WO2010084799A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2010084799A1
WO2010084799A1 PCT/JP2010/050204 JP2010050204W WO2010084799A1 WO 2010084799 A1 WO2010084799 A1 WO 2010084799A1 JP 2010050204 W JP2010050204 W JP 2010050204W WO 2010084799 A1 WO2010084799 A1 WO 2010084799A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cover plate
fuel cell
electrode assembly
membrane electrode
Prior art date
Application number
PCT/JP2010/050204
Other languages
French (fr)
Japanese (ja)
Inventor
大介 渡邉
雄一 佐藤
信保 根岸
元太 大道
公一 川村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010084799A1 publication Critical patent/WO2010084799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to a technology of a fuel cell using liquid fuel.
  • a fuel cell is characterized in that it can generate electric power simply by supplying fuel and air (particularly oxygen), and can generate electric power continuously for a long time by replenishing the fuel. For this reason, the fuel cell can be a very advantageous system as a power source for portable electronic devices due to the miniaturization.
  • DMFC direct methanol fuel cell using methanol as a fuel
  • a membrane electrode assembly is stacked on a flange portion of a fuel storage unit, a metal cover plate is attached from the air electrode side of the membrane electrode assembly, and a peripheral portion of the cover plate is attached to the membrane electrode assembly.
  • the fuel container is fixed to the membrane electrode assembly by bending it along the outer periphery, the outer periphery of the flange portion, and the periphery of the back surface, and sandwiching the membrane electrode assembly and the flange portion with the periphery of the cover plate. Proposed.
  • Patent Document 2 a structure is disclosed in which a structure in which an end portion of a cover plate is bent and crimped to a fuel supply portion and a structure in which the cover plate and the fuel supply portion are fastened and fixed are disclosed.
  • Patent Document 3 a configuration including a fuel electrode support plate and a front cover as a pressing plate for pressing the current collector against the membrane electrode assembly is disclosed.
  • a plurality of stacked DMFC components need to be fixed in a state where they are uniformly and moderately pressurized over the entire surface.
  • Securing methods include screwing or rivet joints. When these methods are applied, it is necessary to secure a through-hole through which the screws pass. For this reason, it is not desirable to apply these methods over the entire circumference of the fuel cell from the viewpoint of volume efficiency and assembly work efficiency.
  • the method of fastening the plate material by bending is suitable for both volumetric efficiency and work efficiency.
  • the plate material that can be bent has low rigidity. For this reason, the bending which swells in the direction away from the membrane electrode assembly is likely to occur, the pressurization becomes insufficient and the pressure becomes non-uniform in the surface, and the power generation performance may be deteriorated.
  • An object of the present invention is to provide a fuel cell that enables uniform pressurization of a membrane electrode assembly, improves workability, and provides a stable and sufficient output.
  • a membrane electrode assembly having an electrolyte membrane sandwiched between an anode and a cathode; a fuel supply mechanism disposed on the anode side of the membrane electrode assembly for supplying fuel toward the anode; and the membrane electrode junction
  • a cover plate disposed on the cathode side of the body and fastened to the fuel supply mechanism by bending, a rigid member having a rigidity higher than that of the cover plate, disposed between the membrane electrode assembly and the cover plate;
  • a fuel cell comprising: is provided.
  • the present invention it is possible to provide a fuel cell that enables uniform pressurization of a membrane electrode assembly and improves workability, and can stably obtain a sufficient output.
  • FIG. 1 is a plan view showing the appearance of the cathode side of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a cross-sectional structure of the fuel cell shown in FIG. 1 cut along a first direction.
  • FIG. 3 is a diagram schematically showing a cross-sectional structure of the fuel cell shown in FIG. 1 cut along the second direction.
  • FIG. 4 is a perspective view showing an appearance of a container constituting a fuel supply unit applicable to the fuel cell shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of the fuel cell of the example.
  • FIG. 6 is a schematic cross-sectional view of the fuel cell of Comparative Example 1.
  • FIG. 7 is a schematic cross-sectional view of a fuel cell of Comparative Example 2.
  • FIG. 1 is a plan view showing the appearance of the cathode side of a fuel cell (DMFC) 1 according to this embodiment.
  • the fuel cell 1 is formed in a rectangular flat plate shape.
  • the fuel cell 1 has a rectangular shape, a pair of long sides L1 and long sides L2 extending along the first direction X, and a second direction Y orthogonal to the first direction X. It has a pair of short side S1 and short side S2 extended along.
  • a cover plate 21 is disposed on the cathode side surface of the fuel cell 1.
  • the cover plate 21 has a substantially rectangular appearance, and is made of, for example, stainless steel (SUS).
  • the cover plate 21 is formed with openings 21 ⁇ / b> A that are a plurality of through-holes that mainly allow air that is an oxidant to be taken in.
  • the + mark in the figure shows an example of a position where the cover plate 21 is screwed or a rivet joint is applied.
  • FIG. 2 is a view showing a cross section of the fuel cell 1 shown in FIG. 1 cut along the first direction X.
  • FIG. 3 is a view showing the fuel cell 1 shown in FIG. 1 cut along the second direction Y.
  • the fuel cell 1 includes a membrane electrode assembly (hereinafter also referred to as MEA) 2 that constitutes an electromotive unit, and a fuel supply mechanism 3 that supplies fuel to the membrane electrode assembly 2.
  • MEA membrane electrode assembly
  • the membrane electrode assembly 2 includes an anode 13 (also referred to as a fuel electrode) in which an anode catalyst layer 11 and an anode gas diffusion layer 12 are laminated, a cathode catalyst layer 14 and a cathode gas diffusion layer 15.
  • anode 13 also referred to as a fuel electrode
  • a cathode catalyst layer 14 and a cathode gas diffusion layer 15.
  • the anode catalyst layer 11 of the anode 13 and the cathode catalyst layer 14 of the cathode 16.
  • a film 17 Such a membrane electrode assembly 2 is sandwiched between current collectors 18.
  • the membrane electrode assembly 2 includes a plurality of anodes 13 disposed on one surface 17A of a single electrolyte membrane 17 at intervals, and an electrolyte membrane. 17 has a plurality of cathodes 16 spaced apart from each of the anodes 13 on the other surface 17B.
  • Each combination of the anode 13 and the cathode 16 sandwiches the electrolyte membrane 17 to constitute a single cell.
  • each of the single cells extends along the first direction X and is arranged side by side in the second direction Y on the same plane.
  • the structure of the membrane electrode assembly 2 is not limited to this example, and may be another structure.
  • the membrane electrode assembly 2 is disposed on the four surfaces 131 to 134 disposed on one surface 17A of the single electrolyte membrane 17 and on the other surface 17B of the electrolyte membrane 17.
  • the four cathodes 161 to 164 are provided.
  • the anode 131 and the cathode 161 are arranged so as to face each other, and constitute a set of single cells.
  • the anode 132 and the cathode 162 are arranged so as to face each other
  • the anode 133 and the cathode 163 are arranged so as to face each other
  • the anode 134 and the cathode 164 are arranged so as to face each other.
  • Four sets of single cells are arranged on the same plane. Each single cell is electrically connected in series by a current collector 18.
  • the anode current collector A1 of the current collector 18 is laminated on the anode gas diffusion layer 12 of the anode 131.
  • the anode current collector A2 is laminated on the anode gas diffusion layer 12 of the anode 132
  • the anode current collector A3 is The anode current diffusion layer 12 is stacked on the anode gas diffusion layer 12 of the anode 133
  • the anode current collector A 4 is stacked on the anode gas diffusion layer 12 of the anode 134.
  • the cathode current collector C of the current collector 18 is laminated on the cathode gas diffusion layer 15 of the cathode 161.
  • the cathode current collector C2 is laminated on the cathode gas diffusion layer 15 of the cathode 162
  • the cathode current collector C3 is The cathode current diffusion layer 15 of the cathode 163 is stacked, and the cathode current collector C4 is stacked on the cathode gas diffusion layer 15 of the cathode 164.
  • the membrane electrode assembly 2 is sealed by a seal member 19 such as a rubber O-ring disposed on the anode side and the cathode side of the electrolyte membrane 17. Thereby, fuel leakage and oxidant leakage from the membrane electrode assembly 2 are prevented.
  • a seal member 19 such as a rubber O-ring disposed on the anode side and the cathode side of the electrolyte membrane 17.
  • a plate-like body 20 made of an insulating material is disposed on the cathode 16 side of the membrane electrode assembly 2.
  • This plate-like body 20 mainly functions as a moisture retaining layer. That is, the plate-like body 20 is impregnated with a part of the water generated in the cathode catalyst layer 14 to suppress the transpiration of water, adjusts the amount of air taken into the cathode catalyst layer 14 and makes the air uniform. Promotes diffusion.
  • the fuel supply mechanism 3 is disposed on the anode 13 side of the membrane electrode assembly 2 described above. That is, the membrane electrode assembly 2 is disposed between the fuel supply mechanism 3 disposed on the anode side and the cover plate 21 disposed on the cathode side.
  • the fuel supply mechanism 3 is configured to supply fuel to the anode 13 of the membrane electrode assembly 2, but is not particularly limited to a specific configuration. Hereinafter, an example of the fuel supply mechanism 3 will be described.
  • the fuel supply mechanism 3 includes a fuel supply unit 3X that supplies fuel while dispersing and diffusing fuel in the direction of the surface of the anode 13 of the membrane electrode assembly 2 facing each other.
  • the fuel supply unit 3X includes a container 30 formed in a box shape and a fuel distribution plate 31 disposed on the bottom surface 35 of the container 30. Such a fuel supply mechanism 3 is connected via a flow path 5 to a fuel storage portion 4 that stores liquid fuel.
  • the container 30 will be described in detail later, but a fuel inlet 30A for introducing fuel is formed in the side wall 36A.
