WO2010084619A1 - Liquid crystal display device, driving circuit, and driving method - Google Patents

Liquid crystal display device, driving circuit, and driving method Download PDF

Info

Publication number
WO2010084619A1
WO2010084619A1 PCT/JP2009/051206 JP2009051206W WO2010084619A1 WO 2010084619 A1 WO2010084619 A1 WO 2010084619A1 JP 2009051206 W JP2009051206 W JP 2009051206W WO 2010084619 A1 WO2010084619 A1 WO 2010084619A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
correction
color
liquid crystal
crystal display
Prior art date
Application number
PCT/JP2009/051206
Other languages
French (fr)
Japanese (ja)
Inventor
中西 秀一
加藤 厚志
飯坂 英仁
宏行 保坂
拓 北川
Original Assignee
Necディスプレイソリューションズ株式会社
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社, セイコーエプソン株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2009/051206 priority Critical patent/WO2010084619A1/en
Priority to JP2010547372A priority patent/JP5413987B2/en
Publication of WO2010084619A1 publication Critical patent/WO2010084619A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method.
  • color display systems for liquid crystal display devices such as projectors or direct-view displays.
  • Patent Document 1 describes a single-plate color liquid crystal display device.
  • the single-plate color liquid crystal display device includes a pixel having an R color (red) color filter, a pixel having a G color (green) color filter, and a pixel having a B color (blue) color filter. Color display using these pixels.
  • Patent Document 2 describes a liquid crystal display device adopting an FSC (Field Sequential Color) system as a color display system.
  • FSC Field Sequential Color
  • the FSC type liquid crystal display device In the FSC type liquid crystal display device, light of different colors is sequentially irradiated onto one monochrome liquid crystal display element, and the display image of the liquid crystal display element is synchronized with the switching of light (color). The image can be switched according to the color.
  • one frame period constituting one screen is divided into a plurality of color field periods according to the color of the irradiation light.
  • an image corresponding to the color of the color field is formed on one monochrome liquid crystal display element, and light having the color of the color field is irradiated to the liquid crystal display element.
  • the light irradiated to the liquid crystal display element is modulated and output by an image formed on the liquid crystal display element.
  • a p-Si (polycrystalline silicon) TFT (Thin Film Transistor) circuit is often formed as an operation control element.
  • the TFT circuit is used to apply image data in the video signal to the liquid crystal in the pixel.
  • the plurality of pixels in the liquid crystal display element are arranged in a matrix and scanned as follows.
  • the plurality of pixels are selected in order for each row.
  • the image data is sequentially transferred to a plurality of selected pixels in the same row. For this reason, a difference occurs in the transfer timing (supply timing) of the image data between the pixels in the liquid crystal display element.
  • FIG. 1 is an explanatory diagram for explaining a frame, a color field, and a pixel scanning timing in the FSC system.
  • one frame has three colors including a field R (Field-R: red field), a field G (Field-G: green field), and a field B (Field-B: blue field). It is divided into fields.
  • All the pixels in the liquid crystal display element are scanned in order from the top row to the bottom row in each color field.
  • liquid crystal display devices have the following characteristics.
  • the liquid crystal display element has a slow optical response (light transmittance response).
  • the p-Si TFT circuit formed on the liquid crystal display element has a low operating frequency, it takes time to transfer the video signal.
  • the image data is transferred to the pixel by the TFT circuit, the image data is immediately applied to the liquid crystal in the pixel.
  • All the pixels of the liquid crystal display element are simultaneously illuminated with the same color light.
  • Response characteristics of light transmittance are different between a change from black to white and a change from white to black.
  • the response characteristic of the light transmittance varies depending on the wavelength.
  • FIG. 2 is an explanatory diagram for explaining a malfunction phenomenon in the FSC method due to the features [1] to [4].
  • one frame is divided into three color fields including field R (Field-R), field G (Field-G), and field B (Field-B).
  • a video signal corresponding to R color (hereinafter referred to as “R color video signal”) is transferred to a liquid crystal display element (LCD).
  • R color video signal a video signal corresponding to R color
  • G color video signal a video signal corresponding to G color
  • B color video signal a video signal corresponding to B color
  • the R color video signal includes a plurality of R color image data that can correspond one-to-one to the pixels of the liquid crystal display element.
  • Each of the R color image data (hereinafter referred to as “R color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
  • the G color video signal includes a plurality of image data for G color that can correspond one-to-one to the pixels of the liquid crystal display element.
  • Each of the G color image data (hereinafter referred to as “G color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
  • the B color video signal includes a plurality of B color image data that can correspond one-to-one to the pixels of the liquid crystal display element.
  • Each of the B-color image data (hereinafter referred to as “B-color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
  • Graph A is a graph showing a change in light transmittance at a pixel to which image data is first transferred among a plurality of pixels in each color field.
  • Graph B is a graph showing a change in light transmittance at a pixel to which image data is transferred last among a plurality of pixels in each color field.
  • R-color LED light source lighting control, G-color LED light source lighting control, and B-color LED light source lighting control emit light of R color and LED (Light Emitting Diode) and G color light.
  • LCD light transmittance indicates the light transmittance of the pixels in the liquid crystal display element.
  • graph A and graph B have the same waveform but are out of phase. This phase shift depends on the position of the pixel in the liquid crystal display element, that is, the transfer timing of image data to each pixel.
  • the light transmittance of each pixel may differ at a predetermined timing such as when the light source is turned on due to a shift in the transfer timing of image data to each pixel and the features [1] to [3]. .
  • the amount of light passing through each pixel may be different (the area of the hatched part a and the area of the hatched part b are different). That is, the brightness differs for each pixel.
  • the color tone and gradation reproducibility differ depending on the position of the liquid crystal display element in the screen.
  • the liquid crystal display device is a so-called hold type that works to hold the display until the image data is updated.
  • the hold type is said to have poor video quality compared to the impulse type, which has a short time to illuminate the pixels with respect to the cycle of updating the image data.
  • As an improvement measure it is known to shorten the update cycle of image data.
  • Patent Documents 3 and 4 describe an FSC liquid crystal display capable of improving the problem of gradation reproducibility caused by the shift in the transfer timing of image data to each pixel and the features [1] to [4]. An apparatus is described.
  • Patent Documents 3 and 4 there is no description that image data (video signal) corresponding to another color is used when correcting image data (video signal) corresponding to a certain color.
  • Feature [5] is due to the fact that the response characteristics of the liquid crystal differ depending on the applied electric field.
  • the change from black to white is slower than the change from white to black. For this reason, when the liquid crystal display element has a normally white structure, the moving image quality deteriorates particularly when a dark image changes to a bright image. On the other hand, when the liquid crystal display element has a normally black structure, the moving image quality deteriorates particularly when the light image changes to a dark image.
  • feature [5] also deteriorates the quality of still images in the FSC system.
  • the liquid crystal display element when the liquid crystal display element is normally white, the primary color is not bright, and when the liquid crystal display element is normally black, the complementary color of the primary color is whitish.
  • the FSC system when displaying chromatic colors, it may be difficult to reproduce depending on the display color.
  • Liquid crystal display elements include TN mode, IPS (In-Plane Switching) mode, VA (Vertical Aligned) mode, and OCB (Optically Compensated Bend) mode.
  • TN mode In-Plane Switching
  • VA Very Aligned
  • OCB Optically Compensated Bend
  • Patent Document 5 describes a liquid crystal display device in which a color image is generated by the FSC method, and a level correction circuit provided for each color corrects a video signal of a color corresponding to its own circuit.
  • This level correction circuit corrects the video signal of the color corresponding to the self in order to correct the characteristic [6] that the response characteristic of the light transmittance varies depending on the wavelength.
  • the liquid crystal display device described in Patent Document 5 includes level correction circuits 32R, 32G, and 32B.
  • the level correction circuit 32R receives the red video signal and corrects the red video signal according to the red response characteristic.
  • the level correction circuit 32G receives the green video signal and corrects the green video signal according to the green response characteristic.
  • the level correction circuit 32B receives the blue video signal and corrects the blue video signal according to the blue response characteristic.
  • the liquid crystal display device sequentially controls each pixel. Therefore, when attention is paid to a certain pixel, the pixel is accessed only during a part of a predetermined period. During the partial period, a voltage V for controlling the liquid crystal is applied to the pixel.
  • the pixel has a capacitive component C. Therefore, by applying the control voltage V to the pixel, the charge Q corresponding to the control voltage V is supplied to the pixel electrode.
  • the pixel capacitance C has a property of changing depending on the orientation (director) of the liquid crystal of the pixel.
  • a so-called overdrive method is known as a method for solving the problem that a desired charge amount cannot be supplied in one access (see Patent Documents 6 and 7).
  • Overdrive applies the desired amount of charge by applying an excessive voltage to the pixel that is different from the voltage when the director is in the desired director state, depending on which state the director is changed from to which state. This is a method of supplying the pixel.
  • overdrive also has an aspect of improving a problem caused by a slow response of the liquid crystal, that is, a problem caused by the feature [1].
  • Patent Documents 6 and 7 are a technique for correcting a video signal of a certain frame using the video signal of the immediately preceding frame. That is, Patent Documents 6 and 7 describe techniques for applying overdrive in a liquid crystal display device different from the FCS method.
  • Patent Document 7 describes a liquid crystal display device that changes the degree of correction of a video signal by overdrive in accordance with the position on the display screen of a pixel to which the video signal is transferred.
  • this liquid crystal display device a plurality of pixels arranged in a matrix are scanned one by one in order from the uppermost row to the lowermost row, and image data is selected for the pixels in the selected row. Are transferred in order.
  • the image data transferred to the pixel located at the center of the display screen that is easily watched is corrected by overdrive rather than the image data transferred to the pixel located at the edge of the display screen. Increase the degree.
  • Patent Document 7 describes a three-plate color liquid crystal display device to which overdrive is applied.
  • FIG. 3 is a block diagram showing a three-plate color liquid crystal display device 100 to which overdrive is applied.
  • a three-plate color liquid crystal display device 100 includes an R color frame memory 101R, a G color frame memory 101G, a B color frame memory 101B, an R color overdrive control unit 102R, and a G color.
  • the R color frame memory 101R, the R color overdrive control unit 102R, and the R color liquid crystal display element 103R are devices of the R color system.
  • the G color frame memory 101G, the G color overdrive control unit 102G, and the G color liquid crystal display element 103G are devices of the G color system.
  • the B color frame memory 101B, the B color overdrive control unit 102B, and the B color liquid crystal display element 103B are devices of the B color system.
  • the R color liquid crystal display element 103R displays an image corresponding to the R color.
  • the G color liquid crystal display element 103G displays an image corresponding to the G color.
  • the B color liquid crystal display element 103B displays an image corresponding to the B color.
  • the voltage applied to the pixel (correction signal) is controlled according to the target state and start state of the liquid crystal director.
  • each overdrive control unit 102R, 102G, and 102B inputs the video signal of its own frame to be displayed and the video signal of the previous frame read from the same frame memory, A correction signal for driving the liquid crystal display element is generated.
  • the pixel displays an image corresponding to one color and always receives the same illumination light.
  • the three-plate type color liquid crystal display device 100 is overdriven in accordance with the state transition of the liquid crystal director between frames, which is the video update cycle.
  • Patent Documents 6 and 7 there is a description about overdrive, but there is no description that overdrive is used in an FSC liquid crystal display device.
  • Patent Documents 3 and 4 when a video signal for displaying the same luminance is applied to all the pixels, the light is transmitted to each pixel so that the light transmittance in each pixel is equal when the light is irradiated.
  • an FSC liquid crystal display device that corrects the image data to be displayed is described, when correcting a video signal (image data) corresponding to a certain color, the video signal (image data) corresponding to another color is corrected. There is no statement to use.
  • Patent Document 3 or 4 cannot be used as an overdrive correction technique in an FSC liquid crystal display device.
  • the level correction circuit described in Patent Document 5 specifically, a level correction circuit that accepts only a video signal of a color corresponding to its own circuit and corrects the video signal of that color is also an FSC liquid crystal display device. Cannot be used as a correction circuit for overdrive.
  • Patent Document 1 describes a single-plate color liquid crystal display device, but does not describe an FSC liquid crystal display device.
  • Patent Document 2 describes an FSC type liquid crystal display device, but when correcting a video signal (image data) corresponding to a certain color, a video signal (image data) corresponding to another color is used. There is no statement to that effect.
  • Patent Documents 1 to 7 describes a technology that is a prerequisite for the occurrence of this problem, specifically, a technology that applies overdrive in an FSC liquid crystal display device.
  • Patent Documents 1 to 7 naturally transfer the image data to each pixel when the above-described problem, specifically, overdrive is applied to the FSC liquid crystal display device.
  • the problem that the problem of gradation reproducibility due to the timing shift and the slow response of the liquid crystal occurs has not been solved.
  • An object of the present invention is to provide a liquid crystal display device, a liquid crystal display element drive circuit, a color image generation method, and a liquid crystal display element drive method capable of solving the above-described problems.
  • the liquid crystal display device When the liquid crystal display device according to the present invention receives a plurality of video signals corresponding to a plurality of colors and having a plurality of image data, a plurality of corrected image data obtained by correcting each image data in the video signal for each of the video signals.
  • a correction unit that outputs a correction signal
  • an output control unit that sequentially outputs a plurality of correction signals output from the correction unit one by one, and each time the correction signal is output from the output control unit
  • the irradiation means for emitting light of a color corresponding to the video signal that is the source of the correction signal, and a plurality of pixels.
  • Each corrected image data is sequentially supplied to a pixel corresponding to the corrected image data among the plurality of pixels, and the light from the irradiation unit is changed using the plurality of pixels to which the corrected image data is supplied.
  • the liquid crystal display element that outputs the image data, and the correction means supplies each image data in the video signal, the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element, and the correction A correction signal having a plurality of corrected image data corrected based on other image data that is the basis of other corrected image data supplied immediately before or immediately after the corrected image data to pixels corresponding to the image data.
  • the drive circuit has a plurality of pixels, and each time a correction signal having a plurality of correction image data is received, each correction image data in the correction signal is sequentially input to the correction image of the plurality of pixels.
  • a liquid crystal display element that supplies a pixel corresponding to data and modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal using a plurality of pixels to which the correction image data is supplied.
  • Correction means for outputting a correction signal; and output control means for outputting a plurality of correction signals outputted from the correction means to the liquid crystal display element one by one in order, Each image data in the image signal is supplied to the pixel corresponding to the corrected image data immediately before or after the corrected image data in the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element.
  • a correction signal having a plurality of corrected image data corrected based on the other image data that is the basis of the other corrected image data is output.
  • a color image generation method is a color image generation method performed by an FSC liquid crystal display device.
  • the color image generation method is performed for each video signal.
  • a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal is output, the plurality of correction signals are sequentially output one by one, and the correction signals are output one by one.
  • the light of the color corresponding to the video signal that is the source of the correction signal is emitted, and each time the correction signal is output from the output control means, each correction image data in the correction signal is output.
  • the plurality of pixels are supplied to the pixel corresponding to the corrected image data, the plurality of pixels to which the corrected image data is supplied are used to modulate and output the light, and the plurality of corrected image data
  • the image data in the video signal is supplied to the pixels corresponding to the correction image data and the order of supply of the correction image data obtained by correcting the image data to the plurality of pixels.
  • a correction signal having a plurality of corrected image data corrected based on the other image data that is the source of the other corrected image data supplied immediately before or after the corrected image data is output.
  • the driving method includes a plurality of pixels, and each time a correction signal having a plurality of correction image data is received, the correction image data in the correction signal is sequentially input to the correction image of the plurality of pixels.
  • a liquid crystal display element that supplies a pixel corresponding to data and modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal using a plurality of pixels to which the correction image data is supplied.
  • each of the video signals has a plurality of corrected image data obtained by correcting each image data in the video signal.
  • each image in the video signal is output.
  • the order of supply of the corrected image data in the liquid crystal display element, in which the image data is corrected, and other corrected image data supplied to the pixel corresponding to the corrected image data immediately before or after the corrected image data And a correction signal having a plurality of corrected image data corrected based on the other image data that is the source of the above.
  • the FSC liquid crystal display device it is possible to reduce the difference in gradation reproducibility and the color reproducibility depending on the position in the screen.
  • FIG. 1 is a block diagram showing a three-plate color liquid crystal display device 100 to which overdrive is applied.
  • 1 is a block diagram illustrating a liquid crystal display device 1 according to a first embodiment of the present invention.
  • 6 is an explanatory diagram showing an example of a liquid crystal display element 2.
  • FIG. 4 is a block diagram illustrating an example of a correction unit 3.
  • FIG. It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction
  • 3 is a block diagram illustrating a correction unit 31.
  • FIG. 1 is a block diagram showing a three-plate color liquid crystal display device 100 to which overdrive is applied.
  • 1 is a block diagram illustrating a liquid crystal display device 1 according to a first embodiment of the present invention.
  • 6 is an explanatory diagram showing an example of a liquid crystal display element 2.
  • FIG. 4 is a block diagram illustrating an example of a correction unit 3.
  • FIG. It is explanatory drawing for demonstrating the relationship
  • FIG. 3 is a block diagram showing a correction unit 32.
  • FIG. 6 is a block diagram illustrating a correction unit 33. It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction
  • FIG. 4 is a block diagram showing the liquid crystal display device 1 according to the first embodiment of the present invention.
  • the liquid crystal display device 1 includes a liquid crystal display element 2, a correction unit 3, a data rearrangement unit 4, and an irradiation unit 5.
  • the data rearrangement unit 4 includes a frame memory 4a and a memory control unit 4b.
  • the irradiation unit 5 includes an illumination unit 5a and a timing control unit 5b.
  • the liquid crystal display device 1 receives a plurality of video signals corresponding to each of a plurality of colors on a one-to-one basis (hereinafter simply referred to as “a plurality of video signals”).
  • the liquid crystal display device 1 is an FSC liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals.
  • Each video signal has a plurality of image data.
  • Each image data in the video signal corresponds to each of a plurality of pixels in the liquid crystal display element 2.
  • the order of arrangement of each image data in the video signal is associated with the order of supply to the plurality of pixels in the liquid crystal display element 2.
  • the liquid crystal display element 2 has a plurality of pixels.
  • the liquid crystal display element 2 uses a plurality of pixels, modulates the light applied to the liquid crystal display element 2 according to the drive signal, and outputs light for forming an image.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is a projector (projection display device), the light modulated and output by the liquid crystal display element 2 is magnified by a projection optical system (not shown) and is applied to a screen (not shown). Projected. When the liquid crystal display device 1 is a direct view display device, the light modulated and output by the liquid crystal display element 2 reaches the eyes of the user.
  • a projection optical system not shown
  • a screen not shown
  • FIG. 5 is an explanatory view showing an example of the liquid crystal display element 2.
  • the liquid crystal display element 2 includes a plurality of pixels 2a, a gate driver 2b, a source driver 2c, a plurality of scanning lines 2d, a plurality of data lines 2e, and a common line 2f.
  • the plurality of pixels 2a are arranged in a matrix.
  • Each pixel 2a has a TFT circuit 2a1 and a liquid crystal capacitor 2a2.
  • the liquid crystal capacitor 2a2 has a configuration in which liquid crystal is interposed between the counter electrodes.
  • each TFT circuit 2a1 is connected to one end of a liquid crystal capacitor 2a2 present in the pixel 2a to which the TFT circuit 2a1 belongs.
  • the other end of the liquid crystal capacitor 2a2 is connected to the common line 2f.
  • a common voltage is supplied to the common line 2f.
  • the gates of the TFT circuits 2a1 existing in the same row are connected to the common scanning line 2d.
  • Each scanning line 2d is connected to the gate driver 2b.
  • the gate driver 2b starts vertical scanning (selection of scanning lines) for each field according to the vertical synchronizing signal synchronized with the output field synchronization timing, and selects the scanning lines 2d one by one in order according to the horizontal synchronizing signal. Then, a gate drive signal is supplied to the selected scanning line 2d.
  • the sources of the TFT circuits 2a1 existing in the same column are connected to the common data line 2e.
  • Each data line 2e is connected to the source driver 2c.
  • the source driver 2c starts horizontal scanning (selection of data line) for each scanning line according to the horizontal synchronization signal, and sequentially selects the data line 2e according to the transfer clock signal.
  • the source driver 2c selects image data corresponding to the pixel 2a specified by the selected data line 2e and the selected scanning line 2d (corrected image data obtained by correcting the image data in this embodiment). Supplied to the data line 2e.
  • the corrected image data supplied to the source of the TFT circuit 2a1 is supplied to the liquid crystal capacitor 2a2 via the drain of the TFT circuit 2a1. For this reason, the corresponding corrected image data is supplied to the pixel 2a specified by the selected data line 2e and the selected scanning line 2d via the TFT circuit 2a1.
  • the plurality of scanning lines 2d and the plurality of data lines 2e are arranged while maintaining electrical insulation from each other.
  • the gate driver 2b and the source driver 2c operate based on a timing signal (vertical synchronization signal) indicating a synchronization timing of the output field supplied from the timing control unit 5b, a horizontal synchronization signal, a transfer clock signal, and the like. Since this operation is a known technique, a detailed description thereof is omitted.
  • correction unit 3 can be generally called correction means.
  • the correction unit 3 inputs video signals of a plurality of colors synchronized with a timing signal indicating the synchronization timing of the input frame, and outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
  • the correction unit 3 receives a plurality of video signals each time a timing signal generated every frame period is received, and outputs a plurality of correction signals corresponding to the plurality of video signals on a one-to-one basis. Output.
  • the correction unit 3 when the correction unit 3 receives a plurality of video signals, the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal.
  • Each corrected image data in the correction signal corresponds to the image data that is the basis of the corrected image data. Since each image data corresponds to each of the plurality of pixels 2 a in the liquid crystal display element 2, each correction image data in the correction signal also corresponds to each of the plurality of pixels 2 a in the liquid crystal display element 2.
  • each of the corrected image data in the correction signal is supplied to the corresponding pixel.
  • the order of arrangement of each corrected image data in the correction signal is associated with the order of supply to the plurality of pixels 2 a in the liquid crystal display element 2.
  • the correction unit 3 accepts, as a plurality of video signals, an R color video signal corresponding to red, a G color video signal corresponding to green, and a B color video signal corresponding to blue.
  • the correction unit 3 outputs an R color correction signal corresponding to red, a G color correction signal corresponding to green, and a B color correction signal corresponding to blue as a plurality of correction signals.
  • the correction unit 3 generates an R color correction signal based on the R color video signal, generates a G color correction signal based on the G color video signal, and generates a B color correction signal based on the B color video signal. Generate.
  • the data rearrangement unit 4 can be generally called output control means.
  • the data rearrangement unit 4 outputs the plurality of correction signals output from the correction unit 3 to the liquid crystal display element 2 one by one as a drive signal.
  • the data rearrangement unit 4 uses the R color correction signal, the G color correction signal, and the B color correction signal as drive signals in the order of the R color correction signal, the G color correction signal, and the B color correction signal. Output to the liquid crystal display element 2. This order can be changed as appropriate.
  • the frame memory 4a is used as a buffer for rearranging a plurality of correction signals functioning as video signals.
  • the memory control unit 4b rearranges the plurality of correction signals output from the correction unit 3 in the order of output to the liquid crystal display element 2 on the frame memory 4a.
  • the memory control unit 4b performs the R color correction signal, the G color correction signal, and the B color correction signal in the order of the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a. Rearrange.
  • the memory control unit 4b outputs the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. .
  • the irradiation unit 5 can be generally called irradiation means.
  • the irradiating unit 5 becomes the source of the correction signal output to the liquid crystal display element 2 each time one of the plurality of correction signals output from the correction unit 3 is output to the liquid crystal display element 2 as a drive signal.
  • the liquid crystal display element 2 is irradiated with light of a color corresponding to the video signal.
  • the irradiation unit 5 adjusts the light irradiation timing (period and phase) in consideration of the response of the light transmittance after the drive signal is output to the liquid crystal display element 2.
  • the illumination unit 5a includes an R color LED that emits red light, a G color LED that emits green light, and a B color LED that emits blue light.
  • the timing control unit 5b receives a timing signal indicating the synchronization timing of the input frame (hereinafter referred to as “input frame synchronization timing”), and outputs the synchronization timing of the output field (hereinafter referred to as “color frame period”).
  • a timing signal indicating "output field synchronization timing" is generated.
  • the input frame synchronization timing and the output field synchronization timing are synchronized, but they may be asynchronous.
  • the timing controller 5b generates a vertical synchronization signal, a horizontal synchronization signal, and a transfer clock signal synchronized with the output field synchronization timing, and supplies the vertical synchronization signal, the horizontal synchronization signal, and the transfer clock signal to the liquid crystal display element 2. To do.
  • the memory control unit 4 b uses the two timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b to change the input frame synchronization timing.
  • the writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing.
  • the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
  • the liquid crystal display element 2 sequentially receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. input.
  • each correction in the correction signal is synchronized with the vertical synchronization signal, horizontal synchronization signal, and transfer clock signal from the timing controller 5b.
  • the image data is sequentially supplied to the pixel 2a corresponding to the corrected image data, the direction of the liquid crystal (director) of each pixel 2a is controlled, and each color light sequentially irradiated for each color is converted into the corrected image data. Modulation is performed using a plurality of pixels 2a in which the orientation of the liquid crystal is controlled by supply, and light that forms an image of each color is sequentially generated.
  • the illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
  • the liquid crystal display device 1 operates as follows.
  • the illumination unit 5a turns on the R color LED and irradiates the liquid crystal display element 2 with the R color light.
  • the illumination unit 5a turns on the G color LED and irradiates the liquid crystal display element 2 with the G color light.
  • the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with B color light.
  • correction unit 3 will be described.
  • the correction unit 3 supplies each image data in the video signal in the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element 2 (hereinafter simply referred to as “supply order”) and the corrected image. Based on other image data (hereinafter simply referred to as “other image data”) that is the source of other corrected image data supplied to the pixel corresponding to the data immediately before or after the corrected image data A correction signal having a plurality of corrected image data corrected is output.
  • the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the supply order and other image data.
  • the function of the correction unit 3 is to improve the reduction in gradation reproducibility and color reproducibility due to the FSC method, and to reduce the difference in gradation reproducibility and color reproducibility depending on the position in the screen. It is.
  • correction unit 3 other image data is used to perform this correction.
  • the color display order (color sequence) in the FSC system is R, G, B.
  • the G color video signal and the R color video signal in the previous field of the G color video signal are used to correct the G color video signal.
  • a B color video signal in the field may be used.
  • a color display method three-plate projection type liquid crystal display device using simultaneous additive color mixture as shown in FIG. 3 or a color display method using juxtaposed (parallel) additive color mixture is used.
  • the frame memory required in the direct view type liquid crystal display device is not necessarily required.
  • a color display type liquid crystal display device using simultaneous additive color mixing has three liquid crystal display elements that individually modulate R, G, and B colors, and superimposes the modulated image light of each color.
  • a liquid crystal display device for display This type of projection type liquid crystal display device such as a projector is common and is called a so-called three-plate type.
  • a liquid crystal display device using a color display method using juxtaposed (or juxtaposed) additive color mixing is a plurality of pixels that perform color display by arranging subpixels (subpixels) having R, G, and B color filters in close proximity.
  • a liquid crystal display device is a plurality of pixels that perform color display by arranging subpixels (subpixels) having R, G, and B color filters in close proximity.
  • the state of the liquid crystal director in one field is affected by the state of the liquid crystal director in the previous field, and the state of the liquid crystal director in the next field.
  • the B color field when viewed from the G color field, is both the previous field and the next field. Therefore, by correcting the G color video signal, the gradation reproducibility of the B color in the next field can be improved.
  • the gradation of the G color correction signal is set.
  • the gray level of the G color video signal is based on the gradation level of the B color video signal 80% (more specifically, the difference between the gray level of the G color video signal and the gray level of the B color video signal).
  • the level is set to 60%, which is excessively higher than the level 50%, the state of the liquid crystal director in the B color field can be brought closer to the desired state more quickly, and the B color gradation reproducibility can be improved.
  • the G color correction signal when setting the G color correction signal in the correction unit 3 in a situation where the gradation level of the G color video signal is 50% and the gradation level of the B color video signal is 20%, the G color correction signal If the gradation level is set to 40%, which is excessively higher than the gradation level 50% of the G color video signal, as viewed from the gradation level 20% of the B color video signal, the state of the liquid crystal director in the B color field Can be brought closer to the desired state more quickly, and the B color gradation reproducibility can be improved.
  • the conventional overdrive is a technique of applying an excessive voltage by correcting the image data of the own field (own frame in the three-plate type) using the image data of the previous field (front frame in the three-plate type),
  • the gradation level of the image data in the video signal of the own field to be improved is 100% or 0%, the gradation reproducibility cannot be improved.
  • the gradation level of the image data in the video signal of the color of the next field to be improved is 100. Even if it is% or 0%, tone reproducibility and color reproducibility can be improved.
  • the correction unit 3 uses the order of supplying corrected image data in the liquid crystal display element 2.
  • the correction unit 3 may output corrected image data obtained by correcting each image data so that the time until the light transmittance is reached. That is, the correction unit 3 may correct each image data based on the supply timing (supply order) of the image data to each pixel 2a.
  • the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the supply order and other image data. Improves gradation and color reproducibility degradation caused by the FSC method, and reduces differences in gradation and color reproducibility depending on the position in the screen.
  • FIG. 6 is a block diagram illustrating an example of the correction unit 3.
  • the correction unit 3 includes an R color correction unit 3R1, a G color correction unit 3G1, and a B color correction unit 3B1.
  • the R color correction unit 3R1 corresponds to the R color video signal on a one-to-one basis.
  • the R color correction unit 3R1 corresponds to the R color video signal, the G color video signal corresponding to the color of the next field of the R color, and the timing signal (the input frame synchronization timing signal indicating the input frame synchronization timing and the timing signal).
  • the horizontal synchronization timing signal indicating the horizontal synchronization timing and the pixel clock timing signal indicating the pixel clock timing corresponding to the horizontal synchronization timing signal) are input, and the R color correction signal is output.
  • the G color correction unit 3G1 has a one-to-one correspondence with the G color video signal.
  • the G color correction unit 3G1 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
  • the B color correction unit 3B1 corresponds to the B color video signal on a one-to-one basis.
  • the B color correction unit 3B1 includes a B color video signal, an R color video signal corresponding to the color of the next field of B color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output the B color correction signal.
  • the G color correction unit 3G1 includes three LUT (Look-up Table) storage units 3G1a, 3G1b and 3G1c, and a selection circuit (SEL) 3G1d.
  • LUT Look-up Table
  • SEL selection circuit
  • Each of the LUT storage units 3G1a, 3G1b, and 3G1c can be referred to as color correction means or storage means.
  • the correction unit 3 includes a plurality of color correction means or storage means.
  • the three LUT storage units 3G1a, 3G1b, and 3G1c all receive the G color video signal and the B color video signal and output the G color correction data.
  • Each of the LUT storage units 3G1a, 3G1b, and 3G1c is associated with a predetermined order (hereinafter referred to as “corresponding order”) in the order of supply.
  • the correspondence order associated with each of the plurality of LUT storage units 3G1a, 3G1b, and 3G1c is different for each LUT storage unit.
  • the LUT storage unit 3G1a is associated with the first order in the order of supply.
  • the LUT storage unit 3G1c is associated with the last order in the supply order.
  • the LUT storage unit 3G1b is associated with a predetermined order between the first order in the order of supply and the last order in the order of supply.
  • the LUT storage units 3G1a, 3G1b, and 3G1c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • each of the LUT storage units 3G1a, 3G1b, and 3G1c associates image data and other image data with correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • correction data associated with the image data and other image data is output.
  • the correction data output from each of the LUT storage units 3G1a, 3G1b, and 3G1c It is generally different from the correction data output from the storage unit.
  • the LUT storage unit 3G1a When the difference between the common image data and the correction data output from each of the LUT storage units 3G1a, 3G1b, and 3G1c based on the common image data is used as the correction amount, in this embodiment, the LUT storage unit The correction amount in 3G1a is generally smaller than the correction amounts in LUT storage units 3G1b and 3G1c. In the present embodiment, the correction amount in the LUT storage unit 3G1b is generally smaller than the correction amount in the LUT storage unit 3G1c.
  • the selection circuit 3G1d can be generally called output means.
  • the selection circuit 3G1d receives the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and specifies the supply order based on these timing signals.
  • the selection circuit 3G1d creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of the LUT storage units 3G1a, 3G1b, and 3G1c based on the order of supply.
  • the selection circuit 3G1d receives one correction data from the three correction data received based on the order of supply each time the correction data is received from the three LUT storage units 3G1a, 3G1b, and 3G1c. Data is selected and output as corrected image data.
  • “LUT storage unit 3R1a” is read
  • “LUT storage unit 3G1b” is read “LUT storage unit 3R1b”
  • “LUT storage unit 3G1c” is read “LUT storage unit 3R1c”
  • “selection circuit 3G1d” is “selection circuit” 3R1d ",” G color video signal “is read as” R color video signal ",” B color video signal “is read as” G color video signal ", and” G color correction signal “is read as” R color correction signal ". It can be done by replacing with.
  • “G color correction unit 3G1” is replaced with “B color correction unit 3B1” and “LUT storage unit 3G1a” is replaced.
  • “LUT storage unit 3B1a” is read
  • “LUT storage unit 3G1b” is read “LUT storage unit 3B1b”
  • “LUT storage unit 3G1c” is read “LUT storage unit 3B1c”
  • “selection circuit 3G1d” is “selection circuit” 3B1d
  • “G color video signal” is read as “B color video signal”
  • “B color video signal” is read as “R color video signal”
  • “G color correction signal” is read as “B color correction signal”. It can be done by replacing with.
  • the characteristics corrected by each LUT storage unit can be different for each color of the video signal.
  • FIG. 7 is an explanatory diagram for explaining the relationship between the position in the screen of the liquid crystal display element 2 and the correction operation.
  • the screen 2g is formed by a plurality of pixels 2a arranged in a matrix within the liquid crystal display element 2 (see FIG. 5).
  • a plurality of pixels 2a are scanned one row at a time in the direction from the uppermost row to the lowermost row of the screen 2g, and the selected pixel 2a corresponds to the pixel 2a. It is assumed that corrected image data to be supplied is supplied in order.
  • the order in which the corrected image data is supplied is the order from the upper line to the lower line on the screen 2g.
  • the screen 2g is divided into three areas 2g1, 2g2, and 2g3 according to the order in which the corrected image data is supplied.
  • the LUT storage units 3G1a, 3G1b, and 3G1c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • the correction circuit 3G1d selects one correction data from the three correction data received as correction image data. Select as output.
  • the selection circuit 3G1d when the selection circuit 3G1d receives correction data having the order supplied to the pixels 2a in the area 2g1 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c, the selection circuit 3G1d receives the correction data from the LUT storage unit 3G1a. The correction data is selected, and the selected correction data is supplied to the image memory control unit 4b as G color correction image data.
  • the selection circuit 3G1d selects correction data from the LUT storage unit 3G1b when receiving correction data having the order to be supplied to the pixels 2a in the area 2g2 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c.
  • the selected correction data is supplied to the memory control unit 4b as G color correction image data.
  • the selection circuit 3G1d selects correction data from the LUT storage unit 3G1c when receiving correction data having the order to be supplied to the pixels 2a in the area 2g3 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c.
  • the selected correction data is supplied to the memory control unit 4b as G color correction image data.
  • G color correction unit 3G1 is replaced with “R color correction unit 3R1”
  • LUT storage unit 3G1a is replaced with “LUT “LUT storage unit 3G1b” is replaced with “LUT storage unit 3R1b”
  • LUT storage unit 3G1c is replaced with “LUT storage unit 3R1c”
  • selection circuit 3G1d is replaced with “selection circuit 3R1d”. This can be done by replacing “G color corrected image data” with “R color corrected image data”.
  • G color correction unit 3G1 is replaced with “B color correction unit 3B1”
  • LUT storage unit 3G1a is replaced with “LUT “LUT storage unit 3G1b” is replaced with “LUT storage unit 3B1b”
  • LUT storage unit 3G1c is replaced with “LUT storage unit 3B1c”
  • selection circuit 3G1d is replaced with “selection circuit 3B1d”. This can be done by replacing “G color corrected image data” with “B color corrected image data”.
  • the memory control unit 4b When the memory control unit 4b receives the R color correction signal, the G color correction signal, and the B color correction signal, the memory control unit 4b converts the R color correction signal, the G color correction signal, and the B color correction signal into the R color on the frame memory 4a.
  • the correction signal, the G color correction signal, and the B color correction signal are rearranged in this order.
  • the timing control unit 5b receives a timing signal indicating the input frame synchronization timing, generates a timing signal indicating the output field synchronization timing obtained by dividing one frame period into three color field periods, and the data rearrangement unit 4 To the liquid crystal display element 2 and the illumination unit 5a.
  • the timing controller 5b also generates a horizontal synchronization signal corresponding to the output field synchronization timing and a transfer clock signal indicating the supply timing of the corrected image data, along with the vertical synchronization signal synchronized with the output field synchronization timing, and these signals. Is output to the liquid crystal display element 2.
  • the memory control unit 4 b uses the two timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b to change the input frame synchronization timing.
  • the writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing.
  • the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
  • the liquid crystal display element 2 receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. To do.
  • the liquid crystal display element 2 sequentially synchronizes the corrected image data in the correction signal with the corrected image in synchronization with the vertical synchronizing signal, horizontal synchronizing signal, and transfer clock signal from the timing control unit 5b.
  • the direction of the liquid crystal of each pixel 2a (director) is controlled, and the direction of the liquid crystal is controlled by supplying the corrected image data for each color light sequentially irradiated for each color. Modulation is performed using the plurality of pixels 2a, and light that forms an image of each color is sequentially generated.
  • the illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
  • the illumination unit 5a lights the R color LED, and the liquid crystal display element 2 is illuminated with the R color light.
  • the illumination unit 5a lights the G color LED and irradiates the liquid crystal display element 2 with the G color light.
  • the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with the B color light.
  • the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the order of supply and other image data.
  • the selection circuit 3G1d creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of the LUT storage units 3G1a, 3G1b and 3G1c based on the order of supply.
  • each of the LUT storage units 3G1a, 3G1b, and 3G1c stores image data, other image data, and correction data in association with each other, and receives image data and other image data.
  • a storage unit that outputs correction data is
  • a correction signal can be created and output by using an LUT.
  • the LUT storage unit 3G1a functions as a first color correction unit whose correspondence order is the first order of the supply order, and the LUT storage unit 3G1c has a correspondence order of the supply order. It functions as the second color correction means which is the last order.
  • the LUT storage unit 3G1b is a third color correction unit whose correspondence order is a predetermined order between the first order in the supply order and the last order in the supply order. Function.
  • the screen is divided into three areas for correction, the difference in gradation reproducibility and color reproducibility can be further reduced as compared with the case where the screen is divided into two areas.
  • each of the plurality of color correction units and the selection circuit are provided for each video signal.
  • the video signal can be corrected according to the position in the screen, so that the difference in gradation reproducibility and the difference in color reproducibility due to the position in the screen can be reduced.
  • the correction unit 31 shown in FIG. 8 is used as the correction unit 3 of the liquid crystal display device 1 shown in FIG.
  • correction unit 31 can be generally referred to as correction means.
  • the correction unit 31 includes an R color correction unit 3R2, a G color correction unit 3G2, and a B color correction unit 3B2.
  • the R color correction unit 3R2 corresponds to the R color video signal on a one-to-one basis.
  • the R color correction unit 3R2 includes an R color video signal, a G color video signal corresponding to the color of the next field of the R color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output an R color correction signal.
  • the G color correction unit 3G2 has a one-to-one correspondence with the G color video signal.
  • the G color correction unit 3G2 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
  • the B color correction unit 3B2 corresponds to the B color video signal on a one-to-one basis.
  • the B color correction unit 3B2 includes a B color video signal, an R color video signal corresponding to the color of the next field of B color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a B color correction signal.
  • the G color correction unit 3G2 includes two LUT storage units 3G2a and 3G2b, and an interpolation calculation unit 3G2c.
  • Each of the LUT storage units 3G2a and 3G2b can be called color correction means or storage means.
  • the correction unit 31 includes a plurality of color correction means or storage means.
  • the two LUT storage units 3G2a and 3G2b both receive the G color video signal and the B color video signal and output the G color correction data.
  • the correspondence order is associated with each of the LUT storage units 3G2a and 3G2b in advance. Note that the correspondence order associated with each of the plurality of LUT storage units 3G2a and 3G2b is different for each LUT storage unit.
  • the LUT storage unit 3G2a is associated with the first order in the order of supply.
  • the LUT storage unit 3G2b is associated with the last order in the supply order.
  • the LUT storage units 3G2a and 3G2b receive image data and other image data, the LUT storage units 3G2a and 3G2b output correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • each of the LUT storage units 3G2a and 3G2b stores image data and other image data in association with each other and correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • correction data associated with the image data and other image data is output.
  • the correction data output from each of the LUT storage units 3G2a and 3G2b is output from the other LUT storage units. It is generally different from the correction data.
  • the LUT storage unit 3G2a Is generally smaller than the correction amount in the LUT storage unit 3G2b.
  • Interpolation calculation unit 3G2c can generally be called output means.
  • Interpolation calculation unit 3G2c receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and specifies the order of supply based on these timing signals.
  • Interpolation calculation unit 3G2c creates and outputs a correction signal having a plurality of corrected image data based on the order of supply based on a plurality of correction data from each of LUT storage units 3G2a and 3G2b.
  • the interpolation calculation unit 3G2c is based on a plurality of correction data from each of the LUT storage units 3G2a and 3G2b. Then, a correction signal having a plurality of corrected image data is generated by interpolation and output.
  • the interpolation operation unit 3G2c includes a coefficient generation unit 3G2d, two multipliers 3G2e and 3G2f, and an adder 3G2g.
  • the interpolation calculation unit 3G2c inputs correction data output from each of the two LUT storage units 3G2a and 3G2b, multiplies each correction data by a predetermined coefficient according to the order of the correction data, and adds the multiplication results Then, the addition result is output as G color corrected image data.
  • the coefficient generation unit 3G2d generates a predetermined coefficient according to the order of the G color correction image data based on the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, Output to multipliers 3G2e and 3G2f.
  • the multiplier 3G2e multiplies the correction data from the LUT storage unit 3G2a by the coefficient from the coefficient generation unit 3G2d, and outputs the multiplication result to the adder 3G2g.
  • the multiplier 3G2f multiplies the correction data from the LUT storage unit 3G2b by the coefficient from the coefficient generation unit 3G2d, and outputs the multiplication result to the adder 3G2g.
  • the adder 3G2g adds the multiplication result of the multiplier 3G2e and the multiplication result of the multiplier 3G2f, and outputs the addition result as G color correction image data.
  • Multiplier 3G2e is read as “Multiplier 3R2e”
  • Multiplier 3G2f is read as “Multiplier 3R2f”
  • Multiplier 3G2g is read as “Adder 3R2g”
  • G color corrected image” Data to“ R color correction image ” It can be carried out by be read in the data.
  • Multiplier 3G2e is read as “multiplier 3B2e”
  • multiplier 3G2f is read as “multiplier 3B2f”
  • adder 3G2g is read as “adder 3B2g”
  • G color corrected image” Data to“ B Color Correction Image ” It can be carried out by be read in the data.
  • FIG. 9 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
  • the pixel 2a (the pixel 2a in the row to which the corrected image data is first supplied among the plurality of pixels 2a) exists in the uppermost row in the screen 2g.
  • the correction data output from each of the LUT storage units 3G2a, 3R2a and 3B2a is supplied as corrected image data.
  • the LUT is stored in the pixel 2a existing in the lowermost row in the screen 2g (the pixel 2a in the row to which the corrected image data is supplied last among the plurality of pixels 2a).
  • the correction data output from each of the units 3G2b, 3R2b, and 3B2b is supplied as corrected image data.
  • an interpolation calculation result obtained by interpolation according to the line is supplied to the line between the uppermost line and the lowermost line in the screen 2g.
  • the coefficient generation unit 3G2d sets the coefficient to be supplied to the multiplier 3G2e to “1” when the supply order is first, and to “0” when the supply order is last, and the supply order is slow. A coefficient that gradually decreases from “1” to “0” is used.
  • the coefficient generation unit 3G2d supplies “0” when the supply order is the first, and “1” when the supply order is the last, as the coefficient supplied to the multiplier 3G2f.
  • a coefficient that gradually increases from “0” to “1” is used.
  • the coefficient generation unit in the R color correction unit 3R2 and the coefficient generation unit in the B color correction unit 3B2 operate in the same manner as the coefficient generation unit 3G2d.
  • the interpolation calculation unit 3G2c when the supply order is different from the corresponding order, the interpolation calculation unit 3G2c generates a correction signal having a plurality of correction image data based on a plurality of correction data from the LUT storage units 3G2a and 3G2b. Created by interpolation and output.
  • the LUT is applied to the pixel at the position in the screen where the supply timing difference is the largest, the largest difference in gradation reproducibility and color reproducibility due to the position in the screen can be reduced. Furthermore, since the interpolation calculation is used together, even with a small number of LUT storage units, it is possible to accurately reduce the difference in tone reproducibility and color reproducibility depending on the position in the screen.
  • correction unit 3 a correction unit 32 shown in FIG. 10 may be used.
  • correction unit 32 shown in FIG. 10 The difference between the correction unit 32 shown in FIG. 10 and the correction unit 31 shown in FIG. 8 is that the video signals input to the color correction units of the respective colors have three colors.
  • the G color correction unit 3G4 shown in FIG. 11 is used instead of the G color correction unit 3G2 shown in FIG.
  • the G color correction unit 3G4 has a one-to-one correspondence with the G color video signal.
  • the G color correction unit 3G4 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
  • the G color correction unit 3G4 includes three LUT storage units 3G4a, 3G4b, and 3G4c, two selection circuits 3G4e and 3G4f, a selection circuit control unit (SEL control unit) 3G4g, and an interpolation calculation unit 3G2c.
  • the selection circuits 3G4e and 3G4f, the selection circuit control unit 3G4g, and the interpolation calculation unit 3G2c are included in the output unit 3G4h.
  • Each of the LUT storage units 3G4a, 3G4b and 3G4c can be referred to as color correction means or storage means.
  • the three LUT storage units 3G4a, 3G4b, and 3G4c all receive the G color video signal and the B color video signal and output the G color correction data.
  • Correspondence order is associated with each of the LUT storage units 3G4a, 3G4b, and 3G4c in advance.
  • the correspondence order associated with each of the plurality of LUT storage units 3G4a, 3G4b, and 3G4c is different for each LUT storage unit.
  • the LUT storage unit 3G4a is associated with the first order in the order of supply.
  • the LUT storage unit 3G4c is associated with the last order in the supply order.
  • the LUT storage unit 3G4b is associated with a predetermined order between the first order in the order of supply and the last order in the order of supply.
  • the LUT storage units 3G4a, 3G4b, and 3G4c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • each of the LUT storage units 3G4a, 3G4b, and 3G4c associates image data and other image data with correction data obtained by correcting the image data based on the other image data and the corresponding order.
  • correction data associated with the image data and other image data is output.
  • the correction data output from each of the LUT storage units 3G4a, 3G4b and 3G4c It is generally different from the correction data output from the storage unit.
  • the LUT storage unit 3G4a When the difference between the common image data and the correction data output from each of the LUT storage units 3G4a, 3G4b, and 3G4c based on the common image data is used as the correction amount, in this embodiment, the LUT storage unit The correction amount in 3G4a is generally smaller than the correction amounts in LUT storage units 3G4b and 3G4c. In this embodiment, the correction amount in the LUT storage unit 3G4b is generally smaller than the correction amount in the LUT storage unit 3G4c.
  • the output unit 3G4h can be generally called output means.
  • the output unit 3G4h inputs the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and specifies the supply order based on these timing signals.
  • the output unit 3G4h creates and outputs a correction signal having a plurality of corrected image data based on a plurality of correction data from each of the LUT storage units 3G4a, 3G4b, and 3G4c based on the order of supply.
  • the selection circuit 3G4e selects one of the correction data from each of the two LUT storage units 3G4a and 3G4b in accordance with the control from the selection circuit control unit 3G4g.
  • the selection circuit 3G4f selects one of the correction data from the two LUT storage units 3G4b and 3G4c in accordance with the control from the selection circuit control unit 3G4g.
  • Interpolation calculation unit 3G2c receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and specifies the order of supply based on these timing signals.
  • Interpolation calculation unit 3G2c creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of two selection circuits 3G4e and 3G4f based on the order of supply.
  • the interpolation computation unit 3G2c is based on a plurality of correction data from each of the selection circuits 3G4e and 3G4f.
  • a correction signal having a plurality of corrected image data is generated and output by interpolation calculation.
  • the selection circuit control unit 3G4g specifies the order of correction data based on the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and based on the order, the two selection circuits 3G4e and 3G4f is controlled.
  • FIG. 12 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
  • the output unit so that the correction data output from the LUT storage unit 3G4a is supplied to the pixel 2a existing in the uppermost row in the screen 2g as corrected image data.
  • 3G4h (specifically, the selection circuit control unit 3G4g, the selection circuits 3G4e and 3G4f, and the interpolation calculation unit 3G2c) operate.
  • the LUT storage unit 3G4b outputs to the pixels 2a existing in a predetermined row (hereinafter referred to as “predetermined row”) between the uppermost row and the lower area in the screen 2g.
  • predetermined row a predetermined row between the uppermost row and the lower area in the screen 2g.
  • the output unit 3G4h operates so that the corrected data is supplied as corrected image data.
  • the output unit 3G4h so that the correction data output from the LUT storage unit 3G4c is supplied as corrected image data to the pixels 2a existing in the row belonging to the lower area in the screen 2g. Works.
  • the output unit 3G4h operates so that data is supplied. This interpolation calculation is in accordance with the interpolation calculation in FIG.
  • the output unit 3G4h operates so as to be supplied. This interpolation calculation is in accordance with the interpolation calculation in FIG.
  • the correction unit 33 shown in FIG. 13 is used as the correction unit 3 of the liquid crystal display device 1 shown in FIG.
  • correction unit 33 can be generally referred to as correction means.
  • the correction unit 33 includes two time division multiplexing circuits (MUX) 33a and 33b, a multicolor correction unit 33c, and a demultiplexer 33d.
  • the multicolor correcting unit 33c has the same configuration as the G color correcting unit 3G4 shown in FIG.
  • Time division multiplexing circuits (MUX) 33a and 33b are included in the switching unit 33e.
  • the switching unit 33e can be generally referred to as switching means.
  • the switching unit 33e When the switching unit 33e receives a plurality of video signals, the switching unit 33e outputs the image data and other image data to the plurality of LUT storage units 3G4a, 3G4b, and 3G4c in a time division manner while switching the video data for each video signal.
  • Each of the two time division multiplexing circuits 33a and 33b receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and based on these timing signals, an R color video signal (image Data), G color video signal (image data), and B color video signal (image data) are alternatively selected and output.
  • the selection switching rate at this time is three times the pixel clock timing signal, that is, the R color video signal, the G color video signal, and the B color video signal are time-division multiplexed at a speed three times the clock speed of those signals. .
  • the multicolor correction unit 33 has the same configuration as that of the G color correction unit 3G4 shown in FIG. 11, but operates at a rate three times that of the G color correction unit 3G4, and the R color correction signal (corrected image data), G A color correction signal (corrected image data) and a B color correction signal (corrected image data) are output in a time-sharing manner.
  • the demultiplexer 33d separates the time-division multiplexed color correction signals output from the multicolor correction unit 33c and outputs the R color correction signal, the G color correction signal, and the B color correction signal in parallel. .
  • FIG. 14 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
  • the color correction unit so that the correction data output from the LUT storage unit 3G4a is supplied to the pixel 2a existing in the upper area in the screen 2g as the corrected image data. 33 operates.
  • the color correction unit 33 operates so that the correction data output from the LUT storage unit 3G4b is supplied to the pixels 2a existing in a predetermined row in the screen 2g as corrected image data. .
  • the color correction unit 33 operates so that the correction data output from the LUT storage unit 3G4c is supplied as the corrected image data to the pixel 2a existing in the lower area in the screen 2g. To do.
  • the upper area, the predetermined row, and the lower area are changed according to the video signal of each color.
  • the switching unit 33e when the switching unit 33e receives a plurality of video signals, the switching unit 33e switches between image data and other image data for each video signal, and in a time division manner, the plurality of LUT storage units 3G4a, 3G4b, and Output to 3G4c.
  • the pixel to which the correction data from the LUT storage unit is applied is changed according to the color of the video signal while using the common LUT storage unit. Can be changed. Therefore, the difference in gradation reproducibility and color reproducibility depending on the position in the screen can be reduced with a small circuit scale.
  • the number of LUTs may be changed depending on the color of the video signal. Since the light transmittance characteristic of the liquid crystal display element 2 varies depending on the wavelength of the light, a desired configuration can be obtained in consideration of the circuit scale and the correction accuracy.
  • the interpolation calculation may be linear interpolation or non-linear interpolation.
  • linear interpolation the configuration of the interpolation calculation unit can be made smaller than when nonlinear interpolation is used.
  • nonlinear interpolation the video signal can be corrected with higher accuracy than when linear interpolation is used.
  • the above embodiments can be applied to the liquid crystal display element 2 having a normally white configuration or a normally black configuration.
  • the above embodiments can be applied even if the color field is not the three colors of R, G, and B in the FSC system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

Provided is a technique for applying an overdriving scheme to a field sequential color liquid crystal display device. A liquid crystal display device (1) comprises: a correction means (3) for receiving a plurality of video signals and outputting corrected signals including a plurality of corrected image data sets; an output control means (4) for outputting the corrected signals sequentially one by one; an irradiation means (5) for emitting a color light corresponding to the original video signals of the corrected signals every time one field of the corrected signals is output from the output control means; and a liquid crystal display device (2) including a plurality of pixels to which the corrected image data set included in the corrected signal is supplied and modulating and outputting the light from the irradiation means (5). The correction means (3) corrects the image data included in the video signals to obtain the corrected image data sets, based on the order of supplying the corrected image data sets within each field and other image data that has been the source of other corrected image data set supplied, immediately before or after the corrected image data set, to a pixel to which the corrected image data set is supplied, and outputs the corrected signals including the corrected image data sets.

