WO2010084525A1 - Hybrid power generation system - Google Patents

Hybrid power generation system Download PDF

Info

Publication number
WO2010084525A1
WO2010084525A1 PCT/JP2009/000215 JP2009000215W WO2010084525A1 WO 2010084525 A1 WO2010084525 A1 WO 2010084525A1 JP 2009000215 W JP2009000215 W JP 2009000215W WO 2010084525 A1 WO2010084525 A1 WO 2010084525A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
turbine
water
supply system
power generation
Prior art date
Application number
PCT/JP2009/000215
Other languages
French (fr)
Japanese (ja)
Inventor
岸部忠晴
中野晋
白岩弘行
岩井康
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2009/000215 priority Critical patent/WO2010084525A1/en
Publication of WO2010084525A1 publication Critical patent/WO2010084525A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to a hybrid power generation system including a gas turbine and a fuel cell.
  • a fuel cell is basically a system that generates electricity by the reaction of hydrogen and oxygen, and the reaction product is water. Unlike a gas turbine or a reciprocating engine that generates power using a thermal cycle, a fuel cell is a system that directly generates power using a chemical reaction, and thus has a significantly higher power generation efficiency than a gas turbine.
  • compressed air which is a working medium
  • fuel in a combustor and burned to raise the temperature and temperature.
  • the working medium is heated in the combustor. -Some or all of the temperature rise is performed using the heat of reaction caused by the chemical reaction in the fuel cell.
  • SOFC solid oxide fuel cell
  • a high-temperature type having an operating temperature of 900 ° C. to 1000 ° C. has been developed in the past, but in recent years, a type called an intermediate temperature operating SOFC having an operating temperature of about 600 ° C. to 800 ° C. has been studied and developed. ing.
  • This medium temperature operation SOFC can improve operability such as (1) expansion of material options such as using inexpensive metal materials for cell laminated separators, and (2) shortening of start-up time by using metal separators with good thermal conductivity. It has advantages such as being possible.
  • the present invention provides a gas turbine and a fuel cell that can improve the power generation output and increase the efficiency of the turbine by using a large amount of water generated by the fuel cell in a hybrid power generation system of a fuel cell and a gas turbine. It aims to provide a hybrid power generation system.
  • the above-described problem is a steam generator that generates steam using the exhaust gas of the gas turbine as a heat source, and a reaction product of the fuel cell from the exhaust gas of the gas turbine.
  • a water recovery device that recovers water, a condensed water supply system that supplies water recovered by the water recovery device to the steam generator, and a steam that is communicated with the steam generator and generates steam generated by the steam generator.
  • a hybrid power generation system of a gas turbine and a fuel cell water generated by the fuel cell is recovered, steam is generated from the recovered water using exhaust heat of the gas turbine, and the generated steam is generated.
  • 1 is a system diagram showing a hybrid power generation system of a gas turbine and a fuel cell according to a first embodiment of the present invention.
  • 1 is a configuration diagram of a fuel cell according to a first embodiment of the present invention.
  • the system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 2nd Embodiment of this invention.
  • the system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 3rd Embodiment of this invention.
  • FIG. 1 is a diagram showing a system configuration of a hybrid power generation system according to a first embodiment of the present invention. *
  • the hybrid power generation system includes a compressor 2 that sucks, compresses, and discharges the atmosphere 1 and a regenerative heat exchange that introduces and heats the compressor discharge air 3 discharged from the compressor 2.
  • a fuel cell 7 that generates electricity by an electrochemical reaction between the regenerator 4 and the outlet air 5 of the regenerative heat exchanger 4 and a cell fuel 6 such as hydrogen or natural gas supplied from a fuel tank (not shown),
  • a part or all of the high temperature gas 8 generated when the battery 7 generates electricity is mixed with a fuel 9 such as natural gas supplied from a fuel tank (not shown) as necessary, and burned.
  • a combustor 10 that generates the combustion gas 11, a turbine 12 that is rotationally driven by the expansion force of the combustion gas 11 discharged from the combustor 10; a rotor 58 that connects the turbine 12 and the compressor 2; Connect and turbine And a power generator 13 driven by the power generation by the second rotational force.
  • the compressor 2 is rotationally driven by the rotational force of the turbine 12.
  • the regenerative heat exchanger 4 described above introduces a turbine outlet exhaust gas 14 which is a turbine exhaust gas discharged from the turbine 12 as a heat source, and performs heat exchange between the turbine outlet exhaust gas 14 and the compressor discharge air 3, Heating of the compressor discharge air 3 and heat recovery of the turbine outlet exhaust gas 14 are performed.
  • FIG. 2 is a diagram showing a configuration of the fuel cell 7 according to the present embodiment. Note that the same parts as those in the previous figure are denoted by the same reference numerals, and description thereof will be omitted (the same applies to the subsequent figures). *
  • hydrogen may not be directly used as a cell fuel, but may be produced by reforming a hydrocarbon-based fuel such as natural gas to produce hydrogen.
  • the fuel cell 7 of this embodiment includes a battery unit 17 having an anode unit 15 and a cathode unit 16.
  • a battery unit 17 having an anode unit 15 and a cathode unit 16.
  • other components such as the reforming section and the preheater are omitted for simplification.
  • a cell fuel 6 reformed by a reforming unit (not shown) provided in the fuel cell 7 is supplied to the anode unit 15, and a cathode unit 16 is connected to the regenerative heat exchanger 4 for regeneration.
  • Air containing oxygen (regenerative heat exchanger outlet air 5) is supplied from the heat exchanger 4.
  • electric power 21 is generated by a chemical reaction between the battery fuel 6 and the air 5 supplied to the anode part 15 and the cathode part 16, respectively.
  • high-temperature gas for example, about 600 to 1000 degrees
  • water fuel cell wastewater
  • part of the water is sent to the reforming unit through the reforming moisture supply path 601 (fuel recycle line) to generate heat generated in the fuel cell.
  • reforming moisture supply path 601 fuel recycle line
  • the remaining moisture is vaporized by the heat of chemical reaction, and is contained in the high temperature gas 8 and supplied to the combustor 10.
  • the regeneration heat exchanger exhaust gas 22 that is the turbine exhaust gas discharged from the regeneration heat exchanger 4 is introduced, and steam is generated from the condensed water using the regeneration heat exchanger exhaust gas 22 as a heat source.
  • a steam generator exhaust gas 24 that is a turbine exhaust gas discharged from the steam generator 23
  • a water recovery device 25 that recovers moisture contained in the turbine exhaust gas
  • a water recovery device 25 And a chimney 34 for releasing the exhaust gas 33, which is a turbine exhaust gas, into the atmosphere.
  • the water recovery device 25 includes a heat exchanger 26 that cools the exhaust gas and condenses moisture contained in the exhaust gas, and a water storage unit 27 that stores condensed condensed water.
  • a heat exchanger 26 that cools the exhaust gas and condenses moisture contained in the exhaust gas
  • a water storage unit 27 that stores condensed condensed water.
  • a fin tube type heat exchanger or a shell and tube type heat exchanger is used for the heat exchanger 26 .
  • water such as factory effluent or the air can be used in an area where there is no water. *
  • a condensed water supply system 31 is connected to the water reservoir 27 of the water recovery device 25.
  • the condensed water supply system 31 is also connected to the steam generator 23, and the condensed water stored in the water reservoir 27 flows down the condensed water supply system 31 and is supplied to the steam generator 23.
  • the steam generator 23 generates steam by performing heat exchange between the condensed water supplied from the water recovery device 25 and the regenerative heat exchanger exhaust gas 22 via the condensed water supply system 31, and generates heat from the turbine exhaust gas. It is a device to collect.
  • the steam generator 23 is connected to a steam supply system 32, and the steam supply system 32 communicates with a steam injector (not shown) provided in the combustor 10. *
  • the steam generated by the steam generator 23 is introduced into the combustor 10 through the steam supply system 32, and is injected and mixed into the hot gas 8 flowing down inside the combustor 10 by the steam injector.
  • the air 1 is sucked and pressurized by the compressor 2 to generate compressed air, and then the generated compressed air is sent to the regenerative heat exchanger 4 communicating with the compressor 2.
  • Turbine exhaust gas discharged from the turbine 12 is introduced into the regenerative heat exchanger 4, and compressed air (compressor discharge air 3) sent to the regenerative heat exchanger 4 and high-temperature turbine exhaust gas discharged from the turbine 12.
  • Heat exchange is performed with the (turbine outlet exhaust gas 14), and the temperature of the compressed air is increased to a temperature necessary for the operation of the fuel cell 7. By this heat exchange, the thermal energy of the exhaust gas of the turbine is recovered in the power generation system through the compressed air.
  • a gas turbine cycle in which the regenerative heat exchanger 4 is provided and heat energy is recovered from the exhaust gas of the turbine by heat exchange with compressed air is referred to as a regenerative cycle. High efficiency.
  • the compressed air (regenerative heat exchanger outlet air 5) after heat exchange with the exhaust gas of the turbine 12 is introduced into the battery unit 17 of the fuel cell 7.
  • the compressed air is introduced into the cathode portion 16 of the battery portion 17 and then chemically reacts with the fuel sent to the anode portion 15 to generate electric power 21.
  • the exhaust gas generated at the anode and the cathode by the chemical reaction is heated by the reaction heat generated by the chemical reaction, and becomes high-temperature gas (fuel cell exhaust (for example, about 600 to 1000 degrees)) 8 and is discharged from the battery unit 17. .
  • fuel cell exhaust for example, about 600 to 1000 degrees
  • the hybrid power generation system of the present invention does not employ a hybrid with a fuel cell. Power generation efficiency is high compared to gas turbine systems.
  • a part or all of the hot gas 8 sent from the fuel cell 7 to the combustor 10 is mixed with the fuel 9 supplied from a fuel tank (not shown) in the fuel device 10 as necessary, and burned. After being heated, it is fed into the turbine 12.
  • the high-temperature gas 8 (combustion gas 11) sent to the turbine 12 flows down as the working medium of the turbine 12 while accelerating and expanding in the turbine 12, and rotates the turbine 12.
  • the high temperature gas 8 contains a large amount of water vapor, the mass is increased, and compared with a gas turbine system that does not contain steam in the working medium, the power generation output and power generation efficiency of the turbine. Is expensive.
  • the high-temperature gas after rotating the turbine 12 becomes exhaust gas (turbine outlet exhaust gas 14) and is sent to the regenerative heat exchanger 4.
  • the heat energy of the exhaust gas is recovered in the hybrid power generation system by heat exchange with the compressed air, and the temperature of the exhaust gas decreases.
  • the exhaust gas is sent to the steam generator 23 to exchange heat with the condensed water in the steam generator 23, steam is generated, the heat of the exhaust gas is recovered, and the exhaust gas temperature decreases.
  • the exhaust gas that has exchanged heat with the condensed water is then sent to the water recovery device 25.
  • the temperature of the exhaust gas further decreases by exchanging heat with the refrigerant in the heat exchanger 26, the moisture contained in the exhaust gas is condensed, and is collected in the water reservoir 27 as condensed water. .
  • the exhaust gas from which moisture has been recovered is then released from the chimney 34 to the atmosphere.
  • the water recovered by the water recovery device 25 is introduced into the steam generator 23 via the condensed water supply system 31, and is vaporized by the heat of the exhaust gas to become steam.
  • the regeneration heat exchanger 4, the steam generator 23, and the water recovery device 25 recover the thermal energy from the exhaust gas in the hybrid power generation system. High efficiency.
  • the steam generated by the steam generator 23 flows down the steam supply system 32 connected to the steam generator 23, is introduced into the combustor 10 of the gas turbine, and is combusted from the steam injector provided in the combustor 10. It is injected into the working medium flowing down.
  • the thermal energy of the exhaust gas of the turbine 12 is recovered in the working medium of the turbine 12 that drives the generator 13, and the mass of the working medium of the turbine 12 that drives the generator 13 increases. Power generation output and power generation efficiency are improved.
  • the discharge air 3 can be preheated by the regenerative heat exchanger 4, an auxiliary combustor for heating the compressor discharge air 3 is not required, and the pressure ratio of the compressor is set to the temperature of the discharge air. It is possible to set the optimum pressure ratio regardless of the gas turbine efficiency and maintain the gas turbine efficiency at the optimum value. Further, by recovering a certain amount of heat from the exhaust gas by the regenerative heat exchanger 4, the exhaust gas temperature in the water recovery device 25 can be set to an optimum temperature for water recovery.
  • This medium-temperature operation SOFC can expand material options such as (1) using inexpensive metal materials for cell laminated separators, and (2) operations such as shortening startup time by using metal separators with good thermal conductivity. (3) It is possible to improve the system reliability, extend the service life, and reduce the cost by reducing the heat resistance requirements of the heat exchanger and piping.
  • the hybrid power generation system of a medium temperature operation SOFC and gas turbine having an operation temperature of about 600 ° C. to 800 ° C. has a gas turbine exhaust temperature of about 400 ° C. to 500 ° C., and is a hybrid of a conventional high temperature operation SOFC and gas turbine.
  • the exhaust gas temperature discharged from the turbine is higher than that of the power generation system. Therefore, the conventional hybrid power generation system with a medium temperature operation SOFC has lower power generation efficiency than a hybrid power generation system with a high temperature type SOFC of about 1000 ° C.
  • the present invention it is possible to improve the power generation output and the efficiency of power generation by the turbine, so that the power generation efficiency can be improved even in a hybrid power generation system of a medium temperature operation SOFC and a gas turbine.
  • water generated in large quantities by a chemical reaction in the fuel cell can be used as water for steam spraying, so that while improving the power generation output and the power generation efficiency of the power generation by the turbine,
  • the running cost (water supply cost) of water for steam spraying can be reduced, and the system is also economical.
  • a part of the steam generated by the steam generator 23 is used as process steam without being introduced into the gas turbine to generate electricity and heat. It is good also as a generation system.
  • FIG. 3 is a diagram showing a system configuration of a hybrid power generation system according to the second embodiment of the present invention. A second embodiment will be described with reference to FIG.
