WO2010084771A1 - Metal halide lamp - Google Patents

Metal halide lamp Download PDF

Info

Publication number
WO2010084771A1
WO2010084771A1 PCT/JP2010/000386 JP2010000386W WO2010084771A1 WO 2010084771 A1 WO2010084771 A1 WO 2010084771A1 JP 2010000386 W JP2010000386 W JP 2010000386W WO 2010084771 A1 WO2010084771 A1 WO 2010084771A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal halide
halide lamp
thallium
photoinitiator
ultraviolet light
Prior art date
Application number
PCT/JP2010/000386
Other languages
French (fr)
Japanese (ja)
Inventor
藤岡純
田内亮彦
Original Assignee
ハリソン東芝ライティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリソン東芝ライティング株式会社 filed Critical ハリソン東芝ライティング株式会社
Priority to CN201080006323.1A priority Critical patent/CN102292793B/en
Priority to JP2010547446A priority patent/JPWO2010084771A1/en
Publication of WO2010084771A1 publication Critical patent/WO2010084771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/88Lamps with discharge constricted by high pressure with discharge additionally constricted by envelope

Definitions

  • the present invention relates to a metal halide lamp that is used to act on a photoinitiator having an absorption wavelength region in a specific section with high luminous efficiency, and more specifically, to increase the luminous efficiency of ultraviolet light of a specific wavelength to obtain a high light quantity.
  • the present invention relates to a metal halide lamp in which the curing rate of an ultraviolet curable resin composition containing a photoinitiator is increased.
  • JP-A-2007-525540 discloses a device that uses ultraviolet rays emitted from an ultraviolet lamp to contain a photoinitiator in a resin composition that can be cured in a specific absorption wavelength range, and accelerates the curing of the composition. Is known.
  • an iron-based metal halide lamp is used as a light source for irradiating a photoinitiator having an absorption wavelength region with a long wavelength ultraviolet ray of 350 to 380 nm.
  • the lamp has a broad wavelength region between 350 and 380 nm, but the amount of light of a single wavelength is not so high, and there is a problem that it takes time to cure.
  • An object of the present invention is to provide a metal halide lamp capable of increasing the light emission efficiency of ultraviolet light of a specific wavelength to obtain a high light quantity and increasing the curing speed of the ultraviolet curable resin composition containing a photoinitiator. It is in.
  • a metal halide lamp according to one aspect of the present invention is a metal halide lamp that irradiates ultraviolet rays to an ultraviolet curable resin composition containing a photoinitiator having an absorption wavelength range of at least 350 to 380 nm of long wavelength ultraviolet rays.
  • An airtight container made of an ultraviolet light transmissive material, a discharge electrode made of a pair of refractory metals and sealed in the airtight container, and an enclosure sealed in the airtight container containing argon gas, mercury and thallium halide. It is characterized by having.
  • the metal halide lamp of the present invention when the photoinitiator having an absorption wavelength region between 350 and 380 nm is irradiated, the luminous efficiency is higher than that when the conventional iron-based metal halide lamp is irradiated with ultraviolet rays. And the curing rate of the curable resin composition containing the photoinitiator can be improved.
  • FIG. 1 is a basic structural diagram for explaining an embodiment relating to a metal halide lamp of the present invention
  • FIG. 2 is a configuration diagram showing an enlarged part of FIG.
  • electrodes 121 and 122 made of, for example, a tungsten material are spaced apart from each other at both ends in the longitudinal direction of an airtight container 11 made of quartz glass having ultraviolet transparency and having a discharge space 10 formed therein. Are arranged.
  • the electrodes 121 and 122 are welded to one end of metal foils 141 and 142 made of, for example, molybdenum via inner leads 131 and 132, respectively.
  • One end of an outer lead (not shown) is welded to the other end of the metal foils 141 and 142.
  • the portions of the metal foils 141 and 142 in the hermetic container 11 are sealed by heating the corresponding hermetic container 11 from the inner leads 131 and 132 to one end of the outer lead.
  • the metal foils 141 and 142 may be any material that has a thermal expansion coefficient close to that of the quartz glass forming the hermetic container 11, but here, general molybdenum is used as a material suitable for this condition.
  • Lead wires 161 and 162 for power feeding are electrically connected to the outer leads whose one ends are connected to the metal foils 141 and 142, respectively, in the sockets 151 and 152 made of heat resistant and insulating materials, for example. ing.
  • the sockets 151 and 152 insulate and seal the lead wires 161 and 162.
  • a power circuit (not shown) is connected to the lead wires 161 and 162.
  • argon gas necessary for maintaining arc discharge is enclosed at 1.3 kPa as an enclosure, and iron, Hg (mercury), etc., which are metals for emitting ultraviolet light, are enclosed. Has been.
  • the metal halide lamp configured as described above can be irradiated with ultraviolet rays by iron, which is a light-emitting metal having spectral characteristics in the ultraviolet region.
  • This ultraviolet curable resin composition irradiated with ultraviolet rays contains a photoinitiator that initiates polymerization of the polymerizable resin of the resin composition when irradiated with the ultraviolet rays.
  • Photoinitiators include (a) 4.4′-bis (diethylamino) benzophenone, (b) 4-diethylaminoacetophenone, (c) 4-dimethylaminoacetophenone, (d) benzyl, (e) thioxanthone, (f) Benzophenone, (g) 4.4′-bis (dimethylamino) benzophenone, and the like are conceivable.
  • FIG. 3 is an explanatory diagram for explaining the respective absorption rates with respect to the emission wavelengths of the respective photoinitiators (a) to (g).
  • photoinitiators (a) to (g) among the photoinitiators (a) to (g), photoinitiators (a) and (g) having a high absorptance with respect to the emission wavelength in the wavelength region of at least 350 to 380 nm are used.
  • a lamp using iron as the light emitting metal in which a photo-initiator having an absorption wavelength region in at least 350 to 380 nm of ultraviolet light is accelerated, compared with the embodiment of the present invention in which benzene is encapsulated as a luminescent metal.