Description

液晶表示装置、駆動回路および駆動方法Liquid crystal display device, driving circuit and driving method
 本発明は、液晶表示装置、液晶表示素子の駆動回路、カラー画像生成方法、および、液晶表示素子の駆動方法に関する。 The present invention relates to a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method.
 プロジェクタまたは直視型のディスプレイなどの液晶表示装置でのカラー表示方式として、種々の方式が知られている。 Various systems are known as color display systems for liquid crystal display devices such as projectors or direct-view displays.
 特許文献1には、単板式のカラー液晶表示装置が記載されている。この単板式のカラー液晶表示装置は、R色(赤色)のカラーフィルターを有する画素と、G色(緑色)のカラーフィルターを有する画素と、B色(青色)のカラーフィルターを有する画素と、を有し、これらの画素を用いてカラー表示を行う。 Patent Document 1 describes a single-plate color liquid crystal display device. The single-plate color liquid crystal display device includes a pixel having an R color (red) color filter, a pixel having a G color (green) color filter, and a pixel having a B color (blue) color filter. Color display using these pixels.
 特許文献2には、カラー表示方式として、FSC(Field Sequential Color:フィールドシーケンシャルカラー)方式を採用した液晶表示装置が記載されている。 Patent Document 2 describes a liquid crystal display device adopting an FSC (Field Sequential Color) system as a color display system.
 FSC方式の液晶表示装置では、異なる色の光が、1つのモノクロの液晶表示素子に順次照射されると共に、光(色)の切り替えに同期して、液晶表示素子の表示画像が、照射光の色に応じた画像に切り替えられる。 In the FSC type liquid crystal display device, light of different colors is sequentially irradiated onto one monochrome liquid crystal display element, and the display image of the liquid crystal display element is synchronized with the switching of light (color). The image can be switched according to the color.
 以下、FSC方式について説明する。 The following describes the FSC method.
 FSC方式では、1画面を構成する1フレームの期間が、照射光の色に応じた複数のカラーフィールドの期間に分割される。 In the FSC system, one frame period constituting one screen is divided into a plurality of color field periods according to the color of the irradiation light.
 カラーフィールドごとに、カラーフィールドの色に対応する画像が、1つのモノクロの液晶表示素子に形成され、かつ、カラーフィールドの色を有する光が、その液晶表示素子に照射される。 For each color field, an image corresponding to the color of the color field is formed on one monochrome liquid crystal display element, and light having the color of the color field is irradiated to the liquid crystal display element.
 液晶表示素子に照射された光は、液晶表示素子に形成された画像によって変調され出力される。 The light irradiated to the liquid crystal display element is modulated and output by an image formed on the liquid crystal display element.
 FSC方式では、フィールドの切り替えタイミングが1フレームの期間よりも短いため、液晶表示素子から順次出力される複数の変調された光は、人間の目には、1つのカラー画像として認識される。 In the FSC method, since the field switching timing is shorter than the period of one frame, a plurality of modulated lights sequentially output from the liquid crystal display element are recognized as one color image by human eyes.
 FSC方式では、1フレームよりも短い期間である1フィールドごとに、液晶表示素子の表示画像を切り替える必要がある。このため、液晶表示素子には、速い応答が必要とされる。 In the FSC system, it is necessary to switch the display image of the liquid crystal display element for each field that is a period shorter than one frame. For this reason, a quick response is required for the liquid crystal display element.
 液晶表示素子内の各画素には、動作制御素子として、p-Si(多結晶シリコン)の TFT(Thin Film Transistor)回路が形成されている場合が多い。TFT回路は、映像信号内の画像データを画素内の液晶に印加するために使用される。 In each pixel in a liquid crystal display element, a p-Si (polycrystalline silicon) TFT (Thin Film Transistor) circuit is often formed as an operation control element. The TFT circuit is used to apply image data in the video signal to the liquid crystal in the pixel.
 液晶表示素子内の複数の画素は、多くの場合、マトリクス状に配列されており、以下のように走査される。複数の画素は、行ごとに順番に選択される。画像データは、選択された同一行の複数の画素に対して、順番に転送される。このため、液晶表示素子内の各画素間で、画像データの転送タイミング(供給タイミング)に差が生じる。 In many cases, the plurality of pixels in the liquid crystal display element are arranged in a matrix and scanned as follows. The plurality of pixels are selected in order for each row. The image data is sequentially transferred to a plurality of selected pixels in the same row. For this reason, a difference occurs in the transfer timing (supply timing) of the image data between the pixels in the liquid crystal display element.
 図1は、FSC方式での、フレームと、カラーフィールドと、画素の走査タイミングと、を説明するための説明図である。 FIG. 1 is an explanatory diagram for explaining a frame, a color field, and a pixel scanning timing in the FSC system.
 図1において、1フレーム(Frame)は、フィールドR(Field-R:赤色フィールド)、フィールドG(Field-G:緑色フィールド)、および、フィールドB(Field-B:青色フィールド)からなる3つのカラーフィールドに分割されている。 In FIG. 1, one frame (Frame) has three colors including a field R (Field-R: red field), a field G (Field-G: green field), and a field B (Field-B: blue field). It is divided into fields.
 液晶表示素子内のすべての画素は、各カラーフィールド内で、最上部の行から最下部の行への方向に、順番に走査される。 All the pixels in the liquid crystal display element are scanned in order from the top row to the bottom row in each color field.
 多くの液晶表示装置は、次のような特徴を有する。
[1]液晶表示素子は、光学的応答(光の透過率応答)が遅い。
[2]液晶表示素子に形成されるp-Siの TFT回路は、動作周波数が遅いゆえ、映像信号の転送に時間がかかる。
[3]画像データがTFT回路によって画素に転送されると、その画像データが、直ちに、画素内の液晶に印加される。
[4]液晶表示素子の全画素に同時に同じ色の光が照明される。
[5]光の透過率の応答特性が、黒から白への変化と、白から黒への変化とで、異なる。
[6]光の透過率の応答特性が、波長によって異なる。
Many liquid crystal display devices have the following characteristics.
[1] The liquid crystal display element has a slow optical response (light transmittance response).
[2] Since the p-Si TFT circuit formed on the liquid crystal display element has a low operating frequency, it takes time to transfer the video signal.
[3] When the image data is transferred to the pixel by the TFT circuit, the image data is immediately applied to the liquid crystal in the pixel.
[4] All the pixels of the liquid crystal display element are simultaneously illuminated with the same color light.
[5] Response characteristics of light transmittance are different between a change from black to white and a change from white to black.
[6] The response characteristic of the light transmittance varies depending on the wavelength.
 図2は、特徴[1]~[4]に起因するFSC方式での不具合現象を説明するための説明図である。 FIG. 2 is an explanatory diagram for explaining a malfunction phenomenon in the FSC method due to the features [1] to [4].
 図2においても、1フレームは、フィールドR(Field-R)、フィールドG(Field-G)、および、フィールドB(Field-B)からなる3つのカラーフィールドに分割されている。 Also in FIG. 2, one frame is divided into three color fields including field R (Field-R), field G (Field-G), and field B (Field-B).
 フィールドRの期間内では、R色に対応する映像信号(以下「R色映像信号」と称する)が、液晶表示素子(LCD)に転送される。フィールドGの期間内では、G色に対応する映像信号(以下「G色映像信号」と称する)が、液晶表示素子に転送される。フィールドBの期間内では、B色に対応する映像信号(以下「B色映像信号」と称する)が、液晶表示素子に転送される。 During the period of field R, a video signal corresponding to R color (hereinafter referred to as “R color video signal”) is transferred to a liquid crystal display element (LCD). Within the period of field G, a video signal corresponding to G color (hereinafter referred to as “G color video signal”) is transferred to the liquid crystal display element. Within the period of field B, a video signal corresponding to B color (hereinafter referred to as “B color video signal”) is transferred to the liquid crystal display element.
 R色映像信号は、液晶表示素子の画素に1対1で対応することができるR色用の複数の画像データを含む。R色用の画像データ(以下「R色画像データ」と称する)のそれぞれは、対応する画素の画像情報(映像情報)であり、階調を示すデータである。 The R color video signal includes a plurality of R color image data that can correspond one-to-one to the pixels of the liquid crystal display element. Each of the R color image data (hereinafter referred to as “R color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
 G色映像信号は、液晶表示素子の画素に1対1で対応することができるG色用の複数の画像データを含む。G色用の画像データ(以下「G色画像データ」と称する)のそれぞれは、対応する画素の画像情報(映像情報)であり、階調を示すデータである。 The G color video signal includes a plurality of image data for G color that can correspond one-to-one to the pixels of the liquid crystal display element. Each of the G color image data (hereinafter referred to as “G color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
 B色映像信号は、液晶表示素子の画素に1対1で対応することができるB色用の複数の画像データを含む。B色用の画像データ(以下「B色画像データ」と称する)のそれぞれは、対応する画素の画像情報(映像情報)であり、階調を示すデータである。 The B color video signal includes a plurality of B color image data that can correspond one-to-one to the pixels of the liquid crystal display element. Each of the B-color image data (hereinafter referred to as “B-color image data”) is image information (video information) of a corresponding pixel, and is data indicating a gradation.
 グラフAは、各カラーフィールドで、複数の画素のうち最初に画像データが転送される画素での光の透過率の変化を示したグラフである。 Graph A is a graph showing a change in light transmittance at a pixel to which image data is first transferred among a plurality of pixels in each color field.
 グラフBは、各カラーフィールドで、複数の画素のうち最後に画像データが転送される画素での光の透過率の変化を示したグラフである。 Graph B is a graph showing a change in light transmittance at a pixel to which image data is transferred last among a plurality of pixels in each color field.
 R色LED光源点灯制御、G色LED光源点灯制御、および、B色LED光源点灯制御は、R色の光を発することができる LED(Light Emitting Diode:発光ダイオード)と、G色の光を発することができる LEDと、B色の光を発することができる LEDと、を具備する光源(照明装置を構成する光源)を用いた、各色のLEDの発光制御である。 R-color LED light source lighting control, G-color LED light source lighting control, and B-color LED light source lighting control emit light of R color and LED (Light Emitting Diode) and G color light. This is light emission control of each color LED using a light source (light source constituting a lighting device) including an LED capable of emitting light of B color and an LED capable of emitting light of B color.
 LCDの光透過率は、液晶表示素子内の画素における光の透過率を示す。 LCD light transmittance indicates the light transmittance of the pixels in the liquid crystal display element.
 図2に示したように、グラフAとグラフBとは、波形は同一であるが、位相がずれている。この位相のずれは、液晶表示素子内の画素の位置、つまり、各画素への画像データの転送タイミングのずれに依存する。 As shown in FIG. 2, graph A and graph B have the same waveform but are out of phase. This phase shift depends on the position of the pixel in the liquid crystal display element, that is, the transfer timing of image data to each pixel.
 グラフAおよびグラフBの波形に示されたように、特徴[1]~[3]により、各画素では、画像データが画素に転送されてから、その画素の光の透過率がその画像データに応じた光の透過率になるまで、時間がかかる。 As shown in the waveforms of the graph A and the graph B, according to the features [1] to [3], in each pixel, after the image data is transferred to the pixel, the light transmittance of the pixel is changed to the image data. It takes time to achieve the appropriate light transmittance.
 よって、各画素への画像データの転送タイミングのずれ、および、特徴[1]~[3]により、光源点灯時等の所定のタイミングでの各画素の光の透過率が異なってしまう場合が生じる。 Therefore, the light transmittance of each pixel may differ at a predetermined timing such as when the light source is turned on due to a shift in the transfer timing of image data to each pixel and the features [1] to [3]. .
 さらに、特徴[4]が合わさることによって、各画素を通過する光の量が異なってしまう場合が生じる(斜線部aの面積と斜線部bの面積が異なってしまう)。つまり、画素ごとに、明るさが異なってしまう。 Furthermore, when the feature [4] is combined, the amount of light passing through each pixel may be different (the area of the hatched part a and the area of the hatched part b are different). That is, the brightness differs for each pixel.
 このため、FSC方式の場合、液晶表示素子の画面内位置によって、色味、階調再現性が異なってしまう。 For this reason, in the case of the FSC method, the color tone and gradation reproducibility differ depending on the position of the liquid crystal display element in the screen.
 液晶表示装置は、画像データを更新するまで表示を保持するように働く、いわゆるホールド型である。 The liquid crystal display device is a so-called hold type that works to hold the display until the image data is updated.
 画像データを更新する周期に対して画素を光らせる時間が短いインパルス型と比べ、ホールド型は動画品質が悪いといわれている。その改善策として、画像データの更新周期を短くすることが知られている。 The hold type is said to have poor video quality compared to the impulse type, which has a short time to illuminate the pixels with respect to the cycle of updating the image data. As an improvement measure, it is known to shorten the update cycle of image data.
 しかしながら、特徴[1]~[4]によって、画像データの更新周期を短くするほど、液晶表示素子の画面内位置によって、階調再現性の差異が大きくなってしまう。 However, as the image data update period is shortened according to the features [1] to [4], the difference in gradation reproducibility increases depending on the position of the liquid crystal display element in the screen.
 特許文献3および4には、各画素への画像データの転送タイミングのずれと特徴[1]~[4]とに起因する階調再現性の不具合を改善することが可能なFSC方式の液晶表示装置が記載されている。 Patent Documents 3 and 4 describe an FSC liquid crystal display capable of improving the problem of gradation reproducibility caused by the shift in the transfer timing of image data to each pixel and the features [1] to [4]. An apparatus is described.
 特許文献3に記載のFSC方式の液晶表示装置、および、特許文献4に記載のFSC方式の液晶表示装置では、すべての画素に同じ輝度を表示させる映像信号を印加した場合に、光が照射されるときの各画素での光の透過率が等しくなるように、各画素に転送される画像データが補正される。 In the FSC liquid crystal display device described in Patent Document 3 and the FSC liquid crystal display device described in Patent Document 4, light is irradiated when a video signal for displaying the same luminance is applied to all pixels. The image data transferred to each pixel is corrected so that the light transmittance at each pixel becomes equal.
 なお、特許文献3および4には、ある色に対応する画像データ(映像信号)を補正する際に、他の色に対応する画像データ(映像信号)を用いる旨の記載はない。 In Patent Documents 3 and 4, there is no description that image data (video signal) corresponding to another color is used when correcting image data (video signal) corresponding to a certain color.
 特徴[5]は、液晶の応答特性が印加電界によって異なることに起因する。 Feature [5] is due to the fact that the response characteristics of the liquid crystal differ depending on the applied electric field.
 例えば、TN(Twisted Nematic)モード液晶の場合、印加電界を強めて液晶の向きを変化させるときと、印加電界を弱めて液晶の粘弾性によって液晶の向きを変化させるときとでは、後者の方が、液晶の応答特性が遅い。 For example, in the case of a TN (Twisted Nematic) mode liquid crystal, when the applied electric field is increased to change the direction of the liquid crystal and when the applied electric field is weakened to change the direction of the liquid crystal due to the viscoelasticity of the liquid crystal, the latter is Liquid crystal response characteristics are slow.
 このため、液晶表示素子がノーマリホワイトの構造の場合、白から黒への変化より、黒から白への変化の方が遅い。このことから、液晶表示素子がノーマリホワイトの構造の場合、特に、暗い画像から明るい画像に変化する際に、動画品質が悪くなる。一方、液晶表示素子がノーマリブラックの構造の場合、特に明るい画像から暗い画像に変化する際に、動画品質が悪くなる。 Therefore, when the liquid crystal display element has a normally white structure, the change from black to white is slower than the change from white to black. For this reason, when the liquid crystal display element has a normally white structure, the moving image quality deteriorates particularly when a dark image changes to a bright image. On the other hand, when the liquid crystal display element has a normally black structure, the moving image quality deteriorates particularly when the light image changes to a dark image.
 また、特徴[5]は、FSC方式では、静止画の品質も悪くする。 Also, feature [5] also deteriorates the quality of still images in the FSC system.
 例えば、FSC方式では、液晶表示素子がノーマリホワイトの場合は、原色の単色は明るくならず、液晶表示素子がノーマリブラックの場合は、原色単色の補色は白っぽくなってしまう。また、FSC方式では、有彩色の表示を行う場合、表示色によっては再現困難になってしまう。 For example, in the FSC system, when the liquid crystal display element is normally white, the primary color is not bright, and when the liquid crystal display element is normally black, the complementary color of the primary color is whitish. In the FSC system, when displaying chromatic colors, it may be difficult to reproduce depending on the display color.
 液晶表示素子には、 TNモード、 IPS(In-Plane Switching)モード、 VA(Vertically Aligned)モード、 OCB(Optically Compensated Bend)モード、といった液晶モードがある。いずれの場合でも、印加電界によって液晶の向き(ダイレクタ)を変えて複屈折の程度を制御し、液晶内を通過する光の偏光状態が変化させられる。 Liquid crystal display elements include TN mode, IPS (In-Plane Switching) mode, VA (Vertical Aligned) mode, and OCB (Optically Compensated Bend) mode. In either case, the direction of the liquid crystal (director) is changed by the applied electric field to control the degree of birefringence, and the polarization state of the light passing through the liquid crystal can be changed.
 偏光状態の変化の度合いは、光の波長に依存する。したがって、特徴[6]が生じる。特徴[6]が、色再現性をさらに悪化させる要因になる。 The degree of change in the polarization state depends on the wavelength of light. Therefore, feature [6] occurs. Feature [6] is a factor that further deteriorates the color reproducibility.
 特許文献5には、FSC方式でカラー画像の生成を行い、かつ、色ごとに設けられたレベル補正回路が自回路に対応する色の映像信号を補正する、液晶表示装置が記載されている。 Patent Document 5 describes a liquid crystal display device in which a color image is generated by the FSC method, and a level correction circuit provided for each color corrects a video signal of a color corresponding to its own circuit.
 このレベル補正回路は、光の透過率の応答特性が波長によって異なること、つまり、特徴[6]を補正するために、自己に対応する色の映像信号を補正する。 This level correction circuit corrects the video signal of the color corresponding to the self in order to correct the characteristic [6] that the response characteristic of the light transmittance varies depending on the wavelength.
 具体的には、特許文献5に記載の液晶表示装置は、レベル補正回路32R、32Gおよび32Bを有する。レベル補正回路32Rは、赤色用映像信号を受け付け、赤色用映像信号を、赤色の応答特性に応じて補正する。レベル補正回路32Gは、緑色用映像信号を受け付け、緑色用映像信号を、緑色の応答特性に応じて補正する。レベル補正回路32Bは、青色用映像信号を受け付け、青色用映像信号を、青色の応答特性に応じて補正する。 Specifically, the liquid crystal display device described in Patent Document 5 includes level correction circuits 32R, 32G, and 32B. The level correction circuit 32R receives the red video signal and corrects the red video signal according to the red response characteristic. The level correction circuit 32G receives the green video signal and corrects the green video signal according to the green response characteristic. The level correction circuit 32B receives the blue video signal and corrects the blue video signal according to the blue response characteristic.
 液晶表示装置は、各画素を、順次に制御する。よって、ある画素に注目すると、その画素は、所定の周期の一部の期間しかアクセスされない。その一部の期間に、液晶を制御する電圧Vが、画素に印加される。 The liquid crystal display device sequentially controls each pixel. Therefore, when attention is paid to a certain pixel, the pixel is accessed only during a part of a predetermined period. During the partial period, a voltage V for controlling the liquid crystal is applied to the pixel.
 画素は、容量成分Cを有する。このため、画素に制御電圧Vを印加することによって、画素電極に、制御電圧Vに応じた電荷Qが供給される。 The pixel has a capacitive component C. Therefore, by applying the control voltage V to the pixel, the charge Q corresponding to the control voltage V is supplied to the pixel electrode.
 一般的に次式が成り立つ。 Generally, the following equation holds.
 Q=C×V ...式[1]
 画素の容量Cは、画素の液晶の向き(ダイレクタ)によって変化するという性質を持つ。
Q = C × V. . . Formula [1]
The pixel capacitance C has a property of changing depending on the orientation (director) of the liquid crystal of the pixel.
 もし、液晶の向きの変化が落ち着くまで電圧をかけ続けられる場合、容量が変化すると電荷が供給される。 If the voltage continues to be applied until the change in the liquid crystal orientation has settled, charge is supplied when the capacitance changes.
 ところが、画素にアクセスした期間内に液晶の向きの変化が収束しない場合、電荷の供給が途絶えた後の液晶の向きの変化によって、容量が変化する。したがって、画素内の液晶にかかる電圧が、アクセス時点に印加した電圧から変化してしまう。 However, when the change in the orientation of the liquid crystal does not converge within the period when the pixel is accessed, the capacitance changes due to the change in the orientation of the liquid crystal after the supply of charges is interrupted. Therefore, the voltage applied to the liquid crystal in the pixel changes from the voltage applied at the time of access.
 一回のアクセスで、所望の電荷量を供給できないという課題を解決する方法として、いわゆる、オーバードライブ、という方法が知られている(特許文献6、7参照)。 A so-called overdrive method is known as a method for solving the problem that a desired charge amount cannot be supplied in one access (see Patent Documents 6 and 7).
 オーバードライブは、ダイレクタを、どの状態からどの状態へ変化させるかに応じて、所望のダイレクタの状態になったときの電圧とは異なる過度の電圧を画素に印加することによって、所望の電荷量を画素に供給する方法である。 Overdrive applies the desired amount of charge by applying an excessive voltage to the pixel that is different from the voltage when the director is in the desired director state, depending on which state the director is changed from to which state. This is a method of supplying the pixel.
 また、オーバードライブは、液晶の応答の遅さに起因する不具合、つまり、特徴[1]に起因する不具合を改善するという側面もある。 In addition, overdrive also has an aspect of improving a problem caused by a slow response of the liquid crystal, that is, a problem caused by the feature [1].
 特許文献6および7で述べられているオーバードライブは、あるフレームの映像信号を、その直前のフレームの映像信号を用いて補正する技術である。つまり、特許文献6および7には、FCS方式と異なる液晶表示装置でオーバードライブを適用する技術が記載されている。 The overdrive described in Patent Documents 6 and 7 is a technique for correcting a video signal of a certain frame using the video signal of the immediately preceding frame. That is, Patent Documents 6 and 7 describe techniques for applying overdrive in a liquid crystal display device different from the FCS method.
 また、特許文献7には、オーバードライブによる映像信号の補正の程度を、その映像信号が転送される画素の表示画面での位置に応じて変更する液晶表示装置が記載されている。 Patent Document 7 describes a liquid crystal display device that changes the degree of correction of a video signal by overdrive in accordance with the position on the display screen of a pixel to which the video signal is transferred.
 この液晶表示装置では、マトリクス状に配列された複数の画素が、最上部の行から最下部の行への方向に順番に1行ずつ走査され、選択された行の画素に対して、画像データが順番に転送される。 In this liquid crystal display device, a plurality of pixels arranged in a matrix are scanned one by one in order from the uppermost row to the lowermost row, and image data is selected for the pixels in the selected row. Are transferred in order.
 この液晶表示装置は、注視されやすい表示画面の中央部に位置する画素に転送される画像データについては、表示画面の端部に位置する画素に転送される画像データよりも、オーバードライブによる補正の程度を大きくする。 In this liquid crystal display device, the image data transferred to the pixel located at the center of the display screen that is easily watched is corrected by overdrive rather than the image data transferred to the pixel located at the edge of the display screen. Increase the degree.
 また、特許文献7には、オーバードライブを適用した3板式のカラー液晶表示装置が記載されている。 Patent Document 7 describes a three-plate color liquid crystal display device to which overdrive is applied.
 図3は、オーバードライブを適用した3板式のカラー液晶表示装置100を示したブロック図である。 FIG. 3 is a block diagram showing a three-plate color liquid crystal display device 100 to which overdrive is applied.
 図3において、3板式のカラー液晶表示装置100は、R色用フレームメモリ101Rと、G色用フレームメモリ101Gと、B色用フレームメモリ101Bと、R色用オーバードライブ制御部102Rと、G色用オーバードライブ制御部102Gと、B色用オーバードライブ制御部102Bと、R色用液晶表示素子103Rと、G色用液晶表示素子103Gと、B色用液晶表示素子103Bと、を含む。 In FIG. 3, a three-plate color liquid crystal display device 100 includes an R color frame memory 101R, a G color frame memory 101G, a B color frame memory 101B, an R color overdrive control unit 102R, and a G color. Overdrive control unit 102G, B color overdrive control unit 102B, R color liquid crystal display element 103R, G color liquid crystal display element 103G, and B color liquid crystal display element 103B.
 R色用フレームメモリ101Rと、R色用オーバードライブ制御部102Rと、R色用液晶表示素子103Rとは、R色系統の機器である。G色用フレームメモリ101Gと、G色用オーバードライブ制御部102Gと、G色用液晶表示素子103Gとは、G色系統の機器である。B色用フレームメモリ101Bと、B色用オーバードライブ制御部102Bと、B色用液晶表示素子103Bとは、B色系統の機器である。 The R color frame memory 101R, the R color overdrive control unit 102R, and the R color liquid crystal display element 103R are devices of the R color system. The G color frame memory 101G, the G color overdrive control unit 102G, and the G color liquid crystal display element 103G are devices of the G color system. The B color frame memory 101B, the B color overdrive control unit 102B, and the B color liquid crystal display element 103B are devices of the B color system.
 R色用液晶表示素子103Rは、R色に対応する画像を表示する。G色用液晶表示素子103Gは、G色に対応する画像を表示する。B色用液晶表示素子103Bは、B色に対応する画像を表示する。 The R color liquid crystal display element 103R displays an image corresponding to the R color. The G color liquid crystal display element 103G displays an image corresponding to the G color. The B color liquid crystal display element 103B displays an image corresponding to the B color.
 オーバードライブでは、液晶ダイレクタの目的状態と開始状態に応じて、画素への印加電圧(補正信号)が制御される。 In overdrive, the voltage applied to the pixel (correction signal) is controlled according to the target state and start state of the liquid crystal director.
 このため、各オーバードライブ制御部102R、102Gおよび102Bは、これから表示しようとする自フレームの映像信号と、同系統のフレームメモリから読み出した前フレームの映像信号と、を入力して、同系統の液晶表示素子を駆動する補正信号を生成する。 Therefore, each overdrive control unit 102R, 102G, and 102B inputs the video signal of its own frame to be displayed and the video signal of the previous frame read from the same frame memory, A correction signal for driving the liquid crystal display element is generated.
 どの画素に注目しても、その画素は、1つの色に対応する画像を表示し、常に、同一の光の照明光を受ける。3板式のカラー液晶表示装置100は、映像更新周期であるフレーム間の液晶ダイレクタの状態遷移に応じて、オーバードライブすることになる。
特開2000-330084号公報 特開2006-235443号公報 特開2004-61670号公報 特開2008-165233号公報 特開2002-148584号公報 特開2002-351409号公報 特開2007-199418号公報
Regardless of the pixel, the pixel displays an image corresponding to one color and always receives the same illumination light. The three-plate type color liquid crystal display device 100 is overdriven in accordance with the state transition of the liquid crystal director between frames, which is the video update cycle.
JP 2000-330084 A JP 2006-235443 A JP 2004-61670 A JP 2008-165233 A JP 2002-148484 A JP 2002-351409 A JP 2007-199418 A
 特許文献6および7には、オーバードライブについての記載はあるが、FSC方式の液晶表示装置でオーバードライブを用いる旨の記載はない。 In Patent Documents 6 and 7, there is a description about overdrive, but there is no description that overdrive is used in an FSC liquid crystal display device.
