WO2010084943A1 - Method for evaluating cultured cells - Google Patents

Method for evaluating cultured cells Download PDF

Info

Publication number
WO2010084943A1
WO2010084943A1 PCT/JP2010/050765 JP2010050765W WO2010084943A1 WO 2010084943 A1 WO2010084943 A1 WO 2010084943A1 JP 2010050765 W JP2010050765 W JP 2010050765W WO 2010084943 A1 WO2010084943 A1 WO 2010084943A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
determination
osteogenic
bone
Prior art date
Application number
PCT/JP2010/050765
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 各務
秀樹 縣
祐輔 堀
聡志 大島
Original Assignee
国立大学法人東京大学
株式会社Tesホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社Tesホールディングス filed Critical 国立大学法人東京大学
Priority to JP2010547527A priority Critical patent/JP5701614B2/en
Publication of WO2010084943A1 publication Critical patent/WO2010084943A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03001Alkaline phosphatase (3.1.3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)

Definitions

  • the present invention relates to a method for evaluating cultured cells, and more particularly to a new method for evaluating cultured osteogenic cells.
  • Regenerative medicine is a medical technique that uses a cell, biomaterial, and cell growth factor to create a form and function similar to that of the original tissue from a living tissue that cannot be recovered by the healing ability of the living body.
  • mesenchymal stem cells are generally used. These mesenchymal stem cells are known to be able to induce differentiation into various cells such as adipocytes and osteoblasts, but in advance determine whether the obtained cells have the desired function It was difficult.
  • bone marrow-derived mesenchymal stem cells are mainly used, and there are reports of adipose-derived stem cells, periosteum-derived stem cells, synovial-derived stem cells, and the like.
  • bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are relatively easy to collect and have an extremely high bone forming ability, and are currently used for almost all clinical applications of bone regeneration.
  • previous reports by the present inventors have revealed that human-derived osteogenic cells have large individual differences. It was also clarified that the bone forming ability was quickly lost by culture.
  • ALP activity cell alkaline phosphatase activity
  • Non-Patent Document 1 gene expression of bone markers
  • Non-Patent Document 1 gene expression of bone markers
  • ALP activity is a useful assessment for osteogenic cells, it alone is difficult to define osteogenic cells.
  • gene expression of bone system markers is a useful evaluation, the results of the study by the present inventors have shown that there are large individual differences in expression, and cases where it is difficult to use as an evaluation.
  • Osteogenic cells are defined as cells essential for bone formation, such as osteoblasts.
  • cells capable of ectopic bone formation are defined as osteogenic cells.
  • Ectopicity is the ability to form bone in parts that are essentially free of bone. Ectopic bone forming ability is verified, for example, by transplanting subcutaneously in immunodeficient animals with a carrier holding human cells. Although bone regeneration is actually expected in the vicinity of bone, it is necessary to regenerate bone toward the bone-free part, so the ability originally required for bone regeneration is this ectopic bone formation. Noh is considered the most appropriate evaluation method. However, there is no method for evaluating cells produced from such a viewpoint.
  • osteogenic cells are allowed to coexist with a transplant material such as pseudo bone granules, and the pseudo bone granules are decomposed by osteoclasts at the transplant site, while the true bone is regenerated by osteoblasts and the like.
  • a transplant material such as pseudo bone granules
  • the pseudo bone granules are decomposed by osteoclasts at the transplant site, while the true bone is regenerated by osteoblasts and the like.
  • the number of osteogenic cells in the transplant material is of course an important factor, but on the other hand, it is important that proper bone forming ability is maintained. If the number of these osteogenic cells is small or cells with poor bone forming ability are used, proper bone formation is not performed, but it takes a considerable amount of time to confirm actual bone formation. Necessary.
  • the conventional evaluation of target cells is performed by a single determination method as described above, and if the evaluation criteria are raised, regeneration after transplantation is performed. Although the rate increases to some extent, it is considered that the cultured cells that were originally usable can be judged as inappropriate. On the other hand, if the evaluation standard is lowered, cultured cells that cannot form bone can be used for transplantation. Become. Furthermore, according to the research of the present inventors, in human cells, there are large variations among individuals in almost all test values, and it is difficult to make an accurate determination only with a certain reference value or only with a single criterion. It has become clear that even realistic judgment is difficult.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a reliable evaluation method capable of determining a target cell.
  • the evaluation method according to the present invention can be suitably used for osteogenic cells, the problem of variation of human cells is common to many cells that are widely used for regenerative medicine and cell therapy in addition to osteogenic cells. This is considered a problem. Therefore, the effect of the present invention is not only for osteogenic cells but also widely for cell therapy using human cells, and whether the obtained cells are the target cells and whether they have functions necessary for the treatment. It provides an effective evaluation method.
  • a target cell from the cultured cell in order to determine a target cell from the cultured cell, a plurality of test values or indices of the cultured cell are measured and combined. It has been found that a reliable evaluation method can be created.
  • bone-forming cells bone-forming (+) cells
  • a bone-forming ability test method as shown in Fig. 2 to predict and evaluate whether bone formation is performed properly after transplantation. It has been found that a method for evaluating a useful osteogenic cell can be created by carrying out the process appropriately and accurately, and the present invention has been completed.
  • a plurality of test values or indices of the cultured cells are measured, and the function of the cells is accurately predicted by combining them.
  • An evaluation method for judging, For each test value not only can you specify a certain compatible range, but even if the sample is outside the applicable range, you can determine the target cell by referring to another test value or index. It is characterized by being.
  • the method for evaluating cultured osteogenic cells of the present invention is a method for evaluating cultured cells having a primary determination criterion, a secondary determination criterion, and a tertiary determination criterion.
  • the cells that have undergone the primary determination are further determined as bone forming (+) cells by performing a secondary determination. It is characterized in that a bone forming (+) cell is determined by performing a third determination on a cell that is difficult to determine whether it is a bone forming (+) cell.
  • the determination criteria are ALP activity (alkaline phosphatase activity), ALP index (ALP activity in differentiation induction group / ALP activity in non-differentiation induction group), cell proliferation ability (number of cells after differentiation induction / initial seeded cells) It is preferable that any one of (number) satisfies the reference value of the primary determination or more.
  • the determination criterion is whether or not all of ALP activity, ALP index, and cell proliferation ability satisfy the reference value of the secondary determination, A cell that satisfies both the primary determination and the secondary determination is determined as a bone-forming (+) cell, For cells that did not meet the criteria in the primary judgment but met the criteria in the secondary judgment, the cells moved to the tertiary judgment criteria, It is preferable to determine a cell that does not meet the criteria in the secondary determination as a bone-forming ( ⁇ ) cell.
  • the determination criterion is whether any of surface antigen (HLA-DR) analysis by flow cytometry, TRAP staining, or alizarin red staining satisfies the criterion, It is preferable to determine cells that satisfy this criterion as osteogenic (+) cells, and cells that do not satisfy these criteria as osteogenic ( ⁇ ) cells.
  • the reference value is preferably each (average value + 2SD) of bone-forming ( ⁇ ) cells.
  • the reference value is a lower limit value of each measurement value of bone forming (+) cells (average value ⁇ 2SD) or each value of bone forming (+) cells.
  • the standard for surface antigen (HLA-DR) analysis is preferably about 6% or more of measured HLA-DR positive cells.
  • the reference value for ALP activity is about 166 units ( ⁇ mol). p-nitrophenol produced / min / ⁇ g protein) is preferred.
  • the reference value of the ALP index is about 3.95, The method for evaluating cultured osteogenic cells.
  • the reference value of the cell proliferation ability is about 9.7.
  • the reference value for ALP activity is about 67 units ( ⁇ mol). p-nitrophenol produced / min / ⁇ g protein) is preferred.
  • the reference value of the ALP index is about 1.01.
  • the reference value of the cell growth ability is about 5.6.
  • the ALP activity used as a criterion is high in osteogenic cells, such as osteoblasts. If the ALP activity after differentiation induction is low, it is possible that the cells do not contain osteogenic cells or have no bone forming ability. When the ALP index, which is the ratio of ALP activity in the induction group, is increased, it is indicated that the cells are osteogenic cells and may have osteogenic ability. On the other hand, if the ALP activity is sufficiently high, the differentiation induction of osteogenic cells is very likely to be good. However, even if ALP activity is high, sufficient bone formation cannot be expected after bone transplantation if cell proliferation ability is lost. Therefore, the evaluation method according to the present invention also evaluates cell proliferation ability.
  • a comparatively simple and clear method of ALP activity evaluation, ALP index, and cell proliferation ability determination are used to select those clearly having bone forming ability and those not having bone forming ability.
  • ALP activity evaluation As described above, in the present invention, a comparatively simple and clear method of ALP activity evaluation, ALP index, and cell proliferation ability determination are used to select those clearly having bone forming ability and those not having bone forming ability.
  • For groups that were not clear in the evaluation of HLA-DR, HLA-DR analysis, TRAP staining, and alizarin red staining would be discarded as “no osteogenic ability” even though sufficient osteogenic ability could be expected. It is preventing.
  • the present invention it is possible to provide a method that can evaluate the type and function of a target cell that has been difficult to judge by a certain standard due to variations among individuals. Further, when evaluating osteogenic cells, it is possible to almost certainly evaluate the bone forming ability of cultured cells, and a method relating to evaluation essential for treatment using cells can be provided.
  • Bone-forming ability test schedule The flowchart which shows the evaluation method of the osteogenic cell concerning this invention. Explanatory drawing of the culture
  • Granule-type cultured bone can be produced by collecting bone marrow fluid, culturing bone marrow-derived mesenchymal stem cells, seeding mesenchymal stem cells, and inducing differentiation into cultured osteoblast-like cells.
  • the following steps show a form using bone marrow-derived cells.
  • the evaluation method of the present invention can be cultured separately from periosteum, fat, peripheral blood, etc. in addition to bone marrow, and cultured bones in the same manner. It can also be suitably used in granulated cultured bone produced by inducing differentiation into blast-like cells.
  • Bone marrow fluid should be collected approximately one month before surgery. First, local anesthesia is performed on the bone marrow fluid collecting part, and aseptically sucked and collected from the posterior superior iliac crest.
  • Bone marrow fluid 10 diluted 4-fold with cell culture medium is seeded in cell culture flask 12, culture is started as shown in Fig. 3 (A), and 4 days after the start of culture. Change the whole medium.
  • the cell culture medium either serum-containing ⁇ MEM or serum-free medium can be used for both primary culture and differentiation culture.
  • ⁇ Seeding of mesenchymal stem cells Passage is performed as follows. After evacuating the culture medium in the flask, washing with darbecolate buffer (D-PBS), and then evacuating D-PBS, adding a cell dissociating agent, and culturing at 37 ° C. for 10 minutes. After confirming that the cells are detached, add D-PBS or a medium to collect the cells, and then centrifuge. Resuspend in medium and count cells. After the measurement, the cultured bone marrow fluid 10 is put into a deep bottom container 16 in which porous pseudo-bone granules 14 as shown in FIG. When the bone marrow fluid 10 is put into the deep bottom container 16 containing the pseudo bone granules 12, the bone marrow fluid 10 and the pseudo bone granules 12 float as shown in FIG.
  • D-PBS darbecolate buffer
  • osteogenic cells are determined based on a primary determination criterion, a secondary determination criterion, and a tertiary determination criterion.
  • the ratio in the parenthesis in FIG. 2 indicates the ratio to the initial cell.
  • these ratios are merely examples and are not particularly limited, and vary depending on the selection of cells to be used.
  • the primary determination is performed based on ALP activity, ALP index, and cell proliferation ability. In the primary determination, if the reference value of any of the three evaluation methods is exceeded, the cell is determined to be the primary determination standard (O), and if not exceeding all the reference values, the cell is primary It is determined that it is a criterion ( ⁇ ).
  • the secondary determination is also performed based on the ALP activity, the ALP index, and the cell proliferation ability as in the primary determination. However, as shown below, these evaluation reference values are different from the primary determination.
  • the primary determination criterion ( ⁇ ) cell exceeds the reference value in all of the three evaluation methods in the secondary determination, the cell is determined to be a bone-forming (+) cell, and any reference value is determined. If not, the cell is determined to be an osteogenic ( ⁇ ) cell.
  • the primary determination criterion ( ⁇ ) cell satisfies all of the above three evaluation methods in the secondary determination, the cell is transferred to the tertiary determination criterion. If any of the reference values is not exceeded, the cell is Determined to be osteogenic ( ⁇ ) cells.
  • tertiary determination is performed based on surface antigen analysis by flow cytometry, TRAP staining, and alizarin red staining. If any of the tertiary criteria is positive, the cell is determined to be a bone-forming (+) cell, and if all are negative, the cell is determined to be a bone-forming (-) cell. .
  • the bone-forming cell evaluation method it is determined whether or not it is a bone-forming (+) cell by combining a plurality of criteria.
  • the importance of combining these methods is as follows.
  • ALP activity has also been used for confirmation of bone formation ability so far.
  • the distribution of ALP activity is close to cells with and without bone forming ability, and it was difficult to set a clear boundary. If it is set low, many cells having no bone forming ability are mixed, and if it is set high, cells having bone forming ability are excluded.
  • ALP activity When a criterion is actually considered using ALP activity, for example, it is conceivable to set a boundary with an average value ⁇ 2SD of ALP activity of cells showing bone formation. Assuming that the value of ALP activity has a normal distribution, 95.45% of cells that actually have osteogenic potential should be able to be recovered, but on the other hand, looking at FIG. 4, it does not have osteogenic potential. It is possible that most cells will also be recovered. It is also conceivable to set the lower limit value of bone-forming (+) cells. However, when FIG. 4 is seen, there are many cells that do not have the ability to form bone even when the bone formation (+) cell is below the lower limit.
  • the usefulness of the ALP index has been reported by the present inventors for the determination of bone forming ability.
  • the distribution of the ALP index is also close between cells with and without bone forming ability, and it was difficult to set a clear boundary.
  • the present inventors have clarified that, among cell proliferating ability, the proliferating ability particularly during differentiation induction is related to the osteogenic ability. .
  • the distribution of cell proliferating capacity is also close between cells having bone forming ability and cells not having bone forming ability, and it was difficult to set a clear boundary.
  • the present inventors have many overlapping portions of data of bone forming (+) cells and bone forming ( ⁇ ) cells in the above-described determination method, and therefore, the strict criteria (1) that only bone forming (+) cells can be collected. The following criteria are provided first.
  • the relief is performed using the secondary determination criterion and the tertiary determination criterion.
  • cells that satisfy the primary determination criteria may contain a small amount of osteogenic ( ⁇ ) cells.
  • the secondary determination standard is performed also about these cells.
  • the primary determination to the tertiary determination are performed. As a result, the present inventors have determined that the osteogenic (+) cells are almost 100%. % Bone forming (+) cells have been revealed.
  • the reference value for primary determination was set as each (average value + 2SD) of bone-forming ( ⁇ ) cells.
  • the reference value for secondary determination was set as the lower limit of each measured value of bone forming (+) cells (average value ⁇ 2SD) or each value of osteogenic (+) cells.
  • the reference value may vary depending on the population of patients (gender, age, race, etc.) from which cells are collected. That is, it is important to select an appropriate value that matches the patient as the reference value. Therefore, the reference values shown below are determined by the patient's cells collected by the present inventors, and are not limited to these. With more data, it is possible to set this value more precisely.
  • the specific reference value of the secondary determination shown below is exemplified by the lower limit value of each measurement value of bone-forming (+) cells, but each (average value ⁇ 2SD) of bone-forming (+) cells. ) Can be used to obtain reasonable results.
  • ALP activity for the measurement of ALP activity, for example, p-nitrophenyl phosphate tablet set (Sigma-Aldrich) and cell counting kit WST-8 (Dojindo Laboratories) can be used.
  • WST-8 cell counting kit
  • the measurement method will be described by taking ALP activity measurement with the above product as an example. First, 100 ⁇ l of WST-8 solution is added to each well. After a color reaction for 1 to 4 hours in a carbon dioxide incubator, the absorbance is measured using a microplate reader.
  • ALP activity is expressed in moles of p-nitrophenol per hour / mass of protein ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein). Alternatively, it can also be expressed as p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm).
  • FIG. 7 shows an example of ALP activity measurement results.
  • the average value of ALP activity + 2SD of osteogenic ( ⁇ ) cells was 2.31 ⁇ p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm) ⁇ .
  • This value corresponds to 166 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein).
  • the present inventors set the reference value for primary determination of ALP activity as about 166 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein). That is, the reference value for primary determination of ALP activity is preferably 166 ⁇ 5 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein).
  • the conversion formula for the unit of ALP activity per cell was determined by the present inventors depending on the cells used in this study.
  • the lower limit of the measured ALP activity of the bone-forming (+) cells was 0.93 ⁇ p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm) ⁇ .
  • This value corresponds to 67 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein).
  • the present inventors set the reference value for secondary determination of ALP activity as about 67 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein). That is, the reference value for secondary determination of ALP activity is preferably 67 ⁇ 5 units ( ⁇ mol p-nitrophenol produced / min / ⁇ g protein).
  • ALP index was measured by measuring ALP activity for cells to which a differentiation-inducing medium was added (differentiation-inducing group) and cells in which normal medium was added as a control (non-differentiation-inducing group). (ALP activity of non-differentiation induction group).
  • the average value of ALP index + 2SD of osteogenic ( ⁇ ) cells was 3.95.
  • the inventors set the reference value for the primary determination of the ALP index as about 3.95. That is, it is preferable that the reference value for primary determination of the ALP index is 3.95 ⁇ 0.15.
  • the lower limit value of the measured ALP index value of the bone-forming (+) cells was 1.01.
  • the present inventors set the reference value for secondary determination of the ALP index to about 1.01. That is, the reference value for secondary determination of the ALP index is preferably 1.01 ⁇ 0.15.
  • Cell proliferation ability can be calculated
  • the cell proliferation rate during the differentiation induction period is defined as the cell proliferation ability.
  • the determination can be made with the ratio of the OD values of the cell counting kit (WST-8).
  • the absorbance (OD value) at 450 nm is measured, and divided by the OD value of WST-8 relative to the number of cells before differentiation induction, the cell proliferation rate during differentiation induction is obtained.
  • the cell proliferation ability determination according to the present invention can be applied from passage 1 to passage 4.
  • FIG. 8 shows an example of measurement results of cell proliferation ability.
  • the average proliferation ability + 2SD of osteogenic ( ⁇ ) cells was 9.7.
  • the present inventors set the reference value for the primary determination of cell proliferation ability to be about 9.7. That is, it is preferable that the reference value for the primary determination of cell proliferation ability is 9.7 ⁇ 0.3.
  • the lower limit of the proliferative ability measurement value of the bone forming (+) cells was 5.6.
  • the present inventors set the reference value for secondary determination of cell proliferation ability to be about 5.6. That is, it is preferable that the reference value for primary determination of cell proliferation ability is 5.6 ⁇ 0.3.
  • the criteria and evaluation methods surface antigen (HLA-DR) analysis by flow cytometry, TRAP staining, alizarin red staining
  • HLA-DR surface antigen
  • TRAP staining alizarin red staining
  • CD105 antibody (Immunotech) with covalently bound FITC was also used.
  • the biotinylated antibody was detected with Streptavidin Pacific Blue (Invitrogen) or Streptavidin PerCP-Cy5.5 (BD Pharmingen) complex.
  • STRO-1 antibody (R & D Systems) was detected with PE-conjugated anti-mouse IgM. Propidium iodide (Dojindo Laboratories) was used to detect dead cells.
  • the surface antigen analysis was performed by flow cytometry using the above tens of types of antibodies. As a result of investigations by the present inventors, it has been clarified that bone marrow-derived mesenchymal stem cells may or may not be able to obtain cells having bone forming ability even if cultured by the same technique.
  • the expression of the above-mentioned antibodies other than the antibody against HLA-DR there was no difference between cells having the ability to form bone and cells not having them.
  • FIG. 9 shows the results of surface antigen analysis by flow cytometry.
  • the X-axis and Y-axis in FIG. 9 show the responses to different antibodies (HLA-DR and CD14, respectively).
  • the numerical value on the lower right represents the fraction of antibody on the Y axis (CD14) negative and antibody on the X axis (HLA-DR) positive.
  • the measured HLA-DR positive cells when the measured HLA-DR positive cells are 6% or more, it is determined as a cell fraction containing osteogenic (+) cells.
  • FIG. 9B when the measured HLA-DR positive cells are less than 6%, it is determined as a fraction that has a high possibility of not containing osteogenic (+) cells.
  • the lower limit of 6% of the HLA-DR positive cells is an empirically determined value found by many inventors in the subject, but the present invention is not limited to this value. That is, it is possible to set this numerical value more strictly by using data of a larger number of samples.
  • a value obtained by subtracting 2SD or the like from the average value of cells forming bone Among the values obtained by adding 2SD or the like to the average value of the cells that did not form, it can be approximated as a higher numerical value.
  • TRAP staining for example, a TRAP staining kit (Wako Pure Chemical Industries, Ltd.) in which the fixing solution is a buffer solution containing 50 mM tartaric acid (pH 5.0, chromogenic substrate 30 mg / vial) can be used.
  • staining kit is shown. First, D-PBS is warmed in a water bath and cultured in a differentiation induction medium containing 10% serum, 1% penicillin streptomycin, 1% amphotericin B and dexamethasone, ⁇ glycerophosphate, and ascorbic acid in ⁇ -MEM.
  • Osteo Clast as a medium other than the above medium It is preferable to use precursor Basal Medium M-CSF (-), RANKL (-), Osteo Clast precursor Basal Medium M-CSF (+), RANKL (+) and compare the results.
  • the medium in the 96-well plate during culture is removed, D-PBS is added at 250 ⁇ l / well and washed, and D-PBS is removed.
  • 50 ⁇ l / well of the TRAP staining kit fixing solution is added and fixed for 5 minutes. After 5 minutes, the fixing solution is removed, and distilled water is added at 250 ⁇ l / well for washing to remove the distilled water. This washing with distilled water is repeated three times.
  • alizarin red staining In order to perform alizarin red staining, cells are seeded in a 12-well dish at a density of 2.0 ⁇ 10 4 / well. The next day, the medium is changed to a differentiation-inducing medium, and thereafter the medium is changed twice a week to induce differentiation for three weeks. The medium is then aspirated and the cells are washed twice with D-PBS. Thereafter, the cells are fixed with a fixing solution (70% ethanol) at minus 20 degrees for 1 hour. Aspirate the fixative and wash twice with distilled water. Next, Alizarin Red S solution (40 mM, pH 4.2) is added, and staining is performed at room temperature for 10 minutes. The pH is adjusted with a 25% aqueous ammonium solution. Aspirate the staining solution and wash the cells with distilled water until non-specific staining is completely eliminated. Then macro and micrographs are taken.
  • a fixing solution 70% ethanol
  • FIG. 11 shows the results of staining with alizarin red.
  • the left side is a sample that has not been induced to differentiate (control), and the right side is a sample after differentiation induction.
  • FIG. 11A when the measured alizarin red staining is positive, it is determined as a fraction containing osteogenic (+) cells.
  • FIG. 11B when the measured alizarin red staining is negative, it is determined that the fraction is highly likely not to contain osteogenic (+) cells.
  • a plurality of test values or an adaptation order for indices and determination criteria are provided, and then a flow chart of them is used to accurately form bone formation of cells regardless of experience. It is preferable to determine the performance. In particular, it is preferable to predict and determine the function of cells with high accuracy, including at least three test values and indices, and combining them with a statistical basis.
  • a plurality of test values and indices are evaluated in a flow chart for human cells having variations, thereby making it possible to improve the influence of the variations to such an extent that there is no clinical problem.
  • for each test value even if the sample is included in the applicable range, it is determined that the cell is not the target cell by referring to another index. There is also.