  • a photo-initiator having an absorption wavelength region in at least 350 to 380 nm of ultraviolet light is accelerated, compared with the embodiment of the present invention in which benzene is encapsulated as a luminescent metal.
  • Embodiment 1 In Embodiment 1, argon gas necessary for maintaining arc discharge is 1.3 kPa as an enclosed material in the hermetic vessel 11, mercury, and thallium iodide, which is a metal for emitting ultraviolet rays. A thallium-based metal halide lamp encapsulating a chemical was produced.
  • the photoinitiator contained in the curable resin composition is ultraviolet light from the thallium-based metal halide lamp and ultraviolet light from an iron-based metal halide lamp in which iron is enclosed as a metal for emitting ultraviolet light. -The effect on bis (diethylamino) benzophenone will be described.
  • FIG. 4 shows the spectral distribution and light amount of the thallium metal halide lamp and the iron metal halide lamp of the present invention.
  • the thallium-based metal halide lamp is excellent in the 350 to 380 nm long wavelength ultraviolet rays required for curing the photoinitiator contained in the resin composition.
  • FIG. 5 shows only the absorptance of the photoinitiator (a) 4.4′-bis (diethylamino) benzophenone in FIG. 3 (a) with respect to the emission wavelength.
  • the reaction between the lamp used and the photoinitiator is expressed by the following equation. As shown in FIG. 5, a indicates a wavelength with a low emission spectrum, and b indicates a wavelength with a high emission spectrum.
  • the thallium metal halide lamp is 112%. This indicates that when the curable resin composition containing the photoinitiator 4.4'-bis (diethylamino) benzophenone is irradiated with ultraviolet rays from a thallium-based metal halide lamp, the curing rate is improved by 12%.
  • the photoinitiator when a photoinitiator having an absorption wavelength region between 350 and 380 nm is irradiated with ultraviolet light from a thallium-based metal halide lamp, the photoinitiator is irradiated with conventional ultraviolet light from an iron-based metal halide lamp.
  • the luminous efficiency can be increased, and the curing rate of the curable resin composition can be improved.
  • ramp which enclosed the thallium iodide was demonstrated as an example, it is not limited to iodide, The same effect is acquired even if it encloses as another halide. That is, what is necessary is just to enclose as a compound which thallium evaporates easily in an airtight container during arc discharge.
  • FIG. 7 and FIG. 8 show the measurement results of the relationship between the spectral and illuminance with the axial direction of the metal halide lamp on the left and right in the lamps with a light emission length of 1000 mm and different amounts of thallium iodide. Show.
  • FIG. 7 shows the case where the amount of thallium iodide enclosed is 0.040 mg / cc
  • FIG. 8 shows the case where the amount of thallium iodide enclosed is 0.036 mg / cc.
  • the difference in spectral distribution between the left and right is due to the difference in the amount of thallium iodide on the left and right sides of the valve because of the saturation vapor pressure of thallium iodide. It is considered a thing.
  • FIG. 9 illustrates the ratio of curing times when the photoinitiator 4.4′-bis (diethylamino) benzophenone is irradiated with ultraviolet rays using the iron metal halide lamp and the thallium-based metal halide lamp according to the embodiment. It is explanatory drawing.
  • the curing time by the metal halide lamp according to the embodiment is 101% or more with respect to the curing time by the iron metal halide lamp.
  • the curing time by the metal halide lamp according to the embodiment is not more than the curing time by the iron metal halide lamp.
  • the amount of thallium iodide is 0.04 mg / cc or more, although the curing time is improved, as described above, there is a problem that light emission separation occurs and a place where the hardening time is early and a time late.
  • FIG. 10 shows the ratio of the curing times when the photoinitiator 4.4′-bis (dimethylamino) benzophenone is irradiated with ultraviolet rays using the iron metal halide lamp and the thallium metal halide lamp according to the embodiment. It is explanatory drawing explaining about.
  • the curing time by the metal halide lamp according to the embodiment is 101% or more with respect to the curing time by the iron metal halide lamp.
  • the curing time by the metal halide lamp according to the embodiment is not more than the curing time by the iron metal halide lamp.
  • the amount of thallium iodide is 0.04 mg / cc or more, although the curing time is improved, there is a problem that light emission separation occurs and a place where the curing time is early and a place where it is late is generated.
  • 4.4′-bis (diethylamino) benzophenone is In the case of a photoinitiator, it was found to be in the range of 0.01 to 0.036. It was also found that when 4.4'-bis (dimethylamino) benzophenone is a photoinitiator, it is within the range of 0.006 to 0.036.
  • the ultraviolet curable resin composition containing a photoinitiator having a high absorption wavelength region in a long wavelength ultraviolet ray of 350 to 380 nm it becomes possible to improve the curing rate of the ultraviolet curable resin composition containing a photoinitiator having a high absorption wavelength region in a long wavelength ultraviolet ray of 350 to 380 nm.

Landscapes

  • Discharge Lamp (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A metal halide lamp emitting ultraviolet light having a wavelength of 350 to 380 nm, which comprises: an air-tight container (11) comprising an ultraviolet light-permeable quartz glass and being provided with an air-tight discharge space (10); a pair of discharge electrodes (121, 122) that are positioned in the air-tight container and face each other along the axial direction; and an enclosed material comprising a rare gas in an amount sufficient for maintaining the arc-discharged state in the discharge space, mercury and an appropriate amount of thallium and a halogen capable of providing ultraviolet light emission.  By irradiating an ultraviolet light-curable resin composition containing a photopolymerization initiator with the ultraviolet light emitted from the aforesaid metal halide lamp, the curing speed of the resin composition can be increased.