  • the fuel introduction port 30 ⁇ / b> A is connected to a flow path 5 connected to the fuel storage unit 4.
  • the fuel distribution plate 31 has one fuel inlet 32 and a plurality of fuel outlets 33, and connects the fuel inlet 32 and each fuel outlet 33 via a fuel passage such as a narrow tube 34. This is the configuration.
  • the fuel inlet 32 is directly connected to the fuel inlet 30A, but may be connected via another fuel passage.
  • the fuel discharge port 33 faces the anode 13 of the membrane electrode assembly 2.
  • the liquid storage unit 4 stores liquid fuel corresponding to the membrane electrode assembly 2.
  • the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol.
  • the liquid fuel is not necessarily limited to methanol fuel.
  • the liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel.
  • liquid fuel corresponding to the membrane electrode assembly 2 is stored in the fuel storage portion 4.
  • the pump 6 may be interposed in the flow path 5 connected to the fuel storage unit 4 or in the fuel passage between the fuel introduction port 30 ⁇ / b> A and the fuel injection port 32.
  • the pump 6 is not a circulation pump that circulates fuel, but is a fuel supply pump that sends liquid fuel from the fuel storage unit 4 to the fuel supply unit 3X.
  • the fuel supplied from the fuel supply unit 3X to the membrane electrode assembly 2 is used for the power generation reaction and is not circulated thereafter and returned to the fuel storage unit 4.
  • the type of the pump 6 is not particularly limited, but a pump that can feed a small amount of liquid fuel with good controllability and can be reduced in size and weight is preferable.
  • the fuel cell 1 of this embodiment is different from the conventional active method because it does not circulate the fuel, and does not impair the downsizing of the device. Further, the pump 6 is used to supply the liquid fuel, which is different from a pure passive system such as a conventional internal vaporization type.
  • the fuel cell 1 shown in FIG. 1 employs a system called a semi-passive type, for example.
  • a fuel cutoff valve may be arranged in series with the pump 6. Further, a balance valve that balances the pressure in the fuel storage unit 4 with the outside air may be attached to the fuel storage unit 4 and the flow path 5.
  • the fuel discharged from the fuel supply unit 3X is supplied to the anode 13 of the membrane electrode assembly 2.
  • the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11.
  • an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11.
  • pure methanol is used as the methanol fuel
  • the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1).
  • the internal reforming reaction is caused by another reaction mechanism that does not require water.
  • FIG. 4 is a perspective view showing an appearance of the container 30 constituting the fuel supply unit 3X.
  • the container 30 has a rectangular bottom surface 35 that is long in the first direction X, and side walls 36A to 36D that rise from four sides of the bottom surface 35. More specifically, the side wall 36 ⁇ / b> A extends along the short side S ⁇ b> 1 of the fuel cell 1.
  • the side wall 36 ⁇ / b> B extends along the short side S ⁇ b> 2 of the fuel cell 1.
  • the side wall 36 ⁇ / b> C extends along the long side L ⁇ b> 1 of the fuel cell 1.
  • the side wall 36 ⁇ / b> D extends along the long side L ⁇ b> 2 of the fuel cell 1.
  • the side walls 36A to 36D have substantially the same height.
  • a fuel inlet 30A is formed at substantially the center of the side surface of the side wall 36A (that is, near the middle point of the short side S1).
  • the side wall 36A is formed with a plurality of through holes H1 penetrating in the height direction. These through holes H1 are formed so as to avoid the fuel inlet 30A.
  • the fuel introduction port 30A is connected to a flow path connected to the fuel storage unit.
  • a plurality of through holes H2 penetrating in the height direction are formed in the side wall 36B.
  • the side wall 36C and the side wall 36D are formed to have a smaller width than the side wall 36A and the side wall 36B, and no through hole is formed.
  • Such a container 30 is formed by molding using, for example, a resin material.
  • the fuel cell 1 includes a rigid member 40 disposed between the membrane electrode assembly 2 and the cover plate 21.
  • the rigid member 40 has higher rigidity than the cover plate 21.
  • Such a rigid member 40 is formed in a flat plate shape, for example, and is overlaid on the plate-like body 20 disposed on the membrane electrode assembly 2.
  • the peripheral portion of the rigid member 40 overlaps each of the side walls 36 ⁇ / b> A to 36 ⁇ / b> D of the container 30. That is, the rigid member 40 holds the membrane electrode assembly 2 with the fuel supply mechanism 3.
  • the cover plate 21 overlaps the rigid member 40 that holds the membrane electrode assembly 2 between the cover plate 21 and the fuel supply mechanism 3 including the container 30 described above, and is fastened to the fuel supply mechanism 3.
  • the cover plate 21 has a fuel supply mechanism by bending (caulking) at least one side of the fuel cell 1 or two opposite sides. It is desirable to be fastened with 3.
  • the cover plate 21 is fastened to the container 30 constituting the fuel supply mechanism 3 by bending at the long side L1 and the long side L2 of the fuel cell 1. That is, the end portions of the cover plate 21 along the long side L1 and the long side L2 are bent along the outer periphery of the membrane electrode assembly 2, the side wall 36C and the side wall 36D of the container 30, respectively. Can be folded.
  • the cover plate 21 is fastened to the container 30 by a method such as screwing or a rivet joint. That is, the end portions of the cover plate 21 along the short side S1 and the short side S2 are overlapped with the side wall 36A and the side wall 36B of the container 30, respectively, and are fastened by screwing or rivet joints using the through holes H1 and H2.
  • the rigid member 40 also has through-holes communicating with the through-holes H1 and H2 at positions overlapping the side walls 36A and 36B of the container 30, respectively, and is fixed to the container 30 together with the cover plate 21 by screwing or rivet joints. It is concluded.
  • the cover plate 21 is formed using a material having relatively low rigidity, that is, a material that can be easily bent, and the rigid member 40 is formed using a material having higher rigidity than the cover plate 21. Yes. Then, the cover plate 21 is attached so as to cover the rigid member 40 with the rigid member 40 holding a plurality of DMFC components stacked between the fuel supply mechanism 3 and the end of the cover plate 21 is bent. The fuel supply mechanism 3 is fastened by processing.
  • the rigid member 40 is appropriately pressurized by the cover plate 21. For this reason, the rigid member 40 pressurizes the DMFC components including the membrane electrode assembly 2 over the entire surface with a uniform and appropriate pressure. Since the cover plate 21 is fastened to the fuel supply mechanism 3, the pressurized state by the rigid member 40 is maintained.
  • the fuel cell 1 which can obtain sufficient output stably can be provided. Even if the cover plate 21 is bent in the direction away from the rigid member 40 due to the bending process, the rigid member 40 can be used as long as the rigid member 40 is pressed on the periphery of the cover plate 21. The state where the membrane electrode assembly 2 is pressurized uniformly and appropriately can be maintained.
  • the cover plate 21 is desirably fastened to the container 30 at least on one side by bending, and the four sides of the fuel cell 1 may be fastened to the fuel supply mechanism 3 by bending.
  • the cover plate 21 may be fastened to the container 30 at least on one side by screwing or a rivet joint. .
  • the rigid member 40 described above has an opening 40A which is a through hole communicating with the opening 21A of the cover plate 21.
  • the openings 40A have substantially the same shape as the openings 21A and are formed at the same intervals.
  • the air permeability on the cathode side of the fuel cell 1 is ensured by the opening 40A of the rigid member 40 and the opening 21A of the cover plate 21. For this reason, uptake of oxygen necessary for power generation and discharge of gas generated along with power generation are not hindered, and it is possible to maintain an environment suitable for power generation of the fuel cell 1.
  • the fuel supply mechanism 3 described above is formed such that its rigidity is higher than that of the cover plate 21.
  • the overall rigidity of the fuel distribution plate 31 and the container 30 that sandwich the DMFC component including the membrane electrode assembly 2 between the rigid member 40 and the container 30 is higher than that of the cover plate 21. It is formed to be higher.
  • the DMFC components including the membrane electrode assembly 2 need to be kept in close contact with each other, and are desirably sandwiched between a pair of members having relatively high rigidity. Therefore, it is desirable that not only the rigid member 40 but also the rigidity of the fuel supply mechanism 3 is higher than that of the cover plate 21.
  • the rigid member 40 described above is formed of a single plate material.
  • the rigid member 40 is formed of relatively thick stainless steel (SUS), but is not limited thereto.
  • the rigid member 40 may be configured by stacking two or more plate materials. That is, even in a configuration in which a plurality of thin plate materials having relatively low rigidity are stacked, it is only necessary that the overall rigidity of the rigid member 40 is higher than that of the cover plate 21.
  • the end of the rigid member or the end of the cover plate is fixed, the central part of each plane is pressed down, and the load required to displace the central part by 1 mm is measured. It is determined that the rigidity is higher when the load required for the displacement of 1 mm is larger.
  • the “end portion” refers to a position from one end portion of the rigid member or the cover plate to a range corresponding to a distance of 10% or less of the distance between the one end portion and the other end portion in the planar direction. .
  • the edge part of the cover plate is bent, let the bent part be an edge part.
  • the cover plate 21 and the rigid member 40 are formed of the same material, for example, stainless steel (SUS), the rigidity increases as the thickness increases, so the rigid member 40 is formed thicker than the cover plate 21.
  • SUS stainless steel
  • the thickness of the rigid member 40 is desirably 0.5 mm or more.
  • the rigid member 40 having such a thickness is applied, the deformation of the rigid member 40 itself is suppressed regardless of the thickness and rigidity of the cover plate 21, and the DMFC component is pressurized with uniform and appropriate pressure in the surface. It becomes possible.
  • the thickness of the rigid member 40 is 1.0 mm or less. In total, the thickness of the rigid member 40 is more preferably in the range of 0.6 mm to 0.8 mm.