Abstract

Disclosed is a method for evaluating the type or function of cultured cells, such as a method for evaluating a bone formation ability, which has been difficult to achieve based on a certain criterion because of the fluctuations among individuals. In the method for evaluating cultured cells, for the purpose of identifying a cell of interest among the cultured cells, multiple test values or indicators for the cultured cells are measured, and the function of the cell of interest is predicted or determined with high accuracy based on a combination of the multiple test values or indicators. The method is characterized in that a cell of interest can be identified not only by designating a certain adaptation range for each of the test values, but also referring other test value or indicator for a sample that goes out of the application range.

Description

培養細胞の評価方法Method for evaluating cultured cells 関連出願Related applications
 本出願は、2009年1月23日付け出願の日本国特許出願2009-013385号の優先権を主張しており、ここに折り込まれるものである。 This application claims the priority of Japanese Patent Application No. 2009-013385 filed on January 23, 2009, and is incorporated herein.
 本発明は培養細胞の評価方法において、特に培養された骨形成性細胞の新たな評価方法に関する。 The present invention relates to a method for evaluating cultured cells, and more particularly to a new method for evaluating cultured osteogenic cells.
 欠損した生体組織の再生をはかる再生医療の実現が求められている。再生医療は、本来生体が持っている治癒能力では回復できなくなった生体組織を、細胞、生体材料、細胞成長因子を使って元の組織と同じような形態や機能を作り出す医療技術である。
 再生医療には、一般的に間葉系幹細胞が用いられている。この間葉系幹細胞は、脂肪細胞や骨芽細胞等のさまざまな細胞に分化誘導することができることが知られているが、得られた細胞が目的とする機能を有しているかを事前に判断することは困難であった。
Realization of regenerative medicine for regenerating deficient living tissue is required. Regenerative medicine is a medical technique that uses a cell, biomaterial, and cell growth factor to create a form and function similar to that of the original tissue from a living tissue that cannot be recovered by the healing ability of the living body.
In regenerative medicine, mesenchymal stem cells are generally used. These mesenchymal stem cells are known to be able to induce differentiation into various cells such as adipocytes and osteoblasts, but in advance determine whether the obtained cells have the desired function It was difficult.
 また、骨の再生医療においても、骨髄由来の間葉系幹細胞が中心として用いられており、このほか脂肪由来幹細胞、骨膜由来幹細胞、滑膜由来幹細胞などの報告がある。中でも骨髄由来の間葉系幹細胞、あるいは骨髄間質細胞は、採取が比較的容易であり、きわめて高い骨形成能を持つことから、現在ほとんどすべての骨再生の臨床応用に用いられている。
 しかしながら、これまでの本発明者らの報告で、ヒト由来の骨形成性細胞では、細胞の個体差が大きいことが明らかとなった。また、骨形成能は培養により速やかに失われることが明らかとなった。したがって、実際に移植する細胞が骨形成能を有するかどうかの検討は重要であるが、これまで報告されている方法では十分ではないことが判明した。特に従来は細胞のアルカリフォスファターゼ活性(ALP活性)(特許文献1)、骨系マーカーの遺伝子発現(非特許文献1)などが用いられている。ALP活性は骨形成性細胞に有用な評価であるが、それのみでは骨形成性細胞を定義することは困難である。また、骨系マーカーの遺伝子発現も有用な評価であるが、本発明者らの研究の結果からは発現には個体差が大きく、評価として用いる場合には困難な場合も認められた。特に、個体差の大きいヒト由来細胞の評価のためには、一つの基準では十分でなく、複数の評価法を組み合わせることで、信頼性を高めることが重要と考えられるが、そのような評価法はこれまでに報告されていない。
 骨形成性細胞とは、骨芽細胞などの骨形成に必須な細胞と定義するが、ここでは特に、異所性に骨形成をすることのできる細胞を骨形成性細胞と定義している。異所性とは本来骨のない部分で骨を形成することのできる能力である。異所性の骨形成能は例えばヒト細胞を保持する担体とともに免疫不全動物の皮下へと移植することによって検証される。実際に骨再生が期待される部位は骨の近傍ではあるが、骨のない部分に向かって骨再生を行う必要があるため、本来骨再生に必要とされる能力はこの異所性の骨形成能が最も適切な評価法と考えられる。しかし、これまでそのような観点で作製された細胞の評価方法はない。
In bone regenerative medicine, bone marrow-derived mesenchymal stem cells are mainly used, and there are reports of adipose-derived stem cells, periosteum-derived stem cells, synovial-derived stem cells, and the like. Among them, bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are relatively easy to collect and have an extremely high bone forming ability, and are currently used for almost all clinical applications of bone regeneration.
However, previous reports by the present inventors have revealed that human-derived osteogenic cells have large individual differences. It was also clarified that the bone forming ability was quickly lost by culture. Therefore, it is important to examine whether the cells to be transplanted actually have the ability to form bone, but it has been found that the methods reported so far are not sufficient. In particular, cell alkaline phosphatase activity (ALP activity) (Patent Document 1), gene expression of bone markers (Non-Patent Document 1), and the like have been used. Although ALP activity is a useful assessment for osteogenic cells, it alone is difficult to define osteogenic cells. Moreover, although gene expression of bone system markers is a useful evaluation, the results of the study by the present inventors have shown that there are large individual differences in expression, and cases where it is difficult to use as an evaluation. In particular, for the evaluation of human-derived cells with large individual differences, one standard is not sufficient, and it is considered important to improve reliability by combining multiple evaluation methods. Has not been reported so far.
Osteogenic cells are defined as cells essential for bone formation, such as osteoblasts. In particular, cells capable of ectopic bone formation are defined as osteogenic cells. Ectopicity is the ability to form bone in parts that are essentially free of bone. Ectopic bone forming ability is verified, for example, by transplanting subcutaneously in immunodeficient animals with a carrier holding human cells. Although bone regeneration is actually expected in the vicinity of bone, it is necessary to regenerate bone toward the bone-free part, so the ability originally required for bone regeneration is this ectopic bone formation. Noh is considered the most appropriate evaluation method. However, there is no method for evaluating cells produced from such a viewpoint.
特開2005-58225号公報JP 2005-58225 A
 すなわち移植により骨形成を行うためには、図1に示すような工程を経る。図1に示すように、移植材料、例えば擬似骨顆粒とともに骨形成性細胞を共存させ、移植部位において破骨細胞により擬似骨顆粒を分解させ、一方で骨芽細胞などにより真性骨を再生させる。この際、骨形成性細胞の移植材料中での数はもちろん重要な因子であるが、一方で適正な骨形成能が維持されていることが重要である。仮にこれらの骨形成性細胞の数が少なく、あるいは骨形成能が劣化した細胞を用いた場合には、適正な骨形成は行われないが、実際の骨形成の確認には相当の長期間が必要となる。もし骨形成が適正に行われていない場合には、再度、間葉系幹細胞の採取、培養から移植手術、再生確認を行わなければならず、数ヶ月の期間を無駄にすることになるばかりでなく、移植手術等の患者に負担をかける処置を繰り返すこととなる。したがって、培養細胞の機能を適切に評価することが肝要である。
 一方、細胞の培養中に骨形成能の判定を行うにあたっても、分化誘導中の検査については要する時間も数週間となるため、安易に繰り返すことはできない。
That is, in order to perform bone formation by transplantation, a process as shown in FIG. 1 is performed. As shown in FIG. 1, osteogenic cells are allowed to coexist with a transplant material such as pseudo bone granules, and the pseudo bone granules are decomposed by osteoclasts at the transplant site, while the true bone is regenerated by osteoblasts and the like. At this time, the number of osteogenic cells in the transplant material is of course an important factor, but on the other hand, it is important that proper bone forming ability is maintained. If the number of these osteogenic cells is small or cells with poor bone forming ability are used, proper bone formation is not performed, but it takes a considerable amount of time to confirm actual bone formation. Necessary. If bone formation is not performed properly, the mesenchymal stem cells must be collected again, cultured, transplanted, and reconfirmed, resulting in wasted months. However, treatments that burden the patient, such as transplant surgery, are repeated. Therefore, it is important to appropriately evaluate the function of cultured cells.
On the other hand, even when determining the bone forming ability during cell culture, the time required for the test during differentiation induction is several weeks, so it cannot be easily repeated.
 しかし、従来行われていた目的とする細胞、例えば骨形成性細胞であるかの評価は、前述したように単一の判定手法により行われており、評価基準を上げてしまえば移植後の再生率はある程度高くなるものの、本来使用可能であった培養細胞を不適と判定してしまうことが考えられ、一方で評価基準を下げてしまえば骨形成不能の培養細胞を移植に用いてしまうことになる。さらに、本発明者らの研究により、ヒト細胞においてはほぼすべての検査値に個体間でのばらつきが大きく、一定の基準値のみ、あるいは単一の判定基準のみでは正確な判断が困難であり、現実的な判定すら困難であることが明らかとなってきた。 However, the conventional evaluation of target cells, for example, osteogenic cells, is performed by a single determination method as described above, and if the evaluation criteria are raised, regeneration after transplantation is performed. Although the rate increases to some extent, it is considered that the cultured cells that were originally usable can be judged as inappropriate. On the other hand, if the evaluation standard is lowered, cultured cells that cannot form bone can be used for transplantation. Become. Furthermore, according to the research of the present inventors, in human cells, there are large variations among individuals in almost all test values, and it is difficult to make an accurate determination only with a certain reference value or only with a single criterion. It has become clear that even realistic judgment is difficult.
 本発明は上記課題に鑑み行われたものであり、目的とする細胞であることを判定できる信頼し得る評価方法を提供することを目的とする。本発明にかかる評価方法は、骨形成性細胞について好適に使用できるが、ヒト細胞の持つばらつきの問題は、骨形成性細胞以外にも広く再生医療や細胞治療の対象となる多くの細胞に共通の問題と考えられる。したがって、本発明の効果は骨形成性細胞のみでなく、広くヒト細胞を用いた細胞治療において、得られた細胞が目的とする細胞であるかどうか、そして治療に必要な機能を有するかどうかに対する有効な評価方法を提供するものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a reliable evaluation method capable of determining a target cell. Although the evaluation method according to the present invention can be suitably used for osteogenic cells, the problem of variation of human cells is common to many cells that are widely used for regenerative medicine and cell therapy in addition to osteogenic cells. This is considered a problem. Therefore, the effect of the present invention is not only for osteogenic cells but also widely for cell therapy using human cells, and whether the obtained cells are the target cells and whether they have functions necessary for the treatment. It provides an effective evaluation method.
 前記課題を解決するために本発明者らが鋭意研究を行った結果、培養細胞から目的とする細胞を判定するために、培養細胞の複数の検査値あるいは指標を測定し、それらを組み合わせることにより信頼できる評価方法を作成し得ることを見出した。また、骨形成性細胞(骨形成(+)細胞)については、図2に示すような骨形成能検査手法を開発し、移植後に骨形成が適正に行われるかどうかの予測、評価を移植手術前に適正かつ精度よく行うことにより、有用な骨形成性細胞の評価方法を作成し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies conducted by the present inventors in order to solve the above problems, in order to determine a target cell from the cultured cell, a plurality of test values or indices of the cultured cell are measured and combined. It has been found that a reliable evaluation method can be created. For bone-forming cells (bone-forming (+) cells), we developed a bone-forming ability test method as shown in Fig. 2 to predict and evaluate whether bone formation is performed properly after transplantation. It has been found that a method for evaluating a useful osteogenic cell can be created by carrying out the process appropriately and accurately, and the present invention has been completed.
 すなわち本発明にかかる培養細胞の評価方法は、培養細胞から目的とする細胞を判定するために、培養細胞の複数の検査値あるいは指標を測定し、それらの組み合わせにより、精度よく細胞の機能を予測、判定するための評価方法であって、
 それぞれの検査値について、一定の適合する範囲を指定するのみでなく、適応範囲から外れたサンプルであっても、他の検査値あるいは指標を参照することで目的とする細胞であることを判定可能であることを特徴とする。
That is, in the method for evaluating cultured cells according to the present invention, in order to determine a target cell from the cultured cells, a plurality of test values or indices of the cultured cells are measured, and the function of the cells is accurately predicted by combining them. An evaluation method for judging,
For each test value, not only can you specify a certain compatible range, but even if the sample is outside the applicable range, you can determine the target cell by referring to another test value or index. It is characterized by being.
 また、本発明の培養された骨形成性細胞の評価方法は、1次判定基準と、2次判定基準と、3次判定基準を有する培養細胞の評価方法において、