 FSC方式の液晶表示装置で特許文献6または7に示されたようなオーバードライブを適用する場合、ある画素に注目すると、その画素が表示する色は一つではないため、色の切り替え周期であるフィールドの切り替え時の液晶ダイレクタの状態遷移に応じて、オーバードライブが行われることになる。 When an overdrive such as that disclosed in Patent Document 6 or 7 is applied to an FSC type liquid crystal display device, if attention is paid to a certain pixel, since the color displayed by the pixel is not one, it is a color switching period. Overdrive is performed according to the state transition of the liquid crystal director at the time of field switching.
 したがって、FSC方式の液晶表示装置でオーバードライブを適用する場合、ある色の映像信号を補正するために、他の色の映像信号を用いる必要がある。 Therefore, when applying overdrive in an FSC liquid crystal display device, it is necessary to use a video signal of another color in order to correct a video signal of a certain color.
 特許文献3および4には、すべての画素に同じ輝度を表示させる映像信号を印加した場合に、光が照射されるときの各画素での光の透過率が等しくなるように、各画素に転送される画像データを補正するFSC方式の液晶表示装置は記載されているが、ある色に対応する映像信号(画像データ)を補正する際に、他の色に対応する映像信号(画像データ)を用いる旨の記載はない。 In Patent Documents 3 and 4, when a video signal for displaying the same luminance is applied to all the pixels, the light is transmitted to each pixel so that the light transmittance in each pixel is equal when the light is irradiated. Although an FSC liquid crystal display device that corrects the image data to be displayed is described, when correcting a video signal (image data) corresponding to a certain color, the video signal (image data) corresponding to another color is corrected. There is no statement to use.
 このため、特許文献3または4に記載された画像データの補正技術は、FSC方式の液晶表示装置でのオーバードライブ用の補正技術として使用できない。 For this reason, the image data correction technique described in Patent Document 3 or 4 cannot be used as an overdrive correction technique in an FSC liquid crystal display device.
 また、特許文献5に記載のレベル補正回路、具体的には、自回路に対応する色の映像信号のみを受け付け、その色の映像信号を補正するレベル補正回路も、FSC方式の液晶表示装置でのオーバードライブ用の補正回路として使用できない。 The level correction circuit described in Patent Document 5, specifically, a level correction circuit that accepts only a video signal of a color corresponding to its own circuit and corrects the video signal of that color is also an FSC liquid crystal display device. Cannot be used as a correction circuit for overdrive.
 特許文献1には、単板式のカラー液晶表示装置が記載されているが、FSC方式の液晶表示装置は記載されていない。 Patent Document 1 describes a single-plate color liquid crystal display device, but does not describe an FSC liquid crystal display device.
 特許文献2には、FSC方式の液晶表示装置は記載されているが、ある色に対応する映像信号(画像データ)を補正する際に、他の色に対応する映像信号(画像データ)を用いる旨の記載はない。 Patent Document 2 describes an FSC type liquid crystal display device, but when correcting a video signal (image data) corresponding to a certain color, a video signal (image data) corresponding to another color is used. There is no statement to that effect.
 なお、FSC方式の液晶表示装置でオーバードライブを適用した場合にも、各画素への画像データの転送タイミングのずれと液晶の応答の遅さとに起因する階調再現性の不具合が発生すると考えられる。 In addition, even when overdrive is applied to an FSC liquid crystal display device, it is considered that there is a problem in gradation reproducibility due to a shift in the transfer timing of image data to each pixel and a slow response of the liquid crystal. .
 このため、FSC方式の液晶表示装置でオーバードライブを適用した場合に、各画素への画像データの転送タイミングのずれと液晶の応答の遅さとに起因する階調再現性の不具合が発生するという課題が生じる。 For this reason, when overdrive is applied to an FSC liquid crystal display device, there is a problem in that there is a problem of gradation reproducibility due to a shift in the transfer timing of image data to each pixel and a slow response of the liquid crystal Occurs.
 なお、特許文献1~7のいずれにも、この課題が生じるための前提となる技術、具体的には、FSC方式の液晶表示装置でオーバードライブを適用する技術が記載されていない。 Note that none of Patent Documents 1 to 7 describes a technology that is a prerequisite for the occurrence of this problem, specifically, a technology that applies overdrive in an FSC liquid crystal display device.
 このため、特許文献1~7に記載の技術では、当然のことながら、上記課題、具体的には、FSC方式の液晶表示装置でオーバードライブを適用した場合に、各画素への画像データの転送タイミングのずれと液晶の応答の遅さとに起因する階調再現性の不具合が発生するという課題は解決されていない。 For this reason, the techniques described in Patent Documents 1 to 7 naturally transfer the image data to each pixel when the above-described problem, specifically, overdrive is applied to the FSC liquid crystal display device. The problem that the problem of gradation reproducibility due to the timing shift and the slow response of the liquid crystal occurs has not been solved.
 本発明の目的は、上述した課題を解決可能な、液晶表示装置、液晶表示素子の駆動回路、カラー画像生成方法、および、液晶表示素子の駆動方法を提供することにある。 An object of the present invention is to provide a liquid crystal display device, a liquid crystal display element drive circuit, a color image generation method, and a liquid crystal display element drive method capable of solving the above-described problems.
 本発明による液晶表示装置は、複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力する補正手段と、前記補正手段から出力された複数の補正信号を、1つずつ順番に出力する出力制御手段と、前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発する照射手段と、複数の画素を有し、前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、前記照射手段からの光を変調して出力する液晶表示素子と、を含み、前記補正手段は、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する。 When the liquid crystal display device according to the present invention receives a plurality of video signals corresponding to a plurality of colors and having a plurality of image data, a plurality of corrected image data obtained by correcting each image data in the video signal for each of the video signals. A correction unit that outputs a correction signal, an output control unit that sequentially outputs a plurality of correction signals output from the correction unit one by one, and each time the correction signal is output from the output control unit Each time the correction signal is output from the output control means, the irradiation means for emitting light of a color corresponding to the video signal that is the source of the correction signal, and a plurality of pixels. Each corrected image data is sequentially supplied to a pixel corresponding to the corrected image data among the plurality of pixels, and the light from the irradiation unit is changed using the plurality of pixels to which the corrected image data is supplied. And the liquid crystal display element that outputs the image data, and the correction means supplies each image data in the video signal, the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element, and the correction A correction signal having a plurality of corrected image data corrected based on other image data that is the basis of other corrected image data supplied immediately before or immediately after the corrected image data to pixels corresponding to the image data. Output.
 本発明による駆動回路は、複数の画素を有し、複数の補正画像データを有する補正信号を受け付けるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、当該補正信号の元になった映像信号に対応する色の光を変調して出力する液晶表示素子の駆動回路であって、複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力する補正手段と、前記補正手段から出力された複数の補正信号を、1つずつ順番に前記液晶表示素子に出力する出力制御手段と、を含み、前記補正手段は、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する。 The drive circuit according to the present invention has a plurality of pixels, and each time a correction signal having a plurality of correction image data is received, each correction image data in the correction signal is sequentially input to the correction image of the plurality of pixels. A liquid crystal display element that supplies a pixel corresponding to data and modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal using a plurality of pixels to which the correction image data is supplied. When the drive circuit receives a plurality of video signals corresponding to a plurality of colors and having a plurality of image data, each of the video signals has a plurality of corrected image data obtained by correcting each image data in the video signal. Correction means for outputting a correction signal; and output control means for outputting a plurality of correction signals outputted from the correction means to the liquid crystal display element one by one in order, Each image data in the image signal is supplied to the pixel corresponding to the corrected image data immediately before or after the corrected image data in the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element. A correction signal having a plurality of corrected image data corrected based on the other image data that is the basis of the other corrected image data is output.
 本発明によるカラー画像生成方法は、FSC方式の液晶表示装置が行うカラー画像生成方法であって、複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力し、前記複数の補正信号を、1つずつ順番に出力し、前記補正信号が1つずつ出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発し、前記出力制御手段から前記補正信号が1つずつ出力されるごとに、当該補正信号内の各補正画像データを順番に、複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、前記光を変調して出力し、前記複数の補正画像データを有する補正信号を出力する際には、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記複数の画素への供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する。 A color image generation method according to the present invention is a color image generation method performed by an FSC liquid crystal display device. When a plurality of video signals corresponding to a plurality of colors and having a plurality of image data are received, the color image generation method is performed for each video signal. A correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal is output, the plurality of correction signals are sequentially output one by one, and the correction signals are output one by one. Each time, the light of the color corresponding to the video signal that is the source of the correction signal is emitted, and each time the correction signal is output from the output control means, each correction image data in the correction signal is output. In order, the plurality of pixels are supplied to the pixel corresponding to the corrected image data, the plurality of pixels to which the corrected image data is supplied are used to modulate and output the light, and the plurality of corrected image data When outputting the correction signal, the image data in the video signal is supplied to the pixels corresponding to the correction image data and the order of supply of the correction image data obtained by correcting the image data to the plurality of pixels. A correction signal having a plurality of corrected image data corrected based on the other image data that is the source of the other corrected image data supplied immediately before or after the corrected image data is output.
 本発明による駆動方法は、複数の画素を有し、複数の補正画像データを有する補正信号を受け付けるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、当該補正信号の元になった映像信号に対応する色の光を変調して出力する液晶表示素子の駆動方法であって、複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力し、前記複数の補正信号を、1つずつ順番に前記液晶表示素子に出力し、前記複数の補正画像データを有する補正信号を出力する際には、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する。 The driving method according to the present invention includes a plurality of pixels, and each time a correction signal having a plurality of correction image data is received, the correction image data in the correction signal is sequentially input to the correction image of the plurality of pixels. A liquid crystal display element that supplies a pixel corresponding to data and modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal using a plurality of pixels to which the correction image data is supplied. In the driving method, when a plurality of video signals corresponding to a plurality of colors and having a plurality of image data are received, each of the video signals has a plurality of corrected image data obtained by correcting each image data in the video signal. When outputting a correction signal, outputting the plurality of correction signals one by one to the liquid crystal display element, and outputting a correction signal having the plurality of correction image data, each image in the video signal is output. The order of supply of the corrected image data in the liquid crystal display element, in which the image data is corrected, and other corrected image data supplied to the pixel corresponding to the corrected image data immediately before or after the corrected image data And a correction signal having a plurality of corrected image data corrected based on the other image data that is the source of the above.
 本発明によれば、FSC方式の液晶表示装置において、画面内位置による階調再現性の差異および色再現性の差異を低減することができる。 According to the present invention, in the FSC liquid crystal display device, it is possible to reduce the difference in gradation reproducibility and the color reproducibility depending on the position in the screen.
FSC方式での、フレームと、カラーフィールドと、画素の走査タイミングと、を説明するための説明図である。It is explanatory drawing for demonstrating the scanning timing of a flame | frame, a color field, and a pixel in a FSC system. FSC方式での不具合現象を説明するための説明図である。It is explanatory drawing for demonstrating the malfunction phenomenon in a FSC system. オーバードライブを適用した3板式のカラー液晶表示装置100を示したブロック図である。1 is a block diagram showing a three-plate color liquid crystal display device 100 to which overdrive is applied. 本発明の第1の実施の形態の液晶表示装置1を示したブロック図である。1 is a block diagram illustrating a liquid crystal display device 1 according to a first embodiment of the present invention. 液晶表示素子2の一例を示した説明図である。6 is an explanatory diagram showing an example of a liquid crystal display element 2. FIG. 補正部3の一例を示したブロック図である。4 is a block diagram illustrating an example of a correction unit 3. FIG. 画面内位置と補正動作との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction | amendment operation | movement. 補正部31を示したブロック図である。3 is a block diagram illustrating a correction unit 31. FIG. 画面内位置と補正動作との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction | amendment operation | movement. 補正部32を示したブロック図である。3 is a block diagram showing a correction unit 32. FIG. G色補正部3G4を示したブロック図である。It is the block diagram which showed G color correction part 3G4. 画面内位置と補正動作との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction | amendment operation | movement. 補正部33を示したブロック図である。FIG. 6 is a block diagram illustrating a correction unit 33. 画面内位置と補正動作との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the position in a screen, and correction | amendment operation | movement.
符号の説明Explanation of symbols
 1 液晶表示装置
 2 液晶表示素子
 2a 画素
 2b ゲートドライバ
 2c ソースドライバ
 2d 走査線
 2e データ線
 2f コモン線
 2g 画面
 3、31、32、33 補正部
 3R1、3R2、3R3 R色補正部
 3G1、3G2、3G3 G色補正部
 3B1、3B2、3B3 B色補正部
 3G1a~3G1c、3G2a~3G2b、3G3a~3G3b、3G4a~3G4c LUT格納部
 3G1d 選択回路
 3G2c 補間演算部
 3G2d 係数生成部
 3G2e、3G2f 乗算器
 3G2g 加算器
 3G4e、3G4f 選択回路
 3G4g 選択回路制御部
 3G4h 出力部
 33a、33b 時分割多重回路
 33c 多色補正部
 33d デマルチプレクサ
 33e 切替部
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 2 Liquid crystal display element 2a Pixel 2b Gate driver 2c Source driver 2d Scan line 2e Data line 2f Common line 2g Screen 3, 31, 32, 33 Correction part 3R1, 3R2, 3R3 R color correction part 3G1, 3G2, 3G3 G color correction unit 3B1, 3B2, 3B3 B color correction unit 3G1a to 3G1c, 3G2a to 3G2b, 3G3a to 3G3b, 3G4a to 3G4c LUT storage unit 3G1d selection circuit 3G2c interpolation calculation unit 3G2d coefficient generation unit 3G2e, 3G2f multiplier 3G4e, 3G4f selection circuit 3G4g selection circuit control unit 3G4h output unit 33a, 33b time division multiplexing circuit 33c multicolor correction unit 33d demultiplexer 33e switching unit
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施の形態]
 図4は、本発明の第1の実施の形態の液晶表示装置1を示したブロック図である。
[First Embodiment]
FIG. 4 is a block diagram showing the liquid crystal display device 1 according to the first embodiment of the present invention.
 図4において、液晶表示装置1は、液晶表示素子2と、補正部3と、データ並べ替え部4と、照射部5と、を含む。データ並べ替え部4は、フレームメモリ(Frame Memory)4aと、メモリ制御部4bと、を含む。照射部5は、照明部5aと、タイミング制御部5bと、を含む。 4, the liquid crystal display device 1 includes a liquid crystal display element 2, a correction unit 3, a data rearrangement unit 4, and an irradiation unit 5. The data rearrangement unit 4 includes a frame memory 4a and a memory control unit 4b. The irradiation unit 5 includes an illumination unit 5a and a timing control unit 5b.
 液晶表示装置1は、複数の色のそれぞれに1対1で対応する複数の映像信号(以下、単に「複数の映像信号」と称する)を受け付ける。 The liquid crystal display device 1 receives a plurality of video signals corresponding to each of a plurality of colors on a one-to-one basis (hereinafter simply referred to as “a plurality of video signals”).
 液晶表示装置1は、複数の映像信号に対応する複数の色の画像を順番に表示することにより、カラー画像を表示するFSC方式の液晶表示装置である。 The liquid crystal display device 1 is an FSC liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals.
 各映像信号は、複数の画像データを有する。映像信号内の各画像データは、液晶表示素子2内の複数の画素のそれぞれに対応する。このため、本実施形態では、映像信号内の各画像データの配列の順番は、液晶表示素子2内の複数の画素への供給の順番に対応づけられる。 Each video signal has a plurality of image data. Each image data in the video signal corresponds to each of a plurality of pixels in the liquid crystal display element 2. For this reason, in this embodiment, the order of arrangement of each image data in the video signal is associated with the order of supply to the plurality of pixels in the liquid crystal display element 2.
 液晶表示素子2は、複数の画素を有する。液晶表示素子2は、駆動信号を受け付けると、複数の画素を用いて、その駆動信号に応じて、自己に照射された光を変調し、画像を形成する光を出力する。 The liquid crystal display element 2 has a plurality of pixels. When the liquid crystal display element 2 receives the drive signal, the liquid crystal display element 2 uses a plurality of pixels, modulates the light applied to the liquid crystal display element 2 according to the drive signal, and outputs light for forming an image.
 なお、液晶表示装置1がプロジェクタ(投写型表示装置)である場合、液晶表示素子2にて変調されて出力された光は、投写光学系(不図示)によって拡大され、スクリーン(不図示)に投写される。また、液晶表示装置1が直視型表示装置である場合、液晶表示素子2にて変調されて出力された光は、使用者の目に到達する。 When the liquid crystal display device 1 is a projector (projection display device), the light modulated and output by the liquid crystal display element 2 is magnified by a projection optical system (not shown) and is applied to a screen (not shown). Projected. When the liquid crystal display device 1 is a direct view display device, the light modulated and output by the liquid crystal display element 2 reaches the eyes of the user.
 図5は、液晶表示素子2の一例を示した説明図である。 FIG. 5 is an explanatory view showing an example of the liquid crystal display element 2.
 図5において、液晶表示素子2は、複数の画素2aと、ゲートドライバ2bと、ソースドライバ2cと、複数の走査線2dと、複数のデータ線2eと、コモン線2fと、を含む。 In FIG. 5, the liquid crystal display element 2 includes a plurality of pixels 2a, a gate driver 2b, a source driver 2c, a plurality of scanning lines 2d, a plurality of data lines 2e, and a common line 2f.
 複数の画素2aは、マトリクス状に配列されている。各画素2aは、TFT回路2a1と、液晶容量2a2と、を有する。液晶容量2a2は、対向電極の間に液晶が介在する構成を有する。 The plurality of pixels 2a are arranged in a matrix. Each pixel 2a has a TFT circuit 2a1 and a liquid crystal capacitor 2a2. The liquid crystal capacitor 2a2 has a configuration in which liquid crystal is interposed between the counter electrodes.
 各TFT回路2a1のドレインは、TFT回路2a1が属する画素2aに存在する液晶容量2a2の一端に接続されている。液晶容量2a2の他端は、コモン線2fに接続されている。コモン線2fには、コモン電圧が供給される。 The drain of each TFT circuit 2a1 is connected to one end of a liquid crystal capacitor 2a2 present in the pixel 2a to which the TFT circuit 2a1 belongs. The other end of the liquid crystal capacitor 2a2 is connected to the common line 2f. A common voltage is supplied to the common line 2f.
 同一行に存在するTFT回路2a1のゲートは、共通の走査線2dに接続されている。各走査線2dは、ゲートドライバ2bに接続されている。 The gates of the TFT circuits 2a1 existing in the same row are connected to the common scanning line 2d. Each scanning line 2d is connected to the gate driver 2b.
 ゲートドライバ2bは、出力フィールド同期タイミングに同期した垂直同期信号に応じてフィールドごとにおける垂直走査(走査線の選択)を開始し、水平同期信号に応じて、走査線2dを順番に1つずつ選択し、選択された走査線2dにゲート駆動信号を供給する。 The gate driver 2b starts vertical scanning (selection of scanning lines) for each field according to the vertical synchronizing signal synchronized with the output field synchronization timing, and selects the scanning lines 2d one by one in order according to the horizontal synchronizing signal. Then, a gate drive signal is supplied to the selected scanning line 2d.
 同一列に存在するTFT回路2a1のソースは、共通のデータ線2eに接続されている。各データ線2eは、ソースドライバ2cに接続されている。 The sources of the TFT circuits 2a1 existing in the same column are connected to the common data line 2e. Each data line 2e is connected to the source driver 2c.
 ソースドライバ2cは、水平同期信号に応じて走査線ごとにおける水平走査(データ線の選択)を開始し、転送クロック信号に応じて、データ線2eを順番に選択する。 The source driver 2c starts horizontal scanning (selection of data line) for each scanning line according to the horizontal synchronization signal, and sequentially selects the data line 2e according to the transfer clock signal.
 ソースドライバ2cは、選択されたデータ線2eと選択された走査線2dとによって特定される画素2aに対応する画像データ(本実施形態では、その画像データを補正した補正画像データ)を、選択されたデータ線2eに供給する。 The source driver 2c selects image data corresponding to the pixel 2a specified by the selected data line 2e and the selected scanning line 2d (corrected image data obtained by correcting the image data in this embodiment). Supplied to the data line 2e.
 TFT回路2a1のゲートにゲート駆動信号が供給されると、TFT回路2a1のソースに供給された補正画像データが、TFT回路2a1のドレインを介して、液晶容量2a2に供給される。このため、選択されたデータ線2eと選択された走査線2dとによって特定される画素2aには、TFT回路2a1を介して、対応する補正画像データが供給される。 When a gate drive signal is supplied to the gate of the TFT circuit 2a1, the corrected image data supplied to the source of the TFT circuit 2a1 is supplied to the liquid crystal capacitor 2a2 via the drain of the TFT circuit 2a1. For this reason, the corresponding corrected image data is supplied to the pixel 2a specified by the selected data line 2e and the selected scanning line 2d via the TFT circuit 2a1.
 複数の走査線2dと複数のデータ線2eとは、互いに電気的な絶縁を保ちつつ配列されている。 The plurality of scanning lines 2d and the plurality of data lines 2e are arranged while maintaining electrical insulation from each other.
 ゲートドライバ2bとソースドライバ2cは、タイミング制御部5bから供給される出力フィールドの同期タイミングを示すタイミング信号(垂直同期信号)、水平同期信号および転送クロック信号等に基づいて動作する。なお、この動作は、公知技術であるため、その詳細な説明は省略する。 The gate driver 2b and the source driver 2c operate based on a timing signal (vertical synchronization signal) indicating a synchronization timing of the output field supplied from the timing control unit 5b, a horizontal synchronization signal, a transfer clock signal, and the like. Since this operation is a known technique, a detailed description thereof is omitted.
 図4に戻って、補正部3は、一般的に補正手段と呼ぶことができる。 Returning to FIG. 4, the correction unit 3 can be generally called correction means.
 補正部3は、入力フレームの同期タイミングを示すタイミング信号に同期した複数の色の映像信号を入力し、複数の色のそれぞれに1対1で対応する複数の補正信号を出力する。 The correction unit 3 inputs video signals of a plurality of colors synchronized with a timing signal indicating the synchronization timing of the input frame, and outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
 本実施形態では、補正部3は、1フレーム期間ごとに発生するタイミング信号を受け付けるたびに、複数の映像信号を受け付け、その複数の映像信号のそれぞれに1対1で対応する複数の補正信号を出力する。 In the present embodiment, the correction unit 3 receives a plurality of video signals each time a timing signal generated every frame period is received, and outputs a plurality of correction signals corresponding to the plurality of video signals on a one-to-one basis. Output.
 本実施形態では、補正部3は、複数の映像信号を受け付けると、映像信号ごとに、その映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力する。 In this embodiment, when the correction unit 3 receives a plurality of video signals, the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal.
 補正信号内の各補正画像データは、その補正画像データの元になった画像データと対応する。各画像データは、液晶表示素子2内の複数の画素2aのそれぞれに対応するため、補正信号内の各補正画像データも、液晶表示素子2内の複数の画素2aのそれぞれに対応する。 Each corrected image data in the correction signal corresponds to the image data that is the basis of the corrected image data. Since each image data corresponds to each of the plurality of pixels 2 a in the liquid crystal display element 2, each correction image data in the correction signal also corresponds to each of the plurality of pixels 2 a in the liquid crystal display element 2.
 また、補正信号内の各補正画像データのそれぞれは、対応する画素に供給される。このため、本実施形態では、補正信号内の各補正画像データの配列の順番は、液晶表示素子2内の複数の画素2aへの供給の順番に対応づけられる。 Also, each of the corrected image data in the correction signal is supplied to the corresponding pixel. For this reason, in this embodiment, the order of arrangement of each corrected image data in the correction signal is associated with the order of supply to the plurality of pixels 2 a in the liquid crystal display element 2.
 本実施形態では、補正部3は、複数の映像信号として、赤色に対応するR色映像信号と、緑色に対応するG色映像信号と、青色に対応するB色映像信号と、を受け付ける。 In the present embodiment, the correction unit 3 accepts, as a plurality of video signals, an R color video signal corresponding to red, a G color video signal corresponding to green, and a B color video signal corresponding to blue.
 また、補正部3は、複数の補正信号として、赤色に対応するR色補正信号と、緑色に対応するG色補正信号と、青色に対応するB色補正信号と、を出力する。補正部3は、R色映像信号を元にしてR色補正信号を生成し、G色映像信号を元にしてG色補正信号を生成し、B色映像信号を元にしてB色補正信号を生成する。 The correction unit 3 outputs an R color correction signal corresponding to red, a G color correction signal corresponding to green, and a B color correction signal corresponding to blue as a plurality of correction signals. The correction unit 3 generates an R color correction signal based on the R color video signal, generates a G color correction signal based on the G color video signal, and generates a B color correction signal based on the B color video signal. Generate.