  • the plate-like body 20 was disposed on the cathode 16 side of the membrane electrode assembly 2 accommodated in the container 30, and the rigid member 40 was further disposed on the plate-like body 20.
  • the rigid member 40 is made of stainless steel and has a thickness of 0.7 mm.
  • the cover plate 21 was disposed so as to cover the rigid member 40 and the container 30.
  • the cover plate 21 was fastened to the container 30 by bending.
  • Such a cover plate 21 is made of stainless steel and has a thickness of 0.3 mm.
  • the rigidity of the used rigid member 40 and cover plate 21 was confirmed by the method described above. As a result, when the load required for displacing the central portion of the cover plate 21 by 1 mm was 1, the load required for displacing the central portion of the rigid member 40 by 1 mm was 4.
  • the cover plate 21 can be easily bent, and the membrane electrode assembly 2 can be uniformly pressed by the cover plate 21 and the rigid member 40 after the bending process.
  • the plate-like body 20 is arranged on the cathode 16 side of the membrane electrode assembly 2 accommodated in the container 30, and the cover plate 21 is further arranged on the plate-like body 20. .
  • the cover plate 21 is made of stainless steel and has a thickness of 1.0 mm.
  • a comparative example The load required for displacing the central portion of one cover plate 21 by 1 mm was 6.
  • a plate-like body 20 is disposed on the cathode 16 side of the membrane electrode assembly 2 housed in a container 30, and the cover used in the example on this plate-like body 20. Plate 21 was placed.
  • the cover plate 21 is made of stainless steel and has a thickness of 0.3 mm.
  • a fuel cell that can uniformly pressurize a membrane electrode assembly and improve workability and stably obtain sufficient output is provided. it can.
  • the fuel cell 1 of the above-described embodiment is effective when various liquid fuels are used, and the type and concentration of the liquid fuel are not limited.
  • the fuel supply unit 3X that supplies fuel while being dispersed in the plane direction is particularly effective when the fuel concentration is high.
  • the fuel cell 1 of the embodiment can exert its performance and effects particularly when methanol having a concentration of 80 wt% or more is used as the liquid fuel. Therefore, the embodiment is suitable for the fuel cell 1 using a methanol aqueous solution having a methanol concentration of 80 wt% or more or pure methanol as a liquid fuel.
  • the present invention can be applied to various fuel cells using liquid fuel.
  • the specific configuration of the fuel cell, the supply state of the fuel, and the like are not particularly limited, and all of the fuel supplied to the MEA is liquid fuel vapor, all is liquid fuel, or part is liquid state.
  • the present invention can be applied to various forms such as a vapor of supplied liquid fuel.
  • the constituent elements can be modified and embodied without departing from the technical idea of the present invention.
  • various modifications are possible, such as appropriately combining a plurality of constituent elements shown in the above embodiment, or deleting some constituent elements from all the constituent elements shown in the embodiment.
  • Embodiments of the present invention can be expanded or modified within the scope of the technical idea of the present invention, and these expanded and modified embodiments are also included in the technical scope of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a fuel cell which is characterized by comprising: a membrane electrode assembly (2) which comprises an anode (13), a cathode (16) and an electrolyte membrane (17) interposed between the anode (13) and the cathode (16); a fuel supply mechanism (3) which is arranged on the anode side of the membrane electrode assembly and can supply a fuel to the anode; a cover plate (21) which is arranged on the cathode side of the membrane electrode assembly and is engaged in the fuel supply mechanism by a bending processing; and a stiff member (40) which is arranged between the membrane electrode assembly and the cover plate and has a higher stiffness than that of the cover plate.

Description

燃料電池Fuel cell
 この発明は、液体燃料を用いた燃料電池の技術に関する。 This invention relates to a technology of a fuel cell using liquid fuel.
 近年、ノートパソコンや携帯電話等の各種携帯用電子機器を長時間充電なしで使用可能とするために、これら携帯用電子機器の電源に燃料電池を用いる試みがなされている。燃料電池は燃料と空気(特に酸素)を供給するだけで発電することができ、燃料を補給することにより連続して長時間発電することが可能であるという特徴を有している。このため、燃料電池は、小型化により携帯用電子機器の電源として極めて有利なシステムとなりえる。 In recent years, attempts have been made to use a fuel cell as a power source for portable electronic devices such as notebook computers and mobile phones so that they can be used without charging for a long time. A fuel cell is characterized in that it can generate electric power simply by supplying fuel and air (particularly oxygen), and can generate electric power continuously for a long time by replenishing the fuel. For this reason, the fuel cell can be a very advantageous system as a power source for portable electronic devices due to the miniaturization.
 特に、メタノールを燃料として用いた直接メタノール型燃料電池(以下、DMFCと称する場合もある)は小型化が可能であり、さらに燃料の取り扱いも容易であるため、携帯用電子機器の電源として有望視されている。 In particular, a direct methanol fuel cell using methanol as a fuel (hereinafter sometimes referred to as DMFC) can be miniaturized and can be easily handled, so it is promising as a power source for portable electronic devices. Has been.
 例えば、特許文献1によれば、燃料収容部のフランジ部に膜電極接合体を重ね、膜電極接合体の空気極側から金属製のカバープレートを取り付けるとともにカバープレートの周縁部を膜電極接合体の外周、フランジ部の外周及び背面周縁部に沿って折り曲げ、膜電極接合体及びフランジ部をカバープレートの周縁部で挟みつけることにより、燃料収容部を膜電極接合体に対して固定する構造が提案されている。 For example, according to Patent Document 1, a membrane electrode assembly is stacked on a flange portion of a fuel storage unit, a metal cover plate is attached from the air electrode side of the membrane electrode assembly, and a peripheral portion of the cover plate is attached to the membrane electrode assembly. The fuel container is fixed to the membrane electrode assembly by bending it along the outer periphery, the outer periphery of the flange portion, and the periphery of the back surface, and sandwiching the membrane electrode assembly and the flange portion with the periphery of the cover plate. Proposed.
 また、特許文献2によれば、カバープレートの端部を折り曲げて燃料供給部にかしめる構造と、カバープレート及び燃料供給部を締結固定する構造とを組み合わせた構成が開示されている。 Further, according to Patent Document 2, a structure is disclosed in which a structure in which an end portion of a cover plate is bent and crimped to a fuel supply portion and a structure in which the cover plate and the fuel supply portion are fastened and fixed are disclosed.
 さらに、特許文献3によれば、集電体を膜電極接合体に押し付ける押圧板として、燃料極支持板とフロントカバーとを備えた構成が開示されている。 Furthermore, according to Patent Document 3, a configuration including a fuel electrode support plate and a front cover as a pressing plate for pressing the current collector against the membrane electrode assembly is disclosed.
 燃料電池において、発電性能を維持するためには、積層された複数のDMFC構成部品が全面にわたって均一且つ適度な圧力で加圧された状態で固定されている必要がある。 In a fuel cell, in order to maintain power generation performance, a plurality of stacked DMFC components need to be fixed in a state where they are uniformly and moderately pressurized over the entire surface.
 固定手法として、ネジ止めあるいはリベット継手があるが、これらの手法を適用する場合には、ネジ類が貫通する貫通孔を確保する必要がある。このため、体積効率及び組立作業効率の観点から、燃料電池の全周にわたってこれらの手法を適用することは望ましくない。一方、板材を折り曲げ加工により締結する手法は、体積効率及び作業効率ともに適している。しかしながら、折り曲げ加工が可能な板材は剛性が低い。このため、膜電極接合体から離れる方向に膨らむような撓みが生じやすく、加圧が不十分となるとともに面内で圧力が不均一となり、発電性能の低下を招くおそれがある。 Securing methods include screwing or rivet joints. When these methods are applied, it is necessary to secure a through-hole through which the screws pass. For this reason, it is not desirable to apply these methods over the entire circumference of the fuel cell from the viewpoint of volume efficiency and assembly work efficiency. On the other hand, the method of fastening the plate material by bending is suitable for both volumetric efficiency and work efficiency. However, the plate material that can be bent has low rigidity. For this reason, the bending which swells in the direction away from the membrane electrode assembly is likely to occur, the pressurization becomes insufficient and the pressure becomes non-uniform in the surface, and the power generation performance may be deteriorated.
国際公開第2006/120966号パンフレットInternational Publication No. 2006/120966 Pamphlet 特開2008-218054号公報JP 2008-218054 A 特開2008-226486号公報JP 2008-226486 A
 この発明の目的は、膜電極接合体の均一な加圧を可能とするとともに、加工性の向上を可能とし、安定して十分な出力が得られる燃料電池を提供することにある。 An object of the present invention is to provide a fuel cell that enables uniform pressurization of a membrane electrode assembly, improves workability, and provides a stable and sufficient output.
 この発明の一態様によれば、
 アノードとカソードとの間に電解質膜を挟持した構成の膜電極接合体と、前記膜電極接合体のアノード側に配置され、前記アノードに向けて燃料を供給する燃料供給機構と、前記膜電極接合体のカソード側に配置され、折り曲げ加工によって前記燃料供給機構に締結されたカバープレートと、前記膜電極接合体と前記カバープレートとの間に配置され、前記カバープレートより高い剛性の剛性部材と、を備えたことを特徴とする燃料電池が提供される。
According to one aspect of the invention,
A membrane electrode assembly having an electrolyte membrane sandwiched between an anode and a cathode; a fuel supply mechanism disposed on the anode side of the membrane electrode assembly for supplying fuel toward the anode; and the membrane electrode junction A cover plate disposed on the cathode side of the body and fastened to the fuel supply mechanism by bending, a rigid member having a rigidity higher than that of the cover plate, disposed between the membrane electrode assembly and the cover plate; A fuel cell comprising: is provided.