 1次判定を行った細胞を、さらに2次判定を行うことにより骨形成(+)細胞を判定し、
 骨形成(+)細胞かどうか判断し難い細胞を、さらに3次判定を行うことにより骨形成(+)細胞を判定することを特徴とする。
 前記1次判定において、判定基準はALP活性(アルカリフォスファターゼ活性)、ALPインデックス(分化誘導群のALP活性/非分化誘導群のALP活性)、細胞増殖能(分化誘導後の細胞数/初期播種細胞数)のいずれかが1次判定の基準値以上を満たすかどうかであることが好適である。
 前記2次判定において、判定基準はALP活性、ALPインデックス、細胞増殖能のすべてが2次判定の基準値以上を満たすかどうかであって、
 1次判定、2次判定双方の基準を満たした細胞を骨形成(+)細胞と判定し、
 1次判定で基準を満たさなかったが2次判定で基準を満たした細胞については3次判定基準へと移行し、
 2次判定で基準を満たさなかった細胞を骨形成(-)細胞と判定することが好適である。
 前記3次判定において、判定基準はフローサイトメトリーによる表面抗原(HLA-DR)解析、TRAP染色、アリザリンレッド染色のいずれかが基準を満たすかどうかであって、
 この基準を満たした細胞を骨形成(+)細胞、満たさなかった細胞を骨形成(-)細胞と判定することが好適である。
 前記1次判定において、基準値は骨形成(-)細胞の各(平均値+2SD)であることが好適である。
 前記2次判定において、基準値は骨形成(+)細胞の各(平均値-2SD)または骨形成(+)細胞の各測定値の下限値であることが好適である。
 前記3次判定において、表面抗原(HLA-DR)解析の基準は、測定されたHLA-DR陽性細胞が約6%以上であることが好適である。
 前記1次判定において、ALP活性の基準値は約166単位(μmol
p-nitrophenol produced/min/μg protein)であることが好適である。
 前記1次判定において、ALPインデックスの基準値は約3.95であることを特徴とする培養された骨形成性細胞の評価方法。
 前記1次判定において、細胞増殖能の基準値は約9.7であることが好適である。
 前記2次判定において、ALP活性の基準値は約67単位(μmol
p-nitrophenol produced/min/μg protein)であることが好適である。
 前記2次判定において、ALPインデックスの基準値は約1.01であることが好適である。
 前記2次判定において、細胞増殖能の基準値は約5.6であることが好適である。
Further, the method for evaluating cultured osteogenic cells of the present invention is a method for evaluating cultured cells having a primary determination criterion, a secondary determination criterion, and a tertiary determination criterion.
The cells that have undergone the primary determination are further determined as bone forming (+) cells by performing a secondary determination.
It is characterized in that a bone forming (+) cell is determined by performing a third determination on a cell that is difficult to determine whether it is a bone forming (+) cell.
In the primary determination, the determination criteria are ALP activity (alkaline phosphatase activity), ALP index (ALP activity in differentiation induction group / ALP activity in non-differentiation induction group), cell proliferation ability (number of cells after differentiation induction / initial seeded cells) It is preferable that any one of (number) satisfies the reference value of the primary determination or more.
In the secondary determination, the determination criterion is whether or not all of ALP activity, ALP index, and cell proliferation ability satisfy the reference value of the secondary determination,
A cell that satisfies both the primary determination and the secondary determination is determined as a bone-forming (+) cell,
For cells that did not meet the criteria in the primary judgment but met the criteria in the secondary judgment, the cells moved to the tertiary judgment criteria,
It is preferable to determine a cell that does not meet the criteria in the secondary determination as a bone-forming (−) cell.
In the tertiary determination, the determination criterion is whether any of surface antigen (HLA-DR) analysis by flow cytometry, TRAP staining, or alizarin red staining satisfies the criterion,
It is preferable to determine cells that satisfy this criterion as osteogenic (+) cells, and cells that do not satisfy these criteria as osteogenic (−) cells.
In the primary determination, the reference value is preferably each (average value + 2SD) of bone-forming (−) cells.
In the secondary determination, it is preferable that the reference value is a lower limit value of each measurement value of bone forming (+) cells (average value −2SD) or each value of bone forming (+) cells.
In the third determination, the standard for surface antigen (HLA-DR) analysis is preferably about 6% or more of measured HLA-DR positive cells.
In the primary determination, the reference value for ALP activity is about 166 units (μmol).
p-nitrophenol produced / min / μg protein) is preferred.
In the primary determination, the reference value of the ALP index is about 3.95, The method for evaluating cultured osteogenic cells.
In the primary determination, it is preferable that the reference value of the cell proliferation ability is about 9.7.
In the secondary determination, the reference value for ALP activity is about 67 units (μmol).
p-nitrophenol produced / min / μg protein) is preferred.
In the secondary determination, it is preferable that the reference value of the ALP index is about 1.01.
In the secondary determination, it is preferable that the reference value of the cell growth ability is about 5.6.
 本発明にかかる骨形成性細胞の評価方法において、判定基準として用いられるALP活性は、骨形成性細胞、例えば骨芽細胞に高い活性が認められる。分化誘導後のALP活性が低い場合には骨形成性細胞を含まない、あるいは骨形成能を持たない細胞である可能性が考えられるが、本発明者らの研究により、分化誘導群と非分化誘導群のALP活性の割合であるALPインデックスが上昇する場合には、骨形成性細胞であり、かつ骨形成能を有する場合があることが示されている。一方、ALP活性が十分に高ければ骨形成性細胞の分化誘導は良好である可能性がきわめて高い。しかし、仮にALP活性が高くても、細胞増殖能が失われていれば、骨移植後に十分な骨形成を期待できない。
 そこで、本発明にかかる評価方法では、細胞増殖能の評価も行っている。
In the method for evaluating osteogenic cells according to the present invention, the ALP activity used as a criterion is high in osteogenic cells, such as osteoblasts. If the ALP activity after differentiation induction is low, it is possible that the cells do not contain osteogenic cells or have no bone forming ability. When the ALP index, which is the ratio of ALP activity in the induction group, is increased, it is indicated that the cells are osteogenic cells and may have osteogenic ability. On the other hand, if the ALP activity is sufficiently high, the differentiation induction of osteogenic cells is very likely to be good. However, even if ALP activity is high, sufficient bone formation cannot be expected after bone transplantation if cell proliferation ability is lost.
Therefore, the evaluation method according to the present invention also evaluates cell proliferation ability.
 上記3つの評価(ALP活性、ALPインデックス、細胞増殖能)を組み合わせても、骨形成性細胞の有無を判断し難いグループに対しては、より慎重な評価が必要となる。本発明者らは、このようなグループに対しては、さらにフローサイトメトリーによる表面抗原(HLA-DR)の解析、TRAP染色、アリザリンレッド染色の結果を用い、いずれか陽性(フローサイトメトリーによるHLA-DR分画陽性、TRAP陽性、アリザリンレッド陽性)を持って補助的に骨形成性細胞ありと判断することで、ほぼすべての個体差をもったサンプルに妥当な根拠を与えるものである。 Even if the above three evaluations (ALP activity, ALP index, cell proliferation ability) are combined, a more careful evaluation is required for a group in which it is difficult to determine the presence or absence of osteogenic cells. For these groups, the present inventors further analyzed the surface antigen (HLA-DR) by flow cytometry, TRAP staining, and alizarin red staining, and either positive (HLA by flow cytometry). -DR fraction positive, TRAP positive, alizarin red positive), and it is judged that there is an osteogenic cell as an auxiliary, provides a reasonable basis for samples having almost all individual differences.
 このHLA-DR陽性細胞と骨形成能の直接的な関係は不明であるが、本発明者らが確認したところ、HLA-DR活性と骨形成能には明確な相関が示された。また、TRAP染色(酒石酸耐性酸性フォスファターゼ染色)は破骨細胞マーカーとして用いられているが、破骨前駆細胞から破骨細胞への成熟には骨芽細胞(骨形成性細胞)とのインタラクションが必要なため、幹細胞が骨形成性細胞へと分化する過程の間接的な指標として用いることができるものと思われる。また、アリザリンレッド染色は、in vitroにおける石灰化能を表し、カルシウムの沈着を染色したものである。本発明者らが確認したところ、骨形成能を示す細胞ではアリザリンレッド染色陽性となり、骨形成能が多くの細胞で失われる継代が進んだ細胞では染色陰性となることが示された。 Although the direct relationship between this HLA-DR positive cell and bone forming ability is unknown, the present inventors have confirmed that a clear correlation was found between HLA-DR activity and bone forming ability. TRAP staining (tartaric acid-resistant acid phosphatase staining) is used as an osteoclast marker, but it is necessary to interact with osteoblasts (osteogenic cells) to mature from osteoclast precursor cells to osteoclasts Therefore, it seems that it can be used as an indirect indicator of the process by which stem cells differentiate into osteogenic cells. Also, alizarin red staining represents calcification ability in vitro and stains calcium deposits. As a result of confirmation by the present inventors, it has been shown that cells showing osteogenic potential are positive for alizarin red staining, and staining is negative for cells that have been passaged and have lost osteogenic potential.
 このように本発明においては、比較的簡易で明確な手法であるALP活性評価、ALPインデックス、細胞増殖能判定により明らかに骨形成能を有するものと骨形成能を有しないものを選択し、これらの評価では明確でなかった群については、HLA-DR解析、TRAP染色、アリザリンレッド染色を行い、骨形成能が十分に期待できるのにもかかわらず「骨形成能なし」として破棄されてしまうことを防止しているのである。 As described above, in the present invention, a comparatively simple and clear method of ALP activity evaluation, ALP index, and cell proliferation ability determination are used to select those clearly having bone forming ability and those not having bone forming ability. For groups that were not clear in the evaluation of HLA-DR, HLA-DR analysis, TRAP staining, and alizarin red staining would be discarded as “no osteogenic ability” even though sufficient osteogenic ability could be expected. It is preventing.
 本発明によれば、個体によるばらつきがあるために一定の基準では判断が困難であった目的とする細胞の種類および機能を評価できる方法を提供することができる。また、骨形成性細胞の評価を行う場合、培養細胞の骨形成能について、ほぼ確実に評価することが可能となり、細胞を用いた治療に必須である評価に関する方法を提供することができる。 According to the present invention, it is possible to provide a method that can evaluate the type and function of a target cell that has been difficult to judge by a certain standard due to variations among individuals. Further, when evaluating osteogenic cells, it is possible to almost certainly evaluate the bone forming ability of cultured cells, and a method relating to evaluation essential for treatment using cells can be provided.
骨形成能検査スケジュール。Bone-forming ability test schedule. 本発明にかかる骨形成性細胞の評価方法を示すフローチャート。The flowchart which shows the evaluation method of the osteogenic cell concerning this invention. 本発明が好適に適用される骨形成性細胞の培養工程、分化誘導工程の説明図。Explanatory drawing of the culture | cultivation process and differentiation induction process of the osteogenic cell to which this invention is applied suitably. ヒト培養骨芽細胞様細胞のALP活性の分布を示した図。The figure which showed distribution of ALP activity of a human cultured osteoblast-like cell. ヒト培養骨芽細胞様細胞のALPインデックスの分布を示した図。The figure which showed distribution of the ALP index of a human cultured osteoblast-like cell. ヒト培養骨芽細胞様細胞の増殖能の分布を示した図。The figure which showed distribution of the proliferation ability of a human cultured osteoblast-like cell. ALP活性測定結果。ALP activity measurement results. 細胞増殖能測定結果。Cell proliferation ability measurement results. フローサイトメトリーによる表面抗原解析結果。Surface antigen analysis results by flow cytometry. TRAP染色測定結果。TRAP staining measurement results. アリザリンレッド染色結果。Results of alizarin red staining.
10…骨髄液
12…細胞培養用フラスコ
14…多孔質擬似骨顆粒
16…深底容器
DESCRIPTION OF SYMBOLS 10 ... Bone marrow fluid 12 ... Cell culture flask 14 ... Porous pseudo bone granule 16 ... Deep bottom container
 以下、本発明の好適な実施形態について説明する。以下、目的とする細胞が骨形成性細胞である場合を例として説明を行う。はじめに、本発明の骨形成性細胞の評価方法により効果的に治療への応用が可能である顆粒型培養骨の製造方法について、図3を用いて説明する。顆粒型培養骨は、骨髄液の採取、骨髄由来間葉系幹細胞の培養、間葉系幹細胞の播種、培養骨芽細胞様細胞への分化誘導を行うことにより製造することができる。
 なお、以下の工程は、骨髄由来細胞を用いた形態を示しているが、本発明の評価方法は、骨髄以外にも、骨膜、脂肪、末梢血等から分離培養し、同様の方法で培養骨芽細胞様細胞へと分化誘導することによって作製される顆粒型培養骨においても、好適に使用することができる。
Hereinafter, preferred embodiments of the present invention will be described. Hereinafter, the case where the target cell is an osteogenic cell will be described as an example. First, a method for producing granular cultured bone that can be effectively applied to treatment by the method for evaluating osteogenic cells of the present invention will be described with reference to FIG. Granule-type cultured bone can be produced by collecting bone marrow fluid, culturing bone marrow-derived mesenchymal stem cells, seeding mesenchymal stem cells, and inducing differentiation into cultured osteoblast-like cells.