 データ並べ替え部4は、一般的に出力制御手段と呼ぶことができる。 The data rearrangement unit 4 can be generally called output control means.
 データ並べ替え部4は、補正部3が出力した複数の補正信号を、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 The data rearrangement unit 4 outputs the plurality of correction signals output from the correction unit 3 to the liquid crystal display element 2 one by one as a drive signal.
 本実施形態では、データ並べ替え部4は、R色補正信号とG色補正信号とB色補正信号を、R色補正信号、G色補正信号、B色補正信号の順番で、駆動信号として、液晶表示素子2に出力する。なお、この順番は適宜変更可能である。 In this embodiment, the data rearrangement unit 4 uses the R color correction signal, the G color correction signal, and the B color correction signal as drive signals in the order of the R color correction signal, the G color correction signal, and the B color correction signal. Output to the liquid crystal display element 2. This order can be changed as appropriate.
 フレームメモリ4aは、映像信号として機能する複数の補正信号を並べ替えるためのバッファとして用いられる。 The frame memory 4a is used as a buffer for rearranging a plurality of correction signals functioning as video signals.
 メモリ制御部4bは、補正部3が出力した複数の補正信号を、フレームメモリ4a上で、液晶表示素子2への出力順に並べ替える。 The memory control unit 4b rearranges the plurality of correction signals output from the correction unit 3 in the order of output to the liquid crystal display element 2 on the frame memory 4a.
 本実施形態では、メモリ制御部4bは、R色補正信号とG色補正信号とB色補正信号とを、フレームメモリ4a上で、R色補正信号、G色補正信号、B色補正信号の順に並べ替える。 In this embodiment, the memory control unit 4b performs the R color correction signal, the G color correction signal, and the B color correction signal in the order of the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a. Rearrange.
 メモリ制御部4bは、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 The memory control unit 4b outputs the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. .
 照射部5は、一般的に照射手段と呼ぶことができる。 The irradiation unit 5 can be generally called irradiation means.
 照射部5は、補正部3から出力された複数の補正信号のいずれかが、駆動信号として液晶表示素子2へ出力されるごとに、液晶表示素子2へ出力された補正信号の元になった映像信号に対応する色の光を、液晶表示素子2に照射する。ただし、照射部5は、光を照射するタイミング(期間と位相)を、液晶表示素子2に駆動信号が出力されてからの光透過率の応答の程度を考慮して調整する。 The irradiating unit 5 becomes the source of the correction signal output to the liquid crystal display element 2 each time one of the plurality of correction signals output from the correction unit 3 is output to the liquid crystal display element 2 as a drive signal. The liquid crystal display element 2 is irradiated with light of a color corresponding to the video signal. However, the irradiation unit 5 adjusts the light irradiation timing (period and phase) in consideration of the response of the light transmittance after the drive signal is output to the liquid crystal display element 2.
 照明部5aは、赤色の光を発するR色LEDと、緑色の光を発するG色LEDと、青色の光を発するB色LEDと、を含む。 The illumination unit 5a includes an R color LED that emits red light, a G color LED that emits green light, and a B color LED that emits blue light.
 タイミング制御部5bは、入力フレームの同期タイミング(以下「入力フレーム同期タイミング」と称する)を示すタイミング信号を入力し、1フレーム期間を3つのカラーフィールド期間に分割した出力フィールドの同期タイミング(以下「出力フィールド同期タイミング」と称する)を示すタイミング信号を生成する。なお、本実施形態では、入力フレーム同期タイミングと出力フィールド同期タイミングとは同期しているが、非同期であってもかまわない。 The timing control unit 5b receives a timing signal indicating the synchronization timing of the input frame (hereinafter referred to as “input frame synchronization timing”), and outputs the synchronization timing of the output field (hereinafter referred to as “color frame period”). A timing signal indicating "output field synchronization timing" is generated. In the present embodiment, the input frame synchronization timing and the output field synchronization timing are synchronized, but they may be asynchronous.
 また、タイミング制御部5bは、出力フィールド同期タイミングに同期した垂直同期信号、水平同期信号および転送クロック信号を生成し、それら垂直同期信号、水平同期信号および転送クロック信号を、液晶表示素子2に供給する。 The timing controller 5b generates a vertical synchronization signal, a horizontal synchronization signal, and a transfer clock signal synchronized with the output field synchronization timing, and supplies the vertical synchronization signal, the horizontal synchronization signal, and the transfer clock signal to the liquid crystal display element 2. To do.
 データ並べ替え部4では、タイミング制御部5bからの2系統のタイミング信号(入力フレーム同期タイミングを示すタイミング信号と出力フィールド同期タイミングを示すタイミング信号)によって、メモリ制御部4bは、入力フレーム同期タイミングに同期してフレームメモリ4aへの書込みを制御し、出力フィールド同期タイミングに同期してフレームメモリ4aからの読出しを制御する。そして、メモリ制御部4bは、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 In the data rearrangement unit 4, the memory control unit 4 b uses the two timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b to change the input frame synchronization timing. The writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing. Then, the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
 液晶表示素子2は、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期してデータ並べ替え部4から順次出力されたR色補正信号、G色補正信号およびB色補正信号を順次入力する。 The liquid crystal display element 2 sequentially receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. input.
 そして、液晶表示素子2は、各色の補正信号(駆動信号)を受け付けるごとに、タイミング制御部5bからの垂直同期信号、水平同期信号および転送クロック信号に同期して、その補正信号内の各補正画像データを、その補正画像データに対応する画素2aに順番に供給して、各画素2aの液晶の向き(ダイレクタ)を制御し、色ごとに順次に照射された各色光を、補正画像データの供給によって液晶の向きが制御された複数の画素2aを用いて変調して、各色の画像を形成する光を順次生成する。 Each time the liquid crystal display element 2 receives a correction signal (drive signal) for each color, each correction in the correction signal is synchronized with the vertical synchronization signal, horizontal synchronization signal, and transfer clock signal from the timing controller 5b. The image data is sequentially supplied to the pixel 2a corresponding to the corrected image data, the direction of the liquid crystal (director) of each pixel 2a is controlled, and each color light sequentially irradiated for each color is converted into the corrected image data. Modulation is performed using a plurality of pixels 2a in which the orientation of the liquid crystal is controlled by supply, and light that forms an image of each color is sequentially generated.
 照明部5aは、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期して、R色LEDと、G色LEDと、B色LEDとを、この順番で1つずつ点灯する。 The illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
 このため、本実施形態では、液晶表示装置1は、以下のように動作する。 Therefore, in this embodiment, the liquid crystal display device 1 operates as follows.
 液晶表示素子2がR色補正信号に応じた画像を形成している際に、照明部5aが、R色LEDを点灯して液晶表示素子2をR色の光で照射する。 When the liquid crystal display element 2 is forming an image corresponding to the R color correction signal, the illumination unit 5a turns on the R color LED and irradiates the liquid crystal display element 2 with the R color light.
 その後、液晶表示素子2がG色補正信号に応じた画像を形成している際に、照明部5aが、G色LEDを点灯して液晶表示素子2をG色の光で照射する。 Thereafter, when the liquid crystal display element 2 is forming an image corresponding to the G color correction signal, the illumination unit 5a turns on the G color LED and irradiates the liquid crystal display element 2 with the G color light.
 その後、液晶表示素子2がB色補正信号に応じた画像を形成している際に、照明部5aが、B色LEDを点灯して液晶表示素子2をB色の光で照射する。 Thereafter, when the liquid crystal display element 2 forms an image corresponding to the B color correction signal, the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with B color light.
 ここで、補正部3について説明する。 Here, the correction unit 3 will be described.
 補正部3は、映像信号内の各画像データを、その画像データを補正した補正画像データの液晶表示素子2での供給の順番(以下、単に「供給の順番」と称する)と、その補正画像データに対応する画素にその補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データ(以下、単に「他の画像データ」と称する)と、に基づいて補正した複数の補正画像データを有する補正信号を出力する。 The correction unit 3 supplies each image data in the video signal in the order of supply of the corrected image data obtained by correcting the image data in the liquid crystal display element 2 (hereinafter simply referred to as “supply order”) and the corrected image. Based on other image data (hereinafter simply referred to as “other image data”) that is the source of other corrected image data supplied to the pixel corresponding to the data immediately before or after the corrected image data A correction signal having a plurality of corrected image data corrected is output.
 つまり、補正部3は、映像信号内の各画像データを、供給の順番と他の画像データとに基づいて補正した複数の補正画像データを有する補正信号を、映像信号ごとに出力する。 That is, the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the supply order and other image data.
 補正部3の働きは、FSC方式に起因する階調再現性および色再現性の低下を改善することと、画面内位置による階調再現性および色再現性の差異を低減すること、の2つである。 The function of the correction unit 3 is to improve the reduction in gradation reproducibility and color reproducibility due to the FSC method, and to reduce the difference in gradation reproducibility and color reproducibility depending on the position in the screen. It is.
 まず、FSC方式に起因する階調再現性および色再現性の低下を改善するための補正について説明する。補正部3では、この補正を行うために、他の画像データが用いられる。 First, correction for improving the gradation reproducibility and color reproducibility deterioration caused by the FSC method will be described. In the correction unit 3, other image data is used to perform this correction.
 図1および図2で示したように、FSC方式においては、液晶ダイレクタの変化は、カラーフィールド間の映像信号の変化がきっかけになる。したがって、オーバードライブを行うために参照するデータは、前フィールドの色に対応する映像信号になる。 As shown in FIGS. 1 and 2, in the FSC system, the change of the liquid crystal director is triggered by the change of the video signal between the color fields. Therefore, data referred to for overdrive is a video signal corresponding to the color of the previous field.
 液晶表示装置1では、FSC方式での色の表示順(カラーシーケンス)がR,G,Bである。この場合、G色映像信号と、G色映像信号の前フィールドのR色映像信号とが、G色映像信号を補正するために用いられる。さらには、前々フィールドのB色映像信号が用いられてもよい。なお、特に断りが無い限り、以降は、FSC方式での色の表示順(カラーシーケンス)がR,G,Bである場合について説明する。 In the liquid crystal display device 1, the color display order (color sequence) in the FSC system is R, G, B. In this case, the G color video signal and the R color video signal in the previous field of the G color video signal are used to correct the G color video signal. Further, a B color video signal in the field may be used. Unless otherwise specified, hereinafter, a case where the color display order (color sequence) in the FSC system is R, G, and B will be described.
 FSC方式でオーバードライブを実現するためには、図3に示したような同時加法混色を利用したカラー表示方式の3板式投写型液晶表示装置や並置(併置)加法混色を利用したカラー表示方式の直視型液晶表示装置において必要であったフレームメモリは、必ずしも必要ではない。 In order to realize overdrive by the FSC method, a color display method three-plate projection type liquid crystal display device using simultaneous additive color mixture as shown in FIG. 3 or a color display method using juxtaposed (parallel) additive color mixture is used. The frame memory required in the direct view type liquid crystal display device is not necessarily required.
 同時加法混色を利用したカラー表示方式の液晶表示装置とは、R色、G色およびB色のそれぞれを別々に変調する3つの液晶表示素子を有し、各色の変調された画像光を重ねて表示する液晶表示装置である。プロジェクタ等の投写型液晶表示装置は、このタイプが一般的であり、いわゆる3板式と呼ばれている。 A color display type liquid crystal display device using simultaneous additive color mixing has three liquid crystal display elements that individually modulate R, G, and B colors, and superimposes the modulated image light of each color. A liquid crystal display device for display. This type of projection type liquid crystal display device such as a projector is common and is called a so-called three-plate type.
 並置(併置)加法混色を利用したカラー表示方式の液晶表示装置とは、R色、G色およびB色のカラーフィルターを有するサブ画素(サブピクセル)を近接配置してカラー表示する画素を、複数有する液晶表示装置である。 A liquid crystal display device using a color display method using juxtaposed (or juxtaposed) additive color mixing is a plurality of pixels that perform color display by arranging subpixels (subpixels) having R, G, and B color filters in close proximity. A liquid crystal display device.
 あるフィールドの液晶ダイレクタの状態は、前フィールドの液晶ダイレクタの状態から影響を受け、次フィールドの液晶ダイレクタの状態へ影響する。本実施形態では、G色のフィールドからみれば、B色のフィールドは、前々フィールドでもあり、次フィールドでもある。したがって、G色映像信号を補正することによって、次フィールドのB色の階調再現性を改善することができる。 The state of the liquid crystal director in one field is affected by the state of the liquid crystal director in the previous field, and the state of the liquid crystal director in the next field. In the present embodiment, when viewed from the G color field, the B color field is both the previous field and the next field. Therefore, by correcting the G color video signal, the gradation reproducibility of the B color in the next field can be improved.
 例えば、G色映像信号の階調レベルが50%でB色映像信号の階調レベルが80%の状況で、補正部3内のG色補正信号を設定する際、G色補正信号の階調レベルを、B色映像信号の階調レベル80%(さらに言えば、G色映像信号の階調レベルとB色映像信号の階調レベルとの差)に基づいて、G色映像信号の階調レベル50%よりも過度の60%に設定すれば、B色フィールドでの液晶ダイレクタの状態を、より速く所望の状態に近づけることができ、B色の階調再現性を改善することができる。 For example, when setting the G color correction signal in the correction unit 3 in a situation where the gradation level of the G color video signal is 50% and the gradation level of the B color video signal is 80%, the gradation of the G color correction signal is set. The gray level of the G color video signal is based on the gradation level of the B color video signal 80% (more specifically, the difference between the gray level of the G color video signal and the gray level of the B color video signal). When the level is set to 60%, which is excessively higher than the level 50%, the state of the liquid crystal director in the B color field can be brought closer to the desired state more quickly, and the B color gradation reproducibility can be improved.
 また、例えば、G色映像信号の階調レベルが50%でB色映像信号の階調レベルが20%の状況で、補正部3内のG色補正信号を設定する際、G色補正信号の階調レベルを、B色映像信号の階調レベル20%からみて、G色映像信号の階調レベル50%よりも過度のレベルの40%に設定すれば、B色フィールドでの液晶ダイレクタの状態を、より速く所望の状態に近づけることができ、B色の階調再現性を改善することができる。 Further, for example, when setting the G color correction signal in the correction unit 3 in a situation where the gradation level of the G color video signal is 50% and the gradation level of the B color video signal is 20%, the G color correction signal If the gradation level is set to 40%, which is excessively higher than the gradation level 50% of the G color video signal, as viewed from the gradation level 20% of the B color video signal, the state of the liquid crystal director in the B color field Can be brought closer to the desired state more quickly, and the B color gradation reproducibility can be improved.
 これらの補正は、従来のオーバードライブとは似ているが異なるものである。 These corrections are similar to, but different from, conventional overdrive.
 従来のオーバードライブは、前フィールド(3板式においては前フレーム)の画像データを用いて自フィールド(3板式においては自フレーム)の画像データを補正して過度の電圧を印加する技術であるので、改善対象である自フィールドの映像信号内の画像データの階調レベルが100%または0%の場合は、階調再現性を改善することができない。 Since the conventional overdrive is a technique of applying an excessive voltage by correcting the image data of the own field (own frame in the three-plate type) using the image data of the previous field (front frame in the three-plate type), When the gradation level of the image data in the video signal of the own field to be improved is 100% or 0%, the gradation reproducibility cannot be improved.
 一方、次フィールドの色の映像信号を用いて自フィールドの色の映像信号内の画像データを補正する方法は、改善対象である次フィールドの色の映像信号内の画像データの階調レベルが100%または0%であっても、階調再現性および色再現性を改善することができる。 On the other hand, in the method of correcting the image data in the video signal of the color of the own field using the video signal of the color of the next field, the gradation level of the image data in the video signal of the color of the next field to be improved is 100. Even if it is% or 0%, tone reproducibility and color reproducibility can be improved.
 次に、画面内位置による階調再現性および色再現性の差異を低減するための補正について説明する。補正部3では、この補正を行うために、液晶表示素子2での補正画像データの供給の順番が用いられる。 Next, correction for reducing the difference in gradation reproducibility and color reproducibility depending on the position in the screen will be described. In order to perform this correction, the correction unit 3 uses the order of supplying corrected image data in the liquid crystal display element 2.
 各画素2aへの補正画像データの供給タイミングのずれと液晶の応答の遅さとに起因して、図2に示したようにグラフAとグラフBとの間に位相差が生じる。 Due to the difference in the supply timing of the corrected image data to each pixel 2a and the slow response of the liquid crystal, a phase difference occurs between the graph A and the graph B as shown in FIG.
 光が照射されるタイミングで、この位相差を少なくするためには、補正画像データの供給タイミングが遅い画素ほど、補正画像データが供給されてから、画素の光透過率がその画像データに応じた光透過率になるまでの時間が短くなるように、各画像データを補正した補正画像データを、補正部3が出力すればよい。つまり、補正部3は、各画素2aへの画像データの供給タイミング(供給の順番)に基づいて、各画像データを補正すればよい。 In order to reduce this phase difference at the timing of light irradiation, the pixel whose light transmittance corresponds to the image data after the correction image data is supplied to the pixel whose correction image data is supplied more slowly. The correction unit 3 may output corrected image data obtained by correcting each image data so that the time until the light transmittance is reached. That is, the correction unit 3 may correct each image data based on the supply timing (supply order) of the image data to each pixel 2a.
 補正部3は、映像信号内の各画像データを、供給の順番と、他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を、映像信号ごとに出力することによって、FSC方式に起因する階調再現性および色再現性の低下を改善し、かつ、画面内位置による階調再現性および色再現性の差異を低減する。 The correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the supply order and other image data. Improves gradation and color reproducibility degradation caused by the FSC method, and reduces differences in gradation and color reproducibility depending on the position in the screen.
 図6は、補正部3の一例を示したブロック図である。 FIG. 6 is a block diagram illustrating an example of the correction unit 3.
 補正部3は、R色補正部3R1と、G色補正部3G1と、B色補正部3B1と、を有する。 The correction unit 3 includes an R color correction unit 3R1, a G color correction unit 3G1, and a B color correction unit 3B1.
 R色補正部3R1は、R色映像信号と1対1で対応する。 The R color correction unit 3R1 corresponds to the R color video signal on a one-to-one basis.
 R色補正部3R1は、R色映像信号、R色の次フィールドの色に対応するG色映像信号、および、タイミング信号(入力フレーム同期タイミングを示す入力フレーム同期タイミング信号と、そのタイミング信号に対応した水平同期タイミングを示す水平同期タイミング信号と、その水平同期タイミング信号に応じた画素クロックタイミングを示す画素クロックタイミング信号)を入力し、R色補正信号を出力する。 The R color correction unit 3R1 corresponds to the R color video signal, the G color video signal corresponding to the color of the next field of the R color, and the timing signal (the input frame synchronization timing signal indicating the input frame synchronization timing and the timing signal). The horizontal synchronization timing signal indicating the horizontal synchronization timing and the pixel clock timing signal indicating the pixel clock timing corresponding to the horizontal synchronization timing signal) are input, and the R color correction signal is output.
 G色補正部3G1は、G色映像信号と1対1で対応する。 The G color correction unit 3G1 has a one-to-one correspondence with the G color video signal.
 G色補正部3G1は、G色映像信号、G色の次フィールドの色に対応するB色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、G色補正信号を出力する。 The G color correction unit 3G1 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
 B色補正部3B1は、B色映像信号と1対1で対応する。 The B color correction unit 3B1 corresponds to the B color video signal on a one-to-one basis.
 B色補正部3B1は、B色映像信号、B色の次フィールドの色に対応するR色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、B色補正信号を出力する。 The B color correction unit 3B1 includes a B color video signal, an R color video signal corresponding to the color of the next field of B color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output the B color correction signal.
 G色補正部3G1は、3つのLUT(Look-up Table、参照テーブル)格納部3G1a、3G1bおよび3G1cと、選択回路(SEL)3G1dと、を含む。 The G color correction unit 3G1 includes three LUT (Look-up Table) storage units 3G1a, 3G1b and 3G1c, and a selection circuit (SEL) 3G1d.
 LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、色補正手段または格納手段と呼ぶことができる。このため、補正部3は、複数の色補正手段または格納手段を含むことになる。 Each of the LUT storage units 3G1a, 3G1b, and 3G1c can be referred to as color correction means or storage means. For this reason, the correction unit 3 includes a plurality of color correction means or storage means.
 3つのLUT格納部3G1a、3G1bおよび3G1cは、いずれも、G色映像信号およびB色映像信号を入力し、G色補正データを出力する。 The three LUT storage units 3G1a, 3G1b, and 3G1c all receive the G color video signal and the B color video signal and output the G color correction data.
 LUT格納部3G1a、3G1bおよび3G1cのそれぞれには、供給の順番のうちの所定の順番(以下「対応順番」と称する)が、予め対応づけられている。なお、複数のLUT格納部3G1a、3G1bおよび3G1cのそれぞれに対応づけられた対応順番は、LUT格納部ごとに異なるものである。 Each of the LUT storage units 3G1a, 3G1b, and 3G1c is associated with a predetermined order (hereinafter referred to as “corresponding order”) in the order of supply. The correspondence order associated with each of the plurality of LUT storage units 3G1a, 3G1b, and 3G1c is different for each LUT storage unit.
 本実施形態では、LUT格納部3G1aには、供給の順番のうちの最初の順番が対応づけられている。LUT格納部3G1cには、供給の順番のうちの最後の順番が対応づけられている。LUT格納部3G1bには、供給の順番のうちの最初の順番と、供給の順番のうちの最後の順番と、の間の所定の順番が、対応づけられている。 In the present embodiment, the LUT storage unit 3G1a is associated with the first order in the order of supply. The LUT storage unit 3G1c is associated with the last order in the supply order. The LUT storage unit 3G1b is associated with a predetermined order between the first order in the order of supply and the last order in the order of supply.
 LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、画像データと他の画像データとを受け付けるごとに、画像データを他の画像データと対応順番とに基づいて補正した補正データを出力する。 Each time the LUT storage units 3G1a, 3G1b, and 3G1c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
 本実施形態では、LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、画像データおよび他の画像データと、画像データを他の画像データと対応順番とに基づいて補正した補正データと、を互いに関連づけて格納し、画像データおよび他の画像データを受け付けると、その画像データおよび他の画像データに関連づけられた補正データを出力する。 In this embodiment, each of the LUT storage units 3G1a, 3G1b, and 3G1c associates image data and other image data with correction data obtained by correcting the image data based on the other image data and the corresponding order. When the image data and other image data are received, correction data associated with the image data and other image data is output.
 なお、LUT格納部3G1a、3G1bおよび3G1cが、同じ画像データと、同じ他の画像データと、を受け付けた場合、LUT格納部3G1a、3G1bおよび3G1cのそれぞれから出力される補正データは、他のLUT格納部から出力される補正データと概して異なる。 When the LUT storage units 3G1a, 3G1b, and 3G1c accept the same image data and the same other image data, the correction data output from each of the LUT storage units 3G1a, 3G1b, and 3G1c It is generally different from the correction data output from the storage unit.
 共通の画像データと、その共通の画像データを元にしてLUT格納部3G1a、3G1bおよび3G1cのそれぞれから出力された補正データと、の差を補正量とした場合、本実施形態では、LUT格納部3G1aでの補正量は、LUT格納部3G1bおよび3G1cでの補正量よりも概して小さい。また、本実施形態では、LUT格納部3G1bでの補正量は、LUT格納部3G1cでの補正量よりも概して小さい。 When the difference between the common image data and the correction data output from each of the LUT storage units 3G1a, 3G1b, and 3G1c based on the common image data is used as the correction amount, in this embodiment, the LUT storage unit The correction amount in 3G1a is generally smaller than the correction amounts in LUT storage units 3G1b and 3G1c. In the present embodiment, the correction amount in the LUT storage unit 3G1b is generally smaller than the correction amount in the LUT storage unit 3G1c.
 選択回路3G1dは、一般的に出力手段と呼ぶことができる。 The selection circuit 3G1d can be generally called output means.
 選択回路3G1dは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、を入力し、それらのタイミング信号に基づいて、供給の順番を特定する。 The selection circuit 3G1d receives the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and specifies the supply order based on these timing signals.
 選択回路3G1dは、LUT格納部3G1a、3G1bおよび3G1cのそれぞれからの複数の補正データを元にして、供給の順番に基づいて、複数の補正画像データを有する補正信号を作成して出力する。 The selection circuit 3G1d creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of the LUT storage units 3G1a, 3G1b, and 3G1c based on the order of supply.
 本実施形態では、選択回路3G1dは、3つのLUT格納部3G1a、3G1bおよび3G1cから各補正データを受け付けるごとに、供給の順番に基づいて、その受け付けられた3つの補正データの中から1つの補正データを補正画像データとして選択して出力する。 In this embodiment, the selection circuit 3G1d receives one correction data from the three correction data received based on the order of supply each time the correction data is received from the three LUT storage units 3G1a, 3G1b, and 3G1c. Data is selected and output as corrected image data.
 R色補正部3R1についての詳しい説明は、上述したG色補正LUT格納部3G1の説明のうち、「G色補正部3G1」を「R色補正部3R1」に読み替え、「LUT格納部3G1a」を「LUT格納部3R1a」に読み替え、「LUT格納部3G1b」を「LUT格納部3R1b」に読み替え、「LUT格納部3G1c」を「LUT格納部3R1c」に読み替え、「選択回路3G1d」を「選択回路3R1d」に読み替え、「G色映像信号」を「R色映像信号」に読み替え、「B色映像信号」を「G色映像信号」に読み替え、「G色補正信号」を「R色補正信号」に読み替えることによって行うことができる。 For a detailed description of the R color correction unit 3R1, in the description of the G color correction LUT storage unit 3G1 described above, “G color correction unit 3G1” is replaced with “R color correction unit 3R1”, and “LUT storage unit 3G1a” is replaced. “LUT storage unit 3R1a” is read, “LUT storage unit 3G1b” is read “LUT storage unit 3R1b”, “LUT storage unit 3G1c” is read “LUT storage unit 3R1c”, and “selection circuit 3G1d” is “selection circuit” 3R1d "," G color video signal "is read as" R color video signal "," B color video signal "is read as" G color video signal ", and" G color correction signal "is read as" R color correction signal ". It can be done by replacing with.