 この発明によれば、膜電極接合体の均一な加圧を可能とするとともに、加工性の向上を可能とし、安定して十分な出力が得られる燃料電池を提供することができる。 According to the present invention, it is possible to provide a fuel cell that enables uniform pressurization of a membrane electrode assembly and improves workability, and can stably obtain a sufficient output.
図1は、この発明の一実施の形態に係る燃料電池のカソード側の外観を示す平面図である。FIG. 1 is a plan view showing the appearance of the cathode side of a fuel cell according to an embodiment of the present invention. 図2は、図1に示した燃料電池を第1方向に沿って切断した断面構造を概略的に示す図である。FIG. 2 is a diagram schematically showing a cross-sectional structure of the fuel cell shown in FIG. 1 cut along a first direction. 図3は、図1に示した燃料電池を第2方向に沿って切断した断面構造を概略的に示す図である。FIG. 3 is a diagram schematically showing a cross-sectional structure of the fuel cell shown in FIG. 1 cut along the second direction. 図4は、図1に示した燃料電池に適用可能な燃料供給部を構成する容器の外観を示す斜視図である。FIG. 4 is a perspective view showing an appearance of a container constituting a fuel supply unit applicable to the fuel cell shown in FIG. 図5は、実施例の燃料電池の概略断面図である。FIG. 5 is a schematic cross-sectional view of the fuel cell of the example. 図6は、比較例1の燃料電池の概略断面図である。FIG. 6 is a schematic cross-sectional view of the fuel cell of Comparative Example 1. 図7は、比較例2の燃料電池の概略断面図である。FIG. 7 is a schematic cross-sectional view of a fuel cell of Comparative Example 2.
 以下、この発明の一実施の形態に係る燃料電池について図面を参照して説明する。 Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings.
 図1は、この実施の形態に係る燃料電池(DMFC)1のカソード側の外観を示す平面図である。 FIG. 1 is a plan view showing the appearance of the cathode side of a fuel cell (DMFC) 1 according to this embodiment.
 この燃料電池1は、矩形平板状に形成されている。図1に示す平面図では、燃料電池1は、長方形状であり、第1方向Xに沿って延びた一対の長辺L1及び長辺L2と、第1方向Xに直交する第2方向Yに沿って延びた一対の短辺S1及び短辺S2と、を有している。 The fuel cell 1 is formed in a rectangular flat plate shape. In the plan view shown in FIG. 1, the fuel cell 1 has a rectangular shape, a pair of long sides L1 and long sides L2 extending along the first direction X, and a second direction Y orthogonal to the first direction X. It has a pair of short side S1 and short side S2 extended along.
 また、燃料電池1のカソード側の表面には、カバープレート21が配置されている。カバープレート21は、外観が略矩形状のものであり、例えばステンレス鋼(SUS)によって形成されている。このカバープレート21には、主として酸化剤である空気の取り込みを可能とする複数の貫通孔である開口部21Aが形成されている。なお、図中の+マークは、カバープレート21をネジ止めあるいはリベット継手を施す位置の一例を示している。 Further, a cover plate 21 is disposed on the cathode side surface of the fuel cell 1. The cover plate 21 has a substantially rectangular appearance, and is made of, for example, stainless steel (SUS). The cover plate 21 is formed with openings 21 </ b> A that are a plurality of through-holes that mainly allow air that is an oxidant to be taken in. The + mark in the figure shows an example of a position where the cover plate 21 is screwed or a rivet joint is applied.
 図2は、図1に示した燃料電池1を第1方向Xに沿って切断した断面を示す図であり、図3は、図1に示した燃料電池1を第2方向Yに沿って切断した断面を示す図である。 2 is a view showing a cross section of the fuel cell 1 shown in FIG. 1 cut along the first direction X. FIG. 3 is a view showing the fuel cell 1 shown in FIG. 1 cut along the second direction Y. FIG.
 燃料電池1は、起電部を構成する膜電極接合体(以下、MEAと称する場合もある)2、及び、膜電極接合体2に燃料を供給する燃料供給機構3を備えている。 The fuel cell 1 includes a membrane electrode assembly (hereinafter also referred to as MEA) 2 that constitutes an electromotive unit, and a fuel supply mechanism 3 that supplies fuel to the membrane electrode assembly 2.
 すなわち、膜電極接合体2は、アノード触媒層11とアノードガス拡散層12とが積層されたアノード(あるいは燃料極と称する場合もある)13と、カソード触媒層14とカソードガス拡散層15とが積層されたカソード(あるいは空気極または酸化剤極と称する場合もある)16と、アノード13のアノード触媒層11とカソード16のカソード触媒層14とで挟持されたプロトン(水素イオン)伝導性の電解質膜17と、を備えて構成されている。このような膜電極接合体2は、集電体18によって挟持されている。 That is, the membrane electrode assembly 2 includes an anode 13 (also referred to as a fuel electrode) in which an anode catalyst layer 11 and an anode gas diffusion layer 12 are laminated, a cathode catalyst layer 14 and a cathode gas diffusion layer 15. A proton (hydrogen ion) conductive electrolyte sandwiched between the laminated cathode (or may be referred to as an air electrode or an oxidant electrode) 16, the anode catalyst layer 11 of the anode 13, and the cathode catalyst layer 14 of the cathode 16. And a film 17. Such a membrane electrode assembly 2 is sandwiched between current collectors 18.
 この実施の形態においては、図3に示すように、膜電極接合体2は、単一の電解質膜17における一方の面17Aの上に間隔をおいて配置された複数のアノード13と、電解質膜17における他方の面17Bの上においてアノード13のそれぞれと間隔をおいて配置された複数のカソード16とを有している。 In this embodiment, as shown in FIG. 3, the membrane electrode assembly 2 includes a plurality of anodes 13 disposed on one surface 17A of a single electrolyte membrane 17 at intervals, and an electrolyte membrane. 17 has a plurality of cathodes 16 spaced apart from each of the anodes 13 on the other surface 17B.
 これらのアノード13とカソード16との各組み合わせは、それぞれ電解質膜17を挟持し、単セルを構成している。ここでは、単セルのそれぞれは、同一平面上において、第1方向Xに沿って延在し、第2方向Yに間隔をおいて並んで配置されている。なお、膜電極接合体2の構造は、この例に限らず他の構造であっても良い。 Each combination of the anode 13 and the cathode 16 sandwiches the electrolyte membrane 17 to constitute a single cell. Here, each of the single cells extends along the first direction X and is arranged side by side in the second direction Y on the same plane. The structure of the membrane electrode assembly 2 is not limited to this example, and may be another structure.
 ここに示した例では、膜電極接合体2は、単一の電解質膜17の一方の面17Aの上に配置された4個のアノード131~134と、電解質膜17の他方の面17Bに配置された4個のカソード161~164と、を有している。アノード131とカソード161とがそれぞれ対向するように配置されており、1組の単セルを構成している。同様に、アノード132とカソード162とがそれぞれ対向するように配置され、アノード133とカソード163とがそれぞれ対向するように配置され、アノード134とカソード164とがそれぞれ対向するように配置されており、4組の単セルが同一平面上に配列されている。各単セルは、集電体18によって電気的に直列に接続されている。 In the example shown here, the membrane electrode assembly 2 is disposed on the four surfaces 131 to 134 disposed on one surface 17A of the single electrolyte membrane 17 and on the other surface 17B of the electrolyte membrane 17. The four cathodes 161 to 164 are provided. The anode 131 and the cathode 161 are arranged so as to face each other, and constitute a set of single cells. Similarly, the anode 132 and the cathode 162 are arranged so as to face each other, the anode 133 and the cathode 163 are arranged so as to face each other, and the anode 134 and the cathode 164 are arranged so as to face each other. Four sets of single cells are arranged on the same plane. Each single cell is electrically connected in series by a current collector 18.
 集電体18のアノード集電体A1はアノード131のアノードガス拡散層12に積層され、同様に、アノード集電体A2はアノード132のアノードガス拡散層12に積層され、アノード集電体A3はアノード133のアノードガス拡散層12に積層され、アノード集電体A4はアノード134のアノードガス拡散層12に積層されている。 The anode current collector A1 of the current collector 18 is laminated on the anode gas diffusion layer 12 of the anode 131. Similarly, the anode current collector A2 is laminated on the anode gas diffusion layer 12 of the anode 132, and the anode current collector A3 is The anode current diffusion layer 12 is stacked on the anode gas diffusion layer 12 of the anode 133, and the anode current collector A 4 is stacked on the anode gas diffusion layer 12 of the anode 134.
 集電体18のカソード集電体Cはカソード161のカソードガス拡散層15に積層され、同様に、カソード集電体C2はカソード162のカソードガス拡散層15に積層され、カソード集電体C3はカソード163のカソードガス拡散層15に積層され、カソード集電体C4はカソード164のカソードガス拡散層15に積層されている。 The cathode current collector C of the current collector 18 is laminated on the cathode gas diffusion layer 15 of the cathode 161. Similarly, the cathode current collector C2 is laminated on the cathode gas diffusion layer 15 of the cathode 162, and the cathode current collector C3 is The cathode current diffusion layer 15 of the cathode 163 is stacked, and the cathode current collector C4 is stacked on the cathode gas diffusion layer 15 of the cathode 164.
 膜電極接合体2は、電解質膜17のアノード側及びカソード側にそれぞれ配置されたゴム製のOリング等のシール部材19によってシールされている。これにより、膜電極接合体2からの燃料漏れや酸化剤漏れが防止されている。 The membrane electrode assembly 2 is sealed by a seal member 19 such as a rubber O-ring disposed on the anode side and the cathode side of the electrolyte membrane 17. Thereby, fuel leakage and oxidant leakage from the membrane electrode assembly 2 are prevented.