  • the difference from the first embodiment is that the steam turbine 35, the generator 36 connected to the steam turbine 35 and generating electric power with the driving force of the steam turbine 35, the steam turbine 35 and the steam generator 23, and the steam A steam supply system 37 for supplying the steam generated by the generator 23 to the steam turbine 35, and supplying the steam generated by the steam generator 23 to the steam turbine 35 via the steam supply system 37.
  • the generator 36 is used as a working medium 35 and collects electric power. Other points are the same as those of the first embodiment, and a description thereof will be omitted.
  • the fuel cell waste water is recovered, and the steam generated by using the heat of the turbine exhaust gas is introduced into the separately installed steam turbine 35 without returning to the gas turbine as in the first embodiment.
  • the power generation efficiency of the entire system is improved.
  • the same effect as that of the first embodiment can be obtained without changing the gas turbine system, such as addition of a steam injection mechanism to the combustor 10 of the gas turbine or modification of the turbine 12 or the like. is there.
  • FIG. 4 is a diagram showing a system configuration of a hybrid power generation system according to the third embodiment of the present invention. A third embodiment of the present invention will be described with reference to FIG.
  • a sprayer 41 for spraying water to the intake air flowing down in the flow path is provided in the intake air intake flow path 59 of the compressor, and the compressed air flow path communicates with the compressor outlet and the regenerative heat exchanger 4.
  • a sprayer 42 for spraying water on the compressed air 3 flowing down in the flow path 60 is provided at 60.
  • the condensed water supply system 31 is branched into a steam water supply system 39 and a humidification water supply system 40.
  • the steam water supply system 39 communicates with the steam generator 23, and the humidification water supply system 40 is further branched into an intake humidification water supply system 44 and a compressed air humidification water supply system 45.
  • the intake humidification water supply system 44 is connected to the sprayer 41, and the compressed air humidification water supply system 45 is connected to the sprayer 42.
  • the steam water supply system 39 is a flow path for guiding a part of the condensed water supplied from the water recovery device 25 to the steam generator 23.
  • the humidification water supply system 40 is a flow path for guiding the remaining condensed water supplied from the water recovery device 25 to the intake humidification water supply system 44 and the compressed air humidification water supply system 45.
  • the intake humidification water supply system 44 is for guiding a part of the condensed water supplied from the humidification water supply system 40 to the sprayer 41.
  • the compressed air humidification water supply system 45 is for guiding the remaining condensed water supplied from the humidification water supply system 40 to the sprayer 42. Further, the humidification water supply system 40 has an upstream of the condensed water flow direction.
  • a control valve 46, a water treatment device 48, and a pump 43 are provided in this order from the side toward the downstream side.
  • the control valve 46 is a valve for adjusting the amount of condensed water flowing through the steam water supply system 39 and the humidification water supply system 40.
  • the water treatment device 48 includes a reverse osmosis membrane and the like, and removes impurities in the condensed water.
  • the pump 43 is for increasing the pressure of the condensed water supplied from the water recovery device 25 to the humidifying water supply system 40 and pumping it to the sprayers 41 and 42.
  • the intake humidification water supply system 44 is provided with a control valve 47.
  • the control valve 47 is a valve for adjusting the distribution of the amount of condensed water flowing through the intake humidification water supply system 44 and the compressed air humidification water supply system 45.
  • the condensed water recovered by the water recovery device 25 flows down the condensed water supply system 31, branches to the steam supply system 39 and the humidifying water supply system 40, and further flows down the humidifying water supply system 40. Then, the air is branched into an intake humidification water supply system 44 and a compressed air humidification water supply system 45 and led to the sprayer 41 and the sprayer 42.
  • the distribution adjustment of the amount of condensed water sent to the steam water supply system 39, the intake humidification water supply system 44, and the compressed air humidification water supply system 45 is performed for each of steam injection, intake spray, and compressed air spray to the combustor 10. This is done by controlling the opening degree of the regulating valves 46 and 47 in consideration of the contribution to the improvement of the power generation output and the improvement of the reliability.
  • the adjustment valve 46 is installed in the humidification water supply system 40. However, even if the adjustment valve 46 is installed in the compressed air humidification supply system 45, the steam water supply system 39 and the intake humidification water supply Distribution adjustment of the amount of condensed water sent to the system
  • an orifice plate having a fixed hole diameter may be installed instead of the valve 46 and the valve 47 to adjust the water distribution in advance.
  • the condensed water guided to the sprayer 41 is sprayed as fine water droplets in the intake air via the sprayer 41.
  • the suction flow rate of the compressor 1 is increased while the temperature of the intake air (atmosphere 1) is lowered, and the driving power of the compressor 2 is reduced, thereby improving the efficiency. An effect is obtained.
  • the condensed water introduced to the sprayer 42 is sprayed as fine water droplets from the sprayer 42 into the compressed air discharge air so as to lower the temperature of the compressor discharge air 3 when evaporated by the high-temperature compressed discharge air.
  • the effect of improving efficiency is obtained by increasing the amount of heat recovered from the exhaust gas 14 at the turbine outlet by the regenerative heat exchanger 4.
  • the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby reducing the compressor driving force and the amount of heat recovered by the regenerative heat exchanger 4.
  • the same effect as in the first embodiment can be obtained, and further, the power generation output and the power generation efficiency by the turbine can be improved.
  • the power generation efficiency by the power generation output and the turbine can be improved while suppressing the water supply cost for humidifying the compressor intake air and the compressor discharge air.
  • the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered, so that the operating temperature of the fuel cell 7 can be lowered.
  • FIG. 5 is a diagram showing a system configuration of a hybrid power generation system according to the fourth embodiment of the present invention. A fourth embodiment of the present invention will be described with reference to FIG.
  • the basic configuration is the same as that of the third embodiment described above, and the description of the same configuration as that of the third embodiment is omitted.
  • the difference from the third embodiment is that the steam generated by the steam generator 23 is supplied to a separately installed steam turbine 35 via a steam supply system 37 and used as a working medium for the turbine of the steam turbine 35. is there.
  • the water recovery device 25 supplies the steam generator 23 via the condensed water supply system 31 and the steam water supply system 39, and uses the heat of the exhaust gas from the gas turbine.
  • the steam is generated, and the steam is introduced into the steam turbine 35 through the steam supply system 37.
  • the steam turbine 35 is rotationally driven by the expansion force of the steam supplied from the steam supply system 37.
  • the steam turbine 35 is mechanically connected to a generator 36, transmits the driving force of the turbine to the generator, and rotates the generator 36 to generate power.
  • the condensed water recovered by the water recovery device 25 is guided to the sprayers 41 and 42 via the humidification water supply system 40, the intake humidification water supply system 44, and the compressed air humidification water supply system 45. , 42 is used to humidify the intake air 1 and the compressor discharge air.
  • the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby reducing the compressor driving force and regenerating heat in the same manner as in the third embodiment.
  • the increase in the amount of heat recovered by the exchanger 4 can improve the power generation output and the efficiency of power generation by the turbine, and the same effects as in the second embodiment, such as no need to change the gas turbine system, can be obtained.
  • the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered, so that the operating temperature of the fuel cell 7 can be lowered.
  • FIG. 6 is a diagram showing a system configuration of a hybrid power generation system according to the fifth embodiment of the present invention. A fifth embodiment of the present invention will be described with reference to FIG.
  • the basic configuration is the same as the configuration of the second embodiment described above, and the description of the same configuration as the configuration of the second embodiment is omitted.
  • the difference from the second embodiment is that it is connected to the steam turbine 35, connected to the condenser 49 for condensing the exhaust 38 after driving the steam turbine 35, and the condenser 49.
  • a water supply system 50 through which the sewed water circulates, a sprayer 56 that sprays the water condensed by the condenser onto the intake air of the compressor 2, and the water condensed by the condenser is sprayed on the compressor discharge air.
  • the sprayer 56 is provided in the air intake passage of the compressor 2, and the sprayer 57 is provided in the flow path of the compressor discharge air 3 flowing down from the compressor 2 to the regenerative heat exchanger 4.
  • the water supply system 50 is provided with a water treatment device 51 and a pump 52 in order from the upstream side to the downstream side in the water flow direction.
  • the intake humidification water supply system 53 is provided with a regulating valve 55.
  • the water treatment device is for removing impurities contained in water and includes a reverse osmosis membrane and the like.
  • the pump is for pumping the water condensed by the condenser to the sprayers 56 and 57.
  • the adjustment valve 55 is for adjusting the amount of water sent to the intake humidification water supply system 53 and the compressed air humidification water supply system 54.
  • the water condensed by the condenser 49 is supplied from the sprayers 56 and 57 to the intake air 1 and the compressor discharge air 3 through the water supply system 50, the intake humidification water supply system 53, and the compressed air humidification water supply system 54. Spray on.
  • the ratio of the amount of water sprayed to the intake air 1 and the compressor discharge air 3 is adjusted by controlling the opening degree of the adjustment valve 55.
  • the distribution adjustment of the amount of water sent to the intake humidifying water supply system 53 and the compressed air humidifying water supply system 54 takes into account the contribution to the improvement of the power generation output and the reliability of the intake spray and the compressed air spray, respectively. Adjusted.
  • the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby humidifying the compressor intake air and the compressor discharge air. Compared with a hybrid power generation system that does not perform power generation, power generation output and efficiency can be improved.
  • the power generation output and the efficiency can be improved while suppressing the water supply cost for humidifying the compressor intake air and the compressor discharge air.
  • FIG. 7 is a diagram showing a system configuration of a hybrid power generation system according to the sixth embodiment of the present invention. A sixth embodiment of the present invention will be described with reference to FIG.
  • the fuel cell waste water is recovered by the water recovery device 25 and the condensed water 31 is supplied to the steam generator 23 using the exhaust heat of the gas turbine exhaust.
  • This is an example in which a large amount of wastewater generated from the fuel cell 7 is effectively utilized by generating steam 32 and injecting the steam 32 into the combustor 10 to improve the power generation output and efficiency of the gas turbine.
  • the difference from the first embodiment is that the steam generator 23 is installed on the upstream side of the gas turbine exhaust gas line from the regenerative heat exchanger 4, that is, the turbine outlet gas 14 is introduced into the steam generator 23, and the steam generator
  • the exhaust gas 61 is introduced into the regenerative heat exchanger 4, the compressor discharge air 3 is heated using the exhaust gas 61 as a heat source, and then the exhaust gas 62 is introduced into the water recovery device 25.
  • Other configurations are the same as those of the first embodiment described above, and the description of the same configurations as those of the first embodiment is omitted.
  • the steam generator 23 is installed on the higher temperature side, and the regenerative heat exchanger 4 is installed on the lower temperature side, so that a more superheated steam 32 is obtained.
  • the temperature on the gas side is lowered, and the reliability and life of the regenerative heat exchanger 4 can be improved.
  • the exhaust gas 61 whose temperature has been lowered by the steam generator 23 is introduced into the regenerative heat exchanger 4 instead of the turbine outlet gas 14, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered.
  • the operating temperature of the battery 7 can be lowered, and the three features of the medium temperature operating SOFC described above can be exhibited more.
  • the seventh embodiment will be described with reference to FIG.
  • the fuel cell waste water is recovered by the water recovery device 25, and the water 31 is supplied to the steam generator 23 using the exhaust heat of the gas turbine exhaust.
  • the power generation output and efficiency of the entire hybrid power generation system are improved, so that a large amount generated from the fuel cell 7 This is an example of effective use of wastewater.
  • the steam generator 23 is installed on the upstream side of the gas turbine exhaust gas line from the regenerative heat exchanger 4, that is, the turbine outlet gas 14 is introduced into the steam generator 23.
  • the exhaust gas 61 is introduced into the regenerative heat exchanger 4 and the compressor discharge air 3 is heated using the exhaust 61 as a heat source, the exhaust gas 62 is introduced into the water recovery device 25.
  • Other configurations are the same as those of the first embodiment described above, and the description of the same configurations as those of the first embodiment is omitted.
  • the steam generator 23 is installed on the higher temperature side and the regenerative heat exchanger 4 is installed on the lower temperature side, so that the overheated steam 37 is obtained and the output and efficiency of the steam turbine 35 are improved.
  • the temperature on the gas side of the heat exchanger 4 is lowered and the reliability and life of the regenerative heat exchanger 4 are improved.
  • the exhaust gas 61 whose temperature has been lowered by the steam generator 23 is introduced into the regenerative heat exchanger 4 instead of the turbine outlet gas 14, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered.
  • the operating temperature of the battery 7 can be lowered, and the three features of the medium temperature operating SOFC described above can be exhibited more.
  • the present invention is applicable to a hybrid power generation system with a gas turbine and a fuel cell.