 B色補正部3B1についての詳しい説明は、上述したG色補正LUT格納部3G1の説明のうち、「G色補正部3G1」を「B色補正部3B1」に読み替え、「LUT格納部3G1a」を「LUT格納部3B1a」に読み替え、「LUT格納部3G1b」を「LUT格納部3B1b」に読み替え、「LUT格納部3G1c」を「LUT格納部3B1c」に読み替え、「選択回路3G1d」を「選択回路3B1d」に読み替え、「G色映像信号」を「B色映像信号」に読み替え、「B色映像信号」を「R色映像信号」に読み替え、「G色補正信号」を「B色補正信号」に読み替えることによって行うことができる。 For the detailed description of the B color correction unit 3B1, in the description of the G color correction LUT storage unit 3G1 described above, “G color correction unit 3G1” is replaced with “B color correction unit 3B1” and “LUT storage unit 3G1a” is replaced. “LUT storage unit 3B1a” is read, “LUT storage unit 3G1b” is read “LUT storage unit 3B1b”, “LUT storage unit 3G1c” is read “LUT storage unit 3B1c”, and “selection circuit 3G1d” is “selection circuit” 3B1d, “G color video signal” is read as “B color video signal”, “B color video signal” is read as “R color video signal”, and “G color correction signal” is read as “B color correction signal”. It can be done by replacing with.
 ただし、各LUT格納部が補正する特性は、映像信号の色ごとに異ならせることができる。 However, the characteristics corrected by each LUT storage unit can be different for each color of the video signal.
 次に、動作を説明する。 Next, the operation will be described.
 図7は、液晶表示素子2の画面内位置と補正動作との関係を説明するための説明図である。 FIG. 7 is an explanatory diagram for explaining the relationship between the position in the screen of the liquid crystal display element 2 and the correction operation.
 図7において、画面2gは、液晶表示素子2内でマトリクス状に配列された複数の画素2aにて形成される(図5参照)。 7, the screen 2g is formed by a plurality of pixels 2a arranged in a matrix within the liquid crystal display element 2 (see FIG. 5).
 図7では、複数の画素2aが、画面2gの最上部の行から最下部の行への方向に順番に1行ずつ走査され、選択された行の画素2aに対して、その画素2aに対応する補正画像データが順番に供給されるとする。 In FIG. 7, a plurality of pixels 2a are scanned one row at a time in the direction from the uppermost row to the lowermost row of the screen 2g, and the selected pixel 2a corresponds to the pixel 2a. It is assumed that corrected image data to be supplied is supplied in order.
 なお、特に断りがない限り、以降は、補正画像データが供給される順番は、画面2gの上の行から下の行へ向かう順番とする。 Unless otherwise specified, the order in which the corrected image data is supplied is the order from the upper line to the lower line on the screen 2g.
 本実施形態では、補正画像データが供給される順番にしたがって、画面2gが、3つのエリア2g1、2g2および2g3に分けられる。 In the present embodiment, the screen 2g is divided into three areas 2g1, 2g2, and 2g3 according to the order in which the corrected image data is supplied.
 まず、G色補正部3G1の動作を説明する。 First, the operation of the G color correction unit 3G1 will be described.
 LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、画像データと他の画像データとを受け付けるごとに、画像データを他の画像データと対応順番とに基づいて補正した補正データを出力する。 Each time the LUT storage units 3G1a, 3G1b, and 3G1c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
 選択回路3G1dは、3つのLUT格納部3G1a、3G1bおよび3G1cから各補正データを受け付けるごとに、供給の順番に基づいて、その受け付けられた3つの補正データの中から1つの補正データを補正画像データとして選択して出力する。 Each time the selection circuit 3G1d receives each correction data from the three LUT storage units 3G1a, 3G1b, and 3G1c, the correction circuit 3G1d selects one correction data from the three correction data received as correction image data. Select as output.
 本実施形態では、選択回路3G1dは、エリア2g1内の画素2aに供給される順番を有する補正データを3つのLUT格納部3G1a、3G1bおよび3G1cのそれぞれから受け付けているときには、LUT格納部3G1aからの補正データを選択し、その選択された補正データを、G色補正画像データとして、画像メモリ制御部4bに供給する。 In the present embodiment, when the selection circuit 3G1d receives correction data having the order supplied to the pixels 2a in the area 2g1 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c, the selection circuit 3G1d receives the correction data from the LUT storage unit 3G1a. The correction data is selected, and the selected correction data is supplied to the image memory control unit 4b as G color correction image data.
 選択回路3G1dは、エリア2g2内の画素2aに供給される順番を有する補正データを3つのLUT格納部3G1a、3G1bおよび3G1cのそれぞれから受け付けているときには、LUT格納部3G1bからの補正データを選択し、その選択された補正データを、G色補正画像データとして、メモリ制御部4bに供給する。 The selection circuit 3G1d selects correction data from the LUT storage unit 3G1b when receiving correction data having the order to be supplied to the pixels 2a in the area 2g2 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c. The selected correction data is supplied to the memory control unit 4b as G color correction image data.
 選択回路3G1dは、エリア2g3内の画素2aに供給される順番を有する補正データを3つのLUT格納部3G1a、3G1bおよび3G1cのそれぞれから受け付けているときには、LUT格納部3G1cからの補正データを選択し、その選択された補正データを、G色補正画像データとして、メモリ制御部4bに供給する。 The selection circuit 3G1d selects correction data from the LUT storage unit 3G1c when receiving correction data having the order to be supplied to the pixels 2a in the area 2g3 from each of the three LUT storage units 3G1a, 3G1b, and 3G1c. The selected correction data is supplied to the memory control unit 4b as G color correction image data.
 R色補正部3R1の動作は、上述したG色補正部3G1の動作の説明のうち、「G色補正部3G1」を「R色補正部3R1」に読み替え、「LUT格納部3G1a」を「LUT格納部3R1a」に読み替え、「LUT格納部3G1b」を「LUT格納部3R1b」に読み替え、「LUT格納部3G1c」を「LUT格納部3R1c」に読み替え、「選択回路3G1d」を「選択回路3R1d」に読み替え、「G色補正画像データ」を「R色補正画像データ」に読み替えることによって行うことができる。 Regarding the operation of the R color correction unit 3R1, in the above description of the operation of the G color correction unit 3G1, “G color correction unit 3G1” is replaced with “R color correction unit 3R1”, and “LUT storage unit 3G1a” is replaced with “LUT “LUT storage unit 3G1b” is replaced with “LUT storage unit 3R1b”, “LUT storage unit 3G1c” is replaced with “LUT storage unit 3R1c”, and “selection circuit 3G1d” is replaced with “selection circuit 3R1d”. This can be done by replacing “G color corrected image data” with “R color corrected image data”.
 B色補正部3R1の動作は、上述したG色補正部3G1の動作の説明のうち、「G色補正部3G1」を「B色補正部3B1」に読み替え、「LUT格納部3G1a」を「LUT格納部3B1a」に読み替え、「LUT格納部3G1b」を「LUT格納部3B1b」に読み替え、「LUT格納部3G1c」を「LUT格納部3B1c」に読み替え、「選択回路3G1d」を「選択回路3B1d」に読み替え、「G色補正画像データ」を「B色補正画像データ」に読み替えることによって行うことができる。 Regarding the operation of the B color correction unit 3R1, in the description of the operation of the G color correction unit 3G1 described above, “G color correction unit 3G1” is replaced with “B color correction unit 3B1”, and “LUT storage unit 3G1a” is replaced with “LUT “LUT storage unit 3G1b” is replaced with “LUT storage unit 3B1b”, “LUT storage unit 3G1c” is replaced with “LUT storage unit 3B1c”, and “selection circuit 3G1d” is replaced with “selection circuit 3B1d”. This can be done by replacing “G color corrected image data” with “B color corrected image data”.
 メモリ制御部4bは、R色補正信号とG色補正信号とB色補正信号とを受け付けると、R色補正信号とG色補正信号とB色補正信号とを、フレームメモリ4a上で、R色補正信号、G色補正信号、B色補正信号の順に並べ替える。 When the memory control unit 4b receives the R color correction signal, the G color correction signal, and the B color correction signal, the memory control unit 4b converts the R color correction signal, the G color correction signal, and the B color correction signal into the R color on the frame memory 4a. The correction signal, the G color correction signal, and the B color correction signal are rearranged in this order.
 一方、タイミング制御部5bは、入力フレーム同期タイミングを示すタイミング信号を入力し、1フレーム期間を3つのカラーフィールド期間に分割した出力フィールド同期タイミングを示すタイミング信号を生成し、データ並べ替え部4と、液晶表示素子2と、照明部5aと、に出力する。 On the other hand, the timing control unit 5b receives a timing signal indicating the input frame synchronization timing, generates a timing signal indicating the output field synchronization timing obtained by dividing one frame period into three color field periods, and the data rearrangement unit 4 To the liquid crystal display element 2 and the illumination unit 5a.
 なお、タイミング制御部5bは、出力フィールド同期タイミングに同期した垂直同期信号と共に、出力フィールド同期タイミングに対応した水平同期信号と、補正画像データの供給タイミングを示す転送クロック信号も生成し、それらの信号を、液晶表示素子2に出力する。 The timing controller 5b also generates a horizontal synchronization signal corresponding to the output field synchronization timing and a transfer clock signal indicating the supply timing of the corrected image data, along with the vertical synchronization signal synchronized with the output field synchronization timing, and these signals. Is output to the liquid crystal display element 2.
 データ並べ替え部4では、タイミング制御部5bからの2系統のタイミング信号(入力フレーム同期タイミングを示すタイミング信号と出力フィールド同期タイミングを示すタイミング信号)によって、メモリ制御部4bは、入力フレーム同期タイミングに同期してフレームメモリ4aへの書込みを制御し、出力フィールド同期タイミングに同期してフレームメモリ4aからの読出しを制御する。そして、メモリ制御部4bは、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 In the data rearrangement unit 4, the memory control unit 4 b uses the two timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b to change the input frame synchronization timing. The writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing. Then, the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
 液晶表示素子2は、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期してデータ並べ替え部4から順次出力されたR色補正信号、G色補正信号およびB色補正信号を入力する。 The liquid crystal display element 2 receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. To do.
 そして、液晶表示素子2は、色ごとに順次に、タイミング制御部5bからの垂直同期信号、水平同期信号および転送クロック信号に同期して、その補正信号内の各補正画像データを、その補正画像データに対応する画素2aに順番に供給して、各画素2aの液晶の向き(ダイレクタ)を制御し、色ごとに順次に照射された各色光を、補正画像データの供給によって液晶の向きが制御された複数の画素2aを用いて変調して、各色の画像を形成する光を順次生成する。 The liquid crystal display element 2 sequentially synchronizes the corrected image data in the correction signal with the corrected image in synchronization with the vertical synchronizing signal, horizontal synchronizing signal, and transfer clock signal from the timing control unit 5b. By sequentially supplying the pixel 2a corresponding to the data, the direction of the liquid crystal of each pixel 2a (director) is controlled, and the direction of the liquid crystal is controlled by supplying the corrected image data for each color light sequentially irradiated for each color. Modulation is performed using the plurality of pixels 2a, and light that forms an image of each color is sequentially generated.
 照明部5aは、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期して、R色LEDと、G色LEDと、B色LEDとを、この順番で1つずつ点灯する。 The illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
 このため、本実施形態では、液晶表示素子2がR色補正信号に応じた画像を形成している際に、照明部5aがR色LEDを点灯して液晶表示素子2をR色の光で照射し、液晶表示素子2がG色補正信号に応じた画像を形成している際に、照明部5aがG色LEDを点灯して液晶表示素子2をG色の光で照射し、液晶表示素子2がB色補正信号に応じた画像を形成している際に、照明部5aがB色LEDを点灯して液晶表示素子2をB色の光で照射する。 For this reason, in the present embodiment, when the liquid crystal display element 2 forms an image corresponding to the R color correction signal, the illumination unit 5a lights the R color LED, and the liquid crystal display element 2 is illuminated with the R color light. When the liquid crystal display element 2 forms an image corresponding to the G color correction signal, the illumination unit 5a lights the G color LED and irradiates the liquid crystal display element 2 with the G color light. When the element 2 is forming an image corresponding to the B color correction signal, the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with the B color light.
 本実施形態では、補正部3は、映像信号内の各画像データを供給の順番と他の画像データとに基づいて補正した複数の補正画像データを有する補正信号を、映像信号ごとに出力する。 In this embodiment, the correction unit 3 outputs, for each video signal, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal based on the order of supply and other image data.
 このため、他の画像データを用いた補正を行うことによって、FSC方式に起因する階調再現性および色再現性の低下を改善することが可能になると共に、供給の順番を用いた補正を行うことによって、画面内位置による階調再現性および色再現性の差異を低減することが可能になる。 For this reason, by performing correction using other image data, it becomes possible to improve deterioration of gradation reproducibility and color reproducibility caused by the FSC method, and correction using the order of supply This makes it possible to reduce the difference in gradation reproducibility and color reproducibility depending on the position in the screen.
 本実施形態では、LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、画像データと他の画像データとを受け付けるごとに、画像データを他の画像データと対応順番とに基づいて補正した補正データを出力する。なお、複数のLUT格納部3G1a、3G1bおよび3G1cのそれぞれに対応づけられた対応順番は、LUT格納部ごとに異なる。 In this embodiment, each time the LUT storage units 3G1a, 3G1b, and 3G1c receive image data and other image data, the correction data obtained by correcting the image data based on the other image data and the corresponding order is output. To do. Note that the correspondence order associated with each of the plurality of LUT storage units 3G1a, 3G1b, and 3G1c is different for each LUT storage unit.
 選択回路3G1dは、LUT格納部3G1a、3G1bおよび3G1cのそれぞれからの複数の補正データを元に、供給の順番に基づいて、複数の補正画像データを有する補正信号を作成して出力する。 The selection circuit 3G1d creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of the LUT storage units 3G1a, 3G1b and 3G1c based on the order of supply.
 この場合、複数のLUT格納部を用いることによって、補正信号を作成して出力することが可能になる。 In this case, it is possible to create and output a correction signal by using a plurality of LUT storage units.
 また、本実施形態では、LUT格納部3G1a、3G1bおよび3G1cのそれぞれは、画像データおよび他の画像データと、補正データと、を互いに関連づけて格納し、画像データおよび他の画像データを受け付けると、補正データを出力する格納部である。 In the present embodiment, each of the LUT storage units 3G1a, 3G1b, and 3G1c stores image data, other image data, and correction data in association with each other, and receives image data and other image data. A storage unit that outputs correction data.
 この場合、例えば、LUTを用いることによって、補正信号を作成して出力することが可能になる。 In this case, for example, a correction signal can be created and output by using an LUT.
 また、本実施形態では、LUT格納部3G1aは、対応順番が供給の順番のうちの最初の順番である第1色補正手段として機能し、LUT格納部3G1cは、対応順番が供給の順番のうちの最後の順番である第2色補正手段として機能する。 In the present embodiment, the LUT storage unit 3G1a functions as a first color correction unit whose correspondence order is the first order of the supply order, and the LUT storage unit 3G1c has a correspondence order of the supply order. It functions as the second color correction means which is the last order.
 この場合、供給タイミングが最も異なる補正画像データの元となる画像データを補正するのに適した特性を有する色補正部を用いることが可能になる。それゆえ、画面内位置に起因する階調再現性や色再現性における最も大きな差異を低減することが可能になる。 In this case, it is possible to use a color correction unit having characteristics suitable for correcting the image data that is the source of the corrected image data having the most different supply timing. Therefore, it is possible to reduce the largest difference in gradation reproducibility and color reproducibility due to the position in the screen.
 また、本実施形態では、LUT格納部3G1bは、対応順番が供給の順番のうちの最初の順番と供給の順番のうちの最後の順番との間の所定の順番である第3色補正手段として機能する。 In the present embodiment, the LUT storage unit 3G1b is a third color correction unit whose correspondence order is a predetermined order between the first order in the supply order and the last order in the supply order. Function.
 この場合、画面を3エリアに分けて補正するので、画面を2エリアに分けて補正するよりも更に階調再現性および色再現性の差異を低減することが可能になる。 In this case, since the screen is divided into three areas for correction, the difference in gradation reproducibility and color reproducibility can be further reduced as compared with the case where the screen is divided into two areas.
 また、本実施形態では、複数の色補正部のそれぞれ、および、選択回路は、映像信号ごとに設けられている。 In the present embodiment, each of the plurality of color correction units and the selection circuit are provided for each video signal.
 この場合、光の波長に起因する液晶表示素子2の透過率特性の違いに応じて、画像データを補正することが可能になる。それゆえ、色再現性をより改善することができる。 In this case, it is possible to correct the image data in accordance with the difference in transmittance characteristics of the liquid crystal display element 2 due to the wavelength of light. Therefore, color reproducibility can be further improved.
 このように、本実施形態によれば、画面内位置に応じて映像信号を補正することができるので、画面内位置による階調再現性の差異や色再現性の差異を低減することができる。 Thus, according to the present embodiment, the video signal can be corrected according to the position in the screen, so that the difference in gradation reproducibility and the difference in color reproducibility due to the position in the screen can be reduced.
 また、光の波長による液晶表示素子の透過率特性の違いに応じて補正することができるので、色再現性をより改善することができる。 Further, since correction can be made according to the difference in transmittance characteristics of the liquid crystal display element depending on the wavelength of light, color reproducibility can be further improved.
 [第2の実施の形態]
 本発明の第2の実施の形態は、例えば、図4に示した液晶表示装置1の補正部3として、図8に示した補正部31を用いたものである。
[Second Embodiment]
In the second embodiment of the present invention, for example, the correction unit 31 shown in FIG. 8 is used as the correction unit 3 of the liquid crystal display device 1 shown in FIG.
 図8において、補正部31は、一般的に補正手段と呼ぶことができる。 In FIG. 8, the correction unit 31 can be generally referred to as correction means.
 補正部31は、R色補正部3R2と、G色補正部3G2と、B色補正部3B2と、を有する。
 R色補正部3R2は、R色映像信号と1対1で対応する。
The correction unit 31 includes an R color correction unit 3R2, a G color correction unit 3G2, and a B color correction unit 3B2.
The R color correction unit 3R2 corresponds to the R color video signal on a one-to-one basis.
 R色補正部3R2は、R色映像信号、R色の次フィールドの色に対応するG色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、R色補正信号を出力する。 The R color correction unit 3R2 includes an R color video signal, a G color video signal corresponding to the color of the next field of the R color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output an R color correction signal.
 G色補正部3G2は、G色映像信号と1対1で対応する。 The G color correction unit 3G2 has a one-to-one correspondence with the G color video signal.
 G色補正部3G2は、G色映像信号、G色の次フィールドの色に対応するB色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、G色補正信号を出力する。 The G color correction unit 3G2 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
 B色補正部3B2は、B色映像信号と1対1で対応する。 The B color correction unit 3B2 corresponds to the B color video signal on a one-to-one basis.
 B色補正部3B2は、B色映像信号、B色の次フィールドの色に対応するR色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、B色補正信号を出力する。 The B color correction unit 3B2 includes a B color video signal, an R color video signal corresponding to the color of the next field of B color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a B color correction signal.
 G色補正部3G2は、2つのLUT格納部3G2aおよび3G2bと、補間演算部3G2cと、を含む。 The G color correction unit 3G2 includes two LUT storage units 3G2a and 3G2b, and an interpolation calculation unit 3G2c.
 LUT格納部3G2aおよび3G2bのそれぞれは、色補正手段または格納手段と呼ぶことができる。このため、補正部31は、複数の色補正手段または格納手段を含むことになる。 Each of the LUT storage units 3G2a and 3G2b can be called color correction means or storage means. For this reason, the correction unit 31 includes a plurality of color correction means or storage means.
 2つのLUT格納部3G2aおよび3G2bは、いずれも、G色映像信号およびB色映像信号を入力し、G色補正データを出力する。 The two LUT storage units 3G2a and 3G2b both receive the G color video signal and the B color video signal and output the G color correction data.
 LUT格納部3G2aおよび3G2bのそれぞれには、対応順番が予め対応づけられている。なお、複数のLUT格納部3G2aおよび3G2bのそれぞれに対応づけられた対応順番は、LUT格納部ごとに異なるものである。 The correspondence order is associated with each of the LUT storage units 3G2a and 3G2b in advance. Note that the correspondence order associated with each of the plurality of LUT storage units 3G2a and 3G2b is different for each LUT storage unit.
 本実施形態では、LUT格納部3G2aには、供給の順番のうちの最初の順番が対応づけられている。LUT格納部3G2bには、供給の順番のうちの最後の順番が対応づけられている。 In the present embodiment, the LUT storage unit 3G2a is associated with the first order in the order of supply. The LUT storage unit 3G2b is associated with the last order in the supply order.
 LUT格納部3G2aおよび3G2bのそれぞれは、画像データと他の画像データとを受け付けるごとに、画像データを他の画像データと対応順番とに基づいて補正した補正データを出力する。 Each time the LUT storage units 3G2a and 3G2b receive image data and other image data, the LUT storage units 3G2a and 3G2b output correction data obtained by correcting the image data based on the other image data and the corresponding order.
 本実施形態では、LUT格納部3G2aおよび3G2bのそれぞれは、画像データおよび他の画像データと、画像データを他の画像データと対応順番とに基づいて補正した補正データと、を互いに関連づけて格納し、画像データおよび他の画像データを受け付けると、その画像データおよび他の画像データに関連づけられた補正データを出力する。 In the present embodiment, each of the LUT storage units 3G2a and 3G2b stores image data and other image data in association with each other and correction data obtained by correcting the image data based on the other image data and the corresponding order. When image data and other image data are received, correction data associated with the image data and other image data is output.
 なお、LUT格納部3G2aおよび3G2bが、同じ画像データと、同じ他の画像データと、を受け付けた場合、LUT格納部3G2aおよび3G2bのそれぞれから出力される補正データは、他のLUT格納部から出力される補正データと概して異なる。 When the LUT storage units 3G2a and 3G2b accept the same image data and the same other image data, the correction data output from each of the LUT storage units 3G2a and 3G2b is output from the other LUT storage units. It is generally different from the correction data.
 共通の画像データと、その共通の画像データを元にしてLUT格納部3G2aおよび3G2bのそれぞれから出力された補正データと、の差を補正量とした場合、本実施形態では、LUT格納部3G2aでの補正量は、LUT格納部3G2bでの補正量よりも概して小さい。 When the difference between the common image data and the correction data output from each of the LUT storage units 3G2a and 3G2b based on the common image data is used as the correction amount, in this embodiment, the LUT storage unit 3G2a Is generally smaller than the correction amount in the LUT storage unit 3G2b.
 補間演算部3G2cは、一般的に出力手段と呼ぶことができる。 Interpolation calculation unit 3G2c can generally be called output means.
 補間演算部3G2cは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、を入力し、それらのタイミング信号に基づいて、供給の順番を特定する。 Interpolation calculation unit 3G2c receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and specifies the order of supply based on these timing signals.
 補間演算部3G2cは、LUT格納部3G2aおよび3G2bのそれぞれからの複数の補正データを元に、供給の順番に基づいて、複数の補正画像データを有する補正信号を作成して出力する。 Interpolation calculation unit 3G2c creates and outputs a correction signal having a plurality of corrected image data based on the order of supply based on a plurality of correction data from each of LUT storage units 3G2a and 3G2b.
 本実施形態では、補間演算部3G2cは、供給の順番が、LUT格納部3G2aまたは3G2bに対応づけられた対応順番と異なる場合、LUT格納部3G2aおよび3G2bのそれぞれからの複数の補正データを元に、複数の補正画像データを有する補正信号を、補間演算によって作成して出力する。 In the present embodiment, when the order of supply is different from the correspondence order associated with the LUT storage unit 3G2a or 3G2b, the interpolation calculation unit 3G2c is based on a plurality of correction data from each of the LUT storage units 3G2a and 3G2b. Then, a correction signal having a plurality of corrected image data is generated by interpolation and output.
 補間演算部3G2cは、係数生成部3G2dと、2つの乗算器3G2eおよび3G2fと、加算器3G2gと、を有する。 The interpolation operation unit 3G2c includes a coefficient generation unit 3G2d, two multipliers 3G2e and 3G2f, and an adder 3G2g.
 補間演算部3G2cは、2つのLUT格納部3G2aおよび3G2bのそれぞれから出力された補正データを入力し、各補正データに、その補正データの順番に応じた所定の係数を乗じ、それら乗算結果を加算し、その加算結果を、G色補正画像データとして出力する。 The interpolation calculation unit 3G2c inputs correction data output from each of the two LUT storage units 3G2a and 3G2b, multiplies each correction data by a predetermined coefficient according to the order of the correction data, and adds the multiplication results Then, the addition result is output as G color corrected image data.
 係数生成部3G2dは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、に基づいて、G色補正画像データの順番に応じた所定の係数を生成し、その係数を、乗算器3G2eおよび3G2fに出力する。 The coefficient generation unit 3G2d generates a predetermined coefficient according to the order of the G color correction image data based on the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, Output to multipliers 3G2e and 3G2f.
 乗算器3G2eは、LUT格納部3G2aからの補正データに、係数生成部3G2dからの係数を乗じ、その乗算結果を、加算器3G2gに出力する。 The multiplier 3G2e multiplies the correction data from the LUT storage unit 3G2a by the coefficient from the coefficient generation unit 3G2d, and outputs the multiplication result to the adder 3G2g.
 乗算器3G2fは、LUT格納部3G2bからの補正データに、係数生成部3G2dからの係数を乗じ、その乗算結果を、加算器3G2gに出力する。 The multiplier 3G2f multiplies the correction data from the LUT storage unit 3G2b by the coefficient from the coefficient generation unit 3G2d, and outputs the multiplication result to the adder 3G2g.
 加算器3G2gは、乗算器3G2eの乗算結果と、乗算器3G2fの乗算結果と、を加算し、その加算結果を、G色補正画像データとして出力する。 The adder 3G2g adds the multiplication result of the multiplier 3G2e and the multiplication result of the multiplier 3G2f, and outputs the addition result as G color correction image data.
 R色補正部3R2についての詳しい説明は、上述したG色補正部3G2の説明のうち、「G色補正部3G2」を「R色補正部3R2」に読み替え、「LUT格納部3G2a」を「LUT格納部3R2a」に読み替え、「LUT格納部3G2b」を「LUT格納部3R2b」に読み替え、「補間演算部3G2c」を「補間演算部3R2c」に読み替え、「G色映像信号」を「R色映像信号」に読み替え、「B色映像信号」を「G色映像信号」に読み替え、「G色補正信号」を「R色補正信号」に読み替え、「係数生成部3G2d」を「係数生成部3R2d」に読み替え、「乗算器3G2e」を「乗算器3R2e」に読み替え、「乗算器3G2f」を「乗算器3R2f」に読み替え、「加算器3G2g」を「加算器3R2g」に読み替え、「G色補正画像データ」を「R色補正画像データ」に読み替えることによって行うことができる。 For the detailed description of the R color correction unit 3R2, in the description of the G color correction unit 3G2, the "G color correction unit 3G2" is replaced with the "R color correction unit 3R2", and the "LUT storage unit 3G2a" is replaced with "LUT "Storage unit 3R2a" is read, "LUT storage unit 3G2b" is read as "LUT storage unit 3R2b", "Interpolation calculation unit 3G2c" is read as "Interpolation calculation unit 3R2c", and "G color video signal" is read as "R color video" “Signal”, “B color video signal” as “G color video signal”, “G color correction signal” as “R color correction signal”, and “Coefficient generation unit 3G2d” as “Coefficient generation unit 3R2d”. "Multiplier 3G2e" is read as "Multiplier 3R2e", "Multiplier 3G2f" is read as "Multiplier 3R2f", "Adder 3G2g" is read as "Adder 3R2g", and "G color corrected image" Data ”to“ R color correction image ” It can be carried out by be read in the data. "
 B色補正部3B2についての詳しい説明は、上述したG色補正部3G2の説明のうち、「G色補正部3G2」を「B色補正部3B2」に読み替え、「LUT格納部3G2a」を「LUT格納部3B2a」に読み替え、「LUT格納部3G2b」を「LUT格納部3B2b」に読み替え、「補間演算部3G2c」を「補間演算部3B2c」に読み替え、「G色映像信号」を「B色映像信号」に読み替え、「B色映像信号」を「R色映像信号」に読み替え、「G色補正信号」を「B色補正信号」に読み替え、「係数生成部3G2d」を「係数生成部3B2d」に読み替え、「乗算器3G2e」を「乗算器3B2e」に読み替え、「乗算器3G2f」を「乗算器3B2f」に読み替え、「加算器3G2g」を「加算器3B2g」に読み替え、「G色補正画像データ」を「B色補正画像データ」に読み替えることによって行うことができる。 For the detailed description of the B color correction unit 3B2, in the description of the G color correction unit 3G2 described above, “G color correction unit 3G2” is replaced with “B color correction unit 3B2”, and “LUT storage unit 3G2a” is replaced with “LUT “Storage unit 3B2a” is read, “LUT storage unit 3G2b” is read as “LUT storage unit 3B2b”, “Interpolation calculation unit 3G2c” is read as “Interpolation calculation unit 3B2c”, and “G color video signal” is read as “B color video” “Signal”, “B color video signal” as “R color video signal”, “G color correction signal” as “B color correction signal”, and “Coefficient generation unit 3G2d” as “Coefficient generation unit 3B2d”. "Multiplier 3G2e" is read as "multiplier 3B2e", "multiplier 3G2f" is read as "multiplier 3B2f", "adder 3G2g" is read as "adder 3B2g", and "G color corrected image" Data ”to“ B Color Correction Image ” It can be carried out by be read in the data. "
 図9は、画面内位置と補正動作との関係を説明するための説明図である。 FIG. 9 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
 本実施形態では、図9に示すように、画面2g内の最上部の行に存在する画素2a(複数の画素2aのうち、補正画像データが最初に供給される行に存在する画素2a)に、LUT格納部3G2a、3R2aおよび3B2aのそれぞれから出力された補正データが、補正画像データとして供給される。 In the present embodiment, as shown in FIG. 9, the pixel 2a (the pixel 2a in the row to which the corrected image data is first supplied among the plurality of pixels 2a) exists in the uppermost row in the screen 2g. The correction data output from each of the LUT storage units 3G2a, 3R2a and 3B2a is supplied as corrected image data.
 また、図9に示すように、画面2g内の最下部の行に存在する画素2a(複数の画素2aのうち、補正画像データが最後に供給される行に存在する画素2a)に、LUT格納部3G2b、3R2bおよび3B2bのそれぞれから出力された補正データが、補正画像データとして供給される。 Further, as shown in FIG. 9, the LUT is stored in the pixel 2a existing in the lowermost row in the screen 2g (the pixel 2a in the row to which the corrected image data is supplied last among the plurality of pixels 2a). The correction data output from each of the units 3G2b, 3R2b, and 3B2b is supplied as corrected image data.
 また、図9に示すように、画面2g内の最上部の行と最下部の行との間の行には、その行に応じて補間演算された補間演算結果が供給される。 Also, as shown in FIG. 9, an interpolation calculation result obtained by interpolation according to the line is supplied to the line between the uppermost line and the lowermost line in the screen 2g.
 係数生成部3G2dは、乗算器3G2eに供給する係数として、例えば、供給の順番が最初であるときは「1」となり、供給の順番が最後であるときは「0」となり、供給の順番が遅くなるにつれて「1」から「0」に向けて徐々に小さくなる係数を用いる。 The coefficient generation unit 3G2d, for example, sets the coefficient to be supplied to the multiplier 3G2e to “1” when the supply order is first, and to “0” when the supply order is last, and the supply order is slow. A coefficient that gradually decreases from “1” to “0” is used.
 係数生成部3G2dは、乗算器3G2fに供給する係数として、例えば、供給の順番が最初であるときは「0」となり、供給の順番が最後であるときは「1」となり、供給の順番が遅くなるにつれて「0」から「1」に向けて徐々に大きくなる係数を用いる。 For example, the coefficient generation unit 3G2d supplies “0” when the supply order is the first, and “1” when the supply order is the last, as the coefficient supplied to the multiplier 3G2f. A coefficient that gradually increases from “0” to “1” is used.
 なお、R色補正部3R2内の係数生成部、および、B色補正部3B2内の係数生成部も、係数生成部3G2dと同様に動作する。 The coefficient generation unit in the R color correction unit 3R2 and the coefficient generation unit in the B color correction unit 3B2 operate in the same manner as the coefficient generation unit 3G2d.
 本実施形態によれば、補間演算部3G2cは、供給の順番が対応順番と異なる場合、LUT格納部3G2aおよび3G2bからの複数の補正データを元に、複数の補正画像データを有する補正信号を、補間演算によって作成して出力する。 According to the present embodiment, when the supply order is different from the corresponding order, the interpolation calculation unit 3G2c generates a correction signal having a plurality of correction image data based on a plurality of correction data from the LUT storage units 3G2a and 3G2b. Created by interpolation and output.
 このため、多くのLUT格納部を具備することなくあらゆる順番の画像データを補正することができる。それゆえ、回路規模を大きくすることなく、画面内位置に起因する階調再現性や色再現性の差異を精度よく低減することができる。 Therefore, image data in any order can be corrected without having many LUT storage units. Therefore, the difference in gradation reproducibility and color reproducibility due to the position in the screen can be accurately reduced without increasing the circuit scale.
 また、最も供給タイミング差の大きい画面内位置にある画素に、LUTを適用したので、画面内位置による階調再現性や色再現性の最も大きな差異を低減することができる。さらに、補間演算を併用したので、少ないLUT格納部でも、画面内位置による階調再現性や色再現性の差異を精度よく低減することができる。 Also, since the LUT is applied to the pixel at the position in the screen where the supply timing difference is the largest, the largest difference in gradation reproducibility and color reproducibility due to the position in the screen can be reduced. Furthermore, since the interpolation calculation is used together, even with a small number of LUT storage units, it is possible to accurately reduce the difference in tone reproducibility and color reproducibility depending on the position in the screen.
 また、補正部3として、図10に示す補正部32が用いられてもよい。 Further, as the correction unit 3, a correction unit 32 shown in FIG. 10 may be used.
 図10に示す補正部32と図8に示す補正部31との違いは、各色の色補正部に入力される映像信号をそれぞれ3色としたことである。 The difference between the correction unit 32 shown in FIG. 10 and the correction unit 31 shown in FIG. 8 is that the video signals input to the color correction units of the respective colors have three colors.
 そのことによって、G色映像信号を補正するために、G色映像信号と次フィールドの色に対応するB色映像信号と前フィールドの色に対応するR色映像信号を参照することが可能になり、より精度よく補正を行うことができる。 This makes it possible to refer to the G color video signal, the B color video signal corresponding to the color of the next field, and the R color video signal corresponding to the color of the previous field in order to correct the G color video signal. Thus, correction can be performed with higher accuracy.
 [第3の実施の形態]
 本発明の第3の実施の形態は、図8に示したG色補正部3G2の代わりに、図11に示したG色補正部3G4が用いられたものである。
[Third Embodiment]
In the third embodiment of the present invention, the G color correction unit 3G4 shown in FIG. 11 is used instead of the G color correction unit 3G2 shown in FIG.
 G色補正部3G4は、G色映像信号と1対1で対応する。 The G color correction unit 3G4 has a one-to-one correspondence with the G color video signal.
 G色補正部3G4は、G色映像信号、G色の次フィールドの色に対応するB色映像信号、および、タイミング信号(入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号)を入力し、G色補正信号を出力する。 The G color correction unit 3G4 includes a G color video signal, a B color video signal corresponding to the color of the next field of G color, and a timing signal (input frame synchronization timing signal, horizontal synchronization timing signal, and pixel clock timing signal). To output a G color correction signal.
 G色補正部3G4は、3つのLUT格納部3G4a、3G4bおよび3G4cと、2つの選択回路3G4eおよび3G4fと、選択回路制御部(SEL制御部)3G4gと、補間演算部3G2cと、を有する。選択回路3G4eおよび3G4fと、選択回路制御部3G4gと、補間演算部3G2cとは、出力部3G4hに含まれる。 The G color correction unit 3G4 includes three LUT storage units 3G4a, 3G4b, and 3G4c, two selection circuits 3G4e and 3G4f, a selection circuit control unit (SEL control unit) 3G4g, and an interpolation calculation unit 3G2c. The selection circuits 3G4e and 3G4f, the selection circuit control unit 3G4g, and the interpolation calculation unit 3G2c are included in the output unit 3G4h.
 LUT格納部3G4a、3G4bおよび3G4cのそれぞれは、色補正手段または格納手段と呼ぶことができる。 Each of the LUT storage units 3G4a, 3G4b and 3G4c can be referred to as color correction means or storage means.
 3つのLUT格納部3G4a、3G4bおよび3G4cは、いずれも、G色映像信号およびB色映像信号を入力し、G色補正データを出力する。 The three LUT storage units 3G4a, 3G4b, and 3G4c all receive the G color video signal and the B color video signal and output the G color correction data.
 LUT格納部3G4a、3G4bおよび3G4cのそれぞれには、対応順番が、予め対応づけられている。なお、複数のLUT格納部3G4a、3G4bおよび3G4cのそれぞれに対応づけられた対応順番は、LUT格納部ごとに異なるものである。 Correspondence order is associated with each of the LUT storage units 3G4a, 3G4b, and 3G4c in advance. The correspondence order associated with each of the plurality of LUT storage units 3G4a, 3G4b, and 3G4c is different for each LUT storage unit.
 本実施形態では、LUT格納部3G4aには、供給の順番のうちの最初の順番が対応づけられている。LUT格納部3G4cには、供給の順番のうちの最後の順番が対応づけられている。LUT格納部3G4bには、供給の順番のうちの最初の順番と、供給の順番のうちの最後の順番と、の間の所定の順番が、対応づけられている。 In the present embodiment, the LUT storage unit 3G4a is associated with the first order in the order of supply. The LUT storage unit 3G4c is associated with the last order in the supply order. The LUT storage unit 3G4b is associated with a predetermined order between the first order in the order of supply and the last order in the order of supply.
 LUT格納部3G4a、3G4bおよび3G4cのそれぞれは、画像データと他の画像データとを受け付けるごとに、画像データを他の画像データと対応順番とに基づいて補正した補正データを出力する。 Each time the LUT storage units 3G4a, 3G4b, and 3G4c receive image data and other image data, they output correction data obtained by correcting the image data based on the other image data and the corresponding order.
 本実施形態では、LUT格納部3G4a、3G4bおよび3G4cのそれぞれは、画像データおよび他の画像データと、画像データを他の画像データと対応順番とに基づいて補正した補正データと、を互いに関連づけて格納し、画像データおよび他の画像データを受け付けると、その画像データおよび他の画像データに関連づけられた補正データを出力する。 In this embodiment, each of the LUT storage units 3G4a, 3G4b, and 3G4c associates image data and other image data with correction data obtained by correcting the image data based on the other image data and the corresponding order. When the image data and other image data are received, correction data associated with the image data and other image data is output.
 なお、LUT格納部3G4a、3G4bおよび3G4cが、同じ画像データと、同じ他の画像データと、を受け付けた場合、LUT格納部3G4a、3G4bおよび3G4cのそれぞれから出力される補正データは、他のLUT格納部から出力される補正データと概して異なる。 When the LUT storage units 3G4a, 3G4b and 3G4c accept the same image data and the same other image data, the correction data output from each of the LUT storage units 3G4a, 3G4b and 3G4c It is generally different from the correction data output from the storage unit.
 共通の画像データと、その共通の画像データを元にしてLUT格納部3G4a、3G4bおよび3G4cのそれぞれから出力された補正データと、の差を補正量とした場合、本実施形態では、LUT格納部3G4aでの補正量は、LUT格納部3G4bおよび3G4cでの補正量よりも概して小さい。また、本実施形態では、LUT格納部3G4bでの補正量は、LUT格納部3G4cでの補正量よりも概して小さい。 When the difference between the common image data and the correction data output from each of the LUT storage units 3G4a, 3G4b, and 3G4c based on the common image data is used as the correction amount, in this embodiment, the LUT storage unit The correction amount in 3G4a is generally smaller than the correction amounts in LUT storage units 3G4b and 3G4c. In this embodiment, the correction amount in the LUT storage unit 3G4b is generally smaller than the correction amount in the LUT storage unit 3G4c.
 出力部3G4hは、一般的に出力手段と呼ぶことができる。 The output unit 3G4h can be generally called output means.
 出力部3G4hは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、を入力し、それらのタイミング信号に基づいて、供給の順番を特定する。 The output unit 3G4h inputs the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and specifies the supply order based on these timing signals.
 出力部3G4hは、LUT格納部3G4a、3G4bおよび3G4cのそれぞれからの複数の補正データを元に、供給の順番に基づいて、複数の補正画像データを有する補正信号を作成して出力する。 The output unit 3G4h creates and outputs a correction signal having a plurality of corrected image data based on a plurality of correction data from each of the LUT storage units 3G4a, 3G4b, and 3G4c based on the order of supply.
 選択回路3G4eは、選択回路制御部3G4gからの制御に応じて、2つのLUT格納部3G4aおよび3G4bのそれぞれからの補正データのうち、一方の補正データを選択する。 The selection circuit 3G4e selects one of the correction data from each of the two LUT storage units 3G4a and 3G4b in accordance with the control from the selection circuit control unit 3G4g.
 選択回路3G4fは、選択回路制御部3G4gからの制御に応じて、2つのLUT格納部3G4bおよび3G4cのそれぞれからの補正データのうち、一方の補正データを選択する。 The selection circuit 3G4f selects one of the correction data from the two LUT storage units 3G4b and 3G4c in accordance with the control from the selection circuit control unit 3G4g.
 補間演算部3G2cは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、を入力し、それらのタイミング信号に基づいて、供給の順番を特定する。 Interpolation calculation unit 3G2c receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and specifies the order of supply based on these timing signals.
 補間演算部3G2cは、2つの選択回路3G4eおよび3G4fのそれぞれからの複数の補正データを元に、供給の順番に基づいて、複数の補正画像データを有する補正信号を作成して出力する。 Interpolation calculation unit 3G2c creates and outputs a correction signal having a plurality of correction image data based on a plurality of correction data from each of two selection circuits 3G4e and 3G4f based on the order of supply.
 本実施形態では、補間演算部3G2cは、供給の順番が、LUT格納部3G4a、3G4bまたは3G4cに対応づけられた対応順番と異なる場合、選択回路3G4eおよび3G4fのそれぞれからの複数の補正データを元に、複数の補正画像データを有する補正信号を、補間演算によって作成して出力する。 In this embodiment, when the order of supply is different from the order of correspondence associated with the LUT storage units 3G4a, 3G4b, or 3G4c, the interpolation computation unit 3G2c is based on a plurality of correction data from each of the selection circuits 3G4e and 3G4f. In addition, a correction signal having a plurality of corrected image data is generated and output by interpolation calculation.
 選択回路制御部3G4gは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、に基づいて、補正データの順番を特定し、その順番に基づいて、2つの選択回路3G4eおよび3G4fを制御する。 The selection circuit control unit 3G4g specifies the order of correction data based on the input frame synchronization timing signal, the horizontal synchronization timing signal, and the pixel clock timing signal, and based on the order, the two selection circuits 3G4e and 3G4f is controlled.
 図12は、画面内位置と補正動作との関係を説明するための説明図である。 FIG. 12 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
 本実施形態では、図12に示すように、画面2g内の最上部の行に存在する画素2aに、LUT格納部3G4aから出力された補正データが補正画像データとして供給されるように、出力部3G4h(具体的には、選択回路制御部3G4g、選択回路3G4eと3G4f、および、補間演算部3G2c)が動作する。 In the present embodiment, as shown in FIG. 12, the output unit so that the correction data output from the LUT storage unit 3G4a is supplied to the pixel 2a existing in the uppermost row in the screen 2g as corrected image data. 3G4h (specifically, the selection circuit control unit 3G4g, the selection circuits 3G4e and 3G4f, and the interpolation calculation unit 3G2c) operate.
 また、図12に示すように、画面2g内の最上部の行と下方のエリアとの間の所定の行(以下「所定行」と称する)に存在する画素2aに、LUT格納部3G4bから出力された補正データが補正画像データとして供給されるように、出力部3G4hが動作する。 Further, as shown in FIG. 12, the LUT storage unit 3G4b outputs to the pixels 2a existing in a predetermined row (hereinafter referred to as “predetermined row”) between the uppermost row and the lower area in the screen 2g. The output unit 3G4h operates so that the corrected data is supplied as corrected image data.
 また、図12に示すように、画面2g内の下方のエリアに属する行に存在する画素2aに、LUT格納部3G4cから出力された補正データが補正画像データとして供給されるように、出力部3G4hが動作する。 Also, as shown in FIG. 12, the output unit 3G4h so that the correction data output from the LUT storage unit 3G4c is supplied as corrected image data to the pixels 2a existing in the row belonging to the lower area in the screen 2g. Works.
 また、図12に示すように、画面2g内の最上部の行と所定行との間に存在する行内の画素2aに、その画素2aが存在する行の位置に応じて補間演算された補正画像データが供給されるように、出力部3G4hが動作する。なお、この補間演算は、図8での補間演算に準じたものである。 Further, as shown in FIG. 12, a corrected image obtained by performing an interpolation operation on the pixel 2a in the row existing between the uppermost row in the screen 2g and the predetermined row according to the position of the row where the pixel 2a exists. The output unit 3G4h operates so that data is supplied. This interpolation calculation is in accordance with the interpolation calculation in FIG.
 また、図12に示すように、画面2g内の所定行と下方のエリアとの間に存在する行内の画素2aに、その画素2aが存在する行の位置に応じて補間演算された補正画像データが供給されるように、出力部3G4hが動作する。なお、この補間演算は、図8での補間演算に準じたものである。 In addition, as shown in FIG. 12, corrected image data obtained by performing an interpolation operation on a pixel 2a in a row existing between a predetermined row and a lower area in the screen 2g according to the position of the row in which the pixel 2a exists. The output unit 3G4h operates so as to be supplied. This interpolation calculation is in accordance with the interpolation calculation in FIG.
 図8に示す構成と比較すると、所定行内の画素2aに適した補正データを出力するLUT格納部を含むため、画面内位置による階調再現性や色再現性の差異をより効果的に低減することができる。 Compared with the configuration shown in FIG. 8, since the LUT storage unit that outputs correction data suitable for the pixels 2a in a predetermined row is included, the difference in gradation reproducibility and color reproducibility due to the position in the screen is more effectively reduced. be able to.
 [第4の実施の形態]
 本発明の第4の実施の形態は、例えば、図4に示した液晶表示装置1の補正部3として、図13に示した補正部33を用いたものである。
[Fourth Embodiment]
In the fourth embodiment of the present invention, for example, the correction unit 33 shown in FIG. 13 is used as the correction unit 3 of the liquid crystal display device 1 shown in FIG.
 図13において、補正部33は、一般的に補正手段と呼ぶことができる。 In FIG. 13, the correction unit 33 can be generally referred to as correction means.
 補正部33は、2つの時分割多重回路(MUX)33aおよび33bと、多色補正部33cと、デマルチプレクサ(Demultiplexer)33dと、を有する。多色補正部33cは、図11に示したG色補正部3G4と同様の構成である。 The correction unit 33 includes two time division multiplexing circuits (MUX) 33a and 33b, a multicolor correction unit 33c, and a demultiplexer 33d. The multicolor correcting unit 33c has the same configuration as the G color correcting unit 3G4 shown in FIG.
 時分割多重回路(MUX)33aおよび33bは、切替部33eに含まれる。 Time division multiplexing circuits (MUX) 33a and 33b are included in the switching unit 33e.
 切替部33eは、一般的に切替手段と呼ぶことができる。 The switching unit 33e can be generally referred to as switching means.
 切替部33eは、複数の映像信号を受け付けると、画像データと他の画像データとを、映像信号ごとに切り替えながら、時分割で、複数のLUT格納部3G4a、3G4bおよび3G4cに出力する。 When the switching unit 33e receives a plurality of video signals, the switching unit 33e outputs the image data and other image data to the plurality of LUT storage units 3G4a, 3G4b, and 3G4c in a time division manner while switching the video data for each video signal.
 2つの時分割多重回路33aおよび33bのそれぞれは、入力フレーム同期タイミング信号と、水平同期タイミング信号と、画素クロックタイミング信号と、を入力し、それらのタイミング信号に基づいて、R色映像信号(画像データ)、G色映像信号(画像データ)、B色映像信号(画像データ)を択一的に選択して出力する。 Each of the two time division multiplexing circuits 33a and 33b receives an input frame synchronization timing signal, a horizontal synchronization timing signal, and a pixel clock timing signal, and based on these timing signals, an R color video signal (image Data), G color video signal (image data), and B color video signal (image data) are alternatively selected and output.
 この際の選択切替レートは、画素クロックタイミング信号の3倍であり、つまり、R色映像信号、G色映像信号、B色映像信号を、それらの信号のクロック速度の3倍速で時分割多重する。 The selection switching rate at this time is three times the pixel clock timing signal, that is, the R color video signal, the G color video signal, and the B color video signal are time-division multiplexed at a speed three times the clock speed of those signals. .
 多色補正部33は、図11に示したG色補正部3G4と同様の構成であるが、G色補正部3G4の3倍のレートで動作し、 R色補正信号(補正画像データ)、G色補正信号(補正画像データ)、B色補正信号(補正画像データ)を、時分割で出力する。 The multicolor correction unit 33 has the same configuration as that of the G color correction unit 3G4 shown in FIG. 11, but operates at a rate three times that of the G color correction unit 3G4, and the R color correction signal (corrected image data), G A color correction signal (corrected image data) and a B color correction signal (corrected image data) are output in a time-sharing manner.
 デマルチプレクサ(Demultiplexer)33dは、多色補正部33cから出力される時分割多重された各色の補正信号を分離して、R色補正信号、G色補正信号、B色補正信号を並列に出力する。 The demultiplexer 33d separates the time-division multiplexed color correction signals output from the multicolor correction unit 33c and outputs the R color correction signal, the G color correction signal, and the B color correction signal in parallel. .
 図14は、画面内位置と補正動作との関係を説明するための説明図である。 FIG. 14 is an explanatory diagram for explaining the relationship between the position in the screen and the correction operation.
 本実施形態では、図14に示すように、画面2g内の上方のエリアに存在する画素2aに、LUT格納部3G4aから出力された補正データが補正画像データとして供給されるように、色補正部33が動作する。 In the present embodiment, as shown in FIG. 14, the color correction unit so that the correction data output from the LUT storage unit 3G4a is supplied to the pixel 2a existing in the upper area in the screen 2g as the corrected image data. 33 operates.
 また、図14に示すように、画面2g内の所定行に存在する画素2aに、LUT格納部3G4bから出力された補正データが補正画像データとして供給されるように、色補正部33が動作する。 Further, as shown in FIG. 14, the color correction unit 33 operates so that the correction data output from the LUT storage unit 3G4b is supplied to the pixels 2a existing in a predetermined row in the screen 2g as corrected image data. .
 また、図14に示すように、画面2g内の下方のエリアに存在する画素2aに、LUT格納部3G4cから出力された補正データが補正画像データとして供給されるように、色補正部33が動作する。 Further, as shown in FIG. 14, the color correction unit 33 operates so that the correction data output from the LUT storage unit 3G4c is supplied as the corrected image data to the pixel 2a existing in the lower area in the screen 2g. To do.
 また、図14に示すように、画面2g内の上方のエリアと所定行との間に存在する行内の画素2aに、その画素2aが存在する行の位置に応じて補間演算された補正画像データが供給されるように、色補正部33が動作する。なお、この補間演算は、図8での補間演算に準じたものである。 Further, as shown in FIG. 14, corrected image data obtained by performing an interpolation operation on the pixel 2a in the row existing between the upper area in the screen 2g and the predetermined row according to the position of the row in which the pixel 2a exists. So that the color correction unit 33 operates. This interpolation calculation is in accordance with the interpolation calculation in FIG.
 また、図14に示すように、画面2g内の所定行と下方のエリアとの間に存在する行内の画素2aに、その画素2aが存在する行の位置に応じて補間演算された補正画像データが供給されるように、色補正部33が動作する。なお、この補間演算は、図8での補間演算に準じたものである。 Further, as shown in FIG. 14, corrected image data obtained by performing an interpolation operation on a pixel 2a in a row existing between a predetermined row and a lower area in the screen 2g according to the position of the row in which the pixel 2a exists. So that the color correction unit 33 operates. This interpolation calculation is in accordance with the interpolation calculation in FIG.
 なお、上方のエリアと、所定行と、下方のエリアは、各色の映像信号に応じて変更してある。 Note that the upper area, the predetermined row, and the lower area are changed according to the video signal of each color.
 本実施形態によれば、切替部33eは、複数の映像信号を受け付けると、画像データと他の画像データとを、映像信号ごとに切り替えながら、時分割で、複数のLUT格納部3G4a、3G4bおよび3G4cに出力する。 According to the present embodiment, when the switching unit 33e receives a plurality of video signals, the switching unit 33e switches between image data and other image data for each video signal, and in a time division manner, the plurality of LUT storage units 3G4a, 3G4b, and Output to 3G4c.
 こうすることによって、 R色,G色,B色の映像信号を補正するために、共通のLUT格納部を使用しつつ、LUT格納部からの補正データを適用する画素を、映像信号の色によって変えることができる。このため、小さな回路規模で、画面内位置による階調再現性や色再現性の差異を低減することができる。 In this way, in order to correct the R, G, and B color video signals, the pixel to which the correction data from the LUT storage unit is applied is changed according to the color of the video signal while using the common LUT storage unit. Can be changed. Therefore, the difference in gradation reproducibility and color reproducibility depending on the position in the screen can be reduced with a small circuit scale.
 [他の実施の形態]
 映像信号の色によってLUTの数を変えてもよい。液晶表示素子2の光の透過率特性が光の波長によって異なるので、回路規模と補正の精度との兼ね合いで、所望の構成とすることができる。
[Other embodiments]
The number of LUTs may be changed depending on the color of the video signal. Since the light transmittance characteristic of the liquid crystal display element 2 varies depending on the wavelength of the light, a desired configuration can be obtained in consideration of the circuit scale and the correction accuracy.
 補間演算は、線形補間でも非線形補間でもよい。線形補間が用いられた場合、非線形補間が用いられた場合よりも、補間演算部の構成を小さくすることが可能になる。非線形補間が用いられた場合、線形補間が用いられた場合よりも、精度よく映像信号を補正することできる。 The interpolation calculation may be linear interpolation or non-linear interpolation. When linear interpolation is used, the configuration of the interpolation calculation unit can be made smaller than when nonlinear interpolation is used. When nonlinear interpolation is used, the video signal can be corrected with higher accuracy than when linear interpolation is used.
 上記各実施形態は、液晶表示素子2がノーマリホワイトの構成でも、ノーマリブラックの構成でも適用できる。 The above embodiments can be applied to the liquid crystal display element 2 having a normally white configuration or a normally black configuration.
 上記各実施形態は、FSC方式においてカラーフィールドが、R,G,Bの3色でなくても適用できる。 The above embodiments can be applied even if the color field is not the three colors of R, G, and B in the FSC system.
 以上、各実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to each embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

Claims (14)

  1.  複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力する補正手段と、
     前記補正手段から出力された複数の補正信号を、1つずつ順番に出力する出力制御手段と、
     前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発する照射手段と、
     複数の画素を有し、前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、前記照射手段からの光を変調して出力する液晶表示素子と、を含み、
     前記補正手段は、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する、液晶表示装置。
    When a plurality of video signals corresponding to a plurality of colors and having a plurality of image data are received, a correction signal that outputs a plurality of corrected image data obtained by correcting each image data in the video signal is output for each video signal. Means,
    Output control means for sequentially outputting a plurality of correction signals output from the correction means one by one;
    Each time the correction signal is output from the output control means, an irradiation means for emitting light of a color corresponding to the video signal that is the source of the correction signal;
    Each time it has a plurality of pixels and the correction signal is output from the output control means, each correction image data in the correction signal is sequentially changed to a pixel corresponding to the correction image data among the plurality of pixels. A liquid crystal display element that modulates and outputs light from the irradiation unit using a plurality of pixels to which the corrected image data is supplied,
    The correcting means converts each image data in the video signal to the pixel corresponding to the corrected image data and the order of supplying the corrected image data obtained by correcting the image data in the liquid crystal display element. A liquid crystal display device that outputs a correction signal having a plurality of correction image data corrected based on other image data that is the source of other correction image data supplied immediately before or after.
  2.  前記補正手段は、
     前記画像データと前記他の画像データとを受け付けるごとに、前記画像データを、前記他の画像データと、前記供給の順番のうち自己に予め対応づけられた対応順番と、に基づいて補正した補正データを出力する複数の色補正手段と、
     前記複数の色補正手段からの複数の補正データを元に、前記供給の順番に基づいて、前記複数の補正画像データを有する補正信号を作成して出力する出力手段と、を含み、
     前記複数の色補正手段のそれぞれに対応づけられた対応順番は、前記色補正手段ごとに異なるものである、請求の範囲第1項に記載の液晶表示装置。
    The correction means includes
    Each time the image data and the other image data are received, the image data is corrected based on the other image data and a corresponding order that is previously associated with itself in the order of supply. A plurality of color correction means for outputting data;
    Based on a plurality of correction data from the plurality of color correction means, and based on the order of supply, an output means for creating and outputting a correction signal having the plurality of corrected image data, and
    The liquid crystal display device according to claim 1, wherein the correspondence order associated with each of the plurality of color correction units differs for each color correction unit.
  3.  前記複数の色補正手段のそれぞれは、前記画像データおよび前記他の画像データと、前記補正データと、を互いに関連づけて格納し、前記画像データおよび前記他の画像データを受け付けると、前記補正データを出力する格納手段である、請求の範囲第2項に記載の液晶表示装置。 Each of the plurality of color correction means stores the image data, the other image data, and the correction data in association with each other, and receives the image data and the other image data. The liquid crystal display device according to claim 2, which is storage means for outputting.
  4.  前記複数の色補正手段は、前記対応順番が前記供給の順番のうちの最初の順番である第1色補正手段と、前記対応順番が前記供給の順番のうちの最後の順番である第2色補正手段と、を含む、請求の範囲第2項または第3項に記載の液晶表示装置。 The plurality of color correction units include a first color correction unit in which the correspondence order is the first order in the supply order, and a second color in which the correspondence order is the last order in the supply order. The liquid crystal display device according to claim 2, further comprising a correcting unit.
  5.  前記複数の色補正手段は、少なくとも、前記対応順番が前記供給の順番のうちの最初の順番と前記供給の順番のうちの最後の順番との間の所定の順番である第3色補正手段を含む、請求の範囲第2項から第4項のいずれか1項に記載に液晶表示装置。 The plurality of color correction units include at least a third color correction unit in which the corresponding order is a predetermined order between the first order in the supply order and the last order in the supply order. The liquid crystal display device according to any one of claims 2 to 4, further comprising:
  6.  前記出力手段は、前記供給の順番が前記対応順番と異なる場合、前記複数の色補正手段からの複数の補正データを元に、前記複数の補正画像データを有する補正信号を、補間演算によって作成して出力する、請求の範囲第2項から第5項のいずれか1項に記載の液晶表示装置。 The output means generates a correction signal having the plurality of corrected image data by interpolation calculation based on the plurality of correction data from the plurality of color correction means when the supply order is different from the corresponding order. The liquid crystal display device according to any one of claims 2 to 5, wherein the liquid crystal display device outputs the output.
  7.  前記複数の色補正手段のそれぞれ、および、前記出力手段は、前記映像信号ごとに設けられている、請求の範囲第2項から第6項のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 2 to 6, wherein each of the plurality of color correction means and the output means are provided for each of the video signals.
  8.  前記複数の映像信号を受け付けると、前記画像データと前記他の画像データとを、前記映像信号ごとに切り替えながら、時分割で前記複数の色補正手段に出力する切替手段をさらに含む、請求の範囲第2項から第6項のいずれか1項に記載の液晶表示装置。 The image processing apparatus further includes a switching unit that receives the plurality of video signals and outputs the image data and the other image data to the plurality of color correction units in a time division manner while switching the image data for each video signal. The liquid crystal display device according to any one of items 2 to 6.
  9.  複数の画素を有し、複数の補正画像データを有する補正信号を受け付けるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、当該補正信号の元になった映像信号に対応する色の光を変調して出力する液晶表示素子の駆動回路であって、
     複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力する補正手段と、
     前記補正手段から出力された複数の補正信号を、1つずつ順番に前記液晶表示素子に出力する出力制御手段と、を含み、
     前記補正手段は、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する、液晶表示素子の駆動回路。
    Each time a correction signal having a plurality of pixels and having a plurality of correction image data is received, each correction image data in the correction signal is sequentially supplied to a pixel corresponding to the correction image data among the plurality of pixels. A drive circuit for a liquid crystal display element that modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal, using a plurality of pixels to which the correction image data is supplied,
    When a plurality of video signals corresponding to a plurality of colors and having a plurality of image data are received, a correction signal that outputs a plurality of corrected image data obtained by correcting each image data in the video signal is output for each video signal. Means,
    Output control means for outputting a plurality of correction signals output from the correction means to the liquid crystal display element one by one in order,
    The correcting means converts each image data in the video signal to the pixel corresponding to the corrected image data and the order of supplying the corrected image data obtained by correcting the image data in the liquid crystal display element. A driving circuit for a liquid crystal display element, which outputs a correction signal having a plurality of corrected image data corrected based on other image data that is the source of other corrected image data supplied immediately before or after.
  10.  前記補正手段は、
     前記画像データと前記他の画像データとを受け付けるごとに、前記画像データを、前記他の画像データと、前記供給の順番のうち自己に予め対応づけられた対応順番と、に基づいて補正した補正データを出力する複数の色補正手段と、
     前記複数の色補正手段からの複数の補正データを元に、前記供給の順番に基づいて、前記複数の補正画像データを有する補正信号を作成して出力する出力手段と、を含み、
     前記複数の色補正手段のそれぞれに対応づけられた対応順番は、前記色補正手段ごとに異なるものである、請求の範囲第9項に記載の液晶表示素子の駆動回路。
    The correction means includes
    Each time the image data and the other image data are received, the image data is corrected based on the other image data and a corresponding order that is previously associated with itself in the order of supply. A plurality of color correction means for outputting data;
    Based on a plurality of correction data from the plurality of color correction means, and based on the order of supply, an output means for creating and outputting a correction signal having the plurality of corrected image data, and
    10. The drive circuit for a liquid crystal display element according to claim 9, wherein the correspondence order associated with each of the plurality of color correction units differs for each color correction unit.
  11.  FSC方式の液晶表示装置が行うカラー画像生成方法であって、
     複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力し、
     前記複数の補正信号を、1つずつ順番に出力し、
     前記補正信号が1つずつ出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発し、
     前記出力制御手段から前記補正信号が1つずつ出力されるごとに、当該補正信号内の各補正画像データを順番に、複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、前記光を変調して出力し、
     前記複数の補正画像データを有する補正信号を出力する際には、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記複数の画素への供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する、カラー画像生成方法。
    A color image generation method performed by an FSC liquid crystal display device,
    When receiving a plurality of video signals corresponding to a plurality of colors and having a plurality of image data, for each of the video signals, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal is output,
    The plurality of correction signals are output one by one in order,
    Each time the correction signal is output one by one, it emits light of a color corresponding to the video signal that is the source of the correction signal,
    Each time the correction signal is output from the output control unit one by one, each correction image data in the correction signal is sequentially supplied to a pixel corresponding to the correction image data among a plurality of pixels, and the correction is performed. Using a plurality of pixels supplied with image data, the light is modulated and output,
    When outputting the correction signal having the plurality of corrected image data, each image data in the video signal is supplied to the plurality of pixels of the corrected image data obtained by correcting the image data and the correction. A correction signal having a plurality of corrected image data corrected based on other image data that is the source of other corrected image data supplied to the pixel corresponding to the image data immediately before or after the corrected image data. Output color image generation method.
  12.  前記複数の補正画像データを有する補正信号を出力する際には、
     複数の色補正手段が、前記画像データと前記他の画像データとを受け付けるごとに、前記画像データを、前記他の画像データと、前記供給の順番のうち自己に予め対応づけられた対応順番と、に基づいて補正した補正データを出力し、
     前記複数の色補正手段からの複数の補正データを元に、前記供給の順番に基づいて、前記複数の補正画像データを有する補正信号を作成して出力し、
     前記複数の色補正手段のそれぞれに対応づけられた対応順番は、前記色補正手段ごとに異なるものである、請求の範囲第11項に記載のカラー画像生成方法。
    When outputting a correction signal having the plurality of corrected image data,
    Each time a plurality of color correction units accepts the image data and the other image data, the image data is assigned to the other image data and a corresponding order that is pre-associated with itself in the order of supply. , Output correction data corrected based on
    Based on the plurality of correction data from the plurality of color correction means, based on the order of supply, create and output a correction signal having the plurality of corrected image data,
    12. The color image generation method according to claim 11, wherein the correspondence order associated with each of the plurality of color correction units differs for each color correction unit.
  13.  複数の画素を有し、複数の補正画像データを有する補正信号を受け付けるごとに、当該補正信号内の各補正画像データを順番に、前記複数の画素のうち当該補正画像データに対応する画素に供給し、前記補正画像データが供給された複数の画素を用いて、当該補正信号の元になった映像信号に対応する色の光を変調して出力する液晶表示素子の駆動方法であって、
     複数の色に対応し複数の画像データを有する複数の映像信号を受け付けると、前記映像信号ごとに、当該映像信号内の各画像データを補正した複数の補正画像データを有する補正信号を出力し、
     前記複数の補正信号を、1つずつ順番に前記液晶表示素子に出力し、
     前記複数の補正画像データを有する補正信号を出力する際には、前記映像信号内の各画像データを、当該画像データを補正した補正画像データの前記液晶表示素子での供給の順番と、当該補正画像データに対応する画素に当該補正画像データの直前または直後に供給される他の補正画像データの元となった他の画像データと、に基づいて補正した複数の補正画像データを有する補正信号を出力する、液晶表示素子の駆動方法。
    Each time a correction signal having a plurality of pixels and having a plurality of correction image data is received, each correction image data in the correction signal is sequentially supplied to a pixel corresponding to the correction image data among the plurality of pixels. A method of driving a liquid crystal display element that modulates and outputs light of a color corresponding to a video signal that is a source of the correction signal using a plurality of pixels supplied with the correction image data,
    When receiving a plurality of video signals corresponding to a plurality of colors and having a plurality of image data, for each of the video signals, a correction signal having a plurality of corrected image data obtained by correcting each image data in the video signal is output,
    The plurality of correction signals are sequentially output to the liquid crystal display element one by one,
    When outputting a correction signal having the plurality of corrected image data, each image data in the video signal is supplied to the liquid crystal display element in the order of supplying the corrected image data obtained by correcting the image data. A correction signal having a plurality of corrected image data corrected based on other image data that is the source of other corrected image data supplied to the pixel corresponding to the image data immediately before or after the corrected image data. A driving method of a liquid crystal display element for outputting.
  14.  前記複数の補正画像データを有する補正信号を出力する際には、
     複数の色補正手段が、前記画像データと前記他の画像データとを受け付けるごとに、前記画像データを、前記他の画像データと、前記供給の順番のうち自己に予め対応づけられた対応順番と、に基づいて補正した補正データを出力し、
     前記複数の色補正手段からの複数の補正データを元に、前記供給の順番に基づいて、前記複数の補正画像データを有する補正信号を作成して出力し、
     前記複数の色補正手段のそれぞれに対応づけられた対応順番は、前記色補正手段ごとに異なるものである、請求の範囲第13項に記載の液晶表示素子の駆動方法。
    When outputting a correction signal having the plurality of corrected image data,
    Each time a plurality of color correction units accepts the image data and the other image data, the image data is assigned to the other image data and a corresponding order that is pre-associated with itself in the order of supply. , Output correction data corrected based on
    Based on the plurality of correction data from the plurality of color correction means, based on the order of supply, create and output a correction signal having the plurality of corrected image data,
    The liquid crystal display element driving method according to claim 13, wherein the correspondence order associated with each of the plurality of color correction units differs for each color correction unit.
PCT/JP2009/051206 2009-01-26 2009-01-26 Liquid crystal display device, driving circuit, and driving method WO2010084619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/051206 WO2010084619A1 (en) 2009-01-26 2009-01-26 Liquid crystal display device, driving circuit, and driving method
JP2010547372A JP5413987B2 (en) 2009-01-26 2009-01-26 Liquid crystal display device, driving circuit and driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051206 WO2010084619A1 (en) 2009-01-26 2009-01-26 Liquid crystal display device, driving circuit, and driving method

Publications (1)

Publication Number Publication Date
WO2010084619A1 true WO2010084619A1 (en) 2010-07-29

Family

ID=42355692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051206 WO2010084619A1 (en) 2009-01-26 2009-01-26 Liquid crystal display device, driving circuit, and driving method

Country Status (2)

Country Link
JP (1) JP5413987B2 (en)
WO (1) WO2010084619A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019636A1 (en) * 2013-08-08 2015-02-12 シャープ株式会社 Liquid crystal display device and method for driving same
US10074322B2 (en) 2014-09-16 2018-09-11 Sharp Kabushiki Kaisha Liquid crystal display device and method of driving same
US10229640B2 (en) 2015-03-02 2019-03-12 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343954A (en) * 2000-01-28 2001-12-14 Seiko Epson Corp Electrooptical device, image processing circuit, method for correcting image data and electronic equipment
JP2004061670A (en) * 2002-07-25 2004-02-26 Nec Corp Liquid crystal display device and its driving method
JP2005077474A (en) * 2003-08-28 2005-03-24 Casio Comput Co Ltd Field sequential liquid crystal display device
JP2005346052A (en) * 2004-06-03 2005-12-15 Samsung Sdi Co Ltd Liquid crystal display and driving method thereof
JP2006030834A (en) * 2004-07-21 2006-02-02 International Display Technology Kk Driving method employing overdrive control method and liquid crystal display device using the same
JP2007333770A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Electrooptical device, driving circuit for electrooptical device, and driving method of electrooptical device, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343954A (en) * 2000-01-28 2001-12-14 Seiko Epson Corp Electrooptical device, image processing circuit, method for correcting image data and electronic equipment
JP2004061670A (en) * 2002-07-25 2004-02-26 Nec Corp Liquid crystal display device and its driving method
JP2005077474A (en) * 2003-08-28 2005-03-24 Casio Comput Co Ltd Field sequential liquid crystal display device
JP2005346052A (en) * 2004-06-03 2005-12-15 Samsung Sdi Co Ltd Liquid crystal display and driving method thereof
JP2006030834A (en) * 2004-07-21 2006-02-02 International Display Technology Kk Driving method employing overdrive control method and liquid crystal display device using the same
JP2007333770A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Electrooptical device, driving circuit for electrooptical device, and driving method of electrooptical device, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019636A1 (en) * 2013-08-08 2015-02-12 シャープ株式会社 Liquid crystal display device and method for driving same
JPWO2015019636A1 (en) * 2013-08-08 2017-03-02 シャープ株式会社 Liquid crystal display device and driving method thereof
US9728148B2 (en) 2013-08-08 2017-08-08 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method of driving the liquid crystal display apparatus
US10074322B2 (en) 2014-09-16 2018-09-11 Sharp Kabushiki Kaisha Liquid crystal display device and method of driving same
US10229640B2 (en) 2015-03-02 2019-03-12 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same

Also Published As

Publication number Publication date
JPWO2010084619A1 (en) 2012-07-12
JP5413987B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US7893915B2 (en) Liquid crystal display device and driving method thereof
US7973781B2 (en) Image display device and projector
US8289266B2 (en) Method, device and system for multi-color sequential LCD panel
EP2128687A1 (en) Light source device and liquid crystal display device
US20070070024A1 (en) Liquid crystal display device
CN104541321A (en) Display, display control method, display control device, and electronic apparatus
JP2008542808A (en) Spectral sequential display with reduced crosstalk
US9928806B2 (en) Projection display apparatus having an optical element projecting modulated light, method for controlling the same, and electronic device
WO2017077931A1 (en) Color image display device and color image display method
KR20100014446A (en) Image display device
US20130088506A1 (en) Display apparatus and driving method thereof
US20100090942A1 (en) Active matrix display device
JP5273391B2 (en) Liquid crystal display
US20080007573A1 (en) Display device and display system employing same
US8179348B2 (en) Driving method, driving circuit, electro-optical device, and electronic apparatus
US8976204B2 (en) Display device
JP6252031B2 (en) Electro-optical device drive device, electro-optical device drive method, electro-optical device, and electronic apparatus
US20170047021A1 (en) Display device
JP5413987B2 (en) Liquid crystal display device, driving circuit and driving method
US10386676B2 (en) Colour image display device, and colour image display method
WO2014122821A1 (en) Display device and method for driving display device
JP5376678B2 (en) Liquid crystal display device, liquid crystal display element drive circuit, color image generation method, and liquid crystal display element drive method
JP5398037B2 (en) Driving circuit, image display apparatus, and driving method
KR100599757B1 (en) Liquid crystal device and driving method thereof
JP6508277B2 (en) projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547372

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838810

Country of ref document: EP

Kind code of ref document: A1