 膜電極接合体2のカソード16側には、絶縁材料によって形成された板状体20が配置されている。この板状体20は、主に保湿層として機能する。すなわち、この板状体20は、カソード触媒層14で生成された水の一部が含浸されて水の蒸散を抑制するとともに、カソード触媒層14への空気の取入れ量を調整し且つ空気の均一拡散を促進するものである。 A plate-like body 20 made of an insulating material is disposed on the cathode 16 side of the membrane electrode assembly 2. This plate-like body 20 mainly functions as a moisture retaining layer. That is, the plate-like body 20 is impregnated with a part of the water generated in the cathode catalyst layer 14 to suppress the transpiration of water, adjusts the amount of air taken into the cathode catalyst layer 14 and makes the air uniform. Promotes diffusion.
 上述した膜電極接合体2のアノード13側には、燃料供給機構3が配置されている。つまり、膜電極接合体2は、アノード側に配置された燃料供給機構3とカソード側に配置されたカバープレート21との間に配置されている。 The fuel supply mechanism 3 is disposed on the anode 13 side of the membrane electrode assembly 2 described above. That is, the membrane electrode assembly 2 is disposed between the fuel supply mechanism 3 disposed on the anode side and the cover plate 21 disposed on the cathode side.
 燃料供給機構3は、膜電極接合体2のアノード13に対して燃料を供給するように構成されているが、特に、特定の構成に限定されるものではない。以下に、燃料供給機構3の一例について説明する。 The fuel supply mechanism 3 is configured to supply fuel to the anode 13 of the membrane electrode assembly 2, but is not particularly limited to a specific configuration. Hereinafter, an example of the fuel supply mechanism 3 will be described.
 燃料供給機構3は、向かい合う膜電極接合体2のアノード13の面方向に燃料を分散並びに拡散させつつ供給する燃料供給部3Xを備えている。この燃料供給部3Xは、箱状に形成された容器30及び容器30の底面35に配置された燃料分配板31を備えている。このような燃料供給機構3は、液体燃料を収容する燃料収容部4と流路5を介して接続されている。 The fuel supply mechanism 3 includes a fuel supply unit 3X that supplies fuel while dispersing and diffusing fuel in the direction of the surface of the anode 13 of the membrane electrode assembly 2 facing each other. The fuel supply unit 3X includes a container 30 formed in a box shape and a fuel distribution plate 31 disposed on the bottom surface 35 of the container 30. Such a fuel supply mechanism 3 is connected via a flow path 5 to a fuel storage portion 4 that stores liquid fuel.
 容器30については、後に詳細に説明するが、燃料を導入するための燃料導入口30Aが側壁36Aに形成されている。この燃料導入口30Aは、燃料収容部4に繋がる流路5に接続されている。 The container 30 will be described in detail later, but a fuel inlet 30A for introducing fuel is formed in the side wall 36A. The fuel introduction port 30 </ b> A is connected to a flow path 5 connected to the fuel storage unit 4.
 燃料分配板31は、1つの燃料注入口32と、複数の燃料排出口33とを有しており、細管34のような燃料通路を介して燃料注入口32と各燃料排出口33とを接続した構成である。燃料注入口32は、燃料導入口30Aと直接接続されているが、他の燃料通路を介して接続されていても良い。の燃料排出口33は、膜電極接合体2のアノード13に対向している。 The fuel distribution plate 31 has one fuel inlet 32 and a plurality of fuel outlets 33, and connects the fuel inlet 32 and each fuel outlet 33 via a fuel passage such as a narrow tube 34. This is the configuration. The fuel inlet 32 is directly connected to the fuel inlet 30A, but may be connected via another fuel passage. The fuel discharge port 33 faces the anode 13 of the membrane electrode assembly 2.
 燃料収容部4には、膜電極接合体2に応じた液体燃料が収容されている。液体燃料としては、各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が挙げられる。なお、液体燃料は、必ずしもメタノール燃料に限られるものではない。液体燃料は、例えば、エタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であってもよい。いずれにしても、燃料収容部4には、膜電極接合体2に応じた液体燃料が収容される。 The liquid storage unit 4 stores liquid fuel corresponding to the membrane electrode assembly 2. Examples of the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol. The liquid fuel is not necessarily limited to methanol fuel. The liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel. In any case, liquid fuel corresponding to the membrane electrode assembly 2 is stored in the fuel storage portion 4.
 さらに、燃料供給機構3において、燃料収容部4に繋がる流路5、あるいは、燃料導入口30Aと燃料注入口32との間の燃料通路には、ポンプ6が介在していても良い。ポンプ6は、燃料を循環させる循環ポンプではなく、あくまでも燃料収容部4から燃料供給部3Xに液体燃料を送液する燃料供給ポンプである。燃料供給部3Xから膜電極接合体2に供給された燃料は、発電反応に使用され、その後に循環して燃料収容部4に戻されることはない。 Furthermore, in the fuel supply mechanism 3, the pump 6 may be interposed in the flow path 5 connected to the fuel storage unit 4 or in the fuel passage between the fuel introduction port 30 </ b> A and the fuel injection port 32. The pump 6 is not a circulation pump that circulates fuel, but is a fuel supply pump that sends liquid fuel from the fuel storage unit 4 to the fuel supply unit 3X. The fuel supplied from the fuel supply unit 3X to the membrane electrode assembly 2 is used for the power generation reaction and is not circulated thereafter and returned to the fuel storage unit 4.
 ポンプ6の種類は、特に限定されるものではないが、少量の液体燃料を制御性よく送液することができ、さらに小型軽量化が可能なものが好ましい。 The type of the pump 6 is not particularly limited, but a pump that can feed a small amount of liquid fuel with good controllability and can be reduced in size and weight is preferable.
 この実施の形態の燃料電池1は、燃料を循環しないことから、従来のアクティブ方式とは異なるものであり、装置の小型化等を損なうものではない。また、液体燃料の供給にポンプ6を使用しており、従来の内部気化型のような純パッシブ方式とも異なる。図1に示す燃料電池1は、例えばセミパッシブ型と呼称される方式を適用したものである。 The fuel cell 1 of this embodiment is different from the conventional active method because it does not circulate the fuel, and does not impair the downsizing of the device. Further, the pump 6 is used to supply the liquid fuel, which is different from a pure passive system such as a conventional internal vaporization type. The fuel cell 1 shown in FIG. 1 employs a system called a semi-passive type, for example.
 また、燃料供給機構3において、ポンプ6と直列に燃料遮断バルブを配置してもよい。また、燃料収容部4や流路5には、燃料収容部4内の圧力を外気とバランスさせるバランスバルブを装着してもよい。 In the fuel supply mechanism 3, a fuel cutoff valve may be arranged in series with the pump 6. Further, a balance valve that balances the pressure in the fuel storage unit 4 with the outside air may be attached to the fuel storage unit 4 and the flow path 5.
 上述したように、燃料供給部3Xから排出された燃料は、膜電極接合体2のアノード13に供給される。膜電極接合体2内において、燃料は、アノードガス拡散層12を拡散してアノード触媒層11に供給される。液体燃料としてメタノール燃料を用いた場合、アノード触媒層11で下記の(1)式に示すメタノールの内部改質反応が生じる。なお、メタノール燃料として純メタノールを使用した場合には、カソード触媒層14で生成した水や電解質膜17中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは、水を必要としない他の反応機構により内部改質反応を生じさせる。 As described above, the fuel discharged from the fuel supply unit 3X is supplied to the anode 13 of the membrane electrode assembly 2. In the membrane electrode assembly 2, the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11. When methanol fuel is used as the liquid fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11. When pure methanol is used as the methanol fuel, the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1). Alternatively, the internal reforming reaction is caused by another reaction mechanism that does not require water.
  CH3OH+H2O → CO2+6H++6e- …(1)
 この反応で生成した電子(e-)は、集電体18を経由して外部に導かれ、いわゆる電気として携帯用電子機器等を動作させた後、集電体18を経由してカソード16に導かれる。(1)式の内部改質反応で生成したプロトン(H+)は、電解質膜17を経てカソード16に導かれる。カソード16には、酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成する。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
The electrons (e ) generated by this reaction are guided to the outside via the current collector 18, and after operating a portable electronic device or the like as so-called electricity, the electrons (e ) are passed to the cathode 16 via the current collector 18. Led. Proton (H + ) generated by the internal reforming reaction of the formula (1) is guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in the cathode catalyst layer 14 in accordance with the following equation (2), and water is generated along with this reaction.
  6e-+6H++(3/2)O2 → 3H2O …(2)
 上述した燃料電池1の発電反応において、発電する電力を増大させるためには触媒反応を円滑に行わせるとともに、膜電極接合体2の電極全体に均一に燃料を供給し、電極全体をより有効に発電に寄与させることが重要となる。
6e + 6H + + (3/2) O 2 → 3H 2 O (2)
In the power generation reaction of the fuel cell 1 described above, in order to increase the power to be generated, the catalytic reaction is smoothly performed, and the fuel is uniformly supplied to the entire electrode of the membrane electrode assembly 2 so that the entire electrode becomes more effective. It is important to contribute to power generation.
 図4は、燃料供給部3Xを構成する容器30の外観を示す斜視図である。容器30は、第1方向Xに長い長方形状の底面35と、この底面35の四方から立ち上がった側壁36A乃至36Dと、を有している。より具体的には、側壁36Aは、燃料電池1の短辺S1に沿って延在している。側壁36Bは、燃料電池1の短辺S2に沿って延在している。側壁36Cは、燃料電池1の長辺L1に沿って延在している。側壁36Dは、燃料電池1の長辺L2に沿って延在している。これらの側壁36A乃至36Dの高さは、実質的に同一である。 FIG. 4 is a perspective view showing an appearance of the container 30 constituting the fuel supply unit 3X. The container 30 has a rectangular bottom surface 35 that is long in the first direction X, and side walls 36A to 36D that rise from four sides of the bottom surface 35. More specifically, the side wall 36 </ b> A extends along the short side S <b> 1 of the fuel cell 1. The side wall 36 </ b> B extends along the short side S <b> 2 of the fuel cell 1. The side wall 36 </ b> C extends along the long side L <b> 1 of the fuel cell 1. The side wall 36 </ b> D extends along the long side L <b> 2 of the fuel cell 1. The side walls 36A to 36D have substantially the same height.