Abstract

Disclosed is a hybrid power generation system of a gas turbine and a fuel cell wherein power generation output and power generation efficiency are enhanced while controlling operation cost by utilizing a large quantity of wastewater produced from the fuel cell. Reaction product of a fuel cell (7), i.e. water, is collected in a water collection device (25) from exhaust gas of a gas turbine and steam generated from a steam generator (23) by utilizing exhaust heat of the gas turbine is introduced to a turbine (12) for driving a generator (13). Since the power generation system employs hybrid system not only in the aspect of heat but also in the aspect of utilization of water, output and efficiency of a power generation system can be enhanced. The invention especially exhibits great effect in a hybrid system of medium temperature SOFC where the exhaust gas temperature of the gas turbine becomes high. Furthermore, cost required for water supply can be controlled because water is not supplied externally to the system but the system utilizes wastewater of the fuel cell, and stream can be produced even in such a place or situation as water required for generation of steam cannot be introduced.

Description

ハイブリッド発電システムHybrid power generation system
 本発明は、ガスタービンと燃料電池とのハイブリッド発電システムに関するものである。 The present invention relates to a hybrid power generation system including a gas turbine and a fuel cell.
 近年、総合効率の良い分散電源としてマイクロガスタービンや燃料電池が開発されてきている。 In recent years, micro gas turbines and fuel cells have been developed as distributed power sources with high overall efficiency.
 燃料電池は基本的には水素と酸素の反応により発電するシステムであり、反応生成物は水である。燃料電池は、熱サイクルを利用して発電するガスタービンやレシプロエンジンとは異なり、化学反応を利用して直接発電するシステムであるため、ガスタービンなどと比べ発電効率が大幅に高い。 A fuel cell is basically a system that generates electricity by the reaction of hydrogen and oxygen, and the reaction product is water. Unlike a gas turbine or a reciprocating engine that generates power using a thermal cycle, a fuel cell is a system that directly generates power using a chemical reaction, and thus has a significantly higher power generation efficiency than a gas turbine.
 さらに、近年、特許文献1に記載された発電システムのように、ガスタービンと燃料電池をハイブリッド化することで、発電効率を大幅に向上するシステムが開発されてきている。 Furthermore, in recent years, a system that greatly improves power generation efficiency by hybridizing a gas turbine and a fuel cell, such as the power generation system described in Patent Document 1, has been developed.
 ガスタービンでは、作動媒体である圧縮空気を燃焼器内で燃料と混合して燃焼させることで加熱・昇温するが、ガスタービンと燃料電池のハイブリッド発電システムでは、燃焼器での作動媒体の加熱・昇温の一部あるいは全てを、燃料電池内の化学反応による反応熱を利用して行う。燃料電池内の化学反応によって得られる熱エネルギーを作動媒体を介してタービンで動力として回収することで、ハイブリッド発電システム全体の発電効率が向上する。 In gas turbines, compressed air, which is a working medium, is mixed with fuel in a combustor and burned to raise the temperature and temperature. In a gas turbine and fuel cell hybrid power generation system, the working medium is heated in the combustor. -Some or all of the temperature rise is performed using the heat of reaction caused by the chemical reaction in the fuel cell. By recovering the thermal energy obtained by the chemical reaction in the fuel cell as power by the turbine via the working medium, the power generation efficiency of the entire hybrid power generation system is improved.
 ガスタービンとのハイブリッドに適する燃料電池の一例として、固形酸化物形燃料電池(Solid Oxide Fuel Cell(以下、SOFCという))がある。このSOFCについては、従来、作動温度が900℃から1000℃という高温タイプが開発されてきているが、近年、作動温度が600℃から800℃程度の中温作動SOFCと呼ばれるタイプが検討、開発されてきている。 An example of a fuel cell suitable for a hybrid with a gas turbine is a solid oxide fuel cell (hereinafter referred to as SOFC). As for this SOFC, a high-temperature type having an operating temperature of 900 ° C. to 1000 ° C. has been developed in the past, but in recent years, a type called an intermediate temperature operating SOFC having an operating temperature of about 600 ° C. to 800 ° C. has been studied and developed. ing.
特開2004-176685号公報JP 2004-176585 A
 この中温作動SOFCは、(1)安価な金属材料をセル積層セパレータに用いるなど、材料選択肢の拡大や、(2)熱伝導性の良い金属セパレータの使用により、起動時間短縮などの操作性向上が可能である等の利点を有する。 This medium temperature operation SOFC can improve operability such as (1) expansion of material options such as using inexpensive metal materials for cell laminated separators, and (2) shortening of start-up time by using metal separators with good thermal conductivity. It has advantages such as being possible.
 しかしながら、この中温作動SOFCをガスタービンとのハイブリッド発電に用いようとすると、高温作動SOFCを用いたガスタービンとのハイブリッド発電システムよりも、ガスタービンの排気温度が高くなる。従って、中温作動SOFCをガスタービンとのハイブリッド発電に用いた場合、高温作動SOFCを用いたガスタービンとのハイブリッド発電システムよりも発電効率が低下してしまうという問題があった。 However, if this intermediate temperature operation SOFC is used for hybrid power generation with a gas turbine, the exhaust temperature of the gas turbine becomes higher than that of a hybrid power generation system with a gas turbine using a high temperature operation SOFC. Therefore, when the medium temperature operation SOFC is used for hybrid power generation with a gas turbine, there is a problem that power generation efficiency is lower than that of a hybrid power generation system with a gas turbine using a high temperature operation SOFC.
 一方、SOFC等のハイブリッド発電システムに用いられる燃料電池は、化学反応によって発電する際に反応生成物である水を大量に排出する。しかしながら、従来技術では、燃料電池で生成した水のガスタービンへの有効利用とその方法については検討されていない。 On the other hand, a fuel cell used in a hybrid power generation system such as SOFC discharges a large amount of water, which is a reaction product, when generating power through a chemical reaction. However, in the prior art, the effective use of water produced by a fuel cell for a gas turbine and the method thereof have not been studied.
 そこで、本発明は、燃料電池とガスタービンのハイブリッド発電システムにおいて、燃料電池で大量に生成される水を用いて、タービンによる発電出力の向上及び高効率化を図ることができるガスタービンと燃料電池とのハイブリッド発電システムを提供することを目的とする。 Therefore, the present invention provides a gas turbine and a fuel cell that can improve the power generation output and increase the efficiency of the turbine by using a large amount of water generated by the fuel cell in a hybrid power generation system of a fuel cell and a gas turbine. It aims to provide a hybrid power generation system.
上記課題は、ガスタービンと燃料電池とのハイブリッド発電システムにおいて、前記ガスタービンの排ガスを熱源として蒸気を生成する蒸気発生器と、前記ガスタービンの排ガス中から、前記燃料電池の反応生成物である水を回収する水回収装置と、該水回収装置で回収した水を前記蒸気発生器に供給する凝縮水供給系統と、前記蒸気発生器と連通し、前記蒸気発生器で生成した蒸気を、発電機を駆動するタービンに導入する蒸気供給系統とを設けたことにより、具体的には特許請求の範囲の各請求項に記載した構成により達成される。
In the hybrid power generation system of a gas turbine and a fuel cell, the above-described problem is a steam generator that generates steam using the exhaust gas of the gas turbine as a heat source, and a reaction product of the fuel cell from the exhaust gas of the gas turbine. A water recovery device that recovers water, a condensed water supply system that supplies water recovered by the water recovery device to the steam generator, and a steam that is communicated with the steam generator and generates steam generated by the steam generator By providing the steam supply system to be introduced to the turbine that drives the machine, specifically, this is achieved by the configurations described in the claims.
 本発明によれば、ガスタービンと燃料電池とのハイブリッド発電システムにおいて、燃料電池で生成された水を回収し、回収した水をガスタービンの排熱を利用して蒸気を生成し、生成した蒸気を発電機を駆動するタービンの作動媒体として用いることで、水の供給コストの上昇を抑制しながら、ハイブリッド発電システムにおけるタービンによる発電出力の向上及び高効率化を図ることができる。 According to the present invention, in a hybrid power generation system of a gas turbine and a fuel cell, water generated by the fuel cell is recovered, steam is generated from the recovered water using exhaust heat of the gas turbine, and the generated steam is generated. Can be used as a working medium for the turbine that drives the generator, thereby improving the power generation output by the turbine in the hybrid power generation system and increasing the efficiency while suppressing an increase in water supply cost.
本発明の第1の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。1 is a system diagram showing a hybrid power generation system of a gas turbine and a fuel cell according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る燃料電池の構成図。1 is a configuration diagram of a fuel cell according to a first embodiment of the present invention. 本発明の第2の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 2nd Embodiment of this invention. 本発明の第3の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 3rd Embodiment of this invention. 本発明の第4の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 4th Embodiment of this invention. 本発明の第5の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 5th Embodiment of this invention. 本発明の第6の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 6th Embodiment of this invention. 本発明の第7の実施の形態によるガスタービンと燃料電池とのハイブリッド発電システムを示した系統図。The system diagram which showed the hybrid electric power generation system of the gas turbine and fuel cell by the 7th Embodiment of this invention.
符号の説明Explanation of symbols
 1:大気、2:圧縮機、4:再生熱交換器、6:電池燃料、7:燃料電池、9:燃料、10:燃焼器、11:燃焼ガス、12:タービン、13:発電機、23:蒸気発生器、25:水回収装置、31:凝縮水供給系統、32:蒸気供給系統、35:蒸気タービン、36:発電機、37:蒸気供給系統、39:蒸気用水供給系統、、40:加湿用水供給系統、41:噴霧器(第1の噴霧器)、42:噴霧器(第2の噴霧器)、44:吸気加湿用水供給系統、45:圧縮空気加湿用水供給系統、49:復水器、50:水供給系統、53:吸気加湿用水供給系統、54:圧縮空気加湿用水供給系統、56:噴霧器(第1の噴霧器)、57:噴霧器(第2の噴霧器)、59:吸気取り入れ流路。 1: Air, 2: Compressor, 4: Regenerative heat exchanger, 6: Battery fuel, 7: Fuel cell, 9: Fuel, 10: Combustor, 11: Combustion gas, 12: Turbine, 13: Generator, 23 : Steam generator, 25: water recovery device, 31: condensed water supply system, 32: steam supply system, 35: steam turbine, 36: generator, 37: steam supply system, 39: water supply system for steam, 40: Humidification water supply system, 41: sprayer (first sprayer), 42: sprayer (second sprayer), 44: intake humidification water supply system, 45: compressed air humidification water supply system, 49: condenser, 50: Water supply system, 53: Intake humidification water supply system, 54: Compressed air humidification water supply system, 56: Sprayer (first sprayer), 57: Sprayer (second sprayer), 59: Intake intake flow path.
以下、本発明の実施の形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明の第1の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。  FIG. 1 is a diagram showing a system configuration of a hybrid power generation system according to a first embodiment of the present invention. *
第1図に示すように、本ハイブリッド発電システムは、大気1を吸引して圧縮し吐出する圧縮機2と、圧縮機2から吐出された圧縮機吐出空気3を導入して加熱する再生熱交換器4と、この再生熱交換器4の出口空気5と燃料タンク(図示せず)から供給された水素や天然ガスなどの電池燃料6とによって電気化学反応により発電を行う燃料電池7と、燃料電池7で発電を行う際に発生する高温ガス8の一部または全部を、必要に応じて燃料タンク(図示せず)から供給された天然ガスなどの燃料9と混合して燃焼し、高温の燃焼ガス11を生成する燃焼器10と、この燃焼器10から吐出される燃焼ガス11の膨張力により回転駆動するタービン12と、タービン12と圧縮機2とを接続するロータ58と、ロータ58に接続し、タービン12の回転力によって駆動し発電する発電機13とを有する。なお、圧縮機2は、タービン12の回転力によって回転駆動する。  As shown in FIG. 1, the hybrid power generation system includes a compressor 2 that sucks, compresses, and discharges the atmosphere 1 and a regenerative heat exchange that introduces and heats the compressor discharge air 3 discharged from the compressor 2. A fuel cell 7 that generates electricity by an electrochemical reaction between the regenerator 4 and the outlet air 5 of the regenerative heat exchanger 4 and a cell fuel 6 such as hydrogen or natural gas supplied from a fuel tank (not shown), A part or all of the high temperature gas 8 generated when the battery 7 generates electricity is mixed with a fuel 9 such as natural gas supplied from a fuel tank (not shown) as necessary, and burned. A combustor 10 that generates the combustion gas 11, a turbine 12 that is rotationally driven by the expansion force of the combustion gas 11 discharged from the combustor 10; a rotor 58 that connects the turbine 12 and the compressor 2; Connect and turbine And a power generator 13 driven by the power generation by the second rotational force. The compressor 2 is rotationally driven by the rotational force of the turbine 12. *