Description

メタルハライドランプMetal halide lamp
 本発明は、特定区間に吸収波長域をもつ光開始剤に対し高い発光効率で作用させるために用いるメタルハライドランプに関し、さらに詳しくは、特定波長の紫外線の発光効率を上昇させて高い光量を得て、光開始剤が含有された紫外線硬化性樹脂組成物の硬化速度を速めるようにしたメタルハライドランプに関する。 The present invention relates to a metal halide lamp that is used to act on a photoinitiator having an absorption wavelength region in a specific section with high luminous efficiency, and more specifically, to increase the luminous efficiency of ultraviolet light of a specific wavelength to obtain a high light quantity. The present invention relates to a metal halide lamp in which the curing rate of an ultraviolet curable resin composition containing a photoinitiator is increased.
 紫外線ランプから照射される紫外線を用いて、特定区間の吸収波長域で硬化可能な樹脂組成物に光開始剤を含有させ、組成物の硬化を促進させる装置として特表2007-525540公報に開示されたものが知られている。 JP-A-2007-525540 discloses a device that uses ultraviolet rays emitted from an ultraviolet lamp to contain a photoinitiator in a resin composition that can be cured in a specific absorption wavelength range, and accelerates the curing of the composition. Is known.
 この公報に記載された技術では、350~380nmの長波長紫外線に吸収波長域をもつ光開始剤に紫外線を照射させる光源として、鉄系メタルハライドランプを用いている。同ランプは、350~380nmの間にブロードな波長領域を持つが、単波長の光量はさほど高くはなく、硬化に時間を要するという問題があった。 In the technique described in this publication, an iron-based metal halide lamp is used as a light source for irradiating a photoinitiator having an absorption wavelength region with a long wavelength ultraviolet ray of 350 to 380 nm. The lamp has a broad wavelength region between 350 and 380 nm, but the amount of light of a single wavelength is not so high, and there is a problem that it takes time to cure.
特表2007-525540公報Special Table 2007-525540
 本発明の目的は、特定波長の紫外線の発光効率を上昇させて高い光量を得て、光開始剤が含有された紫外線硬化性樹脂組成物の硬化速度を速めることのできるメタルハライドランプを提供することにある。 An object of the present invention is to provide a metal halide lamp capable of increasing the light emission efficiency of ultraviolet light of a specific wavelength to obtain a high light quantity and increasing the curing speed of the ultraviolet curable resin composition containing a photoinitiator. It is in.
 本発明の一つの態様に係るメタルハライドランプは、少なくとも350~380nmの長波長紫外線に吸収波長域を有する光開始剤を含有する紫外線硬化性樹脂組成物に対して紫外線を照射するメタルハライドランプであって、紫外線透過性の材料からなる気密容器と、一対の耐火性金属からなり気密容器内に封装された放電電極と、アルゴンガス、水銀およびハロゲン化タリウムを含み気密容器に封入された封入物とを具備したことを特徴とする。 A metal halide lamp according to one aspect of the present invention is a metal halide lamp that irradiates ultraviolet rays to an ultraviolet curable resin composition containing a photoinitiator having an absorption wavelength range of at least 350 to 380 nm of long wavelength ultraviolet rays. An airtight container made of an ultraviolet light transmissive material, a discharge electrode made of a pair of refractory metals and sealed in the airtight container, and an enclosure sealed in the airtight container containing argon gas, mercury and thallium halide. It is characterized by having.
 本発明のメタルハライドランプによれば、350~380nmの間に吸収波長域をもつ光開始剤に対して照射させた場合に、従来の鉄系メタルハライドランプを用いて紫外線を照射した場合よりも発光効率を高くすることができ、当該光開始剤を含有する硬化性の樹脂組成物の硬化速度を向上させることが可能となる。 According to the metal halide lamp of the present invention, when the photoinitiator having an absorption wavelength region between 350 and 380 nm is irradiated, the luminous efficiency is higher than that when the conventional iron-based metal halide lamp is irradiated with ultraviolet rays. And the curing rate of the curable resin composition containing the photoinitiator can be improved.
本発明のメタルハライドランプに関する一実施形態について説明するための基本構造図である。It is a basic structure figure for demonstrating one Embodiment regarding the metal halide lamp of this invention. 図1の一部を拡大して示した構成図である。It is the block diagram which expanded and showed a part of FIG. 異なる光開始剤の発光波長に対するそれぞれの吸収率について説明するための説明図である。It is explanatory drawing for demonstrating each absorption factor with respect to the light emission wavelength of a different photoinitiator. この発明の実施例1と従来の分光分布と光量について説明するための説明図である。It is explanatory drawing for demonstrating Example 1 of this invention and the conventional spectral distribution and light quantity. 図3の(a)を拡大して示した説明図である。It is explanatory drawing which expanded and showed (a) of FIG. この発明の実施例1と従来による光開始剤の効果について説明するための説明図である。It is explanatory drawing for demonstrating the effect of Example 1 of this invention and the conventional photoinitiator. ヨウ化タリウム封入量が0.040mg/ccの場合のタリウム系メタルハライドランプ軸方向を左右とする分光と照度の関係について説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the spectrum and illuminance which make the thallium-type metal halide lamp axial direction right and left in the case of the thallium iodide enclosure amount being 0.040 mg / cc. ヨウ化タリウム封入量が0.036mg/ccの場合のタリウム系メタルハライドランプ軸方向を左右とする分光と照度の関係について説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the spectrum and illumination intensity which make the thallium-type metal halide lamp axial direction right and left in the case of the thallium iodide enclosure amount being 0.036 mg / cc. ヨウ化タリウム封入量と光開始剤4.4’-ビス(ジエチルアミノ)ベンゾフェノンの硬化比率の良否について説明するための説明図である。It is explanatory drawing for demonstrating the quality of the cure ratio of the thallium iodide enclosure amount and photoinitiator 4.4'-bis (diethylamino) benzophenone. ヨウ化タリウム封入量と光開始剤4.4’-ビス(ジメチルアミノ)ベンゾフェノンの硬化比率の良否について説明するための説明図である。It is explanatory drawing for demonstrating the quality of the hardening ratio of the thallium iodide enclosure amount and the photoinitiator 4.4'-bis (dimethylamino) benzophenone.
 以下、この発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