The following steps show a form using bone marrow-derived cells. However, the evaluation method of the present invention can be cultured separately from periosteum, fat, peripheral blood, etc. in addition to bone marrow, and cultured bones in the same manner. It can also be suitably used in granulated cultured bone produced by inducing differentiation into blast-like cells.
・骨髄液の採取
 骨髄液は、手術の約1ヶ月前に採取する。まず、骨髄液採取部に局所麻酔を行い、後上腸骨稜より無菌的に吸引して回収する。
• Bone marrow fluid collection Bone marrow fluid should be collected approximately one month before surgery. First, local anesthesia is performed on the bone marrow fluid collecting part, and aseptically sucked and collected from the posterior superior iliac crest.
・骨髄由来間葉系幹細胞の培養
 細胞培養用培地で4倍希釈した骨髄液10を細胞培養用フラスコ12に播いて、図3(A)のように培養を始め、培養開始後4日目に全量培地替えを行う。なお、細胞培養用培地には、一次培養、分化培養ともに、血清入りαMEMまたは無血清培地のいずれも使用できる。
 培養過程における一般細菌および真菌に感染していないことの確認は、培地交換毎の培地の観察(感染していれば培地が濁る)により行うとともに、培養開始時、分化誘導前および培養骨芽細胞様細胞の回収時に無菌試験(日本薬局方の基準を満たすかどうか)で確認する。
 その後、週2回全量培地交換を行う。継代のタイミングは細胞の状態を見て判断するが、培養開始から約21~28日後に行う。継代時には生細胞数を計測する。
-Cultivation of bone marrow-derived mesenchymal stem cells Bone marrow fluid 10 diluted 4-fold with cell culture medium is seeded in cell culture flask 12, culture is started as shown in Fig. 3 (A), and 4 days after the start of culture. Change the whole medium. As the cell culture medium, either serum-containing αMEM or serum-free medium can be used for both primary culture and differentiation culture.
Confirmation that there is no infection with general bacteria and fungi during the culturing process is made by observing the medium every time the medium is exchanged (if the medium is infected, the medium becomes cloudy), and at the start of culture, before differentiation induction, and cultured osteoblasts Confirm the sterility test (whether it meets the standards of the Japanese Pharmacopoeia) at the time of recovery of the cells.
Thereafter, the whole medium is changed twice a week. The subculture timing is determined based on the state of the cells, but it is about 21 to 28 days after the start of culture. Viable cells are counted at the time of passage.
・間葉系幹細胞の播種
 継代は以下のように行う。フラスコの培地を吸い取った後、ダルベコリン酸バッファー(D-PBS)にて洗浄し、その後、D-PBSを吸い取り、細胞解離剤を加え、37℃で10分間培養する。細胞がはがれていることを確認したのち、D-PBSまたは培地を加え細胞を回収した後、遠心する。培地に再サスペンドして細胞数を計測する。計測後、図3(B)のような多孔質擬似骨顆粒14があらかじめ投入された深底容器16に培養した骨髄液10を投入する。骨髄液10を擬似骨顆粒12の入った深底容器16に投入すると、図3(C)のように骨髄液10および擬似骨顆粒12は浮遊する。
・ Seeding of mesenchymal stem cells Passage is performed as follows. After evacuating the culture medium in the flask, washing with darbecolate buffer (D-PBS), and then evacuating D-PBS, adding a cell dissociating agent, and culturing at 37 ° C. for 10 minutes. After confirming that the cells are detached, add D-PBS or a medium to collect the cells, and then centrifuge. Resuspend in medium and count cells. After the measurement, the cultured bone marrow fluid 10 is put into a deep bottom container 16 in which porous pseudo-bone granules 14 as shown in FIG. When the bone marrow fluid 10 is put into the deep bottom container 16 containing the pseudo bone granules 12, the bone marrow fluid 10 and the pseudo bone granules 12 float as shown in FIG.
・培養骨芽細胞様細胞への分化誘導
 多孔質擬似骨顆粒14に細胞を播種してから細胞の機能回復のために一晩静置する。1日後には、図3(D)のように骨形成に関与する細胞等の細胞および多孔質擬似骨顆粒14は深底容器16の下部に沈んでいる。このことを確認した後、培地を分化誘導培地に交換する。分化誘導期間は1~3週間で、培地交換は週2回程度行う。分化誘導が進むと、図3(E)のように、擬似骨顆粒14のまわりに付着した培養骨芽細胞様細胞の形態が変化し、骨基質タンパクを分泌し、一塊となっていく。
 一方、この過程と平行して評価のために細胞を12ウエルの培養皿に播種する。細胞は1ウエルあたり2×10とする。
-Differentiation induction into cultured osteoblast-like cells Cells are seeded on the porous pseudo-bone granule 14 and then allowed to stand overnight to recover the function of the cells. After one day, as shown in FIG. 3D, cells such as cells involved in bone formation and the porous pseudo bone granule 14 are submerged in the lower part of the deep container 16. After confirming this, the medium is replaced with a differentiation-inducing medium. The differentiation induction period is 1 to 3 weeks, and the medium is changed about twice a week. As differentiation induction proceeds, as shown in FIG. 3 (E), the morphology of cultured osteoblast-like cells attached around the pseudo-bone granule 14 changes, and the bone matrix protein is secreted into a lump.
Meanwhile, in parallel with this process, cells are seeded in a 12-well culture dish for evaluation. Cells are 2 × 10 4 per well.
 以下、本発明にかかる骨形成性細胞の評価方法について、図2のフローチャートを用いて説明する。図2に示されるように、骨形成性細胞は、1次判定基準、2次判定基準、3次判定基準をもとに判定される。なお、図2の括弧内の割合は当初の細胞に対する割合を示す。しかし、これらの割合は一例であって、特に限定されるものではなく、用いる細胞の選択により異なる。 Hereinafter, the method for evaluating osteogenic cells according to the present invention will be described with reference to the flowchart of FIG. As shown in FIG. 2, osteogenic cells are determined based on a primary determination criterion, a secondary determination criterion, and a tertiary determination criterion. In addition, the ratio in the parenthesis in FIG. 2 indicates the ratio to the initial cell. However, these ratios are merely examples and are not particularly limited, and vary depending on the selection of cells to be used.
1次判定基準
 1次判定は、ALP活性、ALPインデックス、細胞増殖能をもとに行われる。
 1次判定において、前記3つの評価方法のいずれかの基準値を超える場合に、細胞は1次判定基準(○)であると決定され、全ての基準値を超えない場合に、細胞は1次判定基準(×)であると決定される。
Primary determination criteria The primary determination is performed based on ALP activity, ALP index, and cell proliferation ability.
In the primary determination, if the reference value of any of the three evaluation methods is exceeded, the cell is determined to be the primary determination standard (O), and if not exceeding all the reference values, the cell is primary It is determined that it is a criterion (×).
2次判定基準
 2次判定も、1次判定と同じくALP活性、ALPインデックス、細胞増殖能をもとに行われる。しかし、下記に示すように、これらの評価基準値は1次判定と異なっている。
 1次判定基準(○)細胞は、2次判定において、前記3つの評価方法の全てで基準値を超える場合に、細胞は骨形成(+)細胞であると判定され、いずれかの基準値を超えない場合は、細胞は骨形成(-)細胞であると判定される。
 1次判定基準(×)細胞は、2次判定において、前記3つの評価方法の全てを満たす場合に、細胞は3次判定基準に移行され、いずれかの基準値を超えない場合は、細胞は骨形成(-)細胞であると判定される。
Secondary determination criteria The secondary determination is also performed based on the ALP activity, the ALP index, and the cell proliferation ability as in the primary determination. However, as shown below, these evaluation reference values are different from the primary determination.
When the primary determination criterion (◯) cell exceeds the reference value in all of the three evaluation methods in the secondary determination, the cell is determined to be a bone-forming (+) cell, and any reference value is determined. If not, the cell is determined to be an osteogenic (−) cell.
When the primary determination criterion (×) cell satisfies all of the above three evaluation methods in the secondary determination, the cell is transferred to the tertiary determination criterion. If any of the reference values is not exceeded, the cell is Determined to be osteogenic (−) cells.
3次判定基準
 3次判定は、フローサイトメトリーによる表面抗原解析、TRAP染色、アリザリンレッド染色をもとに行われる。
 3次判定基準において、いずれかが陽性である場合に、細胞は骨形成(+)細胞であると判定され、全て陰性である場合に、細胞は骨形成(-)細胞であると判定される。
Criteria for tertiary determination The tertiary determination is performed based on surface antigen analysis by flow cytometry, TRAP staining, and alizarin red staining.
If any of the tertiary criteria is positive, the cell is determined to be a bone-forming (+) cell, and if all are negative, the cell is determined to be a bone-forming (-) cell. .
 本発明にかかる骨形成性細胞の評価方法では、このように複数の判定基準を組み合わせて骨形成(+)細胞かどうかを判定している。これらの方法を組み合わせることの重要性は以下の通りである。 In the bone-forming cell evaluation method according to the present invention, it is determined whether or not it is a bone-forming (+) cell by combining a plurality of criteria. The importance of combining these methods is as follows.
 前述のように、これまでの骨形成能の確認にも、ALP活性が用いられてきた。しかし、図4に示すように、ALP活性の分布には骨形成能を持つ細胞と持たない細胞で近接しており、明確な境界を設定することは困難であった。低く設定すれば骨形成能を持たない細胞を多く混入させてしまい、高く設定すれば骨形成能を持つ細胞を除外してしまう。 As described above, ALP activity has also been used for confirmation of bone formation ability so far. However, as shown in FIG. 4, the distribution of ALP activity is close to cells with and without bone forming ability, and it was difficult to set a clear boundary. If it is set low, many cells having no bone forming ability are mixed, and if it is set high, cells having bone forming ability are excluded.
 実際にALP活性を用いて判定基準を考える場合、たとえば骨形成を示した細胞のALP活性の平均値-2SDで境界を設定することが考えられる。ALP活性の値が正規分布をすると想定した場合、実際に骨形成能を持つ細胞の95.45%が回収できるはずであるが、図4を見ると、その一方で、骨形成能を持たない細胞もほとんど回収してしまう可能性がある。
 また、骨形成(+)細胞の下限値と設定することも考えられる。しかし、図4を見ると、骨形成(+)細胞の下限値以上でも、骨形成能を持たない細胞も多数存在する。
When a criterion is actually considered using ALP activity, for example, it is conceivable to set a boundary with an average value −2SD of ALP activity of cells showing bone formation. Assuming that the value of ALP activity has a normal distribution, 95.45% of cells that actually have osteogenic potential should be able to be recovered, but on the other hand, looking at FIG. 4, it does not have osteogenic potential. It is possible that most cells will also be recovered.
It is also conceivable to set the lower limit value of bone-forming (+) cells. However, when FIG. 4 is seen, there are many cells that do not have the ability to form bone even when the bone formation (+) cell is below the lower limit.
 前述のように、本発明者らにより骨形成能の判定にALPインデックスの有用性が報告されている。しかし、図5を見ると、ALPインデックスの分布も、骨形成能を持つ細胞と持たない細胞で近接しており、明確な境界を設定することは困難であった。 As described above, the usefulness of the ALP index has been reported by the present inventors for the determination of bone forming ability. However, referring to FIG. 5, the distribution of the ALP index is also close between cells with and without bone forming ability, and it was difficult to set a clear boundary.
 また、これまで骨形成能の判定には使われていないが、本発明者らにより、細胞増殖能のうち特に分化誘導時の増殖能が骨形成能と関係があることが明らかとなっている。しかし、図6を見ると、細胞増殖能の分布も、骨形成能を持つ細胞と持たない細胞で近接しており、明確な境界を設定することは困難であった。 Although not used for the determination of bone forming ability so far, the present inventors have clarified that, among cell proliferating ability, the proliferating ability particularly during differentiation induction is related to the osteogenic ability. . However, referring to FIG. 6, the distribution of cell proliferating capacity is also close between cells having bone forming ability and cells not having bone forming ability, and it was difficult to set a clear boundary.
 以上のことから、従来用いられてきた指標やその単純な組み合わせでは、骨形成(+)細胞の適切な判定は困難であることがわかる。
 したがって、本発明者らは、上記の判定方法では骨形成(+)細胞と骨形成(-)細胞のデータの重なりの部分が多いため、骨形成(+)細胞のみが回収できる厳しい基準(1次判定基準)をはじめに設けているのである。
From the above, it can be seen that it is difficult to appropriately determine bone-forming (+) cells using conventionally used indices and simple combinations thereof.
Therefore, the present inventors have many overlapping portions of data of bone forming (+) cells and bone forming (−) cells in the above-described determination method, and therefore, the strict criteria (1) that only bone forming (+) cells can be collected. The following criteria are provided first.
 しかし、1次判定基準では選択されなかった部分に骨形成(+)細胞を多く含んでしまうため、2次判定基準および3次判定基準を用いてそれらの救済を行っている。
 また、1次判定基準を満たす細胞にも、わずかに骨形成(-)細胞が含まれる可能性がある。このため、これらの細胞についても、2次判定基準を行っている。
 このように本発明にかかる骨形成性細胞の評価方法では、1次判定~3次判定が行われるが、その結果として判定された骨形成(+)細胞は、本発明者らにより、ほぼ100%骨形成(+)細胞ということが明らかになっている。
However, since many bone-forming (+) cells are included in a portion not selected by the primary determination criterion, the relief is performed using the secondary determination criterion and the tertiary determination criterion.