前述した再生熱交換器4は、タービン12から排出されたタービン排ガスであるタービン出口排ガス14を熱源として導入しており、タービン出口排ガス14と圧縮機吐出空気3との熱交換を行うことにより、圧縮機吐出空気3の加熱と、タービン出口排ガス14の熱回収を行うものである。  The regenerative heat exchanger 4 described above introduces a turbine outlet exhaust gas 14 which is a turbine exhaust gas discharged from the turbine 12 as a heat source, and performs heat exchange between the turbine outlet exhaust gas 14 and the compressor discharge air 3, Heating of the compressor discharge air 3 and heat recovery of the turbine outlet exhaust gas 14 are performed. *
第2図は、本実施の形態に係る燃料電池7の構成を示す図である。なお先の図と同じ部分については同じ符号を付して説明は省略する(後の図も同様に扱う)。  FIG. 2 is a diagram showing a configuration of the fuel cell 7 according to the present embodiment. Note that the same parts as those in the previous figure are denoted by the same reference numerals, and description thereof will be omitted (the same applies to the subsequent figures). *
本実施の形態では、燃料電池としてSOFCを利用した場合について説明する。この種の燃料電池では、電池燃料として水素を直接利用するのではなく、天然ガス等の炭化水素系燃料を改質して水素を作り出し、燃料として使用する場合がある。  In the present embodiment, a case where SOFC is used as a fuel cell will be described. In this type of fuel cell, hydrogen may not be directly used as a cell fuel, but may be produced by reforming a hydrocarbon-based fuel such as natural gas to produce hydrogen. *
本実施例の燃料電池7は、アノード部15とカソード部16とを有する電池部17を備える。なお、この図では単純化して改質部、予熱器等のその他の構成要素は省略している。  The fuel cell 7 of this embodiment includes a battery unit 17 having an anode unit 15 and a cathode unit 16. In this figure, other components such as the reforming section and the preheater are omitted for simplification. *
アノード部15には、燃料電池7内部に備えられた改質部(図示せず)で改質された電池燃料6が供給されており、カソード部16は再生熱交換器4と接続し、再生熱交換器4から酸素を含んだ空気(再生熱交換器出口空気5)が供給される。電池部17では、アノード部15及びカソード部16にそれぞれ供給された電池燃料6と空気5との化学反応によって電力21が発生する。  A cell fuel 6 reformed by a reforming unit (not shown) provided in the fuel cell 7 is supplied to the anode unit 15, and a cathode unit 16 is connected to the regenerative heat exchanger 4 for regeneration. Air containing oxygen (regenerative heat exchanger outlet air 5) is supplied from the heat exchanger 4. In the battery part 17, electric power 21 is generated by a chemical reaction between the battery fuel 6 and the air 5 supplied to the anode part 15 and the cathode part 16, respectively. *
この化学反応の際、化学反応で生じた反応熱によって加熱された高温ガス(例えば、600~1000度程度)8が排出される。また、アノード部15では反応生成物として水(燃料電池排水)が生成され、一部は改質用水分供給路601(燃料リサイクルライン)を通して改質部に送られ、燃料電池内で発生する熱と共に電池燃料6の改質に利用される。また残りの水分は化学反応の熱によって気化しており、高温ガス8に含まれて燃焼器10に供給される。  During this chemical reaction, high-temperature gas (for example, about 600 to 1000 degrees) 8 heated by the reaction heat generated by the chemical reaction is discharged. Further, water (fuel cell wastewater) is generated as a reaction product in the anode unit 15, and part of the water is sent to the reforming unit through the reforming moisture supply path 601 (fuel recycle line) to generate heat generated in the fuel cell. At the same time, it is used for reforming the battery fuel 6. The remaining moisture is vaporized by the heat of chemical reaction, and is contained in the high temperature gas 8 and supplied to the combustor 10. *
第1図に戻り、本実施例に係るハイブリッド発電システムについて説明する。本実施例のハイブリッド発電システムでは、再生熱交換器4から排出されたタービン排ガスである再生熱交換器排ガス22を導入し、再生熱交換器排ガス22を熱源として凝縮水から蒸気を生成する蒸気発生器23と、蒸気発生器23から排出されたタービン排ガスである蒸気発生器排ガス24を導入し、タービン排ガス内に含まれる湿分を回収する水回収装置25と、水回収装置25から排出されたタービン排ガスである排ガス33を大気中に放出する煙突34とを有する。  Returning to FIG. 1, the hybrid power generation system according to this embodiment will be described. In the hybrid power generation system according to the present embodiment, the regeneration heat exchanger exhaust gas 22 that is the turbine exhaust gas discharged from the regeneration heat exchanger 4 is introduced, and steam is generated from the condensed water using the regeneration heat exchanger exhaust gas 22 as a heat source. 23, a steam generator exhaust gas 24 that is a turbine exhaust gas discharged from the steam generator 23, a water recovery device 25 that recovers moisture contained in the turbine exhaust gas, and a water recovery device 25 And a chimney 34 for releasing the exhaust gas 33, which is a turbine exhaust gas, into the atmosphere. *
水回収装置25は、排ガスを冷却して、排ガス中に含まれる湿分を凝縮する熱交換器26と、凝縮した凝縮水が貯まる水貯め部27とを有する。熱交換器26には例えばフィンチューブ式の熱交換器、シェル・アンド・チューブ式の熱交換器を用いる。また熱交換器26の冷媒には、工場排水等の水や、水がない地域では大気等を用いることができる。  The water recovery device 25 includes a heat exchanger 26 that cools the exhaust gas and condenses moisture contained in the exhaust gas, and a water storage unit 27 that stores condensed condensed water. For the heat exchanger 26, for example, a fin tube type heat exchanger or a shell and tube type heat exchanger is used. As the refrigerant of the heat exchanger 26, water such as factory effluent or the air can be used in an area where there is no water. *
水回収装置25の水貯め部27には、凝縮水供給系統31が接続している。凝縮水供給系統31は、蒸気発生器23とも接続しており、水貯め部27に貯留された凝縮水は凝縮水供給系統31を流下して蒸気発生器23に供給される。  A condensed water supply system 31 is connected to the water reservoir 27 of the water recovery device 25. The condensed water supply system 31 is also connected to the steam generator 23, and the condensed water stored in the water reservoir 27 flows down the condensed water supply system 31 and is supplied to the steam generator 23. *
蒸気発生器23は、凝縮水供給系統31を介して、水回収装置25から供給された凝縮水と再生熱交換器排ガス22との熱交換を行うことによって蒸気を生成し、タービン排ガスから熱を回収する装置である。また蒸気発生器23は、蒸気供給系統32と接続しており、蒸気供給系統32は、燃焼器10内に設けられた蒸気噴射器(図示せず)と連通している。  The steam generator 23 generates steam by performing heat exchange between the condensed water supplied from the water recovery device 25 and the regenerative heat exchanger exhaust gas 22 via the condensed water supply system 31, and generates heat from the turbine exhaust gas. It is a device to collect. The steam generator 23 is connected to a steam supply system 32, and the steam supply system 32 communicates with a steam injector (not shown) provided in the combustor 10. *
蒸気発生器23で生成された蒸気は、蒸気供給系統32を通って燃焼器10に導入され、蒸気噴射器によって、燃焼器10内部を流下する高温ガス8中に噴射され、混合される。  The steam generated by the steam generator 23 is introduced into the combustor 10 through the steam supply system 32, and is injected and mixed into the hot gas 8 flowing down inside the combustor 10 by the steam injector. *
次に本実施の作用及び効果について説明する。  Next, the operation and effects of this embodiment will be described. *
本実施例では、大気1を圧縮機2で吸引して加圧し、圧縮空気を生成した後、生成した圧縮空気を圧縮機2と連通する再生熱交換器4へ送る。再生熱交換器4にはタービン12から排出されたタービン排ガスが導入されており、再生熱交換器4に送り込まれた圧縮空気(圧縮機吐出空気3)とタービン12から排出された高温のタービン排ガス(タービン出口排ガス14)との間で熱交換を行い、燃料電池7の作動に必要な温度まで圧縮空気を昇温する。この熱交換によって、タービンの排ガスが有する熱エネルギーを圧縮空気を介して発電システム内に回収する。  In this embodiment, the air 1 is sucked and pressurized by the compressor 2 to generate compressed air, and then the generated compressed air is sent to the regenerative heat exchanger 4 communicating with the compressor 2. Turbine exhaust gas discharged from the turbine 12 is introduced into the regenerative heat exchanger 4, and compressed air (compressor discharge air 3) sent to the regenerative heat exchanger 4 and high-temperature turbine exhaust gas discharged from the turbine 12. Heat exchange is performed with the (turbine outlet exhaust gas 14), and the temperature of the compressed air is increased to a temperature necessary for the operation of the fuel cell 7. By this heat exchange, the thermal energy of the exhaust gas of the turbine is recovered in the power generation system through the compressed air. *
この再生熱交換器4を設けて、圧縮空気との熱交換によってタービンの排ガスから熱エネルギーを回収するガスタービンのサイクルを再生サイクルといい、再生熱交換器4を備えていないガスタービンサイクルより発電効率が高い。  A gas turbine cycle in which the regenerative heat exchanger 4 is provided and heat energy is recovered from the exhaust gas of the turbine by heat exchange with compressed air is referred to as a regenerative cycle. High efficiency. *
タービン12の排ガスと熱交換を行った後の圧縮空気(再生熱交換器出口空気5)は燃料電池7の電池部17へと導入される。圧縮空気は、電池部17のカソード部16に導入された後、アノード部15に送り込まれた燃料と化学反応を起こし、電力21を発生させる。化学反応によりアノード及びカソードで発生した排ガスは、化学反応で生じた反応熱により加熱され、高温ガス(燃料電池排気(例えば、600~1000度程度))8となって電池部17から排出される。  The compressed air (regenerative heat exchanger outlet air 5) after heat exchange with the exhaust gas of the turbine 12 is introduced into the battery unit 17 of the fuel cell 7. The compressed air is introduced into the cathode portion 16 of the battery portion 17 and then chemically reacts with the fuel sent to the anode portion 15 to generate electric power 21. The exhaust gas generated at the anode and the cathode by the chemical reaction is heated by the reaction heat generated by the chemical reaction, and becomes high-temperature gas (fuel cell exhaust (for example, about 600 to 1000 degrees)) 8 and is discharged from the battery unit 17. . *
また、化学反応の際、大量の水が生成されるが、反応熱によって気化し、高温ガス8中に含まれる。大量の水蒸気を含んだ高温ガス8は、燃焼器10に導入される。この構成により、電池部17で発生する反応熱をガスタービンの作動媒体を利用して発電システム内に回収しているため、本発明のハイブリッド発電システムは、燃料電池とのハイブリッドを採用していないガスタービンシステムと比べて発電効率が高い。 In addition, a large amount of water is generated during the chemical reaction, but is vaporized by reaction heat and contained in the high temperature gas 8. The hot gas 8 containing a large amount of water vapor is introduced into the combustor 10. With this configuration, since the reaction heat generated in the battery unit 17 is recovered in the power generation system using the working medium of the gas turbine, the hybrid power generation system of the present invention does not employ a hybrid with a fuel cell. Power generation efficiency is high compared to gas turbine systems.
 燃料電池7から燃焼器10に送り込まれた高温ガス8の一部または全部は、必要に応じて燃料器10内で、燃料タンク(図示せず)から供給された燃料9と混合され、燃焼によって加熱された後にタービン12に送り込まれる。 A part or all of the hot gas 8 sent from the fuel cell 7 to the combustor 10 is mixed with the fuel 9 supplied from a fuel tank (not shown) in the fuel device 10 as necessary, and burned. After being heated, it is fed into the turbine 12.
 タービン12に送り込まれた高温ガス8(燃焼ガス11)は、タービン12の作動媒体としてタービン12内を増速かつ膨張しつつ流下し、タービン12を回転駆動させる。なお、本実施例のハイブリッドシステムでは、高温ガス8は大量の水蒸気を含むため、質量が増しており、作動媒体中に蒸気を含まないガスタービンシステムと比較して、タービンの発電出力及び発電効率が高い。 The high-temperature gas 8 (combustion gas 11) sent to the turbine 12 flows down as the working medium of the turbine 12 while accelerating and expanding in the turbine 12, and rotates the turbine 12. In the hybrid system of the present embodiment, since the high temperature gas 8 contains a large amount of water vapor, the mass is increased, and compared with a gas turbine system that does not contain steam in the working medium, the power generation output and power generation efficiency of the turbine. Is expensive.
 タービン12を回転駆動させた後の高温ガスは排ガス(タービン出口排ガス14)となって、再生熱交換器4に送り込まれる。再生熱交換器4内では、圧縮空気との熱交換により排ガスの有する熱エネルギーがハイブリッド発電システム内に回収され、排ガスの温度は低下する。その後、排ガスは蒸気発生器23に送り込まれ、蒸気発生器23内の凝縮水と熱交換を行い、蒸気が生成され、排ガスの有する熱が回収され、排ガス温度が低下する。 The high-temperature gas after rotating the turbine 12 becomes exhaust gas (turbine outlet exhaust gas 14) and is sent to the regenerative heat exchanger 4. In the regenerative heat exchanger 4, the heat energy of the exhaust gas is recovered in the hybrid power generation system by heat exchange with the compressed air, and the temperature of the exhaust gas decreases. Thereafter, the exhaust gas is sent to the steam generator 23 to exchange heat with the condensed water in the steam generator 23, steam is generated, the heat of the exhaust gas is recovered, and the exhaust gas temperature decreases.
