection of water 8 in the flowing water vapor 3 is arranged.
  • the introduced water 8 serves to cool the water vapor 3 before the transfer to the condenser.
  • the water 8 is mixed with the water vapor 3, wherein the water ser 8 evaporated.
  • the cooling of the water vapor 3 takes place on the one hand by the lower temperature level of the water 8 with respect to the water vapor 3, on the other hand by the evaporation enthalpy recorded in the evaporation of the water 8 is removed from the water vapor 3.
  • a mixing device 10 is mounted in the flow direction 3 after the inlet nozzle 7 and after the Laval nozzle 5 in the pipe 2.
  • the mixing device 10 comprises on the one hand a roughly indicated fastening ring 11, on the other hand a likewise roughly indicated mixer 12, which is made of a wire mesh 13.
  • the wire mesh 13 is made in this embodiment in the manner of a chain link fence ( Figure 2).
  • the mixer 12 has approximately the shape of an (oversized) thimble or a rounded hollow cone. At its closed end 14 of the mixer 12 is rounded. With its open end 15 facing annular edge 16 of the mixer 12 is mounted approximately concentric with the mounting ring 11, screwed here. In this case, the fastening ring 11 protrudes radially on both sides beyond the edge 16.
  • the mounting ring 11 is mounted between a flange 17 of the Laval nozzle 5 and a flange 18 of the pipe 2. It is the
  • Mixer 12 is aligned such that its open end 15 of the inlet nozzle 7 or - approximately in the manner of a funnel to be filled - the flow direction 4 faces.
  • the wire mesh 13 according to the first embodiment is shown in fragmentary form, greatly enlarged.
  • Wire mesh 13 is shown in particular in a prefabrication state in which it spans a plane surface aligned parallel to the plane of the drawing. To produce the mixer 12, the wire mesh 13 can then be bent into any spatial structure. Alternatively, it is also possible that the wire mesh 13 is already formed in its production in a three-dimensional structure - for example in the bowl-like shape of FIG 1 -.
  • the wire mesh 13 is made as a wire mesh in the manner of a chain link fence.
  • the wire net 13 comprises a plurality of (round) wires 20.
  • Each wire 20 is guided in a substantially right-angled, isosceles zig-zag line, so that each wire 20 has a plurality of corner points 21.
  • the wires 20 are each aligned substantially along a longitudinal direction 22 and arranged parallel to each other.
  • a wire 20 is offset to its adjacent wire 20 'such that in each case one of the vertices 21 of the wire 20 with one of the vertices 21' of the adjacent
  • Each wire 20 is hooked in each case in the region of the contact point 23 with the wire 20 '. This results in approximately square meshes 24.
  • Each mesh 24 is formed by a wire frame 25, each enclosing an opening 26.
  • Each wire frame 25 is defined by four points of contact 23 and their respective connecting portions 27 of the wire 20 and the adjacent wire 20 '.
  • each opening 26 - the mesh size a - is dimensioned substantially larger than the diameter d of the wire 20th
  • a single wire 20 may also be guided substantially in serpentine lines, in which case it comprises a plurality of sections, each as described above along the longitudinal direction 22 in zig-zag lines, substantially parallel aligned with each other and are hooked together to mesh 24.
  • each wire 20 is twisted with the adjacent wire 20 'in the contact points 23.
  • the meshes 24 each have a substantially hexagonal shape (as is often used in the case of a "rabbit fence.")
  • the two adjacent wires 20 or 20 'to be in the contact points 23 in the manner of a fishing net
  • the two alternative embodiments are characterized by a particularly high dimensional stability of the meshes 24.
  • the wire mesh 13 is shown in the prefabrication state according to FIG. 2 in a second embodiment.
  • the wire mesh 13 is formed by a (in this case planar) wire mesh.
  • a multiplicity of the wires 20 are aligned parallel to one another in the longitudinal direction 22, while on the other hand a multiplicity of the wires 20 ', so to speak as weft wires, are again parallel to one another in a transverse direction 30, approximately at right angles the wires 20, are aligned.
  • Each wire 20 ' is interwoven in the transverse direction 30 with the wires 20 by being guided alternately once via a wire 20 and once under a wire 20 adjacent thereto.
  • all the wires 20 and 20 ' are each arranged at the same distance from one another, so that essentially square meshes 24 are formed here.
  • Each wire frame 25 is in turn by four points of contact 23, to each of which a wire 20 and a Wire 20 'intersect, and the respective connecting sections 27 defined.
  • each wire 20 ' can be alternately guided over two wires 20 and adjacent under a wire 20.
  • the wire mesh 13 is again designed as a wire knit in the prefabrication state according to FIG. Similar to the first embodiment, here each wire 20 is guided in a meandering shape, wherein a plurality of loops 40 in the longitudinal direction 22 are arranged side by side. Analogous to the embodiment of FIG. 1, the wires 20 are aligned substantially parallel to one another, with one wire 20 each being adjacent to a wire 20 '.
  • Each loop 40 'of one wire 20' is hooked into an adjacent loop 40 of the wire 20, so that in turn a plurality of stitches 24 is formed.
  • Each stitch 24 is formed by and large by one of the loops 40 and 40 '.
  • the wire frame 25 of each loop 24 is in turn formed by four points of contact 23 (on each of which the wire 20 'is entwined with one of the wires 20 adjacent on both sides in the transverse direction 30) and the sections 27 connecting them.
  • the knitted fabric can also be formed from a single wire 20, which is guided accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)