In addition, cells that satisfy the primary determination criteria may contain a small amount of osteogenic (−) cells. For this reason, the secondary determination standard is performed also about these cells.
As described above, in the osteogenic cell evaluation method according to the present invention, the primary determination to the tertiary determination are performed. As a result, the present inventors have determined that the osteogenic (+) cells are almost 100%. % Bone forming (+) cells have been revealed.
 次に、1次判定および2次判定で用いられる基準について説明する。はじめに、基準値、評価方法(ALP活性、ALPインデックス、細胞増殖能)について詳細に説明する。 Next, the criteria used in the primary determination and the secondary determination will be described. First, reference values and evaluation methods (ALP activity, ALP index, cell proliferation ability) will be described in detail.
 本発明において、1次判定の基準値は、骨形成(-)細胞の各(平均値+2SD)と設定した。このとき、標本のデータが正規分布をすると仮定した場合、骨形成能を持たない細胞が誤って含まれる確率は(100-95.45)/2=2.275%である。
 また、2次判定の基準値は骨形成(+)細胞の各(平均値-2SD)または骨形成(+)細胞の各測定値の下限値と設定した。
In the present invention, the reference value for primary determination was set as each (average value + 2SD) of bone-forming (−) cells. At this time, assuming that the sample data has a normal distribution, the probability that a cell having no bone forming ability is erroneously included is (100−95.45) /2=2.275%.
The reference value for secondary determination was set as the lower limit of each measured value of bone forming (+) cells (average value −2SD) or each value of osteogenic (+) cells.
 上記の基準値は、細胞を採取する患者の母集団(性別、年齢、人種等)によって変化することも考えられる。すなわち、基準値は、患者に合った適切な値を選択することが重要である。したがって、以下に示す基準値は、本発明者らが採取した患者の細胞により決定されたものであり、これらに限定されるものではない。さらに多くのデータにより、この数値をより厳密に設定することも可能である。
 なお、以下に示す2次判定の具体的な基準値は、骨形成(+)細胞の各測定値の下限値を例に挙げているが、骨形成(+)細胞の各(平均値-2SD)を用いても妥当な結果が得られる。
The reference value may vary depending on the population of patients (gender, age, race, etc.) from which cells are collected. That is, it is important to select an appropriate value that matches the patient as the reference value. Therefore, the reference values shown below are determined by the patient's cells collected by the present inventors, and are not limited to these. With more data, it is possible to set this value more precisely.
In addition, the specific reference value of the secondary determination shown below is exemplified by the lower limit value of each measurement value of bone-forming (+) cells, but each (average value −2SD) of bone-forming (+) cells. ) Can be used to obtain reasonable results.
・ALP活性
 ALP活性の測定には、たとえばp-ニトロフェニルフォスフェート錠剤セット(Sigma-Aldrich社)と細胞集計キットであるWST-8(同仁化学研究所社)を用いることができる。
 以下、ALP活性測定を前記の製品で行う場合を例に測定方法を示す。まずWST-8溶液を各ウエルに100μlずつ添加する。炭酸ガスインキュベーター内で1~4時間呈色反応を行った後、マイクロプレートリーダーを用いて吸光度を測定する。WST-8分析後、細胞膜タンパクを溶解抽出し、その溶解液にp-ニトロフェ二ルフォスフェート溶液を加え、室温で10分間静置後、反応をNaOHで止め、p-ニトロフェノール(p-ニトロフェニルフォスフェートのALPによる分解産物)の吸光度を測定する。ALP活性は、時間あたりのp-ニトロフェノールのモル数/タンパク質の質量(μmol p-nitrophenol produced/min/μg protein)で表される。あるいは、p-ニトロフェノール吸光度(OD;405nm)/WST-8吸光度(OD;450nm)として表すこともできる。
ALP activity For the measurement of ALP activity, for example, p-nitrophenyl phosphate tablet set (Sigma-Aldrich) and cell counting kit WST-8 (Dojindo Laboratories) can be used.
Hereinafter, the measurement method will be described by taking ALP activity measurement with the above product as an example. First, 100 μl of WST-8 solution is added to each well. After a color reaction for 1 to 4 hours in a carbon dioxide incubator, the absorbance is measured using a microplate reader. After WST-8 analysis, cell membrane protein was dissolved and extracted, p-nitrophenyl phosphate solution was added to the lysate, allowed to stand at room temperature for 10 minutes, the reaction was stopped with NaOH, and p-nitrophenol (p-nitro The absorbance of the degradation product of phenyl phosphate by ALP is measured. ALP activity is expressed in moles of p-nitrophenol per hour / mass of protein (μmol p-nitrophenol produced / min / μg protein). Alternatively, it can also be expressed as p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm).
 図7にALP活性測定結果の例を示す。
 骨形成(-)細胞のALP活性平均値+2SDは、2.31{p-ニトロフェノール吸光度(OD;405nm)/WST-8吸光度(OD;450nm)}であった。この値は166単位(μmol p-nitrophenol produced/min/μg protein)に相当する。このため、本発明者らは、ALP活性の1次判定の基準値を約166単位(μmol p-nitrophenol produced/min/μg protein)と設定した。すなわち、ALP活性の1次判定の基準値は166±5単位(μmol p-nitrophenol produced/min/μg protein)であることが好適である。
 この細胞あたりのALP活性の単位(μmol p-nitrophenol produced/min/μg protein)への換算式は、本研究に用いた細胞により、本発明者らにより求められたものである。
FIG. 7 shows an example of ALP activity measurement results.
The average value of ALP activity + 2SD of osteogenic (−) cells was 2.31 {p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm)}. This value corresponds to 166 units (μmol p-nitrophenol produced / min / μg protein). For this reason, the present inventors set the reference value for primary determination of ALP activity as about 166 units (μmol p-nitrophenol produced / min / μg protein). That is, the reference value for primary determination of ALP activity is preferably 166 ± 5 units (μmol p-nitrophenol produced / min / μg protein).
The conversion formula for the unit of ALP activity per cell (μmol p-nitrophenol produced / min / μg protein) was determined by the present inventors depending on the cells used in this study.
 骨形成(+)細胞のALP活性測定値の下限値は、0.93{p-ニトロフェノール吸光度(OD;405nm)/WST-8吸光度(OD;450nm)}であった。この値は67単位(μmol p-nitrophenol produced/min/μg protein)に相当する。このため、本発明者らは、ALP活性の2次判定の基準値を約67単位(μmol p-nitrophenol produced/min/μg protein)と設定した。すなわち、ALP活性の2次判定の基準値は67±5単位(μmol p-nitrophenol produced/min/μg protein)であることが好適である。 The lower limit of the measured ALP activity of the bone-forming (+) cells was 0.93 {p-nitrophenol absorbance (OD; 405 nm) / WST-8 absorbance (OD; 450 nm)}. This value corresponds to 67 units (μmol p-nitrophenol produced / min / μg protein). For this reason, the present inventors set the reference value for secondary determination of ALP activity as about 67 units (μmol p-nitrophenol produced / min / μg protein). That is, the reference value for secondary determination of ALP activity is preferably 67 ± 5 units (μmol p-nitrophenol produced / min / μg protein).
・ALPインデックス
 ALPインデックスは、分化誘導培地を添加した細胞(分化誘導群)と、コントロールとして通常培地をいれた細胞(非分化誘導群)についてALP活性を測定し、(分化誘導群のALP活性/非分化誘導群のALP活性)により算出される。
ALP index The ALP index was measured by measuring ALP activity for cells to which a differentiation-inducing medium was added (differentiation-inducing group) and cells in which normal medium was added as a control (non-differentiation-inducing group). (ALP activity of non-differentiation induction group).
 骨形成(-)細胞のALPインデックス平均値+2SDは、3.95であった。このため、本発明者らは、ALPインデックスの1次判定の基準値を約3.95と設定した。すなわち、ALPインデックスの1次判定の基準値は3.95±0.15であることが好適である。
 また、骨形成(+)細胞のALPインデックス測定値の下限値は、1.01であった。このため、本発明者らは、ALPインデックスの2次判定の基準値を約1.01と設定した。すなわち、ALPインデックスの2次判定の基準値は1.01±0.15であることが好適である。
The average value of ALP index + 2SD of osteogenic (−) cells was 3.95. For this reason, the inventors set the reference value for the primary determination of the ALP index as about 3.95. That is, it is preferable that the reference value for primary determination of the ALP index is 3.95 ± 0.15.
Further, the lower limit value of the measured ALP index value of the bone-forming (+) cells was 1.01. For this reason, the present inventors set the reference value for secondary determination of the ALP index to about 1.01. That is, the reference value for secondary determination of the ALP index is preferably 1.01 ± 0.15.
・細胞増殖能
 細胞増殖能は、培養前後での細胞数の割合、すなわち(分化誘導後の細胞数/初期播種細胞数)により求めることができる。実際には、分化誘導期間終了後に細胞数を測定することにより得られるが、播種した細胞を一定にすることで、(回収された細胞数/播種した細胞数)として算出することが可能である。ここでは、分化誘導期間中の細胞増殖率をもって細胞増殖能と定義する。また、例えば前記の細胞集計キット(WST-8)のOD値の比を持って判定することができる。すなわち、前記の呈色反応を行った後、450nmの吸光度(OD値)を測定し、分化誘導前の細胞数に対するWST-8のOD値で除することで、分化誘導中の細胞増殖率を求めることができる。なお、本発明にかかる細胞増殖能判定は、1継代から4継代までについて適用することができる。
-Cell proliferation ability Cell proliferation ability can be calculated | required by the ratio of the number of cells before and behind culture | cultivation, ie, (number of cells after differentiation induction / number of initial seed | inoculated cells). Actually, it can be obtained by measuring the number of cells after the differentiation induction period, but it can be calculated as (number of recovered cells / number of seeded cells) by keeping the seeded cells constant. . Here, the cell proliferation rate during the differentiation induction period is defined as the cell proliferation ability. For example, the determination can be made with the ratio of the OD values of the cell counting kit (WST-8). That is, after performing the above-mentioned color reaction, the absorbance (OD value) at 450 nm is measured, and divided by the OD value of WST-8 relative to the number of cells before differentiation induction, the cell proliferation rate during differentiation induction is obtained. Can be sought. The cell proliferation ability determination according to the present invention can be applied from passage 1 to passage 4.
 図8に細胞増殖能測定結果の例を示す。
 骨形成(-)細胞の増殖能平均値+2SDは、9.7であった。このため、本発明者らは、細胞増殖能の1次判定の基準値を約9.7と設定した。すなわち、細胞増殖能の1次判定の基準値は9.7±0.3であることが好適である。
 また、骨形成(+)細胞の増殖能測定値の下限値は、5.6であった。このため、本発明者らは、細胞増殖能の2次判定の基準値を約5.6と設定した。すなわち、細胞増殖能の1次判定の基準値は5.6±0.3であることが好適である。
FIG. 8 shows an example of measurement results of cell proliferation ability.
The average proliferation ability + 2SD of osteogenic (−) cells was 9.7. For this reason, the present inventors set the reference value for the primary determination of cell proliferation ability to be about 9.7. That is, it is preferable that the reference value for the primary determination of cell proliferation ability is 9.7 ± 0.3.
Moreover, the lower limit of the proliferative ability measurement value of the bone forming (+) cells was 5.6. For this reason, the present inventors set the reference value for secondary determination of cell proliferation ability to be about 5.6. That is, it is preferable that the reference value for primary determination of cell proliferation ability is 5.6 ± 0.3.
 次に、3次判定で用いられる基準、評価方法(フローサイトメトリーによる表面抗原(HLA-DR)解析、TRAP染色、アリザリンレッド染色)について詳細に説明する。
 本発明において、3次判定の基準は、表面抗原(HLA-DR)陽性細胞が6%以上、TRAP陽性、アリザリンレッド陽性と設定した。
Next, the criteria and evaluation methods (surface antigen (HLA-DR) analysis by flow cytometry, TRAP staining, alizarin red staining) used in the tertiary determination will be described in detail.
In the present invention, the criterion for tertiary determination was set to 6% or more of surface antigen (HLA-DR) positive cells, TRAP positive, and alizarin red positive.
・フローサイトメトリーによる表面抗原解析
 6色フローサイトメトリー分析は、既存のフローサイトメーターを使用することができるが、ここではFACS Ariaフローサイトメーター(BDIS社)を使用した。
-Surface antigen analysis by flow cytometry Although the existing flow cytometer can be used for 6-color flow cytometry analysis, the FACS Aria flow cytometer (BDIS) was used here.
 抗体には、以下の物質が使われた。蛍光イソチオシアネート複合体(FITC-)、フィコエリトリン複合体(PE-)、ペリディニンクロロフィルタンパク質複合体(PerCP-Cy5.5-)、アロフィコシアニン複合体(APC-)、Alexa Fluor 405複合体が使われた。
 また、上記した複合体の他に、抗体として、HLA-ABC、HLA-DR、CD3、CD14、CD19、CD34、CD73、CD90、CD106、CD146、マウス-IgG1k、マウス-IgMに対するビオチン化抗体(すべてBD Pharmingen社)、CD10およびCD29に対するビオチン化抗体(Dako社)、CD45に対するビオチン化抗体(インビトロジェン社)も使われた。FITCを共有結合させたCD105抗体(Immunotech社)も使われた。前記のビオチン化抗体は、ストレプトアビジンパシフィックブルー(インビトロジェン社)または、ストレプトアビジンPerCP-Cy5.5(BD Pharmingen社)複合体により検出された。
 STRO-1抗体(R&D Systems社)は、PE-結合抗マウスIgMで検出された。また、ヨウ化プロピジウム(同仁化学研究所社)が死細胞を検出するために用いられた。