 凝縮水と熱交換を行った排ガスは、次に水回収装置25に送り込まれる。水回収装置25では、熱交換器26で冷媒と熱交換することにより排ガスの温度がさらに低下し、排ガス中に含まれていた湿分が凝縮し、水貯め部27に凝縮水として回収される。湿分を回収された排ガスはその後、煙突34より大気に放出される。 The exhaust gas that has exchanged heat with the condensed water is then sent to the water recovery device 25. In the water recovery device 25, the temperature of the exhaust gas further decreases by exchanging heat with the refrigerant in the heat exchanger 26, the moisture contained in the exhaust gas is condensed, and is collected in the water reservoir 27 as condensed water. . The exhaust gas from which moisture has been recovered is then released from the chimney 34 to the atmosphere.
 また水回収装置25で回収した水は、凝縮水補給系統31を介して蒸気発生器23に導入され、排ガスの熱により気化して蒸気となる。本実施例では、再生熱交換器4と、蒸気発生器23、水回収装置25で排ガスから熱エネルギーをハイブリッド発電システム内に回収しているため、これらを有しないハイブリッド発電システムと比較して発電効率が高い。 Further, the water recovered by the water recovery device 25 is introduced into the steam generator 23 via the condensed water supply system 31, and is vaporized by the heat of the exhaust gas to become steam. In this embodiment, the regeneration heat exchanger 4, the steam generator 23, and the water recovery device 25 recover the thermal energy from the exhaust gas in the hybrid power generation system. High efficiency.
 蒸気発生器23で生成した蒸気は、蒸気発生器23と接続する蒸気供給系統32を流下し、ガスタービンの燃焼器10に導入され、燃焼器10内に設けられた蒸気噴射器から燃焼器10内を流下する作動媒体中に噴射される。これにより発電機13を駆動するタービン12の作動媒体中に、タービン12の排ガスが有する熱エネルギーが回収され、また、発電機13を駆動するタービン12の作動媒体の質量が増加するため、タービンによる発電出力および発電効率が向上する。 The steam generated by the steam generator 23 flows down the steam supply system 32 connected to the steam generator 23, is introduced into the combustor 10 of the gas turbine, and is combusted from the steam injector provided in the combustor 10. It is injected into the working medium flowing down. As a result, the thermal energy of the exhaust gas of the turbine 12 is recovered in the working medium of the turbine 12 that drives the generator 13, and the mass of the working medium of the turbine 12 that drives the generator 13 increases. Power generation output and power generation efficiency are improved.
 従来のハイブリッド発電システムでは、燃料電池が作動するには、圧縮機吐出空気を燃料電池に送る際に、予め補助燃焼器や圧縮機の圧力比を調節することによって、吐出空気を一定の温度に昇温する必要がある。そのため、補助燃焼器用の燃料が要求され、または圧縮機圧力比を圧縮空気温度に合わせることによって圧縮機が想定する最適圧力比とズレが生じ、発電システムの効率が低下する。 In the conventional hybrid power generation system, when the fuel cell is operated, when the compressor discharge air is sent to the fuel cell, the discharge air is kept at a constant temperature by adjusting the pressure ratio of the auxiliary combustor and the compressor in advance. It is necessary to raise the temperature. For this reason, fuel for the auxiliary combustor is required, or the optimal pressure ratio assumed by the compressor is shifted by adjusting the compressor pressure ratio to the compressed air temperature, thereby reducing the efficiency of the power generation system.
 一方、本発明では、再生熱交換器4により吐出空気3を予加熱できるため、圧縮機吐出空気3を加熱するための補助燃焼器を必要とせず、また圧縮機の圧力比を吐出空気の温度と関係なく最適圧力比に設定でき、ガスタービンの効率を最適な値で維持できる。また、再生熱交換器4で排ガスから一定の熱量を回収することにより、水回収装置25内での排ガス温度を、水回収に最適な温度に設定できる。 On the other hand, in the present invention, since the discharge air 3 can be preheated by the regenerative heat exchanger 4, an auxiliary combustor for heating the compressor discharge air 3 is not required, and the pressure ratio of the compressor is set to the temperature of the discharge air. It is possible to set the optimum pressure ratio regardless of the gas turbine efficiency and maintain the gas turbine efficiency at the optimum value. Further, by recovering a certain amount of heat from the exhaust gas by the regenerative heat exchanger 4, the exhaust gas temperature in the water recovery device 25 can be set to an optimum temperature for water recovery.
 ところで、SOFCについては、従来、作動温度が900℃から1000℃という高温タイプが開発されてきているが、近年、作動温度が600℃から800℃程度の中温作動SOFCと呼ばれるタイプが検討、開発されてきている。 By the way, as for SOFC, a high-temperature type having an operating temperature of 900 ° C. to 1000 ° C. has been developed conventionally, but in recent years, a type called an intermediate temperature operating SOFC having an operating temperature of about 600 ° C. to 800 ° C. has been studied and developed. It is coming.
 この中温作動SOFCは、(1)安価な金属材料をセル積層セパレータに用いるなど、材料選択肢の拡大が可能であり、(2)熱伝導性の良い金属セパレータの使用により、起動時間短縮などの操作性向上が可能であり、(3)熱交換器、配管の耐熱要求が緩和されることによる、システムの信頼性向上、長寿命化、低コスト化も可能である。 This medium-temperature operation SOFC can expand material options such as (1) using inexpensive metal materials for cell laminated separators, and (2) operations such as shortening startup time by using metal separators with good thermal conductivity. (3) It is possible to improve the system reliability, extend the service life, and reduce the cost by reducing the heat resistance requirements of the heat exchanger and piping.
 しかしながら、作動温度が600℃から800℃程度の中温作動SOFCとガスタービンとのハイブリッド発電システムは、ガスタービン排気温度が400℃から500℃程度であり、従来の高温作動SOFCとガスタービンとのハイブリッド発電システムと比較してタービンから排出される排ガス温度が高くなる。そのため、従来の中温作動SOFCとのハイブリッド発電システムは、1000℃程度の高温タイプのSOFCとのハイブリッド発電システムと比較して発電効率が低くなる。 However, the hybrid power generation system of a medium temperature operation SOFC and gas turbine having an operation temperature of about 600 ° C. to 800 ° C. has a gas turbine exhaust temperature of about 400 ° C. to 500 ° C., and is a hybrid of a conventional high temperature operation SOFC and gas turbine. The exhaust gas temperature discharged from the turbine is higher than that of the power generation system. Therefore, the conventional hybrid power generation system with a medium temperature operation SOFC has lower power generation efficiency than a hybrid power generation system with a high temperature type SOFC of about 1000 ° C.
 そこで、本発明を適用することにより、発電出力及びタービンによる発電の高効率化が図れるので、中温作動SOFCとガスタービンとのハイブリッド発電システムにおいても発電効率の向上が可能となる。 Therefore, by applying the present invention, it is possible to improve the power generation output and the efficiency of power generation by the turbine, so that the power generation efficiency can be improved even in a hybrid power generation system of a medium temperature operation SOFC and a gas turbine.
 一方、従来のガスタービンシステムにおいて、ガスタービンの作動媒体へ蒸気噴霧を行うシステムは大量の水が必要となり、水のランニングコストを考慮すると、経済的に成立させることは困難である。 On the other hand, in the conventional gas turbine system, a system for spraying steam on the working medium of the gas turbine requires a large amount of water, and considering the running cost of water, it is difficult to achieve it economically.
 しかしながら、本実施例のハイブリッド発電システムでは、燃料電池内で化学反応により大量に生成される水を蒸気噴霧用の用水として利用できるので、発電出力およびタービンによる発電の発電効率の向上を図りながら、蒸気噴霧用の水のランニングコスト(水の供給コスト)を削減でき、システムの経済性にも優れる。 However, in the hybrid power generation system of the present embodiment, water generated in large quantities by a chemical reaction in the fuel cell can be used as water for steam spraying, so that while improving the power generation output and the power generation efficiency of the power generation by the turbine, The running cost (water supply cost) of water for steam spraying can be reduced, and the system is also economical.
 また、外部から水を供給するのではなく、燃料電池7の排水を活用するシステムであるため、蒸気発生に必要な水を外部から導入できない場所・状況でも蒸気噴霧が可能であり、ガスタービンの発電出力と発電効率を向上させることができる。 In addition, since it is a system that utilizes the drainage of the fuel cell 7 rather than supplying water from the outside, steam spraying is possible even in places and situations where water necessary for steam generation cannot be introduced from the outside. Power generation output and power generation efficiency can be improved.
 なお、第1図の実施例には記載していないが、蒸気発生器23で生成した蒸気の一部を、ガスタービンに導入せずにプロセス蒸気として利用して、電気と熱を発生するコージェネレーションシステムとしてもよい。 Although not shown in the embodiment of FIG. 1, a part of the steam generated by the steam generator 23 is used as process steam without being introduced into the gas turbine to generate electricity and heat. It is good also as a generation system.
 第3図は、本発明の第2の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。第2の実施例を第3図を用いて説明する。 FIG. 3 is a diagram showing a system configuration of a hybrid power generation system according to the second embodiment of the present invention. A second embodiment will be described with reference to FIG.
 第1の実施例と異なる点は、蒸気タービン35と、蒸気タービン35に接続し、蒸気タービン35の駆動力で発電する発電機36と、蒸気タービン35と蒸気発生器23とに連通し、蒸気発生器23で生成した蒸気を蒸気タービン35に供給する蒸気供給系統37とを有し、蒸気発生器23で生成した蒸気を、蒸気供給系統37を介して蒸気タービン35に供給して、蒸気タービン35の作動媒体として用い発電機36で電力を回収する点である。その他の点は第1の実施例と同一であり、説明を省略する。 The difference from the first embodiment is that the steam turbine 35, the generator 36 connected to the steam turbine 35 and generating electric power with the driving force of the steam turbine 35, the steam turbine 35 and the steam generator 23, and the steam A steam supply system 37 for supplying the steam generated by the generator 23 to the steam turbine 35, and supplying the steam generated by the steam generator 23 to the steam turbine 35 via the steam supply system 37. The generator 36 is used as a working medium 35 and collects electric power. Other points are the same as those of the first embodiment, and a description thereof will be omitted.
 本実施例の作用及び効果について説明する。 The operation and effect of this embodiment will be described.
 本実施例では、燃料電池排水を回収し、タービン排ガスが有する熱を利用して生成した蒸気を、第1の実施例のようにガスタービンに戻さず別置の蒸気タービン35に導入して動力回収することにより、システム全体としての発電効率が向上する。 In this embodiment, the fuel cell waste water is recovered, and the steam generated by using the heat of the turbine exhaust gas is introduced into the separately installed steam turbine 35 without returning to the gas turbine as in the first embodiment. By collecting, the power generation efficiency of the entire system is improved.
 本実施例では、ガスタービンの燃焼器10への蒸気噴射機構の追加や、タービン12等の改造等、ガスタービン系を変更しなくとも、第1の実施例と同様の効果が得られるものである。 In this embodiment, the same effect as that of the first embodiment can be obtained without changing the gas turbine system, such as addition of a steam injection mechanism to the combustor 10 of the gas turbine or modification of the turbine 12 or the like. is there.
なお、蒸気タービン35の排気38の下流に復水器(図示せず)を設置することで、蒸気タービン35の排気圧が下がり、蒸気タービン35の発生出力を増大させることができる。 Note that by installing a condenser (not shown) downstream of the exhaust 38 of the steam turbine 35, the exhaust pressure of the steam turbine 35 can be reduced, and the generated output of the steam turbine 35 can be increased.
 第4図は、本発明の第3の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。本発明の第3の実施の形態を第4図を用いて説明する。 FIG. 4 is a diagram showing a system configuration of a hybrid power generation system according to the third embodiment of the present invention. A third embodiment of the present invention will be described with reference to FIG.
 第1の実施例と異なる点について説明する。本実施の形態では、圧縮機の吸気取り入れ流路59に、流路内を流下する吸気に水を噴霧する噴霧器41を設け、圧縮機出口と再生熱交換器4とに連通する圧縮空気流路60に、流路60内を流下する圧縮空気3に水を噴霧する噴霧器42を設けている。 Differences from the first embodiment will be described. In the present embodiment, a sprayer 41 for spraying water to the intake air flowing down in the flow path is provided in the intake air intake flow path 59 of the compressor, and the compressed air flow path communicates with the compressor outlet and the regenerative heat exchanger 4. A sprayer 42 for spraying water on the compressed air 3 flowing down in the flow path 60 is provided at 60.