 図1は、本発明のメタルハライドランプに関する一実施形態について説明するための基本構造図、図2は、図1の一部を拡大して示した構成図である。 FIG. 1 is a basic structural diagram for explaining an embodiment relating to a metal halide lamp of the present invention, and FIG. 2 is a configuration diagram showing an enlarged part of FIG.
 図1、図2において、紫外線透過性を有する石英ガラス製で放電空間10が形成された気密容器11の長手方向両端の内部には、例えばタングステン材で形成された電極121,122が間隔をおいて配置されている。電極121,122は、それぞれインナーリード131,132を介して、例えばモリブデン製の金属箔141,142の一端に溶接されている。金属箔141,142の他端には、図示しないアウターリードの一端が溶接されている。気密容器11における金属箔141,142の部分は、インナーリード131,132からアウターリードの一端までに対応する気密容器11を加熱することにより封止される。 1 and 2, electrodes 121 and 122 made of, for example, a tungsten material are spaced apart from each other at both ends in the longitudinal direction of an airtight container 11 made of quartz glass having ultraviolet transparency and having a discharge space 10 formed therein. Are arranged. The electrodes 121 and 122 are welded to one end of metal foils 141 and 142 made of, for example, molybdenum via inner leads 131 and 132, respectively. One end of an outer lead (not shown) is welded to the other end of the metal foils 141 and 142. The portions of the metal foils 141 and 142 in the hermetic container 11 are sealed by heating the corresponding hermetic container 11 from the inner leads 131 and 132 to one end of the outer lead.
 なお、金属箔141,142は、気密容器11を形成する石英ガラスの熱膨張率に近い材料であれば何でもよいが、この条件に適したものとして、ここでは一般的なモリブデンを使用する。 The metal foils 141 and 142 may be any material that has a thermal expansion coefficient close to that of the quartz glass forming the hermetic container 11, but here, general molybdenum is used as a material suitable for this condition.
 金属箔141,142に一端がそれぞれ接続されたアウターリードには、耐熱性で絶縁性を有する例えばセラミック製のソケット151,152の内部において、給電用のリード線161,162が電気的に接続されている。ソケット151,152は、リード線161,162を絶縁封止する。リード線161,162には、図示しない電源回路が接続されている。 Lead wires 161 and 162 for power feeding are electrically connected to the outer leads whose one ends are connected to the metal foils 141 and 142, respectively, in the sockets 151 and 152 made of heat resistant and insulating materials, for example. ing. The sockets 151 and 152 insulate and seal the lead wires 161 and 162. A power circuit (not shown) is connected to the lead wires 161 and 162.
 気密容器11内には、封入物として、アーク放電を維持させるために必要なアルゴンガスが1.3kPaで封入されるとともに、紫外線を発光させるための金属である鉄、Hg(水銀)などが封入されている。 In the airtight container 11, argon gas necessary for maintaining arc discharge is enclosed at 1.3 kPa as an enclosure, and iron, Hg (mercury), etc., which are metals for emitting ultraviolet light, are enclosed. Has been.
 このように構成されたメタルハライドランプは、紫外線域に分光特性を有する発光金属である鉄による紫外線の照射が可能となる。この紫外線が照射される紫外線硬化性の樹脂組成物は、当該紫外線が照射されることで当該樹脂組成物の重合性樹脂の重合を開始させる光開始剤を含有している。 The metal halide lamp configured as described above can be irradiated with ultraviolet rays by iron, which is a light-emitting metal having spectral characteristics in the ultraviolet region. This ultraviolet curable resin composition irradiated with ultraviolet rays contains a photoinitiator that initiates polymerization of the polymerizable resin of the resin composition when irradiated with the ultraviolet rays.
 光開始剤としては、(a)4.4’-ビス(ジエチルアミノ)ベンゾフェノン、(b)4-ジエチルアミノアセトフェノン、(c)4-ジメチルアミノアセトフェノン、(d)ベンジル、(e)チオキサンソン、(f)ベンゾフェノン、(g)4.4’-ビス(ジメチルアミノ)ベンゾフェノン等が考えられる。 Photoinitiators include (a) 4.4′-bis (diethylamino) benzophenone, (b) 4-diethylaminoacetophenone, (c) 4-dimethylaminoacetophenone, (d) benzyl, (e) thioxanthone, (f) Benzophenone, (g) 4.4′-bis (dimethylamino) benzophenone, and the like are conceivable.
 図3は、(a)~(g)それぞれの光開始剤の発光波長に対するそれぞれの吸収率について説明するための説明図である。ここでは、(a)~(g)の光開始剤のうち、少なくとも350~380nmの波長域において、発光波長に対する吸収率が高い光開始剤(a),(g)を用いる。 FIG. 3 is an explanatory diagram for explaining the respective absorption rates with respect to the emission wavelengths of the respective photoinitiators (a) to (g). Here, among the photoinitiators (a) to (g), photoinitiators (a) and (g) having a high absorptance with respect to the emission wavelength in the wavelength region of at least 350 to 380 nm are used.
 以下、気密容器11の外径φが27.5mm、肉厚mが1.5mm、発光長Lが発光長1000mmの一重管で構成されたランプにおいて、発光金属に鉄を用いたランプと、タリウムを発光金属として封入した本発明の実施例を比較して、少なくとも350~380nmの長波長紫外線に吸収波長域を有する光開始剤の重合の促進速度を速めるための紫外線を生成する本発明の実施例について説明する。 Hereinafter, in a lamp composed of a single tube having an outer diameter φ of 27.5 mm, a wall thickness m of 1.5 mm, and a light emission length L of 1000 mm, a lamp using iron as the light emitting metal, and thallium Of the present invention in which a photo-initiator having an absorption wavelength region in at least 350 to 380 nm of ultraviolet light is accelerated, compared with the embodiment of the present invention in which benzene is encapsulated as a luminescent metal. An example will be described.
 なお、以下の各実施例での光開始剤としては、(a)の4.4’-ビス(ジエチルアミノ)ベンゾフェノンに対して鉄系メタルハライドランプの紫外線を照射した従来の場合との比較を行っている。 In addition, as a photoinitiator in each of the following examples, a comparison was made with the conventional case where 4.4′-bis (diethylamino) benzophenone of (a) was irradiated with ultraviolet rays of an iron-based metal halide lamp. Yes.
 (実施例1)実施例1では、気密容器11内に、封入物として、アーク放電を維持させるために必要なアルゴンガスが1.3kPa、水銀、紫外線を発光させるための金属であるタリウムのヨウ化物が封入されたタリウム系メタルハライドランプを作製した。 (Embodiment 1) In Embodiment 1, argon gas necessary for maintaining arc discharge is 1.3 kPa as an enclosed material in the hermetic vessel 11, mercury, and thallium iodide, which is a metal for emitting ultraviolet rays. A thallium-based metal halide lamp encapsulating a chemical was produced.
 このタリウム系メタルハライドランプによる紫外線と、紫外線を発光させるための金属として鉄が封入された鉄系メタルハライドランプによる紫外線とが、硬化性の樹脂組成物に含有された光開始剤である4.4’-ビス(ジエチルアミノ)ベンゾフェノンに対して及ぼす効果について説明する。 The photoinitiator contained in the curable resin composition is ultraviolet light from the thallium-based metal halide lamp and ultraviolet light from an iron-based metal halide lamp in which iron is enclosed as a metal for emitting ultraviolet light. -The effect on bis (diethylamino) benzophenone will be described.
 ここで、タリウム系メタルハライドランプと鉄系メタルハライドランプは、それぞれ、入力電力12000W、ランプ電圧1100V、ランプ電流10.9Aの同仕様で紫外線を照射させる場合について考える。図4は、本発明のタリウム系メタルハライドランプと鉄系メタルハライドランプのそれぞれの分光分布と光量について示している。図4から明らかなように、樹脂組成物に含有された光開始剤を硬化させるために必要とする350~380nmの長波長紫外線は、タリウム系メタルハライドランプが優れている。 Here, let us consider a case in which the thallium metal halide lamp and the iron metal halide lamp are irradiated with ultraviolet rays with the same specifications of an input power of 12000 W, a lamp voltage of 1100 V, and a lamp current of 10.9 A, respectively. FIG. 4 shows the spectral distribution and light amount of the thallium metal halide lamp and the iron metal halide lamp of the present invention. As is clear from FIG. 4, the thallium-based metal halide lamp is excellent in the 350 to 380 nm long wavelength ultraviolet rays required for curing the photoinitiator contained in the resin composition.
 図5は、図3(a)の光開始剤(a)4.4’-ビス(ジエチルアミノ)ベンゾフェノンの発光波長に対する吸収率のみを拡大して示している。 FIG. 5 shows only the absorptance of the photoinitiator (a) 4.4′-bis (diethylamino) benzophenone in FIG. 3 (a) with respect to the emission wavelength.
 メタルハライドランプの発光スペクトル曲線をα(λ)とし、光開始剤の吸収スペクトル曲線をφ(λ)とした場合に、使用ランプと光開始剤との反応は、次式で表される。なお、図5に示すように、aは発光スペクトルの低い波長、bは発光スペクトルの高い波長を示している。 When the emission spectrum curve of the metal halide lamp is α (λ) and the absorption spectrum curve of the photoinitiator is φ (λ), the reaction between the lamp used and the photoinitiator is expressed by the following equation. As shown in FIG. 5, a indicates a wavelength with a low emission spectrum, and b indicates a wavelength with a high emission spectrum.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、発光スペクトルの波長aを350nm、波長bを380nmとした場合における、タリウム系メタルハライドランプと鉄系メタルハライドランプとの光開始剤による開始効果比率を比較したところ、図6に示す結果が得られた。 Here, when the initiation effect ratios of the thallium-based metal halide lamp and the iron-based metal halide lamp with the photoinitiator were compared when the wavelength a of the emission spectrum was 350 nm and the wavelength b was 380 nm, the results shown in FIG. 6 were obtained. It was.
 すなわち、鉄系メタルハライドランプを100%とした場合、タリウム系メタルハライドランプは112%となった。これは、光開始剤4.4’-ビス(ジエチルアミノ)ベンゾフェノンを含有する硬化性樹脂組成物にタリウム系メタルハライドランプの紫外線を照射した場合、硬化速度が12%向上したことを示している。 That is, when the iron metal halide lamp is 100%, the thallium metal halide lamp is 112%. This indicates that when the curable resin composition containing the photoinitiator 4.4'-bis (diethylamino) benzophenone is irradiated with ultraviolet rays from a thallium-based metal halide lamp, the curing rate is improved by 12%.
 この実施形態では、タリウム系メタルハライドランプの紫外線を350~380nmの間に吸収波長域をもつ光開始剤に照射させると、鉄系メタルハライドランプの従来紫外線を当該光開始剤に対して照射した場合よりも発光効率を高くすることができ、硬化性の樹脂組成物の硬化速度を向上させることが可能となった。実施例1では、ヨウ化タリウムを封入したランプを例として説明したが、ヨウ化物に限定されず、他のハロゲン化物として封入しても同様の効果が得られる。つまり、アーク放電中に気密容器内でタリウムが蒸発しやすい化合物として封入してあればよい。 In this embodiment, when a photoinitiator having an absorption wavelength region between 350 and 380 nm is irradiated with ultraviolet light from a thallium-based metal halide lamp, the photoinitiator is irradiated with conventional ultraviolet light from an iron-based metal halide lamp. In addition, the luminous efficiency can be increased, and the curing rate of the curable resin composition can be improved. In Example 1, although the lamp | ramp which enclosed the thallium iodide was demonstrated as an example, it is not limited to iodide, The same effect is acquired even if it encloses as another halide. That is, what is necessary is just to enclose as a compound which thallium evaporates easily in an airtight container during arc discharge.
 (実施例2)次に、図7、図8を参照し、この発明の実施例2について説明する。図7、図8は、発光長を1000mmとしたときのランプにおいて、それぞれヨウ化タリウム封入量を異ならせた場合における、メタルハライドランプの軸方向を左右とする分光と照度の関係について測定した結果を示している。図7は、ヨウ化タリウム封入量が0.040mg/ccの場合を、図8は、ヨウ化タリウム封入量が0.036mg/ccの場合をそれぞれ示している。 (Embodiment 2) Next, Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 7 and FIG. 8 show the measurement results of the relationship between the spectral and illuminance with the axial direction of the metal halide lamp on the left and right in the lamps with a light emission length of 1000 mm and different amounts of thallium iodide. Show. FIG. 7 shows the case where the amount of thallium iodide enclosed is 0.040 mg / cc, and FIG. 8 shows the case where the amount of thallium iodide enclosed is 0.036 mg / cc.
 図7のヨウ化タリウム封入量が0.040mg/ccのときに紫外線を照射させた場合、軸方向に分離発光が発生して左右の分光分布が異なってしまい、被照射物に悪影響を及ぼす可能性がある。この分離発光による問題は、発光長が200mm以上のランプにおいて特に顕著である。 When ultraviolet light is irradiated when the amount of thallium iodide enclosed in FIG. 7 is 0.040 mg / cc, separate light emission occurs in the axial direction and the left and right spectral distributions are different, which may adversely affect the irradiated object. There is sex. The problem due to the separated light emission is particularly remarkable in a lamp having a light emission length of 200 mm or more.
 左右の分光分布の違いは、ヨウ化タリウムの飽和蒸気圧の関係でヨウ化タリウムがバルブの左右で異なってくることから、この左右のヨウ化タリウム量の違いが分光分布の違いとして現れているものと考えられる。 The difference in spectral distribution between the left and right is due to the difference in the amount of thallium iodide on the left and right sides of the valve because of the saturation vapor pressure of thallium iodide. It is considered a thing.
 図8のヨウ化タリウム封入量が0.036mg/ccのときに紫外線を照射させた場合、軸方向に分離発光の発生が見られず、左右の分光が同じような分布となり、被照射物に対して高い均斉度が得られた。従って、左右に高い均斉度が得られることで硬化性の樹脂組成物の硬化速度を向上させることが可能となる。 When ultraviolet light is irradiated when the amount of thallium iodide enclosed in FIG. 8 is 0.036 mg / cc, the generation of separated light emission is not seen in the axial direction, and the left and right spectra have the same distribution, and the object is irradiated. On the other hand, high uniformity was obtained. Therefore, it is possible to improve the curing rate of the curable resin composition by obtaining a high degree of uniformity from side to side.
 図9は、鉄メタルハライドランプと実施形態に係るタリウム系メタルハライドランプを用いて、光開始剤4.4’-ビス(ジエチルアミノ)ベンゾフェノンに紫外線を照射させた場合のそれぞれの硬化時間の比について説明する説明図である。 FIG. 9 illustrates the ratio of curing times when the photoinitiator 4.4′-bis (diethylamino) benzophenone is irradiated with ultraviolet rays using the iron metal halide lamp and the thallium-based metal halide lamp according to the embodiment. It is explanatory drawing.
 すなわち、ヨウ化タリウム封入量が0.01mg/cc以上の場合、実施形態に係るメタルハライドランプによる硬化時間は、鉄メタルハライドランプによる硬化時間に対して101%以上である。ヨウ化タリウム量が0.006mg/cc以下の場合、実施形態に係るメタルハライドランプによる硬化時間は、鉄メタルハライドランプによる硬化時間以下である。ただし、ヨウ化タリウム量0.04mg/cc以上の場合は、硬化時間が向上するものの、前述したように発光分離が生じ硬化時間の早いところと遅いところが生じてしまう問題がある。 That is, when the amount of thallium iodide enclosed is 0.01 mg / cc or more, the curing time by the metal halide lamp according to the embodiment is 101% or more with respect to the curing time by the iron metal halide lamp. When the amount of thallium iodide is 0.006 mg / cc or less, the curing time by the metal halide lamp according to the embodiment is not more than the curing time by the iron metal halide lamp. However, when the amount of thallium iodide is 0.04 mg / cc or more, although the curing time is improved, as described above, there is a problem that light emission separation occurs and a place where the hardening time is early and a time late.
 従って、光開始剤4.4’-ビス(ジエチルアミノ)ベンゾフェノンに対して紫外線を照射するタリウム系メタルハライドランプのヨウ化タリウムの封入量が0.01~0.036mg/ccの場合に、鉄メタルハライドランプを用いた場合と比べて有利な結果が得られることがわかった。 Therefore, when the amount of thallium iodide contained in the thallium-based metal halide lamp that irradiates the photoinitiator 4.4'-bis (diethylamino) benzophenone with ultraviolet rays is 0.01 to 0.036 mg / cc, the iron metal halide lamp It was found that advantageous results were obtained compared with the case of using.
 また、図10は、鉄メタルハライドランプと実施形態に係るタリウム系メタルハライドランプを用いて、光開始剤4.4’-ビス(ジメチルアミノ)ベンゾフェノンに紫外線を照射させた場合のそれぞれの硬化時間の比について説明する説明図である。 FIG. 10 shows the ratio of the curing times when the photoinitiator 4.4′-bis (dimethylamino) benzophenone is irradiated with ultraviolet rays using the iron metal halide lamp and the thallium metal halide lamp according to the embodiment. It is explanatory drawing explaining about.
 この場合、ヨウ化タリウム封入量が0.006mg/cc以上の場合、実施形態に係るメタルハライドランプによる硬化時間は、鉄メタルハライドランプによる硬化時間に対して101%以上である。ヨウ化タリウム量が0.002mg/cc以下の場合、実施形態に係るメタルハライドランプによる硬化時間は、鉄メタルハライドランプによる硬化時間以下である。ただし、ヨウ化タリウム量0.04mg/cc以上の場合は、硬化時間が向上するものの、発光分離が生じ硬化時間の早いところと遅いところが生じてしまう問題がある。 In this case, when the amount of thallium iodide enclosed is 0.006 mg / cc or more, the curing time by the metal halide lamp according to the embodiment is 101% or more with respect to the curing time by the iron metal halide lamp. When the amount of thallium iodide is 0.002 mg / cc or less, the curing time by the metal halide lamp according to the embodiment is not more than the curing time by the iron metal halide lamp. However, when the amount of thallium iodide is 0.04 mg / cc or more, although the curing time is improved, there is a problem that light emission separation occurs and a place where the curing time is early and a place where it is late is generated.
 従って、光開始剤4.4’-ビス(ジメチルアミノ)ベンゾフェノンに対して紫外線を照射させるタリウム系メタルハライドランプのヨウ化タリウム封入量が0.006~0.036mg/ccの場合に、鉄メタルハライドランプを用いた場合と比べて有利な結果が得られることがわかった。 Therefore, when the amount of thallium iodide contained in the thallium-based metal halide lamp that irradiates the photoinitiator 4.4′-bis (dimethylamino) benzophenone with ultraviolet rays is 0.006 to 0.036 mg / cc, the iron metal halide lamp It was found that advantageous results were obtained compared with the case of using.
 このようなことから、ヨウ化タリウム封入量は多すぎても少なすぎても350~380nmの長波長紫外線に吸収率の高い硬化性樹脂組成物の硬化速度を向上させることができないことが分かる。 From these facts, it can be seen that the curing rate of the curable resin composition having a high absorptance with respect to long wavelength ultraviolet rays of 350 to 380 nm cannot be improved even if the amount of thallium iodide enclosed is too much or too little.
 従って、350~380nmに高い吸収率の硬化性樹脂組成物の硬化速度を向上させる条件となるヨウ化タリウムの封入量X(mg/cc)としては、4.4’-ビス(ジエチルアミノ)ベンゾフェノンが光開始剤の場合には0.01~0.036の範囲内であることが分かった。また、4.4’-ビス(ジメチルアミノ)ベンゾフェノンが光開始剤の場合には0.006~0.036の範囲内であることが分かった。 Accordingly, as the amount X (mg / cc) of thallium iodide which is a condition for improving the curing rate of a curable resin composition having a high absorption rate at 350 to 380 nm, 4.4′-bis (diethylamino) benzophenone is In the case of a photoinitiator, it was found to be in the range of 0.01 to 0.036. It was also found that when 4.4'-bis (dimethylamino) benzophenone is a photoinitiator, it is within the range of 0.006 to 0.036.
 この実施形態によれば、350~380nmの長波長の紫外線に高い吸収波長域を有する光開始剤が含有された紫外線硬化性樹脂組成物の硬化速度を向上させることが可能となる。 According to this embodiment, it becomes possible to improve the curing rate of the ultraviolet curable resin composition containing a photoinitiator having a high absorption wavelength region in a long wavelength ultraviolet ray of 350 to 380 nm.

Claims (5)

  1.  少なくとも350~380nmの長波長紫外線に吸収波長域を有する光開始剤を含有する紫外線硬化性樹脂組成物に対して該紫外線を照射するメタルハライドランプであって、
     紫外線透過性の材料からなる気密容器と、
     一対の耐火性金属からなり前記気密容器内に封装された放電電極と、
     アルゴンガス、水銀およびハロゲン化タリウムを含み前記気密容器に封入された封入物と
    を具備したことを特徴とするメタルハライドランプ。
    A metal halide lamp for irradiating an ultraviolet curable resin composition containing a photoinitiator having an absorption wavelength region in a long wavelength ultraviolet ray of at least 350 to 380 nm,
    An airtight container made of an ultraviolet light permeable material;
    A discharge electrode made of a pair of refractory metals and sealed in the hermetic container;
    A metal halide lamp comprising: an enclosure containing argon gas, mercury, and thallium halide, and enclosed in the hermetic container.
  2.  前記光開始剤が、4.4’-ビス(ジエチルアミノ)ベンゾフェノンを含むことを特徴とする請求項1記載のメタルハライドランプ。 The metal halide lamp according to claim 1, wherein the photoinitiator contains 4.4'-bis (diethylamino) benzophenone.
  3.  前記封入物に含まれるハロゲン化タリウムがヨウ化タリウムであり、
     ヨウ化タリウム封入量X(mg/cc)が、0.01≦X≦0.036であることを特徴とする請求項2記載のメタルハライドランプ。
    The thallium halide contained in the enclosure is thallium iodide,
    The metal halide lamp according to claim 2, wherein the amount of thallium iodide enclosed X (mg / cc) is 0.01≤X≤0.036.
  4.  前記光開始剤は、4.4’-ビス(ジメチルアミノ)ベンゾフェノンであることを特徴とする請求項1記載のメタルハライドランプ。 2. The metal halide lamp according to claim 1, wherein the photoinitiator is 4.4'-bis (dimethylamino) benzophenone.
  5.  前記封入物に含まれるハロゲン化タリウムがヨウ化タリウムであり、
     ヨウ化タリウム封入量X(mg/cc)が、0.006≦X≦0.036であることを特徴とする請求項4記載のメタルハライドランプ。
    The thallium halide contained in the enclosure is thallium iodide,
    5. The metal halide lamp according to claim 4, wherein the amount of thallium iodide enclosed X (mg / cc) is 0.006 ≦ X ≦ 0.036.
PCT/JP2010/000386 2009-01-26 2010-01-25 Metal halide lamp WO2010084771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080006323.1A CN102292793B (en) 2009-01-26 2010-01-25 Metal halide lamp
JP2010547446A JPWO2010084771A1 (en) 2009-01-26 2010-01-25 Metal halide lamp

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-013938 2009-01-26
JP2009013938 2009-01-26
JP2009269839 2009-11-27
JP2009-269839 2009-11-27
JP2009-292830 2009-12-24
JP2009292830 2009-12-24

Publications (1)

Publication Number Publication Date
WO2010084771A1 true WO2010084771A1 (en) 2010-07-29

Family

ID=42355826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000386 WO2010084771A1 (en) 2009-01-26 2010-01-25 Metal halide lamp

Country Status (5)

Country Link
JP (1) JPWO2010084771A1 (en)
KR (1) KR20110119630A (en)
CN (1) CN102292793B (en)
TW (1) TW201039372A (en)
WO (1) WO2010084771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026845A (en) * 2012-07-27 2014-02-06 Iwasaki Electric Co Ltd Long arc metal halide lamp
JP2020107522A (en) * 2018-12-27 2020-07-09 東芝ライテック株式会社 Metal halide lamp and ultraviolet irradiation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216887A (en) * 1975-07-30 1977-02-08 Iwasaki Electric Co Ltd Metal vapor discharge lamp
JPH03250550A (en) * 1990-02-27 1991-11-08 Ushio Inc Metal vapor electric discharge lamp
JPH06275234A (en) * 1993-03-17 1994-09-30 Ushio Inc Metal vapor discharge lamp
JPH10246965A (en) * 1997-03-04 1998-09-14 Orc Mfg Co Ltd Light irradiation processor and its method
JP2001179900A (en) * 1999-12-28 2001-07-03 Tootsuya:Kk Weather resistant material, weather resistant laminated material and its manufacturing method
JP2008140758A (en) * 2006-11-02 2008-06-19 Harison Toshiba Lighting Corp Ultraviolet ray discharge lamp

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250549A (en) * 1990-02-27 1991-11-08 Ushio Inc Metal vapor electric discharge lamp
WO2006088128A1 (en) * 2005-02-17 2006-08-24 Gs Yuasa Corporation Ceramic metal halide lamp having rated lamp power of 450w or above

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216887A (en) * 1975-07-30 1977-02-08 Iwasaki Electric Co Ltd Metal vapor discharge lamp
JPH03250550A (en) * 1990-02-27 1991-11-08 Ushio Inc Metal vapor electric discharge lamp
JPH06275234A (en) * 1993-03-17 1994-09-30 Ushio Inc Metal vapor discharge lamp
JPH10246965A (en) * 1997-03-04 1998-09-14 Orc Mfg Co Ltd Light irradiation processor and its method
JP2001179900A (en) * 1999-12-28 2001-07-03 Tootsuya:Kk Weather resistant material, weather resistant laminated material and its manufacturing method
JP2008140758A (en) * 2006-11-02 2008-06-19 Harison Toshiba Lighting Corp Ultraviolet ray discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026845A (en) * 2012-07-27 2014-02-06 Iwasaki Electric Co Ltd Long arc metal halide lamp
JP2020107522A (en) * 2018-12-27 2020-07-09 東芝ライテック株式会社 Metal halide lamp and ultraviolet irradiation device

Also Published As

Publication number Publication date
CN102292793B (en) 2014-12-31
KR20110119630A (en) 2011-11-02
CN102292793A (en) 2011-12-21
JPWO2010084771A1 (en) 2012-07-19
TW201039372A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
US20090230867A1 (en) Mercury-free metal halide high-pressure discharge lamp
EP0724768B1 (en) Tellurium lamp
WO2010084771A1 (en) Metal halide lamp
TW201537616A (en) Thermic cathode ultraviolet lamp
TWI660397B (en) Ultraviolet lamp
JP2011181265A (en) Metal halide lamp
TWI474370B (en) Ultraviolet radiation method and metal halogen lamp
JP2006210249A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, and illumination apparatus
US7733027B2 (en) High-pressure mercury vapor lamp incorporating a predetermined germanium to oxygen molar ratio within its discharge fill
WO2017203282A1 (en) Mercury-free uv gas discharge lamp
JP2011065760A (en) Metal halide lamp
JP5573791B2 (en) Metal halide lamp
JP2011034803A (en) Mercury lamp
JPH1069883A (en) Metallic vapor discharge lamp
JP2008140758A (en) Ultraviolet ray discharge lamp
JP5304425B2 (en) UV radiation discharge lamp
JPH03250550A (en) Metal vapor electric discharge lamp
JP2010055782A (en) Ultraviolet-ray discharge lamp
JP6883258B2 (en) Long arc type discharge lamp
CN101124651A (en) Low pressure discharge lamp comprising a metal halide
JP2007507843A (en) Low pressure gas discharge lamp with a filling gas containing gallium
JP2016192355A (en) Fluorescent lamp
JP4924868B2 (en) Discharge tube and discharge tube device
JP2006093007A (en) Mercury free metal halide lamp
JP2008282748A (en) Metal halide lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006323.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547446

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117015380

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733378

Country of ref document: EP

Kind code of ref document: A1