 側壁36Aの側面のほぼ中央(つまり、短辺S1の中点付近)には、燃料導入口30Aが形成されている。また、図4に示した例では、側壁36Aには、高さ方向に貫通した複数の貫通孔H1が形成されている。これらの貫通孔H1は、燃料導入口30Aを避けて形成されている。この燃料導入口30Aには、燃料収容部に繋がる流路が接続される。 A fuel inlet 30A is formed at substantially the center of the side surface of the side wall 36A (that is, near the middle point of the short side S1). In the example shown in FIG. 4, the side wall 36A is formed with a plurality of through holes H1 penetrating in the height direction. These through holes H1 are formed so as to avoid the fuel inlet 30A. The fuel introduction port 30A is connected to a flow path connected to the fuel storage unit.
 側壁36Bには、高さ方向に貫通した複数の貫通孔H2が形成されている。側壁36C及び側壁36Dは、側壁36A及び側壁36Bよりも小さな幅に形成され、貫通孔は形成されていない。 A plurality of through holes H2 penetrating in the height direction are formed in the side wall 36B. The side wall 36C and the side wall 36D are formed to have a smaller width than the side wall 36A and the side wall 36B, and no through hole is formed.
 このような容器30は、例えば樹脂材料を用いて成型することによって形成されている。 Such a container 30 is formed by molding using, for example, a resin material.
 この実施の形態においては、図2及び図3に示したように、燃料電池1は、膜電極接合体2とカバープレート21との間に配置された剛性部材40を備えている。この剛性部材40は、カバープレート21より高い剛性を有している。このような剛性部材40は、例えば平板状に形成され、膜電極接合体2の上に配置された板状体20に重ねられている。また、剛性部材40の周辺部は、容器30の側壁36A乃至36Dのそれぞれの上に重なっている。つまり、剛性部材40は、燃料供給機構3との間で膜電極接合体2を保持している。 In this embodiment, as shown in FIGS. 2 and 3, the fuel cell 1 includes a rigid member 40 disposed between the membrane electrode assembly 2 and the cover plate 21. The rigid member 40 has higher rigidity than the cover plate 21. Such a rigid member 40 is formed in a flat plate shape, for example, and is overlaid on the plate-like body 20 disposed on the membrane electrode assembly 2. In addition, the peripheral portion of the rigid member 40 overlaps each of the side walls 36 </ b> A to 36 </ b> D of the container 30. That is, the rigid member 40 holds the membrane electrode assembly 2 with the fuel supply mechanism 3.
 カバープレート21は、上述した容器30を備えた燃料供給機構3との間に膜電極接合体2を保持した剛性部材40に重なり、燃料供給機構3と締結されている。特に、燃料電池1の小型化あるいは組立作業性の改善を図る上では、カバープレート21は、燃料電池1の少なくとも1辺、もしくは、対向する2辺については、折り曲げ加工(カシメ)により燃料供給機構3と締結されることが望ましい。 The cover plate 21 overlaps the rigid member 40 that holds the membrane electrode assembly 2 between the cover plate 21 and the fuel supply mechanism 3 including the container 30 described above, and is fastened to the fuel supply mechanism 3. In particular, in order to reduce the size of the fuel cell 1 or improve the assembling workability, the cover plate 21 has a fuel supply mechanism by bending (caulking) at least one side of the fuel cell 1 or two opposite sides. It is desirable to be fastened with 3.
 図4に示した容器30を適用する場合、燃料電池1の長辺L1及び長辺L2においては、カバープレート21は、折り曲げ加工により燃料供給機構3を構成する容器30と締結されている。つまり、長辺L1及び長辺L2に沿ったカバープレート21の端部は、膜電極接合体2の外周、容器30の側壁36C及び側壁36Dに沿ってそれぞれ折り曲げられ、さらに、容器30の背面側に折り曲げられる。 When the container 30 shown in FIG. 4 is applied, the cover plate 21 is fastened to the container 30 constituting the fuel supply mechanism 3 by bending at the long side L1 and the long side L2 of the fuel cell 1. That is, the end portions of the cover plate 21 along the long side L1 and the long side L2 are bent along the outer periphery of the membrane electrode assembly 2, the side wall 36C and the side wall 36D of the container 30, respectively. Can be folded.
 また、短辺S1及び短辺S2においては、カバープレート21は、ネジ止めあるいはリベット継手などの手法により容器30と締結されている。つまり、短辺S1及び短辺S2に沿ったカバープレート21の端部は、容器30の側壁36A及び側壁36Bにそれぞれ重ねられ、貫通孔H1及びH2を利用して、ネジ止めまたはリベット継手により締結されている。なお、剛性部材40についても、容器30の側壁36A及び側壁36Bに重なる位置に貫通孔H1及びH2とそれぞれ連通する貫通孔が形成されており、ネジ止めまたはリベット継手によりカバープレート21とともに容器30に締結されている。 Also, at the short side S1 and the short side S2, the cover plate 21 is fastened to the container 30 by a method such as screwing or a rivet joint. That is, the end portions of the cover plate 21 along the short side S1 and the short side S2 are overlapped with the side wall 36A and the side wall 36B of the container 30, respectively, and are fastened by screwing or rivet joints using the through holes H1 and H2. Has been. The rigid member 40 also has through-holes communicating with the through-holes H1 and H2 at positions overlapping the side walls 36A and 36B of the container 30, respectively, and is fixed to the container 30 together with the cover plate 21 by screwing or rivet joints. It is concluded.
 このような構成によれば、比較的剛性が低い材料つまり折り曲げ加工が容易な材料を用いてカバープレート21を形成し、カバープレート21よりも剛性が高い材料を用いて剛性部材40を形成している。そして、剛性部材40によって燃料供給機構3との間に積層された複数のDMFCの構成部品を保持した状態で、剛性部材40を覆うようにカバープレート21を取り付け、カバープレート21の端部を折り曲げ加工により燃料供給機構3と締結している。 According to such a configuration, the cover plate 21 is formed using a material having relatively low rigidity, that is, a material that can be easily bent, and the rigid member 40 is formed using a material having higher rigidity than the cover plate 21. Yes. Then, the cover plate 21 is attached so as to cover the rigid member 40 with the rigid member 40 holding a plurality of DMFC components stacked between the fuel supply mechanism 3 and the end of the cover plate 21 is bent. The fuel supply mechanism 3 is fastened by processing.
 これにより、剛性部材40は、カバープレート21により適度に加圧される。このため、剛性部材40は、膜電極接合体2を含むDMFC構成部品を全面にわたって均一且つ適度な圧力で加圧する。カバープレート21が燃料供給機構3に締結されているため、剛性部材40による加圧状態が維持される。 Thereby, the rigid member 40 is appropriately pressurized by the cover plate 21. For this reason, the rigid member 40 pressurizes the DMFC components including the membrane electrode assembly 2 over the entire surface with a uniform and appropriate pressure. Since the cover plate 21 is fastened to the fuel supply mechanism 3, the pressurized state by the rigid member 40 is maintained.
 したがって、締結のための加工性の向上を可能としつつ、膜電極接合体2を均一且つ適度に加圧することができる。このため、安定して十分な出力が得られる燃料電池1を提供できる。また、たとえカバープレート21が折り曲げ加工によってその中央部付近が剛性部材40から離間する方向に撓んだとしても、カバープレート21の周辺部で剛性部材40を押圧している限り、剛性部材40によって均一且つ適度に膜電極接合体2を加圧した状態を維持することができる。 Therefore, it is possible to pressurize the membrane electrode assembly 2 uniformly and appropriately while improving the workability for fastening. For this reason, the fuel cell 1 which can obtain sufficient output stably can be provided. Even if the cover plate 21 is bent in the direction away from the rigid member 40 due to the bending process, the rigid member 40 can be used as long as the rigid member 40 is pressed on the periphery of the cover plate 21. The state where the membrane electrode assembly 2 is pressurized uniformly and appropriately can be maintained.
 なお、カバープレート21は、少なくとも一辺で容器30に対して折り曲げ加工により締結されることが望ましく、燃料電池1の4辺について、折り曲げ加工により燃料供給機構3に締結しても良い。 The cover plate 21 is desirably fastened to the container 30 at least on one side by bending, and the four sides of the fuel cell 1 may be fastened to the fuel supply mechanism 3 by bending.
 また、折り曲げ加工が困難な構成、あるいは、折り曲げ加工よりも締結強度を必要とする場合には、カバープレート21は、少なくとも一辺で容器30に対して、ネジ止めまたはリベット継手により締結されても良い。 Further, when the bending process is difficult, or when a fastening strength is required rather than the bending process, the cover plate 21 may be fastened to the container 30 at least on one side by screwing or a rivet joint. .
 上述した剛性部材40は、カバープレート21の開口部21Aに連通した貫通孔である開口部40Aを有している。開口部40Aは、開口部21Aと略同一の形状で且つ同一の間隔で形成されている。 The rigid member 40 described above has an opening 40A which is a through hole communicating with the opening 21A of the cover plate 21. The openings 40A have substantially the same shape as the openings 21A and are formed at the same intervals.