 凝縮水供給系統31は、蒸気用水供給系統39と加湿用水供給系統40とに分岐している。蒸気用水供給系統39は蒸気発生器23へ連通しており、加湿用水供給系統40は、さらに吸気加湿用水供給系統44と、圧縮空気加湿用水供給系統45とに分岐している。吸気加湿用水供給系統44は噴霧器41に接続し、圧縮空気加湿用水供給系統45は噴霧器42に接続している。 The condensed water supply system 31 is branched into a steam water supply system 39 and a humidification water supply system 40. The steam water supply system 39 communicates with the steam generator 23, and the humidification water supply system 40 is further branched into an intake humidification water supply system 44 and a compressed air humidification water supply system 45. The intake humidification water supply system 44 is connected to the sprayer 41, and the compressed air humidification water supply system 45 is connected to the sprayer 42.
 蒸気用水供給系統39は、水回収装置25から供給された凝縮水の一部を蒸気発生器23に導くための流路である。加湿用水供給系統40は、水回収装置25から供給された凝縮水の残りを吸気加湿用水供給系統44と圧縮空気加湿用水供給系統45とに導くための流路である。 The steam water supply system 39 is a flow path for guiding a part of the condensed water supplied from the water recovery device 25 to the steam generator 23. The humidification water supply system 40 is a flow path for guiding the remaining condensed water supplied from the water recovery device 25 to the intake humidification water supply system 44 and the compressed air humidification water supply system 45.
 吸気加湿用水供給系統44は、加湿用水供給系統40から供給された凝縮水の一部を噴霧器41に導くためのものである。また、圧縮空気加湿用水供給系統45は、加湿用水供給系統40から供給された凝縮水の残りを噴霧器42に導くためのものである
 また、加湿用水供給系統40には、凝縮水の流れ方向上流側から下流側に向かって順に、調節弁46、水処理装置48、ポンプ43が設けられている。調節弁46は、蒸気用水供給系統39と、加湿用水供給系統40とに流れる凝縮水の水量配分を調節するための弁である。水処理装置48は、逆浸透膜等を備え、凝縮水中の不純物を取り除くためのものである。また、ポンプ43は、水回収装置25から加湿用水供給系統40に供給された凝縮水を昇圧して噴霧器41及び42に圧送するためのものである。
The intake humidification water supply system 44 is for guiding a part of the condensed water supplied from the humidification water supply system 40 to the sprayer 41. The compressed air humidification water supply system 45 is for guiding the remaining condensed water supplied from the humidification water supply system 40 to the sprayer 42. Further, the humidification water supply system 40 has an upstream of the condensed water flow direction. A control valve 46, a water treatment device 48, and a pump 43 are provided in this order from the side toward the downstream side. The control valve 46 is a valve for adjusting the amount of condensed water flowing through the steam water supply system 39 and the humidification water supply system 40. The water treatment device 48 includes a reverse osmosis membrane and the like, and removes impurities in the condensed water. The pump 43 is for increasing the pressure of the condensed water supplied from the water recovery device 25 to the humidifying water supply system 40 and pumping it to the sprayers 41 and 42.
 吸気加湿用水供給系統44には、調節弁47が設けられている。調節弁47は、吸気加湿用水供給系統44と、圧縮空気加湿用水供給系統45とに流れる凝縮水の水量配分を調整するための弁である。 The intake humidification water supply system 44 is provided with a control valve 47. The control valve 47 is a valve for adjusting the distribution of the amount of condensed water flowing through the intake humidification water supply system 44 and the compressed air humidification water supply system 45.
 その他の点は第1の実施例と同一であり、説明を省略する。 Other points are the same as those in the first embodiment, and a description thereof will be omitted.
 本実施例の作用及び効果について説明する。水回収装置25で回収された凝縮水は、凝縮水供給系統31を流下し、蒸気供給系統39、加湿用水供給系統40に分岐して流下し、さらに加湿用水供給系統40を流下する凝縮水は、吸気加湿用水供給系統44と圧縮空気加湿用水供給系統45とに分岐して噴霧器41及び噴霧器42に導かれる。 The operation and effect of this embodiment will be described. The condensed water recovered by the water recovery device 25 flows down the condensed water supply system 31, branches to the steam supply system 39 and the humidifying water supply system 40, and further flows down the humidifying water supply system 40. Then, the air is branched into an intake humidification water supply system 44 and a compressed air humidification water supply system 45 and led to the sprayer 41 and the sprayer 42.
 ここで蒸気用水供給系統39、吸気加湿用水供給系統44、圧縮空気加湿用水供給系統45に送る凝縮水の水量の配分調整は、燃焼器10への蒸気噴射、吸気噴霧、圧縮空気噴霧のそれぞれの発電出力向上や信頼性向上への寄与等を考慮して、調整弁46及び47の開度を制御することにより行われる。 Here, the distribution adjustment of the amount of condensed water sent to the steam water supply system 39, the intake humidification water supply system 44, and the compressed air humidification water supply system 45 is performed for each of steam injection, intake spray, and compressed air spray to the combustor 10. This is done by controlling the opening degree of the regulating valves 46 and 47 in consideration of the contribution to the improvement of the power generation output and the improvement of the reliability.
 なお、第4図では、加湿用水供給系統40に調整弁46を設置しているが、圧縮空気加湿用供給系統45に調整弁46を設置しても、蒸気用水供給系統39、吸気加湿用水供給系統44、圧縮空気加湿用水供給系統45に送る凝縮水の水量の配分調整ができる。 In FIG. 4, the adjustment valve 46 is installed in the humidification water supply system 40. However, even if the adjustment valve 46 is installed in the compressed air humidification supply system 45, the steam water supply system 39 and the intake humidification water supply Distribution adjustment of the amount of condensed water sent to the system | strain 44 and the compressed air humidification water supply system 45 can be performed.
 ハイブリッド発電システムの運転中に水量配分の制御をしない場合は、固定した穴径を有するオリフィスプレートを、弁46、弁47の代わりに設置して、水量配分を事前に調整するのでもよい。 If the water distribution is not controlled during the operation of the hybrid power generation system, an orifice plate having a fixed hole diameter may be installed instead of the valve 46 and the valve 47 to adjust the water distribution in advance.
 噴霧器41に導かれた凝縮水は、噴霧器41を介して吸気に微細な水滴となって噴霧される。吸気(大気1)に凝縮水を噴霧することにより、吸気(大気1)の温度を低下させつつ圧縮機1の吸込流量を増加させ、圧縮機2の駆動動力を低下させることで効率が向上する効果が得られる。 The condensed water guided to the sprayer 41 is sprayed as fine water droplets in the intake air via the sprayer 41. By spraying condensed water on the intake air (atmosphere 1), the suction flow rate of the compressor 1 is increased while the temperature of the intake air (atmosphere 1) is lowered, and the driving power of the compressor 2 is reduced, thereby improving the efficiency. An effect is obtained.
 また噴霧器42に導かれた凝縮水は、噴霧器42から圧縮空気吐出空気中に微細な水滴となって噴霧され、高温の圧縮吐出空気によって蒸発する際に圧縮機吐出空気3の温度を低下させるため再生熱交換器4によるタービン出口排ガス14の熱回収量が増加することで効率が向上する効果が得られる。 In addition, the condensed water introduced to the sprayer 42 is sprayed as fine water droplets from the sprayer 42 into the compressed air discharge air so as to lower the temperature of the compressor discharge air 3 when evaporated by the high-temperature compressed discharge air. The effect of improving efficiency is obtained by increasing the amount of heat recovered from the exhaust gas 14 at the turbine outlet by the regenerative heat exchanger 4.
 よって本実施例のハイブリッド発電システムによれば、燃料電池7で生成した水を圧縮機吸気および圧縮機吐出空気に噴霧することで、圧縮機駆動力の低減及び再生熱交換器4による熱回収量の増加によって、第1の実施例と同様の効果が得られるのは勿論のこと、さらに発電出力及びタービンによる発電の効率向上が図れる。 Therefore, according to the hybrid power generation system of this embodiment, the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby reducing the compressor driving force and the amount of heat recovered by the regenerative heat exchanger 4. As a result of the increase, the same effect as in the first embodiment can be obtained, and further, the power generation output and the power generation efficiency by the turbine can be improved.
 また、燃料電池7で生成した水を利用しているので圧縮機吸気および圧縮機吐出空気の加湿用の給水コストを抑制しながら、発電出力及びタービンによる発電の効率向上が図れる。 Further, since the water generated by the fuel cell 7 is used, the power generation efficiency by the power generation output and the turbine can be improved while suppressing the water supply cost for humidifying the compressor intake air and the compressor discharge air.
 また本実施例のハイブリッド発電システムによれば、再生熱交換器出口空気5すなわち燃料電池7の入口の温度が下がるため、燃料電池7の作動温度を下げることができ、上に記述した中温作動SOFCの3つの特徴をより発揮することができる。 Further, according to the hybrid power generation system of the present embodiment, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered, so that the operating temperature of the fuel cell 7 can be lowered. These three features can be exhibited more.
 第5図は、本発明の第4の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。本発明の第4の実施の形態を第5図を用いて説明する。 FIG. 5 is a diagram showing a system configuration of a hybrid power generation system according to the fourth embodiment of the present invention. A fourth embodiment of the present invention will be described with reference to FIG.
 基本的な構成は、前述した第3の実施例の構成と同じであり、第3の実施例の構成と同一の構成については説明を省略する。第3の実施例と異なる点は、蒸気発生器23で生成した蒸気を、蒸気供給系統37を介して別途設置した蒸気タービン35に供給して、蒸気タービン35のタービンの作動媒体として用いる点である。 The basic configuration is the same as that of the third embodiment described above, and the description of the same configuration as that of the third embodiment is omitted. The difference from the third embodiment is that the steam generated by the steam generator 23 is supplied to a separately installed steam turbine 35 via a steam supply system 37 and used as a working medium for the turbine of the steam turbine 35. is there.
 本実施例では、第2の実施例と同様に、水回収装置25から凝縮水供給系統31、蒸気用水供給系統39を介して蒸気発生器23に供給し、ガスタービンの排ガスの熱を利用して蒸気を発生させ、その蒸気を蒸気供給系統37を介して蒸気タービン35に導入する。蒸気タービン35は、蒸気供給系統37から供給された蒸気の膨張力により回転駆動する。蒸気タービン35は発電機36と機械的に接続しており、タービンの駆動力を発電機に伝え、発電機36を回転させ発電を行う。 In the present embodiment, as in the second embodiment, the water recovery device 25 supplies the steam generator 23 via the condensed water supply system 31 and the steam water supply system 39, and uses the heat of the exhaust gas from the gas turbine. The steam is generated, and the steam is introduced into the steam turbine 35 through the steam supply system 37. The steam turbine 35 is rotationally driven by the expansion force of the steam supplied from the steam supply system 37. The steam turbine 35 is mechanically connected to a generator 36, transmits the driving force of the turbine to the generator, and rotates the generator 36 to generate power.
 さらに、本実施例では、水回収装置25で回収した凝縮水を加湿用水供給系統40、吸気加湿用水供給系統44、圧縮空気加湿用水供給系統45を介して、噴霧器41、42に導き、噴霧器41、42によって吸気1及び圧縮機吐出空気への加湿を行っている。 Furthermore, in the present embodiment, the condensed water recovered by the water recovery device 25 is guided to the sprayers 41 and 42 via the humidification water supply system 40, the intake humidification water supply system 44, and the compressed air humidification water supply system 45. , 42 is used to humidify the intake air 1 and the compressor discharge air.
 本実施例のハイブリッド発電システムによれば、燃料電池7で生成した水を圧縮機吸気および圧縮機吐出空気に噴霧することで、第3の実施例と同様に圧縮機駆動力の低減及び再生熱交換器4による熱回収量の増加によって発電出力及びタービンによる発電の効率向上が図れ、かつガスタービン系の変更が不要等の第2の実施例と同様の効果が得られる。 According to the hybrid power generation system of the present embodiment, the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby reducing the compressor driving force and regenerating heat in the same manner as in the third embodiment. The increase in the amount of heat recovered by the exchanger 4 can improve the power generation output and the efficiency of power generation by the turbine, and the same effects as in the second embodiment, such as no need to change the gas turbine system, can be obtained.
また本実施例のハイブリッド発電システムによれば、再生熱交換器出口空気5すなわち燃料電池7の入口の温度が下がるため、燃料電池7の作動温度を下げることができ、上に記述した中温作動SOFCの3つの特徴をより発揮することができる。