Abstract

Eine Vorrichtung wird angegeben, die es im Zusammenhang mit einer Umleitstation (1) möglich macht, den umgeleiteten Wasserdampf (3) durch Vermischung mit Wasser (8) besonders effektiv zu kühlen. Danach ist als Vorrichtung eine Mischeinrichtung (10) vorgesehen, die einen sogenannten statischen Mischer (12) umfasst, der im Wesentlichen aus einem Draht -Netz (13) gebildet ist. Das Draht-Netz (13) ist dabei durch mindestens einen im Wesentlichen zu Maschen verschlungenen Draht hergestellt. In bestimmungsgemäßer Einbausituation ist der Mischer (12) derart bezüglich einer durch den Wasserdampf (3) vorgegebenen Strömungsrichtung (4) stromabwärts einer Wasserinjektion (7) montiert, dass die Maschen von dem Gemisch aus Wasser (8) und Wasserdampf (3) durchströmt sind.

Description

Beschreibung
Mischeinrichtung zur Vermischung von Wasser und Wasserdampf in einer Umleitstation
Eine Umleitstation dient im Rahmen einer Dampfturbinenanlage dazu, den in einem Dampferzeuger gebildeten Wasserdampf als Bypass an einer (Dampf-) Turbine vorbei direkt einem Kondensa- tor zuzuführen. Ein solcher Bypass ist beispielsweise notwendig, wenn die Laufzeiten von Dampferzeuger und Turbine nicht synchron zueinander sind. Beispielsweise wird bereits vor dem Anfahren der Turbine bzw. noch während des Abfahrens der Turbine Wasserdampf erzeugt, der in diesen Betriebszuständen von der Turbine nicht verwendet werden kann.
Um bei der Einleitung des „ungebrauchten" Wasserdampfes den Kondensator nicht zu schädigen, wird in der Umleitstation in der Regel einerseits der Dampfdruck gedrosselt, andererseits wird der Wasserdampf durch Injektion von Wasser gekühlt. Das in den Wasserdampf injizierte Wasser wird erhitzt und verdampft, wodurch umgekehrt der Wasserdampf gekühlt wird.
Mit Wasser ist dabei im Folgenden stets Wasser in seinem flüssigen Aggregatzustand, insbesondere in Tropfenform bezeichnet, während mit Wasserdampf das Wasser in seinem gasförmigen Aggregatzustand bezeichnet ist.
Das Wasser wird häufig durch mehrere quer zur Strömungsrich- tung ausgerichtete Düsenstöcke injiziert und mit dem Wasserdampf vermischt. In einer Alternative dazu wird das Wasser in einem (einzigen) Strahl in den Wasserdampf eingespritzt, wobei die Vermischung üblicherweise durch eine Blende realisiert wird. Nachteiligerweise sind bei beiden Varianten zur Vermischung - und damit zur erfolgreichen Kühlung - vergleichsweise große Mischlängen erforderlich. Zudem sind eingesetzte Mischblenden einem relativ hohen Verschleiß durch sogenannten Tropfenschlag ausgesetzt. Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung anzugeben, die es im Zusammenhang mit einer Umleitstation möglich macht, den umgeleiteten Wasserdampf durch Vermischung mit Wasser besonders effektiv zu kühlen.
Danach ist als Vorrichtung eine Mischeinrichtung vorgesehen, die einen sogenannten statischen Mischer umfasst, der im Wesentlichen aus einem Draht-Netz gebildet ist. Das Draht-Netz ist dabei durch mindestens einen im Wesentlichen zu Maschen verschlungenen Draht hergestellt. In bestimmungsgemäßer Einbausituation ist der Mischer derart bezüglich einer durch den Wasserdampf vorgegebenen Strömungsrichtung stromabwärts einer Wasserinjektion montiert, dass die Maschen von dem Gemisch aus Wasser und Wasserdampf durchströmt sind.
Die Maschen sind im Wesentlichen durch ein Draht-Gestrick oder ein Draht-Gewirke gebildet. Mit Gestrick oder Gewirke ist das Draht-Netz dann bezeichnet, wenn die Maschen im wört- liehen Sinne gestrickt sind. Wenn also analog zum Stricken in der Textiltechnik die Maschen dadurch gebildet sind, dass mehrere in einer Reihe angeordnete Schlingen jeweils durch eine Schlinge einer angrenzenden Reihe geführt werden. Hierdurch erhält das Draht-Netz eine besonders hohe Stabilität. Dabei kann das Draht-Netz insbesondere aus einem einzigen Draht gefertigt sein.
Als Masche ist dabei jeweils ein Drahtrahmen, sowie eine von diesem Drahtrahmen eingefasste Öffnung bezeichnet. Die Be- Zeichnung wird insbesondere unabhängig davon verwendet, ob die Masche im engeren Sinne als sogenannte Maschenware hergestellt ist (bspw. gestrickt, gewirkt, gehäkelt etc.), oder ob die Masche durch eine andere Verknüpfung oder Verflechtung eines Drahtes oder mehrerer Drähte hergestellt ist.
Mit Draht ist ein dünnes, langes, biegsames Stück Metall, insbesondere mit kreisförmigem Querschnitt, bezeichnet. Andere Querschnittsformen sind jedoch prinzipiell auch denkbar. In bevorzugter Ausgestaltung ist der Draht aus Edelstahl gefertigt .
Durch die Herstellung aus Draht unterscheidet sich das Draht- Netz insbesondere von einem Lochblech, bei dem mehrere, meist im Wesentlichen runde Öffnungen in ein Blech eingebracht sind.
In der bestimmungsgemäßen Einbausituation werden die Maschen des Draht-Netzes von dem Gemisch aus Wassertropfen und Wasserdampf durchströmt. Hierbei werden durch die jeweiligen Drahtrahmen Wirbel erzeugt, die eine Quervermischung der Wasserdampfströmung und damit eine Vermischung der Wassertropfen mit dem Wasserdampf erzwingen. Hierdurch dringt das Wasser vorteilhaft weitestgehend bis in den Kern der DampfStrömung ein. Zudem werden die Wassertropfen an den Drahtrahmen zerteilt, woraus eine schnellere Verdampfung des Wassers und damit eine effektivere Kühlung resultieren. Zusätzlich erfolgt durch das Draht-Netz eine Wärmeabfuhr über das wärmeleitende Metall. Insgesamt wird durch den Einbau des Mischers aus
Draht-Netz eine besonders effektive Kühlung des Wasserdampfes erreicht .
Durch die Herstellung aus Draht weist der Mischer eine ver- gleichsweise hohe Stabilität auf, insbesondere ist der Draht gegenüber Zugbelastungen besonders widerstandsfähig. Zudem weist der Mischer vorteilhafter Weise eine hohe Temperaturbeständigkeit auf.
Ein zusätzlicher Vorteil des aus einem Draht-Netz gebildeten Mischers besteht in seiner Filterwirkung: Mitunter kann es bei Wartungsarbeiten an der Umleitstation vorkommen, dass größere Teile vergessen werden. Diese können großen Schaden anrichten, wenn sie in den Kondensator gelangen. Durch das Draht-Netz werden sie gegebenenfalls abgefangen.
In einer alternativen Ausführungsform ist das Draht-Netz aus einem Draht-Geflecht gebildet. Als Geflecht zeichnet sich das Draht-Netz dadurch aus, dass mehrere Drähte im Wesentlichen jeweils schräg zueinander zur Bildung von Maschen miteinander verschlungen sind. In einer weiteren Alternative ist auch denkbar, das Draht-Netz als Gewebe herzustellen, bei dem meh- rere Drähte in mindestens zwei Einheiten miteinander verwebt sind. Dabei sind die Drähte der einen Einheit jeweils im Wesentlichen rechtwinklig zu den Drähten der zweiten Einheit ausgerichtet .
Grundsätzlich kann der Mischer im Wesentlichen in Form einer runden Scheibe ausgebildet sein, die im Querschnitt einer (runden) Rohrleitung montierbar ist. In bevorzugter Ausführungsform ist der Mischer, bzw. dessen Draht-Netz, jedoch insgesamt im Wesentlichen als ein elliptisches Paraboloid ge- formt. Dabei ist das Netz bestimmungsgemäß derart in der
Rohrleitung montiert, dass es in einem Längsschnitt (bezüglich der Rohrleitung) im Wesentlichen die Form einer stromaufwärts offenen Parabel aufweist. Hierdurch erhält das Netz gegenüber der DampfStrömung eine besonders hohe Stabilität.
Bevorzugt ist das Draht-Netz derart dimensioniert, dass eine Maschenweite im Verhältnis zum Durchmesser des Drahtes derart gewählt ist, dass eine freie durchströmte Fläche mindestens 50% der Gesamtfläche des Draht-Netzes beträgt. Dabei ist die freie durchströmte Fläche im Wesentlichen durch die Maschenöffnungen gebildet, während die Gesamtfläche sowohl durch die Maschenöffnungen als auch die jeweils zugeordneten Drahtrahmen gebildet ist.
Da die Drahtrahmen der Maschen der WasserdampfStrömung dann vorteilhafter Weise nur eine vergleichsweise geringe Querschnittsfläche entgegensetzen, ist einerseits der durch den Einbau des Mischers hervorgerufene Druckverlust vergleichsweise gering. Andererseits sind die Drahtrahmen dadurch auch vergleichsweise wenig einer Erosion durch Tropfenschlag ausgesetzt . Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 in schematischer Schnittdarstellung eine in einer Umleitstation montierte Mischeinrichtung mit einem aus einem Draht-Netz gebildeten Mischer zur Vermischung von Wasser und Wasserdampf,
FIG 2 in schematischer Darstellung das Draht-Netz in einer ersten Ausführungsform gemäß FIG 1, und
FIG 3, FIG 4 in Darstellung gemäß FIG 2 das Draht-Netz jeweils in einer weiteren Ausführungsform.
In FIG 1 ist in einem Längsschnitt ein Teil einer Umleitstation 1 grob schematisch angedeutet. Die Umleitstation 1 um- fasst eine hier horizontal ausgerichtete Rohrleitung 2 zur Überleitung von Wasserdampf 3 ausgehend von einem - hier nicht dargestellten - Dampferzeuger (in der Darstellung links der Umleitstation 1 angeordnet) zu einem - ebenfalls nicht dargestellten - Kondensator (rechts der Umleitstation) . Eine durch Pfeile angedeutete Strömungsrichtung 4 des Wasserdamp- fes 3 läuft demnach von links nach rechts.
In Strömungsrichtung 4 aufwärts, ist der Rohrleitung 2 eine Laval-Düse 5 vorgeschaltet, die einerseits zur Drosselung des Dampfdrucks, andererseits als Messstelle für die Strömungsge- schwindigkeit dient.
In einem sich konisch aufweitenden Auslaufbereich 6 der Laval-Düse 5 ist eine Einleitdüse 7 zur Injektion von Wasser 8 in den strömenden Wasserdampf 3 angeordnet.
Das eingeleitete Wasser 8 dient dazu, den Wasserdampf 3 vor der Überleitung zu dem Kondensator abzukühlen. Hierzu wird das Wasser 8 mit dem Wasserdampf 3 vermischt, wobei das Was- ser 8 verdampft. Die Kühlung des Wasserdampfes 3 erfolgt einerseits durch das geringere Temperaturniveau des Wassers 8 gegenüber dem Wasserdampf 3, andererseits indem die bei der Verdampfung des Wassers 8 aufgenommene Verdampfungsenthalpie dem Wasserdampf 3 entzogen wird.
Zur Verbesserung der Mischung des Wassers 8 mit dem Wasserdampf 3 - und damit für eine effektivere Kühlung - ist eine Mischeinrichtung 10 in Strömungsrichtung 3 nach der Einleit- düse 7 bzw. nach der Laval-Düse 5 in der Rohrleitung 2 montiert .
In einer hier dargestellten ersten Ausführungsform umfasst die Mischeinrichtung 10 einerseits einen grob angedeuteten Befestigungsring 11, andererseits einen ebenfalls grob angedeuteten Mischer 12, welcher aus einem Draht-Netz 13 gefertigt ist. Das Draht-Netz 13 ist in dieser Ausführungsform nach Art eines Maschendrahtzauns gefertigt (FIG 2) .
Der Mischer 12 hat in etwa die Form eines (überdimensionalen) Fingerhuts oder eines abgerundeten Hohlkegels. An seinem geschlossenen Ende 14 ist der Mischer 12 abgerundet. Mit einem seinem offenen Ende 15 zugewandten ringförmigen Rand 16 ist der Mischer 12 in etwa konzentrisch an dem Befestigungsring 11 montiert, hier verschraubt. Dabei ragt der Befestigungsring 11 radial beidseitig über den Rand 16 hinaus.
In einem hier dargestellten Montagezustand ist der Befestigungsring 11 zwischen einem Flansch 17 der Laval-Düse 5 und einem Flansch 18 der Rohrleitung 2 montiert. Dabei ist der
Mischer 12 derart ausgerichtet, dass sein offenes Ende 15 der Einleitdüse 7 bzw. - in etwa nach Art eines zu füllenden Trichters - der Strömungsrichtung 4 zugewandt ist.
Durch die Netzstruktur des Mischers 12 werden in der Strömung Wirbel erzeugt, so dass eine Vermischung quer zur Strömungsrichtung 4 erzwungen wird. Zudem wird das in der Strömung als Tröpfchen vorliegende Wasser 8 durch das Draht-Netz 13 zerteilt.
In FIG 2 ist das Draht-Netz 13 gemäß der ersten Ausführungs- form ausschnittsweise, stark vergrößert dargestellt. Das
Draht-Netz 13 ist dabei insbesondere in einem Vorfertigungszustand dargestellt, in dem es eine parallel zur Zeichenebene ausgerichtete ebene Fläche überspannt. Zur Herstellung des Mischers 12 kann das Draht-Netz 13 dann in eine beliebige räumliche Struktur verbogen werden. Alternativ dazu ist es auch möglich, dass das Draht-Netz 13 bereits bei seiner Herstellung in einem dreidimensionalen Gebilde - beispielsweise in der schüsselartigen Form gemäß FIG 1 - geformt wird.
In FIG 1 ist das Draht-Netz 13 als ein Draht-Geflecht nach Art eines Maschendrahtzauns hergestellt. Das Draht-Netz 13 umfasst mehrere (Rund-) Drähte 20. Jeder Draht 20 ist in einer im Wesentlichen rechtwinkligen, gleichschenkligen Zick-Zack- Linie geführt, so dass jeder Draht 20 eine Vielzahl von Eck- punkten 21 aufweist. Der Länge nach sind die Drähte 20 jeweils im Wesentlichen entlang einer Längsrichtung 22 ausgerichtet und parallel nebeneinander angeordnet. Dabei ist jeweils ein Draht 20 zu seinem benachbarten Draht 20' derart versetzt angeordnet, dass sich jeweils einer der Eckpunkte 21 des Drahtes 20 mit einem der Eckpunkte 21' des benachbarten
Drahtes 20' in einem Berührungspunkt 23 in etwa berühren. Dabei ist jeder Draht 20 jeweils im Bereich des Berührungspunktes 23 jeweils mit dem Draht 20' verhakt. Hierdurch entstehen etwa quadratische Maschen 24. Jede Masche 24 ist dabei durch einen Drahtrahmen 25 gebildet, der jeweils eine Öffnung 26 einfasst. Jeder Drahtrahmen 25 ist durch vier Berührungspunkte 23 und die diese jeweils verbindenden Abschnitte 27 des Drahtes 20 bzw. des benachbarten Drahtes 20' definiert. Die Größe jeder Öffnung 26 - die Maschenweite a - ist dabei wesentlich größer dimensioniert als der Durchmesser d des Drahtes 20. Um ein solches Draht-Netz 13 zu erhalten, kann insbesondere auch ein einziger Draht 20 im Wesentlichen in Schlangenlinien geführt sein, wobei er dann mehrere Abschnitte umfasst, die jeweils gemäß obiger Beschreibung entlang der Längsrichtung 22 in Zick-Zack-Linien, im Wesentlichen parallel zueinander ausgerichtet und miteinander zu Maschen 24 verhakt sind.
In einer alternativen Ausführungsform ist es auch möglich, dass jeder Draht 20 mit dem benachbarten Draht 20' in den Be- rührungspunkten 23 verdrillt ist. Hierdurch erhalten die Maschen 24 jeweils im Wesentlichen eine sechseckige Form (wie häufig bei einem „Hasenzaun" verwendet) . In einer weiteren Alternative ist es auch denkbar, dass die beiden benachbarten Drähte 20 bzw. 20' in den Berührungspunkten 23 nach Art eines Fischernetzes miteinander verknotet sind. Die beiden alternativen Ausführungsformen zeichnen sich durch eine besonders hohe Formstabilität der Maschen 24 aus.
In FIG 3 ist das Draht-Netz 13 in dem Vorfertigungszustand gemäß FIG 2 in einer zweiten Ausführungsform gezeigt. In dieser Ausführungsform ist das Draht-Netz 13 durch ein (hier wiederum ebenes) Draht-Gewebe gebildet. Dabei sind eine Vielzahl der Drähte 20 - quasi als Kett-Drähte - parallel zueinander in der Längsrichtung 22 ausgerichtet, während anderer- seits eine Vielzahl der Drähte 20', sozusagen als Schuss- Drähte, wiederum parallel zueinander in einer Querrichtung 30, etwa rechtwinklig zu den Drähten 20, ausgerichtet sind. Jeder Draht 20' ist dabei in Querrichtung 30 mit den Drähten 20 verwebt, indem er abwechselnd einmal über einen Draht 20 und einmal unter einem dazu benachbarten Draht 20 geführt ist. In der dargestellten Ausführungsform sind alle Drähte 20 bzw. 20' jeweils im gleichen Abstand zueinander angeordnet, so dass hier im Wesentlichen quadratische Maschen 24 gebildet sind.
Jeder Drahtrahmen 25 ist dabei wiederum durch vier Berührungspunkte 23, an denen sich jeweils ein Draht 20 und ein Draht 20' kreuzen, sowie die diese jeweils verbindenden Abschnitte 27 definiert.
Abweichend von der hier dargestellten Verteilung ist auch eine ungleichmäßige Verteilung der Drähte 20, 20' denkbar. Auch ein asymmetrisches „Webmuster" ist möglich. Beispielsweise kann jeder Draht 20' abwechselnd jeweils über zwei Drähte 20 und angrenzend unter einem Draht 20 geführt sein.
In FIG 4 ist das Draht-Netz 13 wiederum in dem Vorfertigungszustand gemäß FIG 2 als ein Draht-Gestrick ausgeführt. Ähnlich zur ersten Ausführungsform ist hier jeder Draht 20 in einer Mäanderform geführt, wobei eine Vielzahl von Schlingen 40 in Längsrichtung 22 nebeneinander angeordnet sind. Analog zu der Ausführungsform aus FIG 1 sind die Drähte 20 dabei insgesamt im Wesentlichen parallel zueinander ausgerichtet, wobei jeweils ein Draht 20 mit einem Draht 20' benachbart ist .
Jede Schlinge 40' des einen Drahtes 20' ist dabei in eine benachbarte Schlinge 40 des Drahtes 20 eingehakt, so dass wiederum eine Vielzahl von Maschen 24 entsteht. Jede Masche 24 ist dabei im Großen und Ganzen durch eine der Schlingen 40 bzw. 40' gebildet. Dabei ist der Drahtrahmen 25 jeder Masche 24 wiederum durch vier Berührungspunkte 23 (an denen jeweils der Draht 20' mit einem der in Querrichtung 30 beidseitig benachbarten Drähte 20 verschlungen ist) und die diese verbindenden Abschnitte 27 gebildet. Analog zu der Ausführungsform gemäß FIG 2 kann auch hier das Gestrick aus einem einzigen Draht 20 - der entsprechend geführt ist - gebildet sein.

Claims

Patentansprüche
1. Mischeinrichtung (10) zur Vermischung von Wasser (8) und Wasserdampf (3) in einer Umleitstation (1), mit einem statischen Mischer (12), der im Wesentlichen aus einem Draht-Netz (13) gebildet ist,
- wobei das Draht-Netz (13) aus mindestens einem, im Wesentlichen zu einer Vielzahl von Maschen (24) ver- schlungenen Draht (20) gefertigt ist, und
- wobei der Mischer (12) bestimmungsgemäß derart strömungstechnisch nach einer Wasserinjektion (7) montiert ist, dass die Maschen (24) von dem Gemisch aus Wasser (8) und Wasserdampf (3) durchströmt sind, wobei die Maschen (24) im Wesentlichen durch ein Draht- Gestrick oder Draht-Gewirke gebildet sind.
2. Mischeinrichtung (10) nach Anspruch 1, wobei die Maschen (24) im Wesentlichen durch ein Draht- Geflecht gebildet sind.
3. Mischeinrichtung (10) nach Anspruch 1, wobei die Maschen (24) im Wesentlichen durch ein Draht- Gewebe gebildet sind.
4. Mischeinrichtung (10) nach einem der Ansprüche 1 bis 3, wobei der Mischer (12), bzw. das Draht-Netz (13), im Wesentlichen die Fläche eines elliptischen Paraboloids überspannt .
5. Mischeinrichtung (10) nach einem der Ansprüche 1 bis 4, wobei der Draht (20) aus Edelstahl gefertigt ist.
6. Mischeinrichtung (10) nach einem der Ansprüche 1 bis 5, wobei der Draht einen kreisförmigen Querschnitt aufweist. Mischeinrichtung (10) nach einem der Ansprüche 1 bis 6, wobei das Verhältnis einer Maschenweite (a) zu einem Drahtdurchmesser (d) derart dimensioniert ist, dass eine freie durchströmte Fläche mindestens 50% der Gesamtfläche des Draht-Netzes (13) beträgt.
PCT/EP2010/050122 2009-01-27 2010-01-08 Mischeinrichtung zur vermischung von wasser und wasserdampf in einer umleitstation WO2010086199A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080006140.XA CN102300628B (zh) 2009-01-27 2010-01-08 用于在旁通站内混合水和水蒸汽的混合装置
US13/146,415 US8641019B2 (en) 2009-01-27 2010-01-08 Mixing device for mixing water and water vapor in a diversion station
EP10700226.3A EP2382033B1 (de) 2009-01-27 2010-01-08 Umleitstation umfassend eine mischeinrichtung zur vermischung von wasser und wasserdampf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09001085.1 2009-01-27
EP09001085A EP2210657A1 (de) 2009-01-27 2009-01-27 Mischeinrichtung zur Vermischung von Wasser und Wasserdampf in einer Umleitstation

Publications (1)

Publication Number Publication Date
WO2010086199A1 true WO2010086199A1 (de) 2010-08-05

Family

ID=40756880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050122 WO2010086199A1 (de) 2009-01-27 2010-01-08 Mischeinrichtung zur vermischung von wasser und wasserdampf in einer umleitstation

Country Status (4)

Country Link
US (1) US8641019B2 (de)
EP (2) EP2210657A1 (de)
CN (1) CN102300628B (de)
WO (1) WO2010086199A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623743A1 (de) * 2012-02-06 2013-08-07 Siemens Aktiengesellschaft Wassereinspritzvorrichtung für ein Umleitdampfsystem einer Kraftwerksanlage
US10519832B2 (en) 2016-05-27 2019-12-31 Deere & Company Decomposition tube for exhaust treatment systems
CN114632436B (zh) * 2022-05-18 2022-08-09 北京势蓝科技有限公司 流体混合器、包含其的燃烧装置及VOCs气体的处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094171A (en) * 1958-03-24 1963-06-18 Gamewell Co Foam nozzle
US4830790A (en) * 1987-11-04 1989-05-16 Co-Son Industries Foam generating nozzle
EP0467147A1 (de) * 1990-07-19 1992-01-22 Schwäbische Hüttenwerke Gesellschaft mit beschränkter Haftung Filter- oder Katalysatorkörper
DE4122014C1 (en) * 1991-07-03 1992-05-27 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Exhaust filter for IC engine - consists of filter body formed by layers of coated filter plates made of superimposed mats of ferritic or austenitic wire etc.
EP0596155A1 (de) 1992-10-26 1994-05-11 Toshiharu Fukai Düse zur Erzeugung von Blasen
DE19851360A1 (de) * 1998-11-08 2000-05-25 Spiegel Margret Verfahren und Anordnung zum Einbringen von Gas in Flüssigkeiten über einen neuartigen Mischer
DE10254569A1 (de) * 2002-11-21 2004-06-03 Bayosan Wachter Gmbh & Co. Kg Statikmischer für Putze
US20050035153A1 (en) * 2003-08-11 2005-02-17 Brown Daniel P. Multi-component fluid dispensing device with mixing enhancement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1773053A (en) * 1923-07-13 1930-08-12 Elliott Co Method for desuperheating steam
GB315629A (en) * 1928-09-27 1929-07-18 Franz Scheinemann Apparatus for cooling superheated steam
DE960354C (de) * 1952-04-11 1957-03-21 Albert Lob Maschinen Und Appba Heissdampfkuehler
US3872012A (en) * 1973-12-20 1975-03-18 Mc Donnell Douglas Corp Particulate separator
DE102006031816B4 (de) * 2006-07-07 2008-04-30 Siemens Fuel Gasification Technology Gmbh Verfahren und Vorrichtung zur Kühlung von heißen Gasen und verflüssigter Schlacke bei der Flugstromvergasung
CN100570147C (zh) * 2008-01-17 2009-12-16 清华大学 一种利用强吸热反应的层板发汗冷却结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094171A (en) * 1958-03-24 1963-06-18 Gamewell Co Foam nozzle
US4830790A (en) * 1987-11-04 1989-05-16 Co-Son Industries Foam generating nozzle
EP0467147A1 (de) * 1990-07-19 1992-01-22 Schwäbische Hüttenwerke Gesellschaft mit beschränkter Haftung Filter- oder Katalysatorkörper
DE4122014C1 (en) * 1991-07-03 1992-05-27 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Exhaust filter for IC engine - consists of filter body formed by layers of coated filter plates made of superimposed mats of ferritic or austenitic wire etc.
EP0596155A1 (de) 1992-10-26 1994-05-11 Toshiharu Fukai Düse zur Erzeugung von Blasen
DE19851360A1 (de) * 1998-11-08 2000-05-25 Spiegel Margret Verfahren und Anordnung zum Einbringen von Gas in Flüssigkeiten über einen neuartigen Mischer
DE10254569A1 (de) * 2002-11-21 2004-06-03 Bayosan Wachter Gmbh & Co. Kg Statikmischer für Putze
US20050035153A1 (en) * 2003-08-11 2005-02-17 Brown Daniel P. Multi-component fluid dispensing device with mixing enhancement

Also Published As

Publication number Publication date
EP2210657A1 (de) 2010-07-28
EP2382033A1 (de) 2011-11-02
CN102300628A (zh) 2011-12-28
US8641019B2 (en) 2014-02-04
US20110291307A1 (en) 2011-12-01
CN102300628B (zh) 2014-08-20
EP2382033B1 (de) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
DE102006055036B4 (de) Mischelement sowie Abgasanlage für eine Verbrennungskraftmaschine
CH698405B1 (de) Injektor für Gasturbinen.
DE19520291A1 (de) Brennkammer
DE112018003392T5 (de) Konzept von mehrfach-def-einspritzung zur reduzierung des risikos der ausbildung von festen ablagerungen in dieselnachbehandlungssystemen
WO2006136231A1 (de) Hohlfaseranordnung
EP2382033B1 (de) Umleitstation umfassend eine mischeinrichtung zur vermischung von wasser und wasserdampf
EP2454411A1 (de) Stoffauflauf für eine maschine zur herstellung einer faserstoffbahn
EP3615863B1 (de) Infrarot-strahler sowie verfahren zur montage eines solchen
EP2856027B1 (de) Verfahren zur vollständigen und geräuschreduzierten verbrennung eines brennstoff-luft-gemisches sowie brenner hierzu
EP4053320B1 (de) Düsenstreifen zur erzeugung von fluidstrahlen zur hydrodynamischen verfestigung einer materialbahn sowie anlage zur verfestigung einer solchen
DE102021120460A1 (de) Strahlregler
CH651487A5 (de) Vorrichtung zum aufspruehen eines kuehlmittels auf stahlbrammen.
DE102021120461A1 (de) Strahlregler
EP2345331B1 (de) Zuführeinrichtung für ein Beschichtungsmaterial
WO2017072309A1 (de) Fluideinspritzsystem
DE202021104211U1 (de) Strahlregler
DE102019200985A1 (de) Triebwerksbauteil mit mindestens einem Kühlkanal und Herstellungsverfahren
EP2588806B1 (de) Brennermodul
DE202021104212U1 (de) Strahlregler
DE102006004840A1 (de) Gasturbinenbrennkammer mit Kraftstoffeinspritzung über den gesamten Brennkammerring
DE102010028571A1 (de) Mischanordnung
DE102021200776A1 (de) Gasturbinen-Brennkammervorrichtung
DE102014015916A1 (de) Roststab und Rost für eine Schubrostfeuerung
DE202016002100U1 (de) Einbaueinrichtung für eine Vorrichtung zur Behandlung eines Gases mit einem Arbeitsfluid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006140.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10700226

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010700226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13146415

Country of ref document: US