 このような構成によれば、剛性部材40の開口部40A及びカバープレート21の開口部21Aにより、燃料電池1のカソード側の通気性が確保されている。このため、発電に必要な酸素の取り込み及び発電に伴って生成されたガスの排出が阻害されず、燃料電池1の発電に適した環境に維持することが可能となる。 According to such a configuration, the air permeability on the cathode side of the fuel cell 1 is ensured by the opening 40A of the rigid member 40 and the opening 21A of the cover plate 21. For this reason, uptake of oxygen necessary for power generation and discharge of gas generated along with power generation are not hindered, and it is possible to maintain an environment suitable for power generation of the fuel cell 1.
 上述した燃料供給機構3は、その剛性がカバープレート21より高くなるように形成されている。ここでは、燃料供給機構3のうち、剛性部材40との間で膜電極接合体2を含むDMFC構成部品を挟持する燃料分配板31及び容器30を合わせた総合的な剛性がカバープレート21よりも高くなるように形成されている。 The fuel supply mechanism 3 described above is formed such that its rigidity is higher than that of the cover plate 21. Here, in the fuel supply mechanism 3, the overall rigidity of the fuel distribution plate 31 and the container 30 that sandwich the DMFC component including the membrane electrode assembly 2 between the rigid member 40 and the container 30 is higher than that of the cover plate 21. It is formed to be higher.
 すなわち、例えば燃料分配板31及び容器30の剛性が低い場合には、カバープレート21との締結により撓んでしまうおそれがある。つまり、膜電極接合体2を含むDMFC構成部品は、相互を密着した状態を維持する必要があり、比較的剛性の高い一対の部材で面状に挟持することが望ましい。したがって、剛性部材40のみならず、燃料供給機構3の剛性もカバープレート21より高いことが望ましい。 That is, for example, when the rigidity of the fuel distribution plate 31 and the container 30 is low, there is a risk that the fuel distribution plate 31 and the cover 30 are bent due to the fastening with the cover plate 21. In other words, the DMFC components including the membrane electrode assembly 2 need to be kept in close contact with each other, and are desirably sandwiched between a pair of members having relatively high rigidity. Therefore, it is desirable that not only the rigid member 40 but also the rigidity of the fuel supply mechanism 3 is higher than that of the cover plate 21.
 上述した剛性部材40は、単一の板材によって構成されている。ここでは、例えば、剛性部材40は、比較的厚板のステンレス鋼(SUS)によって形成されているが、これに限定されるものではない。 The rigid member 40 described above is formed of a single plate material. Here, for example, the rigid member 40 is formed of relatively thick stainless steel (SUS), but is not limited thereto.
 なお、剛性部材40は、2枚以上の板材を積層することによって構成されても良い。すなわち、比較的低剛性の薄い板材を複数枚積層した構成においても、剛性部材40として総合的な剛性がカバープレート21よりも高く形成されていれば良い。 The rigid member 40 may be configured by stacking two or more plate materials. That is, even in a configuration in which a plurality of thin plate materials having relatively low rigidity are stacked, it is only necessary that the overall rigidity of the rigid member 40 is higher than that of the cover plate 21.
 なお、ここでの剛性とは、以下の方法によって定義されるものである。 Note that the rigidity here is defined by the following method.
 まず、剛性部材の端部あるいはカバープレートの端部を固定し、それらの平面における中央部をそれぞれ押下し、中央部が1mm変位するのに要した荷重を測定する。その1mm変位するのに要した荷重が大きい方が剛性が高いと判断される。なお、ここでの「端部」とは、剛性部材あるいはカバープレートの一端部から、この一端部と平面方向他端部との間の距離の10%以下の距離に相当する範囲まで位置を言う。また、カバープレートの端部が折り曲げられている場合には、折り曲げられた部分を端部とする。 First, the end of the rigid member or the end of the cover plate is fixed, the central part of each plane is pressed down, and the load required to displace the central part by 1 mm is measured. It is determined that the rigidity is higher when the load required for the displacement of 1 mm is larger. Here, the “end portion” refers to a position from one end portion of the rigid member or the cover plate to a range corresponding to a distance of 10% or less of the distance between the one end portion and the other end portion in the planar direction. . Moreover, when the edge part of the cover plate is bent, let the bent part be an edge part.
 一例として、カバープレート21と剛性部材40とが同一材料例えばステンレス鋼(SUS)によって形成されている場合、厚いほど剛性が高いため、剛性部材40は、カバープレート21よりも厚く形成されている。 As an example, when the cover plate 21 and the rigid member 40 are formed of the same material, for example, stainless steel (SUS), the rigidity increases as the thickness increases, so the rigid member 40 is formed thicker than the cover plate 21.
 剛性部材40として必要な剛性を確保する上で、剛性部材40の厚さは、0.5mm以上であることが望ましい。このような厚さの剛性部材40を適用した場合、カバープレート21の厚さや剛性にかかわらず、剛性部材40自身の変形が抑制され、面内で均一且つ適度な圧力でDMFC構成部品を加圧することが可能となる。 In order to ensure the rigidity necessary for the rigid member 40, the thickness of the rigid member 40 is desirably 0.5 mm or more. When the rigid member 40 having such a thickness is applied, the deformation of the rigid member 40 itself is suppressed regardless of the thickness and rigidity of the cover plate 21, and the DMFC component is pressurized with uniform and appropriate pressure in the surface. It becomes possible.
 一方で、剛性部材40の厚さが厚すぎると、燃料電池1の重量が増加し、また、燃料電池1の厚さも増してしまう。このため、剛性部材40の厚さは、1.0mm以下であることが望ましい。総合すると、剛性部材40の厚さは、0.6mm~0.8mmの範囲であることがより望ましい。 On the other hand, if the rigid member 40 is too thick, the weight of the fuel cell 1 increases and the thickness of the fuel cell 1 also increases. For this reason, it is desirable that the thickness of the rigid member 40 be 1.0 mm or less. In total, the thickness of the rigid member 40 is more preferably in the range of 0.6 mm to 0.8 mm.
  (実施例)
 実施例として、図5に示すように、容器30に収容した膜電極接合体2のカソード16側に板状体20を配置し、さらにこの板状体20の上に剛性部材40を配置した。この剛性部材40は、ステンレス鋼によって形成されており、その厚さは0.7mmとした。
(Example)
As an example, as shown in FIG. 5, the plate-like body 20 was disposed on the cathode 16 side of the membrane electrode assembly 2 accommodated in the container 30, and the rigid member 40 was further disposed on the plate-like body 20. The rigid member 40 is made of stainless steel and has a thickness of 0.7 mm.
 剛性部材40及び容器30を覆うようにカバープレート21を配置した。このカバープレート21は、折り曲げ加工により容器30に締結した。このようなカバープレート21は、ステンレス鋼によって形成されており、その厚さは0.3mmとした。 The cover plate 21 was disposed so as to cover the rigid member 40 and the container 30. The cover plate 21 was fastened to the container 30 by bending. Such a cover plate 21 is made of stainless steel and has a thickness of 0.3 mm.
 使用した剛性部材40及びカバープレート21の剛性について既述の方法によって確認した。その結果、カバープレート21の中央部を1mm変位させるのに要した荷重を1とした場合、剛性部材40の中央部を1mm変位させるのに要した荷重は4であった。 The rigidity of the used rigid member 40 and cover plate 21 was confirmed by the method described above. As a result, when the load required for displacing the central portion of the cover plate 21 by 1 mm was 1, the load required for displacing the central portion of the rigid member 40 by 1 mm was 4.
 このような実施例においては、カバープレート21の折り曲げ加工が容易にでき、しかも、折り曲げ加工後においてカバープレート21および剛性部材40により膜電極接合体2を均一に加圧することができた。 In such an embodiment, the cover plate 21 can be easily bent, and the membrane electrode assembly 2 can be uniformly pressed by the cover plate 21 and the rigid member 40 after the bending process.
 比較例1として、図6に示すように、容器30に収容した膜電極接合体2のカソード16側に板状体20を配置し、さらにこの板状体20の上にカバープレート21を配置した。このカバープレート21は、ステンレス鋼によって形成されており、その厚さは1.0mmとした。また、このカバープレート21の剛性を記述の方法によって確認した結果、実施例で使用した厚さ0.3mmのカバープレートの中央部を1mm変位させるのに要した荷重を1とした場合、比較例1のカバープレート21の中央部を1mm変位させるのに要した荷重は6であった。 As Comparative Example 1, as shown in FIG. 6, the plate-like body 20 is arranged on the cathode 16 side of the membrane electrode assembly 2 accommodated in the container 30, and the cover plate 21 is further arranged on the plate-like body 20. . The cover plate 21 is made of stainless steel and has a thickness of 1.0 mm. In addition, as a result of confirming the rigidity of the cover plate 21 by the described method, when the load required for displacing the central portion of the 0.3 mm thick cover plate used in the example by 1 mm is 1, a comparative example The load required for displacing the central portion of one cover plate 21 by 1 mm was 6.
 このような比較例1においては、高い剛性が得られるものの、折り曲げ加工が困難となり、カバープレート21と容器30との締結ができなかった。当然のことながら、膜電極接合体2を均一に加圧することができなかった。 In Comparative Example 1 as described above, although high rigidity was obtained, it was difficult to bend and the cover plate 21 and the container 30 could not be fastened. As a matter of course, the membrane electrode assembly 2 could not be uniformly pressurized.
 比較例2として、図7に示すように、容器30に収容した膜電極接合体2のカソード16側に板状体20を配置し、さらにこの板状体20の上に実施例で使用したカバープレート21を配置した。このカバープレート21は、ステンレス鋼によって形成されており、その厚さは0.3mmとした。 As Comparative Example 2, as shown in FIG. 7, a plate-like body 20 is disposed on the cathode 16 side of the membrane electrode assembly 2 housed in a container 30, and the cover used in the example on this plate-like body 20. Plate 21 was placed. The cover plate 21 is made of stainless steel and has a thickness of 0.3 mm.
 このような比較例2においては、折り曲げ加工が容易にでき、カバープレート21と容器30との締結ができたものの、カバープレート21の剛性が不十分であり、折り曲げ加工の後、膜電極接合体2から離間する方向に撓んでしまった。当然のことながら、膜電極接合体2を均一に加圧することができなかった。 In Comparative Example 2 as described above, the bending process can be easily performed and the cover plate 21 and the container 30 can be fastened, but the rigidity of the cover plate 21 is insufficient, and the membrane electrode assembly is formed after the bending process. Bent in a direction away from 2. As a matter of course, the membrane electrode assembly 2 could not be uniformly pressurized.
 以上説明したように、この実施の形態によれば、膜電極接合体の均一な加圧を可能とするとともに、加工性の向上を可能とし、安定して十分な出力が得られる燃料電池を提供できる。 As described above, according to this embodiment, a fuel cell that can uniformly pressurize a membrane electrode assembly and improve workability and stably obtain sufficient output is provided. it can.
 上述した実施形態の燃料電池1は、各種の液体燃料を使用した場合に効果を発揮し、液体燃料の種類や濃度は限定されるものではない。ただし、燃料を面方向に分散させつつ供給する燃料供給部3Xは、特に燃料濃度が濃い場合に有効である。このため、実施形態の燃料電池1は、濃度が80wt%以上のメタノールを液体燃料として用いた場合に、その性能や効果を特に発揮することができる。したがって、実施形態は、メタノール濃度が80wt%以上のメタノール水溶液や純メタノールを液体燃料として用いた燃料電池1に好適である。 The fuel cell 1 of the above-described embodiment is effective when various liquid fuels are used, and the type and concentration of the liquid fuel are not limited. However, the fuel supply unit 3X that supplies fuel while being dispersed in the plane direction is particularly effective when the fuel concentration is high. For this reason, the fuel cell 1 of the embodiment can exert its performance and effects particularly when methanol having a concentration of 80 wt% or more is used as the liquid fuel. Therefore, the embodiment is suitable for the fuel cell 1 using a methanol aqueous solution having a methanol concentration of 80 wt% or more or pure methanol as a liquid fuel.
 さらに、上述した実施形態は、本発明をセミパッシブ型の燃料電池1に適用した場合について説明したが、本発明はこれに限られるものではなく、内部気化型の純パッシブ型の燃料電池に対しても適用可能である。 Furthermore, although embodiment mentioned above demonstrated the case where this invention was applied to the semi-passive type fuel cell 1, this invention is not restricted to this, It is with respect to an internal vaporization type pure passive type fuel cell. Is applicable.
 なお、本発明は液体燃料を使用した各種の燃料電池に適用することができる。また、燃料電池の具体的な構成や燃料の供給状態等も特に限定されるものではなく、MEAに供給される燃料の全てが液体燃料の蒸気、全てが液体燃料、または一部が液体状態で供給される液体燃料の蒸気等、種々形態に本発明を適用することができる。実施段階では本発明の技術的思想を逸脱しない範囲で構成要素を変形して具体化することができる。さらに、上記実施形態に示される複数の構成要素を適宜に組み合わせたり、また実施形態に示される全構成要素から幾つかの構成要素を削除したりする等、種々の変形が可能である。本発明の実施形態は本発明の技術的思想の範囲内で拡張もしくは変更することができ、この拡張、変更した実施形態も本発明の技術的範囲に含まれるものである。 Note that the present invention can be applied to various fuel cells using liquid fuel. In addition, the specific configuration of the fuel cell, the supply state of the fuel, and the like are not particularly limited, and all of the fuel supplied to the MEA is liquid fuel vapor, all is liquid fuel, or part is liquid state. The present invention can be applied to various forms such as a vapor of supplied liquid fuel. In the implementation stage, the constituent elements can be modified and embodied without departing from the technical idea of the present invention. Furthermore, various modifications are possible, such as appropriately combining a plurality of constituent elements shown in the above embodiment, or deleting some constituent elements from all the constituent elements shown in the embodiment. Embodiments of the present invention can be expanded or modified within the scope of the technical idea of the present invention, and these expanded and modified embodiments are also included in the technical scope of the present invention.

Claims (10)

  1.  アノードとカソードとの間に電解質膜を挟持した構成の膜電極接合体と、
     前記膜電極接合体のアノード側に配置され、前記アノードに向けて燃料を供給する燃料供給機構と、
     前記膜電極接合体のカソード側に配置され、折り曲げ加工によって前記燃料供給機構に締結されたカバープレートと、
     前記膜電極接合体と前記カバープレートとの間に配置され、前記カバープレートより高い剛性の剛性部材と、
     を備えたことを特徴とする燃料電池。
    A membrane electrode assembly having an electrolyte membrane sandwiched between an anode and a cathode;
    A fuel supply mechanism disposed on the anode side of the membrane electrode assembly and supplying fuel toward the anode;
    A cover plate disposed on the cathode side of the membrane electrode assembly and fastened to the fuel supply mechanism by bending;
    A rigid member disposed between the membrane electrode assembly and the cover plate and having a rigidity higher than that of the cover plate;
    A fuel cell comprising:
  2.  前記燃料供給機構の剛性は、前記カバープレートより高いことを特徴とする請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the rigidity of the fuel supply mechanism is higher than that of the cover plate.
  3.  前記剛性部材は、単一の板材によって構成されたことを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the rigid member is formed of a single plate material.
  4.  前記剛性部材は、2枚以上の板材を積層することによって構成されたことを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the rigid member is formed by stacking two or more plate members.
  5.  前記剛性部材は、前記カバープレートと同一材料によって形成され、前記カバープレートよりも厚いことを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the rigid member is made of the same material as the cover plate and is thicker than the cover plate.
  6.  前記剛性部材の厚さは、0.5mm以上であることを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the thickness of the rigid member is 0.5 mm or more.
  7.  前記剛性部材の厚さは、1.0mm以下であることを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the thickness of the rigid member is 1.0 mm or less.
  8.  前記燃料供給機構は、箱状に形成された容器を備え、
     前記カバープレートは、少なくとも一辺で前記容器に対して折り曲げ加工により締結されたことを特徴とする請求項1に記載の燃料電池。
    The fuel supply mechanism includes a container formed in a box shape,
    The fuel cell according to claim 1, wherein the cover plate is fastened to the container at least on one side by bending.
  9.  前記カバープレートは、少なくとも一辺で前記容器に対して、ネジ止めまたはリベット継手により締結されたことを特徴とする請求項8に記載の燃料電池。 The fuel cell according to claim 8, wherein the cover plate is fastened to the container at least on one side by screwing or a rivet joint.
  10.  前記剛性部材及び前記カバープレートは、互いに連通した貫通孔を有することを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the rigid member and the cover plate have through holes communicating with each other.
PCT/JP2010/050204 2009-01-20 2010-01-12 Fuel cell WO2010084799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-010268 2009-01-20
JP2009010268A JP2010170733A (en) 2009-01-20 2009-01-20 Fuel cell

Publications (1)

Publication Number Publication Date
WO2010084799A1 true WO2010084799A1 (en) 2010-07-29

Family

ID=42355853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050204 WO2010084799A1 (en) 2009-01-20 2010-01-12 Fuel cell

Country Status (3)

Country Link
JP (1) JP2010170733A (en)
TW (1) TW201044675A (en)
WO (1) WO2010084799A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JP2008016258A (en) * 2006-07-04 2008-01-24 Toshiba Corp Fuel cell
JP2008077934A (en) * 2006-09-20 2008-04-03 Toshiba Corp Fuel cell
JP2008218054A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell and fuel cell system
JP2008218058A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell
JP2008243800A (en) * 2007-02-26 2008-10-09 Toshiba Corp Fuel cell
JP2008269934A (en) * 2007-04-19 2008-11-06 Toshiba Corp Fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JP2008016258A (en) * 2006-07-04 2008-01-24 Toshiba Corp Fuel cell
JP2008077934A (en) * 2006-09-20 2008-04-03 Toshiba Corp Fuel cell
JP2008243800A (en) * 2007-02-26 2008-10-09 Toshiba Corp Fuel cell
JP2008218054A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell and fuel cell system
JP2008218058A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell
JP2008269934A (en) * 2007-04-19 2008-11-06 Toshiba Corp Fuel cell

Also Published As

Publication number Publication date
TW201044675A (en) 2010-12-16
JP2010170733A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP2008311165A (en) Fuel cell stack, and fuel cell using the same
JP2010027476A (en) Fuel cell stack and fuel cell using the same
US20100068587A1 (en) Solid polymer fuel cell
JP2010251317A (en) Fuel battery, fuel battery system, and electronic appliance
JP2011008959A (en) Fuel cell
WO2010084799A1 (en) Fuel cell
US7745043B2 (en) Fuel cell stack
JP2008077934A (en) Fuel cell
JP2008218058A (en) Fuel cell
JP2009021113A (en) Fuel cell
JP2008077936A (en) Fuel cell
US20100209817A1 (en) Fuel cell system and electronic device
JP2010182507A (en) Fuel cell
JP2008269934A (en) Fuel cell
WO2010095510A1 (en) Fuel cell
JP2011070852A (en) Fuel cell
JP2008218046A (en) Fuel cell
JP2011238409A (en) Fuel cell
JP2011034924A (en) Fuel cell
JP2010135270A (en) Fuel cell
JP2012059628A (en) Fuel cell and fuel cell system
JP2011008985A (en) Fuel cell
JP2009158420A (en) Fuel cell
JP2010182451A (en) Fuel cell
JP2010073607A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733406

Country of ref document: EP

Kind code of ref document: A1