Further, according to the hybrid power generation system of the present embodiment, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered, so that the operating temperature of the fuel cell 7 can be lowered. These three features can be exhibited more.
 第6図は、本発明の第5の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。本発明の第5の実施の形態を第6図を用いて説明する。 FIG. 6 is a diagram showing a system configuration of a hybrid power generation system according to the fifth embodiment of the present invention. A fifth embodiment of the present invention will be described with reference to FIG.
 基本的な構成は、前述した第2の実施例の構成と同じであり、第2の実施例の構成と同一の構成については説明を省略する。第2の実施例と異なる点は、蒸気タービン35と接続し、蒸気タービン35を駆動した後の排気38を復水する復水器49と、復水器49と接続し、復水器で復水された水が流通する水供給系統50と、復水器で復水した水を圧縮機2の吸気に噴霧する噴霧器56と、復水器で復水した水を圧縮器吐出空気に噴霧する噴霧器57と、水供給系統50から分岐し、噴霧器56に連通する吸気加湿用水供給系統53と、水供給系統50から分岐し、噴霧器57と連通する圧縮空気加湿用水供給系統54とを有する点である。 The basic configuration is the same as the configuration of the second embodiment described above, and the description of the same configuration as the configuration of the second embodiment is omitted. The difference from the second embodiment is that it is connected to the steam turbine 35, connected to the condenser 49 for condensing the exhaust 38 after driving the steam turbine 35, and the condenser 49. A water supply system 50 through which the sewed water circulates, a sprayer 56 that sprays the water condensed by the condenser onto the intake air of the compressor 2, and the water condensed by the condenser is sprayed on the compressor discharge air. In that it has a sprayer 57, an intake humidification water supply system 53 branched from the water supply system 50 and communicated with the sprayer 56, and a compressed air humidification water supply system 54 branched from the water supply system 50 and communicated with the sprayer 57. is there.
 噴霧器56は、圧縮機2の大気取り入れ流路に設けられ、噴霧器57は、圧縮機2から再生熱交換器4へ流下する圧縮機吐出空気3の流路に設けられている。また水供給系統50には水の流れ方向上流側から下流側に向かって順に水処理装置51、ポンプ52が設けられている。また、吸気加湿用水供給系統53には、調整弁55が設けられている。 The sprayer 56 is provided in the air intake passage of the compressor 2, and the sprayer 57 is provided in the flow path of the compressor discharge air 3 flowing down from the compressor 2 to the regenerative heat exchanger 4. The water supply system 50 is provided with a water treatment device 51 and a pump 52 in order from the upstream side to the downstream side in the water flow direction. The intake humidification water supply system 53 is provided with a regulating valve 55.
 水処理装置は、水中に含まれる不純物を取り除くためのものであり、逆浸透膜等を備える。また、ポンプは、復水器で復水した水を噴霧器56、57に圧送するためのものである。調整弁55は、吸気加湿用水供給系統53と、圧縮空気加湿用水供給系統54に送る水の水量を調節するためのものである。 The water treatment device is for removing impurities contained in water and includes a reverse osmosis membrane and the like. The pump is for pumping the water condensed by the condenser to the sprayers 56 and 57. The adjustment valve 55 is for adjusting the amount of water sent to the intake humidification water supply system 53 and the compressed air humidification water supply system 54.
 本実施例の作用及び効果について説明する。蒸気タービン35の排気38の下流に復水器49を設置し、排気38を復水することにより蒸気タービン35の排気圧が下がり、蒸気タービン35の発生出力を増大させることができる。 The operation and effect of this embodiment will be described. By installing a condenser 49 downstream of the exhaust 38 of the steam turbine 35 and condensing the exhaust 38, the exhaust pressure of the steam turbine 35 can be reduced and the generated output of the steam turbine 35 can be increased.
 さらに、その復水器49で復水した水を水供給系統50、吸気加湿用水供給系統53、及び圧縮空気加湿用水供給系統54を介して噴霧器56、57から吸気1及び圧縮機吐出空気3中に噴霧する。ここで、吸気1及び圧縮機吐出空気3に噴霧する水量の割合は、調整弁55の開度を制御することによって調節される。なお、吸気加湿用水供給系統53、圧縮空気加湿用水供給系統54に送る水の水量の配分調整は、吸気噴霧、圧縮空気噴霧のそれぞれの発電出力向上や信頼性向上への寄与等を考慮して調整される。 Further, the water condensed by the condenser 49 is supplied from the sprayers 56 and 57 to the intake air 1 and the compressor discharge air 3 through the water supply system 50, the intake humidification water supply system 53, and the compressed air humidification water supply system 54. Spray on. Here, the ratio of the amount of water sprayed to the intake air 1 and the compressor discharge air 3 is adjusted by controlling the opening degree of the adjustment valve 55. The distribution adjustment of the amount of water sent to the intake humidifying water supply system 53 and the compressed air humidifying water supply system 54 takes into account the contribution to the improvement of the power generation output and the reliability of the intake spray and the compressed air spray, respectively. Adjusted.
 本実施例では、第2の実施例と同様の効果に加えて、燃料電池7で生成した水を圧縮機吸気および圧縮機吐出空気に噴霧することで、圧縮機吸気および圧縮機吐出空気の加湿を行っていないハイブリッド発電システムと比較して発電出力及び効率の向上が図れる。 In this embodiment, in addition to the same effects as those of the second embodiment, the water generated by the fuel cell 7 is sprayed on the compressor intake air and the compressor discharge air, thereby humidifying the compressor intake air and the compressor discharge air. Compared with a hybrid power generation system that does not perform power generation, power generation output and efficiency can be improved.
 さらに、燃料電池7で生成した水を利用しているので圧縮機吸気および圧縮機吐出空気の加湿用の給水コストを抑制しながら、発電出力及び効率の向上が図れる。 Furthermore, since the water generated in the fuel cell 7 is used, the power generation output and the efficiency can be improved while suppressing the water supply cost for humidifying the compressor intake air and the compressor discharge air.
 第7図は、本発明の第6の実施の形態であるハイブリッド発電システムのシステム構成を示す図である。本発明の第6の実施の形態を第7図を用いて説明する。 FIG. 7 is a diagram showing a system configuration of a hybrid power generation system according to the sixth embodiment of the present invention. A sixth embodiment of the present invention will be described with reference to FIG.
 第6の実施例は、第1の実施例と同様に、燃料電池排水を水回収装置25により回収し、その凝縮水31をガスタービン排気の排熱を利用した蒸気発生器23に供給することで蒸気32を発生させ、その蒸気32を燃焼器10に蒸気噴射することによりガスタービンの発電出力と効率を向上させることで、燃料電池7から発生する大量の排水を有効利用する例である。 In the sixth embodiment, as in the first embodiment, the fuel cell waste water is recovered by the water recovery device 25 and the condensed water 31 is supplied to the steam generator 23 using the exhaust heat of the gas turbine exhaust. This is an example in which a large amount of wastewater generated from the fuel cell 7 is effectively utilized by generating steam 32 and injecting the steam 32 into the combustor 10 to improve the power generation output and efficiency of the gas turbine.
 第1の実施例と異なる点は、蒸気発生器23を再生熱交換器4よりガスタービン排気ガスラインの上流側に設置、すなわち、タービン出口ガス14を蒸気発生器23に導入し、蒸気発生器23から排出された排気61を再生熱交換器4に導入し、排ガス61を熱源にして圧縮機吐出空気3を加熱した後、排ガス62を水回収装置25に導入する点である。その他の構成は、前述した第1の実施例の構成と同じであり、第1の実施例の構成と同一の構成については説明を省略する。 The difference from the first embodiment is that the steam generator 23 is installed on the upstream side of the gas turbine exhaust gas line from the regenerative heat exchanger 4, that is, the turbine outlet gas 14 is introduced into the steam generator 23, and the steam generator The exhaust gas 61 is introduced into the regenerative heat exchanger 4, the compressor discharge air 3 is heated using the exhaust gas 61 as a heat source, and then the exhaust gas 62 is introduced into the water recovery device 25. Other configurations are the same as those of the first embodiment described above, and the description of the same configurations as those of the first embodiment is omitted.
 本実施例の構成によれば、蒸気発生器23をより高温側、再生熱交換器4をより低温側に設置することになり、より過熱状態の蒸気32が得られ、再生熱交換器4のガス側の温度が低下し再生熱交換器4の信頼性と寿命の向上を図ることができる。 According to the configuration of the present embodiment, the steam generator 23 is installed on the higher temperature side, and the regenerative heat exchanger 4 is installed on the lower temperature side, so that a more superheated steam 32 is obtained. The temperature on the gas side is lowered, and the reliability and life of the regenerative heat exchanger 4 can be improved.
 また、タービン出口ガス14ではなく蒸気発生器23で温度低下した排ガス61が再生熱交換器4に導入されるため、再生熱交換器出口空気5すなわち燃料電池7の入口の温度が下がるので、燃料電池7の作動温度を下げることができ、上に記述した中温作動SOFCの3つの特徴をより発揮することができる。 In addition, since the exhaust gas 61 whose temperature has been lowered by the steam generator 23 is introduced into the regenerative heat exchanger 4 instead of the turbine outlet gas 14, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered. The operating temperature of the battery 7 can be lowered, and the three features of the medium temperature operating SOFC described above can be exhibited more.
 第7の実施例を第8図を用いて説明する。第7の実施例は、第2の実施例と同様に、燃料電池排水を水回収装置25により回収し、その水31をガスタービン排気の排熱を利用した蒸気発生器23に供給することで蒸気37を発生させ、その蒸気37を蒸気タービン35に導入しその駆動力で発電機36を回転させることによりハイブリッド発電システム全体の発電出力と効率を向上させることで、燃料電池7から発生する大量の排水を有効利用する例である。 The seventh embodiment will be described with reference to FIG. In the seventh embodiment, as in the second embodiment, the fuel cell waste water is recovered by the water recovery device 25, and the water 31 is supplied to the steam generator 23 using the exhaust heat of the gas turbine exhaust. By generating steam 37, introducing the steam 37 into the steam turbine 35, and rotating the generator 36 with the driving force, the power generation output and efficiency of the entire hybrid power generation system are improved, so that a large amount generated from the fuel cell 7 This is an example of effective use of wastewater.
 ここでは、第6の実施例と同様に、蒸気発生器23を再生熱交換器4よりガスタービン排気ガスラインの上流側に設置、すなわち、タービン出口ガス14を蒸気発生器23に導入し、その排ガス61を再生熱交換器4に導入し、排気61を熱源にして圧縮機吐出空気3を加熱した後、排ガス62を水回収装置25に導入する。その他の構成は、前述した第1の実施例の構成と同じであり、第1の実施例の構成と同一の構成については説明を省略する。 Here, as in the sixth embodiment, the steam generator 23 is installed on the upstream side of the gas turbine exhaust gas line from the regenerative heat exchanger 4, that is, the turbine outlet gas 14 is introduced into the steam generator 23. After the exhaust gas 61 is introduced into the regenerative heat exchanger 4 and the compressor discharge air 3 is heated using the exhaust 61 as a heat source, the exhaust gas 62 is introduced into the water recovery device 25. Other configurations are the same as those of the first embodiment described above, and the description of the same configurations as those of the first embodiment is omitted.
 これにより、蒸気発生器23をより高温側、再生熱交換器4をより低温側に設置することになり、より過熱状態の蒸気37が得られ蒸気タービン35の出力と効率が向上すること、再生熱交換器4のガス側の温度が低下し再生熱交換器4の信頼性と寿命が向上するなどの利点がある。 As a result, the steam generator 23 is installed on the higher temperature side and the regenerative heat exchanger 4 is installed on the lower temperature side, so that the overheated steam 37 is obtained and the output and efficiency of the steam turbine 35 are improved. There is an advantage that the temperature on the gas side of the heat exchanger 4 is lowered and the reliability and life of the regenerative heat exchanger 4 are improved.
 また、タービン出口ガス14ではなく蒸気発生器23で温度低下した排ガス61が再生熱交換器4に導入されるため、再生熱交換器出口空気5すなわち燃料電池7の入口の温度が下がるので、燃料電池7の作動温度を下げることができ、上に記述した中温作動SOFCの3つの特徴をより発揮することができる。 In addition, since the exhaust gas 61 whose temperature has been lowered by the steam generator 23 is introduced into the regenerative heat exchanger 4 instead of the turbine outlet gas 14, the temperature of the regenerative heat exchanger outlet air 5, that is, the inlet of the fuel cell 7 is lowered. The operating temperature of the battery 7 can be lowered, and the three features of the medium temperature operating SOFC described above can be exhibited more.
  本発明は、ガスタービン、及び燃料電池とのハイブリッド発電システムに適用可能である。
 