The following substances were used for antibodies. Used by fluorescent isothiocyanate complex (FITC-), phycoerythrin complex (PE-), peridinin chlorophyll protein complex (PerCP-Cy5.5-), allophycocyanin complex (APC-), Alexa Fluor 405 complex It was broken.
In addition to the above-mentioned complex, biotinylated antibodies against HLA-ABC, HLA-DR, CD3, CD14, CD19, CD34, CD73, CD90, CD106, CD146, mouse-IgG1k, mouse-IgM (all BD Pharmingen), biotinylated antibodies against CD10 and CD29 (Dako) and biotinylated antibodies against CD45 (Invitrogen) were also used. CD105 antibody (Immunotech) with covalently bound FITC was also used. The biotinylated antibody was detected with Streptavidin Pacific Blue (Invitrogen) or Streptavidin PerCP-Cy5.5 (BD Pharmingen) complex.
STRO-1 antibody (R & D Systems) was detected with PE-conjugated anti-mouse IgM. Propidium iodide (Dojindo Laboratories) was used to detect dead cells.
 前記の数十種類の抗体を用いてフローサイトメトリーによる表面抗原解析を行った。本発明者らが検討した結果、骨髄由来の間葉系幹細胞には、同じ手法で培養されても、骨形成能を有する細胞が得られる場合と得られない場合があることが明らかとなったが、HLA-DRに対する抗体以外の上記の抗体の発現において、骨形成能を有する細胞と有しない細胞では差が現れなかった。しかし、唯一HLA-DRに対する抗体の発現のみ有意差があることが明らかとなった。このため、本発明にかかる表面抗原解析では、抗体として、HLA-DRに対するビオチン化抗体を使用している。 The surface antigen analysis was performed by flow cytometry using the above tens of types of antibodies. As a result of investigations by the present inventors, it has been clarified that bone marrow-derived mesenchymal stem cells may or may not be able to obtain cells having bone forming ability even if cultured by the same technique. However, in the expression of the above-mentioned antibodies other than the antibody against HLA-DR, there was no difference between cells having the ability to form bone and cells not having them. However, it was revealed that there was only a significant difference in the expression of antibodies against HLA-DR. For this reason, in the surface antigen analysis according to the present invention, a biotinylated antibody against HLA-DR is used as an antibody.
 以下、本発明に好適なHLA-DRに対するビオチン化抗体を用いた場合の表面抗原解析方法について示す。継代数0および3での細胞は、トリプシン-EDTAにより検出され、1×10の細胞は50μlの氷冷したリン酸緩衝生理食塩水(PBS;日水製薬社)中に懸濁された。次に、細胞は、氷上で20分間、HLA-DRに対するビオチン化抗体とともに培養された。その後、細胞は洗浄され、氷上で20分間ストレプトアビジン複合体とともに培養された。最後に、細胞は洗浄され、200μlの氷冷したPBSに再懸濁され、ヨウ化プロピジウムで染色され、フローサイトメーターにより分析された。データの分析はFlowJoソフトウエア(TreeStar社)を用いて行った。 Hereinafter, a surface antigen analysis method using a biotinylated antibody against HLA-DR suitable for the present invention will be described. Cells at passages 0 and 3 were detected by trypsin-EDTA, and 1 × 10 6 cells were suspended in 50 μl of ice-cold phosphate buffered saline (PBS; Nissui Pharmaceutical). The cells were then incubated with a biotinylated antibody against HLA-DR for 20 minutes on ice. The cells were then washed and incubated with streptavidin complex for 20 minutes on ice. Finally, cells were washed, resuspended in 200 μl ice-cold PBS, stained with propidium iodide and analyzed by flow cytometer. Data analysis was performed using FlowJo software (TreeStar).
 図9はフローサイトメトリーによる表面抗原解析結果を示している。図9のX軸、Y軸は異なる抗体(それぞれHLA-DR、CD14)に対する反応を見ている。右下の数値はY軸の抗体(CD14)陰性、X軸の抗体(HLA-DR)陽性の分画を表している。 FIG. 9 shows the results of surface antigen analysis by flow cytometry. The X-axis and Y-axis in FIG. 9 show the responses to different antibodies (HLA-DR and CD14, respectively). The numerical value on the lower right represents the fraction of antibody on the Y axis (CD14) negative and antibody on the X axis (HLA-DR) positive.
 図9(A)に示すように、測定されたHLA-DR陽性細胞が6%以上の場合、骨形成(+)細胞を含む細胞分画と判定される。しかし、図9(B)に示すように、測定されたHLA-DR陽性細胞が6%未満の場合、骨形成(+)細胞を含まない可能性が高い分画として判定される。
 このHLA-DR陽性細胞の6%という下限値は、本発明者らが数多くの被験者で見出した経験的に決めた値であるが、本発明はこの数値に限定されるものではない。すなわち、さらに多くのサンプルのデータにより、この数値をより厳密に設定することは可能であり、その場合には具体的には骨を形成した細胞の平均値から2SD等を減じた値と、骨を形成しなかった細胞の平均値に2SD等を加えた値のうち、より高い数値として近似できる。
As shown in FIG. 9A, when the measured HLA-DR positive cells are 6% or more, it is determined as a cell fraction containing osteogenic (+) cells. However, as shown in FIG. 9B, when the measured HLA-DR positive cells are less than 6%, it is determined as a fraction that has a high possibility of not containing osteogenic (+) cells.
The lower limit of 6% of the HLA-DR positive cells is an empirically determined value found by many inventors in the subject, but the present invention is not limited to this value. That is, it is possible to set this numerical value more strictly by using data of a larger number of samples. In this case, specifically, a value obtained by subtracting 2SD or the like from the average value of cells forming bone, Among the values obtained by adding 2SD or the like to the average value of the cells that did not form, it can be approximated as a higher numerical value.
・TRAP染色
 TRAP染色は、例えば、固定液が50mM酒石酸含有緩衝液(pH5.0、発色基質30mg/vial)であるTRAP染色キット(和光純薬工業社)を使用することができる。以下に、前記したTRAP染色キットを用いた場合のTRAP染色評価方法を示す。
 まず、D-PBSをウォーターバスで温め、α-MEMに10%血清、1%ペニシリンストレプトマイシン、1%アムホテリシンBとデキサメタゾン、βグリセロリン酸、アスコルビン酸を含む分化誘導培地で培養を行う。
 さらに厳密さを得るためには、上記の培地以外に培地としてOsteo Clast
precursor Basal Medium M-CSF(-)、RANKL(-)、Osteo Clast precursor Basal Medium M-CSF(+)、RANKL(+)を使用し、結果を比較することが好ましい。
 次に、培養中の96well plateの培地を除去し、D-PBSを250μl/wellずつ加え洗浄し、D-PBSを除去する。次にTRAP染色キットの固定液を50μl/wellずつ加え、5分間固定を行う。5分後、固定液を除去し、蒸留水を250μl/wellずつ加え洗浄し、蒸留水を除去する。この蒸留水での洗浄を3回繰り返し行う。3回目の蒸留水を除去する前に、クリーンベンチの電気を消し、TRAP染色キットの発色基質に50mM酒石酸含有緩衝液を5ml加え、ボルテックスで混合し、発色基質の調製を行う。発色基質の調製後、蒸留水を除去して発色基質を100μl/wellずつ加え、CO 5%、37℃(湿度95%rH以上)で1時間インキュベートを行う。インキュベート後、発色基質を除去し、蒸留水を250μl/wellずつ加え洗浄し、蒸留水を除去する。この蒸留水での洗浄を2回繰り返し行う。洗浄後、蒸留水を50μl/wellずつ加え顕微鏡下で染まっている細胞があるか検鏡し、細胞写真の撮影を行う。
-TRAP staining For TRAP staining, for example, a TRAP staining kit (Wako Pure Chemical Industries, Ltd.) in which the fixing solution is a buffer solution containing 50 mM tartaric acid (pH 5.0, chromogenic substrate 30 mg / vial) can be used. Below, the TRAP dyeing | evaluation method at the time of using an above described TRAP dyeing | staining kit is shown.
First, D-PBS is warmed in a water bath and cultured in a differentiation induction medium containing 10% serum, 1% penicillin streptomycin, 1% amphotericin B and dexamethasone, β glycerophosphate, and ascorbic acid in α-MEM.
For further rigor, Osteo Clast as a medium other than the above medium
It is preferable to use precursor Basal Medium M-CSF (-), RANKL (-), Osteo Clast precursor Basal Medium M-CSF (+), RANKL (+) and compare the results.
Next, the medium in the 96-well plate during culture is removed, D-PBS is added at 250 μl / well and washed, and D-PBS is removed. Next, 50 μl / well of the TRAP staining kit fixing solution is added and fixed for 5 minutes. After 5 minutes, the fixing solution is removed, and distilled water is added at 250 μl / well for washing to remove the distilled water. This washing with distilled water is repeated three times. Before removing distilled water for the third time, turn off the electricity of the clean bench, add 5 ml of 50 mM tartaric acid-containing buffer to the chromogenic substrate of the TRAP staining kit, and mix by vortex to prepare the chromogenic substrate. After preparing the chromogenic substrate, distilled water is removed, 100 μl / well of chromogenic substrate is added, and the mixture is incubated for 1 hour at 5% CO 2 and 37 ° C. (humidity 95% rH or more). After the incubation, the chromogenic substrate is removed, and distilled water is added at 250 μl / well and washed to remove the distilled water. This washing with distilled water is repeated twice. After washing, add distilled water at 50 μl / well and examine the cells for staining under a microscope, and take a cell photograph.
 図10(A)のように、測定されたTRAP染色が陽性の場合、骨形成(+)細胞を含む分画と判定される。
 しかし、図10(B)のように、測定されたTRAP染色が陰性の場合、骨形成(+)細胞を含まない可能性が高い分画と判定される。
As shown in FIG. 10A, when the measured TRAP staining is positive, it is determined that the fraction contains osteogenic (+) cells.
However, as shown in FIG. 10B, when the measured TRAP staining is negative, it is determined that the fraction is highly likely not to contain osteogenic (+) cells.
・アリザリンレッド染色
 アリザリンレッド染色を行うために、細胞を2.0×104/wellの密度で12wellディッシュに播種する。翌日、分化誘導培地へと交換し、以後培地は週に2回ずつ交換し、3週間分化誘導を行う。
 次に、培地を吸引し、細胞をD-PBSで2回洗浄する。その後、固定液(70%エタノール)によってマイナス20度で1時間細胞を固定する。固定液を吸引し、蒸留水にて2回洗浄を行う。
 次に、アリザリンレッドS溶液(40mM、pH4.2)を加え、室温で10分間染色を行う。pHは25%アンモニウム水溶液にて調整する。染色液を吸引し、細胞を蒸留水にて非特異的染色が完全になくなるまで洗浄する。その後、マクロおよび顕微鏡写真を撮影する。
-Alizarin red staining In order to perform alizarin red staining, cells are seeded in a 12-well dish at a density of 2.0 × 10 4 / well. The next day, the medium is changed to a differentiation-inducing medium, and thereafter the medium is changed twice a week to induce differentiation for three weeks.
The medium is then aspirated and the cells are washed twice with D-PBS. Thereafter, the cells are fixed with a fixing solution (70% ethanol) at minus 20 degrees for 1 hour. Aspirate the fixative and wash twice with distilled water.
Next, Alizarin Red S solution (40 mM, pH 4.2) is added, and staining is performed at room temperature for 10 minutes. The pH is adjusted with a 25% aqueous ammonium solution. Aspirate the staining solution and wash the cells with distilled water until non-specific staining is completely eliminated. Then macro and micrographs are taken.
 図11にアリザリンレッドの染色結果を示す。なお、左側は、分化誘導を行っていない試料(コントロール)、右側は分化誘導後の試料である。
 図11(A)のように、測定されたアリザリンレッド染色が陽性の場合、骨形成(+)細胞を含む分画と判定される。
 しかし、図11(B)のように、測定されたアリザリンレッド染色が陰性の場合、骨形成(+)細胞を含まない可能性の高い分画と判定される。
FIG. 11 shows the results of staining with alizarin red. The left side is a sample that has not been induced to differentiate (control), and the right side is a sample after differentiation induction.
As shown in FIG. 11A, when the measured alizarin red staining is positive, it is determined as a fraction containing osteogenic (+) cells.
However, as shown in FIG. 11B, when the measured alizarin red staining is negative, it is determined that the fraction is highly likely not to contain osteogenic (+) cells.
 本発明にかかる培養細胞の評価方法では、複数の検査値、あるいは指標に対する適応順序、判定基準を設けた上で、それらをフローチャート化することで、経験の有無を問わず精度良く細胞の骨形成能を判定することが好適である。特に少なくとも3以上の検査値、指標を含み、それらの組み合わせにより統計学的な根拠を持って、精度よく細胞の機能を予測、判定することが好適である。本発明では、ばらつきを持ったヒト細胞に対して、複数の検査値、指標をフローチャート化して評価することで、ばらつきの影響を臨床上問題ない程度まで改善することを可能としている。
 また、本発明にかかる培養細胞の評価方法では、それぞれの検査値について、適応範囲に含まれるサンプルであっても、他の指標を参照することで目的とする細胞ではないことが判定されることもある。
In the method for evaluating cultured cells according to the present invention, a plurality of test values or an adaptation order for indices and determination criteria are provided, and then a flow chart of them is used to accurately form bone formation of cells regardless of experience. It is preferable to determine the performance. In particular, it is preferable to predict and determine the function of cells with high accuracy, including at least three test values and indices, and combining them with a statistical basis. In the present invention, a plurality of test values and indices are evaluated in a flow chart for human cells having variations, thereby making it possible to improve the influence of the variations to such an extent that there is no clinical problem.
In the method for evaluating cultured cells according to the present invention, for each test value, even if the sample is included in the applicable range, it is determined that the cell is not the target cell by referring to another index. There is also.

Claims (14)

  1.  培養細胞から目的とする細胞を判定するために、培養細胞の複数の検査値あるいは指標を測定し、それらの組み合わせにより、精度よく細胞の機能を予測、判定するための評価方法であって、
     それぞれの検査値について、一定の適合する範囲を指定するのみでなく、適応範囲から外れたサンプルであっても、他の検査値あるいは指標を参照することで目的とする細胞であることを判定可能であることを特徴とする培養細胞の評価方法。
    In order to determine a target cell from a cultured cell, a plurality of test values or indices of the cultured cell are measured, and a combination thereof, an evaluation method for accurately predicting and determining the function of the cell,
    For each test value, not only can you specify a certain compatible range, but even if the sample is outside the applicable range, you can determine the target cell by referring to another test value or index. A method for evaluating cultured cells, wherein
  2.  1次判定基準と、2次判定基準と、3次判定基準を有する培養細胞の評価方法において、
     1次判定を行った細胞を、さらに2次判定を行うことにより骨形成(+)細胞を判定し、
     骨形成(+)細胞かどうか判断し難い細胞を、さらに3次判定を行うことにより骨形成(+)細胞を判定することを特徴とする培養された骨形成性細胞の評価方法。
    In a method for evaluating cultured cells having a primary determination criterion, a secondary determination criterion, and a tertiary determination criterion,
    The cells that have undergone the primary determination are further determined as bone forming (+) cells by performing a secondary determination.
    A method for evaluating cultured osteogenic cells, characterized in that a bone-forming (+) cell is determined by performing a third determination on a cell that is difficult to determine whether it is a bone-forming (+) cell.
  3.  請求項2に記載の1次判定において、判定基準はALP活性(アルカリフォスファターゼ活性)、ALPインデックス(分化誘導群のALP活性/非分化誘導群のALP活性)、細胞増殖能(分化誘導後の細胞数/初期播種細胞数)のいずれかが1次判定の基準値以上を満たすかどうかであることを特徴とする培養された骨形成性細胞の評価方法。 In the primary determination according to claim 2, the determination criteria are ALP activity (alkaline phosphatase activity), ALP index (ALP activity of differentiation induction group / ALP activity of non-differentiation induction group), cell proliferation ability (cells after differentiation induction) (The number of cells / the number of initially seeded cells) is a value that satisfies a primary determination reference value or more.
  4.  請求項2に記載の2次判定において、判定基準はALP活性、ALPインデックス、細胞増殖能のすべてが2次判定の基準値以上を満たすかどうかであって、
     1次判定、2次判定双方の基準を満たした細胞を骨形成(+)細胞と判定し、
     1次判定で基準を満たさなかったが2次判定で基準を満たした細胞については3次判定基準へと移行し、
     2次判定で基準を満たさなかった細胞を骨形成(-)細胞と判定することを特徴とする培養された骨形成性細胞の評価方法。
    In the secondary determination according to claim 2, the determination criterion is whether or not all of ALP activity, ALP index, and cell proliferation ability satisfy the reference value of the secondary determination,
    A cell that satisfies both the primary determination and the secondary determination is determined as a bone-forming (+) cell,
    For cells that did not meet the criteria in the primary judgment but met the criteria in the secondary judgment, the cells moved to the tertiary judgment criteria,
    A method for evaluating cultured osteogenic cells, wherein cells that do not satisfy the criteria in the secondary determination are determined as osteogenic (−) cells.
  5.  請求項2に記載の3次判定において、判定基準はフローサイトメトリーによる表面抗原(HLA-DR)解析、TRAP染色、アリザリンレッド染色のいずれかが基準を満たすかどうかであって、
     この基準を満たした細胞を骨形成(+)細胞、満たさなかった細胞を骨形成(-)細胞と判定することを特徴とする培養された骨形成性細胞の評価方法。
    In the tertiary determination according to claim 2, the determination criterion is whether or not any of surface antigen (HLA-DR) analysis by flow cytometry, TRAP staining, or alizarin red staining satisfies the criterion,
    A method for evaluating cultured osteogenic cells, characterized in that cells satisfying this criterion are determined as osteogenic (+) cells, and cells not satisfying the criteria are determined as osteogenic (−) cells.
  6.  請求項3に記載の1次判定において、基準値は骨形成(-)細胞の各(平均値+2SD)であることを特徴とする培養された骨形成性細胞の評価方法。 4. The method for evaluating cultured osteogenic cells according to claim 3, wherein the reference value is each (average value + 2SD) of osteogenic (−) cells.
  7.  請求項4に記載の2次判定において、基準値は骨形成(+)細胞の各(平均値-2SD)または骨形成(+)細胞の各測定値の下限値であることを特徴とする培養された骨形成性細胞の評価方法。 5. The secondary determination according to claim 4, wherein the reference value is a lower limit value of each measurement value of bone forming (+) cells (average value −2SD) or each value of bone forming (+) cells. Method for evaluating osteogenic cells.
  8.  請求項5に記載の3次判定において、表面抗原(HLA-DR)解析の基準は、測定されたHLA-DR陽性細胞が約6%以上であることを特徴とする培養された骨形成性細胞の評価方法。 6. The tertiary determination according to claim 5, wherein the surface antigen (HLA-DR) analysis criterion is about 6% or more of measured HLA-DR positive cells. Evaluation method.
  9.  請求項6に記載の1次判定において、ALP活性の基準値は約166単位(μmol p-nitrophenol produced/min/μg protein)であることを特徴とする培養された骨形成性細胞の評価方法。 7. The method for evaluating cultured osteogenic cells according to claim 6, wherein the reference value of ALP activity is about 166 units (μmol p-nitrophenol produced / min / μg protein).
  10.  請求項6に記載の1次判定において、ALPインデックスの基準値は約3.95であることを特徴とする培養された骨形成性細胞の評価方法。 7. The method for evaluating cultured osteogenic cells according to claim 6, wherein the reference value of the ALP index is about 3.95.
  11.  請求項6に記載の1次判定において、細胞増殖能の基準値は約9.7であることを特徴とする培養された骨形成性細胞の評価方法。 7. The method for evaluating cultured osteogenic cells according to claim 6, wherein the reference value of the cell growth ability is about 9.7.
  12.  請求項7に記載の2次判定において、ALP活性の基準値は約67単位(μmol p-nitrophenol produced/min/μg protein)であることを特徴とする培養された骨形成性細胞の評価方法。 8. The method for evaluating cultured osteogenic cells according to claim 7, wherein the reference value of ALP activity is about 67 units (μmol p-nitrophenol produced / min / μg protein).
  13.  請求項7に記載の2次判定において、ALPインデックスの基準値は約1.01であることを特徴とする培養された骨形成性細胞の評価方法。 8. The method for evaluating cultured osteogenic cells according to claim 7, wherein the reference value of the ALP index is about 1.01.
  14.  請求項7に記載の2次判定において、細胞増殖能の基準値は約5.6であることを特徴とする培養された骨形成性細胞の評価方法。 8. The method for evaluating cultured osteogenic cells according to claim 7, wherein the reference value of the cell proliferation ability is about 5.6.
PCT/JP2010/050765 2009-01-23 2010-01-22 Method for evaluating cultured cells WO2010084943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010547527A JP5701614B2 (en) 2009-01-23 2010-01-22 Method for evaluating cultured cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009013385 2009-01-23
JP2009-013385 2009-01-23

Publications (1)

Publication Number Publication Date
WO2010084943A1 true WO2010084943A1 (en) 2010-07-29

Family

ID=42355995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050765 WO2010084943A1 (en) 2009-01-23 2010-01-22 Method for evaluating cultured cells

Country Status (4)

Country Link
JP (1) JP5701614B2 (en)
KR (1) KR101632756B1 (en)
TW (1) TWI440719B (en)
WO (1) WO2010084943A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058225A (en) * 2003-07-30 2005-03-10 Asahi Techno Glass Corp Method for relative measurement of cell having alkaline phosphatase activity
JP2007528706A (en) * 2003-06-27 2007-10-18 エチコン、インコーポレイテッド Repair and regeneration of cartilage and bone using postpartum cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105165A1 (en) * 2005-11-04 2007-05-10 Charles Goolsby Composite profiles of cell antigens and target signal transduction proteins for analysis and clinical management of hematologic cancers
JP5243021B2 (en) * 2006-12-28 2013-07-24 三菱化学メディエンス株式会社 Genetic markers for detecting cells such as mesenchymal stem cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528706A (en) * 2003-06-27 2007-10-18 エチコン、インコーポレイテッド Repair and regeneration of cartilage and bone using postpartum cells
JP2005058225A (en) * 2003-07-30 2005-03-10 Asahi Techno Glass Corp Method for relative measurement of cell having alkaline phosphatase activity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUO L ET AL.: "Osteogenic differentiation of human mesenchymal stem cells on chargeable polymer-modified surfaces.", J BIOMED MATER RES A., vol. 87, no. 4, 2008, pages 903 - 912 *
ITO A ET AL.: "A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles", BIOCHEMICAL ENGINEERING JOURNAL, vol. 20, no. 2-3, 2004, pages 119 - 125 *
KONDO Y ET AL.: "Role of stromal cells in osteoclast differentiation in bone marrow.", J BONE MINER METAB., vol. 19, no. 6, 2001, pages 352 - 358 *
SYED-PICARD FN ET AL.: "Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix.", TISSUE ENG PART A., vol. 15, no. 1, January 2009 (2009-01-01), pages 187 - 195 *

Also Published As

Publication number Publication date
TWI440719B (en) 2014-06-11
JP5701614B2 (en) 2015-04-15
TW201030147A (en) 2010-08-16
KR101632756B1 (en) 2016-06-22
JPWO2010084943A1 (en) 2012-07-19
KR20110116965A (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Kotobuki et al. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells
Gronthos et al. Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential
Roberts et al. The combined bone forming capacity of human periosteal derived cells and calcium phosphates
Jones et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis
AU2011349168B2 (en) Method for identifcation and culture of multipotent mesenchymal stem cells with high proliferation potential
Patil et al. Long term explant culture for harvesting homogeneous population of human dental pulp stem cells
AU5436998A (en) MSC-megakaryocyte precursor composition and method of isolating MSCs asso ciated with isolated megakaryocytes by isolating megakaryocytes
WO1998020731A9 (en) Msc-megakaryocyte precursor composition and method of isolating mscs associated with isolated megakaryocytes by isolating megakaryocytes
Hung et al. Isolating stromal stem cells from periodontal granulation tissues
EP3578641A1 (en) Method for preparing dental pulp stem cells from cells derived from dental pulp tissue
Li et al. Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis
Pekovits et al. Human mesenchymal progenitor cells derived from alveolar bone and human bone marrow stromal cells: a comparative study
JP2008220334A (en) Use of cd106 as differentiation potency marker of mesenchymal stem cell
CN107709575A (en) For the method for the purity for assessing mescenchymal stem cell preparation
Shi et al. The effect of extended passaging on the phenotype and osteogenic potential of human umbilical cord mesenchymal stem cells
Szepesi et al. ABCG2 is a selectable marker for enhanced multilineage differentiation potential in periodontal ligament stem cells
JP5701614B2 (en) Method for evaluating cultured cells
Miguita et al. Characterization of progenitor/stem cell population from human dental socket and their multidifferentiation potential
Angiero et al. Stromal phenotype of dental follicle stem cells
van Vollenstee et al. Isolation and characterization of adipose-derived stromal cells
JP2019527048A (en) MSC growth predictor assay
Chopra et al. Lapine CD133+ CD34+ endothelial progenitor cells for musculoskeletal research in preclinical animal trials
Chopra et al. CD133+ CD34+ cells can give rise to EPCs: A comparative rabbit and human study
Yahya Characterisation and Identification of Human Mesenchymal Stromal Cells and the Impact of Different Culturing Media
CN116818634A (en) Cell morphological variable model for visualizing mesenchymal stem cell state and method for predicting mesenchymal stem cell regeneration capacity

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20107014637

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547527

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733550

Country of ref document: EP

Kind code of ref document: A1