The present invention is applicable to a hybrid power generation system with a gas turbine and a fuel cell.

Claims (7)

  1.  大気を吸気して圧縮する圧縮機と、該圧縮機からの圧縮空気と電池燃料との化学反応により発電する燃料電池と、該燃料電池からの圧縮空気と燃料とを混合して燃焼し、燃焼ガスを生成する燃焼器と、該燃焼器からの燃焼ガスで駆動されるタービンと、該タービンの駆動力で発電する発電機とを有するハイブリッド発電システムにおいて、
     前記タービンから排出されたタービン排ガスを熱源にして蒸気を生成する蒸気発生器と、前記タービン排ガスから水を回収する水回収装置と、該水回収装置で回収した水を前記蒸気発生器に供給する凝縮水供給系統と、
     前記蒸気発生器で生成した蒸気を発電機を駆動するタービンに導入する蒸気供給系統とを有することを特徴とするハイブリッド発電システム。
    A compressor that sucks and compresses the atmosphere, a fuel cell that generates electricity by a chemical reaction between the compressed air from the compressor and the cell fuel, and a mixture of the compressed air and fuel from the fuel cell burns and burns. In a hybrid power generation system having a combustor that generates gas, a turbine that is driven by combustion gas from the combustor, and a generator that generates electric power using the driving force of the turbine,
    A steam generator for generating steam using turbine exhaust gas discharged from the turbine as a heat source, a water recovery device for recovering water from the turbine exhaust gas, and supplying water recovered by the water recovery device to the steam generator A condensed water supply system;
    A hybrid power generation system comprising: a steam supply system that introduces steam generated by the steam generator into a turbine that drives a generator.
  2.  大気を吸気して圧縮する圧縮機と、該圧縮機で圧縮した圧縮空気を電池燃料の反応熱で加熱し、電池燃料の反応生成物である水を含む高温ガスを生成する燃料電池と、該燃料電池からの高温ガスと燃料とを混合して燃焼し、燃焼ガスを生成する燃焼器と、該燃焼器からの燃焼ガスで駆動されるタービンと、該タービンの駆動力で発電する発電機とを有するハイブリッド発電システムにおいて、
     該圧縮機からの圧縮空気を、前記タービンから排出されたタービン排ガスで昇温した後に、前記燃料電池に供給する再生熱交換器と、前記再生熱交換器から排出されたタービン排ガスを熱源にして蒸気を生成する蒸気発生器と、該蒸気発生器から排出されたタービン排ガスに含まれる湿分を凝縮して回収する水回収装置と、
     該水回収装置で回収した水を前記蒸気発生器に供給する凝縮水供給系統と、前記蒸気発生器で生成した蒸気を発電機を駆動するタービンに導入する蒸気供給系統とを有することを特徴とするハイブリッド発電システム。
    A compressor that sucks and compresses the air, and a fuel cell that heats the compressed air compressed by the compressor with the reaction heat of the cell fuel and generates water as a reaction product of the cell fuel, and the fuel cell; Combustor that mixes and burns high temperature gas and fuel from fuel cell to generate combustion gas, turbine driven by combustion gas from the combustor, and generator that generates electric power with driving power of the turbine In a hybrid power generation system having
    After the temperature of the compressed air from the compressor is raised with the turbine exhaust gas discharged from the turbine, the regenerative heat exchanger supplied to the fuel cell and the turbine exhaust gas discharged from the regenerative heat exchanger as a heat source A steam generator that generates steam, and a water recovery device that condenses and recovers moisture contained in the turbine exhaust gas discharged from the steam generator;
    A condensed water supply system for supplying water recovered by the water recovery device to the steam generator; and a steam supply system for introducing the steam generated by the steam generator into a turbine for driving a generator. Hybrid power generation system.
  3.  大気を吸気して圧縮する圧縮機と、該圧縮機で圧縮した圧縮空気を電池燃料の反応熱で加熱し、電池燃料の反応生成物である水を含む高温ガスを生成する燃料電池と、該燃料電池からの高温ガスと燃料とを混合して燃焼し、燃焼ガスを生成する燃焼器と、該燃焼器からの燃焼ガスで駆動されるタービンと、該タービンの駆動力で発電する発電機とを有するハイブリッド発電システムにおいて、
     前記タービンから排出されたタービン排ガスを熱源にして蒸気を生成する蒸気発生器と、前記圧縮機からの圧縮空気を、蒸気発生器から排出されたタービン排ガスで昇温した後に、前記燃料電池に供給する再生熱交換器と、該再生熱交換器から排出されたタービン排ガスに含まれる湿分を凝縮して回収する水回収装置と、該水回収装置で回収した水を前記蒸気発生器に供給する凝縮水供給系統と、前記蒸気発生器で生成した蒸気を発電機を駆動するタービンに導入する蒸気供給系統とを有することを特徴とするハイブリッド発電システム。
    A compressor that sucks in air and compresses it, a fuel cell that heats the compressed air compressed by the compressor with the reaction heat of the cell fuel, and generates a high-temperature gas containing water that is a reaction product of the cell fuel; and A combustor that mixes and burns high-temperature gas from a fuel cell and fuel to generate combustion gas, a turbine that is driven by the combustion gas from the combustor, and a generator that generates electric power using the driving force of the turbine In a hybrid power generation system having
    A steam generator that generates steam using the turbine exhaust gas discharged from the turbine as a heat source, and the compressed air from the compressor is heated to the turbine exhaust gas discharged from the steam generator and then supplied to the fuel cell A regenerative heat exchanger, a water recovery device for condensing and recovering moisture contained in the turbine exhaust gas discharged from the regenerative heat exchanger, and supplying water recovered by the water recovery device to the steam generator A hybrid power generation system comprising: a condensed water supply system; and a steam supply system that introduces steam generated by the steam generator into a turbine that drives a generator.
  4.  請求項2又は3のいずれか1項に記載のハイブリッド発電システムにおいて、
     前記蒸気供給系統は、前記燃焼器に設けられた蒸気噴射器に連通していることを特徴とするハイブリッド発電システム。
    The hybrid power generation system according to any one of claims 2 and 3,
    The said steam supply system is connected to the steam injector provided in the said combustor, The hybrid electric power generation system characterized by the above-mentioned.
  5.  請求項2に記載のハイブリッド発電システムにおいて、
     蒸気タービンと、該蒸気タービンと接続し、前記蒸気タービンの駆動力で発電する発電機とを有し、前記蒸気供給系統は、前記蒸気タービンに連通していることを特徴とするハイブリッド発電システム。
    The hybrid power generation system according to claim 2,
    A hybrid power generation system comprising: a steam turbine; and a generator connected to the steam turbine and generating electric power with a driving force of the steam turbine, wherein the steam supply system communicates with the steam turbine.
  6.  請求項2に記載のハイブリッド発電システムにおいて、
     前記圧縮機の吸気取り入れ流路に設けられ、流路内を流下する吸気に水を噴霧する第1の噴霧器と、前記圧縮機からの圧縮空気を前記再生熱交換器へ導入する圧縮空気流路に設けられ、流路内を流下する圧縮空気に水を噴霧する第2の噴霧器と、前記凝縮水供給系統および前記蒸気発生器と連通し、前記凝縮水供給系統を流下する水の一部を前記蒸気発生器に導入する蒸気用水供給系統と、前記凝縮水供給系統と連通し、前記凝縮水供給系統を流下する残りの水が流通する加湿用水供給系統と、該加湿用水供給系統および前記第1の噴霧器と連通し、前記加湿用水供給系統を流下する水の一部を前記第1の噴霧器に導く吸気加湿用水供給系統と、前記加湿用水供給系統および前記第2の噴霧器と連通し、前記加湿用水供給系統を流下する残りの水を前記第2の噴霧器に導く圧縮空気加湿用水供給系統とを有することを特徴とするハイブリッド発電システム。
    The hybrid power generation system according to claim 2,
    A first sprayer that is provided in an intake intake passage of the compressor and sprays water to intake air flowing down in the passage, and a compressed air passage that introduces compressed air from the compressor into the regenerative heat exchanger A second sprayer for spraying water onto the compressed air flowing down in the flow path, the condensed water supply system and the steam generator, and a part of the water flowing down the condensed water supply system A water supply system for steam introduced into the steam generator; a water supply system for humidification that communicates with the condensate water supply system; the remaining water flowing down the condensate water supply system flows; the water supply system for humidification; An intake humidifying water supply system for communicating a part of the water flowing down the humidifying water supply system to the first sprayer, the humidifying water supply system and the second sprayer, The rest flowing down the humidification water supply system Hybrid power generation system characterized by having a compressed air humidifying water supply system for guiding water to the second sprayer.
  7.  請求項5に記載のハイブリッド発電システムにおいて、
     前記圧縮機の吸気取り入れ流路に設けられ、流路内を流下する吸気に水を噴霧する第1の噴霧器と、前記圧縮機からの圧縮空気が流通する圧縮空気流路に設けられ、流路内を流下する圧縮空気に水を噴霧する第2の噴霧器と、 前記蒸気タービンからの排気を復水する復水器と、該復水器と連通し、該復水器で復水した水が流下する水供給系統と、該水供給系統および前記第1の噴霧器と連通し、前記水供給系統を流下する水の一部を前記第1の噴霧器に導く吸気加湿用水供給系統と、前記水供給系統及び前記第2の噴霧器と連通し、前記水供給系統を流下する残りの水を前記第2の噴霧器に導く圧縮空気加湿用水供給系統とを有することを特徴とするハイブリッド発電システム。
    The hybrid power generation system according to claim 5,
    A first sprayer that sprays water on the intake air flowing down in the flow path, and a compressed air flow path through which compressed air from the compressor flows; A second sprayer for spraying water onto the compressed air flowing down, a condenser for condensing exhaust from the steam turbine, and water condensing in the condenser in communication with the condenser. A water supply system that flows down, an intake humidification water supply system that communicates with the water supply system and the first sprayer, and leads a part of the water flowing down the water supply system to the first sprayer, and the water supply A hybrid power generation system comprising: a compressed air humidification water supply system that communicates with a system and the second sprayer and guides the remaining water flowing down the water supply system to the second sprayer.
PCT/JP2009/000215 2009-01-21 2009-01-21 Hybrid power generation system WO2010084525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000215 WO2010084525A1 (en) 2009-01-21 2009-01-21 Hybrid power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000215 WO2010084525A1 (en) 2009-01-21 2009-01-21 Hybrid power generation system

Publications (1)

Publication Number Publication Date
WO2010084525A1 true WO2010084525A1 (en) 2010-07-29

Family

ID=42355605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000215 WO2010084525A1 (en) 2009-01-21 2009-01-21 Hybrid power generation system

Country Status (1)

Country Link
WO (1) WO2010084525A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088099A (en) * 2010-12-16 2011-06-08 西安交通大学 Combined cold-heat-power supplying circulation system driven by solid oxide fuel cell
CN106895383A (en) * 2015-12-21 2017-06-27 考克利尔维修工程有限责任公司 Waste heat of condensation recovered steam generator
EP3184757A1 (en) * 2015-12-21 2017-06-28 Cockerill Maintenance & Ingenierie S.A. Condensing heat recovery steam generator
IT201700032837A1 (en) * 2017-03-24 2018-09-24 Angelo Minotti Device for electricity generation
WO2019223823A1 (en) * 2018-05-22 2019-11-28 MTU Aero Engines AG Exhaust-gas treatment device, aircraft propulsion system, and method for treating an exhaust-gas stream

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413879A (en) * 1994-02-08 1995-05-09 Westinghouse Electric Corporation Integrated gas turbine solid oxide fuel cell system
JP2002305009A (en) * 2001-04-04 2002-10-18 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell type complex power generation device
JP2004204849A (en) * 2002-12-23 2004-07-22 General Electric Co <Ge> Cooled turbine integrated fuel cell hybrid power plant
JP2005098244A (en) * 2003-09-26 2005-04-14 Hitachi Ltd Gas turbine facilities
JP2005164081A (en) * 2003-12-01 2005-06-23 Hitachi Ltd Gas turbine system
JP2006100223A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system and operation method for combined power generation system
JP2008196399A (en) * 2007-02-14 2008-08-28 Hitachi Ltd Gas turbine using high moisture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413879A (en) * 1994-02-08 1995-05-09 Westinghouse Electric Corporation Integrated gas turbine solid oxide fuel cell system
JP2002305009A (en) * 2001-04-04 2002-10-18 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell type complex power generation device
JP2004204849A (en) * 2002-12-23 2004-07-22 General Electric Co <Ge> Cooled turbine integrated fuel cell hybrid power plant
JP2005098244A (en) * 2003-09-26 2005-04-14 Hitachi Ltd Gas turbine facilities
JP2005164081A (en) * 2003-12-01 2005-06-23 Hitachi Ltd Gas turbine system
JP2006100223A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system and operation method for combined power generation system
JP2008196399A (en) * 2007-02-14 2008-08-28 Hitachi Ltd Gas turbine using high moisture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088099A (en) * 2010-12-16 2011-06-08 西安交通大学 Combined cold-heat-power supplying circulation system driven by solid oxide fuel cell
CN106895383A (en) * 2015-12-21 2017-06-27 考克利尔维修工程有限责任公司 Waste heat of condensation recovered steam generator
EP3184757A1 (en) * 2015-12-21 2017-06-28 Cockerill Maintenance & Ingenierie S.A. Condensing heat recovery steam generator
WO2017108355A1 (en) * 2015-12-21 2017-06-29 Cockerill Maintenance & Ingenierie S.A. Condensing heat recovery steam generator
BE1025812B1 (en) * 2015-12-21 2019-10-25 Cockerill Maintenance & Ingenierie S.A. HEAT RECOVERY VAPOR GENERATOR WITH CONDENSATION
CN106895383B (en) * 2015-12-21 2019-11-12 考克利尔维修工程有限责任公司 Waste heat of condensation recovered steam generator
IT201700032837A1 (en) * 2017-03-24 2018-09-24 Angelo Minotti Device for electricity generation
WO2018173012A1 (en) * 2017-03-24 2018-09-27 Minotti Angelo Micro-combustion device for the generation of electrical power
US11435075B2 (en) 2017-03-24 2022-09-06 Angelo Minotti Micro-combustion device for the generation of electrical power
WO2019223823A1 (en) * 2018-05-22 2019-11-28 MTU Aero Engines AG Exhaust-gas treatment device, aircraft propulsion system, and method for treating an exhaust-gas stream
EP4276287A3 (en) * 2018-05-22 2023-12-27 MTU Aero Engines AG Aircraft propulsion system with exhasut-gas treatment device and method for treating an exhaust-gas stream

Similar Documents

Publication Publication Date Title
JP6374965B2 (en) Recirculation apparatus and method for high temperature battery systems
US6316134B1 (en) Fuel cell electric power generation system
US8151549B2 (en) High humidity gas turbine equipment
JP5085847B2 (en) High-efficiency fuel cell power generation system with an expander for power generation
KR20090108123A (en) Integrated fuel cell and heat engine hybrid system for high efficiency power generation
JPH0622148B2 (en) Molten carbonate fuel cell power plant
WO2010084525A1 (en) Hybrid power generation system
JP2014099297A (en) Power generation system and method for operating power generation system
WO2010013316A1 (en) Hybrid power generation system and its operating method
EP2074290A1 (en) Power plant having pure oxygen combustor
JP6125224B2 (en) Power generation system and method for operating power generation system
KR101128829B1 (en) Heat recovery type cogeneration system of fuel cell and generating method thereof
JP4358338B2 (en) Fuel cell combined power plant system
KR100814940B1 (en) Thermal power plant having pure oxygen combustor
KR101596721B1 (en) Fuel cell, combined generation system and method comprising the same
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPH0945350A (en) Fuel cell power generation plant
KR20020031686A (en) Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
GB2458112A (en) Heat and Process Water Recovery System
KR100817898B1 (en) Fuel cell-linked power generation plant using pure oxygen combustion
KR101612015B1 (en) Fuel Cell Heat Recovery ORC Power System
JPS6257073B2 (en)
JP2018181800A (en) Fuel battery system
JP4467758B2 (en) CO2 gas recovery type gas turbine power plant and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP